TECHNICAL NOTE #2602

Author: Bruce Patterson

Date:? July 7, 1976 .
Subject: BASIC-2 TEXT ATOMIZATION

In order to conserve memory and optimize program 1ine interpretation, BASIC-2
atomizes program text when RETURN (EXEC) 1is pressed. Most BASIC words are
replaced by single byte codes, called text atoms (see following page). The text
atom is an 8-bit code with high order bit on; the lower 7-bits specify the
particular BASIC word. Line numbers and line number references are stored in
pack decimal form (2 bytes) preceded by the text atom FF 16

Most atoms can be used to enter the associated BASIC word for Comnsole Imput or
INPUT operations. However, E516 and E616 are interpreted differently. E516
represents line erase for CI, INPUT, and LINPUT operations. E616 represents
the ‘'statement number key and causes a new line number to be genmerated for CI
mode; E6,¢ is ignored by INPUT and LINPUT.

Programs saved on disk are stored in atomized form.

S L Al - - s . . - . . .

et B aen

AR RS oF
Ly bt -

[
UYL e

[KY
ol

aooo W o
0=l

m
m I~

)
it
e

M

IR U

I [ll "

<
T
E
=
[

[s))
]

C
Ty
il

Dy NI R}

LS=
ALL
FACK

LOSE

INIT

HEX
UNPACK T
BOOL

Aabb
ROTATE

“ Tlgtmti
ErRUOR
ERR

Dac

bsC

cug

STV
. [o]

P ek~
o I 3 e P
=l ez
- =T
o= T 1Al
53 DN
26 O
a5 STOE
S ED
-

it g

4
Z R
52 1
g GOSUS
33 RETURN
3¢ GOTO
3D NEXT
SE FOR
3F IF

N
C1 ABS(
C2 EGR(

WIS

.~
N

Cg
Ceo

O
w
e momd> T

-

mr

=)
Zu-To
Pt o T T)

C8 SGhC

C3 RHO(

Ca TAN(

CB ARC

CC #P1

CD TAB(

CE DEFFN .
CF [ARC] TAN(

FO LINFPUT
F1 VER(

"F2 ELEE

F3 SFACE
F4 ROUND
F5 AT(

F& HEXDOF (¢
F7 MAX(

F8 MIN(

F3 MoD<

Fa czserved
FB reserved
FC reserved
FD recerved
FE reserved

FF packed-line—number

2
=

ol S N o

i e g S
s b e

[

>
TV VARR

P
O

>
)

AE

g
T

DO
D1

o

Dz
D4

‘DS

)
D7
DE

D3 -

Da
CB
DC
DD
DE
D=

PRINTUSING
MAT
REWIND
SKIF
BACKSEACE
SCRATCH
MOVE
CONERT

[SELECTI PLOT

[ART] EIN
[ARC] CO
HEX{

ETR(

TECHNICAL NOTE #2602

Author: Bruce Patterson

Date: July 7, 1976

Subject: BASIC=-2 TEXT ATOMIZATION

In order to conserve memory and optimize program line interpretation, BASIC-2
atomizes program text when RETURN (EXEC) is pressed. Most BASIC. words are
replaced by single byte codes, called text atoms (see following page). The text
atom 1is an 8-bit code with high order bit on; the lower 7-bits specify the
particular BASIC word. Line numbers and line number references are stored in
pack decimal form (2 bytes) preceded by the text atom FF 16

Most atoms can be used to enter the associated BASIC word for Console Input or
INPUT operations. However, E51s and E616 are interpreted differemtly. E516
represents line erase for CI, INPUT, and LINPUT operatioms. E616 represents
the ‘statement number key and causes a new line number to be gemerated for CI
mode; E6,. is ignored by INPUT and LINPUT,

Programs saved on disk are stored in atomized form.

o

L e

in

B R) B Rt RO XA R
T T g oy -3 it

2C
" BD
EE
EF

EO
El
Es
E3
E4
ES
ES
E7
EE
E3
=

EB

EC
ED
EE
EF

]

DEACKERACE
VERIFY

DA

EA

Do

LS=
ALL
FACK -
CLOSE
INIT

HEX

UNPACK
BOOL

ADD
ROTATE

% ‘[etmt]
EFROX

ERR :
Dac -

DsC

SUB

‘‘‘‘‘

1 ClI
1R
!
]

CO

" FE

-

TRAa-=

=Y &l LDas

SZ IRl A REW

5= Db AS RESTORE

24 O A4 FLO

28 STCE A5 SELECT

S ERD Ac COH

27 DATA A7 PRINTUSING
32 resb AT MAT

o IWNEUT A REWIND

o GOEUS AA SKIF

23 RE-URN AB BACKSPACE
ST GOTO AC SCRATCH

90D NEXT AD MOVE

SE FOR AE CONERT

oF 1IF AF [SSECTI PLOT
CO FN DO [ART]I SINC
C1 ASS(D1 [ARLC] COS(
Ce SGR(=2 HEX{

C3 COSH D3 ETR(

C4 EXP(D& ATNS

CS INT(‘DS LENK

Ce LDGH(D& RE

C7 SINC D7 [SELECT] #
C8 SEhN(DR % [imagel
C3 RHD(D3 {SELECT1 P
Ca TAN(DA BT

CB ARC DB [SELECTI G
CC #P1 DC VAaL<

CD TAaB(DD NUi(

CE DEFFN . DE BIN{

CF [ARC] TAN(DE POSC

FO LINPUT

Fi VER(
" F2 ELESE

F3 SFACE

F4 ROUND N

FS AT(

F& HEXDF(

F7 MAX(.

F8 MIN(

F3 MOD(

Fa -zserved

FB reserved

FC reserved
. FD reserved

reserved S
FF packed-line-number

TECHNICAL NOTE #2601

™ Author: Bruce Patterson
Date: July 7, 1976
Subject: BASIC-2 MATRIX INVERSION

o ; .
BASIC-2 performs matrix inversion by the Gauss-Jordan Elimination method donme in
place with maximum pivot strategy. The determinant is calculated during the
inversion. If specified, the normalized determinant is also calculated. The .
technique is outlined on p. _3 and a BASIC emulation of the technique is
provided on Pe _5_ °

Several types of errors can occur during matrix inversion:

1. singular matrix

2. computation errors (overflow or underflow)
3. round-off error accumulation

4. ill-conditioned matrix

If a matrix is singular (i.e., has no inverse), the determinant of that matrix
is zero. If a determinant variable is not included in the MAT INV statement,
the system will stop with an ERR 72. If a determinant variable is included in
the MAT INV statement, that variable is set equal to zero and program execution
continues; the resultant matrix contains meaningless values. It is the
progran's responsibility to check the determinant after each inversion.

W Computational errors can occur during the calculation of the imverse.
Generally, it is best to let underflow default to zero; however, overflow should
be detected (i.e., SELECT ERROR > 60)., If overflow is detected the matrix
being inverted should be scaled down by dividing each element by some comstant
before the inversion is performed.

Round-off error accumulation results from the successive calculations performed
during the inversion. By utilizing the maximum pivot strategy, BASIC-2 reduces
this type of error; however, some loss of precision will occur, especially, with
large matrices. Round-off error can be detected by calculating the residuals
defined by:

R=I=-AC

where: - I = jdentity matrix
A = matrix being inverted
C = computed inverse

Por an exact inverse each element of R will be zero. If C 1s a good
approximation to the inverse, then each element of R will be small.

- There are matrices ' for which the residual does not provide a reasonable measure
of the accuracy of the resultant inverse.’ Such matrices are said to be
ill-conditioned. Loss of accuracy is not due to round=off error accumulation or
the algorithm chosen to perform the inversion but rather to the nature of the
data itself. Typically, the size of the determinant 1is used to detect
ill-conditioned matrices (small determinants indicating potential problems).
However, for an accurate measure of the condition of the matrix, the determinant
must be normalized relative to the matrix being inverted; thus, BASIC-2 provides

the normalized determinant. The normalized determinant for a matrix A 1is
defined as follows: :

ral]. 812 Xy 81"
if A = azi 822 eee a5,

anm 8n2 eeo ann

and < = Jaklz + a2+ wee + ap.%

. au/«{l 312,061 soe al,, /cCl
- then NORM ,AI = 321/.{2 &zzlacz eee &yp /042

;nllﬁn al'|2/"‘C'n ooo ann/"Cfn

Al
B {1 X 2eee L

If the normalized determinant of a matrix A is small relative to one, then A 1is
nearly singular and ill-conditioning can be expected.

)

Outline of BASIC-2 Inversion Technique

-
—-ei—

Inversion is performed by the Gauss-=Jordan Elimination Method done in place with
maximm pivot strategy. The determinant is calculated during the inversion. If
8 norm variable is specified, the normalized determinant is calculated.

METHOD for MAT ¢ = INV(a)

A,
B.
C.

F.

MAT ¢ = MAT a

If norm variable is specified, calculate determinant normalizer,
determinant = 1

N passes are made through the matrix, On the ith pass, the
following is dome.

1.

2.

3.

4,

Find maximm pivot element (maximum element 4n lower right
subarray whose element (1,1) 1s element (I,I) of entire array.
Matrix is singular if maximum pivot element = (.,

Move pivot element to pivot position:

a. If pivot element is in row J switch rows I & J .
b. If pivot element is in column K, switch columns I & K.

Normalization: divide each element of pivot row by pivot
element except element in pivot position = 1 / pivot element,
Multiply determinant by pivot element. '

Elimination: eliminate all elements in pivot column except
pivot element by multiplying the pivot row by the element in
the pivot column to be eliminated and subtracting the result
from the row containing the element to be eliminated. But let
element to be eliminated = = (that element) * (pivot
element),

Unscramble inverse: switch columns and rows of matrix in reverse
order than they were switched by step D2,

dorm

= determinant / normalizer

3

REFERENCES (INVERSION METHOD):

1,
2,

3.

Kuo, Shan Sey "COMPUTER APPLICATIONS OF NUMERICAL METHODS",
Addison-Wesley, 1972, p. 176-203.

Carnahan, Luther, Wilkes, "APPLIED NUMERICAL METHODS", Wiley, 1969, p.
269-296. . |

Conte, S. D., "ELEMENTARY NUMERICAL ANALYSIS", McGraw-Eill, 1965, p.
156-177.

REFERENCES (ILL-CONDITIONED MATRICES, ROUND-OFF ERRORS, OTHER TECHNIQUES) :

1.

Forsythe, Moler, "COMPUTER SOLUTION OF LINEAR ALGEBRAIC SYSTEMS",
Prentice-Hall, 1967.

KO)

0010 REM %
MAT IMNY ST 7TE —— i TR I X

0020 REM AUTHOR; BRUCE PATTERSON

I WERS TG

DO%@& REi" s
004y * REM EMULATION OF BASIC-2 MATRIX INVERSION MiCROCODE.

Q0=0 REM

0020 REW METHOD: GAUSS-JORDAN ELTMINATION DONE IM FLACE WITH

0070 REM . MAXIMUA PIVOT STRATEGY. '
0020 REM VARIABLES;
0030 REW ., ALY = FMATRIX BEING INVERTED

Di0d REM Py - BUBSLRIPTS OF PIVOYT ELEMEMTS -

0110 REM . i - ORDER OF MATRIX
0120 REM . D - DETERMINANT
0120 REM . -~ N = NORMALIZZD
0140 REWM . R - ROW INDEX
0150 REM. . c - COLUNIN INDEX
010 REM , P - PIVOT POSITION (FASS #)
0170 REHW . B() - ORIGIMNAL MATRIX
0i75 REM :
0120 SELECT PRINT OO05{(&4), INPUT 0Ol

o PRIMT HEX (22}

SPRINT "#%% MATRIX INVERSION w#sd

: PRINT
D120 DIF AVIS,15) P15, 27,
0200 REM X

DETERMINANT

XA
in

il

L1530, T$34,00i5,15)
READ MO TRIX

DB%@% READ M
. REM mM ORDER OF MATRIX
== & T

FOR R=:

a
- T
U dl
- 0B

NEXT R
REM A() & B¢) = MATRIX TO INVERT
D230 - REM % -

=

i~
>

._..|

'

DISPLAaY MATRIE BEEFORE T iNaG

PRINT HEX{(OZ)
CGOBU3 71S("#*H MATRIX BEING INVERTED ###")
0240 REM X% o

#c na

Tl T DET. MNMORNMSL I ZEFR., i

OS50 M,D=1

D260 FOR R=i TO M

X =0 '

FOR C=i TO i

A=X+A R, CI#A(R,C)
: NEXT C

@@ N=N¥SER (X)

.. NEXT R '

TE O REN X4

Ar u: s

e e e e e =
Fomaly aaiea R I LY

FOR F=
: REW MaAKE il FASEES
REM X

3300 ¥=0
: FOR R=P TO H
s FOR C=P TO M =
2 IF AERIAIR,CYI)=ARTS L THEN 2310
tRi=R
: Ci=C
. ¥=A(R,C)
0310 NEFT C

'HEM PlVDT ELEMZMT .
i (l‘",;)—i‘(l
T P(P,21=Ci
: REM bHVP FPIVOT ELEMENT SUBSCRIPTS
Cly <= O THEN =240
’MHTHIX SIMGUL_ AR

A(RLI,CL) = X

t d
03320 Tr A

T3

IF P=R1 THEN 2£0

: GDEUB ‘SO(P,RID

: D=-D ’

i REbM SWITCH ROWS
IF P=C1 THEW 370

T GOEE ‘Si(RP,CLl)

: D=-D

; REM SWITCH LDLUWNE

REW X

02€0

Q370

FNORIMSL T ZE ROW P

X=A(P,P)
D=D#X .
IF D<»0 THEN 380 ~~ _
N=0 , ' >
PRINT "MATRIX SINGULAR®

END

0380 A(P,P)=1
FOR C=1 TO M
AP, Ci=A(P,C)/X
NEXT C

REN 7

0330
t_§4._ TV I AT I SN

. FOR R=i TO ™
: IF R=F THEN 410

P INASOT

POSITION.

