BASIC
Language
Reference

S
N
S
N§

(WANG)

N

BASIC
Language
Reference

3rd Edition

July, 1980

© Wang Laboratories, Inc. 1979
800-1202BA-03

LABORATORIES, INC.

(' N ANG) ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01861, TEL. (617) 469-6000, TWX 710 343-6769, TELEX 94-7421

Disclaimer of Warranties
and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care in preparing
this manual; however, nothing contained herein modifies or alters in any
way the standard terms and conditions of the Wang purchase, lease, or
license agreement by which this software package was acquired, nor
increases in any way Wang's liability to the customer. In no event shall
Wang Laboratories, Inc., or its subsidiaries be liable for incidental or con-
sequential damages in connection with or arising from the use of the soft-
ware package, the accompanying manual, or any related materials.

NOTICE:

All Wang Program Products are licensed to customers in accordance pﬂ)
with the terms and conditions of the Wang Laboratories, Inc. Standard
Program Products License; no ownership of Wang Software is trans-
ferred and any use beyond the terms of the aforesaid License, without the
written authorization of Wang Laboratories, Inc., is prohibited.

This manual replaces and obsoletes the second edition of
VS BASIC Language Reference (800-1202BA-02). For a
list of changes made to this manual since the previous edi-
tion, see the “Summary of Changes.”

LABORATORIES, INC. >
U v AN G ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01861, TEL. {817} 459-56000, TWX 710 343-6769. TELEX 84-7421 '

PREFACE

This manual is designed as a reference for Wang VS BASIC Version 3.2.
For information on the VS Operating System see VS Operating System Services
(800-11070S). For a detailed discussion of the programming utilities see
VS Programmer's Introduction (800-1101PI).

The manual is divided into two parts. Part 1 contains general
discussions of the form of programs and data, and of the use of the different
types of VS BASIC statements. These discussions generally assume minimal
programming knowledge.

Part 2 contains the specific syntax for each VS BASIC instruction. In
most cases clarifying examples are provided, along with details of the

required formats.

VS BASIC was originally based upon 2200 BASIC; some important lexical
and I/0 differences do exist as explained in Chapters 7 and 8.

Wang VS BASIC Version 3.2 must have Release 4.0 (or higher) of the VS
Operating System in order to perform properly. If the user tries to run a VS
BASIC Version 3.2 program on an earlier version of the Operating System, an
error message informing the user that the correct version of the Operating
System is not being used, will be issued. 1In addition, along with the new
compiler a new EDITOR will be provided. This new version of the EDITOR must
be used with Wang VS BASIC Version 3.2.

SUMMARY OF CHANGES

FOR THE 2nd EDITION OF THE VS BASIC LANGUAGE REFERENCE MANUAL

TOPIC DESCRIPTION PAGES
Release 3.2 Pre-release 3.2 Release 3.2
Syntax Changes Required spacing within
a statement 14,15
One or two character Long variable names 18
variable names
#PI intrinsic function PI intrinsic function 35,214,235
SELECT D SELECT DEGREES 36,256
SELECT G SELECT GRADS 36,256
SELECT R SELECT RADIANS 36,256
Statement labels 62,63
FILESEQ for tape files 100,220-223
CLOSE WS 140
CLOSE CRT 140
CONVERT X TO Y$, (###) CONVERT X TO Y$,PIC(###) 142
FMT PD (6.4) FMT PD (6.4) 152-154
Non-numeric file, 1li- Numeric file, library,
brary, and volume name and volume name
only 220
PACK (###) PACK PIC (#i#) 225,226
SELECT WS 256
SELECT P SELECT PAUSE 256
TRAN [R] TRAN [REPLACING] 273
UNPACK (###) UNPACK PIC (##4#) 274

General

Miscellaneous

editorial changes

SUMMARY OF CHANGES
FOR THE 3rd EDITION OF VS BASIC LANGUAGE REFERENCE

TCOPIC DESCRIPTION PAGES

PRINT Files CLOSE PRINTER 140
SELECT PRINTER 140, 256

Miscellaneous Technical and 220, 253,
Editorial 256, 266,

277

fﬂ\

TABLE OF CONTENTS

PART 1 INTRODUCTION TO BASIC

CHAPTER 1

CHAPTER

CHAPTER

1.1
1.2

1.3

2."’

LN

3.5

INTRODUCTORY CONCEPTS

An Overview: BASIC on the Wang VS .
Communicating with the VS . . . «
The Workstation « « ¢« o ¢ ¢ o o« &«
Use of PF Keys: Menus . « ¢« ¢ &
Logging On + o ¢ o o o ¢ o o o o
The Command Processor « « « « « o
The VS Operating System
The Data Management System (DMS)
File Hierarchy . « ¢ ¢ o ¢ ¢ o &
BASIC Program Development .« . « . &«
The EDITOR =« « ¢ o ¢ o ¢ o o o o
The BASIC Compiler . « « o« o o o
The LINKER Utility .« « ¢ ¢ o o &
Running the Object Program . . .

PROGRAM FORMAT

Introduction « o ¢ o o ¢ o ¢ o o o
Statements . ¢« ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o o o
Line Format . « o ¢ ¢ o ¢ o o ¢ o &
Spacing . . e o o s s o s o
Multiple Statement Lines .« . « &
Continuation of Statements . . .
Sequence of Execution « « . «
Program Documentation . « « ¢« ¢ &
Comments =« o« o« o o o o o o o o o
Compiler Directives . . « « « &

DATA FORMATS

Introduction « « ¢« ¢ o s o o o ¢ ¢ &
Constants, Variables, Receivers, and
Numeric Data « « « o ¢ o o o o ¢ o o
Floating-point Constants . « . .
Integer Constants « ¢« ¢« ¢ ¢ ¢ « &
Numeric Variables . « ¢« ¢ ¢ ¢ o

Expressions

Floating Point and Integer Calculation . . .

Alphanumeric Data . « ¢« ¢ o o o o &

Literals (Alphanumeric Constants) .

Alphanumeric Variables
Array Variables « « ¢ ¢ ¢ ¢ o ¢ o

One-Dimensional and Two-Dimensional Arrays

Dimensioning an Array « « « « o &

Ewwwwm D=

H OOV &

o

12
12
13
14
15
15
16
16
16
17

18
18
19
19
21
21
22
23
23
24
26

2¢

CHAPTER 4 NUMERIC OPERATIONS

4.1 Introduction « o« « « « o o o o o
4.2 Numeric Operators . « « « o « o

™

The Assignment Operator « ¢« o ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o 31
Arithmetic Operators . « ¢« « ¢ o ¢ ¢ ¢ o o o o o o o o o 32
Relational Operators .« « « o o o o o o o o o o o o o o o 33
4.3 Numeric EXpressSions .« o« o« o o o o o o o o o o o ¢ o o ¢ o o 34
4.y Numeric FUNCLIONS ¢ o ¢ o o ¢ o o ¢ o o o o o o o o o o o o 34
Intrinsic Functions « « ¢« ¢« ¢ o o e o o o o o s o o o 35
User-defined FUNCLionS « « o o s o o o o« o o o o o o o o 40
4,5 Mixed Mode Arithmetic . ¢ ¢ ¢ ¢ o o o o o o o o s o o o o o 41
4.6 Summary of Numeric Data Types and Terms .« « ¢ o« o o o o o o 41
Floating-=Point Data « « o « o o o o o o o ¢ o s o o o o & 41
Integer Data o o ¢ o o o o o o o o o s o o o o o o o o o U2

Numeric Ters ® © ® e o e 6 & ° ° o e & o o o o o o o o o u3

CHAPTER 5 ALPHANUMERIC OPERATIONS

5.1 Introduction « « ¢« ¢« o o o o o @
5.2 Alphanumeric Operators . « « « «
The Assignment Operator . . .
The Concatenation Operator .
Relational Operators . . « « « &

o o o o
.
« o o o o
e o o o o
. .
. .
e o o o o
e o o o o o
e o o o o
e o o o o
e o o o o
e o o o o
. .
e o o o o o
=
o

5.3 Alpha Array Strings .« « o« o o o ¢ o o o o o . 47
5.4 Alpha Expressions and Alpha Receivers . . « o« o« ¢ o ¢ o o & 48
Alpha EXpressions o« o « o o o o o o o o o o o o o o o o o U8
Alpha Receivers ¢« « « o o o s o o o o o o o o o o o o o o 48
5.5 Alphanumeric FUunctions . « « « o+ o o o o o o o o o ¢ o o« « o U9
5.6 Numeric Functions with alpha Arguments .« « « ¢ ¢ ¢ ¢ ¢« ¢« ¢ o« 50
LEN ¢ ¢ ¢ o o ¢ ¢ o o o o o s 6 o ¢ o o o o o e o o o 50
NUM ¢ ¢ ¢ o ¢ e e ¢ o o o o o o s o o o s s o o o o o o @ 51
POS ¢ ¢ ¢ ¢ o o o o s s o o ¢ 6 o s o o o o s s s o o o o 51
VAL ¢ o o o o ¢ o o s o o o o o o o o o o o o o o o o o o 52
5.7 Logical EXPreSsSions « « « o o o o o o o o o o o o s o o o o 53
Evaluation of Logical ExXpressions « « ¢« o o ¢ ¢ o o o o o 54
Logical Operators « o« o« o o o o s o ¢ ¢ s o o o o o o o o 55
5.8 Summary of Alphanumeric Data Forms and Terms « « « « « « o « 56
Alphanumeric Length « « « o o ¢ o o o o o« o« s o o « o« s « 56
Alphanumeric TErms .+ « o o s o o o o o o o o s s o o o o 57
Alphanumeric Operations . « ¢« « o o ¢« ¢ ¢ o o o o ¢« ¢« » « 59
CHAPTER 6 CONTROL STATEMENTS
6.1 INtroductiOn o « « o o o o o o o o o o s o s o s o o s o o o b1
6.2 Statement LADELS « + o o o o o s o s o o o o« s o o o s o o o 62
6.3 SUDrOULINES o o « o o o o o o o o s o o o s s o o o o o o o 63
6.4 Internal SUDroULINES o « o o o o o o o o o o o o o s o o o o bU
GOSUB SUDPrOULINES « o o « o o o o s o o o o o s s o o o o 04
GOSUB' Subroutines .« o« « o s o o o o o o o o e o« o o 65
Program Function K€¥S « « « « « o o o o o o o o o o o o« o 66

CHAPTER

CHAPTER

6.5

7

7.4

745

8.“

External Subroutines . « « « o ¢ ¢ o o ¢ o ¢ o
Operation of External Subroutins . . « « &

Form of External Subroutine Calls and Definitions
Compiling, Linking, and Running « « « « « ¢ « ¢ &«

Passing Values to External Subroutines . .
Initialization of Subroutine Variables . .
Argument TYPES « o ¢ o ¢ o o o o o o o o o
Use of External Subroutines « ¢« ¢« ¢ ¢« ¢ o

WORKSTATION AND PRINTER INPUT/OUTPUT

Introduction « « ¢« ¢ ¢ o+ &
Output . « ¢« ¢ o ¢ o »
Input ¢« ¢ ¢ o ¢ ¢ o o

Printer Output « « ¢ ¢« ¢ ¢ ¢ o o o o
Expanded Print . o« o« ¢ o ¢ o o s ¢ ¢ o o &«

Workstation Input/Qutput « o« ¢ ¢« o ¢ o ¢ ¢ o &«
Wraparound « o o o o o o o o o o o o o o
Serolling ¢« « ¢« o o o o s 0 o e o o o
Field Attribute Characters (FACs) o« o o o

The USING Clause and Format Control Statements
The FMT Statement « « « ¢ ¢ o ¢ o ¢ o o o o
The Image (%) Statements . ¢ « ¢ o o « « &
Use of FMT and Image (%) Statements

The ACCEPT Statement « « ¢« « ¢« ¢« ¢ o ¢ o o o &
Screen Formatting ¢« « ¢« o o ¢ ¢ o o o o o o
Data Entry and Validation « « ¢« ¢« ¢ o & o &
PF Key Usage and Program Branching . « . &
Summary of ACCEPT Execution . « « « ¢« o« o

The DISPLAY Statement . « « ¢ o ¢ o o ¢ ¢ o &

Workstation Programming Considerations « « « &

FILE INPUT/OUTPUT

Introduction ¢ « o ¢ « o ¢ ¢ ¢ o ¢ o o o o o o
FLleS v o o o o o o o o o s o o o o s s o o o
File TYPES &« o o o o o o o o o o o o o o o
Record Types: Length and Compression . . .
Use of Files by BASIC Programs « « « o o o o o
The SELECT Statement . « ¢ ¢ ¢ o ¢ ¢ o o o«
The OPEN and CLOSE Statements « « o« ¢ o o o
File I/OModes . ¢ ¢ o ¢ o o s o o o o o &
File I/0 Buffering and the Record Area . .
The File I/0 Statements . « ¢« ¢ ¢ o ¢ o o «
The READ Statement . ¢« ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o &
The GET Statement . ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o @
The WRITE Statement « ¢« ¢« ¢« ¢ ¢ ¢ ¢ o « o« &
The PUT Statement . ¢« ¢« ¢« ¢ ¢ ¢ ¢ o o o o &
The REWRITE Statement . e o o o o o o o
Summary of Data Flow Controlled by File I/0
Data Representation in File I/0 « ¢« &« « o &

Statements

67
67
68
69
69
73
74
77

78
78
79
79
80
80
80
81
81
82
83
83
84
85
86
88
89
91
91
92

93
93
93
95
95
96
98
101
101
103
103
103
104
104
104
105
105

CHAPTER

PART 2

8.5 Intrinsic File I/0 Functions .

FS (filexpression) « « o o « o o &
KEY (filexpression [,exp]l) .« « o .
MASK (filexpression) .« « « o o o &
SIZE (filexpression) . « « o o o &

8.6 Error RECOVErY « « « « o o o o o o o
8.7 Examples of File I/0 « « ¢ o o o o «
9 DATA CONVERSION AND MATRIX STATEMENTS

9.1 Data Conversion Statements . . .

9.2 Matrix Statements . ¢« ¢« ¢« 4 ¢ ¢ « o« &
Matrix I/0 Statements . « ¢« &« o o &
Matrix Assignment Statement .

Matrix Arithmetic and Sorting Statements

Array Dimensioning . « o ¢ o ¢ ¢ ¢ o o &
Matrix Statement Rules . ¢« ¢« ¢« o« o« « o &

VS BASIC STATEMENTS AND FUNCTIONS

ABC Function « o« o o o o o o o o o o o o o
ACCEPT Statement
ADD[C] Logical Operator
ALL Function « « o« o o &
AND Logical Operator . .
ARCCOS Function . « « &
ARCSIN Function
ARCTAN Function . ¢« ¢ ¢ ¢ o o &
ATN Function . o« ¢« ¢« ¢ o o ¢ o o
BIN Function « ¢« ¢ o ¢ ¢ o o o &
BOOLh Logical Operator « « « « &
CALL Statement « ¢« ¢« ¢« ¢ ¢ ¢ « &
CLOSE Statement .« « ¢« o ¢ o o o
COM Statement . « o ¢ ¢ & &
CONVERT Statement . .
COPY Statement . . .
COS Function
DATA Statement . . .
DATE Function . . .
DEF Statement . . .
DEF FN' Statement .

DELETE Statement .
DIM Statement . .
DIM Function . . .
DISPLAY Statement
EJECT Compiler Directions
END Statement . . ¢ ¢ + &
EXP Function « « o o o« + &
FMT Statement
FOR Statement
FORM Statement
FS Function .

105
106
106
107
107
107
109

113
113
11y
114
114
115
116

119
120
126
128
129
130
131
132
133
134
135
137
140
141
12
144
145
146
7
148
150
154
155
156
157
158
159
160
161
164
165
166

GET Statement . « « ¢« o s ¢ o &«
GOSUB Statement =« « o« o o o o &
GOSUB' Statement « « « ¢ ¢« s o
GOTO Statement « « o o« o o o o &
HEX Function « « ¢« ¢« ¢ ¢ ¢ ¢ o
HEXPACK Statement . « o o o o o
HEXPRINT Statement « « « « o o o«
HEXUNPACK Statement . o
IF... THEN... ELSE Statement o
Image (%) Statement . . « . .« .
INIT Statement « « ¢ ¢ ¢« ¢ o o &
INPUT Statement . « o« ¢« o o o &
INT Function . ¢« ¢« ¢ ¢ o ¢ o o o
KEY Function « « ¢« o ¢ ¢ o o o
LEN Function « ¢« o« ¢ ¢ o o ¢ o o
LET Statement . « ¢« ¢ ¢ ¢ ¢ o &
LGT Function « ¢« ¢« ¢ ¢ ¢ o o o o
LOG Function « « ¢« « o o o o o o
MASK Function . « ¢ ¢ ¢ o ¢ o o
MAT + (MAT addition) Statement .
MAT ASORT/DSORT Statement . . .
MAT CON (MAT CONstant) Statement
MAT= (MAT assignment) Statement

MAT IDN (MAT identity) Statement
MAT INPUT Statement . « o o o o«
MAT INV (MAT inverse) Statement

MAT * (MAT multiplication) Statement

MAT PRINT Statement . . .
MAT READ Statement
MAT REDIM Statement . « ¢« ¢ o &
MAT()* (MAT scalar multiplication
MAT - (MAT subtraction) Statement
MAT TRN (transpose) Statement .
MAT ZER (MAT ZERO) Statement . .
MAX Function « o« o« o o ¢ o o o o
Mathematical Functions + « « « &
MIN Function « « o« o ¢ o o o o o
MOD Function « « o ¢« o o o o o o
NEXT Statement . « ¢« ¢ ¢ ¢ ¢ ¢« &
NUMFunction « « ¢« ¢ o ¢ o o o &
ON Statement « « « ¢ ¢ ¢ ¢ o ¢ o«
OPEN Statement . o o o o o o o
OR Logical Operator ¢ o s o o &
PACK o o ¢ ¢ ¢ o o o o o o o o &
$PACK/$UNPACK Statement
PI Intrinsic Constant . . « . &
POS Function . « « « o« ¢ o o o o
PRINT Statement . . .

PUT Statement . ¢« ¢« ¢ ¢ ¢ ¢ o &
READ Statement « « ¢« ¢« ¢ ¢ ¢ o« &
READ File Statement
REM[ARK] Statement « « ¢« ¢« o o &
RESTORE Statement . . « ¢« ¢ « &
RETURN Statement « « « ¢ ¢ ¢« «

)

Statement

167
168
169
170
171
172
175
176
177
179
181
182
185
186
187
188
190
191
192
193
194
196
197
198
199
201
203
204
205
206
207
208
209
210
211
212
215
216
217
218
219
220
224
225
2217
235
237
238
241
242
243
2U5
246
247

RETURN CLEAR Statement
REWRITE Statement
RND Function . . . e o o s s e o e o
ROTATE [C] Statement e e e e e o e
ROUND Funetion .« ¢« v ¢ ¢ ¢ ¢ ¢ o« o o &
SEARCH Statement
SELECT Statement ¢« v « « .
SELECT File Statement
SGN Function « o o ¢ v« v o o ¢ o o o o
SIN Function . o v v v ¢ ¢ 4 o o o o @
SIZE Function . ¢ ¢ ¢ ¢ ¢ ¢ v o o o
SKIP Statement ¢« ¢« . . .
SQR Funetion « ¢« ¢ v o v ¢ ¢ o o o o W
STOP Statement « ¢ v & v « o &
STR Function . . . v v v v ¢ v v o o ®
SUB Statement
TAN Function . . . ¢« . ¢« v ¢ v ¢ ¢ o &
TIME Function . . ¢« ¢« ¢ v v v ¢ « o &
TITLE Statement
TRAN Statement
UNPACK Statement « o s e s e o o o o
SUNPACK Statement e e s e e e e e e s
VAL Function . . ¢« ¢ ¢ ¢ ¢ v o ¢ o & &
WRITE Statement
XOR Statement

APPENDICES

VS BASIC Reserved Words
VS BASIC Compiler Options . . .

Appendix A
Appendix B
Appendix C

Decimal Conversion Errors . .
Appendix
Appendix

m o

and COBOL . « « ¢ ¢ ¢ o o o &
VS Character Set
VS Field Attrubite Characters .
ASCIT Collating Sequence
VS BASIC Error Messages . « . .

Appendix
Appendix
Appendix
Appendix
Appendix

LHITQ™

INDEX e o o e e o o e o o ® o o e o o ¢ o o

CUSTOMER COMMENT FORM . . « . &+ ¢ ¢ o o & o &

Floating-Point and Integer Calculations
Numeric Data Format Compatibility between VS

Numeric Data Representation in VS BASIC:

Hexadecimal/

CVBASIC User Aid (Conversion from BASIC 2.3 to

BASIC

248
249
251
252
253
254
256
257
260
261
262
263
264
265
266
267
270
271
272
273
274
275
276
277
279

280
282

285
286

289
291
292
293
294
300

302

Page

PART 1
INTRODUCTION TO BASIC

CHAPTER 1
INTRODUCTORY CONCEPTS

1.1 AN OVERVIEW: BASIC ON THE WANG VS

Wang VS BASIC is a compiled, general-purpose, high-level programming
language developed by Wang Laboratories for use on the VS System. This
modified version of the original Dartmouth BASIC offers all the original
language's important features, as well as added capabilities which suit it for
both technical and commercial applications., Although VS BASIC is extremely
powerful and versatile, it is also easily learned by beginning programmers
because:

1. BASIC statements bear a close resemblance to the English language,
giving beginning programmers clues to the BASIC meaning. In
situations where formulae must be used, the BASIC language resembles
standard algebraic notation and other programming languages such as
FORTRAN.

2. A programmer does not need to know much about BASIC to write a
simple program. The programmer need not learn about the advanced

capabilities of BASIC until a specific need for those capabilities
arises.

VS BASIC Version 3.2 incorporates diverse features that aid in program
development and increase data processing versatility, including:

Variable names up to 64 characters long.* Long variable names
enable the programmer to assign mnemonic and self-explanatory
names. Programs using such variable names are easier to read and
debug than are the limited two-character names found in most BASIC
implementations.

Alphanumeric statement labels.* Any statement in a VS BASIC program
may be identified by an arbitrary statement 1label up to 64
characters long, which can be referenced in any program branch
statement (GOTO, IF...THEN...ELSE, etc.). Programs can thus be
written without regard to line numbers, as is necessary in most
BASIC implementations. Blocks of program code can be given mnemonic
labels which indicate their function, again increasing program
readability and ease of debugging.

¥ These features are new to Version 3 of VS BASIC.

Workstation, file, and printer I/0 statements. The ACCEPT and
DISPLAY statements enable BASIC programs to make full use of the
capabilities of the VS workstation, allowing sophisticated screen
formatting and use of Program Function (PF) keys for data entry and
program control. The FMT and Image (%) statements allow precise
control over format of file and printer I/0.

Integer and floating-point formats. Numeric data can be stored and
manipulated in either format. Use of integer format can increase
both the speed and efficiency of memory use.

Alphanumeric operations. Extensive facilities for the manipulation
of alphanumeric data are provided. Substrings can be extracted from
strings of characters, and strings can be concatenated (put
together) or searched for particular substrings.

Boolean logic functions on binary values. All 16 Boolean functions
of two variables are available in VS BASIC. Results can be used in
alphanumeric expressions or output as hexadecimal numbers or ASCII
character strings.

Intrinsic and user-defined functions. A full set of arithmetic and
trigonometric functions is provided by VS BASIC. In addition, the
programmer can define and name any arbitrary numeric function to be
used in a program.

Multilingual subroutines. Programs written in VS BASIC can call
subroutines written in other languages (e.g., COBOL, Assembler) and
vice versa.

1.2 COMMUNICATING WITH THE VS

1.2.1 The Workstation

The principal means of user communication with the VS is through the VS
workstation. The workstation is a terminal consisting of a Cathode Ray Tube
(CRT) display screen and a typewriter-like keyboard. The screen displays
output from the computer and text typed by the user on the keyboard.

In addition to the keys which correspond to the alphabetic and numeric
characters that appear on the screen, the keyboard has 16 Program Function
(PF) keys. By using the SHIFT Key, a total of 32 PF key values can be
obtained.

Whenever the workstation is ready to accept input from either the
keyboard or the PF keys, a cursor is shown on the screen. The cursor appears
as a flashing bar under the character position where the next character typed
will appear. The cursor (and thus the position of the next character) can be
moved with the four cursor control keys, each of which is marked with an arrow
indicating the direction in which it moves the cursor.

At any particular time, certain keys may be accepted for input, while
others are not. For example, a program may prompt the user to input certain
numeric data. In this case, the use of the alphabetic keys is invalid. Any
time an invalid key is pressed, either from the keyboard or the PF keys, the
workstation emits a beep (the workstation alarm), and the key is ignored.

l1.2.2 Use of PF Keys: Menus

Most commands and options entered by the user to system programs are
entered by means of the PF keys in response to menus. A menu is a list of
possible commands or options displayed on the workstation screen by a
program. Next to the description of each command is the number of one of the
PF keys. Commands are selected by pressing the appropriate PF key.

Communication through PF key response to menu screens is extensively
used in VS system programs since it frees the user from the necessity of
typing many commands and remembering their syntactical arrangements. This
enables programs to be highly interactive and "self-documenting."

PF keys can also be used by BASIC programs to control the sequence of
program execution and to assign values to variables in the program (see
Subsection 6.4.3, Program Function Keys, and Subsection 7.5.3, PF Key Usage
and Program Branching).

1.2.3 Logging On

Before one can use the VS system, one must log on to the system by
entering a valid user ID and password at the workstation. User IDs and
passwords are assigned to authorized wusers by the system security
administrator at each VS installation. When the logon procedure is completed,
the Command Processor menu is displayed.

1.2.4 The Command Processor

The Command Processor is the program which runs whenever no other system
or user program is executing. When a user first logs on and whenever any
program is completed (or interrupted with the HELP key), the Command Processor
Menu is displayed on the workstation screen. From this menu, the user can run
a program; examine and manage files, libraries, and volumes (see Subsection
1.3.2, File Hierarchy); examine the status of peripheral devices; or perform a
variety of other functions.

1.3 THE VS OPERATING SYSTEM

The VS Operating System consists of a set of programs which manage the
hardware and software resources of the VS. The Operating System allocates
processor time and memory space to user tasks, processes all input/output
operations between user programs and disk or tape files, and maintains a
security system to ensure that only authorized users can gain access to the

system hardware, software, and data. The Operating System also includes the
Command Processor, language compilers (e.g., BASIC and COBOL), such program
development aids as the EDITOR and LINKER, file management utilities, and
various other utility programs. The programs which are supplied as part of
the Operating System are called system programs (as distingulshed from those
written by users, called user programs).

1.3.1 The Data Management System (DMS)

The Data Management System (DMS) consists of several programs which are
part of the VS Operating System, and which processes all input/output
transactions between user or system programs and data stored in files on
magnetic disk or tape. DMS also controls the creation of new files. The
operation of DMS is transparent in that the user does not directly interact
with DMS. When a user program is running and needs to perform some file I/0
operation, DMS is automatically called to perform the necessary operations;
the user program then continues executing with no direct involvement in the
I/0 operation. Many of the functions performed by DMS involve the complex
internal housekeeping tasks required to insure that information stored in
files remains properly organized for reliable and efficient access through all
input/output operations.

1.3.2 File Hierarchy

A file is a collection of data stored on either magnetic disk or tape,
and identified by a file name. Groups of disk files are organized into a
hierarchical structure with two higher levels: 1libraries and volumes. Groups
of tape files are organized into volumes (there are no tape libraries).

The most comprehensive unit in the file management hierarchy is the
volume., A volume is an independent physical storage medium, such as a
diskette, disk pack, or tape. The volume name provides a device-independent
means of identifying physical storage units. Once a diskette, disk pack, or
tape has been assigned a volume name, it can be mounted at any available drive
unit and accessed by name, without reference to the address or physical
characteristics of the disk or tape unit itself.

Immediately below the volume in the disk hierarchy is the library. A
volume may contain one or more user libraries, but a single library may not
continue onto a second volume. Each library contains one or more files (every
disk file must be assigned to a 1library). The VS places no particular
restrictions on the types of files placed in a library; a single library may
be used for program and data files, or special libraries may be designated for
each file type. The conventions governing library usage are completely
determined at each individual installation, based on its particular needs and
standards.

Duplicate file names cannot be used within the same library, but they
may be used in different libraries. Similarly, duplicate library names are
not permitted on the same volume, but may be used on separate volumes.
Duplicate volume names are allowed but not recommended.

File and library names can contain up to eight characters. Volume names
contain up to six characters. Each name must begin with an uppercase letter,
a number, or one of the special chanacters $, #, or @; subsequent characters
may be any alphanumeric character, ingluding the special characters., Embedded
spaces are not allowed.

1.4 BASIC PROGRAM DEVELOPMENT

The VS Central Processing Unit (CPU) hardware, like most digital
computers, can directly execute only instructions written in machine
language. Machine 1language consigts of groups of electrical impulses
represented as binary or hexadecimal (base 16) numbers. Machine language is
cumbersome for programmers, and using |it to program directly is tedious.

VS BASIC, on the other hand, is an extremely convenient and readable
language in which to write programs; but programs written in BASIC are not
directly executable by the CPU. 1In order for a BASIC program to be executed
(or "run"), it must first be translated into machine language. This
translation is accomplished by a large program called the BASIC compiler; the
translation process is called compilation.

The VS BASIC compiler takes as input a file containing a program written
in the VS BASIC 1language as described in this manual. Such a program is
called a source program; the file containing it is a source file. As output,
the compiler produces a file containing the machine language translation of
the source program. This machine language program is called an object
program; it is contained in an object file. The object program can be run
using the RUN command (PF 1) of the Command Processor.

Development and execution of a VS BASIC program thus consists of three
steps (not including the logical design and coding of a program into BASIC

instruetions):

1. The BASIC source program is entered from the workstation using the
EDITOR utility and stored in the source file.

2. The source program is compiled to produce an object program by the
BASIC compiler, and stored in the object file.

3. The object program is run from the Command Processor.

These steps can be performed separately by running first the EDITOR,
then the BASIC compiler, and finally the user's object program, returning to
the Command Processor after each step. The entire process can also be
performed from the EDITOR, enabling the user to compile and run programs
directly from its Special Menu. The EDITOR is described in detail in
Subsection 1.4.1, the EDITOR, and in the VS Programmer's Introduction; the
process of creating and running a new BASIC program is summarized in
Subsections 1.4.1, The EDITOR, and 1.4.2, The BASIC Compiler.

1.4.1 The EDITOR

To run the EDITOR, invoke the RUN command from the Command Processor
Menu (PF 1), type EDITOR for the program name, and key ENTER.,

The EDITOR first displays an Input Definition screen, requesting the
following information:

LANGUAGE -- Type B or the word BASIC.

FILE, LIBRARY, VOLUME -- If a new file is to be created, leave the file
name blank. Names are assigned to new files after the text of the file
has been entered, with the CREATE command (PF 5). Tf an existing file
is to be edited, enter its name, and the names of the library and volume
on which it is contained. LIBRARY and VOLUME may have default values
set when this screen appears. These can be changed by simply typing

over the defaults.

LINES -- If significantly more than 500 lines are to be added to a file
in this session, enter an estimate of the number of lines to be added.

When all of this information has been typed in appropriately, key ENTER.

The EDITOR next creates a work file for text editing. The editing of
source text actually takes place in this temporary work file. In order to
permanently store any text entered in the EDITOR, the user must either create
a new file of the edited text or, if an old file was used, replace the old
text with the edited text. The original file is not altered until a replace
is done, as all changes are made in the work file. Files are created and
replaced with the CREATE (PF 5) and REPLACE (PF 6) commands from the EDITOR's

Special Menu.

The EDITOR then displays its normal menu, which contains 14 functions
for examining, entering, and editing source text. The most important
functions are briefly explained here. More detail on these and explanations
of the other functions may be found in the VS Programmer's Introduction.

PF 1 - DISPLAY -- Display mode displays the user's file on the screen.
The first time this command is used in an EDITOR session on an existing
file, the file is displayed starting with the first line of text.
Subsequent uses of this command return to displaying the file at the
point where the last editing function was performed. While in display
mode, different portions of the file may be examined by using PF keys 2
through 6. PF 1 is equivalent to PF 9 when there are no lines in a file
(i.e., when a new file is first created).

PF 9 - MOD -- Modify mode allows the user to enter a new program, modify
existing source lines, or add lines to the end of an existing program.

PF 11 - INS -- Insert mode allows text to be inserted in an existing
program between lines, before the beginning of the program, or at the
end. Unlike the modifiy mode, the line numbers supplied by the EDITOR
can be altered in place, if the user wishes. Before pressing PF ll, the
cursor should be positioned on the line after which the new line is to
be inserted.

PF 12 - DEL -- Delete mode allows the user to delete text -~ either a
specific line, a range of lines, or all lines -- from the source file.
Before pressing PF 12, the cursor should be positioned on the first line
to be deleted.

PF 16 - MENU -- Activates the EDITOR's Special Menu.

To enter lines of text for a new file, enter either modify (PF 9) or
insert (PF 11) mode and simply type in the lines. Pressing ENTER sends the
lines which were just typed to the system for processing. This must be done
after every inserted line. In modify mode, the screen may be filled with new
lines before ENTER is keyed.

In order to return to display mode from modify or insert modes, press PF
1 after the last line of text is ENTERed (or, if in modify mode, press ENTER
after typing in no new lines of text).

When the entire BASIC program has been entered, it can be stored into a
disk file, compiled, or run directly. All of these functions are performed
from the EDITOR's Special Menu. The Special Menu is obtained by pressing PF
16 from display mode.

The Special Menu has thirteen functions. The most important ones are
listed below. These functions, as well as those not described here, are
described in detail in the VS Programmer's Introduction.

PF 1 - DISPLAY -- The EDITOR is returned to the point in text editing
from which the Special Menu was invoked.

PF 5 - CREATE -- A new file of the edited text is generated. The user
is asked to supply file, library, and volume names and several optional
pieces of information, including a retention period during which the
file cannot be scratched.

PF 6 - REPLACE ~- The old input file is replaced'ﬁith the new edited
text.

PF 9 - RUN -~ An uncompiled program is compiled and run, or a compiled
program is run., If the text has not already been successfully compiled
in this EDITOR session since the last text entry was made, RUN invokes
the BASIC compiler and LINKER to compile the program, and then
automatically runs the program (unless there are serious compilation
errors), If compilation is not necessary, the program is run.

PF 10 - COMPILE -- The BASIC compiler and (optionally) the LINKER
utility are invoked, but the program is not actually run.

PF 11 - ERRORS -- A 1list of detected errors is displayed. If the
default value of ERRLIST in the Compiler/LINKER Options display was
changed to NO, this 1list will not be displayed, and will not be
accessible from the EDITOR.

PF 16 - EOJ -- EDITOR processing is ended and control is returned to the
Command Processor. -

NOTE:

The user must specify an object file name, library, and
volume whenever a program is compiled from the EDITOR.
Specifying a file name beginning with ## causes a temporary
file to be created. Such a file is automatically scratched
at the end of the EDITOR session,

1.4.2 The BASIC Compiler

The BASIC compiler can be invoked either from the Command Processor by
the RUN (PF 1) command, or from the EDITOR by the RUN (PF 9) or COMPILE (PF
10) commands on the Special Menu. In either case, the compiler displays a
list of options when it is invoked.

Options

The compiler options are described in detail in Appendix B. The three
most important options are:

LOAD -- Directs the compiler to produce an object program as
output, Its default value is YES. If NO is typed, no object
program is produced. (The code generation phase of the compiler is
not run.)

SOURCE -- Directs the compiler to produce a listing of the source
code for the compiled program combined with a list of any compiler
detected errors., YES causes the listing to be produced, while NO
suppresses it. The default value is YES.

SYMB =-- Directs the compiler to insert symbolic debug information
into the object program, permitting subsequent use of the VS
interactive symbolic debug facility when the program is run.
Symbolic debug information can be removed from a program with the
LINKER utility. The default value is YES.

When all desired options have been selected, key ENTER.

Input Definition

BASIC now requests the name of the source file to be used as input.
Enter the file name, along with the appropriate library and volume names.

Output Definition

If LOAD = NO was specified, and if the program passes the compiler's
syntax check with no error with severity equal to or greater than the
specified STOP level (see Appendix B), a name for the output file to be
created containing the compiled (object) program is requested. Enter the file
name, along with the names of the library and volume to which it will be
assigned. The following options may also be specified:

RECORDS -- The number of records in the output file is automatically
determined by the compiler based on the size of the input file. In
general, this value should not be changed by the user.

RETAIN -- During the specified retention period, the file cannot be
scratched or renamed. Only the owner or a security administrator
can change the retention period. If such protection is not deemed
necessary, the RETAIN field should be left blank.

RELEASE -- If RELEASE=YES, any space originally allocated to the
object file but not actually used is released for use by other

files. Otherwise, the space remains reserved for use by the object
file.

FILECLAS -- The object file may be assigned to one of the VS file
protection classes. Consult the system security administrator to
determine in which protection class a particular file belongs.

When the output file name and all options have been defined, key ENTER.
The message BASIC COMPILATION OF PROGRAM X IN PROGRESS will appear on the
screen while the compiler runs. When compilation is complete, control returns
to either the Command Processor or the EDITOR, depending on how the compiler
was initially invoked.

Return Code

When a compilation is completed, the first screen shown will specify a
return code. The value of the return code indicates the severity of the

errors found by the BASIC compiler in the source program. The possible return
codes and their meanings are:

Code Meaning
0 No errors.
y Warning.
6 or 8 Severe error (program probably will not run correctly).
12 or 16 Terminal error (program will not run at all).

If production of the source listing was not suppressed, this listing and
a list of compiler diagnostics (error messages) are printed on the selected
printer, or directed to the print queue or the user's print library as
specified by the user's PRNTMODE default (set with PF 2 from the Command
Processor; see the VS Programmer's Introduction for an explanation). All
other optional listings and tables are similarly printed, queued, or filed.

When the BASIC compiler is run from the EDITOR (by either the RUN (PF 9)
or the COMPILE (PF 10) commands from the Special Menu), any error messages

generated during the compilation can be viewed by keying PF 11 from the
Special Menu.

1.4.3 The LINKER Utility

The VS LINKER is used to perform the following functions:

1. Link two or more object program modules or subroutines into a single
executable program (see Section 6.5, External Subroutines).

2. Link library subroutines into a main program.

3. Remove symbolic debug information from an object program.

4, Replace one or more object program modules in a program.

The LINKER utility can be called whenever a program is compiled from the
EDITOR. If the program is compiled using the BASIC compiler directly, the
LINKER must be run independently by invoking the RUN command from the Command

Processor and typing in LINKER as the program name. See the VS Programmer's
Introduction for more information on the LINKER.

Note that due to changes in the Operating System, the user may not link BASIC
_Version 2.3 programs to BASIC Version 3.2 programs.

10

~

1.4.4 Running the Object Program

The compiled program is run with the RUN command from the Command
Processor Menu, Press PF 1 to invoke this function, and type the BASIC object
file name opposite PROGRAM. Type the appropriate library and volume names,
and key ENTER to initiate execution of the program.

The program will continue to run until one of the following occurs:

1. An END statement is reached.

2. An "implied" END is reached because the physical end of the program
is reached.

3. A fatal execution error occurs.
4, The user interrupts execution with the HELP key.

Any program can be interrupted at any time with the HELP key. A
modified Command Processor Menu will be displayed. From this menu, the user
can cancel or continue executing a program, or enter debug processing, as well
as perform other system commands. The Debug Processor is a powerful tool used
to detect hard-to-find errors in the logical design of a program. The Debug
Processor is discussed in the VS Programmer's Introduction.

If a program completes execution without interruption by errors or the
HELP key, control returns to either the Command Processor or the EDITOR,
depending upon how execution of the program was initiated.

11

CHAPTER 2
PROGRAM FORMAT

2.1 INTRODUCTION

A VS BASIC source program consists of a series of instructions to the
computer, called statements, which are written sequentially on numbered
program lines. A program line may contain any number of statements. When a
program is run, statements are executed sequentially in line number order.
Multiple statements on the same line are executed left to right.

2.2 STATEMENTS

A statement usually begins with a word (called a "verb") which is
typically an English verb, such as PRINT or INPUT. Following the verb is
whatever information may be required to complete that particular statement.
For example:

RETURN forms a complete statement by itself. It signals the end of a
subroutine.

LET X=2 is an example of an assignment statement. In this case, the
variable X is assigned a value of 2.

GOTO 40 transfers control to the given 1line number, and processing
continues from there.

IF A=B THEN RETURN shows that another entire BASIC statement may follow
the IF... verb. The IF statement causes some action to be taken
depending upon whether or not a particular relation is true.

IF is a BASIC verb but is not a complete BASIC statement by itself.

12

Verbs form part of a larger set of reserved words. Reserved words are
sequences of alphanumeric characters that have some predefined meaning to the
BASIC compiler. Reserved words never contain any embedded spaces. Since
reserved words and their meanings are built-in parts of the BASIC compiler,
they cannot be used by the programmer as variable names or statement labels
(see Section 6.2, Statement Labels). Appendix A contains a complete list of
VS BASIC reserved words.

