; Wang Laboratories, Inc.

To: CS/2200/386 file
From: T80
Date: March 14, 1990..

Re: Description of (S/2200/386 disk catalog area stored program file structure.

Disclainer of Warranties and Linitation of Liabilities

The staff of Wang Laboratories, Inc has taken due care in preparing this
manual. However, nothing contained herein modifies or alters in any way
the standard terms and conditions of the Wang purchase, lease, or license
agreement by which the product was acquired, nor increases in any way
Wang's liability to the customer. In no event shall Wang or its
subsidiaries be liable for incidental or consequential damages in
connection with or arising from the use of the product, the accompanying
manual, or any related materials.

WANG LABORATORIES, INC.

One Industrial Avenue, Lowell, MA 01851 TEL. (508) 459-5000, Telex 172108.

Re: Description of ($/2200/386 disk catalog area stored program file structure.

Index
(5/2200/386 disk catalog structure Page 2
Hashing algorithms:
Hashing algorithms: .Page 3
(5/2200/386 program files on disk: Page 4
Header block.

Program record blocks,

Program trailer blocks.

End of file blocks.

Selecting the option Date/Tine stamping of program files.

Program file structure : (5/2200 MVP normal "01d" mode. Page 5
Program file structure : (S/386 "new" mode, Page 6.
New (S/386 format changes:

Text atomization: BASIC-2 Verb atoms Page T,

(5/2200/386 disk catalog structure, Page-2

Catalog index area: contained beginning in disk sector O.

Disk sector O Bytes 0-15.
.0.1 .2.3 .4.5 .6.7 .8.9 .A.B .C.D .E.F
example: 0146 448F FEOO 0000 0000 0000 0000 0000
on D31 index sectors = 70’ end cat.area =65023 Current end =17550

where byte 00 is the index type
00 = old index structure eg. default
01 = new index structure eg. ‘ hash.
byte 01 is number of index sectors (binary count Ol-FF).
bytes 02-03 are 2 byte binary pointer to Current end + 1.
bytes 04-05 are 2 byte binary pointer to End of the catalog area + 1.
bytes 06-15 are set 00 (currently undefined).

The remainder of the catalog area is divided into 16 byte file items.
.0.1 .2.3 .4.5 .6.7 .8.9 .A.B .C.D .E.F
example: 1080 OOFA OOFF 0000 544C 5853 5441 5254
Active Program “TLXSTART" on disk at 250 - 255

where byte 00 is file status.
00 = unassigned.

10 = active
11 = scratched
21 = re-used scratch entry.

byte 01 is file type.

00 = data file.

80 = program file, ‘old'" format. i.e. MVP

40 = program file, '"new’” format, i.e. 386.
bytes 02-03 are 2 byte binary pointer to file START address.
bytes 04-05 are 2 byte binary pointer to file END address.
bytes 06-07 are set 0000 (currently undefined).
bytes 08-15 are the file name iIn ascii.

Hashing algorithms:

“The new index structure uses a more efficient hashing algorithm for
locating files in the index, resulting in a more even distribution of file
entries. Additionally, if an index sector is full, the system enters a new
file into the next higher sector rather than the next lower, as is done with
" the old index. o
Access to the new Disk Index (from SRN for MVP Release 2.5.)

The following program simulates the new disk index hashing:

100 N$=F$:REM F$ contains the name of the file to be entered.

110 X$=HEX(00)

120 FOR I=1 TO 8

130 X1$=STR(N$,I,1):REM X1$ contains Ith byte of the file name

140 IF MOD(I,2)=0 THEN 160

150 ROTATE (X1$,4) : REM. Exchange upper/lower nibbles of odd bytes
160 X$=X$ ADD X13$ REM X3 contains sum of all bytes

170 NEXT I

180 S = MOD(VAL(X$),C):REM C contains the number of index sectors.
190 REM S contains the sector number into which the entry should go.

Rashing algorithns:

Page-3

The following program allows access to either the old or the new index
algorithm.

0010 DIM z9$(16)16,A3$80,8%1

6500 DEFFN'229(29,STR(A$,1,8))

.
.