"[!

¢

[g ...
4Lp

O~

TO W

300 FOR ‘
AR, C)-XH#A(P,C)

A(R,
NEXT C
NEZT R
NEXT P
=0
1425 REM %~

ll'—"l‘

R
P=
C
c

q
1
)
o

L
£
/’."-
s n({ﬁ e aw

!,
CUINSCRAVMEL_E INYERSE '
« FOR R=i TO 1 STER -
: IF P{R,2)=R THEN 430 s
: GOSLUB ‘SO(R,F(R,2)) _ -
! REM SWITCH ROWS ‘
430 IF F(R,1)=R THEN 440 t
D GOBLE ‘Si(R,P(R,1)) i
: REM SWITCH COLLMNS
M40 NEXT R
450 REM %
HHHHE TPRALJIERS I N OIE L T

%4E0 REWM %
DISFL &Y MO TR T

: GOSUB “15("#%% INVERSE ###v)
470 N=D/N
@PRINT "DET =";D, "NORM =";N

480 REM %

S I T OH. ROwmsS

%30 DEFFM’SO(RZ,R3)
IF R2=R3ITHEN 500
FOR J=1 TG i -
X=A(RS,J)

A(RE, J3=A(R3, J)
A{R3,J)=X

NEXT J
500 RETURN

s W ©E WG

516 REM Z =
SWITOH COLUIMNS

iI520 DEFFN‘5i(C2,C3)
:IF C2=C3 THEN 530

IFOR I=1 TO i

X=4(I,C2) |

ACI,C2)=A(I,C)

2 A(1,C3)=X

NEXT I

530 RETURN

.f@a;."

540 REM %

e abes o ahS ol

tFRINT :
Q&'PRINT Té
LPRINT o
0880 FOR Rz2=1 TO M
FOR CzZ=1 TO i
FRINT A(R2,C2),
NEXT C&
FRINT . R
NEXT RZ
RINT
ETURN

M@ ML NP NG NS e BB

=

TO BEBE
D550 REM ORDER OF MATRIX
: DATA 3 -
D530 REM ROW 1
: DATA ~-3,.8,
600 REM ROW 2
T DATA 2,-T.4
3510 REM ROW 3
: DATA 1,3,-€

]

INVERTED

e

TECHNICAL NOTE #2606

Author: 2200 Development group
Date: May 21, 1979

Subject: VP/MVP Random Numbers

Several people have asked recently about the algorithms used for random
numbers on the 2200 VP and MVP. This memo will describe the implementation as
of VP Release 2.0 and MVP Release l.7. Details are subject to change on
future releases if we think necessary.

The programming definition of a RND function in BASIC-2 is that it should
produce successive terms from a linearly distributed (between 0 and 1) psuedo
random sequence. RND(0) initializes the sequence and RND(1) gets the next
term of the sequence. Master Initialization, CLEAR, and LOAD RUN "randomize"
the sequence. The purpose here is to describe specifically what is done, so

- that the random numbers may be used with more confidence.

The heart of the random number generator is a binary generator called BINRAN.
BINRAN generates a sequence of 32 bit integers as follows:

B(0) = HEX(10DF5D09)
B(n+l) = B(n) * HEX(00010005)
(all arithmetic done with 32 bit binary integers)

This binary sequence is set to B(0) by RND(O). The exact process of
randomizing for Master Initialization, CLEAR, and LOAD RUN will not be
detailed in this memo, as a change in a future release is under consideration
at present. .

Each decimal random number (13 digits) is generated by repeated calls to the

binary generator BINRAN. The number is created one digit at a time. First
the odd digits (1,3,5, ... 13) are generated, and then the even. For each odd
digit, one or more calls to BINRAN are made until the second hex-digit of the
32 bit binary value is a valid BCD digit. After all odd digits are placed in
the value, then the even digits are similarly built, using the first hex-digit
of the binary value.

I have written a program, called RNDGEN, which emulates (in BASIC-2) the
method described above. The listing of the program is enclosed with this memo.

UIT REWM RRCT- ST = CHUCK TUT RAMACE MUTFEE AL ORT THI - -y~
NGEL 1¢/11/79
0020 DIM AT44A1S5(8)1e0%AelS40 014
‘TW*?‘PRTﬁ#‘ﬁ*?Tﬁ#ﬁTf*Pr“f"“‘ﬁn""‘v REFONTTRATION poneeamn
PRIV*
0040 RINT " THE FOLLOWIN:S PLOSE S BERGRATRST 6 THT sl
UFF MUNTT R GEFERATIONM =7 0 oo e e =i e s e e e
. 0050 pPRINT ON THE 2200V0 (RTCASE DoY) AL THE 20rrery
P (RELFASE 1e7)e"
PR e

G060 FRINT w THERT 10 0 S00peres aF 20 (17 §pnaay g opo
HUMECR Sy STARTING 2T 2o '
T T PRTTT SPECTETCTIINAR YR ARUEY SLER, FRaM ol o Th

T DECINMAL ALGORITHM®
0C80 PRINT m CXTRACTS RCO u:r1*°. T}"E S161TS ane ceoar
T o8 wnan Ay wrous fl§ B o man b vty it AL R TP
GOS0 PRINT W , FRACTI(.:“?.q Fiaoe "l‘* ELTZVE M omn Tyt Ty
THE KNU FUNCTICN.
OO P RINT R TP ORI P A E S AR E FILLE b 6PN ThHe €5
i . COND DIGITS OF ELACH"
"'0110 PRINT " TERM IN THF RINARY STQUENCE ., Tu:* THE Fyvin
A T—F AR - T e e e
0120 PRINT » THE rrnrr Dl«rla. PRNY R SpEenen TERe 1o ey
ARDEDR Ik THE PROCESS.
PR e e
0140 AS=HEX(10DFS5D09)
- PRINT HLXOF(A$)3® = EINATY RANMDOM Srenw
— =T Rty e SR R
: GOTO 170

UI60 G=RNLTY T T T e e

6170 PRINT » PRESS IXFC TO cONTTRUE™ S

« KEYINM Cs

ERALS SRR PP A AR AL s Ui s B A B S £ I AN AT ol L8 B [SR

it**i*tiﬁ**i**ti*ﬁttﬁ*iﬁti*iiii—**t**":

0180 S$E=" mcccmmmeaaooo "
o =T—F0—13+5
GOsSuB 240
X=VAL(AT13(2))=48
s N2 e
PRINT
PRINT Al18():

P P
OO e e . e e

o
—
0
o

sh o0 e0 op oo

0200 A1%(2)= OR HFX(PD)
Bttt

SRSy B e S B) -
¢« PRINT
¢ PRIAT Al4()eS$s
’—_»: —'I- s%—k !vb ’k | Y = \ l r l T T T s s e e
C T NEXT T
3 FOR I=2 T0 12 STFP ?
0P —24r TTTTTT T T T e s e e
¢ X=VALCALTI(1))=ap
¢ IF X<=3% THTN 220

‘PR—LN l — -— PR D e e e— e
PRINT A13()%
GOTO 21¢

L]

% ae

0220 A1$(1) = OR HEX(ED)
¢ STRUST eI +141)=RIMCTIH+454+X)

DN e
¢ PRINT 213()¢S83
: S$=AND ALL(7F)
: ‘A\‘i;‘\ FI - W e menee m e mem e ie s mcewm e emm e e e © eieame cemmmeme o em s e o ———
. ¢ PRINT " ¢== NEV RANDOM MUMPLR™
0230 CONVLRT S§ TO S
. o = Q-:(’\ THE"B“ lé ‘ﬁ, a e e e . . .- . . - . e e eie e
T STOP MCRRORETINE
T END

0240 REM X

SHUMEER—GEMER 4 106 - e I

02%0 R$=STR(AL) & HEXC(OGOM)

3

= RES G f b D f @ mm AT S g o o e e

s A3=CH
e HEXUMNPACK AS TC 2130)

PR U
T em —— e I, IO Lo e— e

o I VIS WS Rt oW Tl SVl VY [l)t'.;i ,'“M - . R

STEATICOM

THE FOLLCWIMNG

JoaS VA & 93~
M § -

. 8

Godr b Lo bl il
RS TR ooy M RS M

ATER Rt

PURONSTRATES THT jei’ (6o »
CTHE 2P0GMVE (RELY A

GFr it R

ATICH
1elde .

PROCR AN

EXTRACTS BCD DIGI1S.

THERE IS

FRACTIONSY

CI1IRCT JTME oo El ACES ApL
T LI8 I Av8 I = A T e i v

AA0QVR (ESLTASE 20— AN
o U
["F CTNLY
’ I N, ri"
7(THL nen

1T LIMARY Katf00F K7
.':év-$%ﬁF*UHI(H TF‘
THESE DIGITS FEF

MORMALIZED AND RrTURLF“

ETLLEDR FREM-TRE SECONA. L

STAVTIIE AT A
ELAARTTHM - o
12 pIcIT
CUNMCTION
12178 D&

A QFQUL

Cc 0OF

THEN
ICH

TERM

THE FIRST DRICITS.

STQUENCE, THI™ THE it {LaCic
AMY MON=[CR 1yRM TS FIoCaRDEr

IM THE RTIMEALY N [TLLED FROM

T

10DF5D0%

THD PEQTVSS. =

BINARY RANDOM SEED

PRESS EXEC TO CONTINUR
B A-R Yttt P C M A A b ke b b h ke ek bk ke x **************M»**i——

, blesoien elmmmmmmmm—mn-
482A15E1 el=fo-c--ooons -
E6E622F9 B e
ASTTAEDD el=Bmf=5mmmmn= ~
EA336451 e — -
FD52139% |
' te2Fe1E9 e1-B-f=5-fm—mn :
SEBEERED it - e
) 6DBAEFC1 3
B465CECS el=f=f=5=(=0-= L
S4eppape R by o ey - R
F1A3313D
A96CFE31
@Qﬁszcgfs Y-S SRR S
298E0ACY «1584€25-6=0-4
DABF35ED -
Y S

AL v

T23E4425 «15E4¥ 20723704
! euscnens C1SEGE2STETORY <K== NEY FANDCM PUNPEE -
FRESS—EHEE—FH—CORTIN U — - e e
*EINARY 22 s a a2 wd dxECIMA L ¥ *hk kb kh hrd kA kA A ARt kb kI kA Ak kAR KRR AN kA AR N R R bR A XS K
: A D

' 7"05"" 55 e TEESSSesses-

CCLERECTA9 :
3+ 633ir4E =51 s -

ED3DOF81 '
E1B24DAS ed=l=lm=mmemm-

-4 8-6-8-350 E—t—3—F e --- e —————

, €19ES1FD e3=1l=1-f=1==~~
TACHEDOF]

, 6E£154189 f
6EF36AAD b
S5t 5—t—t—F—1=5 - - - - e
CUH-,()AES el2=]=1=-HA=1=5=0
£D8A16T7C e361-1-6-1-5-0 K=
5800 e ——3—5—h - = e e e

,gmsaeslol *3613196=1=5=0
11DFF315 ¢361319Ff11=-5-0

—S2 4B SR e s e S - -
79B12300 «361319€115570 Cm= MEW PAMDAM MUIMBDEW

PRF<S ryrr T0 COPT* L S

. A Wi

USING THESE FEATURES

These features can be used to increase the speed and
efficiency of your system. However, their use is
completely dependent on your system's requirements and
applications. Before using them fully, you should check
and adjust them in a controlled way during a normal system
load.