There are two types of BASIC statements: executable and
non-executable. An executable statement specifies some action or a series of
actions to be taken by the user's program at run time, such as assigning a
value to a variable (LET statement), displaying or printing data on the
workstation or printer (PRINT statement), or altering the order of program
execution (GOTO statement). A non-executable statement provides information
to the compiler at compilation time which may be required to generate the
object program, such as the amount of storage to be allocated for certain
variables (DIM statement) or the format to be used for printed output (FMT
statement).

The following VS BASIC statements are defined as non-executable:

COM

DATA

DEF

DEF FN' or DEFFN!

DIM

EJECT

FMI or FORM

% (Image)

REM or #

SELECT, when used for file I/0 (i.e., SELECT # and SELECT POOL; see
Section 8.3.1, The SELECT Statement)

SUB

TITLE

2.3 LINE FORMAT

Each line in a VS BASIC program may be up to 72 characters long,
including leading and embedded spaces (the workstation screen is 80 characters
wide). Each character position is referred to by a colusn number, beginning
with column 1 (the leftmost position). The first six columns of each line in
a BASIC source file are reserved for a unique six-digit line number, leaving
66 columns (number 7-72) for program statements. Columns 73-80 may be used as
a program identifier. Any line containing an asterisk (*) in column 7 is
designated as a comment line and is ignored by the BASIC compiler (see
Subsection 2.3.3, Continuation of Statements).

13

NOTE:

When the EDITOR is used to create or edit BASIC source
files, program lines are displayed on the workstation
screen with an extra space inserted between column 6 (which
contains the rightmost digit of the line number) and column
7 (the first column available for typing program text
characters). This extra space is also inserted to increase
readability when the BASIC compiler prints source file
listings. Thus, on printed listings and in this manual,
the character in column 7 of a line actually appears in the
8th physical print position on the paper. This extra space
is not, however, included in the internally stored
representation of a program line.

2.3.1 Spacing

Within a statement, the VS BASIC compiler uses spaces between strings of
nonblank characters to distinguish the significant entities or "tokens" which
comprise the statement. To avoid ambiguity, it is important that spaces occur
at certain places in a statement and do not occur at others. For example:

100 FORK = I TO J 500 FORK = ITOJ

Both lines contain the same sequence of nonblank characters, and both are
valid VS BASIC statements, but with completely different meanings. Line 100
is the beginning of a FOR...NEXT loop (see entries under FOR and NEXT, Part
2). In this statement, FOR and TO are VS BASIC reserved words (see Section
2.2, Statements) and K, I, and J are names of variables. Line 500 is an
assignment statement (an "implied" LET statement) in which both FORK and ITOJ
are variable names; the statement assigns the value of ITOJ to the variable
FORK.

In general, spaces should occur in a statement so as to eliminate
ambiguities in the interpretation of the statement. In particular, the
following rules should be observed:

l. All VS BASIC reserved words, including verbs, must be spelled
exactly as shown in Appendix A, with no embedded spaces. GOTO and
GO TO are both valid and equivalent forms for the unconditional
branch statement. GOSUB and GO SUB are also both valid and
equivalent statements.

2. Literals (see Subsection 3.4.1, Literals (Alphanumeric Constants))

may contain any combination of blank and nonblank characters; a
literal, however, cannot contain its delimiter.

14

3. No embedded spaces are allowed within variable names (see Subsection
3.3.3, Numeric Variables, for rules of forming variable names).

4, No embedded spaces are allowed within statement labels (see Section
6.2, Statement Labels, for rules governing formation of statement
labels).

5. No embedded spaces are allowed in numbers (either 1line number
references or constants).

6. One or more spaces is required between any reserved word, variable
name, or statement label and any other reserved word, variable name,
or statement label.

7. Spaces are ignored immediately before and after arithmetic operators
(see Subsection 4.2.2, Arithmetic Operators), relational operators
(see Subsection 4.2 3, Relational Operators), and punctuation marks,

2.3.2 Multiple Statement Lines

A program line may contain any number of statements. A line containing
no statements is called a null line and consists simply of a 1line number
followed by T4 spaces. If program line contains more than one statement, a
colon (:) is used to separate one statement from the next, except following
Image (%), TITLE, or EJECT statements (each of these statements is always

considered as extending to the end of the line on which it occurs). For
example:

400 LET TWEEDLEDUM=I : LET TWEEDLEDEE=J : LET ALICE$="CONFUSED"

A null statement may be inserted anywhere in a line by using one colon
immediately after another, or two colons separated only by blanks.

2.3.3 Continuation of Statements

Statements may be continued beyond column 72 of a line by inserting an
exclamation point (%) in column 72 of the line to be continued. For example:

400 LET ROCK= :
500 4

is equivalent to:

400 LET ROCK=4

Although a statement may begin on one line and end on another line,
reserved words, constants, variable names (see Subsection 3.3.3, Numeric
Variables), statement labels (see Subsection 6.2, Statement Labels) and line
number references may not be split between lines. For example:

400 LE
500 T ROCK =

is not a valid statement. Literal strings (see Subsection 3.4.1, Literals
(Alphanumeric Constants)), however, may be split.

15

There is no limit to the number of lines which can be used to contain a
single statement, nor to the number of statements which can occupy a single
line.

2.3.4 Sequence of Execution

Execution of a BASIC program always proceeds in line number sequence
from the lowest-numbered line through the highest-numbered line, unless the
normal sequence of execution is altered by a program branch instruction.
Program branch instructions include the following: FOR...NEXT loops, GOTO,
GOosuB, GOSUB', CALL, RETURN, and, in certain cases, IF...THEN...ELSE. Program
branch instructions are discussed more fully in Chapter 6 and Part II.

2.4 PROGRAM DOCUMENTATION

2.4.1 Comments

As an aid to program documentation, it is often useful to insert
explanatory comments into the text of a program. Such comments must be
distinguished in some way so that the compiler does not attempt to interpret
them as executable program statements. VS BASIC provides three methods of
inserting comments into programs.

1., Any line which has an asterisk (*) in column 7 (the first column
following the six-digit line number) is treated as a comment line.
The entire line is disregarded by the compiler and may contain any
combination of printing characters. Comment lines of this form may
not be continued (as described in Subsection 2.3.3, Continuation of
Statements). Example:

2. Any statement beginning with the reserved word REM is treated as a
comment (REMark). REM statements are ignored by the compiler and
may appear Wherever any other statement appears (see Section 2.3,
Line Format). A REM statement may contain any combination of
printing characters except a colon (:). A colon is considered to be
a statement terminator and may be used to separate a REM statement
from another statement on the same line. REM statements can be
continued by the use of the exclamation point in column 72, as
discussed above. Examples:

100 REM CATASTROPHE THEORY SIMULATION OF CANINE BEHAVIOR

560 DIST=SIN(A)/COS(B) : REM CHECK FLAGS : IF FLAGl=1 THEN 1200

16

3. A comment may be inserted by enclosing it between the symbols "/¥n
and "¥/n, Comments delimited in this way (called "enclosed
comments™) may be inserted on a line alone, before, after, or
between statements on a line, or within a statement. Enclosed
comments within statements may occur before or after (but not
within) reserved words, variable names, statement labels, 1line
number references, numbers, literals, functions, operators and
punctuation marks. All characters which follow the "/¥" symbol
(including subsequent occurences of "/¥") are treated as part of the
comment until the "¥/" is encountered. Enclosed comments may span
multiple lines. Examples:

700 EXCH$ /* TELEPHONE EXCHANGE ¥/ = STR(PHONENUMBER$,4,3)
1100 /* COMMENTS OF THIS FORM MAY EVEN EXTEND

1200 OVER MANY LINES, AND MAY CONTAIN ANY SERIES

1300 OF CHARACTERS... !@€#$%£&%*()... BUT MUST

1400 END WITH THE STAR-SLASH SYMBOL: #/

2.4,2 Compiler Directives

VS BASIC also lets the programmer use the TITLE and EJECT statements to
control the pagination and titling of the program source listing produced by
the compiler. TITLE and EJECT both belong to a set of statements known as
compiler directives., Lines which contain TITLE and EJECT directives are not
printed in source 1listings generated by the compiler, although their
respective effects on the form of the listing do appear, as described below.
TITLE and EJECT lines are, however, shown by the VS EDITOR and file display
programs.

A TITLE statement must be the only statement on a line. When a TITLE
statement is encountered during compilation, the compiler skips to the top of
the next page of the output listing and titles that page with the line of text
specified in the TITLE statement. All subsequent pages of the listing will
also be printed with the specified title until another TITLE statement
occurs. All characters (including any occurrence of ":" or "i") following the
reserved word TITLE on the same line are regarded as part of the title. Note
that this means that a TITLE line cannot be continued by use of the "in
convention described in Subsection 2.3.3, Continuation of Statements. For
example, to print the title PART I: VARIABLE INITIALIZATION SECTION at the
top of a page of source listing, one would use

500 TITLE PART I: VARIABLE INITIALIZATION SECTION
The EJECT statement, which must also appear as the only statement on a
line, causes the compiler to skip to the top of the next page of the source

listing and to print the most recently specified title at the beginning of the
page. All text following the word EJECT on the same lire is ignored.

17

CHAPTER 3
DATA FORMATS

3.1 INTRODUCTION

Programs written in VS BASIC are capable of processing both numeric and
alphanumeric data. Numeric data can be stored and processed either in integer
format or in floating-point format. Alphanumeric information can be stored
and manipulated as single characters or as strings of characters. In
addition, individual bits within alphanumeric data can be manipulated using
logical operators.

Both numeric and alphanumeric data can be processed singly, as constants
or scalar variables, or in sets of arbitrary size called arrays, which can be
referred to by a single name. Individual elements of an array can also be
processed as scalar variables.

This chapter describes the types of data VS BASIC processes and the
formats used for representing data. The various operations which can be
performed on data are discussed in Chapters 4 and 5.

3.2 CONSTANTS, VARIABLES, RECEIVERS, AND EXPRESSIONS

A constant is an item of data whose value is fixed in a program and does
not change during program execution., In contrast, a variable is an item of
data that does not have a fixed value and can be assigned different values
during program execution. A constant appears in a VS BASIC program as a
number or a literal (see Subsection 3.4.1, Literals (Alphanumeric
Constants)). Each variable is represented by a unique variable name that is
used to name that area in storage which holds the value of the variable. For
example, in the statement

CIRCUMF = 3.14159 ¥ DIAM

CIRCUMF and DIAM are variable names, and 3.14159 is a constant. This
particular statement multiplies the value of the variable DIAM by the constant
3.14159 (the asterisk (*) is the symbol used to indicate multiplication in
BASIC) and stores the product in the variable called CIRCUMF. The different
types of constants and variables VS BASIC recognizes and the rules for naming
variables are described in Subsection 3.3.3, Numeric Variables.

18

A receiver is a variable into which data can be stored. Receivers are
used wherever a value is f"received," e.g., on the left side of a LET
statement, in the argument list of a READ statement, etc. All variables are
receivers; for numeric data, all receivers are variables. Alphanumeric
receivers (or simply "alpha receivers") include alphanumeric variables and a
few special functions. See Subsection 5.4.2, Alpha Receivers, for a list of
all alpha receivers.

An expression is either a constant, a variable, a function, or some
combination connected by operators. When a statement containing an expression
is executed, the indicated operations and functions are performed to yield a
single value for the expression. Functions and operators are constructs which
specify particular operations to be performed on one or more expressions.
Separate operators and functions exist for manipulating numeric and
alphanumeric data, and are discussed in Chapters 4 and 5. An expression can
contain either numeric or alphanumeric data, but the two data types cannot be
combined in one expression.

3.3 NUMERIC DATA

VS BASIC recognizes two types of numeric data: floating-point and
integer. The types are clearly distinguished in BASIC syntax, require
different amounts of internal storage, are represented differently in internal
format, and have a different range of allowable values.

Integer data, which is used to represent "whole" (i.e., non-fractional)
numbers, are stored in four bytes of memory. Floating-point data is stored in
eight bytes of memory in the form of: (1) a hexadecimal fraction between 0 and
1, and (2) a power of 16. Integer representation has the advantage that
integer operations are considerably faster than floating-point operations.
Floating-point representation, on the other hand, provides a convenient way of
processing numbers which have either extremely large or extremely small
magnitudes, and of operating upon such numbers with a high degree of
precision. It is also the only way to store fractional numbers. VS BASIC
allows complete freedom to mix both types of data in arithmetic expressions
and assignment statements. Expressions containing both integer and
floating-point data are called mixed mode and are discussed in Section 4.5,
Mixed Mode Arithmetic.

3.3.1 Floating-point Constants

A floating-point constant may be a positive or negative number of up to
15 digits,. The compiler will issue a warning when it encounters a
floating-point constant with more than 15 digits in the source program. Only

the first 15 digits, excluding leading zeros, are used by VS BASIC statements
or functions.

19

NOTE:

All VS BASIC numeric statements and functions use only the
first 15 digits of a floating-point number. Specifically,
truncation to 15 digits occurs (at the indicated time) with:

l. Any floating-point constant (compile time).

2. Any user-input floating-point value (i.e., to INPUT,
ACCEPT, or READ statements; run time).

3. Any floating-point number converted from alphanumeric

format to floating-point format via Image (%), FMT, or
CONVERT statements (run time).

The magnitude of a floating-point constant can range from zero or

=79 75
approximately 5.4 x 10 to 7.2 x 10 .

Very large or very small floating-point numbers can be expressed in
exponential form. Exponential form corresponds to standard "scientific
notation®" in which numbers are written as a decimal with one digit to the left
of the decimal point, multiplied by some power of 10. Since the superscripts
needed to write numbers in such notation cannot be easily represented on a
keyboard device, a number in exponential form is represented as a decimal
(usually with one digit to the left of the decimal point), immediately
followed by the letter E, followed by an exponent representing a power of 10.
The exponent must be an integer and may have an optional sign; if no sign is
given for the exponent, it is assumed to be positive. Leading zeroes may be
omitted. Numbers in exponential form contain no embedded spaces between the
decimal, the letter E, and the exponent. For example:

Long form Scientific notation Floating point
Exponential form constant

45000000 4.5 x 10 ! 4 SE0T
.00000045 45 x 10-7 4 5E-T
37234.123 3.7234123 x 10) 3.7234123E+04

The following are examples of valid floating-point constants in BASIC:

4, -10, 1432443, -7865, 24.4563, -3E2, 2.6E-27

20

The following are examples of invalid floating-point constants in BASIC:

8.7E5.8 -

Not valid because of the decimal point in the exponent.
.87E-99 -- Not valid because it is less than 5.4E-T79.

103.2E99 -~ Not valid because it is greater than 7.2E75.

3.3.2 Integer Constants

An integer constant may range from -2,147,483,648 to 2,147,483,647 (the
decimal equivalent of the range of binary numbers which can be represented
with 32 bits) and must, as its name indicates, be an integer. An integer
constant is denoted by a "%" following the constant. Thus, "4%" is an
integer, and "4 is a floating-point number. The percent sign for numeric
constants is only permitted for numbers or variables actually contained in the
source file. Therefore, numbers given to the program during execution (i.e.,
from the workstation or data file, or converted from an alpha expression) must
be given in floating-point form (i.e., without the percent sign).

3¢3.3 Numeric Variables

Numeric variables are used to reference numeric data stored in memory.
Unlike constants, variables can be assigned new values during execution by a
variety of different statements. Each variable name in a program is
associated with an area in memory used to contain the value of that variable.
Numeric variables are initialized to zero by the compiler.

As 1s the case with constant data values, VS BASIC processes scalar
variable values as either integers or floating-point numbers. All scalar
floating-point variables are eight bytes in length, while all scalar integer
variables are four bytes in length.

Within the floating-point and integer data types, VS BASIC variable
numeric data can be referred to as either scalar variables or array
variables. The two kinds of variables differ in the syntax rules which apply
to them and in their storage requirements. A numeric scalar variable contains
a single numeric value. An array variable, on the other hand, contains one or
more values, or "elements," all of which can be referenced by a single name
and which can be manipulated either collectively or individually. Array
variables are discussed more fully in Section 3.5, Array Variables,

It 1is important to note the differences between integer and
floating-point calculations. Integer calculations are inherently precise and
consistent, while floating-point calculations are approximations and are
somewhat inconsistent. The differences between integer and floating-point
calculations are described in detail in Appendix D.

21

Each variable in a program is referred to by an arbitrary and unique
variable name chosen by the programmer. A variable name may be any string of
up to 64 letters, digits, and underscores, provided that the first character
is a letter and that the string is not a VS BASIC reserved word (see Section
2.2, Statements and Appendix A). Numeric variables are designated as integer
data type (see previous section) by appending a percent sign (%) to the end of
the variable name. Any numeric variable which does not have "%" as the last
character of its nam is treated as a floating-point variable. The following
are examples of valid numeric variable names:

Floating-point Integer
N N%
CAT MOUSE %
PART 2 FIRST 3_LINES%

The following are examples of incorrect variable names:

Floating-point Integer
2ND_PART First character must be a letter.
LINE COUNT% Names cannot contain spaces. COUNT% alone is
a legal variable name.
LAST_%ILE ngn is legal only at the end of a variable
name.

Note that a floating-point variable name and an integer variable name
always identify different variables, even if the names exclusive of the "&"
(i.e., the letters, digits, and underscores) are identical. For example,
INFUNDIBULUM and INFUNDIBULUM% identify two different variables, one
floating-point and one integer, and both may be used to refer to different
items of data in the same program without ambiguity.

3.3.4 Floating Point and Integer Calculation

The type of data representation (floating point or integer) chosen may
have a significant effect on the speed and accuracy of a program. Integer
calculations are precise and consistent; however, they are somewhat slower
than floating-point calculations. Floating-point calculations increase
operating speed at the expense of accuracy.

Integer calculations are exact. The standard set of mathematical laws
and operations, including the associativity and commutivity of operations and

the equality and relational operations produce the expected results using
integer calculations.

Floating-point values are approximations. There may be exceptions to
the normally expected mathematical results when using floating point values.
These floating-point approximations are faster than integer representations
but calculations using this data representation are sensitive to the order of
operations and the source of the input values.

22

See Appendix D, Floating Point and Integer Calculations, for a detailed
discussion of the differences between these data types as well as suggested
techniques for resolving the resulting difficulties.

3.4 ALPHANUMERIC DATA

In addition to its ability to manipulate and operate upon numeric data,
VS BASIC also provides the capability for processing information in the form
of alphanumeric character strings. A character string is a sequence of
characters treated as a unit. A character string may consist of any sequence
of keyboard characters, including letters A - Z, digits 0 - 9, and special
symbols. Character strings are represented in a program as literal strings
(the alphanumeric equivalents of numeric constants), or as the values of
alphanumeric string variables. Characters not found on the keyboard can be
represented as hexadecimal ASCII codes. Typical examples of uses of character
strings are names, addresses, and report headings.

Note that alphanumeric data cannot be operated upon by numeric functions
or operators. A separate set of operators and functions exists for the
manipulation of alphanumeric data. VS BASIC also provides functions which
convert alphanumeric data to numeric form and vice versa. These are discussed
in Section 9.1, Data Conversion Statements.

3.4.1 Literals (Alphanumeric Constants)

The value of an alphanumeric data item which is a fixed constant in a
source program is called a literal or a literal string. A literal string can
be written either by enclosing the desired sequence of characters in quotation
marks or by specifying the hexadecimal ASCII codes of the characters in the
literal with the HEX function.

One type of quoted alphanumeric literal string is a sequence of 1 to 255
characters enclosed in double quotation marks ("..."). Any keyboard character
except the double quote character may appear in a double-quoted literal.
Literal strings can be used to specify messages, headings, or titles to be
output to some device (e.g., workstation or printer) by any of several output
statements. For example,

PRINT "LAST PAGE="; LPG

In this case, LAST PAGEz is a quoted literal which would be printed exactly as
it appears. LPG is the name of a floating-point variable whose value would be
printed following LAST PAGE=.

A second type of quoted literal string is available for specifying
lowercase characters. The literal string is entered with uppercase characters
enclosed in single quotes ('...'). The single quotes indicate that the
uppercase letters are to be treated as lowercase by the system. For example,

PRINT "J"; lOHNl;"D"; IOEI
Output: John Doe (if device is capable of printing lowercase letters)

or
JOHN DOE (if device only prints uppercase letters)

23

) Any character is valid in a 1lowercase literal string except the
single-quote character ('). A single quote literal string may contain double
quotes, and vice versa.

Literals can also be written using the HEX function. 1In this form,
characters in the string are specified by their hexadecimal ASCII codes
(sometimes called "hex codes"). Each printing character (and each of the
non-printing workstation control characters called Field Attribute Characters)
can be represented by a corresponding ASCII code composed of two hexadecimal
digits (0 - 9 and A- F; see Appendix E for a list of the ASCII hex codes). In

a HEX literal, the ASCII hex codes are placed in parentheses following the
word HEX. For example,

PRINT HEX(414243)

prints the string ABC, since 41, 42, and 43 are the hex codes for the first
three 1letters of the alphabet. This statement is equivalent to PRINT "“ABC".
HEX(4120422043) corresponds to the same sequence of letters, with spaces
(ASCII code 20) between them. Any legal hexadecimal code may be specified in
a HEX literal string. The user should, however, be aware of the special use
of hex codes 80 - FF (see Chapter 7, Section 7.3, Subsection T7.3.4, Field
Attribute Characters (FACs)).

Literal strings can also be assigned as values to alphanumeric
variables. Assignment and other alphanumeric operations are discussed in
Section 5.2, Alphanumeric Operators.

3.4.2 Alphanumeric Variables

Alphanumeric character strings can be stored and processed in an
alphanumeric string variable (or simply "alpha variable"). Values stored in
alpha variables can be stored and processed singly, as scalar variables, or in
groups, as array variables. Alphanumeric and numeric arrays are discussed in
Section 3.5, Array Variables. The following discussion applies to
alphanumeric scalar variables.

Alpha variable names, like those of numeric variables, are sequences of
up to 64 letters, digits, and underscores, provided that the first character
of the name is a letter and that the name is not a VS BASIC reserved word (see
Appendix A). Alpha variable names are distinguished from numeric variable
names by a dollar sign (§) appended to the end of the variable name. For
example, the variable name THING refers to a floating point numeric variable,
whereas THINGE refers to an alphanumeric variable., Similarly, ITEM% is an
integer variable; ITEM$ is an alpha variable. A numeric variable and an alpha
variable are separate and independent entities, even if they have the same
name exclusive of the "$v.

An alphanumeric variable identifies a unique location in memory reserved
for the storage of alphanumeric data. The compiler reserves space for each
variable during compilation, at which time the program is scanned for all
variable references. The number of characters which can be stored in an alpha
variable depends on how much space is reserved for that variable during
compilation. Each character requires one byte (eight bits, or binary digits)
of storage. The amount of space reserved for each variable can be specified

24

gm\

by the programmer in a DIM or COM statement. For example,

DIM WORD$ 10, LINE$ 80
COM HORSEB 10, COWP 17

reserves 10 bytes of storage for WORD§, 80 bytes for LINES, 10 bytes for
HORSE$, and 17 for COW$, the latter two in the common storage area. (For an
explanation of common storage, see Subsection 6.5.4, Passing Values to
External Subroutines.) An alpha scalar variable may be specified as teing of
any length between one and 256 characters (bytes). An alpha variable may not
appear more than one in DIM or COM statements in a program. If the
programmer does not explicitly dimension an alpha variable in a DIM or COM
statement, the compiler automatically reserves 16 bytes for the variable. The
DIM and COM statements are both also used for dimensioning arrays (see
Subsection 3.5.2, Dimensioning an Array); the COM statement is also used for
placing variables of any type in common storage (see Subsection 6.5.4, Passing
Values to External Subroutines and the COM statement entry in Part 2).

NOTE:

Any alpha variable which has not had some other value
assigned to it is defined as being filled with blanks
(ASCII code HEX(20)).

The length of an alpha variable or alpha array element specified in a
DIM or COM statement is called its "defined" length. In many cases, however,
the character string stored in an alpha variable will not occupy the entire
defined length. The last character of an alpha variabls is normally taken to
be the final nonblank character (except when the value is all blanks, in which
case the value is treated as one blank). Hence, trailing blanks generally are
not considered part of the value of an alpha variable. For example:

100 A$="ABC "
200 PRINT AS; "DEF"

Output: ABCDEF (Note that the trailing blanks of A$ were not printed.)

The character string stored in an alpha variabls is called the "current
value" of the alpha variable, and its length, up to the first trailing blank,
is called the "current length" (or "actual length") of the variable. The

length function, LEN, determines the current length of an alpha variable. For
example:

100 AB="ABCD "
200 PRINT LEN(A$)

Qutput: y (Trailing blanks are not considered to be part of the value of
an alpha-variable by LEN.)

25

Most alphanumeric operators and functions operate on the current value
of an alpha variable. In some cases (e.g., ACCEPT and DISPLAY statements),
however, the entire defined length of the variable may be used. It is

therefore important to understand the distinction between defined length and
current length.

NOTE:

If the defined length of an alpha variable is greater than
necessary for storing the value of a given alpha
expression, the variable is padded with blanks (ASCII code
HEX(20)) when the value is assigned.

3.5 ARRAY VARIABLES

An "array variable" is a collection of scalar variables identified by a
common name., Each scalar variable contained in the array is called an
"element" of the array, and can be identified by specifying the array name
followed by a subscript or pair of subscripts, which locate the element within
the array. Arrays, like scalar variables, may hold floating point, integer,
or alphanumeric data. A single array cannot hold values of more than one
type. The names of array variables are formed in the same way as the names of
scalar variables (a sequence of 1 to 64 letters, digits, and underscores, as
described in Subsection 3.3.3, Numeric Variables; names of integer arrays must
end in '%' and those of alpha arrays must end in '$'). The one additional
restriction on array names is that they cannot begin with the characters FN.

NOTE:

Any attempt to use a name beginning with FN for an array
will either result in an error message at compilation time
or in a logically incorrect object program. Any name
beginning with FN and containing parentheses is interpreted
by the compiler to refer to a user-defined function (see
Subsection 4.4.2, User-Defined Functions).

In general, any reference to an array variable must consist of the array
name followed by parentheses. If the parentheses enclose an expression or a
pair of expressions, the expressions are interpreted as the subscripts of a
particular element in the array. For example, the fifth element in
floating-point array N() could be specified as N(5); BOX$(K) refers to the
K-th element of the alpha array BOXH(). Note that the subscript is enclosed
in parentheses immediately following the array name. In situations in which
the entire array (rather than a particular element of the array) is to be
referenced, the array name must be followed by empty parentheses (e.g., N() or
BOXE()) to form an "array-designator." The array name alone (e.g., N or BOXP)
is used only in special matrix statements (e.g., MAT INPUT and MAT PRINT).

26

~

Since scalar variables are different from array variables, the same name
(i.e., the same sequence of letters, digits, and underscores) may be used both
as a scalar variable name and as an array variable name. Thus N() designates
an array variable, while N names a scalar variable, except in a matrix
statement. Except in matrix statements (see Section 9.2, Matrix Statements),
the array must always be referenced with an array-designator to indicate an
array rather than a scalar variable. For example:

WHALE -- identifies a floating-point scalar variable.
WHALE% -- identifies an integer scalar variable.
WHALE() -- identifies a floating-point array.
WHALE%() -- identifies an integer array.

WHALEP -- identifies an alphanumeric scalar variable.
WHALE$() -- identifies an alphanumeric array.

To minimiz the chance of confusion however, use of the same name for
scalar and array variables in a program is not recommended.

3.5.1 One-Dimensional and Two-Dimensional Arrays

Array variables either one-dimensional or two-dimensional. A
one-dimensional array is a list of all variables identified by the same name.
A two-dimensional array is a table of variables all identified by the same
name.

A one-dimensional array can be conceived of as a list or column of
variables (elements), each occupying its own slot, or row, in the column.
Consider, for example, the representation of array DWARF() in Figure 3-1.

DWARF()

Row 1 DWARF(1)

Row 2 DWARF(2)
Row 3 DWARF(3)
Row U DWARF (4)
Row 5 DWARF (5)

Figure 3-1. The One-Dimensional Array DWARF()

Note that DWARF() contains a total of five elements and that each

element is identified by specifying its row. For example, element DWARF(3) is
located in Row 3.

27

One-dimensional arrays are also called "lists," ‘"ectors," "column
vectors," and, since each element is identified by a single subscript,
"singly-subscripted arrays."

The scheme in Figure 3-1 can be generalized to contain two or more
colums. When this is done, the result is a two-dimensional array. A
two-dimensional array can be conceived of as a table consisting of two or more

columns of elements.

Consider,

for example,

two-dimensional array HOBBIT() in Figure 3-2.

the representation of the

HOBBIT()
Column 1 Column 2 Column 3
Row 1 HOBBIT(1,1) HOBBIT(1,2) HOBBIT(1,3)
Row 2 HOBBIT(2,1) HOBBIT(2,2) HOBBIT (2,3)
Row 3 HOBBIT(3,1) HOBBIT(3,2) HOBBIT(3,3)
Row 4 HOBBIT(4,1) HOBBIT (4,2) HOBBIT (4,3)
Row 5 HOBBIT(5,1) HOBBIT(5,2) HOBBIT(5,3)

Figure 3-2. The Three-Dimensional Array HOBBIT()

Note that HOBBIT() consists of three columns of elements, with five rows
in each column, for a total of 15 elements., In this case, it is not
sufficient to identify each element by its row, since the element may be in
Column 1, Column 2, or Column 3. A second subscript is required to identify
the column. The convention followed when referencing a particular element in
a two-dimensional array is always to specify the row first, and then the
column. Thus HOBBIT(3,2) identifies the element in Row 3 and Column 2.

Two-dimensional arrays are also called "tables," or "matrices," and,
because each element is identified by a pair of subscripts,
"doubly-subscripted arrays."

Elements in an array can be referred to by subscripts that are legal
BASIC expressions. Thus JIM(N) refers to the N-th element of array JIM() for
whatever value N has at the time of execution. This ability to reference an
array by a variable subscript is one of the useful features of arrays, since
it can eliminate a considerable amount of repetitive coding.

28

For example, the following three statements

100 FORI = 1 TO 50
200 PRINT JIM(I)
300 NEXT I

will cause the first 50 elements of array JIM() to be printed with
considerably less coding than 50 consecutive PRINT statements.

NOTE:

If the value of an expression used as a subscript is not an
integer at run time, the value of the expression is
truncated and the integer valwe is used as the subscript.

3.5.2 Dimensioning an Array

When a program is compiled, the BASIC compiler reserves storage space
for each variable. To do this, the compiler must know how much space to
allocate for each variable. Since arrays may be either one- or
two-dimensional and may contain varying amounts of data, the programmer must
tell the compiler how much space to reserve for each array in a program; the
array must be dimensioned. An array is dimensioned by specifying whether it
has one or two dimensions and how many rows (and columns, if two-dimensional)
are in the array. Dimension information is specified using either the DIM
(dimension) or COM (common) statement. For example, to allocate space for a
one-dimensional integer array of 10 elements named VEGETABLE%(), one would
write

DIM VEGETABLE%(10)

If VEGETABLE%() is to be used by more than one program or subprogram running
together, one would use COM instead of DIM .

DIM and COM statements may be used to define any number of arrays of any
type, as long as each array is separated from the one following it by a
comma. When using DIM or COM to dimension an alpha array, the length of each
element in the array can be specified as an integer immediately following the
right parenthesis.

29

For example,

DIM NAME$(500)10, CITY(100), STATE(5,10)
COM CODE$(20,10)5, ZIP%(1000), COUNT%

defines a 500-element one-dimensional alphanumeric array (NAMES()) where each
element is 10 bytes long, a 1l00-element one-dimensional floating-point array
(CITY()), a 5-row by l0-column two-dimensional floating point array (STATE()),
a 20-row by lO-column two-dimensional alpha array (CODE$()) with each element
5 bytes long, and a 1000-element one-dimensional integer array (ZIP%). The
latter two arrays are designated as common, as is the integer scalar COUNT%.
The use of DIM and COM statements to specify the length of alpha scalars is
discussed in Subsection 3.4.2, Alphanumeric Variables.

If an array is not dimensioned before its first occurence in an
executable program statement, the compiler automatically assigns default
dimensions of 10 rows by 10 columns. In the case of alpha arrays, each
element is assigned a default length of 16 bytes. Therefore, any array which
is to be of any other dimension must be dimensioned before its first occurence
in an executable statement. No array may be dimensioned more than once in a
program. Row and column dimensions specified in DIM or COM statements must be
between 1 and 32,767.

The total size of all the variables in a program, including array
variables, is limited to a maximum of not more than 512K (524,288) bytes. If
the variables in a source program require more than 512K bytes of storage, the
compiler outputs an error message and halts code generation.

Although programs may be compiled with up to 512K bytes of variable
storage space (Segment 2 space), the resulting object program cannot be
executed unless there is sufficient space available on the particular VS
configuration at run time. In other words, the fact that a particular program
compiled successfully on a particular system does not guarantee that it will
also run on that system. For example, on a VS system with only 256K bytes of
Segment 2 space allocated to each task, a program requiring 400K of Segment 2
space would compile with no errors (assuming it were syntactically correct),
but would not run due to insufficient memory to store the variables during
execution.

Since DIM statements are processed during compilation, prior to program
execution, they cannot be supplied with variable subscripts, since the value
of the variable is unknown at that time. The following statement, for
example, produces an error message:

DIM Al(5,N)

30

CHAPTER 4
NUMERIC OPERATIONS

4,1 INTRODUCTION

Numeric data (see Section 3.3, Numeric Data) is manipulated in VS BASIC
by means of operators and functions. An operator is a symbol (such as + or
-) which specifies some operation (such as addition or subtraction) to be
performed, usually involving two numeric quantities. A function 1is a
construct that performs some series of operations on one or more input values
(called arguments) and returns a single output value. For example, SIN(X)
and SQR(X) are functions which calculate the sine and square root of an
argument, in this case of the variable X. A number of numeric constants,
variables, and functions connected by numeric operators constitutes a numeric
expression. When values are supplied for any variables in an expression, the
value of the expression is determined by performing the indicated operations
and functions. This occurs when a statement containing an expression is
executed when a program is run. The value of the expression is then used in
whatever way is indicated by the particular statement be ing processed.

4,2 NUMERIC OPERATORS

There are three types of numeric operators used in BASIC: assignment,
arithmetic, and relational. The assignment operator assigns a value to a
particular variable. The arithmetic operators specify the basic arithmetic
operations which can be performed on numeric quantities: addition,
subtraction, multiplication, division, exponentiation, and negation,
Relational operators specify comparisons to be made between two numeric
values so that a program may take different actions depending on whether one
valwe 1is greater than, equal to, or less than another.

4,2.1 The Assignment Operator

The equals sign (=) is the assignment operator used only in assignment
statements. An assignment statement stores the value of the expression on
the right of the equal sign in the variable(s) named to the left of the equal
sign. An assignment statement consists of the optional reserved word LET,
followed by one or more variable names, followed by the equal sign, followed
by a numeric expression. For example,

LET SUM=A+B

LET SQUARE(5,17)=(ZONK-POW)+10
LET SLITHEY TOVES, MOME_RATHS = VORPAL/FRUMIOUS

31

The keyword LET may be omitted:

DIFFERENCE=A-B
CABBAGES, KINGS=10

Note that the equal sign has a different meaning in contexts other than
assignment statements (see Subsection 4.2.3, Relational Operators).

4,2.2 Arithmetic Operators

The following symbols are used as arithmetic operators.

Symbol Operation Sample Expression Explanation
4 or %% exponentiation A4B or A¥¥B Raise A to the power B.
¥ multiplication A¥B Multiply A by B.
/ division A/B Divide A by B.
+ addition A+B Add B to A.
- subtraction A-B Subtract B from A.
- unary negation -A Negate A.
NOTE:

All arithmetic operations must be explicitly specified.
While in normal algebraic notation, expressions such as AB
or A(B) may be used to indicate multiplication; the
operation must be explicitly specified (e.g., A¥B.)

When a numeric expression is evaluated, arithmetic operations are
performed in the following order or hierarchy:

1. All operations within parentheses are performed. The innermost
parenthesized expressions are evaluated first.

2. All unary negation (-) and exponentiation (4 or ¥*¥) operations are
performed (left to right).

3. All multiplication (*) and division (/) operations are performed
(left to right).

4. All addition (+) and subtraction (-) operations are performed (left
to right).

32

NOTE:

Every arithmetic operator must be followed by a numeric
expression. Thus it is not permissible to have an operator
immediately followed by another operator, as in A-¥B. To
indicate an operation on the negative of an expression,
parentheses must be used to enclose the expression and the
negating minus sign. For example, A¥(-B) is permissible,
but A*-B is not.

When there are no parentheses in the expression and the operators are at
the same level in the hierarchy, the expression is evaluated from left to
right. Parentheses may be used to group operations and so alter the order of
evaluation of terms within an expression. Quantities within parentheses are
evaluated before the parenthesized quantity is used in further computations.
For example:

A*¥B/C A is multiplied by B; the product is
then divided by C.

A¥(B/C) B is divided by C; the quotient is then
multiplied by A.

X+Y*Z Y is multiplied by Z (multiplication
precedes addition by Rule 3 above); the product
is then added to X.

(X+Y)*Z Y is added to X; the sum is then multiplied
by Z.

Parentheses may be "nested" to any level. That is, a parenthesized expression
may contain other parenthesized expressions, as in A+(B-((C/D)%*%2)). 1In such
cases, the expression within the innermost set of parentheses is evaluated
first, and evaluation proceeds to the outermost set of parentheses. For every
left parenthesis there must be one matching right parenthesis at some later
point in the expression.

When in doubt, parentheses may always be used to insure that a complex
expression is evaluated in the intended way. Redundant parentheses have no
effect on the order of evaluation of an expression.

4.2.3 Relational Operators

Relational operators are used in IF...THEN statements when values are to
be compared.

33

For example, when the statement

IF G<10 THEN 60

is executed, if the value of G is less than 10, processing continues at
program line number 60. Otherwise, execution continues in the normal sequence
with the statement following the IF statement.

The following relational symbols are used in VS BASIC:

Symbol Sample Relation Explanation
= A =8B A is equal to B.
< A <B A is less than B.
<= A <= B A is less than or equal to B.
> A >B A is greater than B.
>= A > B A is greater than or equal to B.
<> A <> B A is not equal to B.

These symbols are also used in the POS function and the SEARCH statement (see

Section 5.6, Numeric Functions with Alpha Arguments, and the SEARCH statement
entry in Part 2).

4.3 NUMERIC EXPRESSIONS

A numeric expression is either one or a series of constants, variables,
or functions, connected by arithmetic operators. Numeric expressions can be
evaluated in a variety of different BASIC statements. 1In the following
examples valid numeric expressions are boxed:

PHONE =

INDEX = | {VARX-OFFSET)/LOG(T+2) |

PRINT | SIN(THETA) |

FORI = TO STEP

Most commonly, expressions are evaluated and their values assigned to
variables in assignment (LET) statements (see Subsection 4.2.1, The Assignment
Operator), or they are evaluated and their values printed or displayed in
PRINT statements. Operations in an expression are performed in sequence from
highest priority level to lowest (see Subsection 4.2.2, Arithmetic Operators).

4.y NUMERIC FUNCTIONS

A numeric function is a construct in the BASIC language which takes one
or more numeric expressions as input values (called arguments), performs some
series of operations on them, and returns a single numeric output value. The
value of the function may be used anywhere a numeric expression is allowed,
such as on the right-hand side of an assignment statement or as part of a
larger numeric expression.

34

@ﬁ\

Syntactically, a function is written as follows:
fname[(argument[,argument][,...]1)]

where "fname" is the name of a function, and "“argument" is any expression
acceptable to the particular function used. Expressions used as the arguments
of a function are evaluated before the computation indicated by the function
is performed. The result of this computation may be used as part of a larger
expression. For example,

100 LET X=SIN(Y/2)+1
causes: (1) the expression Y/2 to be calculated, (2) the sine of that
expression to be determined (SIN is the function name), (3) 1 to be added to

the sine, and (4) the assignment of the final value to the variable X.

VS BASIC recognizes two major kinds of numeric functions: intrinsic and
user-defined functions.

4 .4.1 Intrinsic Functions

Intrinsic (or "built-in") functions are defined within the BASIC
language and may be used at any time in a program. The twenty-five intrinsic
functions recognized by VS BASIC include all mathematical functions such as
trigonometric, absolute value, and logarithmic functions. A random number
generator and various functions specialized for use in data processing are
also available. The intrinsic numeric functions vary in the type and number
of arguments that they require, but all return numeric values.,

In addition to the intrinsic functions, VS BASIC also has an intrinsic
named constant, which is PI. PI may be used anywhere a numeric expression is
allowed, and has the value 3.14159265358979.

The intrinsic numeric functions are discussed below and in Part 2 of
this manual.

The SIZE function, which deals with file I/0, is discussed in Section
8.5, Intrinsic File I/0 Functions.

Trigonometric Functions

The sine, cosine, tangent, arcsine, arccosine, and arctangent functions
are available in BASIC. Other trigonometric functions can be easily expressed
using combinations of these functions. Each of these functions takes one
numeric argument, and returns a floating point value.

35

Function Meaning

SIN(x) the sine of x.

COS(x) the cosine of x.

TAN(x) the tangent of x.

ARCSIN(x) the inverse sine (Arcsine) of x.

ARCCOS(x) the inverse cosine (Arccosine) of x.
ARCTAN(x) the inverse tangent (Arctangent) of x.