: DATA LOAD BA T #29,(0,23)293()
: Z4=VAL(STR(Z29$().2.1))

: STR(A$,9,8)=STR(A$,1,8)

ON POS(HEX(00 01)=STR(Z29%(),.1))GOSUB

: Z25=23

: IF Z3=0 THEN 6630

6620 DATA LOAD BA T #29,(23,28)29%()

6630

26=0

: FOR Z7=1T0 16
: IF Z3 <> O THEN 6680
: IF Z7=1 THEN 27=2
6680 B$=STR(29%(27),.1)
ON POS(HEX(00 10 11)=B$)GOTO 6740,6720,6720

.

.
.

.

GOTO 6750

Nodified 3/13/90.

ref, FileName
Read cat sector zero
Z24=

Set file name into w/a

6770,6800 go do hashing logic.
Set should be hash sector in index.
avoid duplicate read of sector O.
Read index sector.

6720 IF STR(Z9%(27),9,8) <> STR(A$,1,8) THEN 6750

Z26=27

6740 Z7=16
6750 NEXT 27

®e % 0y oy o,

IF B$=HEX(00) THEN RETURN
IF Z6 <> O THEN RETURN
B$=HEX(00)

IF V9 ¢>0 THEN 6760
23=23-1

IF 23=25 THEN RETURN

IF Z23¢0 THEN Z3=Z4-1

GOTO 6620

6760 23=MOD(Z3+1,24)

IF Z3¢>Z5THEN 6620
_RETURN

6770 XOR(STR(A$,10,7),STR(AS,9,8))

Se % 0 0o 0y 0y vy o o,

B$=STR(A$,16,1)
STR(AS,18,2)=HEX(00 00)
ADDC(STR(AS,18,2),B$)
ADDC(STR(AS,18,2),B$)
ADDC(STR(AS,18,2),8$)
ADD(STR(A$,18,1),STR(A$,19,1))
Z3=VAL(STR(A$,18,2))
Z3=Z3-INT(Z3/24)*24

RETURN

6800 STR(A$,18,1)=HEX(00)

FOR Z5=9 TO 16

Old method hash logic.

New method hash logic.

IF MOD(25,2)>0 THEN ROTATE(STR(A$,25,1),4)
STR(AS$,18,1)=STR(A$,18,1) ADD STR(A$.25,1)

NEXT 25
Z3=MOD(VAL(STR(A$,18,1)),24)
RETURN

.(§/2200/386 program files on disk Page-4

Storage of CS/2200/386 program files on disk media is as follows:

1. an item in the disk catalog index area, described on prior pages.
2, A program file stored on contiguous sectors within the disk catalog area.
a. Header block - one sector at the beginning of the file.
b. Program record blocks.
¢. Trailer block - one sector at the end of the file.
d. End of File block - written at the maximum numbered sector.

Header block.

Byte 001 - 001 (1 byte) = 40 Program file, VLSI normal or wrap mode .
Byte 001 - 001 (1 byte) = 50 Program file, VLSI scrambled mode.

Byte 001 - 001 (1 byte) = 60 Program file, 386 normal or wrap mode .
Byte 001 - 001 (1 byte) = 70 Program file, 386 scrambled mode .

Bytes 002 - 009 (8 bytes) FileName 1-8 ASCII characters with trailing spaces
Byte 010 - 010 (1 byte) = FD
Bytes 011-256 undefined usually 00.

Program record blocks.

The content of program record blocks differs according to the program SAVE or
RESAVE method. Details of each storage method method are detailed on the
following pages.

Program trailer blocks.

The content of program trailer blocks differs according to the program SAVE or
RESAVE method. Details of each storage method method are detailed on the
following pages.

End of file block.
The End of File block is written in the maximum numbered sector of the

assigned file space. The format is:

20xx yy followed by all hex 00's.
A program file may, on option, be saved with a Date /Time stamp of the form:.
20xx yyOO 0000 0001 2033 2D31 342D 3930 3-14-90

2031 323A 3031 0000 0000 0000 0000 0000 12:01..........
followed by all hex 00'’s.

Selecting the option Date/Time stamping of program files,

With CS/386 release 1.0B and greater program files have the option of being
written with a Date/Time stamp. A statement of the form :

SELECT T OFF deactivates writing/listing the Date/Time stamp.
SELECT T ON activates writing/listing the Date/Time stamp.