Wang's System Activity Monitor (SAM) or SAM-II products can
help pinpoint the busiest areas for your system. Using
some of these new features can help you reduce redundant
work.

2200 SYSTEMS:
ALGORITHMS USED
FOR RANDOM
NUMBERS BY
BASIC-2

—_——

This article provides some insight into the algorithms used
to generate random numbers by BASIC-2 for Release 2.5 of the
VP and Release 2.6 of the MVP Operating Systems. Although
no changes to the algorithm are currently anticipated,
details are subject to change on future releases of the
operating systems.

The programming definition of a RND function in BASIC-2 is
that it should produce successive terms from a Tinearly
distributed <(between 0 and 1) pseudo random sequence.
RNDCO) initializes the sequence and RND(1) gets the next
term of the sequence. Master Initialization, CLEAR, and
LOAD RUN randomize the sequence. This article describes
specifically what is done so that the random numbers may be
used with more confidence.

The heart of the random number generator is a binary
generator called BINRAN. BINRAN generates a sequence of
32-bit integers as follows:

B(0) HEX(10DF5D09)
B(n+1) = B(n) * HEX(00010005)
(all arithmetic is done with 32-bit binary integers)

This binary sequence is set to B(0) by RND(O). The exact
process of randomizing for Master Initialization, CLEAR,
and LOAD RUN varies between the VP and the MVP operating
systems. While the operating systems are idle, random
numbers are generated.

Each decimal random number (13 digits) 1is generated by
repeated calls to the binary generator, BINRAN. The number
is created one digit at a time. First, the odd digits
(i.e., digits in the 1/10s, 1/1000s, etc., positions) are
generated, and then the even (i.e., 1/100s, 1/10,000s,
etc., positions). For each odd digit, one or more calls to
BINRAN are made until the second hex-digit of the 32-bit
binary value is a valid binary coded decimal (BCD) digit.
After all odd digits are placed in the value, then the even
digits are similarly built, using the first hex-digit of
the binary value.

FOCUS/MAY 15, 1986

858 COMPANY CONFIDENTIAL

@#R\

A following 1listing of a BASIC-2 program, called RNDGEN,

which
0010
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110
0120
0125

0130
0140

0150

0160
0170

0180

0190

0200

0210

emulates the method previously described is included.

REM RNDGEN - CHECK OUT RANDOM NUMBER ALGORITHM

DIM A$4, A1$(8)1, B$6, C$4, S$14

PRINT HEX(03),,"RANDOM NUMBER DEMONSTRATION PROGRAM"
PRINT '

PRINT "THE FOLLOWING PROGRAM DEMONSTRATES THE RANDOM
NUMBER"

PRINT " GENERATION BY BASIC-2."

PRINT

PRINT "THERE IS A SEQUENCE OF 32 BIT BINARY RANDOM
NUMBERS, "

PRINT " STARTING AT A SPECIFIC BINARY NUMBER SEED,
FROM WHICH THE"

PRINT "DECIMAL ALGORITHM EXTRACTS BCD DIGITS. THESE
DIGITS ARE"

PRINT "ASSEMBLED INTO 13 DIGIT FRACTIONS, THEN
NORMALIZED AND"

PRINT "RETURNED TO THE RND FUNCTION. FIRST THE ODD
PLACES ARE"

PRINT "FILLED FROM THE SECOND DIGITS OF EACH TERM IN
THE BINARY"

PRINT "SEQUENCE, THEN THE EVEN PLACES ARE FILLED FROM
THE FIRST"

PRINT "DIGITS. ANY NON-BCD TERM IS DISCARDED IN THE -
PROCESS."

PRINT

A$=HEX(10DF5D09)

PRINT HEXOF(A$);" = BINARY RANDOM SEED"

Q=RND(0)

GOTO 170

Q=RND(1)

PRINT " PRESS EXEC TO CONTINUE";

KEYIN C$

PRINT HEX(OD);“*BINARY**********DECIMAL***************
kkkkkkkkhkkkhkhkkkhkkkhkkkkkkkkkdkkkkkkkkkil.

S$=“. _____________ "

FOR I =1 TO 13 STEP 2

GOSUB 240

X=VAL(A1$(2))-48

IF X<=9 THEN 200

PRINT

PRINT A1$Q0);

GOTO 190

A1$(2) = OR HEX(80)

STR(S$,I+1,1) = BINC128+ 48+ X)

PRINT

PRINT A1$(0),S$;

S$ = AND ALL(7F)

NEXT I
FOR I =2 TO 12 STEP 2
GOSUB 240

X=VAL(A1$(1))-48
IF X<=9 THEN 220
PRINT

PRINT A1$Q);
GOTO 210

FOCUS/MAY 15, 1986

859 COMPANY CONFIDENTIAL

A1$(1) = OR HEX(80)

STR(S$,I+1,1) = BIN(128+ 48+ X)

PRINT

PRINT A1$(),S$;

S$ = AND ALL(7F)

NEXT I

PRINT " <-- NEW RANDOM NUMBER"

CONVERT S$ TO S

IF S=Q THEN 160

STOP "ERROR"#

END

REM BINRAN - BINARY RANDOM NUMBER GENERATOR
B$ = STR(A$) & HEX(0000)

C$ = A$ ADDC A$ ADDC A$ ADDC A$ ADDC A$ ADDC B$
: A$=C$

: HEXUNPACK A$ TO A1$()

RETURN

0220

0230

0240
0250

RANDOM NUMBER DEMONSTRATION PROGRAM

THE FOLLOWING PROGRAM DEMONSTRATES THE RANDOM NUMBER
GENERATION BY BASIC-2.

THERE IS A SEQUENCE OF 32 BIT BINARY RANDOM NUMBERS,
STARTING AT A SPECIFIC BINARY NUMBER SEED, FROM WHICH THE
DECIMAL ALGORITHM EXTRACTS BCD DIGITS. THESE DIGITS ARE
ASSEMBLED INTO 13 DIGIT FRACTIONS, THEN NORMALIZED AND
RETURNED TO THE RND FUNCTION. FIRST THE ODD PLACES ARE
FILLED FROM THE SECOND DIGITS OF EACH TERM IN THE BINARY

SEQUENCE, THEN THE EVEN PLACES ARE FILLED FROM THE FIRST

DIGITS. ANY NON-BCD TERM IS DISCARDED IN THE PROCESS."
10DF5D09 = BINARY RANDOM SEED
PRESS EXEC TO CONTINUE

*BINARY**********DECIMAL**********************************

B165D12D R [

482A15E1 1-8————o—-
7ED36D65

E6E622F9 A-8-6-——————-
A577AEDD .1-8-6-5-————-
EA336A51

FD521395

062F61E9 .1-8-6-5-6--—-
80D5E98D .1-8-6-5-6-0--
6DBA8FC1

B465CECS .1-8-6-5-6-0-4
54C209D9 .158-6-5-6-0-4
B1A3313D

A96CF631

4551CEF5 .15846-5-6-0-4
298E0ACY .1584625-6-0-4
DA8F35ED

7AB90DA1 .158462576-0-4
733E4425 .15846257670-4
845C548B9 1584625767084 <-- NEW RANDOM NUMBER

PRESS EXEC TO CONTINUE

FOCUS/MAY 15, 1986

860

COMPANY CONFIDENTIAL

TECHNICAL NOTE #2607

Author: 2200 Development Group
Date: June 25, 1979
Subject: Disk Error Recovery
A. Classes of Disk Errors
1. Operator/Hardware Errors (190, 191, 192, 194, 195, 198)
These errors generally require some specific user or Wang service
action. The user should assure that the disk has been properly
cabled, powered on, platters mounted, and ready for the operations
to be performed. 1If the operation then generates an error, it
should be retried several times. On a 2200T, the system should be
RESET between each attempt. (The 2200VP/MVP automatically resets
the disk whenever a disk I/0 error cccurs). If the error
persists, Wang service may have to be notified since the error may
indicate a malfunction in the disk processing unit (DPU) or disk
drive itself.
2. Media/Data Errors (193, 196, 197, 199)
These errors generally indicate a failure in the transmission or
recording of data. The failing operations. should be retried
several times. If the error persists, the platter may have to be
reformatted or discarded. If the above procedures fail, Wang
service may need to be notified.
B. Recovery Procedures for Specific Disk Errors
190 (2200T ERR 61) Disk Hardware Error .
This error indicates that the disk processing unit did not respond
properly to the 2200 at the beginning of a disk operation.
Recovery:
1. Retry the disk operation.
2. Make sure the disk is powered on and properly cabled.
191 (65, 83) Disk Hardware Error

Generally, this error means that the DPU cannot communicate with
the disk drive.

Recovery:
1. Retry the disk operation.

2. Make sure the disk is powered on, properly cabled, and ready
(in RUN mode).

192

193

194

195

TECHNICAL NOTE# 2607
PAGE 2

(61) I/0 Timeout

The DPU did not respond to the 2200 within the expected time
period. .

Recovery:

1. Retry the disk operation.

(67) Disk Format Error

This error indicates that the DPU could not locate the specified
sector on the disk platter. The error may result from the sector
address having been improperly recorded, perhaps due to a media
defect. If the error occurs when accessing a platter formatted on
a different drive, one of the drives may not be properly aligned.

Recovery:

1. Retry the disk operation.

2. Reformat the platter. Caution, all data will be erased.
a. If the removable cartridge or diskette does not format
properly, it should not be used.
b. If the fixed media does not format properly, Wang
service should be notified.
3. Certain disk units permit the sector control information of

a particular sector to be rewritten (see following pages).
The data in the sector is not rewritten so that it may be
possible to recover the data by reformatting a sector that

~causes a format error. However, the format sector operation
should be considered as a last resort measure. There is no
guarantees that the data will be preserved.

(67) Forﬁat Key Engaged

Recovery:

Turn off format key.

(71) Device Error

This error generally indicates a fault at the disk drive itself.
Some disk units have a fault light that may be illuminated. Some
disks also require the fault to be manually reset.

Recovery:

1. If writing, make sure the platter is not protected.

2. Reset the fault if the disk has a fault switch.
3. Retry the disk operation.

196

197

198

199

TECHNICAL NOTE# 2607
PAGE 3

(72) pata Error (CRC or ECC)

This error usually indicates that the sector being accessed was
improperly recorded, perhaps due to a media defect. If the error
occurs when accessing a platter formatted on a different drive,
one of the drives may not be properly aligned.

Recovery:

1. Retry the disk operation.

2. Certain disk units (see the following pages) support a read
bad sector command. The data read (even though in error)
will be transferred to the :2200. It is then the user's

 respomsibility to verify the data and correct bad
information. Once corrected, the data can be written. This
operation should be considered as a last resort measure
since there will most likely be errors in the data.

(68) LRC Data Error

This error usually indicates an error in the transmission of the
data between the 2200 and the DPU.

Recovery:

1. Retry the disk operation.
2. Make sure the disk is properly cabled to the 2200.

(64) Illegal Sector Address or Platter not Mounted

The disk sector being accessed is not on the disk, or the disk
platter has not been mounted.

Recovery:

1. Correct the program if it is attempting to access a sector
beyond the maximum legal limit for the platter.

2. Make sure the platter has been properly mounted on the drive.

3. Make sure the correct drive is being accessed.

(85) Read After Write Error

Reading the sector after it was written indicates that the data
was not properly written.

Recovery:

1. Retry the operation.
2. Make sure the platter has not been write protected.

TECHNICAL NOTE# 2607
PAGE 4
Suggested $GIO Sequences for 2260C/BC Disk Recovery Commands

The use of $GIO for controlling the disk is not generally recommended.
The recovery measures below should only be considered to be last resort
methods for recovering data. Wang in no way guarantee that data will
always be able to be recovered or that additional data will not be
lost. It is the user's responsibility to verify any data recovered
using the measures below since in most cases some of the data will be
incorrect. It is advised that a backup of the platter be made before
attempting any recovery operations. Furthermore, it is recommended that
these operations be incorporated into a standalone utility, rather than’
including them in application programs.

. “l
The following list of $GIO sequences uses the following parameters.
error return = HEX(abedef)

where:

abcdef = 000000 if no errors
abcdef = 000004 if echo error, should retry command.

ab = 01 if illegal sector address (ERR I98)
02 if disk hardware error (ERR I91)
04 if format key engaged (ERR 194)
ed = 01 if device error (ERR I95)
02 if format error (ERR 193)
04 if data error (ERR I96)
/xyz = disk address (e.g., /320, /360)
variables used: DIM G$10, G$(4) 64
1. Read Bad Sector (also available on later versions of the 2270A).