ATN(x) same as ARCTAN (ATN is a synonym for ARCTAN).

These functions can express and accept angular measure in degrees,
radians, or grads (400 grads = 360 degrees). Radian measure is used as the
default in every program or subroutine, until one of the following statements
is encountered:

SELECT DEGREES -- which selects degrees.
SELECT GRADS -- which selects grads.
SELECT RADIANS -- which selects radians.

The mode used at any time is determined by the most recently executed
SELECT statement in that program or subroutine. For instance, a program can
execute a SELECT DEGREE statement, thus changing the trig mode to degrees. If
it then uses the CALL statement to call a subroutine, the mode becomes
radians, assuming the subroutine has not previously reset the mode. If the
subroutine executes a SELECT GRADS statement, the mode for subsequent
trigonometric functions becomes grads. When the END statement is executed,
returning control to the calling program, the mode reverts to degrees. If
that subroutine is called again, the initial mode will be grads.

The SELECT statement is discussed further in Part 2. The arguments of
the sine, cosine, and tangent functions will be interpreted as degrees, grads,
or radians depending on the SELECT setting in effect at the time of
execution. The values returned by the inverse trigonometric (arc) functions
are likewise in degrees, grads, or radians according to the SELECT setting.

Other Numeric Functions

The remaining eighteen numeric functions are described below. For more
detailed descriptions of these functions (including which functions return
integer values and which return floating point values) see the appropriate
entries in Part 2.

Function Meaning Number and type of arguments
ABS(x) The absolute value of the 1 numeric.
argument: -x if x < 0; x
ifx > 0.
DIM(x(),d) The maximum 1lst or 2nd sub- 1 array designator (x()),
script of the array x. 1 integer (d) = 1 or 2.
EXP (x) The exponential function; 1 numeric.

nen (2.718...) raised to the
x-th power.

36

-

Function

INT(x)

LEN(aB)

LGT(x)

LOG(x)

MAX(x,y,2Z)

MIN(x,y,2)

MOD(x,y)

NUM(a8)

POS(ab<b$)

RND(x)

ROUND(x,n)

SGN(x)

SIZE(#n)

Meaning

The greatest integer
less than or equal to x.

The actual length, in bytes,
of a$.

Common (base 10) logarithm
of x.

Natural (base "e") logarithm
of x; inverse function of EXP.

The value of the largest ele-
ment in the argument list.

The value of the smallest
element in the argument list.

The modulus function; the re-
mainder of the division of

x by y.

The number of sequential
ASCII characters in a$,
starting with the first
character, that represent
a legal BASIC number.

The position of the first
character of a$ which is < ,
<=, >, >= , <>, or = the
first character of b$.

A pseudo-random number be-
tween zero and one.

The value of x, rounded off
to n decimal places.

The signum function; -1 if
x is negative, 0 if x is
zero, or +1 if x is positive.

The size in bytes of the most
recently read record from
file #n. (See Section 8.5,
Intrinsic File I/0 Functions).

37

Number and type of arguments

1 numeric.

1 alphanumeric.

1 numeric.

1 numeric.

1 or more numeric scalars
or numeric array desig-
nators.

1 or more numeric scalars
or numeric array desig-
nators.

2 numeric.

1 alphanumeric.

2 alphanumeric.

1 numeric.

1 numeric (x), 1 integer(n).

1 numeric.

1 integer file-expression.

Function Meaning Number and type of arguments

SQR(x) The square root of x. 1 numeric.
VAL(a$,d) The numeric value of the 1 alphanumeric (a$),
first d bytes of aB, 1 integer (d) = 1,2,3, or 4,

The DIM, RND, and ROUND functions are discussed here in more detail.

DIM

The DIM function (not to be confused with the DIM statement) requires
two arguments: the first must be an array-designator (the array name plus
parentheses, e.g., A()) occurring in the BASIC program; the second must be an

expression whose value is either 1 or 2. The DIM function returns either the
row or column dimension of the named array.

DIM(X(),1) -- returns the row dimension of the array X.
DIM(X(),2) -- returns the column dimension of the array X.

RND

The RND (random number) function is used to produce a pseudo-random
number between 0 and 1. The term "pseudo-random" is used because a digital
computer cannot produce truly random numbers. Instead, each time the RND
function is called, it uses an internally-stored number as a "seed" from which
to generate the next "random" number by a fixed internal algorithm. Since the
algorithm is always the same, it will always produce the same value for a
given seed value. By calling the RND function repeatedly and using the output
value of each call as the seed for the next one, a sequence of numbers is
generated which, though obviously not truly random, is scattered about in the
range zero to one in such a manner as to appear random; thus the term
"pseudo-random."

There are three different ways in which the RND function can be used:
(1) to generate a pseudo-random number based on a seed value; (2) to reset the
seed value to some number specified by the user program (as either a constant
or a variable); (3) to reset the seed value based upon the time-of-day clock
when the program is run. Which mode of operation is selected depends upon the
value of the expression used as an argument in the function RND(expn) as
follows:

l. expl <0 or expl >1

If the argument (expl) is less than zero or greater than or equal to
one, RND produces a pseudo-random number from the seed value. If
this is the first use of RND in the program, the seed has a value
set by the BASIC compiler during compilation. Otherwise, it has the
value produced by the last RND call executed.

38

.

2. 0 <exp2 <1

If the argument (exp2) is between zero and one, RND returns the
argument itself as the result and resets the seed to this value.
The next use of RND, as in Option 1 above, will use the value of the
previous argument (exp2) as the seed from which to generate a
pseudo-random value. This allows the user to produce the same
sequence of random numbers any number of times within the same
program or within different programs.

3. exp3 =0

If the argument is equal to zero, RND produces a number whose value
is computed from the time of day when the RND function is executed,
rather than from a user or compiler specified value. This option
can be used to reset the seed to a random value, so that on
subsequent calls using Option 1, a more seemingly random series of
numbers will be produced.

Note that although Option 3 produces a random number in the sense that
it will generally differ each time this option is used, repeated RND calls
using this option within a program will not produce a dependably random list
of numbers. (This is because the relation between successive numbers in such
a list will be a function of the time elapsed between function calls.) To
produce a more random list, use Option 3 once, followed by as many Option 1
calls as desired. Option 3 should be used only to reset the random number
list to a new starting value, not to produce such a list.

Example:

100 LET A= RND(.5)

200 LET B= RND(2)

300 LET C= RND(2)

400 PRINT "A=";A, "B=";B, "C=";C
Result:

A=.5 B=.259780899273209 €=.2989807370711264

Every time this program is run, it will produce the same list of numbers.

ROUND

ROUND(X,N) is equivalent to the expression:

SGN(X)*(INT(ABS(X)*104(INT(N))+0.5)/104(INT(N)))

Its effect, is to round off the value of X to the precision specified by
N. If N is positive, X is rounded off so that the last significant digit of
the function value is the N-th digit to the right of the decimal point. If N

is negative, X 1is rounded off so that the last significant digit of the
function value is the (1-N)th digit to the left of the decimal point.

39

For example:

ROUND(123.4567,4) = 123.4567
ROUND(123.4567,3) = 123.4570
ROUND(123.4567,2) = 123.4600
ROUND(123.4567,1) = 123.5000
ROUND(123.4567,0) = 123.0000

ROUND(123.4567,-1)= 120.0000
ROUND(123.4567,-2)= 100.0000
ROUND(123.4567,-3)= O

4 .4.2 User~defined Functions

User-defined functions enable the programmer to specify any sequence of
numeric operations to be performed on a single numeric argument and to
identify that sequence of operations by a function name. Functions are
defined using the DEF statement. The DEF statement has the form

DEF fname[%$](arg) = expr

where fname is the function name, arg is a "dummy argument," and expr is any
valid numeric expression. Function names are formed according to the same
rules which apply for naming scalar variables (see Subsection 3.3.3, Numeric
Variables). Although it is permissible to have functions with the same names
as variables in a program, this is not recommended. The dummy argument "“arg"
is used simply to indicate the position in the function definition which is to
be taken by the argument value when the function is called, and may be any
valid variable name. For example,

DEF AREA(X) = 3.14159265 * X*¥2

defines a function which determines the area of a circle given the radius. In
this case, AREA is the function name, and X is a dummy argument. The function
can be called by a statement elsewhere in the same program, such as

LET SEMICIRC = AREA(RADIUS)/2

When this statement is executed, the expression in the DEF statement is
evaluated, with the value of RADIUS substituted for X. This value is returned
to the LET statement, and is then divided by 2. The resulting value is
assigned to the variable SEMICIRC.

NOTE:

A function may be defined anywhere in a program, but if the
first use of a function precedes its definition, the
function name must begin with the characters FN.
Otherwise, the BASIC compiler will interpret the function
call as an array name reference. This will result in
either an error message at compilation time or in logic
errors in the program.

4o

4.5 MIXED MODE ARITHMETIC

§ BASIC allows mixed-mode arithmetic, i.e., floating-point or integer
variables may be assigned either floating-point or integer values, with
floating-point values truncated to integers. Specifically,

1.

2.

Assignment ([LET]) statements allow mixed-mode assignment.

Statements performing implicit assignment, such as CONVERT,
GOSUB'(), INPUT, ACCEPT, READ, and calls to user-defined functions
allow mixed-mode. The only exceptions to this are the CALL and SUB
statements, which do not allow mixed mode argument passing.

The percent sign (%), used to indicate an integer value, may only be
used as a numeric symbol when it appears as such in the source file;
in particular, INPUT, ACCEPT, GET, READ, and CONVERT do not allow %
as numeric input. Thus, floating-point constants must be used.

Expressions in integer syntax are also treated like mixed-mode
assignments (truncated to integer) (e.g., BIN(expr), END expr, ON
expr GOTO..., RESTORE expr).

4,6 SUMMARY OF NUMERIC DATA TYPES AND TERMS
]

4.6.1 Floating-Point Data

The allowable range of magnitudes for floating-point values is from

=79 75

approximately 5.4 x 10 to7.2 x10 . Floating-point values with
magnitudes outside of this range cause conditions called underflow (magnitude
too small) and overflow (magnitude too large).

The following are classified as floating-point values:

1.

The value of any floating-point variable (no "%" or "§"),

Examples: A, OPHIDIAN, FRUIT(3), D4(X,5)

Any numeric constant with no "%."

Examples: 5, 3-7, -60321E3, lE-l

The result of any valid numeric function except LEN, NUM, POS, VAL,
SGN, SIZE, DIM, ABS(integer), user-defined integer functions
(function name ends in "%") and under certain conditions MIN, MAX,

and MOD.

Examples FN2(2%), SIN(3), ABS(-12)

41

4. The result of any binary operation (+, -y %, /, 4, ¥%) opr MOD

function whose two arguments are not both integers.

Examples: 2/5, 3%417, 4%+SQR(16)

5. The result of the MAX and MIN functions when the arguments are not
all integers.

NOTE:

If the evaluation of any numeric expression during program
execution results in a floating-point value with magnitude
greater than approximately 7.2 x 1075 (i.e., an overflow
condition), an error occurs, program execution halts, and
an appropriate error message is displayed on the
workstation. Evaluation of expressions with magnitudes
less than 5.4 x 10 (underflow) are treated as zero and do
not cause an error. A numeric constant which is either too
large or too small causes an error during compilation.

4.,6.2 Integer Data

The allowable range of values for integer values is from -2,147,483,648
to 2,147,483,647.

The following are classified as integer values.
1. The value of any integer variable (variable name ending with "%%).
Examples: A%, OPHIDIAN%, FRUIT%(3), DU4%(X,5)

2. Any integer constant, which must contain a trailing "%," no decimal
point, and no exponent.

Examples: 375%, -10000%, 2%
3. The result of the numeric functions LEN, NUM, POS, VAL, SGN, SIZE,
DIM, ABS (integer), and user-defined integer functions (function

names ending in "g"),

Examples: FN3%(7.5), SGN(THE_TIMES), SIZE(#5)

42

4., The result of any binary operation (+, -, *, /, ¢, *¥) or MOD
function whose two arguments are both integers.

Examples: 2%/5%, 3%+(17%), 4% + LEN(BS)

5. The result of the MAX and MIN functions when the arguments are all
integers.

NOTE:

If the evaluation of any numeric expression during program
execution results in an integer value outside the allowable
range (-2,147,483,648 to 2,147,483,647), an error occurs,
program execution halts, and an appropriate message is
displayed on the workstation.

4 .6.3 Numeric Terms

1. Constant: + floating-point constant
- integer constant
4 \
2. Expression 42 numeric variable
(or exp) constant

mathematical function
DIM function

LEN function

NUM function

POS function

SIZE function \
< user-DEFined function

VAL function

[{t}] expression

(expression)
\

1 +

expression e

n > N X

3. Integer (or int): digit [digitl...%

Adjacent operators are not allowed (e.g., A++B).

43

[}
.

9.

letter

Numeric Array-designator: letter digit eee [2]1 () ,
underscore /"h§
(not to exceed 64 letters, digits, and/or underscores)
letter
Numeric Array Name: letter digit oo [%]
underscore

(not to exceed 64 letters, digits, and/or underscores)

letter
Numeric Array Variable: letter digit eeo [%]
[,exp])
underscore
(not to exceed 64 letters, digits, and/or underscores)

letter
Numeric Scalar Variable: letter digit eee [%]
underscore
(not to exceed 64 letters, digits, and/or underscores)

Numeric Variable: numeric scalar variable
numeric array variable

Mathematical Function: PI, ABS, ARGCOS, ARCSIN, ARCTAN, ATN, COS, EXP, INT, LGT,
LOG, MAX, MIN, MOD, RND, ROUND, SGN, SIN, SQR, TAN functions.

4y

CHAPTER 5
ALPHANUMERIC OPERATIONS

5.1 INTRODUCTION

Alphanumeric data (or simply "alpha data") is manipulated in VS BASIC by
alphanumeric operators and functions. Alpha operators and functions are
different from their numeric counterparts described in the previous chapter,
even though in some cases (such as assignment statements) the same symbol may
be used as either a numeric or an alphanumeric operator. In these cases, the
meaning of the symbol is inferred from the data type of the two operands
involved. Functions which return alpha values are called alpha functions. 1In
addition, there are some numeric functions which take alpha arguments. Both
are discussed below. A series of literals, alpha variables, or alpha
functions connected by alpha operators constitutes an alpha expression.

In addition to facilities for manipulating characters and strings of
characters, VS BASIC also provides logical functions which enable the
programmer to specify operations on individual bits within a stored
character. It is also possible to convert alphanumeric representations of
numbers to numeric form and vice versa using the CONVERT statement, which is
discussed in Part 2 of this manual.

5.2 ALPHANUMERIC OPERATORS

The alphanumeric operators in VS BASIC are the assignment operator, the
concatenation operator, and relational operators.

5.2.1 The Assignment Operator

! The equal sign (=) is used as the alphanumeric assignment operator in a
LET statement, just as it 1is for numeric assignment. An alphanumeric
assignment statement consists of the reserved word LET (optional), followed by
one or more alphanumeric variable names or other alpha receivers (see
Subsection 5.4.2, Alpha Receivers) followed by the equal sign, followed by an
alpha expression. When the statement is executed, the value of the alpha
expression is stored into the variable(s) or receiver(s) one character at a
time, left to right. This continues until all the characters of the evaluated
expression are used up or until the alpha variable or receiver is full. Thus,
if the defined length of the alpha receiver is less than the length of the
evaluated expression, the rightmost characters of the value of the expression
are lost. If the defined length of the alpha variable or receiver is greater
than the length of the value of the alpha expression, the remaining bytes of
the alpha expression are filled with trailing blanks.

45

For example:

100 DIM A$50, BH5, CHLO, DHL0

200 A$="THE TIME HAS COME, THE WALRUS SAID"
300 B$=AS$

400 C$=B%

500 D$=A$

600 PRINT A$: PRINT B§ : PRINT CB5 : PRINT D$§

Qutput:
THE TIME HAS COME, THE WALRUS SAID
THE T
THE T
THE TIME H

5.2.2 The Concatenation Operator

The concatenation operator (&) combines two strings, one directly after
the other, without intervening characters. The two strings combined by the
concatenation operator are treated as a single string.

100 A$="WASTE"
200 BBS="LAND."
300 C3$=A% & BH
400 PRINT CB

Output:
WASTELAND.

Literal strings expressed as constants can be concatenated with literal
strings stored as the values of alpha variables. For example:

100 AB="BY"

200 B$="T.S. ELIOT"
300 Ch=AB & " " & B§
400 PRINT C$

Output:
BY T.S. ELIOT

Any legal alpha expression, including HEX 1literal strings, can be
concatenated with alpha literals or alpha variables. For example:

100 AP = "APRIL IS THE CRUELEST MONTH"
200 C$ = A$ & HEX(2C) & " BREEDING" /* HEX(2C)="," ¥/
300 PRINT C§

Cutput:
APRIL IS THE CRUELEST MONTH, BREEDING

u6

‘D

5.2.3 Relational Operators

Relational operators are used in IF...THEN statements and in the POS
function (see Section 5.6, Numeric Functions With Alpha Arguments) to compare
values of alphanumeric data.

In IF...THEN statements, the values of two strings are compared one
character at a time on the basis of their position in the ASCII c¢ollating
sequence (see Appendix G). In such a comparison, the first characters of each
string are compared. If they are different, the string containing the
character of a higher position in the collating sequence is the greater of the
two. If they are the same, the second characters of the two strings are
compared in the same way; this process is repeated until a pair of unequal
characters is found or until one or both strings is exhausted. If the strings
are of unequal length, the shorter one is treated as though it had enough
trailing blanks to make it the same length as the longer one, and the
comparison continues one character at a time. This usually places the shorter
string earlier in the collating sequence, since few characters have a lower
ASCII value than the space (HEX(20)). If the strings are of equal length and
the comparison shows all characters to be the same, the strings are equal.

The relational operators used with alphanumeric data are the same as
those used for numeric relations. They have the following meanings when used
with alpha data.

Symbol Sample Relation Explanation

= A$ = B$ A3 is at the same position as B$ in the
collating sequence.

< AP < B§ AB preceeds B in the collating sequence.

<= A8 <= B§ A$ preceeds or is at the same position as
B$ in the collating sequence.

> A$ > BS AB follows BS in the collating sequence.

>z AB >= B§ A$ follows or is at the same position as
B$ in the collating sequence.

<> A$ <> BS A$ is at a different position from

B$ in the collating sequence.

5.3 ALPHA ARRAY STRINGS

An entire alpha array can be treated as a single alpha variable wherever
an alpha variable would be allowed. In this case the alpha array is referred
to by its name followed by "()" (the same form used for array-designators).
The array is treated as a single continuous character string, called an alpha

array string, which in memory is equivalent to a row-by-row path through the
elements of the array. For example:

100 DIM AH(2,2)3

200 AB(1,1)="1m:A8(1,2)="2":A$(2,1)="3":A8(2,2)="4"
300 PRINT A$()

47

Output:
1l 2 3 4

Although alpha array strings and alpha array-designators look alike,
their usage is generally determined by the syntax. There are cases, however,
in which both scalars and arrays are allowed. In these cases, an argument
such as A$() will always be regarded as an array-designator, never as an array
string. The statements in which this can occur are:

ACCEPT CALL GET

DISPLAY SUB PUT
Disk I/0 Statements

In these cases STR may be used (e.g., STR (AB())) to indicate that the
variable is to be treated as an array string and not as an array designator.

5.4 ALPHA EXPRESSIONS AND ALPHA RECEIVERS

5.4.1 Alpha Expressions

An alpha expression is either one or a series of literals, alpha
variables, alpha array strings, or alpha functions connected by concatenation
operators (&). Alpha expressions can be evaluated in a variety of VS BASIC
statements. In the following example, valid alpha expressions are boxed:

Ab = [BS]

IDENTS = [NAME§ & "/" & ADDRESS$ & "/" & SOCSECS |

PRINT | TEMPS(I) | ; [HEX(0B) |

IF [STR(PHRASES(I)) | >= | KEY(#1) | THEN REARRANGE

FOR K=1 TO LEN([CUCUMBERS() |)

5.4.2 Alpha Receivers

An alpha-receiver is an alphanumeric item into which data can be stored,
such as a variable or an array. Alpha-receivers are used wherever a value is
"peceived," e.g., on the left side of a LET statement, in the argument list of
a READ statement, etec.

The following are the only legal alpha-receivers in BASIC:
alpha variable (e.g., A$, A$(1,2))

alpha array string (e.g., BS())

STR function¥* (e.g., STR(A$,1,1))

KEY function (see Section 8.5, Intrinsic File I/O Functions)

* Only when the first argument is an alpha-receiver.

48

5.5 ALPHANUMERIC FUNCTIONS

: Eight BASIC functions return alphanumeric values.
Function Meaning Number and type of arguments
ALL(aB) A character string consist- 1 alphanumeric.

ing entirely of characters
equal to the first charac-

ter of a$.

BIN(x,d) An alphanumeric string of d 1 numeric (x), 1 integer
characters whose decimal (d) =1, 2, 3, or 4,
ASCII value is the integer
part of x.

DATE A six-character string None.,

giving the current date in
the form YYMMDD.

FS(#n) A two-character code indicat- 1 file expression.
ing the file status for the
most recent 1/0 operation
involving file #n. (See
Section 8.5, Intrinsic File
I/0 Functions.)

(‘”‘ KEY (i#n) The value of the "key" field 1 file expression.
\ for the last record read

from file #n. (See Section

8.5, Intrinsic File I/0

Functions.)

MASK(#n) The value of the two- 1 file expression.
character alternate key mask
for the last record read from
file #n. (See Section 8.5,
Intrinsic File I/0 Functions.)

STR(a$,n,m) The sub-string of a$ which 1 alphanumeric (a$),
begins at the n-th charac- 2 numeric (n,m).
ter of aP and is m charac-
ters long.

TIME An eight-character string None.
giving time of day to the
hundredth of a second in
the form HHMMSShh.

Further discussion of these functions can be found under their
respective entries in Part 2.

49

NOTE:

The STR function can be used to refer to the entire defined
length of an alpha variable, including trailing blanks, by

of this use.

omitting the second two arguments., See Part 2 for examples

5.6 NUMERIC FUNCTIONS WITH ALPHA ARGUMENTS

VS BASIC supports four functions which take alpha expressions as
arguments and return integer values. These are summarized in the following

table, and described in more detail below.

Function Name Sample Expression Meaning
LEN LEN(X$) The current length of the argument.
NUM NUM(XB) The number of consecutive characters in

the argument, starting at the first,
which form an ASCII representation of a

valid BASIC number.

POS POS(XB="§") The position within the first argument
of the first character that satisfies
the indicated relation (equal to, less

than, greater than)

argument.

with the second

VAL VAL(X$,N) The decimal equivalent of the binary
numeric value of the first N characters

of X$.
5.6.1 LEN

The LEN function requires an alpha-expression as
returns an integer value which is the actual length of
length of a string of all blanks is 1. For example:

LEN("ABCDE") -~ Returns 5.
LEN(EB) -- Returns the actual length of ES.
LEN(STR(E$)) -- Returns the defined length of E$.

Note that the relation LEN(AS&BS)=LEN(A$)+LEN(BS) is always

50

its argument, and
the argument. The

true.

5.6.2 NUM

The NUM function requires an alpha expression as an argument, and
returns an integer value equal to the number of sequential characters in the
argument that form a legal BASIC floating-point constant. Allowable
characters are 0 through 9, E, ., +, -, and space (in the leading or trailing
position), provided that they conform to the syntax for floating-point
constants.

The count begins with the first character of the argument, and ends with
the first character that violates the floating-point syntax. NUM searches the
entire defined length of the argument; if no characters are found which
violate the floating-point syntax, NUM returns the defined length. 1If the
argument is entirely blank, NUM returns 0. Leading and trailing spaces are
included in the count. Thus:

NUM ("1E 88") returns 1
NUM ("1E8 8") returns 4
NUM (" 1E8 8") returns 5

NUM can be used to validate an alphanumeric representation of a number
before attempting to convert it to internal numeric binary form with the
CONVERT statement, described in Part II.

NUM will not stop its search after finding more than fifteen digits in
the numeric constant, even though subsequent attempts to evaluate that number
will ignore all digits other than those belonging to an exponent after the
fifteenth significant digit.

Note that NUM does not check the value of a number; only whether it is
formatted correctly. Thus NUM("1E88") returns 4, even though 1E88 is greater
than the largest allowed floating-point constant.

5.6.3 POS

The POS function requires three components in its argument (not to be
separated by commas): (1) an alpha expression, optionally preceded by a
minus-sign; (2) a relational operator; and (3) a second alpha expression. The
relational operator is taken from the set:

The POS function searches the first string for a character which
satisfies the specified relation to the first character of the second string.
Thus, POS (Ef<="#") searches E§ for a character less than or equal to "#mn,

Comparisons are based on the ASCII-coded values of the characters.
Thus, searching a string for a character less than or equal to " " means
searching a string for a character whose hexadecimal value is less than or
equal to HEX (20), the ASCII value of the space character.

51

The POS function returns an integer value which is the position in the
first expression where the comparison first succeeds. The leftmost position in
the expression is named 1l; the position to the right of that is 2, and so on.
If no character is found within the first expression which satisfies the
relation, POS returns a value of 0.

The optional minus sign to the left of the first alpha expression
indicates the direction of the search. Normally, searches are left-to-right;
if the minus sign is present, the search will proceed from right-to-left. The
entire defined length of the expression is searched until either a match is

found or the expression is exhausted. POS(E$=" ") returns the position of the
leftmost space in E$. POS(-E$=" ") returns the position of the rightmost
space.

NOTE:

When comparing alpha string variables with literal strings
or other alpha variables (e.g., IF A§ < "ABC"), values
are compared character by character. Trailing spaces are
considered equivalent to HEX(20) in determining where to
place each value in the collating sequence. The values
fall at the same location in the collating sequence (i.e.,
they are equal) even if they do not have the same number of
trailing spaces, as long as all their other characters are
equal. For example:

100 DIM A4, BE5, CH5

200 A$="ABC"
300 BB=HEX(41424321) /* HEX(41424321)="ABCI" ¥/
400 C$="ABC "

500 IF AB=BS THEN 800

600 IF A$=C3$ THEN 1000

700 PRINT "A$ NOT EQUAL TO B OR CH." : GOTO 1100
800 PRINT "A$=BH: ";A$;"=";B$

900 GOTO 1100
1000 PRINT "A$=C$: ";A$;"=";C$
1100 END

Cutput:
AS:CB: ABC=ABC

5.6.4 VAL
The VAL function requires an alpha expression as an argument. A digit

whose value is 1, 2, 3, or 4 can be supplied as a second argument; if it is
omitted, a value of 1 is assumed for the second argument.

52

The VAL function extracts up to four characters from the alpha
expression, depending on the value of the second argument, and returns a
decimal integer which is equivalent to the binary value of the extracted
character(s).

VAL(AB) or VAL(AS,l) will simply return the decimal value of the ASCII
code for the first character of A$. For instance, VAL("A",1) is 65,
VAL("B",1) is 66, and so on. The value will range from 0 through 255. The
value returned is the decimal equivalent of character's binary ASCII code, not
the hexadecimal value.

VAL(A$,2) will return an integer whose value is:

(code for lst char.)¥*256 + (code for 2nd char.)
It will be in the range 0 through 65535.

VAL(A$,3) returns a value between 0 and 16777215:

(code for 1lst char.)*65536 + (code for 2nd char.)¥256 +
(code for 3rd char.)

VAL(A8,U4) computes the following value:

(code for 1st char.)¥16777216 + (code for 2nd char.)¥65536 + (code for
3rd char.)¥256 + (code for 4th char.)

This computation requires all 32 bits of the integer; furthermore,
overflow may occur, causing the result to be a negative integer. The value of
the result will range between -2147483648 and 2147483647, inclusive.

The BIN function can be used to extract characters from an integer

expression containing their binary values, reversing the operation performed
by VAL.

5.7 LOGICAL EXPRESSIONS

The alpha operators and functions discussed so far have all involved
manipulation of single characters and strings of characters. It is also
possible to manipulate individual bits within the bytes which represent stored
characters. This is done in a special type of alpha expression called a
logical expression, which can be used only on the right-hand side of an
assignment (LET) statement.

53

Logical expressions are alpha expressions containing any of several
logical operators and have the general form:

[operator] operand [operator operand] ...

where operator is one of ADD[C]

AND
OR
XOR
BOOLh

and where operand is an alpha expression or ALL(alpha expression).

Note that concatenation (&) and parentheses are not allowed within
logical expressions.

5.7.1 Evaluation of Logical Expressions

A statement of the form "LET alpha-receiver = logical expression" is
evaluated as follows:

1.

2,

3.

If the expression begins with an operand, the receiver is assigned
that operand (i.e., like a simple LET statement).

From left to right, the next operator operates on the operand to its
right and the receiver (i.e., the receiver is used as an operand).
In all cases, the defined lengths of both arguments are used, with
the operation proceeding one byte at a time as follows:

Qe

AND, OR, XOR, BOOLh -- The operation proceeds one byte at a time
from left to right. If the operand is shorter than the
receiver, the remaining characters of the receiver are
unchanged. If the operand is longer than the receiver, the
operation stops when the receiver is exhausted. The specific
effects of these operators are described in the next section.

ADD, ADDC -- The operation proceeds one byte at a time from
right to left. If the operand and receiver are not the same
length, the shorter one is left-padded with hex zeros. The
result is right-justified in the receiver, with high-order
characters truncated if the result is longer than the receiver.
The specific effects of these operators are described in the
next section.

The receiver always gets the result of the operation; Step 2 is then
repeated until all operator-operand pairs are used up.

Part of an alpha variable can be operated on by using the STR function
to specify a portion of the variable. For example,

54

™

100 STR(AS,

3, 2) = ADD B$

operates only on the 3rd and 4th bytes of AS.

5.7.2 Logical Operators

In the following examples, assume AP has a defined length of 2 bytes.

AND --

OR ==

XOR ==~

BOOLh--~

ADD --

ADDC -~

Logically ANDs the two operands, one byte at a time, as
indicated in Table 5-1. For example,
LET A$ = HEX(OFOF) AND HEX(OFFO)
Result: A$ = HEX(OF00)

Logically ORs the two operands, one byte at a time, as
indicated in Table 5-1. For example,
LET A = HEX(OFOF) OR HEX(OFFO0)
Result: A$ = HEX(OFFF)

Logically exclusive-ORs the two operands, one byte at a
time, as indicated in Table 5-1. For example,
LET AB = HEX (OFOF) XOR HEX (OFFO0)
Result: A$ = HEX(OOFF)

Performs one of 16 logical operations specified by the value
of the hexadecimal digit h. See the entry in Part 2 under
BOOLh for a description and examples of these operations.

Adds the binary values of the operands, one byte at a time,
with no carry propagation between bytes. For example,
LET A$ = HEX(0123) ADD HEX(OOFF)
Result: A$ = HEX(0122)

Adds the binary values of the operands, one byte at a time,
with carry propagation between bytes (like two long binary
numbers)., For example,
LET A$ = HEX(0123) ADDC HEX(OOFF)
Result: A$ = HEX(0222)

55

Table 5-1. Logical Operations

Operand 1 Operand 2 Result

Logical operator Bit = Bit = Bit =
AND (Result = 1 if both 0 0 0
operand bits = 1. 0 1 0
Otherwise, result 1 0 0
=00) l 1 l
OR (Result = 1 if either 0 0 0
or both operand bits 0 1 1l
= 1. Otherwise, 1 0 1
result = 0.) 1 1 1
XOR (Result = 1 if one 0 0 0
or the other but 0 1 1l
not both operand 1l 0 1l
bits = 1. Otherwise, 1l 1 0

result = 0.)

5.8 SUMMARY OF ALPHANUMERIC DATA FORMATS AND TERMS

5.8.1 Alphanumeric Length

1. ACTUAL OR CURRENT LENGTH (in bytes)
(as determined by LEN function)

a. Alpha Variable -~ Does not include trailing blanks. If all
blank, length=1.

b. Alpha Array String -- Like a single long alpha variable.

c. Alpha-expression -- Length = sum of actual lengths of the
concatenated arguments.

d. STR function -- Length 1is the number of characters
extracted, including trailing blanks.

e. KEY function -- Length is the key length specified in SELECT.

56

C“

2.

f. Literal -- Length is the number of characters within quotes
or the number of hexadecimal digit pairs in HEX.

g. FS function -- Length=2.

h. DATE function -- Length=6.

i. TIME function -- Length=8.

j. MASK function -- Length=2.

k. BIN function -- Length as specified by second argument of
BIN (1,2,3, or 4; default=1l).

DEFINED LENGTH

a. Alpha Variable -- As specified in DIM, COM, or most recent
MAT REDIM. (Default = 16.)

b. Alpha Array String -- Product of 3 dimensions (e.g. row,
column, element length) in DIM, COM, or most recent MAT
REDIM. (Default 10 x 10 x 16.)

c. Alpha-expression -- Except alpha variables and alpha array
strings. Same as actual length.

d. All Other Alpha Forms -- Same as actual length.

5.8.2 Alphanumeric Terms

1.

2.

Alpha

letter
Scalar Variable: letter digit I

underscore

(not to exceed 64 letters, digits, and underscores)

Alpha

letter
Array Name: letter digit R

underscore

(not to exceed 64 letters, digits, and underscores)

57

letter
3. Alpha Array-designator: letter digit eoe 3() ﬁ‘j
underscore
(not to exceéd 64 letters, digits, and underscores)

letter
y, Alpha Array Element: letter digit eee $(expl,exp])
underscore
(not to exceed 64 letters, digits, and underscores)
5. Alpha Variable: alpha scalar variable
alpha array variable
letter
6. Alpha Array String: letter digit oo ()
underscore

(not to exceed 64 letters, digits, and underscores)

(Treated as a single long alpha variable)

7. Literal: (" (any [(any 1")
character character cee
except except
" "
)) >
any any
character character ese
except except G
| | ’

HEX(hh[hh]...)
8. h: a hex digit (0,1,2,...,9,A,B,C,D,E, or F)

9. Alpha Receiver: alpha-variable

STR(alpha receiver[,[exp][,expl])
alpha array string

KEY (file-expression [,exp])

10. Alpha Expression: (alpha-receiver)
(or Alpha-exp) literal

DATE function
TIME function
BIN function \
9 MASK function

FS (file-expression)
alpha-exp & alpha-exp
(alpha-expression)

| STR (alpha-expl,[expl[,[expl]}]))

58

11, Logical Expression:

[operator] operand [operator operand] ...

where:
ADD[C]
AND
operator = BOOLh operand = alpha-expression
OR {ALL function }
XOR

5.8.3 Alphanumeric Operations

l. The following applies to alpha values used in any BASIC functions or
operations:

-

In statements that can alter the values of variables (e.g., LET,
COPY), values of alpha expressions which are not acting as
receivers are copied to a temporary location¥; the value in the
temporary location is ‘then used in whatever operations are
specified. This includes alpha receivers enclosed in
parentheses.

Alpha receivers, on the other hand, are never moved, but are
operated on in place, except in the TRAN statement (described in
where Part 2). The differences in results which may occur
depending upon whether or not an expression is a receiver are
most apparent in the following:

multiple assignment (LET) statements
LET statements incorporating

ADD

AND

OR

XOR

BOOLh
COPY statements

For example,
100 LET AB="A"
200 LET B$="Bv
300 LET A§, Bb, C8 = AB & B /¥ THIS IS A MULTIPLE "LET" %/
400 PRINT A$,B$,C$

prints:

AB AB AB

* An expression is said to be "acting as a receiver" in the context of a
particular statement if it is syntactically a receiver (see Section 3.2,
Constants, Variables, Receivers, and Expressions) and is also e ing assigned
a new value in that statement.

59

When statement 300 is executed, the value of A$ ("A") is
concatenated with the value of B$ ("B") and the result ("™AB")
stored in a temporary location. This string is then copied from
the temporary location into A$, B$, and C$ sequentially. If a
temporary 1location were not used, statement 300 would be
equivalent to

300 LET A8 = AS & BE : LET B = AS & BS : LET CB = A$ & BB
and the program would print
AB ABB ABABB

b. In general, any operation requiring character comparison or
movement is done one character at a time. This applies to each
of the functions listed above.

TRAN always moves the translation alpha expression to a separate
translate table inaccessible to the user. Thus, TRAN may never
translate its own table.

Statements which perform multiple assignments always assign values
from left to right. This applies particularly to LET, INPUT,
ACCEPT, GOSUB'(), READ, and GET. This can be an important
consideration, especially when receivers in the same location are
specified more than once in the receiver list.

60

CHAPTER 6

CONTROL STATEMENTS

6.1 INTRODUCTION

A VS BASIC program is normally executed in ascending line-number

sequence,

with multiple statements on a line executed from left to right. VS

BASIC also provides a number of statements, called control statements, which
can be used to alter the normal sequence of execution.

CALL FOR...NEXT INPUT (some cases)
RETURN IF...THEN...ELSE ACCEPT (some cases)
END ON...GO TO STOP

GOSUB ON...GOSUB Unusual condition and
GOSUB' GOTO error/data conver-

sion exit clauses
for some statements

Figure 6-1. BASIC Control Statements

Control statements provide BASIC with the following facilities:

l.

Halting Execution -- END, if encountered in a program, terminates
program execution and returns control to the Command Processor or
the invoking program or procedure. If encountered in a subroutine,
END returns program control to the calling program (see Number 3).
STOP temporarily halts execution wuntil the user presses the
workstation ENTER key or, under defined conditions, one of the
program function keys.

INPUT, ACCEPT, and STOP temporarily halt execution to enable the
program user to supply the program with run-time data, or, under
defined conditions, to press a program function key. These
statements are discussed in Chapter 7 and under their separate
entries in Part 2.

Unconditional Program Branching -~ GOTO transfers control to the

line number or statement label specified by the GOTO statement. The
GOTO statement is discussed under its entry in Part 2.

61

3. Conditional Branching -- IF...THEN...ELSE enables the program to
test a relationship -- the operand of the IF clause -- and branch
according to the result of the test. If the relationship is true,
the THEN clause is executed and the ELSE clause is not. If the
relationship is not true, the ELSE clause (or in the absence of an
ELSE clause, the next sequential executable statement) is executed

and the THEN clause is not. The IF statement is discussed under its
entry in Part 2.

4. Branching to Subroutines -- GOSUB, GOSUB', and CALL transfer control
to various kinds of subroutines, after their execution, control can
be returned to the main body of the program by RETURN or END. GOSUB
and GOSUB' are discussed under their entries in Part 2; Subroutines
are discussed in Section 6.3, Subroutines; Section 6.4, Internal
Subroutines; Section 6.5, External Subroutines; and under the
entries for the various statements in Part 2.

5. Looping -- A useful feature of BASIC is its ability to repeatedly
execute a defined section of code. This section of code is called a
loop. BASIC provides a pair of statements, FOR and NEXT, that
automatically mark a loop and determine the number of times it will

be executed. FOR and NEXT are discussed under their entries in Part
2.

6. Unusual Condition Exits -- VS BASIC provides a number of exits for
data error and end-of-data conditions which would otherwise result
in termination of a program. These include the DATA, IOERR, and EOD
(end-of-data) clauses in the file I/0 and CONVERT statements. These
clauses in file I/0 statements are discussed in Section 8.6, Error
Recovery, and in the appropriate entries in Part 2.

6.2 STATEMENT LABELS

Any statement in a VS BASIC program may be identified by a statement
label, which immediately precedes it. A statement label (or simply a "label")
may be any string of up to 64 letters, digits, and underscores, provided that
the first character is a letter and that the string is not a VS BASIC
reserved word (see Section 2.2, Statements, and Appendix A). Using labels, a
programmer can write statements which alter the flow of program execution
without having to keep track of line numbers. For example, instead of writing
GOTO 100 (where 100 is a program line number), the programmer can write GOTO
PART2, where PART2 is a statement label. In this case execution continues
with the first executable statement following the label PART2. A label can
occur alone on a line, or at the beginning, middle, or end of a line
containing one or more statements. If a label is followed by one or more
statements on the same line, the label and the following statement must be
separated by a colon. If a label occurs alone on a line or at the end of a
line, the colon is optional.

62

'

The following are some examples of correct and incorrect usage of
@p\ statement labels:

CORRECT:
1. 500 PART2
600 PRINT "ENTER DATA FOR PART 2"
(Label is PART2.)
2. 900 FIRST_TIME ¢ RAISIN=RAISIN+1 : RETURN
(Label is FIRST TIME.)
3. 100 LET CAT=(1l0%*X)/#PI : FIRST : READ Z
(Label is FIRST.)
L, .300 READ NAMES, STREETH, PHONE$: HENRY
350 EXCH$=STR(PHONE$, 5, 3)
(Label is HENRY.)
INCORRECT:
1. 200 NEXT : IF KRISP = 99 THEN 6100

4)

5)

(NEXT is the verb of an executable statement used to terminate a

FOR...NEXT loop and is thus a reserved word. Reserved words cannot
be used as labels.)

700 LAST ONE

800 FOR I=1 TO 100 : READ FRED(I) : NEXT I

(LAST ONE: labels cannot contain embedded spaces. The compiler
would interpret this as being a single label (LAST) and would expect
it to be followed by a statement terminator (a colon or the end of
the source program line).)

400 LET B(J)=SQR(X(J)) : LABEL PRINT B(J)

(LABEL should be separated from the following statement (PRINT) by a
colon.)