The default for the Date/Time stamp is the SELECT T OFF condition.

- Program file structure : €5/2200 MVP normal mode. Page-5

Method invoked by default mode, or “SELECT OLD” followed by SAVE or RESAVE,
The "text line” content is a combination of textatoms and ascii text, refer to
the table '""BASIC-2 Verb atoms”.

MVP normal mode -- program sectors.

40 FileName FD 00 ... 00 Header record
00 FF hhhh text line 0D 0000 Program record
FF hhhh text line 0D 0000

BASIC-2 text atom tables.

o

FF hhhh text line 0D 0000 F.

00 FF hhhh text line 0D 0000 Program record
FF hhhh text line 0D 0000

FF hhhh text line 0D 0000 FD

20 FF hhhh text line 0D 0000 Trailer record
FF hhhh text line 0D

FF bhhh text line 0D 0000 FE

VP wrap mode -- program sectors.

40 FileName FD 00 ... 00 Header record
00 FF aa FFAQ bbbb
cc hhhh text line statement
cc hhhh text line statement
00 FF continued text line statement
cc hhhh text line statement
20 FF continued text line statement
cc hhhh text line statement

where aa is one byte checksum (ADDC) calculation.
bbbb is two byte undefined value.
cc is one byte binary count of bytes in numbered statement line.

Program file structure : (5/386 mode. Page-b

Method invoked by ""SELECT NEW'" followed by SAVE or RESAVE.
The ’"text line' content is a combination of textatoms and ascii text, refer to
the table "BASI(-2 Verb atoms”.

.386 normal mode -- program sectors.

60 FileName FD 00 ... 00 , Header record
00 FF hhhh text line 0D 0000 Program record
FF hhhh text line 0D 0000
FF hhhh text line 0D 0000 FD
00 FF hhhh text line 0D 0000 Program record
FF hhhh text line 0D 0000
FF hhhh text line 0D 0000 FD
20 FF hhhh text line 0D 0000 Trailer record

FF hhhh text line 0D 0000

FF hhhh text line 0D Q000 FE

.386 wrap mode.
60 FileName FD 00 ... 00 Header record
00 FF aa FFAO bbbb
cc hhhh text line statement
cc hhhh text line statement
00 FF aa continued text line statement
cc hhhh text line statement
20 FF aa continued text line statement

cc hhhh text line statement

where aa is one byte checksum (ADDC) calculation.
bbbb is two byte undefined value.
cc is one byte binary count of bytes in numbered statement line.

wa'CS/386 format changes:

The new format we have put in the CS/386 is fairly simple:

l) an indicator of the file in the disk catalog tells what the format is:
index item for the file denoted by : 1040
this is displayed on program LIST DCT as TYPE P’
refer also to the index catalog item. 1line

2). New representation for variables and constants. No text atoms have been
changed or added.

a) 7¢ XX A constant less than 256.

b) 7D XX XX A MAT variable

c) 7TE XX XX XX XX XX XX XX XX A constant greater than or equal 256.
d) 7F XX XX A variable

** Be careful, not all 7C/7D/7E/7F encountered are the leading bytes of
the new structure; it is context sensitive.

Text atomization: BASIC-2 Verb atoms

80=LIST
84=CONTINUE
88=KEYIN
8C=XOR

90=TRACE
94=CONTINUE
98=READ
9C=GOTO

AO=PRINT
A4=PLOT
A8=MAT
AC=SCRATCH

BO= STEP
B4=0PEN
B8=CO
BC=VERIFY

CO=FN
C4=EXP(
C8=SGN(
CC=#PI

DO=SIN(
D4=ATN(
D8=%

DC=VAL(

EO=LS=
E4=INIT
E8=ADD
EC=ERR

FO=LINPUT
F4=ROUND
FB:MIN(

81=CLEAR
85=SAVE
89=DSKIP
8D=TEMP

91=LET
95=STOP
99=INPUT
9D=NEXT

Al=LOAD
A5=SELECT
A9=REWIND
AD=MOVE

Bl= THEN
B5=CI
B9=LGT(
BD=DA

C1=ABS(
C5=INT(
C9=RND(
CD=TAB(

D1=C0S(
D5=LEN(
D9=P

DD=NUM(

El1=ALL
E5=HEX
E9=ROTATE
ED=DAC

F1=VER(
F5=AT(
F9=MOD(

Values FC - FF are reserved.