Entry parameters:

STR(G$,1,1) = HEX(00) if fixed platter
HEX(10) if removable platter

STR(G$,2,2) = binary sector address

$GIO /xyz (0600 0700 7GAO0 68CO 7040 6A10 6A20 6230 8705 1704
1156 1576 4270 8367 C640 8605, G$) G$()

Return Parameters:
STR(G$,6,3) = error return
STR(G$,5,1) = LRC

G$() = data (255 bytes)

2.

TECHNICAL NOTE# 2607
PAGE 5
Format Sector
Entry parameters:

STR(G$,1,1) = HEX(20) if fixed platter
HEX(30) if removable platter

STR(GS$,2,2) = binary sector address

$GIO /xyz (0600 0700 70A0 68CO0 7040 6A10 6803 6800 6420 6230
8705 1704 1156 1576 4000 8867, G$)

Return Parameters:

STR(G$,6,3) = error return

_f)‘x‘,"'" “

€

£A% MEMO ¥¥*
To: Lee Collett
From: Roger Droz
Date: August 11, 1982

Subject: 2200 Math Package Precision
Ref: Mr. Zeskind's Letter

I have composed an answer to Mr. Zeskind's letter. I am finding it
easier these days to write in first person, so I have composed this

letter as I would if I were discussing this matter in person. I have not
mailed this letter to Mr. Zeskind. You may decide whether to re-write

the letter, mail it as is, or even claim credit for it. (Three years

ago, Dave Angel was John Neuman's ghost writer to answer a similar
question.) I will be happy to supply the letter in machine readable form.

I am not getting much time to write articles for the user society
newsletter. This is an excellent subject. Perhaps you can compose a
suitable article, based on my letter and the Science News article
supplied by Mr. Zeskind.

WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 ® TELEPHONE (617) 459-5000, TWX 710-343-6769, TELEX 94-7421

Roger L. Droz

2200 Microcode Group
MS 1383%

August 24, 1982

Jeffrey A. Zeskind
c/o Design & Administration Corp.
Miami Shore, Florida 33153-0563

Dear Mr. Zeskind:

The problems associated with round-off errors in finite precision
arithmetic are better known to engineers and scientists than they are to
business people. The subject should be discussed much more than it is,
not to get people worried about it, but simply to educate them about
those rare situations where unexpected results can occur. As the Science
News article points out on page 73, "calculators and computers work with
numbers having a definite number of digits and the results of
calculations must be rounded or chopped off, introducing unavoidable
error.” Mr. Kahan is overly optimistic when he implies that it is
possible to build a computer that never delivers misleading answers, but
we certainly have made an effort to minimize the problems on the Wang
2200. I am happy to see that you are interested in the subject of
arithmetic errors, and will spend a few pages discussing our strategy on
the Wang 2200.

The Wang 2200 performs arithmetic in a straight-forward manner, which is
described below. We have had few problems with the microcode for
arithmetic operations, but we appreciate concerned users bringing
problems to our attention. The specific problem you present in your
letter is not serious in most applications. Most users do not require
the full 13 digit accuracy available in 2200 BASIC, and are in fact
sometimes introducing the type subtle errors discussed in the Science
News article by rounding or truncating at bad times while attempting to
minimize memory requirements. These errors are typically much more
serious than arithmetic errors in the 2200 arithmetic microcode. After
describing how the 2200 math package works, I shall discuss programming
techniques to avoid accumulating errors.

2200 Floating Point Arithmetic

All Wang 2200s do arithmetic in binary coded decimal floating point. The
mantissa is 13 digits. The exponent is 2 digits. BASIC-2 and BASIC-3
offered on the 2200VP, 2200MVP, and 2200LVP employ guard digits and other
techniques to improve both speed and accuracy over the 2200T.

Using base 10 arithmetic has the advantage of doing strange things when
people expect it to. For instance, (1/%)¥3 is .9999999999999, but
(1/10)*10 is 1.0. On many computers that use binary floating point (such
as the Wang VS running BASIC), (1/10)*10 is .99999999. This is not to
say that the 2200 is more correct. The 2200 simply comes closer to
living up to the expectations of a base 10 oriented world. Proponents of
base 2 or base 16 floating point representations argue that using a
nurmber base that is a multiple of 2 is more storage efficient, and is
faster in many cases. (The Wang 2200 hardware is a counter example to
the speed argument, being equally adept at binary and decimal
operations.) It turns out that there is no good solution. UHNeither the
2200 nor the VS are very good at (1/7)%7.

There are two common solutions to the problem: guard digits and "fuzz".
Often, both solutions are employed. Guard digits are fairly familiar.
More digits are stored than are displayed. The displayed result uses the
guard digits to round the displayed answer.

Fuzz solves the problem that 1 and (1/3)*3 should be equal. Systems with
fuzz often allow the user to specify how close to equal is close enough
to be called equal. For instance, on the 2200T O and ((1/3)%¥3)-1 are
equal within a fuzz (plus or minus) of 1E-12. In BASIC-2 (supported on
the 2200VP, 2200MVP, 2200LVP), ((1/3)*3)-1 is 1E-13. In the absence of
user settable fuzz, the programmer is left with the rule "there is no
such thing as equal in floating point". This rule serves the engineer or
scientist quite well. Commercial users are either perplexed or ignore
the problem. The solution to the problem of almost equal on the 2200
involves rounding results to fewer than 13 digits before comparing them,
or checking a range instead of testing for strict equality. More on this
later.

For the most part, the 2200 philosophy is not to keep invisible guard
digits. The goal is to return the answer of each addition, subtraction,
multiplication, division, or build in function to 13 digit accuracy. The
user concerned about arithmetic errors should use the last few digits as
guard digits and round answers himself before displaying. BASIC-2 and
BASIC-3 provide the ROUND built-in function to aid in this process.

Later on, I shall discuss when the user should be concerned about
possible arithmetic errors.

The 2200 never automatically rounds results to fewer than 1% digits. For
instance,

10 PRINTUSING 11, 1.59

11% +#.#

gives: +1.5

Similarly,
A(1.9) is interpreted as A(INT(1.9)), or A(1)

Wang BASIC (supported on the 2200T) makes no use of guard digits. This
explains why 1/3%*3-1 and 1/3*3-.5-.5 give different results. BASIC-2 and
BASIC-3 calculate 1 guard digit, so 1/3%*3-1 and 1/3%3-.5-.5 give the same
result. The primary purpose for the guard digit is to support the
optional rounding of answers to 13 digits. By default, BASIC-2 and
BASIC-3 round the result of each computation to 13 digits, such that 2/3
is .6666666666667. Optionally, the user may SELECT NO ROUND, and 2/3
then gives .6666666666666.

Three examples:

+999 - 1, using no guard digit

express problem in floating point: +9.99 E-1 - +1.00 E+0
match exponents: +0.99 E+0 - +1.00 E+0
normalize result: -1.00 E-2 or -.01

(]

-0.01 EO

.999 -.5 -.5, using no guard digit

éxpress problem in floating point: +9.99 E-1 - +5,00 E-1 = +4.99 E-1
perform second subtraction: +4.99 E-1 - +5.00 E-1 = -0.01 E-1
normalize result: -1.00 E-3 or -.001

-999 - 1, using 1 guard digit

express problem in floating point: +9.990 E-1 - +1.000 E+0

match exponents: +0.999 E-0 - +1.000 E+0 = -0.001 E+0
normalize result; truncate to 3 digits: -1.00 E-3, or -.001

BASIC-2 and BASIC-3 use even more guard digits when computing trig
functions. The trig functions on the 2200T may be considered accurate to
10 digits; by using several guard digits, BASIC-2 trig functions are
accurate plus or minus 1 in the 13th digit.

Intermediate results in expressions are stored to 13 digits. The order
of expression evaluation can thus be significant. For instance (4/3) -
(2/3) is different than (4-2)/3. If intermediate results during
expression evaluation were stored with a guard digit, the two answers
would be the same, but if the calcuation was spread out over several
statements, the discrepency would reappear. You can't win!

Many computers use logarithms to perform exponentiation. BASIC-2 and
BASIC-3 use multiplication to raise a number to an integer power, for
reasons of speed and accuracy. The square of an integer is always an
integer in BASIC-2. This is not the case on computers that always use
logarithms for exponentiation. Even on the 2200, inaccuracies in
performing LOG and anti-LOG calculations cause 2 to the 4th power to give
a different answer than 2 to the 3.5 times 2 to the .5.

When to Worry About Arithmetic Errors

The Wang 2200 math package behaves as expected for most common business
calculations. As stated earlier, this is because most business
applications do not require the full 13 digit precision of 2200 BASIC.
The extra digits serve as guard digits, protecting the user from subtle
accumulating errors.

Most errors occur during division and subtraction. Examples such as
(1/7)*7 and 1-(1/3)*3 have already been given. Division and subtraction
both end up with fewer digits in the answer than were in the operands.
(Consider 19-11 and 25/5.) Subtracting two numbers that are very nearly
equal generally introduces considerable error:

5280.637005678 - 5280.000000002 gives .6370056760000

Both operands are accurate to 13 digits, but the result is only accurate
to 9 digits.

A Civil Engineer once tried to use the Wang 2200 to account for the error
that the curvature of the earth introduced into his measurement of the
length of a table. He rearranged the expression several ways and got
several radically different answers, primarily because the calculation
always involved subtracting two numbers that were almost equal. BEach
different formula came up with a different "almost zero" (sometimes
called a "dirty zero") that was subsequently multiplied and divided by
several large numbers. The final answers differed by several orders of
magnitude, because the "dirty zeros" differed by several orders of
magnitude.

Subtraction does not usually present a problem in business applications,
because the numbers involved are either integers (quantities) or fixed
point (dollars and cents).

Multiplication and division can present problems in business applications
if intermediate results exceed 13 digits. 1234567890123 * 11 / 2 is not
the same as 1234567890123 / 2 * 11 because in the first case, the
intermediate result exceeds 13 digits.

Division often results in fractions that cannot be represented exactly in
a finite number of base 10 digits. Division by 3 and 7 commonly produce
this problem.

@@m

What to Do About Arithmetic Errors

In scientific applications, the typical technique is to keep numbers to
the highest precision available on the machine and round off just before
displaying. Engineers and scientists are sometimes mislead by the
problem of "dirty zeroes" mentioned above. They also learn to only trust
11 or 12 digits of the answer because of the "truncation of intermediate
results"” problem. (The theorems of numerical analysis are sometimes used
to calculate the amount of error that may be present, but experimental
error in measuring the input data usually dominate computational errors.)

In business, results are generally rounded sooner, to avoid dealing in
fractions of a cent. Consistent rounding rules are important in
business, but somehow the problems of fractions of a cent are hard to
impress upon people until some strange result occurs:

It used to be fairly common to see bank statements and payroll check
stubs where the printed total was one cent higher or lower than the sum
of the printed figures. The problem is that ROUND(A,2) + ROUND(B,2) is
not equal to ROUND(A+B,2). (ROUND(expression,2) is the BASIC-2 built-in
function that rounds a result to 2 decimal places.)

Sometimes programmers put in a quick fix to make the check stub balance,
but forget that rounding problems effect other calculations later in the
program: Social security withholding results in an answer in terms of
fractions of a cent. (Gross pay time 8.6%, last time T checked.) 1In
order to get the paycheck stub to balance, the result is rounded to the
nearest cent. Later, when it comes time to pay Uncle Sam, many people
are tempted to multiply the total gross pay for all employees by 8.6%.
This answer is virtually always less than the sum of the social security
withholding items on the paycheck stubs. This inconsistent rounding
scheme is to the employer's advantage, as long as he doesn't drive his
accountant crazy looking for an error that turns out to be hidden in the
undisplayed fractions of a cent.

Rounding Functions for the 22007

BASIC-2 and BASIC-3 have a built-in ROUND function that can be used to
round results to fewer than 13 digits. On the 2200T, the ROUND function
may be simulated using the following user-defined function:

100 REM ROUND result to two decimal places.
200 DEF FNR(X)=SGN(X) * INT((ABS(100 * X)+ .5)/100)

The above function rounds -5.236 to -5.24; some people prefer to round
-5.236 to -5.23, which is accomplished by:

200 DEF FNS(X)=INT((100 * X + .5)/100)
These functions are convenient to use, because the rounding algorithm
need be coded only once in the program. Any expression may be rounded by

coding something like:

1000 Q = FNR(A+B*C)

Conclusion

To summarize, arithmetic eérrors are inevitable in finite precision
computer arithmetic. Errors can be avoided by using integer or fixed
point operands with fewer than the maximum number of digits allowed on
the machine and avoiding division by numbers like 3 and 7, that produce
fractions that cannot be expressed in a finite number of digits. It is
easier, however, to use suitable rounding conventions and consider at
least 1 of the 13 digits the 2200 calculates to be a guard digit. On the
2200T, the above user-defined rounding functions are almost as convenient
to use as the ROUND function built into BASIC-2 angd BASIC-3.