1000 CAT&MOUSE : IF CS>MS THEN 1700
(CAT&MOUSEcontains a character ("&") which is not a letter, number,
or underscore and is thus invalid as a label.)

5200 2ND_TIME : GOSUB 7520
(2ND_TIME: the first character of any label must be a letter.)

6.3 SUBROUTINES

A subroutine is a group of program lines which can be invoked from any
point in a program to perform a specific task. When execution of a subroutine
is completed, processing normally returns to the point in the program from
which the subroutine was invoked. The same set of instructions can be

accessed from many different points in a program, with control returning (if
desired) to the part of the program that called the subroutine.

63

VS BASIC provides internal and external subroutines. Internal
subroutines are included as part of the code in the main BASIC source file.
They are invoked by a GOSUB or GOSUB' statement or, under certain
circumstances, by pressing an appropriate PF key while execution is halted by
INPUT or STOP. Subroutines invoked by GOSUB' or a PF Key are marked in the
source file by a DEF FN' statement. Subroutines invoked by GOSUB need not be
marked -- GOSUB transfers control to a specific line number or statement label.

External subroutines are written as independent files, beginning with a
SUB statement. After compilation, they are linked to the main program via the
LINKER utility (see Subsection 1.4.3, The LINKER Utility, Subsection 6.5.3,
Compiling, Linking, and Running, and the VS Programmer's Introduction). The
main program invokes external subroutines by means of the CALL statement.
External subroutines can be linked to any number of calling programs, making
them a useful way to code routines that may be used by more than one program.
An external subroutine has to be coded only once. If it is later changed, it

has to be recompiled only once, and the calling programs do not have to be
modified.

6.4 INTERNAL SUBROUTINES

VS BASIC provides three ways of invoking an internal subroutine: GOSUB,
GOSUB', and the execution-time pressing of program function keys. A brief
summary follows; a full discussion of each statement can be found under the
appropriate entry in Part 2 of this manual.

6.4.1 GOSUB Subroutines

The GOSUB statement branches to a line number or a statement label. For
example:

500 GOSUB 2000 900 GOSUB RABBIT

When executed, statement 500 transfers control to line 2000; statement
900 transfers control to the statement labeled RABBIT. The beginning of the
subroutine need not be specially marked. Any valid BASIC statement can begin
a GOSUB subroutine. For example:

2000 REM THIS SUBROUTINE PRINTS THE CURRENT VALUE OF A
2100 PRINT "A="; A
2200 RETURN

When a GOSUB is executed, the program stores the location of the
statement which invoked the subroutine. At the end of the subroutine, marked
in this case by a RETURN statement, execution continues at the statement
following the GOSUB statement on line 500. If the same subroutine is
subsequently invoked from line 1200, execution continues then at the statement
following the GOSUB statement on line 1200. The end of a GOSUB subroutine is
marked by a RETURN or RETURN CLEAR. RETURN CLEAR causes execution to continue
with the statement following RETURN CLEAR, instead of returning to the
statement after the GOSUB.

64

6.4.2 GOSUB' Subroutines

The GOSUB' statement branches to a subroutine which is marked by a DEF
FN' statement. For example:

500 GOSUB'112

This statement causes control to pass to the statement DEF FN'112. The
range of allowable DEF FN' numbers is 0 to 255. Following execution of the
marked subroutine, control is returned to the statement following the GOSUB'
by a RETURN, or to the statement following the subroutine by a RETURN CLEAR.

The most important difference between GOSUB and GOSUB' subroutines is
that the latter allow the passing of an argument list from the main program to
the subroutine. This is useful where a subroutine may be called from
different parts of a program to perform the same series of operations on
different variables. For example, suppose one wanted to write a subroutine
which would add some variable to the length of an alpha variable. The
subroutine could be written as:

5000 DEF FN'l00 (STRING$, COUNT%)
5100 PIGEON%? = LEN(STRINGS) + COUNT%
5200 RETURN

The subroutine might be called from elsewhere in the program to perform its
operation on a string called PHONE$ and an integer called BOOK% by the
statement

400 GOSUB'100 (PHONES, BOOK%)

When line 400 is executed, implicit assignment statements are performed which
assign the current value of PHONE$ to STRING$ and that of BOOK% to COUNT%. By
this means, the arguments are "passed" to the subroutine. When the subroutine
is completed (by the execution of the RETURN on line 5200), the sum of the
value of BOOK% and the length of PHONES is stored in PIGEON%.

The same subroutine might be called again from a different point in the
program to operate on two different variables:

1500 GOSUB'100 (BOX$, CAR%)
Once again, the result would be stored in PIGEON%.

While this may appear similar to the scheme of dummy variables used in
defining user-defined functions (see Subsection 4.4.2, User-Defined
Functions), there is one very important difference. Dummy variables in
function definitions have no significance beyond the function definition
itself. Thus the function may use as a dummy variable a name which is also
used as a regular ("non-dummy") variable elsewhere in the program, without
affecting the value of that variable. The arguments used in defining a DEF
FN' subroutine, however, are regular variables which are not in any way
distinct from those used in the main program. If a variable used in a main
program is also used in a DEF FN' subroutine, the original value of that

65

variable is lost when the DEF FN' subroutine is called. Consider the
following examples:

Program 1:

100 DUM=1
200 X=16
300 DEF HALF_ROOT(DUM)=SQR(DUM)/2 /* FUNCTION DEFINITION */
400 Y=HALF_ROOT(X) /* SUBROUTINE CALL ¥/
500 PRINT DUM, X, Y
Output:
1 16 2
Program 2:
100 DUM=1
200 X=16
300 GOSUB'100 (X) /* SUBROUTINE CALL %/

400 PRINT DUM, X, Y
500 DEF FN'100 (DUM) /% BEGINNING OF HALF-ROOT SUBROUTINE #*/
600 Y=SQR(DUM)/2

700 RETURN /* END OF SUBROUTINE ¥/
Output:
16 16 2

In the first program, DUM is used in defining the function HALF_ROOT, which is
then called to operate on the value of X. Afterwards, DUM retains the value
it was assigned in line 100. In the second program, DUM is again used to
define the same operation (lines 500, 600). When the subroutine is called in
line 300, however, DUM is assigned the value of X, thus destroying the value
originally assigned in line 100.

Arguments are passed in the exact order in which they appear in the
argument lists -- the first item in the GOSUB' list to the first item in the
DEF FN' list, the second to the second, and so on. Arguments must correspond
in type; an alphanumeric argument cannot be passed to a numeric receiver, and
vice versa. Floating-point arguments may, however, be passed to integer
receivers, and vice versa.

6.4.3 Program Function Keys

The VS workstation has, at the top of the keyboard, 16 Program Function
(PF) keys, each of which can be pressed Wwith or without the SHIFT key for a
total of 32 program functions. BASIC can program any of the PF keys to invoke
the marked subroutines.

Subroutines invoked from the keyboard are marked by DEF FN' statements,

with the restriction that the DEF FN' numbers for subroutines accessible by
the PF keys must be between 1 and 32

66

(instead of 0 to 255, as with the GOSUB! statement). A DEF FN' subroutine can
be invoked from the keyboard whenever execution has been temporarily halted by
a STOP or INPUT statement. At this time, depressing a PF key will cause
control to pass to the DEF FN' subroutine corresponding to that PF key. For
example:

500 STOP

2000 DEF FN'l

Pressing PF 1 when execution is halted by the STOP at line 500 invokes the
subroutine marked by DEF FN'l. Keying ENTER causes the normal sequence of
execution to continue with the statement following STOP. Depressing a PF key
for which there is no corresponding DEF FN' subroutine in the program causes
the workstation alarm to sound and the key is ignored.

Keyboard subroutines operate in the same manner as GOSUB' subroutines,
with one exception. A RETURN statement passes control back to the STOP or
INPUT statement, instead of to the following statement. Thus, DEF FN'
subroutines can be invoked repeatedly from a STOP or INPUT statement.

NOTE:

To avoid unintended transfers to marked subroutines, it is
recommended that numbers 1 - 32 be used only for those
subroutines meant to be invoked by PF keys.

6.5 EXTERNAL SUBROUTINES

A second class of subroutines are not contained in the body of the
program (the same file), but instead reside in a separate file. Such
subroutines, referred to as "external subroutines" or "subprograms" are
defined with the SUB statement and invoked with the CALL statement. In
general, a BASIC source file can contain either a main program or subprogram.
Subprograms are distinguished by the fact that their first statement, other
than REM, must be the SUB statement.

6.5.1 Operation of External Subroutines

The SUB statement declares a program to be a subroutine and specifies
the subroutine name, allowing it to be referenced in CALL statements. The
CALL statement transfers control from one program (called the calling program)
to the beginning of another program (the external subroutine), which is
referenced using the name specified in the SUB statement. The point at which
the CALL statement occurs in the main program is saved, so that control may
later return to that point. A subroutine may contain one or more CALL

statements, by which it calls other subroutines. A subroutine cannot call
itself.

67

When control is passed to an external subroutine by a CALL statement,
the normal sequence of execution is followed in the subroutine until an END
statement is encountered in the subroutine. Control then returns to the
statement following the last CALL statement executed.

In a calling program, a CALL statement invokes an entire sequence of
statements, in whatever order they are contained in the subroutine, without
affecting the overall flow of control in the calling program.

In both form and operation, external subroutines are self-contained
programs; they must, however, begin with the SUB statement and, in some cases,
operate on values obtained from the calling program. Once the external
subroutine has been called, the only way execution can pass back to the
calling program is by the execution of an END statement. All branching
instructions (GOTO, IF...THEN...ELSE, GOSUB, GOSUB', etc.) in an external
subroutine refer to line numbers or statement labels within that subroutine.
For example, it is not possible to GOTO a statement outside the subroutine.
Note that this differs from internal subroutines, which may branch to any
portion of the calling program.

6.5.2 Form of External Subroutine Calls and Definitions

An external subroutine is any BASIC program having a SUB statement as

its first statement (other than REM). The general form of the SUB statement
is:

SUB "name" [[ADDR] (argl, argl ...)]

where "name" is the name of the subroutine, consisting of any string of 1 to 8
alphabetic or numeric characters (including €, #, and $). The presence or
absence of the word ADDR specifies the way in which the optional arguments are
to be passed between the calling program and the subroutine.

An external subroutine is called by a CALL statement in another
program. The general form of the CALL statement is:

CALL "name" [[ADDR] (argl, argl ...)]
where "name" is the name specified in the SUB statement of the subroutine

being called. Again, the word ADDR and the optional argument list specify the
form of argument passing to be used.

NOTE:

The name of the subroutine is defined by the literal in the
SUB statement, not by the name of the file containing the
subroutine. These two names need not be the same.

68

6.5.3 Compiling, Linking, and Running

Each main (calling) program and each external subroutine is entered into
a separate source file using the EDITOR. The BASIC compiler must be called
separately for each program and external subroutine to produce an object file
for each one. Thus, in writing a program which used two external subroutines,
three source files would be created (one for the calling program and one for
each of the two subroutines). The BASIC compiler would then be run three
times, once to compile each of these files, resulting in three object files.

Before the program and subroutines can be run, the object programs must
be linked together. Linking is the process of merging multiple object modules
into one. Linking programs and external subroutines is done by a VS utility
program called LINKER, which is run from the VS Command Processor. LINKER
resolves subroutine name references between object modules to produce a single
object module which can then be run. LINKER asks the user for the names of
all the object files to be linked together and then requests a name for the
single output file. The files are then linked and the final output file
generated.

The original program and subroutines can then be run from the Command
Processor as one would run any other program, using the program name specified
as the output file for LINKER. For further details on how to use LINKER, see
the VS Programmer's Introduction.

6.5.4 Passing Values to External Subroutines

Since calling programs and external subroutines are written and compiled
as separate programs, there must be a way of passing data between them if
subroutines are to process any of the data used in a calling program. In
BASIC, values are passed in one of two ways:

1. The values may be made arguments of the subroutine. An argument of
a subroutine is a value which may be operated on by action of the
subroutine. Arguments are enclosed in parentheses following both
the CALL and the SUB statements.

2. The values may be stored as common variables (or "placed in
common")., Common variables are variables that are stored in a
particular area of memory accessible to all programs and subroutines
that are run together. Variables are placed in common using the COM
statement (see Subsection 6.5.4, Passing Values to External
Subroutines and the COM statement entry in part 2).

69

Arguments

The arguments in a SUB statement must be either variables, array
designators, or file numbers. These arguments are dummy variables (like those
in user-defined function definitions; see Subsection 4.4.2, User-Defined
Functions) which indicate the names which will be used in the subroutine to
refer to the arguments specified by any particular CALL to that subroutine.
The actual names used for dummy variables are significant only within the
subroutine and need have no connection with names used in a calling program,
except for type correspondence, described in Subsection 6.5.6, Argument Types.

Arguments of a CALL statement must be numeric or alpha expressions, or
file expressions., Their values are passed one by one to the dummy variables
in the SUB statement of the external subroutine at run time. The value of the
first expression in the CALL argument list is passed to the first dummy
variable in the SUB statement, the second to the second, and so on.

Values are passed back to the calling program when the subroutine ENDs,
provided the arguments in the CALL statement are receivers. A subroutine
cannot manipulate or examine any value used in the calling program unless it
is passed through an argument list or common storage. For example:

Calling program:

100 A=10 : X=500
200 CALL "DOUBLE"(A)
300 PRINT A, X

Subroutine:

100 SUB "DOUBLE"(X)
200 X=2%*X
300 END

Qutput:
20 500

Note that although both programs use variables called X, only the value of A
is passed to the subroutine's X since it is the only argument specified in the
CALL statement. The subroutine's X is a dummy variable which, in this case,
is temporarily assigned the value of A. The subroutine doubles the value of
the argument (in this case, A) and then passes this value back to the calling
program when the subroutine ends. The value of the variable called X in the
calling program remains unchanged.

70

When an array or an alphanumeric value is used as an argument of an
external subroutine call, BASIC normally passes a descriptor of the value to
the subroutine, rather than the actual value. A descriptor is a set of data
which specifies:

1. The type of the argument (alpha scalar, alpha array, integer array,
or floating-point array).

2. The length of the value if it is alphanumeric (element length if an
alpha array).

3. The dimensions of the argument if it is an array.

4, The address in memory at which the value is stored (a "pointer" to

the values.

This scheme of passing descriptors between calling programs and subroutines is
normally used when BASIC subroutines are called from BASIC programs.
Subroutines and calling programs written in other languages (e.g., COBOL,
Assembler) use a different scheme in which only the address of the value is
passed. To enable BASIC programs and subroutines to be linked and run with
programs and subroutines written in either BASIC or some other language, two
forms of CALL and SUB are available.

1. Non-ADDR Form -- The standard BASIC argument-passing scheme that
passes/accepts the descriptors constructed for arrays and
alpha-expressions. With this form, any dimensions or lengths
specified within the SUB program are ignored, since they are
specified by the descriptors. Only the vector/matrix/scalar
distinction is significant. Examples:

700 CALL "INVOICE" (PN%(), Q%())
100 SUB "INVOICE" (PART NO%(), QUANTITY%())

2. ADDR Form -- Generally used when either the calling program or the
subprogram is non-BASIC; Its effect differs depending on the
statement in which it is used:

CALL: The ADDR form of CALL causes all argument-passing to be done
via pointers to the actual values; descriptors are not
constructed. This method of argument-passing will properly
pass arguments to non-BASIC (e.g., COBOL) programs, which
always assume that there are pointers directly to the data.
Example:

900 CALL "PLOT" ADDR (HB, V§)

71

SUB: The ADDR form of SUB causes the program to assume that
argument-passing was done as described in CALL i.e., without
descriptors. (Such CALLing may have been done from a COBOL
program, for example.) However, this implies that the
dimensions and lengths used must be those specified within
the SUB subroutine. Thus, these dimensions and lengths (or
defaults, if omitted) are significant, unlike in the
non-ADDR form. Example:

100 SUB "PLOT" ADDR (XB, YB)
200 DIM X$ 100, Y$ 100

NOTE:

Languages other than BASIC use different internal formats
for representing numeric data. Numeric data to be passed
between BASIC and non-BASIC program modules must be
converted to the appropriate format. Programmers planning
to write BASIC programs or subprograms which call or are
called by programs in other languages should see Appendix D
for information on compatability of numeric data formats
and data conversion routines.

Common Variables

Certain variables may be made accessible to all programs and subroutines
that are linked and run together by use of the COM statement. A COM statement
must appear in all of the programs and subroutines which are to be run
together if the programs are to manipulate or examine any of the same data.
The COM statement in each program must precede any reference to any variable
which is to be stored in common.

The COM statement consists of the word COM followed by a list of alpha
or numeric scalar or array names. Array names may be followed by one or two
integers in parentheses giving the dimensions of the array. If these
dimensions are omitted, the default dimensions assumed are 10 rows by 10
colums. Alphanumeric scalars or array names may be followed by an integer
giving the length, in bytes, of the scalar or the elements of the array. If
the length imdicator is omitted, a default length of 16 bytes is assumed. For
the general form of the COM statement, see Part 2.

As is true with passed arguments the names used for common variables in
a subroutine need not correspond with those used in the calling program,
except in type (e.g., integer, alpha, array, etc.). Common variables
referenced in calling programs and subroutines are associated with each other
by their position in the COM statements. This means that, in many cases, a
subroutine may require a COM list which includes variables not actually used
by the subroutine, simply to indicate where in the common area certain needed
variables are stored.

72

'J

For example, in

100 COM AB5, B%, C(100), D
200 CALL "SuBl"
300 CALL "sus2"

suppose that "SUBL" is a subroutine which performs some operation on the
100-element array called C() in the main program, and that "SUB2" operates on
the other variables in the COM list (line 100). Even though "SUB1l" does not
need to access A$ and B%, they must be accounted for in a COM statement so
that the subroutine can find the 100-element array in the common area. If

100 SUB "SUB1"
200 COM X(100)

was written, the subroutine would look for the 100-element array, called X()
in the subroutine, at the beginning of the common area. In fact, the first
item in the common area is a 5-byte character string, called A$ in line 100 of
the calling program. The subroutine would read the beginning of A$ as the
beginning of its 100-element array, which would not produce the intended

results when the program is run. A correct form for the subroutine's COM
statement is

200 COM M5, N%, X(100)

In this case, even though "SUBL" actually needs to use only array X(), it will
look for it after a 5-character alpha string and an integer in the common
area. The last item in the common area, a floating-point variable called D by
the calling program, need not be specified in the subroutine COM statement

since it occurs in the common area after the only variable needed by the
subroutine.

NOTE:

No variable name occuring in the argument list of a SUB
statement may occur as another argument of the same SUB
statement, nor in a COM statement in that subroutine.
However, calling programs may pass common variables to a
subroutine as arguments in a CALL statement.

6.5.5 Initialization of Subroutine Variables

The variables in the argument list will receive their arguments from the
calling program when the subroutine is called. All other variables (local
variables) are initialized when the BASIC program is first executed. String
variables are initialized to all spaces; integer and floating-point variables
are initialized to zero. However, this initialization occurs only once in the
execution of a BASIC program.

73

Local variables are not reinitialized on subsequent calls. One
application of this feature is as follows:

100 SUB "HOOPOE"(arg,arg,...)

200 REM Let I be a variable which is not in the argument
250 REM list above.

300 IF I<>0 THEN 700

400 REM Place here statements which are to be

450 REM executed only the first time the subroutine

500 REM is ever called.

600 LET I=1

700 REM The subroutine continues.

9900 END

The first time the subroutine is executed, the variable I is set equal to zero
(as are all others not in the argument list). When line 300 is executed, the
condition of the IF statement is not satisfied, and execution proceeeds
through lines 400 and those following. In line 600, the value of I is set to
1. On all subsequent calls to the subroutine, I will retain this value; when
line 300 is executed during a subsequent subroutine call, the IF condition
will be satisfied and the statements between line 300 and 700 will be skipped.

6.5.6 Argument Types

As discussed above, the name of an argument passed to a subroutine is
not significant in making the connection between calling-program variables and
subroutine variables. What is significant is the argument's position in the
argument list or common block. Thus, the variable name listed first in the
parentheses in the SUB statement or first in a COM list will be the name used
by the subroutine to refer to the first argument passed by the CALL statement
or specified in the calling program's COM statement. The second variable name
will be linked to the second argument in the CALL statement or COM list, and
so on, For example:

15700 CALL "DANAUS"(A,B,C,D,E)

100 SUB "DANAUS" (I,J,K,A,B)
In this example, the variable name A in the subroutine refers to the variable
D in the calling program. If the subroutine intends to access the calling

program's variable A, it must use the symbol I. The same is true if variables
are passed through common storage:

100 COM A, B, C, D, E

2300 CALL "PLUMBER"

100 SUB "PLUMBER"
200 CoMI, J, K, A, B

T4

If a receiver is placed in the argument list of a CALL statement, the
subroutine may transmit a value back to the calling program by assigning a
value to the corresponding variable in the argument list of a SUB statement.
However, an expression of arbitrary complexity may appear in the argument
list of the CALL statement. If the expression is not a receiver, the
subroutine may not return a modified value for that argument to the main
program. The subroutine may use the corresponding variable from the SUB
statement as a receiver; doing so will produce the usual effects during the
duration of that call to the subroutine, but no detectable effects after the
subroutine returns to the calling program.

For example, constants, literals, and complex expressions may occur in
the argument list of a CALL statement. This precludes the possibility of the
subroutine returning a value to the calling program by the use of that
particular element.

Whether a receiver or an expression occurs as an argument in a CALL
statement, its type must match the type of the corresponding argument in the
SUB statement it calls.

If the n-th .+.then the n-th argument of
argument of a SUB any CALL statement that
statement is... calls it must be...

an alpha scalar, an alpha-expression.

such as: X$

an integer scalar, an integer expression.
such as: X%

a floating-point a floating-point expression.

scalar: X

an array an array-designator of the same type
designator: X$() (integer, string, floating-point).

a file-number: #3 a file-expression SELECTed by
the calling program or passed to it as
a parameter.

Note that BASIC will not implicitly convert a numeric quantity in a
CALL statement from integer to floating-point, or vice versa, to make its
type mateh the type in the argument list of a SUB statement.

Entire arrays may be passed from a calling program to a subroutine.
Only the array-designator-- for example, E() or MB()-- is used as an argument
in the CALL statement. The SUB statement must contain, in the corresponding
position, an array-designator of the same type (floating-point, integer, or
string) as the designator in the CALL statement. The designator used in the
SUB statement declares the name by which that array will be referenced in the
subroutine. Subroutines can also access arrays used by the main program if

the array is declared in COM statements in both programs, as with scalar
variables.

75

An alpha array string (see Section 5.3, Alpha Array Strings) cannot be
passed to a subroutine in the usual manner. If the array string M§()
occurred as an argument in a CALL statement, it would be interpreted as an
array-designator for the array MB, and not as the array string. An array
string may be passed to a subroutine by using the expression STR(M$()) as an
argument in the CALL statement.

NOTE:

Array strings longer than 256 bytes will be truncated.

The number of subscripts associated with a variable must be consistent
between the calling program and the subroutine. If the array passed is
two-dimensional (a matrix), it must be used as a matrix in the subroutine. If
it is one-dimensional (a vector), it must be used as a vector in the
subroutine. A DIM statement should appear in the subroutine to declare each
array argument as either a vector or a matrix. In the DIM statement, the
supplied dimensions are irrelevant; the actual upper 1limits are those
specified in the array descriptor passed from the calling program. In fact, a
MAT REDIM statement (see Subsection 9.2.4, Array Dimensioning) may occur in a
subroutine, and the redimensioning of the matrix will remain in effect when
control returns to the calling program, unless the subroutine is ADDR type
(see Subsection 6.5.4, Passing Values to External Subroutines). In that case,
the effects of the MAT REDIM last only until control returns to the calling
program.

NOTE:

If an array whose designator does appears in the SUB
statement does not appear in a DIM statement in the
subroutine, it is assumed to be a matrix.

A file-expression may be passed from a calling program to a subroutine.
For instance, if CALL "SUBROU"(#2) calls SUB "SUBROU"(#1), then the subroutine
may perform input and output on file #1 (e.g., READ #1 or WRITE #1). The
actual file used will be the file which the calling program refers to as #2.
Unless linkage is made in this manner, any file selected by the calling
program will be inaccessible to the subroutine, and any files selected by the
subroutine will be inaccessible to the calling program. Files may be selected
by the subroutine whether or not a file with the same number has been selected
by the calling program.

76

6.5.7 Use of External Subroutines

éﬁ External subroutines might be preferred over internal GOSUB or GOSUB'
' subroutines. The reasons for this are:

1.

A program may be more manageable when broken down into separate
subroutines in separate files. Division into subroutines may
reflect the logical division of function within a program.

A file containing a subroutine may be linked in with several
different main programs if the subroutine performs a task common to
all the main programs. If changes are made to the subroutine, there
is only one copy of the source file for that subroutine which has to

be updated. None of the source files for the main programs have to
be modified.

BASIC programs may call subroutines written not only in BASIC, but
also in other languages; subroutines can also be written in BASIC to
be called by programs in other languages. Thus, the CALL and SUB
statements form BASIC's primary interface to other languages, such
as COBOL and Assembler.

77

CHAPTER 7
WORKSTATION AND PRINTER INPUT/OUTPUT

7.1 INTRODUCTION

VS BASIC contains a group of statements to facilitate I/0 operations to
the workstation and printer. These statements provide the capability to
receive and validate operator-entered data from the workstation, and to
create formatted screen output for display at the workstation and formatted
print output for the printer. (VS BASIC also supports output to the printer
through printer files. See Subsection 8.2.2, File Types, for a discussion of
printer files,)

T.1.1 Output

The statements intended purely for data output are:

PRINT -- Used to print data on the printer, or display data at the
workstation, one line at a time. The output device is determined by a
SELECT statement. The data can be directed to specific positions on
the workstation screen with the AT clause, or can be formatted with a
USING clause and an auxiliary formatting statement (see Section 7.4,
The USING Clause and Format Control Statements). The screen is not
cleared before the data are displayed. For a general description of
the PRINT statement, see Part 2.

DISPLAY -- Used to output a formatted display to the workstation, using
the entire screen. DISPLAY clears the screen before beginning data
output so that the new display is constructed only of the contents of
the DISPLAY statement. The output of DISPLAY is intended only for the
workstation screen, and cannot be directed to the printer. For a
description of the operation of the DISPLAY statement, see Section 7.4,
The DISPLAY Statement.

All VS BASIC input statements can also be used to some extent to output
data or messages to the workstation. None of this output, however, can be
directed to the printer. The INPUT and STOP statements can each be used to
output a one-line message, with no control over data format or position on
the screen. The ACCEPT statement can also output an entire screen of data
and literal messages in the same manner as DISPLAY. For descriptions of the
INPUT and STOP statements, see Part 2 of this manual. ACCEPT is discussed in
Section 7.5, The ACCEPT Statement.

78

gﬁ\

7.1.2 Input

The statements used for data input are:

INPUT -- Used to receive data entered from the keyboard on a
line-by-line basis. A message can be inserted in an INPUT statement, to
be displayed before the question mark INPUT automatically displays. PF
keys can be used in response to an INPUT statement to initiate a branch
to a marked subroutine (see Subsection 6.4.3, Program Function Keys).

ACCEPT -- Used to create a formatted display using the entire screen
(the screen is cleared when ACCEPT begins execution) and then receive
and validate data entered by the operator in response to this display.
Current values of receivers in an ACCEPT statement are displayed, and
may be altered by the user. ACCEPT can control positioning of data and
literals on the screen, as well as format and display mode of data
(bright, dim, flashing, etc.). Data entered to an ACCEPT statement can
be automatically validated by type (alpha or numeric) and range of
values; data not of the appropriate type or value is rejected and must
be re-entered by the user. ACCEPT can also perform branches to other
statements based on the use of PF keys and on whether or not displayed
data values are altered. ACCEPT cannot branch to marked subroutines, as
can INPUT. The ACCEPT statement is discussed in detail in Section 7.5,
The ACCEPT Statement, and in Part 2.

7.2 PRINTER OUTPUT

Most printers have 132 columns, numbered left to right from column 1
through column 132. The columns are divided into seven zones; zones begin in
columns 1, 19, 37, 55, 73, 91, and 109. All 2zones occupy 18 character
positions, except the rightmost zone, which is 24 characters wide.

Data can be output to the printer by using the PRINT statement after a
SELECT PRINTER statement has been executed. Either 1literals or the current

value of any variable or expression may be output, using a wide variety of
formats.

The PRINT statement actually moves data to a line buffer for the
printer. The contents of the line buffer is printed only when an implied or
explicit move to the next line occurs (e.g., via the SKIP clause of a PRINT
statement or via a PRINT statement with no trailing semicolon) or when data
overflows the capacity of the line buffer. When the contents of the buffer
has been printed, it is cleared and restarted at the first position.

The BASIC program may conclude a print operation by printing the
contents of the line buffer with or without advancing to the next line (line
feed). No line feed allows a program to overprint one line with another; line
feeds are suppressed by ending a PRINT statement with a semicolon. See Part 2
for details. The program may also cause an arbitrary number of blank lines to
be fed from the printer (with the SKIP clause of the PRINT statement).

79

Normally, if the BASIC program outputs too many characters to fit on the
current print line, as many characters as possible are placed in the line
buffer, the contents of the buffer are printed, and the remaining characters
are moved to the start of the buffer for printing on the next line. This is
equivalent to the "wraparound" phenomenon in workstation output (see
Subsection 7.3.1, Wraparound).

For details on the use of the PRINT statement, see Part 2.

7.2.1 Expanded Print

Wang VS BASIC also provides expanded print capabilities. When a printer
has been SELECTed, double width letters may be printed on a line-by-line
basis. The command PRINT HEX(OE) as the first character of a line will
initiate the expanded print, which will continue until a carriage return is
encountered. The maximum number of expanded print characters that will fit on
a line is 61. The carriage return automatically cancels the expanded print
option. If multiple lines of expanded print are desired, each line must begin
with the PRINT HEX (OE) command.

7.3 WORKSTATION INPUT/OQUTPUT

The workstation display contains 24 rows of 80 characters, for a total
of 1920 character positions. Each character position in the display can be
referred to by its row and column number. Thus, position (1,1) is the first
position on the top row; position (24,1) is the first position on the bottom
row. All the positions in a row form a line. The PRINT statement further
divides each line into zones which begin at columns 1, 19, 37, and 55 (these
correspond to the zones used in printer output).

7.3.1 Wraparound

The entire workstation screen can be thought of as one sequential record
containing 1920 bytes (actually, the record contains 1924 bytes, of which the
first 4 are control characters normally transparent to the user). The order
of bytes is from left to right within each line, and from each line to the one
below. Thus, a character position to the right of another position on the
same line is thought of as being "beyond" the position to its left.
Similarly, a character position on a physically lower line of the screen is
"beyond" a character position on a physically higher line. Each line is
considered to "wrap around" to the next line: column 1 of any line is thought
of as directly following column 80 of the line above it. Thus, if a string of
characters is directed to be output to a line on which there is not enough
space remaining to fit the specified characters, as many as possible will be
displayed on the current line, and the rest will be displayed on the next line
down, However, that column 80 of line 24 (the "end of the screen") does not
wrap around to column 1 of line 1.

80

7.3.2 Scrolling

\ If wraparound occurs when the cursor is at the end of the screen, or if
the cursor is explicitly directed to move down one line when already on the
bottom line of the screen, all data then displayed on the screen is shifted up
one line, so that the cursor appears to move down relative to the text on the
screen. This operation is called an "upward scroll" or "roll-up." In like
manner, a command to move the cursor up past the top line of the screen will
result in all the text displayed on the screen shifting down one line -- a
"downward scroll® or '"roll-down."

In a scroll, a new line filled with spaces (ASCII code HEX(20)) appears
on the screen, and one line leaves the screen. The data on the line which
leaves the screen is not recoverable by the program.

7.3.3 Field Attribute Characters (FACs)

Any position on the screen may contain any 8-bit (1 byte) binary code.
The codes from HEX(00) to HEX(7F) represent characters which can be displayed
on the workstation screen. HEX(20) is the "space" or "blank" character.
HEX(00) also displays as a blank.,

The codes from HEX(80) to HEX(FF) are Field Attribute Characters
(FACs). FACs also occupy character positions, but do not display a graphic
character. FACs define the start of a field and contain information which
will be applied to all character positions beyond it until either another FAC

occurs or the end of the line is reached. This information governs the
(“\ following decisions:

1. Whether the field will be displayed bright, dim, blinking, or
nondisplay (i.e., displayable characters of the field will be
suppressed). These four options are mutually exclusive.

2. Whether an underline will appear in all character positions in that
field, or in none.

3. Whether or not the field is modifiable by operator input (protected).

4, Whether (a) no restrictions are placed on operator
input, (b) lowercase letters input will be capitalized, or (c¢) only
digits 0 through 9, decimal point, and minus sign will be allowed as
input. Note that this affects only input; any characters can be
output in any field type. This information is irrelevant if the
field has already been declared "protected" by Option 2.

Appendix G contains a list of the Field Attribute Characters.
When BASIC programs are running, the conditions assumed at the start of

each line are: (1) dim display, (2) not underlined, and (3) protected. There

is an "assumed" FAC (HEX(8C)) with those characteristics to the immediate left
of column 1 of each line.

-

81

The programmer may output FACs at any time by specifying the correct
hexadecimal code in any screen I/0 statement. For example, /"§

300 PRINT HEX(94);

places on the screen at the current cursor position a FAC which causes data
displayed to its right to be blinking, with no underlining, and protected.

The INPUT statement places a FAC (of HEX(81)) in the screen buffer to
the left of the field where input is to occur, thus setting that field to
"bright, no-line, modifiable, uppercase."

The ACCEPT statement causes a FAC to be placed before each input field.
This FAC will normally specify (1) bright display, (2) not underlined, and (3)
modifiable. The setting of Option 4 depends on the type of item to be input
in that field. If a string is to be input, the setting will be "no
restrictions on input" (HEX(80)). If a floating-point number is to be input,
the setting will be "uppercase only" (HEX(81)), to allow input of +, -, ., and
E. If an integer is to be input, the setting will be '"numeric only"
(HEX(82)). The programmer may override these FAC values by making an explicit
specification with a FAC claus in the ACCEPT statement. (See Subsection
7.5.1, Screen Formatting.)

Unless the input field is followed immediately by another input field,

the ACCEPT statement places an additional FAC (HEX(8C)) at the end of the
field to revert the display to the default settings.

7.4 THE USING CLAUSE AND FORMAT CONTROL STATEMENTS '

The PRINT statement and a number of file I/0 statements (see Section
8.4, The File I/0 Statements) can use an auxiliary statement to define the
format of data to be output or input. This format-control option is specified
by including a USING clause, which contains the line number or statement label
of either a FMT statement or an Image (%) statement. For example:

15600 PRINT USING RADISH, list of expressions

33200 RADISH: FMT list of format specifications

67200 %0utput image

73600 PRINT USING 67200, list of expressions and/or literals

Note that the position in the program of the FMT or % statement relative to
the statement containing the USING clause is irrelevant.

The FMT and % (Image) statements are nonexecutable statements which
contain formatting information for an I/0 statement containing a USING clause.

-

82

7.4.1 The FMT Statement

A FMT statement consists of the reserved word FMT, followed by a list of
control specifications, data specifications, and literals. Control
specifications are clauses that determine the placement of data; they specify
tab stops, column positions, and numbers of spaces or lines to be skipped.
Data specifications are clauses that determine the type and format of
particular data values to be input or output: alpha or numeric, number of
digits to each side of decimal point, retention or suppression of leading
zeroes, etc. For the general form of the FMT statement and a list of the
kinds of control and data specifications, see Part 2.

Example:

FMT COL(10), CH(8), XX(2), PIC(####.##)
The control and data specifications in this statement are:

COL(10) Control specification indicating that the first data
item begins at the tenth position on the workstation or
printer line (or, if used for file I/0, the tenth byte
of the record).

CH(8) Data specification for an alphanumeric ("CHaracter")
value 8 characters long.

XX(2) Control specification indicating that two spaces are to
be skipped.

P IC (#HiH#) Data specification giving an "image" or "picture" of a
numeric value with four digits to the left of the
decimal point, two to the right.

7.4.2 The Image (%) Statement

An Image (%) statement consists of the single character "%" followed by
an image or "picture" of how the output data will look. Fields of number
signs (#) act as data specifications, which show where and how data values
will be input or output. Unlike in the FMT statement, there are no control
specifications; the information which would be given by control specifications
in a FMT statement is given in an Image (%) statement by the actual layout of
the fields of number signs. Special editing characters in these fields
indicate the placement of signs, decimal points, commas, exponent fields and
other special characters used with numeric data. Fields which describe
separate data items must be separated by one or more spaces. For a detailed
description of the Image (%) statement, see Part 2.

Example:

% i UNITS @ SitiHHE it

83

This statement has two data specification fields and a literal. The
first data specification field is three characters 1long, beginning at the
fourth character position of the workstation or printer line (fourth byte of a
record if used for file I/0). This is followed by the literal "UNITS @" and
the second data specification field, eight characters long, beginning at the
18th character position (byte). Either alpha or numeric data could be input
or output through either of these data specification fields. Numeric data
output through the second would appear with two digits to the right of the
decimal point, and a dollar sign to the left of the leftmost digit.

7.4.3 Use of FMT and Image (%) Statements

PRINT and file I/0 statements with USING clauses may contain a list of
expressions which are to be output. Starting at the beginning of the list,
items from the list of the PRINT or file I/0 statement must correspond with
the data specifications in the FMT or Image statement. Thus, to print a
numeric value followed by an alpha value through an FMT statement, the FMT
statement must contain a numeric data specification followed by an alpha data
specification. For example:

1400 PRINT USING JUVENESCENCE, MAGNITUDE, NAMES$
1500 JUVENESCENCE: FMT PIC(####), CH(16)

prints the current value of MAGNITUDE using the specification PIC (####), and
then prints the current value of NAME$ using the specification CH(16). Any
attempt to input or output data through an FMT or Image (%) statement whose
data specifications do not match those of the data actually presented will
result in a data conversion error at run time. If the error is caused by a
PRINT statement, eXecution halts and an error message is displayed. If caused
by a file I/0 statement, the branch indicated in the data error exit clause
(see Section 8.6, Error Recovery) is taken; if no data error exit was
specified, execution halts with an appropriate error message.

If there are more items in the PRINT or file I/0 statement than there
are data specifications in the FMT or Image (%) statement, the FMT or Image
(%) statement is reused, as though it were replicated as many times as
necessary to accommodate the remaining items in the 1list of the I/0
statement. An error message will be produced if a PRINT or file I/0 statement
with a non-null argument list is used in conjunction with a FMT or Image (%)
statement containing no data specifications. In PRINT USING, subsequent
output will occur on the next line down unless the item in the PRINT USING
statement which exhausted the FMT or Image (%) statement was followed by a
semicolon.

If there are more data specifications in the FMT or Image (%) statement
than there are items in the PRINT or file I/0 statement, the remainder of the
FMI or Image statement is ignored. The I/O operation ends at the first data
specification without a matching item from the I/0O statement. This situation
can also occur when an FMT or Image statement is reused, but contains more
data specifications than there are items remaining in the I/0 statement.

8y

For example,

1100 B-#i## XYZ —#i## d
1400 PRINT USING 1100, E, F, G

will display the current contents of E using the Image "-###", then the
literal "XYZ", and then the current contents of F, using the image "-###.##".
Now G remains in the PRINT USING list, but the Image (%) statement is
exhausted. Therefore, the process is begun again, and since F and G are
separated by a comma instead of a semicolon, subsequent display will occur on
the next line down. G is output using the image "-###" and XYZ is printed on
the same line. Printing stops here, since there are no more arguments to use
the next data specification.

7.5 THE ACCEPT STATEMENT

ACCEPT is the most versatile of the VS workstation I/0 commands. A
single ACCEPT statement displays a formatted screen of data at the
workstation, which wmay include literal messages as well as the values of
numeric and alpha expressions. New values can be entered by the user for
receivers displayed on the screen. Note that ACCEPT processes an entire
screen full of data at one time, instead of one line at a time, as is done by
INPUT. An ACCEPT statement consists of the word ACCEPT, followed by a list of
items to be displayed on the workstation screen. A single ACCEPT statement
may perform any or all of the following functions, depending on the use of

various optional clauses:

l. Output literal messages.

2, Display current values of variables and alpha receivers in an
optionally specified format (PIC, CH clauses).

3. Control placement of displayed literals and receivers (AT clause).
4, Control display mode of displayed receivers (FAC clause).
5. Accept modifications to the values of displayed receivers.

6. Validate modifications to receivers to confirm that they are within
a specified range of values (RANGE clause).

T. Accept input from Program Function Keys (KEYS, KEY clauses).

8. Branch to different places in a program depending upon the user's
response to the ACCEPT statement (ON and NOALT clauses).

For the general form of the ACCEPT statement, see Part 2. The following
sections illustrate the use of each of the optional clauses by example.

85

7.5.1 Screen Formatting

Fields

When an ACCEPT statement is executed, the entire screen is cleared and a
screen is displayed containing items specified in the ACCEPT statement. The
items that can be displayed are literal messages, numeric variables, and alpha
receivers. Unless the programmer specifies otherwise new values may be
entered for variables and alpha receivers by typing over the displayed
values. Displayed literals, however, cannot be modified.