FC=
FD=

FF
An example:
on disk is:

grouped is:
meaning

1125 GOTO

82=RUN
86=LIMITS
8A=AND
8E=DISK

92=FIX(
96=END
9A=GOSUB
9E=FOR

A2=REM
A6=COM
AA=SKIP
AE=CONVERT

B2= TO
B6=R
BA=OFF
BE=BA

C2=SQR(
Cc6=LOG(
CA=TAN(
CE=DEFFN

D2=HEX(
D6=RE
DA=BT
DE=BIN(

E2=PACK
E6=UNPACK
EA=$
EE=DSC

F2=ELSE

F6=HEXOF(
FA=DATE

2000

OD 0000 FF1l 259C FF20 000D.

OD 0000 FF1125
cr thread 1125 GOTO

9C FF2000 0D.
2000 cr

Page 7

83=RENUMBER
87=COPY
8B=0R
8F=TAPE

93=DIM
97=DATA
9B=RETURN
9F=IF

A3=RESTORE
A7=PRINTUSING
AB=BACKSPACE
AF=PLOT

B3=BEG

B7=D
BB=DBACKSPACE
BF=DC

C3=C0S/(
C7=SIN(
CB=ARC

CF=TAN(

D3=STR(
D7=#
DB=G
DF=POS(

E3=CLOSE
E7=BOOL
EB=ERROR
EF=SUB

F3=SPACE
F7=MAX(
FB=TIME

used as end of data marker in each program sector on disk.
FE = used as end of file marker in last program sector on disk.
= used with hhhh designation to denote line number reference FFhhhh.

* Analysis of sample piogram using '"OLD"”,ie MVP and ''NEW” ie. 386 formats.

Program text --

10 REM .

20 PRINTUSING 3500,A%,B83,C$%,Al1,3%A,45/B*D1

3500 % ###A## Hi#BE # SHEH, B#H# #E H###, B## LAST FIELD

"0LD" form disk dump -

400 L D

20FF 0010 A22E ODOO OOFF 0020 ATFF 3500.2C41 242C 4224 2043 242C 4131 2C33 2A41
2C34 352F 422A 4431 ODOO OOFF. 3500 D820.2323 2323 2320 2023 2323 2323 2023 2024
2323 232C 2323 232F 2323 2020 2023 2323.2C23 2323 2020 4C41 5354 2046 4945 4C44

0DOO OOFE

"0LD" form analysis -
20 FF 0010 A22E 0D

10 REM .
0000 FF 0020 A7FF 3500 2C41 242C 4224 2C43 242C 4131 2C33 2A41 2C34 352F 422A
4431 0D
20 PRINTUSING 3500 LA $., B% ., C$, Al, 3 *A ,45/B*D1

0000 FF 3500 D820.2323 2323 2320 2023 2323 2323 2023 2024 2323 232C 2323 232E
3500 % . ## ##& # . . # ## ## . # % ## # ., ## #.
2323 2020 2023 2323.2C23 2323 2020 4C41 5354 2046 4945 4C44 0DOO OOFE
.. . # #8# ,# ##% .. LA ST .F IE LD

" "

NEW" form disk dump

60 NEW

20FF 0010 A22E 0DOO OOFF 0020 A7FF 3500.2C7F F141 2C7F F142 2C7F F143 2C7F 1041
2C7C 032A 7FF0 412C 7C2D 2F7F F042 2A7F.1044 0ODOO OOFF 3500 D820 2323 2323 2320
2023 2323 2323 2023 2024 2323 232C 2323 232E 2323 2020 2023 2323.2C23 2323 2020
4C41 5354 2046 4945 4C44 ODOO OOFE

"NEW" form analysis -

20 FF 0010 A22E 0D

10 REM .
00 OOFF 0020 A7FF 3500.2C 7FF141 2C 7FF142 2C 7FF143 2C 7F1041
20 PRINTUSING 3500 , AS$., B$, C$ ’ Al
2C 7C03 2A 7FF041 2C 7C2D 2F 7FF042 2A 7F1044 OD
, 3 * A , 45 / B * D1