I am glad that your letter gave me the excuse I needed to write all of
this down. As I said earlier, problems of arithmetic errors are not
discussed often enough. Though we have improved the arithmetic on later
Wang 2200s, the members of the 2200 microcode group believe that the
arithmetic available on the 2200T is accurate enough for most any
application, given a little knowlege of the problems associated with
finite precision arithmetic.

During the last year or so, there has been new interest in computers
solving problems algebraically, instead of numerically. This allows
solutions in terms of rational numbers, which completely solves the
problem of (1/3)*3. The December 1981 issue of Scientific American has
an excellent article on computer algebra. I have not heard of an algebra
program for the 2200, but T hope somebody writes one some day.

Sincerely,
J;t.h E
VAN
W N e
/é 4

Roger L. Droz

WANG LABORATORIES, INC.
ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 o TEL: 617/459-5000, TWX 710-343-6769, TELEX 94-7421

MEMORANDUM

TO: 2200 Support

FROM: B. Ciolek
J. Cizmadia

DATE: March 2, 1983

SUBJ: 2200 Disk Error Meeting

The meeting on 3/1/83 was conducted by Jerry Sevigny who discussed disk errors
and recovery procedures. The information should help us differentiate between
some solid hardware errors and hardware/software errors.

The following is a copy. of a handout that summarized most of the error codes
discussed. This can be used with any BASIC-2 error code manual as well as the
following helpful hints.

I94 refers to 2230 or 2260 disk with format key

I99 +this is a hardware error that can be caused when a DATASAVE statement
includes the "$" option which causes a read-after-write.

X74 May indicate a hardware error on the 2280 caused by the loss of a bit
when storing information in the upper portion of memory.

D88 indicates the possibility that the hardware dropped a bit
Example: When seeking a numeric variable type yet finding an alphanumeric
variable type. This is just a possibility, usually the error

indicates a programming problem.

Rumor Corner:

1. A 5 1/4 DSDD for the MVP is forthcoming.
2. If PEDM errors are found in the "C" chassis, have the CE check to make

sure both 32K memory boards are present. If not, there may be too much
noise causing the error to occur.

smh: 0048z

Twi & &VV mm

Buildalt (cont.) With BUILDALT 5.03.08, however, the following happens: A level 2 alternate key e
record is not equal to the highest alternate key value in a level 1 block. This problem
is most likely to be noticed after a COPY (with REORG = YES) has been performed
against the file. Files with a large number of records (typically in the tens of
thousands) or files with a relatively large number of records (thousands or high
hundreds) plus a large alternate key size are especially susceptible.

A corrected version of BUILDALT (5.03.09) will be distributed to Customer Engineer-
ing ATOMs with VS operating system maintenance releases 5.03.52 and 5.03.70.

VERIFY 5.03.03 VERIFY version 5.03.03, distributed with OS 5.03.50, contains a bug which, under
certain conditions, causes a file to be reported as damaged when in fact there is
nothing wrong with the file. A corrected version of VERIFY (5.03.04) will be distri-
buted to Customer Engineering ATOMs with VS operating system maintenance
releases 5.03.52 and 5.03.70.

The corrected versions of DATENTRY (4.02.04), BUILDALT (5.03.09) and VERIFY
(5.03.04) should replace the existing modules in library @S YSTEM@ on operating
system 5.03 install packages and should be installed on any customer systems
running a 5.03 operating system release and experiencing the problems described
" above.

‘ 2200 SYSTEM Wang 2200 computer systems employ a direct-execution, high-level-language

i ARCH'TECTURE (HLL) architecture. With direct-execution HLL systems, the HLL is effectively the
machine language of the computer. Unlike more conventional architectures, where

by 2200 R&D the source code is transformed into a distinct object code before processing, the
direct execution system processes the source code directly.

The direct execution system provides a number of advantages over more traditional
architectures, not the least of which is its conceptual simplicity. The more conven-
tional layers of software including assemblers, linkage editors, compilers and
loaders are eliminated. The inherent conversational nature of the system facilitates
programming and debugging. The debug run and the execution run are identical.
Error messages can easily include a listing of the actual source code. Program
execution can be halted, single-stepped, and restarted. Since there is no compila-
tion phase, the system responds immediately to program entries and modifications.
Programmers can understand the language semantics by observing the direct
response of the system.

The 2200 provides the user with a single high-level language, BASIC-2, which is
used for all programming. Proficiency in system use is easily achieved since there is
only one language to learn. A fundamental design criterion in the development of
BASIC-2 was to provide a self-sufficient language that would be as flexible as
conventional general-purpose computer instruction sets. I/0 and data handling
. language extensions provide the user with fiexibility not usually found in a high-
] level-language.

e

The 2200 is not a pure direct-execution machine since the source code is
preprocessed into a form which conserves memory and is more efficiently
! interpreted. However, source and object differences are such that the preprocessor
transformation is nearly completely reversible. As a result, only the condensed
code is stored in the machine. The preprocessing function eliminates gross
inefficiencies in memory, timing, and logic requirements.

(continued)

FOCUS/April 1983 Page 192 COMPANY CONFIDENTIAL

R ST e s |

TECHNICAL . 2200

2200 Hardware

guage interpreter reside in a large computer storage memory which isindependent
from user daia memory; this microprogram directs the execution of the CPU and

L7133
[
9
(7]

O
]
et
3
—
5
(]
Q
3
=
[

L)
e
5
o
(o]
L)
c
[
3
Q
=
o
8
8
1]
[7]
@
3

«Q
5
o
o
o)
c
*
o)
3
Q
e
5
1]

a bank provides quick access to major system pointers. The extensive micro-
instruction set consisting of 24-bijt words provides decimal and binary arithmetic,
logical operations, and a wide variety of conditional branching instructions.

In a single CPU cycle, a 24-bit microinstruction can be fetched, 16-bits of data
memory can be fetched, and a 16-bit operation can be performed. The wide
memory path, 600 nanosecond cycle time, and rich microinstruction set provides a
highly effective processor for implementing direct-execution languages.

User programs and system controllers are kept in data memory, of which 512K can
be installed. Since the CPU's address space is limited to 64K, however, data
ed i

access to control tables without switching memory banks, the lower 8K of the
address space always refers to bank 1 . The lower 8K of banks 2, 3, 4, 5, 6,7,and 8is
not used.

Multi-User Operating System

RUN BASIC software, compose a program, or perform Immediate Mode operations.
As in a single-user environment, the user has complete control over his or her
partition. No user on the system may halt execution in, or change the program text
of, a partition controlled by another user.

Each terminal may control severa| partitions executing independent jobs. At any
given time, however, only one of these partitions is in control of the terminal ang thus
capable of interacting with the operator. The partition in control of the terminal is
said to be in the “foreground” Other partitions assigned to the terminal may
continue to execute in the “background” until operator intervention becomes
necessary.

(oontinued)

FOCUS/April 1983 Page 193 COMPANY CONFIDENTIAL

oe— | I

——vw TECHNICAL

Although partitions function independently of one another in general, there are ‘
situations in which it is useful for two or more partitions to cooperate. Cooperating
partitions may share program text and/or data. The sharing of commonly used
programs and data by several partitions eliminates needless duplication and pro-

duces more efficient use of available memory. The integrity and independence of a
partition which contains shared programs or data is maintained by requiring the
partition to explicitly declare itself to be global (sharable) before it can be accessed

by other partitions. Correspondingly, a partition wishing to access shared text or

data in a global partition must identify the desired global partition.

To the programmer who regards the multi-user operating system as a whole, it
appears that all partitions are executing simultaneously. Because all partitions
share a single CPU, however, only one partition can be executing at any given
moment. The operating system creates the illusion of simultaneous execution of
several programs by rapidly switching from one to the other in turn.

TASK SCHEDULER
STORAGE
LOADER
PRIORITY
—P| anaLvsis [€—

: s POLL FOR POLL FOR
YSTEM o PROGRAM

|
S
é
v

FIGURE 1. BLOCK DIAGRAM OF 2200 MULTI-USER OPERATING SYSTEM

Partitions in the 2200 multi-user operating system are serviced by the CPU in a
“round-robin” fashion, with priority givenrto I/0 operations. Each partition in turn is
given a “timeslice” 30 milliseconds (ms) in duration. The CPU has a 30 ms timer
which is set at the beginning of the timeslice; at the completion of each BASIC
statement (and at various points in the middle of long statements and 1/0 opera-
tions), the clock is checked to see whether the 30 ms timeslice has been exhausted.
When a partition’s timeslice has expired, the operating system saves the status of
that partition so that it may be restored later when that partition’s turn comes around
again. The operating system then loads the status of the next partition in line and
begins its 30 ms timeslice. The process of halting execution of a partition at the end
of its timeslice is called a “breakpoint.”

(continued)

FOCUS/April 1983 Page 194 COMPANY CONFIDENTIAL

T e e orm ey se -,..._J

M A AL !

22007018

Timeslices do not always last exactly 30 ms. Unlike many operating systems, the
2200 multi-user system switches users (breakpoints) whenever it is convenient

importantly, breakpoints may occur in the middle of BASIC I/0 statements. If, for
instance, the current partition attempts a disk access and the disk is hogged by
another partition, this condition is quickly detected and breakpoint occurs. 110
breakpoints differ from program breakpoints in that the partition is specifically,

that does not currently control the terminal attempts to write to the CRT, the system
bypasses that partition almost as effectively as if it were removed from the system
until the 1/0 device becomes available.

OIS BASIC
PROBLEMS AND
SOLUTIONS

by the Technical
Support Center

Below are some common questions relating to OIS BASIC that are received from the
field. The solutions to the problems do not necessarily show the best or only way of
solving the given questions, but they will illustrate some BASIC statements that are
not often used. The reader should also try the programs to see how they work.

“I would like to right justify my output to the screen. How can | do this?”

BASIC will print to the screen left justified starting at a certain column on the screen,

so if a column is printed on the screen of eight character fields it might look like the
following.

abcdefgh
ab
abced

What the programmer must do to achieve right justification is to put the trailing
Spaces in each of the fields before the letters. For example, the field “abcd” is really
“abcd space space Space space”. To right justify this field, put the four “spaces”
before the “abcd”. The following program will do this. It is a general solution which
will work no matter what the dimensioned length of the variable a$ is.

0010 dim a$8

0020 a$ = "abcde"

0030 for x=1 to len (a$)
0040 a$ = rotate c (a$,8)
0050 next x

0060 print a$

(continued)

FOCUS/April 1983

Page 195 COMPANY CONFIDENTIAL

T ke

eEV Mg rle ovX

I. 2200 CASSETTE/DISK FILE FORMAT

The 2200 provides the capability to vecord both prosrans and dats
onto cassette and disk. Both prosrans and data are recorded in 256 byte
physical reccrds., To insure data integrity, each physical record is
recorded twice on tape. Dual recording and read-bdack is done
sutomatically by the system, and Trequires ao special wus-r
considerations.

PROGRAM FILES:

‘When progsrams are recordec, it is not sufficient to merely reccri
the progranm lines and nothing else. It is irportant for the 2200 syszte:
to tell vhere the bdesinning and ending records of a progras are.
Therefore, everytime & progran is recorded, the 2200 syster
automatically records a beader record before the prosran, and a treiler

record after the program., Each recorded prosran thus becones & Pregran

£4e. The figure belov illustrates a prograr file.

RECORD REZCOFS RECOrD RECOF2

HEADER 1st PROGFAM 2nd PROGRAM : Nth PROGRA!!] TRLTLIR |

o

HEADER RECORD:

' This is a physical record (256 bYytes) which contains a contrecl
byte {dentifying it as the heeder (or beginning record) of a prore.
It also contains 8 bytes which can be used to store the nate cf the

progran, if the progran is named wvhen saved, The vrenmainder of the

record is not used.

PROGRAM RZCORD:

Each progran record is 8 256 byte ©vphysical record containinr &
portion of the saved prorran. It also econtains & contrel Ddy*c
identifying {t as a physical record vhich contains part of a proga,
({.e., a Progran Record).