Each item that is displayed occupies a field on the CRT screen. A field
is a sequence of adjacent character positions on the workstation screen which
is associated with a particular item in an ACCEPT statement. The width of
each field is equal to the number of characters required to display the item.
In the case of literals, this is simply the length of the literal itself. For
alpha receivers, the defined length is used as the field width unless some
other width is specified with a CH clause. Field width for numeric variables
is 18 characters unless some other width is specified with a PIC clause.

ACCEPT explicitly shows the field that a variable or alpha receiver
occupies by displaying all blank spaces in the field as pseudoblanks. These
appear on the screen as solid squares, and will be shown in the following
examples as underscores. For example:

100 A=99

200 B$="BOTTLES"

300 ACCEPT A, BS, "OF BEER ON THE WALL."
400 PRINT A, B$

will generate a screen containing the line

99 BOTTLES OF BEER ON THE WALL.

The value of A is output in a field 18 characters wide: a leading
pseudoblank is shown where a minus sign would be displayed if the value were
negative, followed by the digits 99, followed by 15 trailing pseudoblanks.
Since B$ was not explicitly dimensioned, it has a default length of 16
characters. Thus, nine pseudoblanks are shown following BOTTLES. The literal
OF BEER ON THE WALL is displayed exactly as written, with no pseudoblanks.
Note that a space is displayed before the beginning of each field. This space
contains a Field Attribute Character (see Subsection 7.3.4, Field Attribute
Characters (FACs)).

Positioning Data on the Screen: The AT Clause

The AT clause can be used to position a field anywhere on the screen by
specifying the row and column of the screen at which a particular field will
begin. In the example above, the first value was displayed starting at the
second column of the first row; the first column of every row is inaccessible

86

for displaying data, since it always contains a FAC. If line 300 was changed
to

300 ACCEPT AT (12, 25), A, B$, AT (13, 25), "BEER ON THE WALL."

the following would appear in the center of the screen (starting at the 25th
column of rows 12 and 13):

99 BOTTLES
OF BEER ON THE WALL.

If no AT clause is specified for a field, the field is positioned according to
the default rules specified in Part 2.

Controlling Display Attributes for a Field: The FAC Clause

In addition to controlling the position on the screen of literal and
receiver fields, the ACCEPT statement allows the programmer to specify the
display attributes of a field. The display attributes determine whether a
field will be shown as dim, bright, blinking, or non-displayed; modifiable or
protected; containing uppercase, numeric, or all characters; underlined or not
underlined. Display attributes are controlled by displaying a Field Attribute
Character (a FAC; see Subsection 7.3.4, Field Attribute Characters (FACs))
immediately preceding a field. For example, in the example above, changing

line 300 to

300 ACCEPT AT (12,25), A, FAC(HEX(91)), B§, AT (13,25),
350 "OF BEER ON THE WALL."

would cause the same message as before to be displayed, except that the B$§
field (containing the string BOTTLES) would be blinking, since HEX(91) is the
FAC specifying blink, modify, uppercase, no line.

Note that FACs cannot be specified for literal fields, which are always
shown preceded by a FAC of HEX(AC) (dim, protect, all, no line).

If the display attributes for a particular field are not explicitly
defined with a FAC clause, the following defaults are used:

Alphanumeric - bright, modifiable, uppercase, no underline
(HEX(81)).

Floating-point - bright, modifiable, uppercase, no underline
(HEX(81)).

Integer - bright modifiable, numeric only, no underline
(HEX(82)).

Format Images of Displayed Receivers: The PIC and CH Clauses

It is often useful to be able to display modifiable data fields in
formats other than the default formats described above. This can be done with
the PIC clause for numeric fields and with the CH clause for alpha fields.
Each of these optional clauses appears directly after the receiver it modifies
in the ACCEPT statement, separated from the receiver by a comma. The PIC
clause specifies a format image for numeric data, and the

87

CH clause specifies a field width in characters. For a description of all of
the editing characters which may be used in a PIC clause, see the discussion
of this clause under the FMT statement in Part 2. For example, if it was
known that the variable A would never require more than three character
positions to be displayed,

300 ACCEPT AT (12, 20), A, PIC(###), BB, CH(7), "OF BEER ON THE WALL."
This would display
_99 BOTTLES OF BEER ON THE WALL.

on line 12 of the workstation screen. Note that the A and Bf fields no longer
contain trailing pseudoblanks.

7.5.2 Data Entry and Val idation

When an ACCEPT screen is first displayed, the cursor is positioned at
the first character of the first modifiable field. New values for any numeric
variables or alpha receivers can be entered by typing over the displayed
values in the appropriate fields, provided that the field has not had a
PROTECT FAC placed before it.

The cursor may be moved to different fields on the screen by use of the
cursor control keys (the four keys on the workstation marked with arrows) and
by the TAB, BACK TAB, and NEW LINE keys. TAB moves the cursor to the
beginning of the next modifiable field, BACK TAB moves it to the beginning of
the previous modifiable field, and NEW LINE moves it to the beginning of the
next modifiable field which is not on the current line. All three of these
keys move the cursor without affecting any of the values displayed on the
screen. A field may be set to all blanks from the current cursor position to
the end of the field by pressing the ERASE key.

Any attempt to type over a non-modifiable field or to otherwise type
characters prohibited by the FAC governing a particular field will cause the
workstation alarm (a beep) to sound, and the cursor will not move.

None of the changes made to data on the workstation screen are actually
transmitted from the workstation to the computer until the ENTER key (or a PF
key) is pressed, allowing the user to modify data repeatedly until this
point. When the ENTER key is pressed, the data displayed on the screen is
transmitted from the workstation to the computer; execution then continues
either with the next statement or with optional ACCEPT clauses.

Data validation: The RANGE clause

The optional RANGE clause may be used to perform automatic data
validation to insure that data entered from the workstation falls within a
specified range of values. A RANGE clause is inserted after the name of a
receiver in an ACCEPT statement, separated from the receiver name by a comma,
and applies only to that receiver. For numeric data, the range can be
specified as bteing positive (RANGE(POS)), negative (RANGE(NEG)), or between
the values of two expressions evaluated at run time (RANGE(expl, exp2)). For

88

alpha receivers, the range can be specified as being between the values of two
alpha expressions in the ASCII collating sequence (RANGE(alpha-expl,
alpha-exp2); see Subsection 5.2.3, Relational Operators, for a discussion of
the ASCII collating sequence).

When ENTER is pressed during the execution of an ACCEPT statement, the
value shown on the screen for each modifiable field is compared to the
corresponding RANGE specification, if one exists. If any modifiable field
contains a value which falls outside that specified, the screen is redisplayed
with the first incorrect field blinking, and the user must re-enter the
value. When all fields satisfy their RANGE specifications, execution
continues., For example,

300 ACCEPT AT (12, 15), A, PIC(###), RANGE(50,100), BS, CH(7),
350 RANGE("BARRELS", "KEGS"), "OF BEER ON THE WALL."

will display
_99 BOTTLES OF BEER ON THE WALL.

If the value in the numeric field is changed to 45, the screen is
re-displayed with that field ("45") blinking, since U5 is not within the
specified range. Altering the value to any value between 50 and 100 will
cause it to be accepted. Similarly, if BOTTLES is changed to LITERS, that
field will flash when entered, since LITERS is not between BARRELS and KEGS in
the collating sequence. CASES, however, will be accepted.

7.5.3 PF Key Usage and Program Branching

The ACCEPT statement allows the program to respond to specified Program
Function (PF) keys. When a PF key is pressed, its value can be assigned to a
variable for subsequent testing and branching (or for use in a numeric
expression), or it can be automatically tested by ACCEPT, initiating an
immediate branch to another statement (ON key clause). This capability is
useful for writing interactive programs in which the user can select options
or issue commands from a menu (see Subsection 1.2.2, Use of PF Keys: Menus).

If any of the three PF key clauses are present, they must appear after
all of the literals, receivers, and modifying clauses. If more than one of

these three appear, they must appear in the order in which they are discussed
in the following paragraphs.

The KEYS Clause

The KEYS clause specifies which of the 32 PF keys will be processed by
an ACCEPT statement. Pressing any PF key which has not been enabled by a KEYS
clause causes the workstation alarm to beep, and the key is ignored. KEYS
must be followed by an alpha-expression in parentheses, which is interpreted
as a list of one-byte binary values corresponding to the numbers of the PF
keys to be accepted. Such a list can be specified either with the BIN
function or with the HEX function. In the latter case, the PF key numbers
must be converted to hexadecimal.

89

For example, to enable PF keys 1, 12, and 15, one would write either

KEYS(BIN(1) & BIN(12) & BIN(15))
or

KEYS(HEX(010COF))

Once any valid PF key is pressed, execution of the program continues and data
on the screen can no longer be modified.

The KEY Clause

The KEY clause assigns the value of whatever valid PF key is pressed to
a numeric variable, which is specified in parentheses after the word KEY. For
example, if the clause KEY(OPTION) is in an ACCEPT statement, and the user
presses PF 15, the value 15 is assigned to the variable OPTION, and execution
continues.

The ON Key Clause

The ON key clause enables the program to branch to different points
depending upon which PF key is pressed. The ON key clause can perform either
GOTO or GOSUB branches. In either case, the branch is taken without reading
any changes made to the screen. As in the KEYS clause, ON is followed by an
alpha expression which is treated as a list of l-byte binary values of PF key
numbers. The GOTO or GOSUB verb must be followed by a list of line numbers
and/or statement labels to which branches may be made. The position of each
line number or statement label in this list must correspond to the position of
its associated PF key in the list of PF key numbers following the word ON.
Thus, pressing the first PF key listed would initiate a branch to the first
line number or statement label, the second PF key to the second line number or
label, and so on. For example,

ON (BIN(1l) & BIN(16)) GOTO 100, FINISH
ON (BIN(5) & BIN(9)) GOSUB CATERPILLAR, BUTTERFLY

would cause control to be transferred to line 100 if PF 1 is pressed, to the
statement labeled FINISH if PF 16 is pressed, and to the appropriate
subroutines if PF 5 or 9 is pressed.

The ALT and NOALT Clauses

When data entry to an ACCEPT statement is terminated by ENTER or a PF
key, the ACCEPT statement can automatically determine if any field has been
modified. Any keyboard action that is performed on a field, even retyping the
old data or erasing pseudoblanks, will indicate that the field has been
altered.

The ALT clause can be used to increase the efficiency and speed of

screen processing by causing the ACCEPT statement to read, validate, and
transfer only those fields which were actually modified.

90

éf'\

The NOALT clause is a conditional branch clause which can perform either
GOTO or a GOSUB branch to a line number or a statement label. If this clause
is included, and none of the displayed fields are altered, control is passed
to the specified line or statement., If any fields are altered, only those
which have been altered are read, validated, and transferred (as with ALT),
and execution continues without taking the specified branch. For example,

NOALT GOTO LILLIPUT
NOALT GOSUB 37200

ALT and NOALT cannot both appear in a single ACCEPT. This would be
redundant, anyway, since NOALT performs the function of ALT if any fields are
modified.

7.5.4 Summary of ACCEPT Execution

1. The screen is generated as described, with the cursor positioned at
the first modifiable (or numeric-protected) field, if any are
present. All fields contain the current values of the receivers.

2. The user may enter new values. When ENTER is keyed, or a PF key is
pressed, the key is first checked for validity. If invalid, the
workstation emits a beep, and the user may continue modifying or
press another key.

3. If the key is specified in the ON clause, the specified branch is
taken without any field reads or verification. (The KEY variable,
if specified, will contain the key number in any case.)

4, Otherwise, all modifiable fields (or only altered fields if ALT or
NOALT is specified) are read/validated. Numeric fields are
validated for proper numeric format independently of range
validation. Although any PIC specification may be used, special
characters (CR,DB, etc.) are not valid on input.

If any field is invalid, its FAC is set to blinking and the user
must correct the mistake (and can further change other fields).

Example:

300 ACCEPT AT (12, 15), A, PIC(###), RANGE(50,100),

310 FAC(HEX(91)), B$, CH(7), RANGE("BARRELS", "KEGS"),
320 "OF BEER ON THE WALL.",

330 KEYS(BIN(0) & BIN(1l) & BIN(16)), KEY(OPTION),

340 ON (BIN(1) & BIN(16)) GOTO START, FINISH,

350 NOALT GOSUB 1700

S 0 o0 0w oo

7.6 THE DISPLAY STATEMENT

DISPLAY, like ACCEPT, clears the workstation screen and displays an
entire formatted screen at one time. Unlike ACCEPT, however, DISPLAY does not
accept any input either of data values or PF keys.

91

DISPLAY can position data with the AT clause, and specify formats of
displayed numeric and alpha data with the PIC and CH clauses. These three
clauses all operate as in ACCEPT. DISPLAY can also position data with the COL
clause, which has the form COL(n), where n is some integer. COL(n) specifies
that the next data item is to be displayed starting at the n-th column of
whichever row the cursor is currently on,

For further details on DISPLAY, see the entries on DISPLAY and ACCEPT in
Part 2.

T.7 WORKSTATION PROGRAMMING CONSIDERATIONS

When programming output to the VS workstation, it is important to keep
in mind that the workstation is capable of producing output very much faster
than a human user can read. Incautious use of statements which clear the
workstation screen may lead to output being erased from the screen before it
can be read by the user. For example, if two DISPLAY statements follow one
another with few or no intervening statements, the data displayed by the first
DISPLAY may be on the screen for only a fraction of a second before it is
erased by the second DISPLAY statement. (The actual duration of the screen
display will depend on many variables at execution time, including how many
other users are logged onto the VS, how much main memory is available to each
user, etc,)

There are several ways to avoid this problem. The SELECT P[d] statement
can be used to make the program pause for d/10 seconds after each DISPLAY or
PRINT to the workstation. The pause interval remains the same until another
SELECT P[d] is encountered, irrespective of the amount of data displayed (and
therefore irrespective of the time required to read the screen).

The STOP statement can be used after a DISPLAY or PRINT statement to
halt execution while the user reads a screen. Execution is resumed when the
user presses the ENTER key or a legal PF key (one which corresponds to a
marked subroutine; see Subsection 6.4.3, Program Function Keys). The STOP
statement displays the word STOP and an optional literal when it is executed.

Since all of the functions of the DISPLAY statement (except sounding the
workstation alarm) can be performed by the ACCEPT statement, ACCEPT statements
can be used to display information without performing any meaningful input.
To allow the user time to read a long message on the screen, one can display
the message as a series of literals and/or expressions with the ACCEPT
statement, and enable only the ENTER key (PF 0, specified with a KEYS(BIN(0))
clause) for input. When the ACCEPT statement is executed, the desired message
will be displayed on the screen, and will remain there until the user presses
the ENTER key.

92

CHAPTER 8
FILE INPUT/OUTPUT

8.1 INTRODUCTION

Programs written in VS BASIC can retrieve and store data in files
located on magnetic disk or tape. The first part of this chapter (Section
8.2, Files) provides general background information on the types of files
supported on the VS, and their attributes and structures. Only that
information required for the use of the BASIC file input/output facilities is
included. Programmers requiring further detail on the organization of VS
files and on the operation of the Data Management System should consult the Vs
Programmer's Introduction and the VS Operating System Services manuals. The
rest of this chapter describes the specific features of VS BASIC that
facilitate file I/0 operations, including detailed examples of the use of the
most frequently used file I/0 statements.

8.2 FILES

A file is a collection of data stored on either magnetic disk or tape,
and identified by a file name. Files are made up of records. A record is the
unit of all file input/output operations, and consists of a continuous series
of bytes of data which are processed together. In general, a record
corresponds to whatever unit of data is logically most convenient to process
at one time. For example, in an inventory control program, a single record
might consist of a part number, the quantity in stock, quantity on order,
order date, price, and so on. An inventory file for 100 different parts would
thus contain 100 records. In a file of text (for example, a BASIC source
file), each 'record would correspond to a line of text as shown on the
workstation or printer.

8.2.1 File Types

The VS supports three different types of disk files == consecutive,
indexed, and print files -- which differ in their internal organization and
use. The details of internal file organization are transparent to the BASIC
programmer, since these are all managed and maintained by the Data Management
System. This section contains a general discussion of the three file types.
Section 8.3, Use of Files by BASIC Programs, describes the BASIC statements
which control file selection and use.

93

Consecutive Files

A consecutive file contains records which, within a block (a block is
2048 (2K) contiguous bytes of storage space), physically follow one another in
the same order in which they were written. The information in a record does
not in any way influence its position within the file. The position of a
record relative to other records in a file therefore depends only on when it
was written relative to other records.

Records in a consecutive file may be read either sequentially or by
position. 1In sequential reading the user program in effect says to the Data
Management System (DMS; see Subsection 1.3.1l, The Data Management System) "get
the next record," whereas reading by position is equivalent to saying "get the
n-th record."

Indexed Files

An indexed file is a disk file that contains records in a logical
sequence which is not necessarily the same as the order in which the records
were written (as would be true of a consecutive file). The logical sequence
of records in an indexed file is determined by the value of the primary key of
each record. A primary key is a designated portion of a record (the eighth
through the twelfth bytes of each record, for example) that is used to sort

the records into a particular ordered sequence. Each record in an indexed
file must have a unique primary key.

Indexed files may also have alternate keys. Like the primary key, an
alternate key is a section (or field) of a data record of some designated
position and length. One file may use up to 16 alternate keys, numbered 1 to
16. Every record in an indexed file has associated with it an alternate index
mask, which is a two-byte (1l6-bit) field specifing by which alternate keys
that record may be accessed.

Indexed files enable a program to access particular records according to
primary or alternate key value. Records may be read from an indexed file
sequentially or by key. In sequential reading, the program in effect says to
DMS, "get the next record in ascending primary key sequence." Reading by key,
on the other hand, is equivalent to saying "get the record with key equal to
x."

Indexed files are organized into data blocks and index blocks (a block
is 2048 (2K) contiguous bytes of storage space). Data blocks contain the
actual data records, in primary key sequence, within each block. The index
blocks contain a list of primary key values of records in the file, with a
corresponding list of pointers that indicate in which block a record with a
particular key can be found. Files with alternate keys have a separate
numbered alternate index for each defined alternate key field. Each alternate
index contains entries only for those records whose alternate index masks
specify that they are accessible by that key.

The first time an indexed file« is opened for output (i.e., when it is
created), any records written to it must be written in key sequence. Later
additions to the file may be made in any order. DMS takes care of inserting
the data records and index entries into their respective blocks at the

94

appropriate points. When either an index block or a data block becomes full,
it is split -- the contents of half of the block are moved to an empty block.
The result is two half-empty blocks, instead of one full block. New
insertions can then be made in the two blocks until one or both are full, and
the splitting process takes place again.

Print Files

A print file is a disk file used to store records which are to be output
by a printer. The records in a print file, like those in a consecutive file,
al ways appear, and will be printed, in the order they were written. 1In
addition to the data records, print files contain printer control bytes which
contain information affecting the physical appearance of print on a page
(line-feed codes, page breaks, etc.). Print files can be written but not read
by BASIC programs. Print files are generally only read by printer
Input/Output Processors (IOPs) and certain system utility programs (e.g.,
DISPLAY).

8.2.2 Record Types: Length and Compression

Record Length

Files may contain records which are all of the same length (fixed-length
records) or of differing lengths (variable-length records). Files containing
fixed-length records have the record length specified in the file label. 1In
files with variable-length records, the length of each record is specified by
a length count at the beginning of each record (which is maintained by DMS and
is thus transparent to the user).

Record Compression

Variable-length records may also be compressed. If record compression
is specified for a file, characters which are repeated three or more times
consecutively are stored on the disk only once, preceded by a repetition
factor. Compression is performed automatically by DMS when information is
moved to the disk; compressed records are decompressed when the reverse
transfer is performed. The entire compression/decompression process is
completely transparent to user programs. Record compression can often save
substantial amounts of disk space.

8.3 USE OF FILES BY BASIC PROGRAMS

All transfers of data between user programs and files are processed by
the Data Management System (see Subsection 1.3.1, The Data Management System
(DMS)). The user program communicates with DMS about the files to be used
through User File Blocks (UFBs). A UFB contains information about fixed
characteristics of the file it describes: whether it is a consecutive,
indexed, or print file; the record type (fixed- or variable-length, compressed
or not); record length; and various other factors. When a BASIC program is
compiled, one UFB must be created for each file of particular characteristics
to be used by the program. These characteristics are all specified in a
SELECT statement, which also assigns a file-number to a UFB. Note that since

the UFB is part of the object program, a SELECT statement has its effect
(creation of a UFB) at compile time.

95

In addition to the fixed characteristics of a file specified with
SELECT, there are factors relating to the way in which a file is to be used

which are specified at run time and which may change during the execution of a
program. These include the file's name, whether it is to be used for input or
output, and how much space is allocated for it if it is a new file. These
run-time specifications are made with the OPEN statement. The OPEN statement
initiates a connection between the user program and a specific file through a
particular UFB by associating the name of the file with the file-number of the
UFB. This connection is severed by the CLOSE statement. I/0 operations can
be performed with a file only if it is open. The characteristics (file type,
record type and length, etc.) of a file named in an OPEN statement must match
those specified in the SELECT statement for the file-number if the file
already exists. If the file is being created, it is created with the
characteristics described by the SELECT statement.

Only one file can be opened on a particular file-number at a time.
Thus, a program must contain one UFB, and thus one SELECT statement, for each
file with a particular set of characteristics to be open at one time. For
example, a program might use one consecutive file, one indexed file, and one
printer file. 1In this case, it must have three SELECT statements, one to
create each of the three different UFBs needed. Another program may use three
consecutive files, each with fixed-length, 80-byte records. If no more than
one of these files is open at one time, then the program needs only one SELECT
statement. All three files can use the same hFB, since they will be open at
different times.,

8.3.1 The SELECT Statement

The SELECT statement is made up of a series of clauses, some of which
are optional, which describe the characteristics of the file(s) that may be
associated with a particular UFB. For the general form of the SELECT
statement, see Part 2.

The elements of the SELECT statement indicate the following:

File-number -- Number sign (#) followed by an integer from 1 to 64
(inclusive). This file number is used in all other I/O statements to
refer to the file described by this SELECT statement. Must be specified
for each UFB to be created.

Prname -- A literal string consisting of 1-8 alphabetic or numeric
characters. Must be specified for each UFB created. The prname is not
the filename.

VAR[C] -- Specifies that records are variable length (optionally
compressed). If not specified, records are fixed length, with length
specified by the RECSIZE clause. Cannot be specified for PRINTER files;
optional for all other types.

96

CONSEC, INDEXED, PRINTER, TAPE -- Specifies file type. These are
mutually exclusive alternatives; one of the four types must be
specified. Note that a TAPE file is always consecutiw in form. The
word CONSEC always indicates a consecutive disk file, however.

RECSIZE=intl -- Record length, in bytes, for files with fixed-length
records. Maximum record length for files with variable-length records.
Must be specified for every file, irrespective of type. See SELECT
entry in Part 2 for record length limits for each file type.

KEYPOSzint2 -- Position (starting from byte number 1) of first byte of

primary key in records of an indexed file. Must be specified for an
indexed file.

KEYLEN=int3 -- Length (in bytes) of primary key in records of an indexed
file. Must be specified for an indexed file.

ALT[ERNATE] KEY int4, KEYPOSzint5, KEYLEN=int6 -- Number, position, and
length of an alternate key in the records of an indexed file. Optional
for an indexed file. Up to 16 alternate keys may be specified; each
must be identified by a unique key number (int#4). ALT and ALTERNATE are
equivalent forms.

DUP -- Indicates that duplicate key values are allowed for the alternate
key specified in the preceding clause. For indexed files only. If not
specified for an alternate key, any duplicate value found for that
alternate key will cause the EOD exit to be taken.

IL, NL, AL -- Specifies the tape label type for TAPE files only. IL =
IBM-type label, NL = no label, AL = ANSI standard label.

BLKSIZE -- Specifies the size, in bytes, of the blocks into which TAPE
files are divided.

IOERR -~ Specifies a GOTO or GOSUB branch to be taken if an I/0 error
occurs on the file which is OPENed on the SELECTed file number (see
Subsection 8.3.2, The OPEN and CLOSE Statements). Optional for all file
types.

EOD -- Specifies a GOTO or GOSUB branch to be taken if an end-of-data
condition, invalid key or duplicate key is found in a file while
performing an I/0 operation which does not have an EOD exit of its own.
Cannot be specified for PRINTER files; optional for all others (see also
Section 8.6, Error Recovery).

97

NOTE:

The prname (parameter reference name) specified in the
SELECT statement is not a file name. The actual name of
the file to be used is specified in the OPEN statement.
The prname is used by DMS to refer to a file at run time in
requests for information (called GETPARMS) displayed on the
workstation screen. Such requests appear when DMS requires
information not specified (or incorrectly specified) in the
program. GETPARMs are discussed more fully in Subsection
8.3.2, The OPEN and CLOSE Statements.

Note that one SELECT statement must be written for every UFB to be used
by a program. All SELECT statements must appear in a program before any OPEN
or file I/0 statements.

File numbers need not be SELECTed consecutively. No file number may be
used in more than one SELECT statement.

8.3.2 The OPEN and CLOSE Statements

The OPEN statement enables input or output between a BASIC program and a
file, and associates the file name with the file-number of a particular User
File Block which has already been created by a SELECT statement. In all
subsequent file I/0 statements, the file is referenced by the file-number in

the OPEN statement.

The CLOSE statement is used to terminate the connection between a file
and a numbered User File Block. If a file is open through a particular UFB,
no other file can be opened through that UFB until the first file is closed.
The form of the CLOSE statement is: CLOSE #file-expression.

The name of the file may be specified in the OPEN statement or the user
may be prompted for it when the OPEN is executed. In the latter case, a
GETPARM is issued. A GETPARM is a request issued by the Data Management
System for information needed to perform certain operations. When a program
is being run directly from a workstation, a GETPARM displays a screen
specifying what information is needed; the user types this information into
the appropriate fields on the screen, presses the ENTER key, and execution
continues. If the program is being run from a procedure, the procedure 1is
first prompted for the information; the GETPARM screen is displayed only if
the procedure does not supply all of the necessary information, or if some of
the information is in error (see the VS Procedure Language Reference Manual

for a discussion of procedures).

If the file, library, and volume names are specified in the OPEN
statement and need not be changed, the GETPARM prompt can be suppressed by
specifying NOGETPARM in the OPEN statement. The prompt screen may be

98

suppressed by NODISPLAY. This should be used only if the correct file,
library, and volume names have been specified in this or an earlier OPEN, or
in a procedure running the program, or if SET defaults are in use (see the VS
Procedure Language Reference Manual for a discussion of procedures and SET

defaults). The difference between NOGETPARM and NODISPLAY is that the former
should be used only if the file, library, and volume names are specified in
the current OPEN statement; NODISPLAY can be used if these specifications are
omitted from the statement, as long as they can be obtained elsewhere (earlier
OPEN statement, procedure, or SET defaults).

Even if the file, library, and volume names are specified in the OPEN
statement, the GETPARM screen will be displayed if neither NOGETPARM nor
NODISPLAY is present. In this case, the user can simply press ENTER, which
causes the file specified in the OPEN statement to be used, or can alter the

displayed file, library, and volume names.

See Part 2 for the general form of the OPEN statement.
The elements in the OPEN statement indicate the following:

NOGETPARM -- Suppresses the issuing of a GETPARM for the file, library,
and volume names. Should be used only if these are specified in the
OPEN statement. Optional and mutually exclusive with NODISPLAY.

NODISPLAY -- Suppresses display of a GETPARM screen for file, library,
and volume names,. An "invisible" GETPARM is issued to the controlling
procedure if one exists or else the required information is obtained
from this or an earlier OPEN or from the SET defaults. Optional and

mutually exclusive with NOGETPARM.

File-exp -- A numeric expression which is evaluated to obtain the
file-number by which this file will be referenced by all file I/0

statements.

INPUT -- Opens an existing file for input. The program will then be
able to read from the file, but not modify it. Mutually exclusive with
10, OUTPUT, EXTEND, and SHARED. (Does not apply to print files.) See
Subsection 8.3.3, File I/0 Modes.

I0 -~ Opens an existing file for input and output. The program will
then be able to read and modify the contents of the file. For an
indexed file, I/0 mode allows the addition of new records (like EXTEND
for consecutive files). A consecutive file with fixed-length records
may do REWRITES in I/0O mode, but may not create new records. Mutually
exclusive with INPUT, OUTPUT, EXTEND, and SHARED. (Does not apply to
printer or tape files.) See Subsection 8.3.3, File I/0 Modes.

99

OUTPUT -- Specifies that a new file is to be created and opened for
output, in which case records may be written out to the file, but cannot
be read from that file. If the file existed previous to the OPEN, the
user will be asked to either delete the old file or specify a new name.
Printer files can only be OPENed in this mode. Mutually exclusive with
INPUT, 10, EXTEND, and SHARED. See Subsection 8.3.3, File I/0 Modes.

EXTEND -~ Opens an existing consecutive file for extension. The program
Wwill then be able to write to the file, but not read from it. The first
record written will be stored directly following the last record which
was already in the file. Mutually exclusive with INPUT, IO, OUTPUT, and
SHARED. (Does not apply to printer files.) See Subsection 8.3.3, File
I/0 Modes.

SHARED -- Opens an existing file in shared mode. This mode is similar
to I/0 mode, but allows simultaneous access to the file by other VS
users. Mutually ex lusive with INPUT, IO, OUTPUT, and EXTEND. (Shared
modk is supported only for indexed files and for a special type of
consecutive file called a "log file.") See Subsection 8.3.3, File I/O
Modes.

SPACEzexpl -- For OUTPUT mode files, specifies the approximate number of
records (expl) to be put in the new file. If SPACE is omitted, a
GETPARM will be displayed to request the required space information.
For non-OUTPUT mode files, if expl is a numeric variable, it will be
assigned the number of records in the file when the file is opened.

DPACK=exp2, IPACK=exp3 -- For new (OUTPUT mode) indexed files only,
specifies the packing densities of data and index blocks, respectively,
in percent. The packing density determines what percentage of each data
and index block will be filled with data records and index entries.
This affects the efficiency of disk space use and the number of records
which can be inserted into a file before DMS must reorganize a file by
splitting data and/or index blocks (see discussion of indexed files,
Subsection 8.2.2, File Types). For most efficient use of disk space,
files which will never have additional records inserted should have
DPACK and IPACK set equal to 100. Files which will have records
inserted should set DPACK and IPACK to values less than 100.

FILE=alpha-expl, LIBRARY=alpha-exp2, VOLUME=alpha-exp3 -- Specifies the
file, library, and volume names of the file to be opened on the

indicated file-number. These will be requested in a GETPARM, whether or
not they are named explicitly, unless NOGETPARM or NODISPLAY has been
specified.

FILESEQ = exp 1 -- Specifies the file sequence number. This is to be
used only for TAPE files to position the Read/Write head at the start of
the correct file number for TAPE files.

100

8.3.3 File I/0 Modes

INPUT - Files opened for INPUT may be accessed only through the READ
statement and, for consecutive files, the SKIP statement. The READ statement
reads consecutive files from tape and consecutive or indexed files from the
disk.

I/0 - Files opened for I1/0 may be accessed through the READ statement.
If the READ statement specifies the HOLD option, the record read may be
subsequently modified using the REWRITE statement (or, for indexed files,
either the WRITE, REWRITE, or DELETE statements). As with INPUT, the SKIP
statement is available for consecutive files.

OUTPUT/EXTEND - Files opened for OUTPUT or EXTEND can be accessed using
the WRITE statement only. EXTEND mode is supported only for consecutive disk
files.

SHARED - SHARED mode disk I/0 is supported only for indexed files and
special log files. The file may be accessed using the READ, WRITE, REWRITE,
and DELETE statements. Moreover, when a program opens a file SHARED, the HOLD
option is available in the READ statement. This prevents other users from
attempting to modify or delete the held record until the user has modified or
deleted it, has begun processing another record, or has closed the file. When
that second I/0 operation is completed, the HOLD is released, and other users
can again access that record. If the first user modified or deleted the
record, that action will take effect before other users may access the
record. A program may put a HOLD on only one record at a time.

8.3.4 File 1/0 Buffering and the Record Area

Associated with each open file is a data buffer, maintained by DMS,
which serves as an intermediate storage location for data transferred between
BASIC variables and the disk or tape. The size of the buffer is normally one
block, which is equal to 2048 (2K) bytes. The programmer can specify a larger
buffer size with the BLOCKS clause of the OPEN statement.

In addition to the DMS buffer, there is another intermediate storage
area associated with each User File Block, called the record area. The size

of the record area is equal to the RECSIZE specified in the SELECT statement
for that fil e-number.

All data transferred between programs and files must pass through both
the DMS buffer and the record area for that file. Transfers between program
data (receivers and expressions) and the record area, and between the record
area and the DMS buffer are always done one record at a time. Transfers
between the DMS buffer and the file are always performed n blocks at a time,
where n equals the size of the DMS buffer specified in the BLOCKS clause of
the OPEN statement (if BLOCKS is omitted, n=1).

101

program data <e=——e-- > record area <—e=—=- > DMS buffer <eeee-e- > file

(1 record) (1 record) (n blocks)
(at a time;) (at a time;) (at a time;)
(controlled by) (controlled by) (controlled by)
(BASIC program) (BASIC program) (DMS)

The READ and WRITE statements, depending on which forms are used, cause
data transfer either between the buffer and the record area, or between the
buffer and program data, through the record area. The GET and PUT statements
are used to control transfer of data between program data and the record area

alone. These four statements are all discussed more fully in Section 8.4, The
File I/0 Statements.

To illustrate the relation between file-to-buffer data transfer and
buffer-to-program data transfer, consider a program which processes data from
a consecutive file with fixed-length, 80-byte records. If a one-block buffer
is used, READing the first record from the file loads the first block of the
file into the data buffer. This 2K block contains 25 80-byte records (plus 48
unused bytes; records never span a block). Any subsequent READ or WRITE
statement which accesses any of the first 25 records of the file actually
causes data transfer only between program data and the buffer area, through
the record area. Since all of the first 25 records are already in the DMS
buffer (which is in main memory), there is no need for a time-consuming disk
or tape I/0 operation for every record read or written. The first time a READ
or WRITE occurs involving a record outside of the first block, DMS checks to
see if the contents of the buffer were modified (by a WRITE or REWRITE). If
so, the contents of the buffer are rewritten to the disk or tape, replacing
the original block on the storage device. The block containing the next
desired record is then read into the buffer from the disk or tape. If the
contents of the buffer were not modified, the next desired block is simply
read into the buffer, overwriting its previous contents.

If the programmer sets BLOCKS=2 (or more) in an OPEN statement, then
data will be transferred 2 (or more) blocks at a time, instead of one at a
time. This decreases the frequency of calls to DMS to perform time-consuming
data transfers between main memory and a peripheral storage device, but
increases the amount of storage space used.

The optimal choice of buffer size in any particular case will depend on
several factors. The frequency of DMS-processed disk or tape I/0 operations
will depend on record size and on the distribution of records to be accessed
through the file, as well as on buffer size. There is also a trade-off
between frequency of I/0 operations (decreases with increasing buffer size)
and program memory requirements (increase with increasing buffer size).

The only time a BASIC programmer must consider the DMS buffer is in
using the BLOCKS clause of the OPEN statement (and this is optional).
Otherwise, the operation and existence of the DMS buffer is completely
transparent to the BASIC user. Therefore, in subsequent discussions of file
I1/0, we will generally refer to data transfers between files and record areas,
ignoring the intervening DMS buffer.

lo2

8.4 THE FILE I/0 STATEMENTS

Transfer of data between BASIC programs and files is performed by five
statements: READ, GET, WRITE, PUT, and REWRITE. Records in consecutive files
can be read selectively by position in the file by using the SKIP statement
before a READ., The DELETE statement can be used to remove selected records
from an indexed file. READ, WRITE, REWRITE, SKIP, and DELETE operations can
be performed on a file only while it is open (i.e., after an OPEN statement
has been executed for that file, and before a CLOSE). This section describes
the way in which data is transferred between the file and the record area, and
between the record area and program data. For the general forms and full
discussions of the various optional clauses and modes of use of these
statements, see the appropriate entries in Part 2.

8.4.1 The READ Statement

The READ statement causes one record to be read from the specified file
into the record area for that file. READ can be used with or without a list
of receivers. If a list of receivers is included in the READ statement,
values are extracted one by one from the record area and assigned to the
receivers, left to right. If USING is specified, the values are assigned
according to the formats specified in the referenced FMT or Image (%)
statement (see Section 7.4, The USING Clause and Format Control Statements,
and the FMT and Image (%) entries in Part 2). Otherwise, values are assumed
to be in internal format (see below). If no list of receivers is present, one
record is simply read from the file to the record area, and no assignments are
performed. Once in the record area, a record is available to the GET, WRITE,
and REWRITE statements.

If the file being read is consecutive, the RECORDS=n clause can be used
to specify that the n-th record of the file is to be read. 1If a READ
statement on a consecutive file does not have the RECORDS=n clause, the next
sequential record is read. For indexed files, the KEY clause can be used to
read a record with primary or alternate key equal to a particular value. See
Part 2 of this manual for further details on the READ statement.

8.4.2 The GET Statement

The GET statement causes values to be extracted from the record area and
assigned to one or more receivers. Values are extracted from the record area
and assigned according to the format in an FMT or Image (%) statement (see
Section 7.4, The USING Clause and Format Control Statements, and the FMT and
Image (%) entries in Part 2) referenced with the USING clause, if one is
present. If USING is not specified, values are assigned according to the
conventions of BASIC's internal formatting. GET is generally used to assign
values to receivers after a record has been read from a file by a READ
statement without a receiver list. However, if a PUT, WRITE, or REWRITE
statement was executed more recently than the last READ, the record area will
contain whatever record was left there by the most recent of these
statements. See Part 2 for further details.

103

8.4.3 The WRITE Statement

The WRITE statement causes one data record to be written from the record
area to the disk file. WRITE can be used with or without a 1list of
expressions. If a list of expressions is included in the WRITE statement,
their values are first packed into the record area. If USING is specified,
the values are packed into the record area according to the format in the
referenced FMT or Image (%) statement (see Section 7.4, The USING Clause and
Format Control Statements, and the FMT and Image (%) entries in Part 2). If
USING is not specified, the values are packed into the record area according
to the conventions of BASIC's internal format. The contents of the record
area are then written to the specified file. If the WRITE statement contains
no list of arguments, then the current contents of the record area are written
to the file. Generally this form of the WRITE statement would be used after
data had been written into the record area by a PUT statement. If, however, a
READ, WRITE, or REWRITE statement was executed more recently than the last
PUT, the record area will contain whatever was left there by the most recent
of these statements.

Records written to consecutive files (in OUTPUT, SHARED, or EXTEND mode,
as specified in the OPEN statement) are added to the end of the file. Records
written to indexed files (in IO mode) are inserted into the file at the
appropriate point as determined by their primary key values. See Part 2 for
further details.

8.4.4 The PUT Statement

The PUT statement causes the values of one or more expressions to be
packed into the record area of the specified file. If USING is specified, the
values are packed into the record area according to the format in the
referenced FMT or Image (%) statement (see Section 7.4, The USING Clause and
Format Control Statements, and the FMT and Image (%) entries in Part 2). If
USING is not specified, the values are packed into the record area according
to the conventions of BASIC's internal format. PUT is generally used prior to
a WRITE statement with no argument list.

8.4.5 The REWRITE Statement

REWRITE is like WRITE except that the record which is written to the
file overwrites the last record read with a HOLD option, instead of being
written to the end of a file. For a description of the HOLD option, see the
entry under READ in Part 2. REWRITE cannot be performed on consecutive files
with variable-length records.

104

8.4.6 Summary of Data Flow Controlled by File I/0 Statements

program variables record (DMS) disk or tape
or expressions area (buffer) file
READ X (<==-- optional —=--=) X <eecceeea (X) €mmmmmmmmeeee X
GET X <L==a X
(RE)WRITE X (-=——- optional ====>) X =ececcea=d> (X) —ccmmmcmmee—o > X
PUT X ——- > X

8.4.7 Data Representation in File I/0

In using file I/0 statements, it is important to keep in mind that BASIC
represents numeric data in an internal format which bears no simple relation
to the sequences of ASCII character codes used to represent those same data in
workstation or printer I/0. Unless file I/0 is explicitly formatted with the
USING clause and Image (%) or FMT statements, all file I/0 is performed in
this internal format. While this is suitable for data files which are to be
read only by other programs, it should not be used for files to be directly
examined by users, such as report or other text files. Any attempt to display
or print numeric data from a file in internal format will simply produce
meaningless strings of characters on the workstation or printer.

Data values packed into records in internal format take up the following
amounts of space:

Floating-point -- 8 bytes
Integer -- U bytes
Alphanumeric -- defined length

If any format conversions are done (i.e., if USING is specified in any
file I/0 statement), they are performed as data are transferred between the
record area and variables or expressions in the program. Data should always
be read from a file in the same format in which they were written in order to
be properly interpreted by a BASIC program.

For a discussion of the FMT and Image (%) statements, see Section 7.4,

The USING Clause and Format Control Statements, and the FMT and Image (%)
statement entries in Part 2.

8.5 INTRINSIC FILE I/0 FUNCTIONS

Four functions may be used in expressions to retrieve information
concerning file I/0 operations: FS, KEY, MASK, and SIZE.