00 OOFF 3500 D820 2323 2323 2320 2023 2323 2323 2023 2024 2323 232C 2323 232E
3500 % . ## #H# # . . # ## ## # .8 H# #., #& #.
2323 2020 2023 2323.2C23 2323 2020 4C41 5354 2046 4945 4C44 0DOO OOFE
.. . # ## ,H# ## .. LA ST .F IE LD

page 7
THREE BYTE ADDRESSING:

Before using or setting up a Three Byte Address, an address with 65536
sectors or more, it is critical to have a proper understanding of the concept
to insure proper use and data integrity. A basic understanding of the 2200
disk file structure and hexadecimal numbers is necessary.

There are currently 3 disk index types that can be used with the DS. The
first 2 types are similar and used on all 2200 disk drives. They are
sometimes referred to as type 0 and type 1. Type 0 is the original disk index
method that has been in effect since the first 2200 disk drive. With Basic-2
Multiuser O/S Release 2.5 a new more efficient disk index structure was made
available. The difference between the 2 types was the method in locating the
filenames in the disk index. Once setup as type 0 or 1, for many the
difference was transparent although in a large indexing scheme the type 1
method could respond faster. The SCRATCH DISK command is used to define the
index type:

Type O: SCRATCH DISK T/Dxx, LS=24, END=65024
Type 1: SCRATCH DISK ' T/Dzx, LS=24, END=65024
3 Byte: SCRATCH DISK & T/Dxx, LS=24, END=65024

With the LIST command you can always identify the index type. A type 1
index will display a hash mark one position to the right of the index
sectors. Three byte displays the &. Following the SCRATCH statements from
above, a LIST would display the following:

Type O: Type 1: 3 Byte:

LIST DCT/Dxx LIST DCT/Dxx LIST DCT/Dxx

INDEX SECTORS = 00000024 INDEX SECTORS = 00000024°' INDEX SECTORS = 00000024&
END CAT. AREA = 00065024 END CAT. AREA = 00065024 END CAT. AREA = 00065024
CURRENT END = 00000023 CURRENT END = 00000023 CURRENT END = 00000023

Three Byte Addressing is a reference to the number of bytes set aside in
the index of a disk for a sector address. With index types 0 and 1 only 2
bytes were set aside. In a 2 byte field the largest value possible is FFFF.
In hexadecimal FFFF is equal to 65535 which is why up until now this was the
maximum disk address size. Because the first few bytes of sector 0 of a disk
are used to hold the index information, the address fields had to be shifted
to the right to provide the space needed. The following is a byte by byte
breakdown of the first 16 bytes of sector 0 for the 3 index types:

Type 0: SCRATCH DISK T/Dxx, LS=24, END=65024 :
byte 0 1l 23 45 678 9ABCDETF.....
00 18 0018 FEOO 00000000000000000000

Type 1: SCRATCH DISK ' T/Dxx, LS=24, END=65024
byte 0 1 23 4 5 678 9ABCDETF.....
01 18 0018 FEQOO 00000000000000000000

3 Byte: SCRATCH DISK & T/Dxx, LS=24, END=65024
byte 0 12 345 6 78 9ABCDEF.....
02 0018 000018 OOFEOO 00000000000000

MORE
714-A012

page 8

Legend:

Index Type = Byte 0. (00 = type 0, 01 = type 1, 02 = 3 byte)

Index Sectors = Byte 1 for type 0 and 1. (18 hexadecimal = 24)
Byte 1&2 for 3 byte. (0018 hexadecimal = 24)

Current End = Byte 2&3 for type 0 and 1. (0018 hexadecimal = 24)
Byte 3,4&5 for 3 byte. (000018 hexadecimal = 24)

End Cat. Area = Byte 4&5 for type 0 and 1. (FE0O0 hexadecimal = 65024)
Byte 6,7&8 for 3 byte. (0OFEQ0 hexadecimal = 65024)

Undefined

Bytes 6-F for type 0 and 1.
Bytes 9-F for 3 byte.