TRAILER REZCORD:

The trailer record is similar ¢o a prosran record excecpt that is
has a control byte ddentifying 4t as the final physical record of the
eurrent progran file. ({.e., the Trailer Record).

EEADER
RECORD

S03 Control Byte —> X'Lo'

FILE
RAS

2038

NOT
Us:D

Tor protected pronrans, S0B eontrol bytes

OGPAM FILS FORVAT

/

PROGRAM
RECORD

X 90"

TRAILER
RETORD

1st TCXT
LIKE

x'22'

IN RECORD

X'0000"

18t TEXD
LIsz

T4 RECOTC

2nd TEXT
LIiE

X'0099'

IN RCCOPRD

X'0000'

2nd TZXD
LIz
T4 RcCORT

X*0022'

LINE

LAST TZXT

In RECORD

X009

LAST TZXT
LIz
IN RECORD

EOB

- ——————

NOT
USzD

X' 023008

EOF

¥oOT
USED

are X'S0', X'10¢,

EOB (end-of-block) = X'yD!
PF (end-of=file) = X'rE!

and X'30' respectivell

e o

2147

CONTROL 3BYTES:

b

2.

3.

SOB (start of block) = identifies tyy - of record
o3
dy 1 20 10 8

L 2 1
S

i< ENN :

1 = Last Pnysical Record ol
Lorical Record (deta)
Internediate Physical Recorcd
of Loricnl Record (date)
Protected Propra- File
Trailer Record

Hender Receord

Prorras File, 1 = Date File

L
‘/\1/ v Vv \l’
[
(]

o+

i (physical recoré number) - Data (nonheader and nontrailer)
records heve a second contrel byte gpecifying the paysical
record number within the logical record.

SOV (etart of value) = preceeds each velue in a data record.

BoLo2010 8 4 2 1

|

I

> count (no. of bytes in velue)

> type: 0 = numeric, 1 = alphanus=eric

OB (end of block) = d4ndicates the end of wvaliéd date in e
physical block.

FOB = X'FD' o TexT
A

EOF (end of file) - indicates the end of valid &=t in 8 Frci7e"
trailer block.

EOF = X'Fz!

1st Record i

Piming Block

2200 PiYSICAL TAPZ FOPMAT o

HvI1o

—

1st Date Block -f
of Pair —

\V Andbvdo

10

2nd Data Block
of Pair —b

| L

1O C

2nd Record g

JL

| L

miring moris precedin” heede
Blocks are O bits; el oiher
timing mArvws are 1 bits.

1's Track

W

o0's Track

-

XA

o
Sy

Mﬁ” DATA FILZ FORVAT 2

/Il g—g | L
xlco X'8.0_' chgt
i
b 200 PRI
.) NAME
L Sov
EOB
1st DATA woT
VALUS : Us:D
NoT ;
UsSzD .
Sov
LAST DATA
VALUZ
08
NOT
USED

dote, vhen values of alphanureric variables are stored, the velue is fillel
in with spaces on the right wp to the maxirum lenmth of the variedle.

208 = X'FD'

bz

’l/-

II.

2200 DISK INDEX STRUCTURE

The disk catalosued area is set wp by the user vith s SCRATCH DISX
statement. The catalopued aren of each disk platter 1s divided tvo
sections; (1) an index which keeps track of where each file is
eurrently stored and (2) the file ares vhere the files A&rg sctually

written.

The INDEX:

The 4index can vary from 1l to 255 sectors. The index ig alvavs stored
on the first sectors of each platter, Each sector of the index cr=
hold 16 file entries except the first sector which can holé 15. The
first sector uses the first file entry to store the {ndex size, the
current end of the catalogue aree, and the upper 1limit of the
catalofue area.

The layout of the catalopue {ndex is given below:

SECTOR 0.
z0 XX AA AA B3 23 WU NU
ENTRY 1
NU XU NU NU KU NU NU NU
uUs T cc cC DD DD NU WU
BITRY 2

8' BYTISl oF I"I{..E NA.‘S:I

Entry 1 of Sector O has information for the entire catalogued aresa,

ﬁfié&x = Number of sectors in the index
~A 72 = 0 {f on the fixed pletter.
7 = 8 if on the removable platter.
XX = bdbinary nuwiber from 1 to 255.

AAAA = The next sector in the catalogued aTes which is
avalleble Cfor storing prosran or data files.
The high order bit is O 4 on the fixed
platter; 1, i on the removable platter.

33BB = The first sector beyond the catalogued ares.
: : _ Again, the high order bit 48 0, if on the fixed
| . . platter; 1, if on tue removable platter,

U - The rest of the 10 byies 43 unused and should
eontain O.

>

Entry 2 of Sector 0 4is representative of every other entry in the
iﬂdex. .

1§] = 00 Pree or unused entry.
Us = 10 File currently stored. '
us = 11 Mle currently stored here {s scratched.
Area is still reserved but 1is not Ddeinr
utilized.
us = 2] The index entry has beern used by 8 file, dbut
currently has no {nformation stored here. This
status exists vhen & scratched file's ares is
beinp used by a new file.
™ . = 00 Data file.
0 = 80 Program file. R
FtrR51
ccec = Settor address vhere Jast record of file is
stored in catalorued ares.
DDDD = Sector address where last record of file is

stored in catalogued aree.

This 1last sector of each f{le is8 set up as &
dury trailer record with the second and third
byte of the recoréd used to svecify the nurber
of sectors currently used by the file. This
value stored there is equal to (SECTOR ADDR+1
of TRAILZR RLCORRD) = (BEZOINNING SECTOR ADDR)+1.
With DATA files it is initially set to 1.

~he last 8 bytes of the entry is the ASCII codes for the nare of the
file.

HASHING:

The entries to the index are selected by using a KASH function. The
HASH is calculated from the 8 byte profran nane. The Exclusive OR of
the 8 bytes is calculated (S). 3 %S equals a 16 bit binarvy velue W X
Y2, X+ 2 4is set to Z and W + Y is set to Y. The hesh X Z 4s ther
reduced to a nuzber less than the number of index sectors. This value
{s set equal to the index sector vhere tne file is going to be stored.
1f there is no roon at this sector ({.e., a1l 16 entries are filled),
the walue 43 decremented by 1 and that sector is gsearched for a free
entry. The process continues until a free position has been found oT
all the secturs have been scanned; in vhicn case an error is given.

.
v
po—
»

~

T1I. DISK SYSTEM EOF RECORD

Vhen s file is created on disk under DC rode, the last sector of the
f4le {s reserved for systen use. The systen creates an artifical EOF

pecord vhich includes a count of the nuzber of sectors

sctuelly use:

4n the ¢file. [Note, the pumber of sectcrs used is only updated vhen

s the user vrites a trailer record in the file.

~ not used

g

no. of sectors used

control byte: X'20' for progran files
X'AD' for data files

Bector 0

Sector AA

BERB

cccc

MAP OF DISK PLATTZR

00AA BB:3 cccc <

Index Area
up to 255 sectors

Currently Useid Catelogue Areas where
procrans and data are stored

Unuseéd Catalorue Ares
(He;t file will be
stored at B3E3)

Free Area
(Used by TEM® Files
or any DA instructions)

- ASCI1 CHARACTER 857 7 7 T T T T
00 = NOL 20 < SPACE T 40T- @ —o = " -
0l - €CH e1r - 41 - A i €l - a
02 - STX e2 - ° 2 -8 ____ __.__._®=0"
03 - ETX e3 - % &3 - C €3 - ¢ -7
04 < EOT 24 - 8 44 - D €4 - ¢
05 - ENG 25 - % «5 - E €5 - «
06 - ACK 26 - & 4 - F €€ - ¢
©7 - BEL 27 - 47 - G €7 - &
08 - BS es - ¢ 4B - H . €8 - h .
09 = HT e3 -) 4?3 -1 - €3 - 4
0A - LF 2A - * &r - J €A -
0B - VT 28 - + 48 - K €B - ¥
oC - FF eC -, &C - L €eC -1
0D - CR e - - & - M €D - m
OE-S_O E-o __.‘E-N_. - GE'n
OF - S1 eF -/ 4 - 0 eF = ¢
10 - DLE 30 -0 50 - P v 70 - p
11 - DCl - 31 -1 51 - G 71 - a
i - <2 3 - e 2 - R e - r
13 - DC3 33 -3 €3 - S 73 - s
14 - DC4 34 - b 84 - T Tae - 2
= T15=NAX ss—="%5 —— 85 ="V - ~75 - u
@ 16 - SYN 36 - © g6 -V TE - v
(A 17T-ET8 7 -7 57 - W T - w i
—+J 1B = CAN a8 - b B8 - X 78 - x :
ST 19 - BN 3 -9 B3 - Y 73 -y
iA - SUB A/ - “BA - 2 7A - 12
1B = ESC ® =5 — sy U IR
~1C = FS 3¢ - < &C - \ 7Cc -\
1D - GS N -= €D - 1 70, -}
1E = RS £ - 2 gt - ¢ “E - ~
iF = US 3F -7 EF = & 7F - CLE=R =
X
i
A
- :

- —

— . . o

j‘ ~ TEXT ATCMS_(HEX CODE ORDER)
5 |
g0 - LIST AN - PRINT €O - FN EO - LS=
81 - CLEAR Al - LOAD €l - A&BX(. El - AL
. g2 = BUN A2 - REM c2 - S3R(‘E2 - PACK
B3 - FErAMEER A3 - RESTORE €3_- COS(¢ I E3 - CLD=E
84 = CONTINUE aa - PLOT C4 - EXF(~ B4 - INIT
85 =15AVE A5 - SELECT €5 - INT(‘ES - HZX
© g6 - LIMITS A& - COM __ L& - LOG¢ ’ EE - LhEACK
] 87 - COPY A7 - FRINTUSING C7 = SIN(€7 - ECOL
88 - KEYIN A8 - MAT C8 = SGW(- EB - #ID
83 - DSKIP A2 - REWIND €9 = RNDU ° E9Q - FOTATE
—8A - AND AA - SKIP A = TaN(< EA = & [51ma)
g8 - CR AB - BACKSPACE CB - ARC ER - ERRIR
.8C - XOR AC - SCRATCH CC - #P1I * €C - EFR
—BD - 1&hr A0 - MLVE tD = TASC BED = DAS
- BE - DISK . A&E - CONVERT CE - DEFFN EE - DSC
" §F = TAPE AF - [SELECT] PLOT CF - [ARC] TAN(EF - SUs
90 - IRALE BEQ - SIEF DO = [ARCT SIND FO - LIIFUT
. 91 - LET Bl - THEN D1 - [ARC] COS(Fl - VER(
- 92 = FIX(g2 - TO D2 - HEX(Fz - ELSE
. 93 = LM Bs = BEL] D3 - Six(ra - Syt
: "94 - BN B4 - CPEN D& = ATN(. Fa - 2250 oy
4 - STCFP BS - [SELECTI CI DS - LEN(FS - AT
@"E‘E—) BS - I=:_ECT1‘F_“‘D€’-' ‘RE - FE = H=A0r ¢
; 97 - DATA B7 - [SELECT1 D D7 - ISELECT] & F7 - MAX(
ez - EZ2D ‘ g2 - [SELECTY CO D& - % lIMaGE) FE - mMItC
(> g = lindul Bo - LGI(D> = [(SELECTI r F3 - oo. -
~ oA - GCSUS ‘ BA - COFF DA - BT) FA - F=f=3~rvs
93 = RETURN BE - DSACKEFALE DS - [CELECT] G FE .- mot us=z:-.
— 9 - G010 BC = VERIFY DS =T VALY FC = riot usesd
- oD - NEXT 8D - DA . DD = NUM(FD - not used
9E - FCR BE - BA DE - BIN(' FE - mot uced
SF - 1F BF - - ;

Tine nunt

oC bF = PGSt Fr

The following atomes é&re velid only orn the _E::‘QOVP.

- 92 - FIX(; F2 - BLSE
B3 = LGT(- F3 - SFACE
. - ERFOR . FS - AT(
,. EC. - ERR | F& - HEXCF(
ED - DAC . F? = MAX(
. EE - DEC - . F8 = NIM(
.- EF - SUB . . F9 = mCO(X
- FO - LINPUT Fi - ROUND ’
Fl = VER(. ' L

& e- °
. '

Yhe followma _toms _are not uced (or stored on_ the da.wc) by eit.er
’f — a200T or 2200VP within & “Tine of BASIC ‘text.