105

8.5.1 FS (file-expression)

The FS function returns the file status for the most recent I/0
operation on the specified file, as an alpha value two characters long. FS
can assume any of the following values:

CONSEC, TAPE, and PRINTER file I/0

00! Successful I/0 operation

110! End-of-file encountered

123 Invalid record number

130° Hardware error

134 No more room in the file

g5t Invalid function or function sequence

97! Invalid record length

INDEXED file I/0

'00° Successful I/0 operation

'10° End-of-file encountered

121! Key out of sequence (WRITE statement in OUTPUT mode only)

122! Duplicate key

23! No record found matching specified key

24 Supplied key exceeds any key in the file (INPUT, I/0, or SHARED

mode)
13y No more room in the file (OUTPUT or EXTEND mode)
'30! Hardware error
'g5! Invalid function or function sequence

97! Invalid record length

8.5.2 KEY (File-expression [, expl)

The KEY function returns the value of a key field from the specified
file's record area. The file-expression given as the argument of the KEY
function must refer to an INDEXED file. The optional second expression is a
key number specifying which key field is desired. If it is omitted or set
equal to zero, the primary key 1is returned. Otherwise, the specified
alternate key (as defined in the SELECT statement) is returned. The KEY
function is typically read immediately following a READ statement (i.e.,
without any intervening WRITE statement).

The KEY function returns an alpha value, whose length is equal to the
value of the KEYLEN parameter in the SELECT statement for that file.

The KEY function may be used as a receiver in order to write into the
"key" field in the data buffer.

3900 LET KEY(#3)="NYC"

KEY is typically used in this way immediately preceding a READ, WRITE or
REWRITE statement. The use of arguments in the WRITE, REWRITE, and PUT
statements causes data to be loaded into the data buffer. Depending on the

106

8

size of the argument list and the position of the key field, loading the data
buffer through arguments to WRITE, REWRITE, or PUT may overwrite the key
written into the data buffer by the "LET KEY(#n)=" construction.

8.5.3 MASK (File-expression)

The MASK function returns the alternate key access mask for the last
record read from the alternate indexed file specified. The result is a 2-byte
alpha HEX value whose component bits (left to right) correspond to the
record's available alternate keys (1-16). Bits which are "on" (binary 1)
specify that the record may be READ by those alternate key paths. The bit
values may be determined by printing, in hexadecimal, the result of the MASK
function.

For example, if the program fragment

300 READ #1, PLEXIPPUSS$
400 DIM AB2

500 A$ = MASK(#1)

600 PRINT HEXOF(AS$)

were to read a record accessible by alternate keys 1, 3, 5, and 7, then line
600 would print (or display)

AAOO

which represents the binary string 1010101000000000, indicating that the
first, third, fifth, and seventh alternate keys are used in this record.

The MASK function may also be used as a receiver to set the alternate
key access mask for a record which is to be written (or re-written). For
example,

2300 MASK(#DESTINATION) = 6400

would cause the next record written to the specified indexed file to be
accessible by alternate keys 2, 4, and 6 (6400 hex = 0101010000000000
binary). All records written to this file will have the same alternate key
access mask until another mask valiwec is assigned in this way.

8.5.4 SIZE (File-expression)

The SIZE function returns as an integer the size in characters of the
record most recently read from the specified file.

8.6 ERROR RECOVERY

The situations wunder which an Input/Output instruction cannot be
successfully completed fall into four categories:

1. Errors handled by the VS Data Management System. There is an error
or omission in the specification of a file, library, or volume
name: the file was not found, the volume is not mounted, a name was
omitted, etc.

107

2. EOD errors. There is no more data in the file to read, or an
attempt was made to write a record with a duplicate key to an
indexed file. These are errors corresponding to FS codes 'l0'
through '24' (see Section 8.5, Intrinsic File I/0 Functions).

3. DATA errors. The data conversion routines failed because a record
format was illegal; for instance, the program tried to read "ABC"
into a numeric variable using a format such as ###. These are
errors which occur within the BASIC program; since they do not occur
at the stage where data is actually transferred to or from a file,
they do not change the File Status (FS) code for that file.

4, IOERR errors. Other input/output errors, such as physical errors
operating the device, record-length errors, and file boundary

errors., These are errors corresponding to FS codes "30" through
llgg.ll

The Data Management System attempts to resolve some I/0 errors of the
first category by means of a dialogue with the workstation operator at the
time of the error. BASIC allows the user to specify program branches to be
taken if a type EOD, DATA, or IOERR error occurs. Either a GOTO or a GOSUB
exit may be used. If GOSUB is used, a RETURN statement at the end of the
subroutine will return program execution to the statement following the file
I/0 statement which had the error.

To specify error branching, the programmer specifies (1) the type of
error situation to be covered (EOD, DATA, or IOERR), (2) the type of transfer
of control to be performed (i.e., returning (GOSUB) or nonreturning (GOTO)),
and (3) the BASIC line number or statement label to which control is to be
passed. For instance, to force a returning branch to the statement labeled
TURTLE if a data conversion error occurs, the programmer writes:

DATA GOSUB TURTLE ’
in the READ or WRITE statement.

Error branches for type IOERR errors are specified in the SELECT
statement. Any IOERR errors which occur on a given file number must transfer
control to a single routine. Error branches for type DATA errors are
specified in the READ or WRITE statement. Different statements may transfer
to different service routines in the event of a data conversion error. Error
branches for EOD error conditions may be specified in a SELECT statement to
apply to all reads and writes under that file number, or they may be specified
in an individual READ or WRITE statement to apply to errors occurring as a
result of that individual statement. If a READ or WRITE statement has an EOD
exit, that exit overrides any transfer of control which may have been
specified in the SELECT statement.

In addition, the REWRITE, PUT, and GET statements can specify an error
branch for DATA type errors. The SKIP statement can specify an error branch
for EOD type errors (which would occur if an attempt were made to SKIP past
the limits of the file).

108

If an EOD, DATA, or IOERR type error occurs and the program has not
specified an error branch, execution of the program is aborted.

The service routines for EOD and IOERR type errors may examine the

expression FS(#n), which returns the file status for the file currently open
on UFB #n, to determine the exact cause of the error.

8.7 EXAMPLES OF FILE I/0

Consider a program which takes as input a consecutive file containing a
list of names, addresses, and phone numbers. Each record of the file contains
the following information in the following positions:

Name: bytes 1 - 20
Street: bytes 21 - 40
City: bytes U1 - 50
State: bytes 51 - 52

Zip Code: bytes 53 - 57
Area Code: bytes 58 - 60
Phone: bytes 61 - 67

This program produces as output an indexed file containing those records which
have their state fields (bytes 51 - 52) equal to "MA".

100 SELECT #1, "INPUT", CONSEC, RECSIZE=67, EOD GOTO NO_MORE

200 SELECT #2, "OUTPUT", INDEXED, RECSIZE=67, KEYPOS=1, KEYLEN=20
300 DIM RECH 67

400

500 /* OPEN AND CLOSE INDEXED FILE TO CREATE IT SO THAT ENTRIES CAN
600 BE WRITTEN IN ANY ORDER */

700 OPEN #2, OUTPUT, SPACE=100, FILE="BOSTON", LIBRARY="ADDRESS", !
800 VOLUME="DATA"

900 CLOSE #2
1000

1100 /* OPEN BOTH FILES */
1200 OPEN #1, INPUT, FILE="USA", LIBRARY="ADDRESS", VOLUME="DATA"
1300 OPEN #2, I0, FILE="MASS", LIBRARY="ADDRESS", VOLUME="DATA"

1400

1500 GET_RECORD:

1600 READ #1, RECH /* READ A RECORD FROM THE CONSEC FILE ¥/
1700 IF STR(RECH,51,2)<>"MA" THEN GET_RECORD /* EXAMINE STATE ¥/
1800 WRITE #2, REC$ /* WRITE TO INDEXED FILE IF STATE="MA" ¥/
1900 GOTO GET_RECORD /% GET ANOTHER RECORD */

2000

2100 NO_MORE: /* EXIT ROUTINE FOR EOD ON FILE #1 ¥/

2200 CLOSE #1
2300 CLOSE #2
2400

2500 END

109

The two SELECT statements describe the two files to be used: file #1 is
consecutive, file #2 is indexed; both have fixed-length, 67-byte records.
When and if an end-of-data (EOD) condition occurs on file #1, control will
pass to the statement labeled NO_MORE. The primary key field for the indexed
file (#2) begins at the first byte of each record, and is 20 bytes long.

The first time an indexed file is opened for output (i.e., when it is
created), any records written to it must be written in primary key sequence.
If the records to be written to an indexed file are not in order the first
time the filec is to have data written to it, the file must be opened and
closed in OUTPUT mode without writing any records to it, thus creating a file
with zero records in it (lines 700 - 900). It can then be re-opened in IO
mode (line 1300), which allows records to be written in any order.

NOTE:

In general, it is preferable to write records to indexed
files in key sequence, if possible. Writing records to a
new indexed file out of sequence is much less efficient in
terms of both processor time and disk space, and is

recommended only when it is not practical to write records
in sequence.

Once both files are opened, a record (RECB) is obtained from the
consecutive file (line 1600) and the two characters of its state field are
tested to see if they are equal to "MA" (line 1700). If so, the record is
written to the indexed file (line 1800); if not, the next record is read from
the consecutive file (label GET_RECORD; line 1500). This cycle continues
until all of the records in the consecutive file have been read. The first
READ operation after the last record has been read causes an EOD error
condition to occur, and control passes to the statement labeled NO_MORE (line
2100), as specified in the EOD clause of the SELECT statement. Both files are
then closed (lines 2200 - 2300), and the program ends.

Note that the first twenty bytes (the name field) of each record are
designated as the primary key field for the indexed file in the SELECT
statement for that file. Any subsequent read from the file MASS by primary
key would then obtain the address records in alphabetical order of addressees'
names. However, they may have been written in any order; the order in which
they were written was determined simply by the order of their appearance in
the consecutive file, which was arbitrary. (Recall that the indexed file was
opened and then closed without writing any records, and then re-opened again,
specifically to enable the program to write the records in any order.)

110

Suppose that one planned to make sorted lists at some later time based
upon the telephone area codes and zip codes of the addressees. Such sorting
could be simplified by establishing alternate keys in the indexed file
corresponding to the area code and zip code fields of the records. This could
be done by changing the SELECT statement for the indexed file to:

200 SELECT #2, "OUTPUT", INDEXED, RECSIZE=67, KEYPOS=1, KEYLEN=20, :
220 KEYPOS=1, KEYLEN=20, /* PRIMARY KEY = NAME */ !
240 ALT KEY 1, KEYPOS=58, KEYLEN=3, DUP, /* KEY 1 = AREA CODE ¥/ !
260 KEY 2, KEYPOS=53, KEYLEN=5, DUP /* KEY 2 = ZIP CODE ¥/ !

The file will now have two alternate indices: alternate index 1, which indexes
records by the three-byte field starting at byte 58 of the record (the area
code field, according to the convention above), and alternate index 2, which
indexes records by the five-byte field starting at byte 53 (the zip code
field). Both indices allow duplicate keys (DUP) since there may be more than
one entry with the same area or zip code.

In order to insure that the records written to the file are retrievable
later by these alternate keys, the alternate key access mask must be set
appropriately before any records are written. The usable keys are numbered 1
and 2, so the binary value of the alternate key access mask should be set to
1100000000000000, which is CO000 in hexadecimal (see discussion of MASK
function in Section 8.5, Intrinsic File I/0 Functions). So, line 1800 can be
changed to read:

1800 WRITE #2, MASK=HEX(C000), RECH
To produce a consecutive file containing all the records from the MASS
file which have have their area code fields equal to "617", one could use the

following program (assuming the file MASS were written with alternate keys as
just described):

111

100 SELECT #1, "INPUT", INDEXED, RECSIZE=67, !

200 KEYPOS=1, KEYLEN=20, /% PRIMARY KEY=NAME ¥*/!
300 ALT KEY 1, KEYP0S=58, KEYLEN=3, DUP, /* KEY 1=2IP CODE ¥*/!
400 KEY 2, KEYP0S=53, KEYLEN=5, DUP /* KEY 2=AREA CODE */
288 SELECT #2, "OUTPUT", CONSEC, RECSIZE=67

700 DIM RECB 67

800

900 OPEN #1, INPUT, FILE="MASS", LIBRARY="ADDRESS", VOLUME="DATA"
1000 OPEN #2, OUTPUT, SPACE=200, FILE="AREA617", LIBRARY="ADDRESS", !
1100 VOLUME="DATA"

1200

1300 FIRST_IN: /% GET FIRST RECORD W/ALT KEY 1 = "617" #/
1400 READ #1, KEY 1 = "617", REC$, EOD GOTO THE_END

1500 GOTO NEXT OUT

1600 -

1700 NEXT_IN: /% GET NEXT RECORD W/ALT KEY 1 = "617" %/
1800 READ #1, REC$, EOD GOTO THE_END

1900 IF KEY(#1,1) <> "617" THEN THE END

2000

2100 NEXT OUT: /* WRITE THE RECORD OUT TO THE CONSEC FILE */
2200 WRITE #2, REC$

2300 GOTO NEXT IN

2400 -

2500 THE_END:

2600 CLOSE #1

2700 CLOSE #2

2800 END

In this case the indexed file MASS is associated with the file number
(UFB) #1. Note that the attributes specified in the SELECT #1 statement (line
100) are exactly the same as those specified in the SELECT statement in the
program which created the file MASS.

After the alternate indexed file MASS and the consecutive file AREA61T7
are opened (lines 800 - 1000), records with alternate key 1 (area code field)
are read from MASS one at a time (lines 1300, 1700) and written to AREA617
(line 2000). Note that the program has two separate routines (labeled FIRST
IN and NEXT_IN) for reading the first and subsequent records. This is because
any statement of the form READ #n, KEY m = alpha-exp reads only the first
occurence in the file of a record with alternate key m equal to alpha-exp.
Any subsequent READ #n statement which does not specify an alternate key
number will read the next occurence of a record with the most recently
specified alternate key. The most recently specified alternate key path (m)
is the current "reference key" for a particular indexed file. To change the
reference key for a file it is necessary to execute a READ with an explicitly
specified key. The primary key is considered to be key 0 (zero).

After each record is read, its first alternate key field is examined
(1ine 1900). The first time a record is read with alternate key 1 not equal
to "617", the program branches to the statement labeled "THE_END". Both files
are then closed (lines 2600 - 2700) and the program ends.

112

CHAPTER 9
DATA CONVERSION AND MATRIX STATEMENTS

9.1 DATA CONVERSION STATEMENTS

VS BASIC provides an extensive set of instructions designed specifically
to simplify the task of converting data from one format to another, either for
the purpose of interpreting information in a foreign format, or for packing
data into a more efficient format for storage or transmission. The statements
included in this special data conversion instruction set are summarized below:

CONVERT -- Converts a numeric value to an alphanumeric character string
and vice versa.

HEXPACK, -- HEXPACK converts a character string representing hexadecimal
HEXUNPACK digits into the binary equivalent of the digits. HEXUNPACK
does the reverse.

ROTATE[C] -- Rotates the bits of a single character or a string of
characters.

TRAN -- Utilizes a table-lookup technique to provide high-speed
character conversion.

These statements are discussed at length under their individual entries
in Part 2.

In addition to the above statements, other VS BASIC instructions which
may be useful in data conversion operations include the Boolean operations
AND, OR, XOR, and BOOLh (discussed in Section 5.7, Logical Expressions), the
alphanumeric functions BIN and VAL (discussed in Section 5.5, Alphanumeric
Functions, Section 5.6, Numeric Functions With Alpha Arguments, and under
their entries in Part 2), and the binary arithmetic operations ADD and ADDC

(discussed in Section 5.7, Logical Expressions, and under their entries in
Part 2).

9.2 MATRIX STATEMENTS

VS BASIC offers a set of matrix statements which perform operations upon
entire arrays. The matrix statements provide fifteen built-in matrix

operations, summarized by function below. Detailed discussions of each can be
found in Part 2.

113

9.,2.1 Matrix I/0 Statements

MAT INPUT -~ allows run-time input of numeric or alphanumeric array . 9
values.

MAT PRINT -- Displays or prints one or more arrays. Matrices are
printed row-by-row.

Both MAT INPUT and MAT PRINT allow explicit redimensioning of arrays
(see Subsection 9.2.4, Array Dimensioning).

9.2.2 Matrix Assignment Statements

MAT CON -- Sets every element of a numeric array to 1l.

MAT= -- Replaces each element of a numeric or alphanumeric array with
the corresponding element of a second array. The first array is
redimensioned to conform to the second.

MAT IDN -- Causes a (square) matrix to assume the form of the identity
matrix.

MAT READ -- Assigns values contained in DATA statements to array
variables without referencing each member of the array individually.

MAT TRN -- Causes a numeric or alphanumeric array to be replaced by the
transpose of a second array. The first array is redimensioned to
correspond to the transpose of the second. %

MAT ZER -- Sets every element of an array to zero.

All of the matrix assignment statements listed above allow explicit
redimensioning of arrays. See Subsection 9.2.4, Array Dimensioning.

9.2.3 Matrix Arithmetic and Sorting Statements

MAT + -- Adds two numeric arrays of the same dimension.

MAT - -- Subtracts numeric arrays of the same dimension.

MAT ()% —- Multiplies each element of a numeric array by an expression.
QAT_* -~ Stores product of two numeric arrays in a third array.

MAT INV -- Replaces one numeric matrix by the inverse of another.

MAT ASORT, MAT DSORT -- Sorts one alphanumeric or numeric array in
ascending or descending order into a second array.

114

Operations are performed on numeric arrays according to the rules of
linear algebra and can be used for the solution of systems of non-singular
homogenous linear equations. Inversion of matrices can be done in
significantly shorter time than is possible with ordinary BASIC statements.
MAT operations on alphanumeric arrays can be used for simple and rapid I/0
(input/output) and printing of alphanumeric material,

Note that the arithmetic and sorting statements described above do not
allow explicit redimensioning of arrays.

9.2.4 Array Dimensioning

Both numeric and alphanumeric arrays may be manipulated with MAT
statements. If not dimensioned in a DIM or a COM statement, arrays are given
default dimensions of 10 by 10, with a default alphanumeric element length of
16 bytes. Each dimension may range from 1 to 32,767 with an alpha element
length of 1 to 256 bytes.

The dimensions of an array may be changed explicitly using the MAT REDIM
statement. This may also be done by giving the new dimensions, enclosed in
parentheses, following the array name in any of the following MAT statements:

MAT CON
MAT IDN
MAT INPUT
MAT READ
MAT ZER

Arrays may also be redimensioned implicitly, as shown in the following
example.

100 DIM A(10,10),B(2,2),C(2,2)
200...

400 MAT A=B+C

The array A is redimensioned at statement 400 from a 10 x 10 array to a 2 x 2
array.

For alphanumeric arrays, the maximum length of each element may be

changed by specifying the new length after the dimension specification. For
example:

MAT REDIM AB(2,3)10

redimensions the array A$§ to be two rows by three columns with the maximum
length of each element in the array equal to 10.

115

NOTE:

With either explicit or implicit redimensioning, the newly
dimensioned array must not require more space than was
required for its original dimensions. For numeric arrays,
this implies the same (or fewer) elements. For
alphanumeric arrays, there must be the same number (or
fewer) characters.

9.2.5 Matrix Statement Rules

The following rules must be observed in the use of matrix statements:

1.

2.

Each matrix statement must begin with the word MAT.

Multiple matrix operations are not permitted in a single MAT
statement. For instance, MAT A = B+C-D is invalid. The same result
can be achieved by using two MAT statements: MAT A = B+C and MAT A =
A-Do

Arrays which contain the result of certain MAT statements are
automatically redimensioned; other arrays can be redimensioned
explicitly in the MAT REDIM statement. A redimensioned numeric
array cannot contain more elements than given in its original
definition; a redimensioned alphanumeric array also cannot contain
more characters than given in its original definition.

A vector (a singly-subscripted array) cannot be redimensioned as a
matrix (a doubly-subscripted array), nor can a matrix be
redimensioned as a vector.

The same array variable cannot appear on both sides of the equation
in matrix multiplication, matrix transposition, or matrix sorting.
MAT C=A*B and MAT A=TRN(C) are valid MAT statements; MAT C=C*B and
MAT B=TRN(B) are not.

116

PART 2
VS BASIC STATEMENTS AND FUNCTIONS

117

The following rules are used in this manual in the syntax specifications
to describe BASIC program statements and system commands:

1.

Uppercase letters (A through Z), digits (0 through 9), and special
characters (¥, /, +, etc.) must be written exactly as shown in the
general form.

Lowercase words represent items which are supplied by the user.

Items in square brackets ([]) indicate that the enclosed information
is optional. For example, the general form: RESTORE [expression]
indicates that the RESTORE statement can be optionally followed by
an expression.

Braces "M enclosing vertically stacked items indicate
alternatives; one of the items is required. For example,

literal
operand = alpha variable
expression

indicates that the operand can be either a 1literal, an alpha
variable, or an expression.

Ellipsis (...) indicates that the preceding item can be repeated as
necessary. For example,

INPUT [literal,] receiver [,receiver]...

indicates that additional receivers can be added to the INPUT
statement as needed.

The order of parameters shown in the general form must be followed.

118

ABS Function

General Form:

ABS(numeric expression)

ABS returns the absolute value of the numeric expression specified as
its argument. The value returned by the ABS function is of the same type
(integer or floating-point) as the argument.

Program Example:

10 A = 47

20 B = =A

30 Print A, B, ABS(B)
Result:

y7 =47 Y7

119

ACCEPT Statement

General

ACCEPT

where:

int

Form:

list [,list]...

[,KEYS(alpha-argl)] [,KEY(numeric variable)]

[,ON alpha-arg2 f{GOTO line number ,Jline number vee
L GOSUB statement label statement label

,ALT

,NOALT]} GOTO line number
GOSUB statement label

|

list= AT (exp2, exp3)

literal
[FAC(alpha-arg3),]{num variable [, PIC(image)][,num-spec]
alpha variable [, CH(int)][,alpha-spec]

num-spec = RANGE (POS)

(NEG)
(expl, exp5)

alpha-spec ={RANGE (alpha-argli, alpha-argb)}

image = a valid numeric image, as in FMT.

an int specifying the length of the (alpha) field.

alpha-arg= literal, alpha variable, BIN function, STR function.

120

The ACCEPT statement is discussed in detail in Section 7.5, the ACCEPT
statement. The following section is a summary of the features and operation
of ACCEPT.

The ACCEPT statement allows workstation input of numeric and
alphanumeric data in a field-oriented manner, using the supplied formatting
information. Both single receivers and arrays may be input.

ACCEPT uses the entire screen, clearing all unused areas.

Field Descriptions

1. Numeric fields may be formatted according to the PIC()
specification. It is interpreted as in the FMT statement (see FMT
statement)., If PIC() is omitted, the numeric fields are 18
characters. All blanks appear on the screen as pseudoblanks.

2. Alphanumeric field width is specified by CH(int), where int = field
width. If CH is omitted, the field size defaults to the defined
length of the alpha value. All blanks appear as pseudoblanks on the
screen.

Field Attribute Characters (FAC's)

1, If omitted, the following defaults are assumed:
Alphanumeric -- bright, modifiable, uppercase, tabbable (HEX(81)).
Floating-point -- bright, modifiable, uppercase, tabbable (HEX(81)).
Integer -- bright, modifiable, numeric only, tabbable (HEX(82)).

2. The first character of the alpha-expression specified in the FAC
clause (alpha-arg3) is used as the FAC character.

Field Placement Order

1. For single receivers, the fields are placed one at a time in order
of appearance in the statement, or in the order implied by any AT
clauses which are used.

2. For arrays, the fields are arranged element-by-element, in the usual
row-by-row order (like MAT PRINT).

Field Positioning

A field can be explicitly placed at a specified row and column on the
screen, using the AT clause of the ACCEPT statement; if no AT clause is given,

the field will be placed according to the defaults used by ACCEPT, which are
as follows:

121

If the field can fit on the same line as the preceding field, the
field will follow directly after the preceding field with space for
one FAC left between the fields. If the field in question is the
first field on the screen (i.e., there is no preceding field), then
the field is placed by default at row 1 column 2, to leave room for
a preceding FAC.

Any modifiable field which is too long to fit in the space remaining
on the line containing the preceding field will be placed at the
beginning of the second column of the next line on the screen. No
modifiable field can be too long to fit on a single line (79 bytes
maximum length).

Any non-modifiable field too long to fit in the space remaining on
the line which has the preceding field and which is no longer than
79 bytes, is placed at the beginning of the second position on the
following 1line. If it is longer than 79 bytes, it is placed
immediately following the preceding field, and will be continued
onto as many lines as necessary.

If a non-modifiable field is too long to fit completely on the line
on which it starts, it will be continued for as many lines as
necessary. Fach new line will begin with a FAC with the same
attributes as the FAC which comes at the beginning of the field,
except that the continued sections of the field will not be tabbable.

These rules are summed up in Table P2-1.

The following conditions are considered errors, whether they occur
because the field was placed using an AT clause, or because the field was
placed by the ACCEPT defaults:

l-

y.

Any modifiable field longer than 79 bytes (too long to fit on a
single line).

Any explicitly positioned modifiable field extending beyond the end
of the line on which it is placed.

Any field explicitly placed so that it starts beyond the boundaries
of the screen.

Any field extending beyond the end of the last line on the screen.

For arrays, the cursor is automatically moved to column 2 of the next
line on the screen after each row.

122

Table P2-1.

ACCEPT Field Placement Defaults

LINE LENGTH MODIFIABLE FIELD NON-MODIFIABLE FIELD
Less than 79
characters
will fit Immediately follows Immediately follows
on line previous field previous field
won't fit
on line Begins on next line Begins on next line

More than 79
characters Not allowed Immediately follows
previous field

Validation

Data entered by the user in response to an ACCEPT screen may be
validated by either character type or value. Character type validation is
controlled by the FAC clause. The FAC which precedes a field determines which
types of characters (i.e., numeric only, all characters, uppercase only) may
be typed in that field. Attempting to type in any character prohibited by
that field's FAC causes the workstation alarm to sound, and the character is
ignored.

Both numeric and alphanumeric fields may be validated by the BASIC
program, according to a specified range of values, before being accepted. If
validation fails, the first incorrect field is set to "blinking" and the user
is reprompted for the values. Validation is done via a range specification as
follows:

1. Numeric

RANGE: POS = positive values (including zero).
NEG negative values only.
expld, exp5 = lower and upper 1limits, respectively, for
the input value(s) (inclusive). If a negative value is

specified for a 1limit the expression must be placed in
parenthesis.

2. Alphanumeric

RANGE: alpha expl, alpha exp2 = lower and upper limits. The
ASCII collating sequence is used.

123

PF Key Control

The action taken by the program in response to ENTER and PF keys can be
controlled by any combination of three key control clauses. (PF keys in
ACCEPT statements do not call DEFFN' subroutines or strings.)

If all three clauses are omitted, only the ENTER key can be used to
respond to the ACCEPT. If any clause is present, ENTER and all PF keys are
allowed by default, subject only to the restrictions of the KEYS clause if
present.

KEYS -- This clause specifies the keys which are valid for this
ACCEPT; any others will sound the workstation alarm if pressed. The
alpha- expression (actual length) is used as a list of l-byte binary
values corresponding to the allowed PF key (ENTER = 00). Invalid
values are ignored. (PF32 = HEX(20) may be considered to be a
trailing blank if the user is not careful.) The key order is
irrelevant.

KEY -- This causes the number of the key (ENTER = 0) pressed by the
user to be placed in the numeric variable. This is done prior to
any field validation or exit branching. The KEYS c¢lause takes
precedence over the KEY clause.

ON Key Value -- This clause allows the user to exit without changing
any data values if certain PF keys are specified.

As in the KEYS clause, the alpha-expression (actual length) is
treated as a PF key list. Each entry in the list corresponds to a
line number or statement label to which the program branches if that
PF key is pressed.

The last line number should not be followed by a comma, nor should
unused line numbers or statement labels be specified.

124

Response to Modification of Data

1.

3.

Execution

Ordinarily, all modifiable fields are read/validated/transferred
to their receivers, whether or not the fields were actually changed
by the user.

This can be made more efficient via the ALT specification or NOALT
clause, The presence of either ALT or the NOALT exit in the ACCEPT
statement will cause only those fields which were altered by the
user (i.e., character keystrokes detected at the workstation) to be
processed. Unaltered fields are effectively ignored, and the
corresponding receivers are unchanged.

If NOALT is specified and no fields were altered, the specified exit
is taken.

If ALT is specified, only those fields which were altered will be
processed; however, no exit may be specified.

of ACCEPT

1.

The screen is generated as described, with the cursor positioned at
the first modifiable (or numeric-protected) field, if any. All
fields contain the current values of the receivers/array elements.

The user may enter new values., When ENTER is keyed, or a PF key is
pressed, the key is first checked for validity. If invalid, the
workstation alarm sounds, and the user may continue modifying or may
press another key.

If the key is specified in the ON clause, the specified branch is
taken without any field reads or verification. (The KEY variable
will contain the key number, in any case.)

Otherwise, all modifiable fields (or only altered fields if ALT or
NOALT 1is specified) are read/validated. Numeric fields are
validated for proper numeric format independently of RANGE
validation. Although any PIC specification may be used, special
characters (CR,DB, etc.) are not valid on input.

If any field is invalid, its FAC is set to blinking and the user
must correct the mistake (and can further change other fields).

Syntax Example:

300 ACCEPT AT (12, 15), A, PIC(###), RANGE(50,100),

310 FAC(HEX(91)), B$, CH(7), RANGE("BARRELS", "KEGS"),
320 “OF BEER ON THE WALL.",

330 KEYS(BIN(O) & BIN(1) & BIN(16)), KEY(OPTION),

340 ON (BIN(1) & BIN(16)) GOTO START, FINISH,

350 NOALT GOSUB 1700

tw 0w Qm 0w o

125

ADDIC)] Logical Operator

General Form:

[LET] alpha-receiver = [logical expression] ADD[C] logical expression

logical expression: see Section 5.7, Logical Expressions.

The ADD operator is used to add a binary value to the binary value of an
alpha variable. For example, in the statement

100 A$ = ADD B$

the binary value of BP is added to the binary value of AP, and the result is
stored in AS$.

If an operand is specified before the ADD operator (operand-l), its
value is stored in the receiver variable prior to performing the addition.
For example, in the statement

100 A$ = C$ ADD B3

the value of CP is first stored in AB; the value of BB is then added to AS,
and the result stored in A$. The contents of operand-l and the operand which
follows the ADD operator {(operand-2) are not altered.

If C does not follow the ADD operator, the addition is carried out on a
character-by-character basis from right to left, with no carry propagation
between characters. That is, the rightmost byte of the value of the operand
is added to the rightmost byte of the receiver variable; then, the
next-to-last character of the operand is added to the next-to-last character
of the receiver, and so forth. For example: .

100 DIM A$2

200 AB=HEX(0123)

300 A$=ADD HEX(OOFF)

400 PRINT "RESULT = ";HEXOF(AS$)

Output: RESULT = 0112
If the operand and receiver are not of the same defined length, the
shorter one is left-padded with hex zeros. The result is right-justified in

the receiver, with high-order characters truncated if the result is longer
than the receiver.

126

If C does follow ADD, the value of the operand is treated as a single
binary number and added to the binary value of the receiver variable with

carry propagation between characters.
For example:
100 DIM A$2
200 A$=HEX(0123)
300 A$=ADDC HEX(OOFF)
400 PRINT "RESULT = ";HEXOF(AS)
OUTPUT: RESULT = 0222

Examples of of valid syntax

600 A$=ADD HEX(FF)
200 AB=ADDC ALL(FF)
900 STR(A$,1,2)=B$ ADDC C$

See Section 5.7, Logical Expressions, for more information.

127

ALL Function

General form:

ALL (alpha-expression)

The ALL function creates a string consisting entirely of characters
equal to the first character of the alpha-expression, and has a length equal
to the defined 1length of the receiver. It is wused only in logical
expressions. (For more information on the use of the ALL function, see
Section 5.7, Logical Expressions.)

Syntax examples:

400 LET A$=ALL(B$)

800 CB=AND ALL(DS)

128

AND Logical Operator

General Form:

[LET] alpha-receiver = [logical exp] AND logical exp

logical exp: see Section 5.7, Logical Expressions.

The AND operator logically AND's two or more alphanumeric arguments.
Redefine w/out using the term.

The operation procedes from left to right. If the operand (the logical
expression) is shorter than the receiver, the remaining characters of the
receiver are left unchanged. If the operand is longer than the receiver, the
operation stops when the receiver is exhausted.

Examples:

100 AB = AND BP (logically ANDs AP and BB and places the result in AS$.)

100 A$ = B$ AND C$ (logically ANDs B$ and C$ and places the result in
A$.)

HEX(OFOF) AND HEX(OFOF)=HEX(OFOF)

HEX(OOFF) AND HEX(OFOF)=HEX (0O00F)

See Section 5.7, Logical Expressions, for more information.

129

ARCCOS Function

General Form:

ARCCOS(numeric expression)

The ARCCOS function returns the arccosine of its argument; this is the
inverse function of CO0S. The value of the numeric expression used as an
argument to ARCCOS must be between 0 and 1 (inclusive); otherwise, an error
message will result when the ARCCOS function is evaluated and program
execution will halt. ARCCOS returns a floating-point value in radians,
degrees, or grads, depending on the trig mode specified by the most recently
executed SELECT statement (the default is radians if no SELECT has been
executed).

130

ARCSIN Function

General Form:

ARCSIN(numeric expression)

The ARCSIN function returns the arcsine of its argument; this is the
inverse function of SIN. The value of the numeric expression used as an
argument to ARCSIN must be between 0 and 1 (inclusive); otherwise, an error
message will result when the ARCSIN function is evaluated and program
execution will halt. ARCSIN returns a floating-point value in radians,
degrees, or grads, depending on the trig mode specified by the most recently
executed SELECT statement (the default is radians when no SELECT has been
executed).

131

ARCTAN Function

General Form:

ARCTAN(numeric expression)

The ARCTAN function returns the arctangent of its argument; this is the
inverse function of TAN. ARCTAN returns a floating-point value in radians,
degrees, or grads, depending on the trig mode specified by the most recently
executed SELECT statement (the default is radians when no SELECT has been
executed).

132

ATN Function

General Form:

ATN(numeric expression)

The arctangent function; synonymous with ARCTAN.

133

BIN Function

General Form:
BIN(expression [,d])

where:
d = 1,2,3,4 (default = 1).

This function converts the integer value of the expression to a
d-character alphanumeric string, which contains the binary equivalent of the
expression. BIN is the inverse of the function VAL.

For d = 1, 2, or 3, the expression is converted to a d-byte unsigned binary
number. The limits for the value of the expression are:

256 (d=1)
0 < val. expression <<465536 (d=2)
16777216 (d=3)

For d=4, the expression is converted to a 4-byte 2's-complement signed binary
number (like internal integer format). The range is -2147483648 < val of
expression < 2147483647 !

Syntax examples:

300 AB=BIN(A,H)
800 B$=BIN(A,3) AND BIN(B,3)

Numeric examples:

BIN (255,1) = HEX(FF)
BIN (65535,2) = HEX (FFFF)

BIN (32767,3) = HEX (OO7FFF)

134

BOOLh Logical Operator

General Form:

[LET] alpha-receiver = [logical exp] BOCLh logical exp

logical exp - see Section 5.7, Logical Expressions.
h = a digit from 0 to 9, or a letter from A to F.

BOOL is a generalized 1logical operator that performs a specified
operation on the value of the receiver alpha variable. The operation to be
performed is specified by the hexadecimal digit following BOOL (see Table
P2-2). BOOL may be used only in the alpha-expression portion of an assignment
statement (i.e., on the right-hand side of the equals (=) sign). The value of
the operand which follows the BCOLh operator (operand-2) and the value of the
receiver variable are operated upon, and the result is stored in the receiver
variable. For example, the statement

100 A = BOOLT BS

logically not-AND's the value of BS with the value of A$, and stores the
result in AS$.

If an operand (operand-1) precedes the BOOLh operator, its value is
stored in the receiver-variable prior to performing the specified logical
operation. For example, the statement:

200 A$ = C$ BOOL7 B$

first stores the current value of CP into AS, and then not-AND's the value of
B$ to A$. Again, the result of the operation is stored in A$. The contents
of operand-l and operand-2 are not affected by the operation.

In every case, the logical operation to be performed is identified by
the hexadecimal digit following BOOL. A total of 16 logical operations are
available (see Table P2-2). The hex digit used to identify each operation is
a kind of mnemonic which represents the logical result of performing the
operation on the following bit combinations:

receiver-variable: 1100
operand-2 : 1010

For example, the hexdigit E identifies the OR operation. When 1100 is ORed
with 1010, the result is 1110, or hexdigit E. Several commonly used BOOL
operations are available as separate operators: BOOLE is equivalent to OR,
BOOL6 to XOR, and BOOL8 to AND.

135

Table P2-2

BOOL Logical Operation

digit
(Note: iff = if and only if)

0 null (bits always = 0; logical inverse
of BOOLF)

1 not OR (1 iff corresponding bits of both
arg 1 and arg 2=0) (NOR)

2 (1 iff corresponding bits of arg 2=1 and
arg 1=0)

3 binary complement of arg 1 (1 iff bit of
arg 1=0;) otherwise 0)

y (1 iff corresponding bits of arg 2=0 and
arg 1l=1)

5 binary complement of arg 2 (1 iff bit of
arg 2=0)

6 exclusive OR (1 iff corresponding bits of
arg 1 and arg 2 are different) (XR)

7 not AND (0 iff corresponding bits of both
arg 1 and arg 2=1) (NAND)

8 AND (1 iff corresponding bits of both arg 1
and arg 2=1)

9 equivalence (1 iff corresponding bits are the
same, i.e., both = 1 or both = 0)

A arg 2 (identical to bits of arg 2)

B arg 1 implies arg 2 (1 unless arg l=1 and
arg 2=0)

C arg 1 (identical to bits of arg 1)

D arg 2 implies arg 1 (1 unless arg 2=1 and
arg 1=0)

E OR (1 unless both corresponding bits = 0)

F identity (bits always = 1; logical inverse of
of BOOL(0)

BOOL6 is equivalent to XOR;

equivalent to OR.

Examples:

HEX(F000)=HEX(OFOF) BOOL1l HEX(OFFO)
HEX (FOOF)=HEX (OFOF) BOOLS5 HEX(OFFO0)
HEX (FFFF)=HEX(OFOF) BOOLF HEX(OFFO)

136

BOOL8 is equivalent to AND;

BOOLE is

CALL Statement

General Form:

CALL "name" [[ADDR](arg[,argle...)]

where:
"name" = 1-8 alphanumeric characters (including €, #, §)
= SUB "name" of the SUB program being called.
arg =(expression

alpha-expression
array-designator
file-expression

Note: Name must be enclosed in quotation marks.

CALL directs execution to the named subroutine, identified by a SUB
statement, and passes any arguments to the subroutine program dummy
arguments. The subroutine must be 1linked, using the LINKER utility, before
the program is run. This can also be done when a program is compiled from the
EDITOR.

The argument list in the CALL statement must correspond item-for-item
with the argument list in the SUB statement, according to Tables P2-3 and P2-14.

Table P2-3

CALL argument SUB argument

(alpha-)expression scalar variable
matrix matrix
vector vector

file-expression

file~-number

Table P2-4

CALL argument type

SUB argument type

alpha
floating-point
integer

alpha
floating-point
integer

137

A SUB statement with an argument list as follows:
100 SUB "HENRY" (ATLANTISB, ELASMOBRANCH, JELLYFISH%(), #1)

must have arguments passed to it by a CALL statement in exactly the same
order--in this case, alphanumeric scalar, floating-point variable, integer
array-designator, file-expression. The arguments in the CALL statement do not
have to be identical to those in the SUB statement, but each must correspond
to the argument in the same position in the SUB statement's argument list.
Thus, the following CALL statement is valid:

CALL "HENRY" (STR(C1$()), A(1), B%(), #N)
Note that STR(C1B()) is used as a string since C1$() would be treated as an
alpha array-designator.

Argument passing for the CALL statement proceeds as follows:

1. Values of file-expressions are passed to the SUB program to
replace dummy file numbers (specifically, the UFB address is
passed to the SUB program).

2. Pointers to the values of numeric scalar variables are passed to
the SUB program.

For non-ADDR type -- Array and alphanumeric scalar descriptors are
passed to the SUB routine, including pointers to the storage addresses,
dimensions and lengths.

Since other numeric expressions and alpha expressions are not receivers,
their values must be computed and stored in temporary locations, along
with their lengths, if alphanumeric. Pointers (in the case of numeric
expressions) or descriptors of the temporary values (in the case of
alphanumeric expressions) are then passed to the SUB program.

Otherwise, execution proceeds as with arrays and receivers, except that
returned values and lengths are effectively lost, since the locations
are no longer accessible to the calling program,

For ADDR-type -- For all data types, pointers to the storage addresses
only are passed; no dimensioning or length specifications are passed to
the subroutine. (For numeric scalers and file-numbers this is identical
to the non-ADDR type.)