With a 3 byte index maximum 'Index Size' is increased from 256 to 65536,
Type 0&1 (1 byte) FF = 256 (includes 0) 3 byte (2 bytes) FFFF = 65536

Maximum 'End Catalog Area' is increased from 65535 to 16,777,215.
T 1 (2 FFFF = 5 3 byte (3 bytes) FFFFFF = 16777215

A similar byte displacement is used with each filename entry used to
locate the 'START' and 'END' fields displayed with the LIST command. In all 3
index types, each filename entry is allotted 16 bytes. The following example
shows the byte displacement between the type 0/1 and 3 byte filename entries:

Type 0/1: NAME TYPE START END USED FREE
FILENAME P 00000024 00001000 00000960 00000007
byte 0 1 23 45 67 89ABCDETF.....
10 80 0018 03E8 0000 46494C454E414D45
3 Byte: NAME TYPE START END USED * FREE
FILENAME P 00000024 00001000 00000960 00000007
byte 0 1 234 5617 8 9ABCDEF.....
10 80 000018 OOO3ES 46494C454E414D45
Legend:
File Status = Byte 0 for all 3 types. 00 = unassigned.
10 = active.
11 = scratched.
21 = re-used scratch entry.
File Type = Byte 1 for all 3 types. 00 = data file.
80 = program file {old format)
40 = program file (386 format)
START Address = Byte 2&3 for type 0/1. (0018 hexadecimal = 24)
Byte 2,3&4 for 3 byte. (000018 hexadecimal = 24)
END Address = Byte 4&5 for type 0/1. (03E8 hexzxadecimal = 1000)
Byte 5,6&7 for 3 byte. (0003E8 hexadecimal = 1000)

Undefined
NAME of File

Bytes 6&7 for type 0/1.
Byte 8-F for all 3 types.
46494C454E414D45 in ASCII = FILENAME.

WARNING: Changing the index structure may create problems with some programs
possibly resulting in data integrity errors. Certain BASIC-2
programs directly utilize specific bytes of the disk index. For
those programs that do, changes would likely be needed to insure
proper operation. Before changing the index type, a careful analysis
of the programs to be used at that address should be made to
determine if any direct utilization of the index bytes is being
used. Additionally, if any BIN or VAL commands are used to

MORE
714-A012

page 9

manipulate this indexing data, they would need to be expanded in size
for 3 byte addressing for proper calculations. BIN and VAL work from
left to right and would therefore ignore the low order byte if
currently set for 2 bytes. Proper use of a new command, SELECT 3
ON/OFF, is also critical to error-free operation. Please read the
next section on SELECT 3 ON/OFF for details. Backups should always
be done before any changes are made.

SELECT 3 ON/OFF Command:

Whenever 3 byte addressing is to be used, a new SELECT command, SELECT 3
ON must be executed. When using a standard type O or type 1 index, SELECT 3
should be OFF. SELECT 3 ON allows certain instructions such as DATA LOAD BA
to work with addresses greater than 65535, Otherwise an error such as P34,
illegal value, would occur. SELECT 3 must be turned ON and OFF for each
partition. The proper syntax to turn 3 byte addressing ON or OFF is as
follows:

SELECT 3 ON

SELECT 3 OFF

To determine if '3 byte' addressing is turned on for a particular
partition, use the LIST SELECT command from that partition. It is used to
show the status of all the available selectable options.

Known Anomalies with 3 Byte Addressing with Turbo O/S 1.1:

1. Filenames may be assigned to sector 0 of the index. Sector 0 should
have no filename entries. (This is subject to change.)

2. The RENAME command in some instances could corrupt the disk index.

3. The LOAD DA command will not load a program from a sector address
beyond 65535.)

4. Cannot boot the system from a 3 byte address if the CPU boot files are
out beyond sector 65535.

Note: The following 2200 utility programs do not support 3 Byte Addressing:

MENU pick PROGRAM
Move File @MOVEFIL
Backup Disk Platters to Disk Drive @BACKUP
Restore Disk Platters from Disk Drive @RECOVER
System Install @INSTALL
Moving a Selected List of Files @TO.CREF
END

714-A012

	Description of CS/2200/386 disk catalog area stored program file structure
	Three byte addressing