C_- “en FB FC_FU_FE

O S -

RAM MAP
000 .
: GERERAL SCRATCE ARTA
0040 | e (32 brtes)
. POINIERS, COU:IS, FuAlS
ou e _ (3L bytes)
e DEVICE TAELZ
L (55 vytes)
L b12e
- 013E (not usei) (11 vrec)
i OPERAZOR STACK (CS)
- (k9 vytes) [
-91A0
MATE SCRAZCE ARZA
. (L8 vytes)
0200
‘ DMLY VARIAZLE TAZLZ
. (50 vytes)
0«bh
USER T2 ARZA |
¢

I/0 BUFTER
(256 vvtes)

)

CALLED SUBROUTILE SZACK (CSS)

|

efree spale-

VALUE STACK (vs)

SYMEOL TAELE (VSV)

{floats at ernd
of text

floats abcve
svzbol tadile

o

@«

2200 BASIC MEMORY

IXTRODUCTION -

i
fhe 2200 BASIC ealculator {s a sinple-use

>3 poninterrupt
:tero-progrmed systen vhich allovs 8 us

) er to execute
grans written in 2200 BASIC lanpuege.

2200 BASIC con‘orms
tc most Dartmouth econventions wut is exvanded to {pclude

y other features. The BASIC cozpiler is jntervretive,

4p that it operates directly on the entered user text, saving
4t in RAM vhere required.

i oo cam G

acm oto =

- e £

e oo

The picro-prograzxed BASIC compiler (22004) occuvies gy of
20-bit ROM. In addition, 1.5K of 8-bit ROM are used o szore
path constants, text-word lists, & text atom table, timing
constants, console device jinformation, and other constents.
The users RAM ares is expandadle from LK (8-bit bvte) up
32K 4n UK inerenents. Note, the BASIC cmmpiler uses 8 portic:
of the first L% RAM module for stacks, & device table, and
geratch areas.

anee

. G Sum— PRSP Xt .o oe oo @ Commm—" oo =

o« o ° PR

" e o i e
- o cammma——— e o .oco..----- .

e A . 7 .0SER PROGRAM PROCESSING

W\ '.'... s ’ . : .. . : ° ' .' - 'o‘
. F) - . . X . .
- ' " ‘Whep the 2200 BASIC system is operating, it is in one of three
Pphages: text emtry, variable and line mumber resolution, or
‘. progm execution. L S
. S . $EXT ENTRY PHASE . ‘ .
+ '+ . Sext emtry phase is idestified by a colon (or '?' for INPUT)

" . ‘Deing outvut; the systen then waits for the user to input text.
Input characters are placed into the I/O buffer (at end of text
sarea) until a carriage return is encountered. The text line is
then syntactically analyzed. Syntax errors cause an error

: messaze to be output. If there are no syntax errors and the

< "'+ - . text line is a systex comzmand, the command is executed; if it
- " 13 s statement without a line mumber, it is executed as a one
ldire user prograc (immediate execution). If it is a statezent

" with a line muzber, it is threaded into the users preseant text
progran. That is, two bytes are reserved before each text line
‘'dn the progranm as a pointer (thread) to the next highest vrograc
text line. Eence, vhez & pev text line is added, the next
lovest text line {s found and its thread is set to point to the

’ g L _ pew lipe. If the line muzber of the pew text line is egual to
. . " the line mumber of a previously entered line, then the old text
(@m- . . line is rexoved from the text area and the nev statement is

_. ' - threaded into the yrogran. (If the overriding text line consists

sclely of a line mumber and a carriage return, the overridden
: _text line is removed but the newv line is not threaded in - this
-t " 48 line deletion). FKote, lines with syntax errors are threeded
- - 4{nto the users prozram. Removal of redundant statement lines
43 illustrated belov. .

5 .'a). prior to repacking). after repacking
[—_
- - ;ext . Overridden Statemert
o . g * ' ?
- . Area , ’
S : | R e |]
Overriding Statement
L. - . . R 5 . .
Pt . Overriding Statement /
a0 LIk .
LT tter . 1/0 Baffer
| m.‘(PRI - .
. . Free Space " Free Space

L

Text

) Ares

—

’-\
3 -
-~
.

’
-

J

»
0.~

DEVICE TAZLE

INDCVICE (Input device for text entry)

QUTDCrI~T (Output device for text entry)

PRI (PRET flar) o o —
PEVIY™ (Current device type)
.IATD‘.".“J._(L;‘.:t active tape device)
PRTTLC (PRLIT line count)

Lo (telecommunscations f'.‘laz\

DLVICE DEVICEC CARRIAGE

10057 ¢

0058
| aemp—

00
OOE‘C |

- TYFE ADDRESS WITTH
INPLT —0050
PRINT 0273
LIST —00sC
CONSoIE IPUT | Cui2
CONSOLYE OUTPUT (O JANP)
PLOT QCLE
TAPE 0054
disk ornly
DEVICET STARTING cusrzlT ENDING
U ADDR, ADDPESS ADDETCSS ADDRISS
DISK |oind | |
7l ocesl . 8
12 [
3 |oond
f4 |00ES
75 003
£6 |01
DEVICE TY2ES:
0 = parallel ASCII
1 = gerial 2200 cassette
2 = parallel ASCII vith comdincd CR/LF -

S = dirk
h = parullel ASCII with mo cerriage return
genrrated at end of line (plotter, etc.)

{'o0kc !

m:)' ‘: . - - o - =
D~ .+ tlse #'% | .YARIAELE AND VALUE FORATS .

L]

Vhen o variabtle is defined by a user, it is allocated spece in the
sy=bol table during rescluticn phase. Rumeric variadbles are initiellv
given a value of 0; alphanumeric variables are given a value of one
el ®lank character. Alphanumeric variable values have a default maxi=u=
oo densth of 16 characters wvhich may be overridden by the user vith a
DIM statement (the user may set the maxi imm leagth tro:. 1 to 6L

. characters). . .
Bach symbcl table entry consists of 2 parts: symbol jl:refix (na::.e,
: stom, dimensions, thread to next symbol, etc.) and the symbol dats
(i.e., variable values). :
T SYMBOL TAELE ENTRY FORMAT T
ETTER P
. DIGIT ’ IR
OR Fi¢ ATOM , -
\) o C - EEXT SYMBOL last entry in table bhas thread = 0
v ° . : . Dm ’1 i
. arrays only (for vectors DIM #2 = 1)
e DM #2 | : - -
" IMAX. STRING.LENGTH } alphamumeric varis¥les only
N ' e
DATA N
BTSN UCEDEOLATOM o UIEITIE O np e s e e T
S . N I ll———)mericno. dphnmeriecl
. (,._: R ,-4 3‘-:}..'.“ ﬁo.uw,m.m.n-my
: - ..' e~::., : by ct - - . - e .._’ . - - —

| VARIAELE ARD LINE NUMEER RESOLUTION PEASE I

‘Resclution phase is entered just prior to executlon 'pl'a'se; it

4s triggered by a RUF, SeES, TONESHUT, or SpeTist—Tamevson
command. Its function is to build the variable svmbol tabdle,
allocste value areas for user variables, and assure that

' peferenced user line mmbers do exist. It consists of &

eccmplete scan of the users wrogram. If the entire vass is
error free, then the rescltuion phase transfers control to the
execution phase directly. If an error is detected, a message
is output and execution is inhibited; control returns to the
extry phase. 4

The resclution phase scan verifies the presence of valid line

" ‘gumbers and user defiped functions that have been referenced,

and constructs a variable symbol/value table. As each

.. - 'peferenced line mmber or user defined function is encountered,
. the body of the user text is scanned for a match with the

current element. As each referenced variatle is encountered,

.the symbol tabdle is scanned for a match with the current
" warisble pame. Ifa mateh is found, then the scan of the

progran continues. If Bo match {s found, then the variadle
48 entered into the table and assigned o value of zero
(mumerics) or ome blark cherscter (elphemmerics). The sy=bcl

" table is built up froz high address to lov address.

- M o .- > . T -
- * [}
. . -
: d
.
- ..
Ld . e L)
. e o ram oo W BT we . - .
o
_ ->-
- - . - -
- .
e o - .mme, - p oo D "o s
- o= o .
.
- - N -
-
. ‘0
.« e e .- -
. -
S s e
s comy © . >

L]
(LY
[
[]
0
.
* .
l .
®e
L
..
L]

A

.. <, .

(" EXECUTION PEA

sk e i e

. Execution phase is extered cnly after s successful rea&lution phase.
2’ purinp execution phase, each statement ig executed as it is
e scanned. Three pushdown stacks are nov active: the called
*‘w gubroutime stack (CSS), the value stack (vs), and the overator
- gtack (0S). The CSS is used primcipelly to store subroutine
R "« - gpeturn addresses for recursive subroutines. The value stack
e - - 4s used for omerand storage during expression evaluation and
- .- gor such purvoses as storing loop and subroutine information.
oo Tre OS stores operator atoms for expression analysis as well
e - - as atoms for looping and subroutines, etc. :

Y

" .. . XBCURSION
The 2200 CPU bas a 16-level, circular subroutine retura stack.
Bence, for recursive subroutines, vhich could overflow this
- . gtack, & special called subroutine stack (css) is set up in
RAM. By recursion we mesn that elemeris of the language are
defined as containing the elements thexzselves. For examtle,
AR an expression may contein withiz i{tgelf smaller elements
W .- - : which sre themselves expressions. Thus, vhen the syotax scan
: Do epcounters an exvression, it will call the expression processor,
" which may, at some later part of the scan, itself call the

- . qxpression Processcor.
The called subroutine stack is a puéhdovn stack t.hat operates
on a last-in/first-out basis. Before extry into a recursive
_ poutize, a call is made to PUSER vhich stores the return address
4n the CSS. Exit from the recursive routine is made bv e
S Yranch to POFR vhich removes the return address from the CSS
. A and Yranches to that point. - :
-+ _ Recursive 2200 BASIC subroutines:
e . VAR' « process a mmeric variadle
: EXFR - expression processcr ' R
. .e.. TERM < evaluate a tem . m e e .
. .. . ¥UNC - process & function R 2 S ‘ N
.| IOPRESSION EVALUATION IR | "
. .." - Expression evaluation is performed by the EX*R and TERM routines.
’ . When an operand is encountered, 4ts value is stored in the value

s N stack (VS). As each operator is emcountered, it is eonpared vith
: _ the last operator already in the operator stack. If the last
.operater in the stack is of higher priority than the current

. - operator, it is

removed from the 0S and the specified overstion

- . 43 performed on the last two values
the two wvalues in the value stack.

4n the VS.

The result replaces

Stack operator execution is

continued until an overator vith lover

wriority than the currest

operator {s found; at this ypoint the current onerator is added

.40 the OS and the sean af the sxrrecaimn aandimiae

Uanta (F e

- .

R A P Ce
e - cLe gw ezt R L)
. . . :
“ . . L Y

rd

ﬁ'hQ thread to the pext mbo'i is a pointer to the pext symbol in the
gyzbol table used to speed up searching f.r 8 particular variadle
The values of arrays are stored rov by rov fram left o right.

"gumeric values are normalized (lesding zerces removed) and stored in
floating point format. The decimal point is assumed to be after
<he first mantissa digit. (scientific motation).

gIGN EXPONENT 'MANTISSA

[y 1.1.] FL_ 2 DiniTs EE | 13 DIGITS |

sign of mantisse (0=, 1=<)
‘L-—-)sizn..or exponent (0= +,1 = -y

~ Alpbanmmeric values are character strings vhich are left qustified

‘and #illed in with blanks on the right up to the maximm length of

 the value. The end of the value is assumed to be the last

o - progran

ponblank character (except vhen the value is all blanks, in wvhich
case, the value is assuzed to be one blenkz). BHence, trailing
tlanks are not part of alphenumeric values. For exa=mple, the

10 A$ ="ARC " ,
.20 PRINT A$.
would print 'ABC' with mo trailing spdées. TR R
B Y .
‘_'_. ' - _f
' WOTE:" ;
- ! ZL = Low digitlof expopest ;
' . ¥E = High digit of exponent !
|

e

DATA FILES:

A series of logical date records ci1 be made into & Dota File,
ginilar to 8 Prosran Pile, by preceding the records with 8 KEADER record
and folloving the records with 8 TRAILER record. Unlike Progren files
hovever, the header and trailer record are not automatically Reneresel
by the 2200 system. They must be generatec. bY the user's proifras usi-.-
special forms of the DATASAVZ statement.