138

Changed values are accessible as in non-ADDR type, except that array
dimensions and lengths may be changed only within the subroutine, i.e.,
array dimensions and lengths will return to their original values after
the subroutine returns to the calling program.

NOTE:

ADDR-type CALL is generally used only when the called
subroutine is non-BASIC; otherwise, standard (non-ADDR)
CALL's should be used.

Syntax examples:

100 CALL "ELIOT"(B,CB,D%)
200 PRINT "RETURNED"
300 STOP

100 DIM A$24

200 CALL "EXTRACT" ADDR("NA",A$)
300 PRINT A$

400 STOP

100 DIM LONG$100

200 CALL "123456" (LONGE)
300 PRINT LONG$

400 STOP

139

CLOSE Statement

General Form:

CLOSE [file-expression
WS
. CRT
PRINTER

This statement closes a file that had been previously opened for I/0
operations by an OPEN statement. If the file is subsequently re-opened in the
program (by means of another OPEN statement), the file, library, and volume
need not be respecified by the program or the user.

Attempting to close a file that has not been previously opened by an
OPEN statement causes a nonrecoverable program error at run-time.

All files are closed at the start of the program; opened files should be
closed before the end of the program.

CLOSE CRT allows the user to close the workstation. This is necessary
if the user CALLs another program which attempts to OPEN the workstation.
CLOSE CRT is equivalent to CLOSE WS.

CLOSE PRINTER is used to close the standard VS PRINT file selected by
the SELECT PRINTER statement. Subsequent output to this device in the same
run will be directed to another standard VS PRINT file. If the standard VS
PRINT file is already closed, this statement has no effect.

Syntax examples:

100 CLOSE #1

300 CLOSE #A

500 CLOSE #LEN(A$)
700 CLOSE CRT

900 CLOSE PRINTER

PRINTER Programming Note

On program entry, the workstation is the default output device and the
standard VS PRINT file is closed. If a SELECT PRINTER statement is executed,
subsequent PRINT [USING] output is directed to the standard VS PRINT file.
This standard file is implicitly opened the first time any output is generated
by a PRINT [USING] statement following the execution of the SELECT PRINTER
statement.

Several standard VS PRINT files may be created during a single program
run. These multiple files may have different printline width specifications.
The CLOSE PRINTER statement must be executed to signal the end of output to
the open standard VS PRINT file, and the SELECT PRINTER option with a new
width specified must be in effect for the next PRINT [USING] to be
automatically routed to another standard VS PRINT file. Any attempt to alter
the printline width while the standard VS PRINT file is open will produce a
run-time error. To redirect output to the workstation a SELECT CRT or SELECT
WS statement must be executed.

140

gﬁﬁ

COM Statement

General Form:
COM com element [,com element]...

where:
numeric scalar variable
com element = Jnumeric array name (int [,int])
alpha scalar variable [length-integer]
alpha array name (int [,int])[length-integer]

0 < length-integer < 256
0 < int < 32767

The COM statement is also discussed in Subsection 6.5.4, Passing Values
to External Subroutines.

The COM statement 1is a non-executable statement defining scalar
variables or arrays to be used in common by several program segments.

This statement provides array definition identical to the DIM statement
for array variables; a single COM statement can combine declarations of array
variables (e.g., A(10), B(3,3)) and scalar variables (e.g., C2,D,XB).

Common variables must be defined before they are used. Therefore, it
may be convenient to define the common variables at the beginning of the
program.

If a particular set of common variables is to be used in each of several
sequentially CALLed subprograms, the COM statement must be included in the
main program and each subprogram in which they are used. All variables in the
COM statements must be declared in the same order, and with the same
dimensions and lengths, in each separately compiled module.

The COM statement can be used to set the maximum defined length of
alphanumeric variables (assumed to be 16 if not specified). The length
integer (<256) following the alpha scalar (or alpha array) variable
specifies the length of that alpha variable (or those array elements).

Syntax examples:

800 COM A(10),B(3,3),C2
200 COM C,D(4,14),E3,F(6),F1(5)
600 COM M1$,M$(2,4),X,Y

300 COM A$10,BB(2,2)32

141

CONVERT Statement

General Forms:
CONVERT alpha-expression TO numeric variable
[,DATA {GOTO } {line number }]
GOSUBJ |statement label
or

CONVERT numeric expression TO alpha-receiver, PIC (image)

where: - -
i# (#] +
image = [+][$]1] 0 0 -
* *l... Ctaae] | ++
B B -
/ /

where not both a leading and trailing sign may be used.

The CONVERT statement is used to convert alphanumeric representation of
numeric data to internal numeric format, and vice versa. Two forms of the
statement are provided.

Form 1: Alpha-to-Numeric Conversion

Form 1 of the CONVERT statement converts the number represented by ASCII
characters in the alphanumeric expression to a numeric value and sets the
numeric variable equal to that value. For example, if A$§ = "1234", CONVERT A$
TO X sets X = 1234. An error will result (or the data exit will be taken) if
the ASCII characters in the specified alphanumeric are not a legitimate BASIC
representation of a number.,

Alpha-to-numeric conversion is particularly useful when numeric data is
read from a peripheral device in a record format that is not compatible with
normal BASIC statements, or when a code conversion is first necessary. It can
also be useful when it is desirable to validate keyed-in numeric data under
program control. (Numeric data can be received in an alphanumeric variable,
and tested with the NUM function before conversion to numeric format.) If the

alpha-expression is entirely blank, an error will result (or the data exit
will be taken).

142

Form 2: Numeric-to-Alpha Conversion

Form 2 of the CONVERT statement converts the numeric value of the
specified expression to an ASCII character string according to the image
specified. Numeric-to-alpha conversion is particularly useful when numeric
data must be formatted in character format in records.

The image used with this form of CONVERT is used in the same way as a
format-spec in an FMT statement, e.g., 100 CONVERT 10 to AS$, PIC (#i#i##)
Result: A = " 10

Syntax examples:

Alpha to Numeric

100 CONVERT A$ TO X
200 CONVERT STR(AS$,1,NUM(AS)) TO X(1)

Numeric to Alpha

100 X = 12.195

200 CONVERT X TO A$, PIC (000)
(result: A$ = "ol2v)

300 CONVERT X*2 TO A$, PIC (+i#i# . i)
(result: A$ = "424,39")

400 CONVERT X TO STR(A$,3,8), PIC (~#.#4+44)
(result: STR(A$,3,8) = " 1.2E+01")

500 CONVERT X TO AS, PIC (0000.###i#)
(result: A$ = "0012.19500")

143

COPY Statement

General Form:

COPY [-] alpha-expression TO [-] alpha-receiver

COPY transfers the alpha-expression to the alpha-receiver, one byte at a
time, using the defined lengths of both.

If "-v jis specified before the alpha-expression, the data is sent,
starting from the rightmost byte of the expression, right-to-left. Similarly,
if n_.w is specified before the alpha- receiver, the data is received, starting
from the rightmost byte of the receiver, right-to-left.

If "-" is not specified before the alpha-expression, the data is sent,
starting from the leftmost byte of the expression, left-to-right. Similarly,
'if ®w-m is not specified before the alpha-receiver, the data is received,
starting from the leftmost byte of the receiver, left-to-right.

Transfer stops when the receiver is filled, or the expression is
exhausted (in which case the remainder of the receiver is filled with blanks).

NOTE:

If the alpha expression is a receiver, it is copied
directly from its memory location; otherwise, the value of
the alpha expression is stored into a temporary location
and copied from there. Thus, COPYing a receiver onto
itself can result in desirable or undesirable
single-character propagation or other position-dependent
results.

Syntax examples:

100 AB="CHART"

200 COPY A$ TO B$
(result B="CHART")

300 COPY -A$ TO B$
(result BB="TRAHC")

14y

COS Function

General Form:

COS(numeric expression)

The COS function returns a floating-point value that is the cosine of
the numeric expression specified as its argument. The expression is
considered to be in units of radians, degrees, or grads, depending on the trig
mode specified by the most recently executed SELECT statement. If no SELECT
statement has been executed in the program or subprogram, the default mode is
radians.

145

DATA Statement

General Form:

DATA jconstant ,Jeonstant
literal literal f|...

The DATA statement provides the values to be assigned to the variables
in a READ statement. The READ and DATA statements thus provide a means of
storing tables of constants within a program.

Each time a READ statement is executed in a program, the next. sequential
value(s) listed in the DATA statements are obtained and stored in the
receivers listed in the READ statement. The values entered with the DATA
statement must be in the order in which they are to be used; items in the DATA
list are separated by commas. If several DATA statements occur in a program,
they are used in order of statement number. Numeric variables in READ
statements must reference numeric values; alphanumeric receivers must
referqpce literals.

The RESTORE statement provides a means to reset the current DATA
statement pointer and reuse the DATA statement values (see RESTORE) .

Example:

100 FOR I=1 TO 5

200 READ W

300 PRINT W,W**2

400 NEXT I

500 DATA 5, 8.26, 14.8, -687, 22

Output: 5 25
8.26 68.2276
14.8 219.04
-687 471969

g 22 48y

In the above example, the five values listed in the DATA statement are
sequentially used by the READ statement and printed.

146

DATE Function

General Form:

DATE

DATE returns a b6-character string giving the current date in the form
YYMMDD. The DATE function takes no arguments.

Example:
100 AB=DATE

200 PRINT STR(AS$,3,2);%/";STR(AB,5,2);"/";STR(A$,1,2)
300 PRINT STR(DATE,3,2);"/";STR(DATE,5,2);"/";STR(DATEL,2)

Qutput: 06/15/79
06/15/79

7

DEF Statement

General Form:

DEF function-name[%](v) = numeric expression

where:

function-name

any sequence of up to 64 letters, digits,
and underscores provided that the first
character is a letter, and the name is not
a VS BASIC reserved word,

v

the dummy variable, a numeric scalar variable.

If % is present, the function will return an integer value.

The DEF statement is also discussed in Subsection 4.4.2, User-Defined
Functions.

The define statement, DEF, enables the programmer to define a
single-valued numeric function within the program. Once defined, this
function can be used in expressions in any other part of the program. The
function provides one dummy variable whose value is supplied when the function
is referenced. Defined functions can reference other defined functions, but
recursion is not allowed (i.e., a function cannot refer to itself, nor can a
function refer to another function which refers to the first). The following
program illustrates how DEF is used.

Example:

100 X=3
200 DEF OBFUSCATION(Z) = Z%¥2-2

300 PRINT X + OBFUSCATION(2%)
400 END

Qutput: 33

Processing of OBFUSCATION(2%X) in this example proceeds in the following
order:

1. The expression specified as the argument of the function OBFUSCATION
(in this case, 2%{) is evaluated. In this case, the value of the
argument is (2%X=6).

2. The dummy variable in the function definition (in this case, Z in

line 200) is temporarily assigned the value of the argument (in this
case, 6).

148

'J

3. The expression to the right of the equals sign in the function
definition (line 200) is evaluated given the assignment just
performed, and the value returned to the statement which invoked the
function. In this case, (642 - 6)=30 is returned to the PRINT
statement (line 400), which adds the value of X (3, in this case),
and prints the result (33).

A user-defined function may be invoked from anywhere in a program.
The following restrictions apply to definitions of functions:
1. A DEF function may not refer to itself; for example,
DEF APPLE(MY_EYE) = MY_EYE + APPLE(MY_EYE)
is illegal.

2. Two DEF functions may not refer to each other. For example, the
following combination of statements is illegal.

DEF ARTICHOKE(X) = BANANA(X)
DEF BANANA(X) = ARTICHOKE(X)

Neither of the above restrictions is checked for during compilation, but
both will cause endless loops resulting in "stack overflow" during execution.

The dummy scalar variable in the DEF statement can have a name identical
to that of a variable used elsewhere in the program or in other DEF
statements; current values of the variables are not affected during function
evaluation., DEF statements may also use other variables, whose current values
at calling time are used.

Syntax examples:

600 DEF JAGUAR(C) = (3%A) - 8% + LION(2-4)
700 DEF LION(A) = (3%a) - 9/C
800 DEF TIGER(C) = LION(C) * JAGUAR(2)

149

DEF FN' Statement

General Form:

DEF FN' int [(receiver[,receiver]...)]
[literall,literall...]

where:

int = 1 to 32 for program function key entries
0 to 255 for internal program references

The DEF FN' statement has two purposes:

1. To define a literal to be supplied when a Program Function (PF) key
is used for keyboard text entry.

2. To define Program Function key or program entry points for
subroutines with argument passing capability.

Keyboard Text Entry Definition

To be used for keyboard entry, the integer in the DEF FN' statement
must be from 1 to 32, representing the number of a Program Function key (PF
key). When the corresponding PF key is pressed while execution is halted by
an INPUT or STOP statement, the user's literal(s) is displayed and becomes
part of the currently entered text line.

The literal may be represented by a character string in quotes, a HEX
function or a combination of those elements.

NOTE:

The Program Function keys can be defined to output
characters that do not appear on the keyboard by using HEX
literals to specify the codes for these characters.

150

')

Examples:

100 DEF FN'31 "April is the cruelest month."
200 DEF FN'02 HEX(94); HEX(22);"Mistah Kurtz - he dead.";HEX(22)

Pressing PF 31 at a STOP or INPUT will cause "April is the cruelest
month." to be displayed, while pressing PF 2 will cause "Mistah Kurtz -
he dead." to appear, blinking and protected because of the HEX(94).
The quotation marks are produced by HEX(22), which is an example of how
it is possible to display characters which otherwise would be difficult
to display.

Marked Subroutine Entry Definition

The DEF FN' statement, followed by an integer and an optional receiver
list enclosed in parentheses, indicates the beginning of a marked subroutine.
(See also Subsections 6.4.2, GOSUB' Subroutines and 6.4.3, Program Function
Keys, for a discussion of marked subroutines.) The subroutine may be entered
from the program via a GOSUB' statement or from the keyboard by pressing the
appropriate Program Function key while execution is halted by an INPUT or STOP
statement. If subroutine entry is to be made via a GOSUB' statement, the
integer in the DEF FN' statement can be any integer from 0 to 255; if the
subroutine entry is to be made from a Program Function key, the integer can be
from 1 to 32. When a Program Function key is pressed or a GOSUB' statement is
executed, the execution of the BASIC program transfers to the DEF FN'
statement with an integer corresponding to the number of the Program Function
key or the integer in the GOSUB' statement (i.e., if Program Function key 2 is
pressed, execution branches to the DEF FN'2 statement).

When a RETURN statement is encountered in the subroutine, control is
passed to the program statement immediately following the last executed GOSUB'
statement, or back to the INPUT or STOP statement if entry was made by
depressing a Program Function key.

Repeated subroutine calls executed without RETURN or RETURN CLEAR
statements may cause memory overflow. (See RETURN and RETURN CLEAR.)

The DEF FN' statement may optionally include a receiver list. The
receivers in the list receive the values of arguments being passed to the
subroutine.

In a GOSUB' subroutine call made internally from the program, arguments
are listed (enclosed in parentheses and separated by commas) in the GOSUB'
statement. If the number of arguments to be passed is not equal to the number
of receivers in the list, a compilation error results.

151

Example:
100 GOSUB'2 (1.2,3+2 * X, “JOHN")

éoo STOP
300 DEF FN'2 (A,B(3),CB)

L

400 RETURN
Result: STOP 1.2, 3.24, "JOHN" (now press PF Key 2)

For Program Function key entry to a subroutine, arguments are passed by
keying them in, separated by commas, immediately before the program function
key is depressed. (See INPUT and STOP.) If the wrong number or type of data
is given, the entries will be refused, the cursor will return to the beginning
of the field, and the program will wait for further operator action.

The DEF FN' statement need not specify a receiver list. In some cases
it may be more convenient to request data from a keyboard in a prompted
fashion.

Example:

100 DEF FN'4

200 INPUT "RATE",R
300 C = 100 ¥ R - 50
400 PRINT "COST=";C
500 RETURN

When a DEF FN' subroutine is executed via keyboard Program Function keys
while the system is awaiting data to be entered into an INPUT statement, or in
STOP mode, the INPUT or STOP statement will be repeated in its entirety, upon
return from the subroutine,

Example:

100 INPUT "ENTER AMOUNT",A

200 DEF FN'1l
210 INPUT "ENTER NEW RATE",R
220 RETURN

152

Display: ENTER AMOUNT?
(Press PF Key 1)
! ENTER NEW RATE? 7.5
€-\ ENTER AMOUNT?

DEF FN' subroutines may be nested (i.e., call other subroutines from

within a subroutine). A RETURN statement encountered in a nested subroutine
will return execution to the subroutine which called the nested subroutine.

153

DELETE Statement

General Form:

DELETE file-expression

The DELETE command deletes the last record read, which must have been
read with the HOLD option. It is only valid for INDEXED files; CONSEC records
cannot be deleted.

See also the description of the HOLD option under the READ Disk File
statement.

154

DIM Statement

General Form:

DIM dim-elt [,dim-elt]...

where:
dim-elt =[numeric array name (intl[,int2])
{alpha array name (intl[,int2])[int3]}
alpha scalar variable [int3]
intl = row dimension, 1<int1<32767
int2 = column dimension, 1<int2<32767
int3 = string length, 1<int3<256

The DIM statement reserves space for arrays and sets the length for
alpha scalars or array variables. (Use of the DIM statement is also discussed
in Subsection 3.5.2, Dimensioning an Array.)

The DIM statement must appear before use of any of the dimensioned
elements.

If not dimensioned in a DIM statement, the following defaults hold:

1. The string length of alpha scalar or array variables defaults to
16. This is also true if int3 is omitted in a DIM statement.

2. Arrays default to 10-by-10 matrices.

3. Arrays or variables dimensioned in a COM statement may not be
respecified in a DIM. (See COM statement.) A variable or array may
occur in only one DIM or COM in each program or subprogram.

Arrays may be redimensioned by using [MAT] REDIM.

Syntax examples:

100 DIM A$100
200 DIM Ab(4,4),BB(12,12)20,B(3,7)
300 DIM A(10),B$(20)10

Note that in a DIM statement, DIM must be the first word of the

statement; if DIM is used in any other way, it is interpreted as referring to
the DIM function.

155

DIM Function

General Form:

DIM (arrayadesignator,‘{l})
2

where:

{1}
{2}

corresponds to row dimension
corresponds to column dimension

The DIM function returns, as an integer value, the current row (1) or
column (2) dimension of the specified array. The column dimension of a vector

is l%o

NOTE:

The defined length of an alpha scalar or array variable may
be obtained using LEN(STR(variable)).

Examples:

100 A=DIM(A(),1)
200 B=DIM(A(),2)

156

DISPLAY Statement

General Form:

DISPLAY list [,1ist]...
where:
list = COL (int)

AT(exp2, exp3)

numeric expression [,PIC(image)]
alpha-exp [,CH (int)]

BELL

image

a valid numeric image, as in FMT.
int

an int specifying the length of the (alpha) field.

DISPLAY allows the output of numeric and alphanumeric data values via
the workstation in a field-oriented manner, using the supplied formatting

information. (See Section 7.6, The Display Statement for a detailed
discussion.) Both single values and arrays may be output.

DISPLAY works in generally the same way as ACCEPT, with the following
exceptions:

1. Values are written only; no new values are accepted. (Thus there
are no PF key clauses or FAC characters.)

2. Pseudoblanks are not used.

Otherwise, see ACCEPT. The screen is cleared prior to DISPLAY, and a

STOP statement should be used in order to halt execution for viewing (if
desired) following DISPLAY.

See Chapter 7 for more information on screen I/0.

Examples:

100 DISPLAY CcOL(1l0),A$,CH(20),AT(20,20),A ,PIC(##.i#i#)
200 DISPLAY B$,BELL

157

EJECT Compiler Directive

General Form:

EJECT

EJECT is a compiler directive (see Section 2.4, Subsection 2.4.2,
Compiler Directives). The EJECT statement, which must be the only statement
on a line, causes the compiler to skip to the top of the next page of the

source listing and print the most recently specified title at the beginning of
the page.

158

END Statement

General Form:

END [expression]

This statement is required to terminate the program prior to its
physical end or to pass a program-supplied return code to the operating
system. It may be used anywhere and any number of times in the program. It
is not required at the physical end of the program where an implied END is
automatically generated.

When the END statement is encountered, program execution terminates or,
if in a subroutine, execution returns to the calling program. If END is
followed by an expression, the value of the expression (truncated if not an
integer) is passed to the operating system as a return code. If 'expression'
is omitted, the return code is 0; e.g., 100 END 999 END A

The second example passes the current (truncated) value of A to the system as
a return code.,

Return codes are often useful in writing procedures. (See the VS
Programmer's Introduction for a discussion of procedures and the use of return
codes.)

159

EXP Function

General Form:

EXP(numeric expression)

The EXP (exponential) function returns a floating-point value equal to
the natural constant "e" (the base of natural logarithms; e =
2.71828182845904) raised to the power given by the value of the argument. EXP
is the inverse function of LOG.

Examples:

100 A = EXP(1)
200 B = EXP(73)
300 PRINT A, B

Result: 2.718281828 9744803446

160

FMT Statement

General form:

FMI form-spec [, form-spec J...

where:
form-spec = [[rep-int#*]data-spec
[rep-int#*]literal
control-spec
rep-int = int specifying the number of times to

repeat the data-spec or literal.

FMT is a non-executable statement used to format data values for PRINT
and disk I/0 statements. (See also Section 7.4, The USING Clause and Format
Control Statements, and 8.4, The File I/0 Statements, for discussions of the
use of the FMT statement.) The FMT statement and the FORM statement are
synonymous and may be used interchangeably. They may be used wherever
Image(%) is allowed, subject to the following restrictions:

1. BI, FL, and PD are not displayable formats, and thus are legal only
for disk I/0 statements.

2. For PRINTUSING, the FMT statement may be re-used for long argument
lists. This is exactly 1like Image, and is described in the
PRINTUSING section.

Control-Spec

1. XX [(int)] -- Skip int positions (input) or write n blanks
(output). Omitted int=1l.

2. COL (int) or POS (int) -- Next form-spec to start at position int in

record or output line. (For disk I/O0, int < record size. For
PRINTUSING, COL>0 or current printer width causes the next
form-spec to begin at column 1 of the next line.)

TAB (int) -- Like COL, but all skipped-over characters are set to
blank.
SKIP [(int)] -~ Skip int lines (default=1). Like PRINT SKIP. (Not

for disk I/0.)

161

Data-spec

1.

(Note: w and d are int constants.)
CH(w) -~ Character data, w bytes.
BI[(w)] -- Binary internal format, w bytes. 1<w<4, default=zi.

FL[(w)] -- Floating-point internal format, w bytes w=4 or 8,
default=8.

PD(w[,d]) -- VS packed decimal, w digits, d digits to the right of
the (implied) decimal point (default d=0). Number of bytes required
is 1+INT(w/2).

PIC([+][$] eos [4444] ++|)

. N x O %%
- N %O %

Editing Characters

it

444

Digit position - blank if leading zero.

Decimal point.

Exponent E+xx for exponential output. If present, the digit
positions will be filled with significant digits (no leading
zeros) and the exponent scaled accordingly.

Replace leading 0 with ¥,

Retain leading O.

If right of a numeric digit, insert ',' ; otherwise, blank.

If right of a numeric digit, insert '/' ; otherwise, blank.

Insert blank.

162

Sign Trailing + '+' >0, '-'if <0
- blank if >0, '-*' if <O
++ 2 blanks if > 0, 'CR' if < O
-= 2 blanks if > 0, 'DB!' if < O

l. A leading sign and a trailing
sign cannot both be specified.

2. If no signs are present, the
absolute value of the number
is printed.

Sign Leading + '+'if >0, '-' if <O
- blank if >0, '=' if < 0
$ '$' precedes the number

(The above three characters float to the leftmost nonzero digit
location.)
Examples:

100 FMT PIC(##.#i4+444)
200 FMT SKIP(10),CH(®),SKIP(-5),COL(20) ,PIC(E%** i)

NOTE:

The FMT Statement always extends to the end of the line on
which it occurs. It cannot be terminated by use of a colon
(:) as described in Section 2.3.2, Multiple Statement Lines.

163

FOR Statement

General Form:

FOR numeric scalar variable = expl TO exp2 [STEP expl]

The FOR and NEXT statements are used to specify a loop. The FOR
statement marks the beginning of the loop and defines the loop parameters.
The NEXT statement marks the end of the loop. The program lines in the range
of the FOR statement are executed repeatedly, beginning with variable = expl,
and thereafter incremented by the STEP expression value until the variable
value exceeds the value of exp2.

The three expressions may take on any value. If STEP is omitted, 1 is
assumed. STEP and exp2 are evaluated only once; if STEP is O or has the wrong
sign, the loop is executed only once.

After termination of the loop, the variable has the last value used,
i.e., without the final increment. There are no restrictions on branching in
or out of the loop, provided that a NEXT without an open FOR is not
encountered; this event will cause an error.

NOTE:

If the loop variable is an integer variable, expl, exp2 and
the step exp will be truncated to integers and all loop
calculations will be integer type.

Example:
100 FOR A=1 TO 10 STEP 3
200 PRINT A
300 NEXT A
Result:
1
l
7

10

164

FORM Statement

General form:

FORM form-spec [, form-spec J...

where:
form-spec = |[[rep-int#*]data-spec
[rep-int#*]literal
control-spec
rep-int = int specifying the number of times to

repeat the data-spec or literal.

Synonymous with FMT.

165

FS Function

General Form:

FS (file expression)

The FS function returns the file status for the most recent I/0
operation on the specified file, as an alpha value two characters long. FS
can assume any of the following values:

CONSEC, TAPE, and PRINTER file I/0

100! Successful I/0 operation

'10°* End-of-file encountered

1231 Invalid record number

130! Hardware error

34 No more room in the file

'g5! Invalid function or function sequence
97 Invalid record length

INDEXED file I/0

00! Successful I/0 operation

'10! End-of-file encountered

121 Key out of sequence (WRITE statement in OUTPUT mode only)

22! Duplicate key

123 No record found matching specified key

24 Supplied key exceeds any key in the file (INPUT, I/O, or SHARED
mode)

134 No more room in the file (OUTPUT or EXTEND mode)

30" Hardware error

195" Invalid function or function sequence

97! Invalid record length

SHARED MODE I/0 ERRORS#*

'80° Invalid Key area (START, READ KEYED)
181! Invalid READ NODATA

1821 Label update error

1831 Sharing task was terminated

8y Invalid record size/record area

(Record size > 2048)

#¥Not normally encountered by BASIC user

166

GET Statement

General Form:

GET Jfile-exp (,] USING Jline number , arg [,argle...
alpha-exp statement label

, DATA (GOTO line number
GOSUB statement label
where:

arg =jreceiver
array-designator

GET allows extraction of data from the record area in a file or from an

alpha-expression USING the referenced Image (%) or FMT statement, or using
standard format.

Data in the record area referenced by the file-expression are those read
with the last READ statement; these data are available to GET until
overwritten by another READ from the same file, or by a PUT, WRITE, or REWRITE
for that file.

The DATA exit is taken if data conversion fails (e.g., character string
moved to numeric variable, alpha-expression too short to fill all the args,
etc.).

Syntax examples:

100 GET #A USING 300,B,DATA GOTO 500
300 FMT PIC (i###)

NOTE:

GET may be used to convert numeric data from internal
formats used by COBOL programs to BASIC numeric data
format. See Appendix D for information on numeric data
compatability between BASIC and COBOL.

167

GOSUB Statement

General Form:

GOSUB | 1ine number
statement label

The GOSUB statement is used to transfer program execution to the first
program line of a subroutine. (The use of the GOSUB statement is also
discussed in Subsection 6.4.1, GOSUB Subroutines.) The program line may be any
BASIC statement, including a REM statement or a statement label line. The
logical end. of the subroutine is a RETURN or RETURN CLEAR statement. A RETURN
statement directs execution to the statement following the last executed
GOSUB; a RETURN CLEAR statement clears the subroutine information but causes
no branch.

120 X = 20:GOSUB 200:PRINT X
125
130 GOSUB TEST

190 TEST:
200 REM SUBROUTINE BEGINS

210 RETURN:REM SUBROUTINE ENDS

The GOSUB statement may be used to perform a subroutine within a
subroutine; this technique is called "nesting" of subroutines.

Repeated entries to subroutines without executing a RETURN or RETURN
CLEAR should not be made. Failure to execute a RETURN or RETURN CLEAR causes
return information to be accumulated in a table which eventually will cause a
memory stack overflow error.

168

6“‘

GOSUB' Statement

General Form:
GOSUB'int[(arg[,argle...]

where:
05int<256

expression
arg =) alpha expression

The GOSUB' statement specifies a transfer to a marked subroutine rather
than to a particular program line, as with the GOSUB statement. (The use of
the GOSUB' statement 1is also discussed in Subsection 6.4.2, GOSUB'
Subroutines.) A subroutine is marked by a DEF FN' statement. When a GOSUB'
statement is executed, program execution transfers to the DEFFN' statement
having an integer identical to that of the GOSUB' statement (i.e., GOSUB'6
would transfer execution to the DEF FN'6 statement). Subroutine execution
continues until a subroutine RETURN or RETURN CLEAR statement is executed.
The rules applying to GOSUB usage also apply to the GOSUB' statement. Unlike
a normal GOSUB, however, a GOSUB' statement can contain arguments whose values
can be passed to variables in the marked subroutine.

The values of the expressions, 1literal strings, or alphanumeric
variables are passed to the variables in the DEF FN' statement left to
right. Elements of arrays must be explicitly referenced (i.e., they cannot be
referenced by the array-designator or array name alone). The arguments of the
GOSUB' must be passed to variables of the same type (i.e., alpha expressions
must be passed to alpha variables, and numeric expressions must be passed to
numeric variables).

Repetitive entries to subroutines without executing a RETURN or RETURN
CLEAR should not be made. Failure to execute a RETURN or RETURN CLEAR causes
return information to accumulate in a table, which could eventually cause a
stack overflow error.

Examples:

100 GOSUB'7

150 END

200 DEF FN'7:SELECT PRINTER (80)
210 RETURN

100 GOSUB'12 ("JOHN",12.4,3%X+Y)
200 END

300 DEF FN'12(A$,B,C(2))

400 PRINT A$,B,C(2)

500 RETURN

169

GOTO Statement

General Form:

GOTO {line number
statement label

This statement transfers execution to the specified line number or
statement label; execution continues at the specified line statement.

Example:

100 J=25

200 K=15

300 GOTO TEST
400 Z=J+K+L+M
500 PRINT Z,Z/4
600 END

650 TEST

700 L=80

800 M=16

900 GOTO 400

Output: 136 34

170

HEX Function

General Form:
HEX(hh[hh]...)

where:
h = hexdigit (0 to 9 or A to F)

The hexadecimal function, HEX, is a form of literal string that enables
any 8-bit code to be used in a BASIC program. Each character in the literal
string is represented by two hexadecimal digits. If the HEX function contains
an odd number of hexdigits or if it contains any characters other than
hexdigits, an error results.

Syntax examples:

100 A$=HEX(0C0AOA)
200 IF AP > HEX(7F) THEN 100
300 PRINT HEX(8001);"TITLE"

171

HEXPACK Statement

General Form:

HEXPACK alpha-receiver FROM alpha-expression

, DATA JGOTO line number
GOSUB statement label

The HEXPACK statement converts an ASCII character string which
represents a string of hexadecimal digits into the binary equivalent of those
hex digits. Hexadecimal digits entered from the keyboard may be entered as
ASCII characters; they may then be converted from ASCII code to their true
binary equivalent with HEXPACK. For example, the hex digit A has a binary
value of 1010. However, this digit is represented by an ASCII character A,
which has a binary value of 01000001. The HEXPACK statement can be used to
convert the binary value of ASCII character A into the binary value of the
hexadecimal digit A, and to store this value in the specified alpha-receiver.

The alpha-expression (actual length) contains the ASCII character string
which represents a string of hexadecimal digits. Each pair of ASCII
characters is converted to one byte of the corresponding binary value. Only
certain ASCII characters constitute legal representations of hexadecimal
digits. These include the characters 0-9 and A-F, as well as the special
characters :, ;, <, =, >, and ?. These characters are converted to the
following binary values:

ASCII Character Binary Val ue

0000
0001
0010
0011
0100
0101
0110
0111
000

1001
1010
1011
1100
1101
1110
1111

WO EWN b O

000
e s Wt |

Hmo QW
(o]
$8

VIl A e e

[o]
s

172

If the alpha-expression contains any characters other than those listed
above, including embedded spaces (i.e., any character which is not a legal
representation in ASCII of a hexadecimal digit), an error occurs; if the DATA
exit is specified, it is taken.

If the alpha-expression contains an odd number of legal hex digits, it
is padded on the right with one hex zero.

The alpha-receiver receives the converted binary value. Since each pair
of characters in the value of the alpha-expression is converted to a one-byte
binary value in the alpha-receiver, the alpha-receiver should have at least
half as many bytes (defined 1length) as the alpha-expression. If the
alpha-receiver is too short to contain the entire converted binary value, an
error occurs and program execution halts. If the alpha-receiver is longer
than the converted binary value, the binary value is left-justified, and the
remaining bytes of the alpha-receiver are not modified.

Example 1:

100 DIM P§2, USY

200 INPUT "VALUE TO BE PACKED",U$
300 HEXPACK P$§ FROM U$

400 PRINT HEXOF (P$)

Output:
VALUE TO BE PACKED?12C9
12C9

The availability of the special characters ":" (HEX (3A)) through "2"
(HEX (3F)) to represent hex digits A-F (1010-1111) means that HEXPACK will
recognize any ASCII code with a high-order "3" digit (hex 30 through hex 3F)
as a legitimate representation of a hexadecimal digit. This fact makes it
easy to transform any code into an acceptable representation of a hex digit,
and hence to perform operations such as packing the 1low-order digits
{low-order four bits) from a string of hexadecimal digits. The technique is
illustrated in Example 2.

173

Example 2:

100
200
300
400
500

DIM P§2, VHU

V$ = HEX (01020C09)
VS = OR ALL (HEX(30))
HEXPACK P$ FROM V$
PRINT HEXOF(P§)

Output: 12C9

Syntax examples:

HEXPACK A$ FROM B$

HEXPACK STR(A$,1,3) FROM STR(BS,7)
HEXPACK A$() FROM B$()

HEXPACK A§ FROM "3AFC282C"

i74

(J

‘)

'J

HEXPRINT Statement

General Form:

HEXPRINT falpha variable »| J alpha variable eodl;]
alpha array designator H alpha array designator

This statement prints the value of the alpha variable or the values of
the alpha array in hexadecimal notation. The printing or display is done on
the device currently selected for PRINT operations (see SELECT). The defined
lengths of the alpha values are printed. Arrays are printed one element after
another with no separation characters. A new line is started after the
value(s) of each alpha variable (or array) in the argument list, unless the
argument is followed by a semicolon. If the printed value of the argument
exceeds one line on the workstation or printer, it will be continued on the
next line or lines. Since the carriage width for PRINT operations can be set
to any desired width by the SELECT statement, this could be used to format the

output from long arguments.

Note that HEXPRINT X8, YB, Z8 is the same as PRINT HEXOF (X$), HEXOF
(¥$), HEXOF (2$).

175

HEXUNPACK Statement

General Form:

HEXUNPACK alpha-expression TO alpha-receiver

The HEXUNPACK statement converts the binary value of an alpha-expression
(defined length) to a string of ASCII characters representing the hexadecimal
equivalent of that value. The resulting characters are stored in the
alpha-receiver.

HEXUNPACK is the logical inverse of HEXPACK, with the exception that
characters 3A-3F are not used; the characters produced are in the range 0-9

If the alpha-receiver is not at 1least twice as 1long as the
alpha-expression (defined length), an error occurs. If it is longer, the
result is left-justified and unused characters remain unchanged (as with
HEXPACK).

Example:

100 DIMP$2, UM

200 P$ = HEX (12Cc9)
300 HEXUNPACK P§ TO UB
400 PRINT U3

OQutput: 12C9

Syntax examples:

HEXUNPACK A$ TO BB
HEXUNPACK STR(A$, 5) TO STR(B$, 1, 4)
HEXUNPACK AS() TO BB()

176

IF...THEN...ELSE Statement

General Form:

IF relation THEN {line number ELSE line number

executable executable
statement# statement*

statement statement

label label

¥except another IF

where: ,
relation = [alpha exp operator alpha exp W

numeric exp. operator numeric exp.

AND \,
relation OR relation

XOR

A

NOT relation
\(relation)

operator = =

<>

The IF statement causes conditional transfer or statement execution.
The following may occur, depending on the value of the relation:

1. Relation true:
If "THEN 1line number (or statement label)" is specified,
execution continues at the specified line number or statement
label.
If "THEN executable statement" is specified, the statement is
executed. Program execution then continues at the next

executable statement.

In either case, the ELSE clause is ignored.

177

2. Relation false:

If the ELSE clause is not specified, execution continues at the
next executable statement.

If the ELSE clause is specified, it is used like THEN in 1 and 2
above.

In either case, the THEN clause is ignored.

Two expressions are compared using standard numerical order; integers
are converted to floating-point before being compared with floating-point

values.

Two alpha-expressions are compared using their ASCII hexcodes, with the
shorter expression right-padded with blanks (HEX(20)).

The hierarchy of execution of the relational expression is as follows:

10
2.
3.
u.
50

Parentheses

<y<= 42,2z ,<>,=

NOT

AND, OR, XOR
Left-to-right execution

NOTE:

Nested IF statements are not allowed.

Syntax examples:

100 IF A > .5 THEN 1000

200 IF AB>BB AND BE>CP THEN B=5 ELSE B=0

300 IF NOT A=B THEN 1000

400 IF E$<=F$§ AND (NOT N>I) THEN 1000 ELSE 800
500 IF A>B THEN TEST ELSE NO_TEST

178

/J

Image(%) Statement

General Form:

% [character string cee
format specification

where:

Character string = Jany character eee
except '#!

Format specificatio

+ u

++

+
} [$]#oo-[’][#--o[)]]-o.[o][#oo-][ff1*] -

The Image(%) statement is a non-executable statement used to format
output from PRINTUSING, disk I/0 and GET and PUT statements. One format
specification is used per numeric or alpha value, left to right.

For alphanumeric values, the format specification is filled from left to
right, regardless of the editing characters. The output value is right-padded
with blanks or truncated to fit the format spec.

For numeric values, the editing characters in the format spec are
interpreted depending upon the value to be formatted.

Format Characters

Leading + '+ if 0, '-' if 0
- blank if 0, '=' if 0
3 '$' precedes the number

(The above three characters float to just before the leftmost nonzero
digit location.)

digit position - blank if leading zero.

. decimal point.

’ comma if at least 1 significant digit is positioned
to the immediate left; otherwise blank.
exponent E+xx for exponential output., If
present, the digit positions will be filled with
significant digits (no leading zeros) and the
exponent scaled accordingly.

179

Trailing

.

5.

+ '+'if >0, '-' if <0

- blank if >0, '="' if <0
++ 2 blanks if >0, 'CR' if <0
== 2 blanks if >0,'DB' if <0

NOTE:

1, If a leading sign is present,
the trailing sign is ignored,
i.e., it becomes (part of) the
next character string.

2. If no signs are present, the
absolute value of the number
is printed.

Note that there must be at least a single '#' in a format
specification, and that the output field width is always the same
length as the format specification, whether the output is numeric or
alphanumeric.

For numeric output:

. Fractions are truncated.

. If the format is insufficient for the integer part of the
number, the format specification itself is output, with the
correct leading sign, if the leading sign character is present.

If all format specifications are not used, everything up to the
first unused format is used, including a final character string.

A trailing character string in an IMAGE statement is considered to
extend to the last nonblank character.

A continued Image line is used up to the '!' character.

Syntax examples:

100 ¥FEAR IN A HANDFUL OF DUST +#it#, ik, i

100 ACCEPT A,B,C

200 PRINTUSING 300, A,B,C

300 FBH#, HiHE odtbes #iHE A= =i 4 444
400 STOP

500 GOTO 100

180

(J

INIT Statement

General Form:

INIT (alpha-exp) alpha-receiver [,alpha-receiver]...

The INIT statement initializes the specified alphanumeric receivers.
Each character in the defined length of the alpha-receiver(s) is set equal to
the first character of the alpha-expression. For example,

INIT("?")A$,B$,M$()

sets both alpha variables A$§ and B$§ and alpha array variable M$() to contain
all question mark characters.

181

INPUT Statement

General Form:

INPUT [1literal,] receiver [,receiver]...

This statement allows the user to supply data during the execution of a

program, If the user wants to supply the values for A and B while running the
program,

400 INPUT A,B
or

400 INPUT "VALUE OF A,B",A,B

would be entered before the first program line that requires either of these
values (A,B). When the system encounters this INPUT statement, it outputs the
message VALUE OF A,B, followed by a question mark (?), and waits for the user
to supply the two numbers. Once the values have been supplied, program
execution continues. The program assigns values left to right, one at a
time. The device used for inputting data is the workstation.

Each value must be entered in the order in which it is listed in the
INPUT statement and values entered must be compatible with receivers in the
INPUT statement. If several values are entered, they must be separated by
commas or entered on separate lines. As many lines as necessary may be used
to enter the required INPUT data. To include leading blanks or commas as part
of an alpha value, enclose the valwe in double or single quotes (" or '), for
example, "BOSTON, MASS.".