DATASAVE OPEN wrLEl" (Write a Dato P4le hender record on tape ani neme
the file "FILE1"; Date Files must be nazed)

DATASAVZ END (Write a Data File treiler record on tape)

Therefore a Data File constructed by & series of DATASAVZ stetemcnis
would dbe as follows: ’

HEADZR \1s£ DATA| | 2ne DATA| | 3r@ DACA 1st DATA| | 2né D4,
RECORD | | RECORD RECORD RECORD RUCORD | | RECOEZ
1st LOGICAL RECORO 2nd LOGICAL RECORZ
- . I
e 18t DATA 2nd DATA | TPAILLR
RECORD RECORD | RECORD
\ -~/

Wth LOGICAL RECORD

~he header, dats records, and trailer recorc are gimilar to these in &8
Progran file except that the control {nformatioc 4n the recoris
identifies then as Data File records.

10GICAL DATA RECORDS:

Since all prograns and dote are recoréed in 256 byte physices
records, it 18 possible for the values of the varisble 1list ol &
DATASAVE statement 0 exceed 256 bytes. In this cese two or TT€
physical records are vritten. The one Oor more physical records writien
by the execution of one DATASAVE statezent 4s called & LOGICAL RICORZ..
When data is read beck by & DATALOAD statement, the entire LOGICAS
RECORD is resd, readinn physical records gequencially one at 8 tige. If
there are more values ©on 8 lomical record than are called for in 8
variable list cf a DATALOAD statement, the wunused values will be

bypassed.

n:’ '; :;‘Q.' . 4 . '

“T . . i i’ N o e - SOt .
o L : . . i

@ . - SUBROUTINES (COSUB/RETURN) N
ot .A subroutine call is made vhen a GOSUB stata;;:ﬂ: 18 executed,

and s return from the subroutine is made vhen a RETURN
_statement is executed. When a GOSUB statement ds encountered,
" the folloving steps aTe taken:

RS & The sddress of the statement immediately follovin;;.
o ' : * 4the GOSUB statement is put into the VS.
¢ e ae 2. A _suhroutipe atom is placed imto the OS.

Vhen a RETURN statefient is encountered, the value stack is
_ scanned for a subroutine return address. Anv 4ncompleted
" JOR groups encouhtered are flushed from the VS. If there
are no subroutine return addresses in the VS, an error message
. 43 {ssued. If a return sddress is found, processing proceecs
"*s. - .8t the specified statement. - :

hd .
-a . - s 4 -
. -
. . -
M -
. .
e - - 3 s v
. ’ :
& ’ . .
I" - .
\) o
% .
.
- o
0 - -
. -
-~] T
-
]
- -
-
-
. -
- .
oe ‘ -
o
ems oo @ —® - + @ - - . -) . - - - -
[Py ' ..
. ‘.o - - .
.o
. - . -y
. .. -
P .
.
. .
. . A -
- - . °
PR) °e . v e
. rFl b 0. .
- . -
- . .
- -
. - © oo d .
®: o = o .. - -« ®
- . . - . - - . .
] - had ® e
. . h .o . 3
B M ...,. e o ". . .
; H - . - .2 - . ® .
i T, P, PR .® - . .
N) e
~ U . . .o <4 - -
= - - " - -
- .
.
o -
*
- . .e -
o . .. -s e
. .
°

m:‘t or | - Mor 1tv'

Operations within parentbeses » J
. ¢ 3
. -8/ e
o . 4 .1
., 1o0PIG (FOR/NEXT) .

A BASIC program loop 4{s initiated by a FOR statement and
terminated by a NEXT statemexnt. When the FOR statement
" 48 encountered, the folloving steps occur:
: 3. The scalar variable (index variable) is set egual
to"the value of the initial expression.
2. The address of the index variable is placed in the
' value stack. :
3. The address of the statement folloving the FOR
_ “gtatement is placed into the VS.
h. The values of the lizit and step expressions ere
- placed into the vs.
S. A 'FOR' atec is placed into the 0s. . '
The 20 bytes of information 4n the VS is known as the 'FOR
group'. Tke FOR group 4s pot touched until the eczvanion
.. NEXT statenent iz executed (or the FOR group is flushed,
_see SUBROUTINES (GOSUB/RETURY)) - :

When the NEXT statement i{s encountered, the systen scans the
~¥S (vhich now only contains FOR groups and GOSUB return
addressns) to find the FOR group to wvhich the currenmt NEXT
applies. When the correct FOR group is found, the index
wariable is retrieved and its value is incremented by the
step value. If the nev index value is greater than or
equal to the limit value, the currect FOR group is flushed
from the VS and processing procedes in line mumber order.
~ If the index value is less than the limit, processing
... continues at the address stored in the FOR group.

Jote, scanning for the TOR group in the VS proceeds only

until the stack is emply, O & subroutine return address is

found at vhich time an error message is output. EHence, the
- .- golloving sequence is {llegal: : . . :

. ‘30 FORI = 1'70 10 A R

- .°. © 20 0GOSUB 30 ST S

Search For A User Definéd Function

During Resolution phase, the address of the first user defined function
is stored in mmeory. When a reference to a user defined function made,
memory .3 searched starting at the location of the first user defined
function. . .

Therefore, to optimize your program, you should bunch them together.
This would minimize the amount of memory to be searched.

Search For A Special Function (DEFFN')

During the Resolution phase, the address of the first 16 special
functions are stored in a table. -

When your program references a special function, this table is used to
determine if it contains a pointer to the special function key the
program is searching for. |f so, the address is quickly retrieved and
program execution will begin there.

If the special function is not in this table, it uses the address of the
last entry as a starting point for a search through memory for the
desired special function.

Therefore, if you were to define your special functions in a bunch the

search time required would be minimal. Additionally, defining them in
the order in which they are most frequently used will improve the search
time more.

In order to determine the impact of DEFFN'/GOSUB' in a program, |
crea;ed the following .1600 line BASIC program (line numbered 0001 -
1600). : . .

‘0001 GOTO 1550
0002 DEFFN'33: X=33: RETURN
0003 DEFFN'34: X=34: RETURN

0018 DEFFN'49: X=49: RETURN
0019 REM ‘

1444 REM
1445 DEFFN'50: X=50: RETURN
1446 REM

1549 REM

1550 FOR I= 1 TO 10000: GOSUB'33: NEXT |
1551 PRINT "*"

1552 REM

1600 REM

Using the above program, the time to complete the loop was approximately
9 seconds. Modifying Line 1550 with GOSUB '39 (the 7th defined special
function) took 10 seconds. Modifying Line 1550 with GOSUB '49 (the 17th
defined special function) took 14 seconds. Modifying Line 1550 with
GOSUB '50 (the 18th defined special function) took 2 minutes 55 seconds.

Search For The Value Of A Variable

During the Resolution phase, memory is allocate for each variable
encountered in your program. Also during this phase a table in
constructed which contains a pointer to the first variable whose name
begins with a particular letter (there are 26 pointers, one for each
letter of the alphabet). This pointer is the starting point of a
"linked list" of the variables which all have a common first letter.

When a value is needed, the first letter of the alphabet is used to get
the address of the first variable. Then the "linked list" forward
pointer is used to search for the particular variable.

The variables~&ithin the "linked list" are listed in the reverse order
in which they are encountered in memory.

In order to optimize your program, you may wish to make use of all 26
letters of the alphabet when namimg variables. Additionally, you may
wish to define your variable in the reverse order of their frequency of
use.

- - -

Search For A Line Number

When the user executes a program in memory, the BASIC-2 Interpreter
performs many functions which are grouped together in a phase called
Resolution. One of these functions "threads" your program in line
sequence order. It is the result of this function that you do not have
to enter yourprogram line in order. -

Another function of this phase, divides your program into up to 16
"groups" of lines. Each "group" contains the INT(L/16+1) number of
lines where L is the total number of lines in memory. The starting
address for each group is stored in a table.

Whenever, the program must search for a line number, it uses the group
threads to quickly identify the block where the line exits. The group
pointer is then used as the starting point for a memory search for the
line number.

This technique was implemented so that a search for a particular line
number must not always start at the beginning of the program.

In order. to determine the impact of GOTO/GOSUB in a program, | created
the following 1600 Iine BASIC program (line numbered 0001 - 1600).

0001 REM

0099 GOTO 1550
0100 REM :
0101 RETURN
0102 REM

1549 REM

1550 FOR |= 1 TO 10000: GOSUB 101: NEXT |
1551 PRINT "*"

1552 REM

1600 REM -
Expecting Line 101 to be the 1st line of the 2nd group (and therefore
within the group table), | expected this to be very quick. The time to
complete this loop took 10 seconds. | modified Lines 101, 150 and 1550
so that the GOSUB was now at Line 150 (expecting it to be at the
midpoint of the threading for a group), the time to complete the loop
then took 7.7 seconds (WHY??). Again modifying Line 150, 199 and 1550

so that the GOSUB was at line 199 (expecting it to be the last thread in
a group), the time to complete the loop was again 10 seconds. :

NOTE: That after each modification | saved the program, cleared memory
and re-loaded the program so that the line were in sequence in memory.
This should not of mattered, however.

e rweail, @ . S ‘. /V)—J",-‘ ‘-~ VvV v - A
CREED CISK IMDEXN HASHIMNG TECHHI HE,
THE LOCATICH IN THE DISK INDTEM TO STORE A MAME 1S CETERMINED EY USING A
=== WA5H FUNCTION. THE HASH IS CALCULATED FROM THE & EYTE HAME AS FOLLGME.
FHE EMCLUSIVE OR OF THE & EYTES IS CALCULATED <S>, Z#5 EQUALS A 2 EYTE
. RESULT, R. THE 2 EYTES OF R ARE ADCEL TOGETHER IN EIMARY TO FROCUCE THE
HASH YALUE. THE HASH YALUE 1S THEM REDUCEDR TO A MUMEER LESS THAN THE
WUMEER OF IMDEM SECTORS EBY FEFEATEDLY SUBTRACTING THE HUMEER OF INDEX
SECTORS FROM THE HASH WALUE. THIS WALUE IS THE LOCATION IN THE INDEH
WHERE THE WHAMZ TS TO EE STORED. - IF THERE IS HO ROCM AT THIS
SECTOR <I.E., FALL 15 EMTRIES ARE FILLED>, THE VALUE IS CECREMEMTED 2%
4 AND THAT ZECTOR 1S SERRCHEC FOR A FREE EMTRY. THIS PROCESS COMTINUES
© UMTIL fA FREE FOSITION Ha-‘aa=n FOUND OR ALL THE SECTORS HAYE BEEN SCAGED.
IN MHICH CRZE FAM ERROR 1S GIVENM. S :
; THE BRSIC PROGRAM BELOH CALCULATES THE HASH VALUE FOR_ AMY GIVEN MAME
GIVYEM THE MUMEER OF IMDEX SECTORS: : : '
:CLERR
« READY , o - ' " o
- :LOﬁa) B " ‘ o
.. :LIST ‘ g - - . R
- 16 DIN HEZ, L1, HE2 | - S I
 26PRINT . | L - _ . :
.. 36 INPUT "NO. OF IMDEX SECTORS".S ' - -
48 IMPUT "HAME", NE , o ey o
B8 KOR CSTRONS, 22, M$> :REM —— EXCLUSIYE OR EACH EYTE OF NAME
60 Li=STR<M: 3,10 :REM — L$=EXCLUSIYE OR OF EACH EYTE
H PE HE=HEMCuEE) v : o)
€8 ADDCCHE, L) : ADDCCHE, LEd: ADDCCHE LFY (REM —— HE=Zwls
. 98 ADDCSTROHE, 1,40, STRCHE, 2. 40> :REM —— ARD 2 BYTES OF HS¥
T 468 HYELCHE :REM —— CONYERT RESULT TO MNUMERIC
446 H=H-INT H-Sd%S :REM —— REDUCE HASH YALUE < NO. OF SECTORS
. 426 PRINT "HASHES TO SECTOR"; H o "
: tRUM .t
. MO OF INLEM SECTORS? 24 - . e
L MAME? JOHM : ~ T B))
- HASHES TO SECTOR & S
) - o o K] ooy
. -4
. L | [D] N it
».#!‘
' -]) \~

	Technical Note #2602, BASIC-2 Text Atomization, 76/07/07
	Technical Note #2601, BASIC-2 Matrix Inversion, 76/07/07
	Technical Note #2606, VP/MVP Random Numbers, 79/05/21
	Technical Note #2607, Disk Error Recovery, 79/06/25
	2200 Math Package Precision, 82/08/11
	2200 Disk Error Meeting, 83/03/02
	FOCUS April 1983, 2200 System Architecture
	Wang BASIC Implementation Notes
	Wang BASIC FOR Loop Implementation Note (fragmentary)
	Wang BASIC-2 Speedup Notes
	2200 Disk Index Hashing Technique