Variables in the INPUT list which the user does not wish to change may
be skipped over by entering a null value, i.e., a comma not immediately
preceded by a data item. For example,

Program: VALUE OF A,B,C,D?
Use[‘ H u.3,2 .0’ ,3 '5
Result : Variable C will not be changed; A,B, and D

get new values.

182

)

'J

A user may terminate an input sequence without supplying any additional
input values by simply keying ENTER with no other information preceding it on
the line. This causes the program to immediately proceed to the next program
statement. The INPUT list receivers which have not received values remain
unchanged.

When inputting alphanumeric data, literal strings need not be enclosed
in quotes. However, leading blanks are ignored and commas act as string
terminators. (This applies to subroutine parameters also -- see Subsection
7.5.3, PF Key Usage and Program Branching.)

Example 1:
100 INPUT X

Output: ?12.2 (ENTER)
(underlined portion supplied by user)

Example 2:

200 INPUT "MORE INFORMATION",A$
300 IF A$="NO" THEN END

400 INPUT "ADDRESS",B§

500 GOTO 200

Output: MORE INFORMATION? YES (ENTER)
ADDRESS? BOSTON, MASS (ENTER)
MORE INFORMATION? NO (ENTER)

Program Function Keys in Input Mode

Program Function (PF) Keys may be used in conjunction with INPUT. 1If
the PF key has been defined for text entry (see DEF FN') and an INPUT
statement is executed, pressing the PF key causes the character string in the
DEF FN' statement to be displayed on the CRT. The displayed value is stored
in the variable which occurs in the INPUT statement when the ENTER key is
pressed. For example:

100 DEF FN'01"COLOR T.V."
200 INPUT A$

Result: ?
(Now, pressing PF 1
will cause "COLOR T .V." to appear on the CRT.)
?COLOR T .V._
(CRT Cursor)

183

If the PF key is defined to call a marked subroutine, (see DEF FN') and
the system is awaiting input, pressing the PF key will cause the specified
subroutine to be executed. No assignment occurs, and the values keyed before
hitting the PF key are ignored, unless the subroutine has an argument list.
If so, as many values as are required are taken, starting from the leftmost
value Kkeyed; those left over are ignored. The workstation alarm sounds if
there are too few values or if those values do not correspond correctly to the
ree ivers in the GOSUB' argument 1list. An illegal PF key also causes an
alarm. When the RETURN statement is encountered, control returns to the INPUT
statement and the INPUT statement will be executed again. Repeated subroutine
entries via PF keys should not be made unless a RETURN or RETURN CLEAR
statement is executed; otherwise return information accumulates in a table and
eventually causes a stack overflow error.

Example:

The program below enters and stores a series of numbers. When PF 02 is
pressed, they are totaled and printed.

100 DIM A(30)

200 N=1

300 INPUT "AMOUNT",A(N)
400 N=N+1:GOTO 300

500 DEFFN'02

600 T=0

700 FOR I=1 TO N

800 T=T+A(I)

900 NEXT I

1000 PRINT "TOTAL=";T

1100 N=1

1200 RETURN

Output: AMOUNT? 7 (ENTER)
AMOUNT? 5 (ENTER)

AMOUNT? 11 (ENTER)
AMOUNT? (Depress PF 2)
TOTAL = 23

AMOUNT ?

184

)

INT Function

General Form:

INT(numeric expression)

The INT (integer) function returns an integer value that is the greatest
integer less than or equal to the value of the numeric expression specified as
the argument.

Examples:
INT(1.,5) = 1
INT(=-1.5) = =2

185

KEY Function

General Formﬁ

KEY (file expression [,exp])

KEY returns the primary key (or an alternate key) of the last record
read from the specified file. If exp is 0O or omitted, the primary key is
returned. Otherwise, the alternate key with key number = exp (from SELECT) is
returned. (For alternate-indexed files only.)

The length of the result is the (primary or alternate) key length as
specified in SELECT.

KEY may also be used as a receiver to set the (primary or alternate) key
field in the record prior to WRITE or REWRITE.

186

LEN Function

General Form:

LEN (alpha-expression)

LEN determines the actual length, in bytes, of the alpha-expression. It
can be used wherever a numeric expression is permitted. The result of LEN is
an integer value.

Example:

100 AP = "ABCD"
200 PRINT LEN (A$)

These program lines print the value 4 at execution time.
Example:
300 X = LEN(A$)+2

Combined with lines 100 and 200 above, this line assigns the value 6 to X at
execution time.

Example:

100 A§ = "ABCD"
200 PRINT LEN(STR(A$,2))

These lines give the value 15 at execution time. Since A$ is not explicitly
dimensioned, the default value for its length is 16 bytes. The STR function
extracts the bytes from AP, starting at the second byte, to its end. The
length of such a value is 15.

Example:

100 DIM AB6Y
200 A$ = WABCD"
300 PRINT LEN(STR(A$,POS(A$=HEX(20))))

These lines give the value 60 at execution time. The length of the alpha
scalar is initially 64; the value of the P0OS function is first determined,
giving the position of the first blank character in A$ equal to 5. The STR
function then extracts the number of bytes from the first blank character to
the end of the scalar.

187

LET Statement

General

Form:

or

[LET] alpha-receiver [,alpha-receiver]... =

or

[LET] alpha-receiver = logical expression

[LET] numeric variable [,numeric variable]... = numeric expression

alpha-expression

The LET statement

evaluates the expression following the equal sign

and assigns the result to the receiver(s) specified preceding the equal

sign.

separated by commas.

If more than one receiver appears before the equal sign, they must be
If the right-hand side of the statement is a logical

expression (see Section 5.7, Logical Expressions), then only one receiver may

appear on

the left.

An error results if a numeric value is assigned to an alphanumeric
or if an alphanumeric valwe is assigned to a numeric variable.

receiver,
Examples:

400

500

(In
100
200
300

100
200
300
400
500

LET X(3),2,Y=P+15/2+SIN(P-2.0)

LET J=3

this example, LET is assumed)
X=A¥E-Z%*Y

AB=BB

C$,D$(2)="ABCDE"

CH = 'ABCDE!'
A$ = "123u56"
D§ = STR(AS,2)
E$ = HEX(41)

PRINT A$,CH,D8,E$

188

This routine produces the following output at execution time:
g’* 123456 ABCDE 23456 A
' The execution of
[LET] recl, rec2,..., recn = value
is equivalent to

[LET] recn value

[LET] reen-1 = value

[LET] recl value

. for both alpha and numeric assignment. Assignment is right-to-left.

189

LGT Function

General Form:

LGT(numeric expression)

The LGT function returns a floating-point value equal to the common
(base 10) logarithm of the numeric expression specified as the argument.

Example:
LGT (100) = 2

190

LOG Function

General Form:

LOG(numeric expression)

The LOG function returns a floating-point value equal to the natural
logarithm (base "e") of the argument. LOG is the inverse function of EXP.

Example:

LOG (10) = 2.3025

191

MASK Function

General Form:

MASK (file expression)

MASK returns the alternate key access mask (alternate indexed file) for
the last record read from the specified file. The result is a 2-byte (16 bit)
alpha value whose bits (left to right) correspond to available alternate keys
(1-16). Bits which are "on" (binary 1) specify that the record may be
accessed, via a READ statement with a key clause, by those alternate key paths.

The MASK function may also be used as a receiver to set the alternate
key mask for a record prior to a WRITE or REWRITE statement.

Examples:

AB=MASK(#1)
MASK (#2)=HEX (FF00)

192

/*59

MAT + (MAT addition) Statement

General Form:
MATc=a+b

where:
¢, a, and b are numeric array names.

This statement adds two matrices or vectors of the same dimension. The
sum is stored in array c. Any two or all of a, b, and ¢ may be the same

array. Array c¢ is implicitly redimensioned to have the same dimensions as
arrays a and b,

An error occurs and execution is terminated if the dimensions of a and b
are not the same.

Example 1:

100 DIM A(5,5),D(5,5),E(7),F(5),G(5)
200 MAT A=A+D
300 MAT E=F+G
400 MAT A=A+A

Example 2:

The program provided adds the corresponding elements of the 3-by-3
arrays D and E, to give the new array F. Array F is automatically
redimensioned as a 3-by~3 array.

100 DIM D(3,3),E(3,3),F(5,2)

200 PRINT "ENTER ELEMENTS OF ARRAY D"
3p0 MAT INPUT D

400 PRINT "ENTER ELEMENTS OF ARRAY E"
500 MAT INPUT E

600 MAT F=D+E

700 PRINT "ELEMENTS OF ARRAY F":PRINT
800 MAT PRINT F;

1 1 1 3 3 3
Let D= 1 1 1 E= 3 3 3
2 2 2 3 3 3

When the program is executed, array F is displayed:

ELEMENTS OF ARRAY F

y y y
4 y y
5 5 5

193

MAT ASORT/DSORT Statement

General Form:

MAT numeric array namel = [ASORT | (numeric array name2)
DSORT

MAT alpha array namel = ASORT \ (alpha array name2)
DSORT

Array 2 is sorted in ascending (ASORT) or descending (DSORT) order into

array 1. Array 1 is redimensioned to correspond to array 2 as follows:
Array 2 Array 1 Redimensioned to
(nxm)[L] (pxq)[k] (nxm)[L]
(nxm)(L] (p)k] (nmx1)[L]
(n)(L] (pxq)[K] (nx1)[L]
(n)[L] (p)k] (nx1)[L]

where n,p= number of rows;
m, q= humber of columns.

An error occurs if array 1 is not as large (in bytes) as array 2.

The sorted values are placed in array 1 row-by-row, starting with the

first array variable. If array 1 is larger than array 2, remaining locations
are unchanged.

As sorting is done directly into array 1, the two arrays may not be the
same(i.e., sort-in-place is not supported).

NOTE:

Alphanumeric sorting uses the usual ASCII collating
sequence.

Syntax examples:

100 MAT A=ASORT(B)
200 MAT A$=DSORT(B$)
300 MAT CP=ASORT(BS)

194

C

Program example:

100 DIM A(3,4),B(2,3),C(T7)
200 MAT READ(B)

300 MAT A=ASORT(B)

400 MAT C=DSORT(B)

500 MAT PRINT B,A,C

600 DATA 3,4,7,1,5,2

Result:

B

3
1

&=

=MNDWEM

[$ ¢ —

U

195

MAT CON (MAT CONstant) Statement

General Form:
MAT e=CON [(d1[,d2])]

where:
¢ is a numeric array name and dl,d2 are expressions
specifying new dimensions,
1<d1,d2<32767

This statement sets all elements of the specified array to one (1).
Using (dl,d2) causes the matrix to be redimensioned. If (dl,d2) are not used,
the matrix dimensions are as specified in a previous COM, DIM or MAT
statement, or are the default values.

Examples of MAT CON syntax:

100 MAT A=CON(10)
200 MAT C=CON(5,7)
300 MAT B=CON(5%Q,S)
400 MAT A=CON

Examples showing usage in a program:

100 MAT A = CON(2,2)
200 MAT PRINT A;

When this program is executed, the CRT displays the result in packed
format:

1

1
1 1

196

MAT= (MAT assignment) Statement

General Form:
MAT a=b
where:

a and b are both numeric or both
alphanumeric array names.

This statement replaces each element of array a with the corresponding

element of array b. Array a is implicitly redimensioned to conform to the
dimensions of array b.

Syntax examples:

100 DIM A(3,5),B(3,5)
200 MAT A=B

300 DIM C(4,6),D(2,4)
400 MAT C=D

500 DIM E(6),F(7)

600 MAT F=E

Example showing use in a program:

O
" o
-3

Let A =

H
o
H
w
"
o

Program:

100 DIM A(3,3),B(2,3)
200 MAT A=CON

300 MAT PRINT A

400 MAT INPUT B

500 MAT A=B

600 MAT PRINT A

When this program is executed, the constant 3-by-3 array A is displayed
as:

1 1 1
1 1 1
1 1 1
in zoned format; the array B is input via the keyboard, and the new array A is

displayed as:

9 8 7
6 5 h

in zoned format.

197

MAT IDN (MAT identity) Statement

General Form:
MAT ¢ = IDN [(d1,[d2])]

where:
¢ is a numeric array name and dl,d2
are expressions specifying new dimensions.
1<dl,d2<32767

This statement causes the specified matrix to assume the form of the
identity matrix. If the specified matrix is not a square matrix, an error
occurs and execution is terminated.

Using (dl,d2) causes the matrix to be redimensioned. If (dl,d2) are not
used, the matrix has the dimensions specified in a previous COM, DIM or MAT
statement.

Syntax example:

100 MAT A = IDN(4,4)
200 MAT B = IDN
300 MAT C = IDN(X,Y)

Identity Matrix example:

100 DIM A(4,4)
200 MAT A = IDN
300 MAT PRINT A

When this program is executed, the matrix A is displayed in zoned format as:

(o NNy
OO KO
oOrHOO
=OOOo

198

MAT INPUT Statement

General Form:
MAT INPUT [1literal,]
numeric array name [(dl[,d2])]

alpha array name [(dl[,d2])[length]]

where:
d = expression specifying a new dimension
(1<d1,4d2<32767).

length = expression specifying maximum length of each.
alpha array element (l<length<256).

The MAT INPUT statement allows the user to supply values from the
keyboard for an array during the running of a program. The MAT INPUT
statement displays the literal, if given, and a question mark (?) and waits
for the user to supply values for the specified arrays. The dimensions of the
array(s) are as last specified in the program (by a COM, DIM or MAT
statement), unless the user redimensions the array(s) by specifying the new
dimension(s) after the array name(s). The maximum length for alphanumeric
array elements can be specified by including the length after the dimensions
specification; if no length is specified, a default value of 16 is used.

The values entered are assigned to an array row by row until the array
is filled. If more than one value is entered on a line, the values must be
separated by commas. Alphanumeric data with leading spaces or commas can be
entered by entering a quotation character (") before and after the data
value, Several lines can be used to enter the required data. Excess data is
ignored. If there is a system-detected error in the entered data, the data
must be reentered beginning with the erroneous value. The data which preceded
the error is used as previously entered. Input data must be compatible with
the array (i.e., numeric data for numeric arrays, alphanumeric literal strings
for alphanumeric arrays). Entering no data on an input line (i.e., only
keying ENTER to enter a carriage return) causes the remaining elements of the
array currently being filled to be ignored.

199

Example with numeric variables:

100 DIM A(2),B(3),C(3,4)
200 MAT INPUT A,B(2),C(2,4)

When this program is run, key in the values, separated by commas,
-3, -5, 0612, .ul

Press the ENTER key to enter these values for array elements A(l), A(2), B(l)
and B(2). Enter the values

-6.“, -506, 98

separated by commas; press ENTER to enter these values for the array elements
c(1,1), c(1,2), and C(1,3). Touch the ENTER key without entering further

values to enter a carriage return and ignore the rest of the possible values
for the array C.

Example with alphanumeric string variables:

100 DIM C$(2),A$(u)",B(3)
200 MAT INPUT A$(4)3,B(2),C8

Enter RAD,DEG,MIN,SEC,2.5,5.6,LAST RESULT,"ROTATE X,Y" and Key ENTER.

Result:
RAD

AP = DEG B= 2.5 CB = LAST RESULT
MIN 5.6 ROTATE X,Y
SEC

200

MAT INV (MAT inverse) Statement

General Form:
MAT ¢ = INV(a)[,d]

where:
¢ and a = numeric array names.
d = numeric variable; the value of the
determinant of the array a.

This statement causes the inverse of matrix a to be placed in matrix c.
Matrix c¢ is redimensioned to have the same dimensions as matrix a. Matrix a
must be a square matrix; matrix c must be a floating-point matrix. If matrix
a is singular (i.e., non-invertible) and d is specified, then d will equal
zero after MAT INV is encountered. If d is not specified, an error occurs.

In either case, ¢ is destroyed. A matrix 'can be replaced with the inverse of
itself.

After inversion, the variable d (if specified) equals the value of the
determinant of matrix a.

This statement uses the Gauss-Jordan Elimination Method done in place;
as with any matrix inversion technique, results can be inaccurate if the
determinant (or normalized determinant) of the matrix is close to zero. It is
therefore good practice to check the determinant after any inversion.

The Gauss-Jordan Elimination Method also works best when values on the
main diagonal are in the same range as other values in the matrix; in
particular, numbers with large negative exponents on the main diagonal should
be avoided when other values are not in this range. When in doubt, it is a
good plan to check the data before inversion and adjust or rearrange it
accordingly (for example, zero elements that are close to zero, or rearrange
data so that elements on the main diagonal are as large as possible).

Syntax examples:

100 MAT A=INV(B)
200 MAT Z1=INV(P),X2
300 MAT F=INV(C),J3
400 MAT C=INV(C)

201

The following program takes the 4xl4 matrix A from the keyboard input,

calculates its inverse, and prints both the result and the value of the o
determinant of A. %

. !

100 DIM A(Y4,4)

200 PRINT "ENTER ELEMENTS OF A Uxl MATRIX"®

300 MAT INPUT A

400 MAT B=INV(A),D

500 MAT PRINT B

600 REM B IS THE INVERSE OF A, D IS THE DETERMINANT OF A
700 PRINT "VALUE OF DET.A=";D

If array A= 0 2 y 8 then array B= -1 0 0 25
0 0 1 0 -3.5 =2 =i 1l
1 0 0 1 0 1 0 0
y 8 16 32 1 0 1 =-.25

and the value of the determinant of A = =8.

202

-

*# (MAT multiplication) Statement

General Form:
MAT c=a¥*b

where:
¢, a, and b are numeric array names.

The product of arrays a and b is stored in array ¢. Array c cannot
appear on both sides of the equation but a and b may be identical. If the
number of columns in matrix a does not equal the number of rows in matrix b,
an error occurs and execution is terminated. The resulting dimension of c¢ is
determined by the number of rows in a and the number of columns in b.

Syntax example:

100 DIM A(5,2),B(2,3),C(4,7)
200 DIM E(3, u) F(4 ,7),6(3 7)
300 MMAT G = E * F
40O MAT C = A * B

Program Usage example:

100 DIM A(2,3),B(3,4)
200 MAT INPUT A,B
300 MAT C = A * B
400 MAT PRINT C

Let A = 0 1 y ,B= 5 1 0 y
T 7 7 y 1 0 y
3 h 3 4

When the program is executed and arrays A and B are entered, array C is
displayed as:

16 17 12 20
8y 42 21 81

203

MAT PRINT Statement

General Form:
MAT PRINT array name [t array name] ... [t]

where:
t is a comma or semicolon.

The MAT PRINT statement prints arrays in the order given in the
statement. Each matrix is printed row by row. All elements of a row are
printed on as many lines as required. A multiple MAT PRINT is treated like
several single MAT PRINTs. Numeric arrays are printed in zoned format unless
the array name is followed by a semicolon, in which case the array is printed
in packed format. For alphanumeric arrays, the zone length is set equal to
the maximum length defined for each array element (not always 16). A vector
(a one-dimensional array) is printed as a column vector.

Syntax example:

100 DIM A(4),B(2,4),B5(10),CcH(6)
200 MAT PRINT A;B,C$
300 MAT PRINT A,BS

Program Usage example: ﬁﬁﬁ

This program takes nine alphanumeric quantities as input, each up to 16
characters long, and prints them as a 3x3 array in packed format.

100 DIM Z5(3,3)
200 MAT INPUT Z§
300 MAT PRINT Z5;

At the workstation enter the values:
A,B,C,D,E,F,G,H, I
Results:

ABC

DEF
GHI

204

(F\

MAT READ Statement

General Form:

MAT READ|)numeric array namell(dl[,d2])] seee
alpha array name [[(dl[,d2])[1length]]
where:
d = expression specifying a new dimension

(1<d1,d2<32767).

length = expression specifying maximum length of each
alpha array element
(1<length<256).

The MAT READ statement is used to assign values contained in DATA
statements to array variables without referencing each member of the array
individually. The MAT READ statement causes the referenced arrays to be
filled sequentially with the values available from the DATA statement(s).
Each array is filled row by row. Values are retrieved from a DATA statement
in the order they occur on that program line. If a MAT READ statement
references beyond the limit of existing values in a DATA statement, the next
sequential DATA statement is used. If no more DATA statements are in the
program, an error occurs and execution is terminated.

Alphanumeric string arrays can also be used in the list. The information
entered in the data statement must be compatible with the array (i.e., numeric
values for numeric arrays, alphanumeric literals for alphanumeric arrays).

The dimensions of the array(s) are as last specified in the program (by
a CoM, DIM, or MAT statement), unless the user redimensions the array(s) by
specifying new dimension(s) after the array name(s) in the MAT READ
statement. The maximum 1length for alphanumeric array elements can be
specified by including the length after the dimension specification; when no
length is specified, a default of 16 is used.

Program example:

100 DIM A(1),B(3,3)

200 MAT READ A,B(2,3)

300 DATA 1, -.2,315, -.398, 6.21, 0, O
400 MAT PRINT A,B

Result:

A = 1 B = -2 315 -.398
6.21 0 0

205

MAT REDIM Statement

General Form:

MAT REDIM redim-elt[,redim-elt]...

where:
redim-elt =|numeric array namel|(expl[,exp2])
alpha array name [(expl[,exp2])[exp3]

1 < expl < 32767
1 < exp2 < 32767
1 < exp3 < 256

The MAT REDIM statement redimensions the specified arrays to the

dimensions specified by the expressions. The rules are like DIM, except as
follows:

1. As indicated, alpha scalars may not be REDIMed.

2. MAT REDIM may occur anywhere in the program or subprogram. Its only
effect is to change the dimensions and lengths of the specified
array; it does not affect the values currently assigned to array
elements.

3. The total (byte) space required for the array must be no greater
than that initially allotted to it by DIM or default (10x10, len=z16
for alpha arrays).

4, If exp3 is omitted, it is set to 16, regardless of the previous
length.

5. A matrix may not be redimensioned as a vector, or vice versa.

Syntax examples:

100 MAT REDIM A(10),BB(10,20)10
200 MAT REDIM A(20,30)

206

MAT()* (MAT scalar multiplication) Statement

General Form:
MATc:(k)*a

where:
¢ and a are numeric array names and k is an expression.

Each element of the array a is multiplied By the value of expression k
and the product is stored in array c. Array c can appear on both sides of the
equation. Array c is redimensioned to the same dimensions as array a.

Syntax examples:

100 MAT C = (SIN(X))*A
200 MAT D = (X+Y#*2)*p
300 MAT A = (5)%a

Program example:

This program inputs a 3 by 3 array and a scalar. It then performs
scalar multiplication and displays the result.

@E“ 100 PRINT "ENTER DATA FOR A 3x3 ARRAY"
. 200 MAT INPUT C(3,3)

300 PRINT "ENTER SCALAR"

400 INPUT K

500 MAT A = (K)*C

600 MAT PRINT A;

Let C = 5 3 1 , K=5 then A = 25 15 5
2 2 2 10 10 10
1 1 1 5 5 5

207

MAT - (MAT subtraction) Statement

General Form:
MAT c=a=">b

where:
a, b, and ¢ are numeric array names.

This statement subtracts numeric arrays of the same dimension. The
difference of each pair of elements is stored in the corresponding element of
¢c. -Any two or all of a, b, and ¢ may be the same. An error occurs and
execution is terminated if the dimensions of a and b are not the same. Array
¢ is redimensioned to have the same dimensions as arrays a and b.

Syntax example:

100 DIM A(6 93) ’B(6',3) ’C(6 v3) 1D(u) ,E(u)
200 MATC = A - B
300 MATC = A - C
400 MAT D =D - E

Program example

100 DIM D(3,3), E(3,3)
200 MAT INPUT D
300 MAT INPUT E

F

400 MATF = D - E
500 MAT PRINT

IfD=1 1 1 ,E=3 3 3, thenF=z -2 -2 =2
111 3 3 3 -2 -2 -2
2 2 2 3 3 3 -1 -1 -1

208

MAT TRN (transpose) Statement

General Form:
MAT ¢ = TRN(a)

where: .
a and ¢ are array names (both numeric or both alphanumeric).

This statement causes array c¢ to be replaced by the transpose of array
a. Array c is redimensioned to the same dimensions as the transpose of array
a. Array c cannot appear on both sides of the equation.

Syntax example:

100 MAT C = TRN(A)

Program Usage example:

100 DIM A(3,3)

200 MAT INPUT A
300 MAT C = TRN(A)
400 MAT PRINT C

Let A = 9 8 T
6 5 4
3 2 1

When the program is executed, C is displayed as:

9 6 3
8 5 2
7T 4 1

209

MAT ZER (MAT ZERO) Statement

General Form:

MAT ¢ = ZER [(dl[,d2])]

where:

¢ is a numeric array name and dl,d2 are expressions
specifying new dimensions. (1 < dl,d2 < 32767)

This statement sets all elements of the specified array equal to zero.
Using (dl, d2) causes the matrix to be redimensioned. If (dl,d2) are not

used, the matrix retains the dimensions specified in a previous COM, DIM, or
MAT statement.

Syntax example:

100 MAT C = ZER(5,2)
200 MAT B = ZER

300 MAT A = ZER(F,T+2)
400 MAT D = ZER(20)

210

MAX Function

General Form:
MAX (expl,exp]l)

where:
exp = a numeric scalar or numeric array.

The MAX function returns the largest element in the argument list, or in
the case of an array, the largest element of the array.

Syntax examples:

100 A=MAX(B,C,D)
200 D=MAX(E())

211

Mathematical Functions

The following General Form 1 applies to most mathematical functions.
General Forms 2-4 are listed after the discussion of General Form 1.

General Form 1:
function (exp)
where:

function = SIN
cos
TAN
ARCSIN
ARCCOS
ARCTAN
ATN
ABS
EXP
INT
LGT
LOG
SGN
NR

Trigonometric Functions

The sine, cosine, tangent, arcsine, arccosine, and arctangent functions
are available in BASIC. Other trigonometric functions can be easily expressed
using these functions in expressions. (When using these functions in
combination, care must be taken to avoid significant data conversion errors.
See Appendix C, Numeric Data Representation in VS BASIC, for a complete
discussion.)

Function Name Sample Expression Meaning
SIN SIN(X) the sine of the argument
cos COs(X) the cosine of the argument
TAN TAN(X) the tangent of the argument
ARCSIN ARCSIN(X) the inverse sine of the argument
ARCCOS ARCCOS(X) the inverse cosine of the argument
ARCTAN ARCTAN(X) the inverse tangent of the argument
ATN ATN(X) synonym for ARCTAN.

212

-

C

Other Numerical Functions

The remaining numerical functions are described below.

Function Name

ABS

SQR

EXP

INT

LGT

LOG

SGN

Sample Expression

ABS(X)

NR(X)

EXP(X)

INT(X)

LGT(X)

LOG(X)

SGN(X)

213

Meaning

The absolute value of the
argument: =X if X < 0; X
ifx>=0-

The square root of the
argument; X raised to the
.5 power.

The exponential function;

ner (2,718...) raised to
the X-th power.

The greatest-integer
function; the greatest
integer less than or
equal to the argument.

Common (base 10)
logarithm.

Natural (base "e")
logarithm; inverse
function of EXP.

The signum function; -1
if the argument is
negative; 0 if the
argument is zero; +1
if the argument is
positive.

General Form 2:

function (expl,expl...)

where:
function = MAX
MIN
Function Name Sample Expression Meaning

MAX MAX(X,Y,Z) The value of the largest
element in the argument
list.

MIN MIN(X,Y,Z) The value of the smallest
element in the argument
list.

General Form 3:
MOD(exp,exp) mm%
Function Name Sample Expression Meaning

MOD MOD(X,Y) The modulus function;
the remainder of the
division of the first
element by the second.

General Form 4:
PI
Function Name Sample Expression Meaning
PI PI The value 3.14159265358979323.

See Section 2.6 for more information on Numeric Functions.

214

MIN Function

General Form:
MIN (exp[,exp])

where:
exp = a numeric scalar or numeric array.

The MIN function returns the smallest element in the argument list or
array.

Syntax examples:

100 MIN (B,C,D)
200 MIN (E())

215

MOD Function

General Form:

MOD(numeric expression, numeric expression)

The MOD (modulus) function returns a numeric value equal to the
remainder of the division of the first expression by the second. The value

returned is an integer value if both expressions are integers; otherwise it is
floating-point.

Example:

216

-

NEXT Statement

General Form:

NEXT numeric scalar variable [,numeric scalar variable]...

The NEXT statement defines the end of a FOR...NEXT loop; it must contain
the same index variable(s) as a previously executed FOR statement. A
multiple NEXT is executed left to right, i.e.,

NEXT I,J,K

is equivalent to

NEXT I
NEXT J
NEXT K

When a FOR...NEXT loop is encountered, the index variable takes the
value initially assigned in the FOR statement. When the NEXT statement is
executed, the STEP value specified in the FOR statement is added to the value
of the index. (If no STEP valwe is given, +1 is used.) If the result is
within the range specified in the FOR statement, the result (index + STEP) is
assigned to the index variable and execution continues at the statement
following the FOR statement. If the result is outside the range specified in
the FOR statement, the index variable is unaltered and execution passes to the
statement following the NEXT statement. The FOR...NEXT 1loop is then
considered completed. A subsequent NEXT with the same index variable which is
encountered without first encountering a FOR with the same index variable will
produce a runtime error.

217

NUM Function

General Form:

NUM (alpha-expression)

The NUM function determines the number of sequential ASCII characters in
the specified alpha-expression that represents a legal BASIC number. A
numeric character is defined to be one of the following: digits 0 through 9,
and special characters E, . (decimal point), +, -, space (provided the space
is non-embedded; leading and trailing spaces are considered numeric
characters, embedded spaces are not). (% is not a legal numeric character.)
Numeric characters are counted starting with the first character of the alpha
expression. The count is ended either by the occurrence of a non-numeric
character, or when the sequence of numeric characters fails to conform to
standard BASIC number format. Leading and trailing spaces are included in the
count, Thus, NUM can be used to verify that an alphanumeric value is a
legitimate BASIC representation of a numeric value, or to determine the length
of a numeric portion of an alphanumeric value. NUM can be used wherever
numeric functions are normally used. NUM is particularly useful in
applications where it is desirable to numerically validate input data under
program control. If A$ = "1E88", then NUM(A$)=16 even though 1E88 is an
illegal value, since 1E88 exceeds the legal size for a floating point
constant. This occurs because NUM checks only format, not value.

The result of the NUM function is an integer.

Examgles:

100 AB = "98.7+53.6" Note: X=U4 since the se-

200 X=NUM(AS) quence of numeric
characters fails to
conform to standard
BASIC number format
when the + char-
acter is encountered.

100 INPUT A$ Note: The program illus-
200 IF NUM(A$)=16 THEN 500 trates how numeric
300 PRINT"NON=-NUMERIC,ENTER AGAIN™ information can be
400 GOTO 100 entered as a charac-
500 CONVERT A$ TO X ter string, numeri-
600 PRINT "X=";X cally validated, and
Run program: then converted to an
? 12345 internal number.
NON-NUMERIC, ENTER AGAIN

? 12345

X=12345

218

ON Statement

General Form:

ON expression JGOTO | entry [,entryl...
GOSUB

where:

entry =(line number
null

statement label
The last entry must be a line number or a statement label(no trailing

commas).

The ON statement is a computed GOTO or GOSUB statement.

If I is the truncated value of the expression, transfer is determined by
the Ith entry:

1, If a line number or statement label, the transfer is made to that
line or statement.

2. If null, no transfer is made.

3. IfI<1l or > number of entries, no transfer is made.

In Options 2 or 3 above, execution continues at the next executable
statement, e.g., ON X GoOTO,,100,200,,300,,,400

Value of X Transfer

=2 none
-1 none
none
none
none
100

200

none
300

none
none
400

none
none

HFOWE~_NOVMIEWNFO

=

219

OPEN Statement

General Form:

INPUT
10
OPEN [,]| JNODISPLAY\[,]| file-expl,] < SHARED
NOGETPARM EXTEND
OUTPUT

[,SPACE = num-expl] [,DPACK = num-exp2] [,IPACK = num-exp3]

[,FILE = alpha-expl] [,LIBRARY = alpha-exp2]

[,VOLUME = alpha-exp3] [,FILESEQ = num-exp4]
[,BLOCKS = num-exp5]
where:

alpha-expl,2,3 = file, library, and volume names
must be enclosed in quotation
marks.

Filename = at most 8 characters (remainder ignored).

Library = at most 8 characters (remainder ignored).

Volume = at most 6 characters (remainder ignored).

num-exp5 = size of I/0 buffer (in blocks of 2048 bytes).
default = 1 block

(use of other parameters explained below).

OPEN is used to open an existing disk or tape file or create a new
file. (The OPEN statement is discussed in detail in Subsection 8.3.2, The
OPEN and CLOSE Statements.) The file number (provided by file-exp) must have
appeared in a SELECT statement (see SELECT). BLOCKS is optional, but file,
library, and volume names will be requested by the system (using the SELECT
prname) even if included in OPEN, unless the file was OPENed and CLOSEd
previously or NOGETPARM or NODISPLAY was specified.

The various OPEN modes for old and new files, and the allowed I/0
operations are listed in Table P2-5.

Attempting to OPEN a file that has already been OPENed and not yet
CLOSEd causes an irrecoverable error at run-time.

220

Use of the SPACE, DPACK, IPACK, NODISPLAY, and NOGETPARM fields is
explained below.

NODISPLAY , NOGETPARM

When OPENing a file in the program, OPEN will normally issue a GETPARM
(see the discussion of GETPARM in the Programmer's Introduction) to the
workstation or procedure, requesting the FILE, LIBRARY, and VOLUME parameters.

The prompt at the workstation can be suppressed by specifying
NODISPLAY. This should only be done if the correct FILE, LIBRARY, and VOLUME
have been specified in this or a previous OPEN, or in a procedure, or if SET
defaults are in use. (For a discussion of SET usage constants, see the
Programmer's Introduction.)

Both the workstation prompt and the procedure file prompt may be
suppressed by specifying NOGETPARM. This should not be done if the file
parameters are to be accessible/modifiable from a user procedure. (For a
discussion of procedures, see Chapter 7 of the VS Programmer's Introduction.)

The remaining parameters differ in usage depending on whether the file
is being OPENed in OUTPUT or non-OUTPUT mode.

SPACE
OUTPUT: Specifies the approximate number of records to be put in the
: new file. If OUTPUT is not specified, a GETPARM will be
displayed.

non-QUTPUT: If a variable (i.e., a receiver), it will contain the number
of records currently in the file after CPEN.

DPACK, IPACK

OUTPUT: Specifies the block packing densities (integer) for the
records/keys, respectively, for a new INDEXED file only.

non=-0UTPUT: Ignored

In any mode, if FILE/LIBRARY/VOLUME are alpha-receivers, the actual
names will be returned to the receivers after the OPEN statement is completed.

FILESEQ

File Sequence number. For tape files only.

221

Table P2-5.

Legal Function Requests and Descriptions

TYPE INDEXED
MODE CONSEC VAR CONSEC VAR INDEXED TAPE PRINTER
Ops: READ, SKIP Ops: READ, SKIP Ops: READ Ops: READ, SKIP NOT ALLOWED
INPUT Consecutive or Consecutive or Consecutive or Consecutive or
(old relative READ relative READ or |keyed READ, relative READ or
files or SKIP, SKIP starting starting from SKIP starting.
only) starting from from beginning beginning or from beginning
beginning of the |[of file. after last of file.
file. record read.
Ops: READ,REWRITE,|Ops: READ,SKIP, |Ops: READ,WRITE, Ops: READ, SKIP NOT ALLOWED
SKIP REWRITE REWRITE,DELETE
I0 Consecutive or Consecutive or Consecutive or Consecutive or
(old files relative READ relative READ keyed READ or relative READ or
only) or SKIP from or SKIP from WRITE from be- SKIP from the
beginning of beginning of ginning of (key) beginning of the
file, with HOLD/ |file, with file, with HOLD/ | file with HOLD
REWRITE option. HOLD/REWRITE REWRITE/DELETE option.
option. option.
NOT ALLOWED Ops: WRITE, Ops: READ,WRITE, NOT ALLOWED NOT ALLOWED
HOLD, RELEASE REWRITE,DELETE
HOLD, RELEASE ,an)
SHARED Used for (vari- |Same as I0, but :
(old INDEXED able length) allows multiple
files; log files. access, indepen-
old or new dently, HOLD
CONSEC files protection.
Ops: WRITE Ops: WRITE Ops: WRITE Ops: WRITE Ops: WRITE

OUTPUT

(new files
only)
(old files
deleted)

Writes records
consecutively
to a new file.

Writes records
consecutively
to a new file.

Writes records
to a new file -
(primary) keys
must be in as-
cending order.

Writes records
consecutively
to a new file.

Writes records
consecutively
to a new file.

EXTEND

(old files
only)

Ops: WRITE

Ops: WRITE

NOT ALLOWED

NOT ALLOWED

NOT ALLOWED

Writes records
consecutively,
starting at the
current file end.

Writes records
consecutively,
starting at the
current file end.

222

Syntax examples:

g 100 OPEN NODISPLAY #1,I0,FILE="THOMAS",LIBRARY="STEARNS",!
200 VOLUME="ELIOT"

300 OPEN #2,0UTPUT
400 OPEN NODISPLAY #3, INPUT, VOLUME="TAPE1", FILESEQ=1l

223

OR Logical Operator

General Form:

[LET] alpha-receiver = [logical exp] OR logical exp

logical exp -- see Section 5.7, Logical Expressions.

The OR operator logically OR's two or more alphanumeric arguments.

Example:
100 A= “SAINT"®
200 B$= "S "

300 Cb= AP OR B
400 PRINT C$

Qutput: Saint

Capital A is HEX(41) or 01000001 in binary, a blank space is HEX(20) or
00100000 in binary. When two characters are ORed, a binary ore in either
becomes a binary one in the result. Thus, ORing A with " " produces binary
01100001 or HEX(61), which is the ASCII "a". .

The operation proceeds from left to right. If the operand (logical
expression) is shorter than the receiver, the remaining characters of the
receiver are unchanged. If the operand is longer than the receiver, the
operation stops when the receiver is exhausted.

See Section 5.7, Logical Expressions, for more information on logical
expressions.

224

@"

PACK

General Form:

PACK PIC (image) alpha-receiver FROM
numeric array-designator ,Jnumeric array-designator ...
expression expression

where:
image = [+] [#...J[.1[#...1[4444] (at least 1 mgn)

The PACK statement packs numeric values into an alphanumeric receiver,
reducing the storage requirements for large amounts of numeric data where only
a few significant digits are required. The specified numeric values are
formatted into packed decimal form (two digits per byte) according to the
format specified by the image, and stored sequentially into the specified
alphanumeric receiver., Receivers are filled from the first byte until all
numeric data has been stored. An entire numeric array can be packed by
specifying the array with a numeric array-designator (e.g., N()). An error
will result if the receiver is not large enough to store all the numeric
values to be packed.

The image is composed of # characters to signify digits and, optionally,
+, =, o, and characters to specify sign, decimal point position, and
exponential format. The image can be classified into two general formats.

Format Example
Fixed Point i b
Exponential # o

Numeric values are packed according to the following rules:

1. Two digits are packed per byte. A digit is stored for each # in the
image.

2., If a sign (+ or -) is specified, it occupies the high-order 1/2
byte. A single hex digit is used to represent both the sign of the
number and the sign of the exponent for exponential images. The
four bits of this hex digit are set as follows:

Bit 1 (leftmost) set to 1 if exponent is negative.
Bit 2 OFF (m"0o").

Bit 3 OFF (mom).

Bit 4 (rightmost) set to 1 if number is negative.

225

If no sign is specified, the absolute value of the number is stored,
and the sign of the exponent is assumed to be plus (+).

The decimal point is not stored. When unpacking the data (see
UNPACK), the decimal point position is specified in the image.

The packed numeric value is left-justified in the alpha-receiver,
with the sign digit (if specified) occupying the high-order
half-byte, followed by the number in packed decimal format (two
digits per byte). The exponent occupies the two low-order
half-bytes (if specified). The packed value always requires a whole
number of bytes, even if the image calls for other than a whole
number. For example, the image '###' calls for 1 1/2 bytes, but 2
bytes are required. In such cases, the value of the unused
half-byte (the low-order half-byte) is not altered by the PACK
operation.

If the image has format 1, the value is edited as a fixed point
number, truncating or extending with zeros any fraction and
inserting leading zeros for nonsignificant integer digits according
to the image specification. An error results if the number of
integer digits ex eeds the format specification.

If the image has format 2, the value is edited as an exponential
number. The value is scaled as specified by the image (there are no
leading zeros). The exponent occupies one byte, and is stored as
the two low-order hex digits in the packed value,

Example of storage requirments:

ik

it

+itit ot
+it ot

2 bytes
2 bytes
3 bytes
2 bytes

o umn

Syntax examples:

100 PACK PIC (####)AS FROM X
200 PACK PIC (#ii##)STR(A$,4,2) FROM N(1)
300 PACK PIC (##.##)A18() FROM X,Y,N(),M()

226

$PACK/BUNPACK Statements

General Forms:

BPACK[([{DQ}] alpha~-exp)| alpha-receiver FROM argl,argl...
F=

where:
{1ine number } = line number or statement label of
1l

$UNPACK [([{D:}] alpha-exp)|alpha-expression TO argl,argl...
F=

where:

oDATA JGOTO line number
GOSUB statement label

statement labe data conversion error exit.

arg = (expression
alpha-expression, EXCEPT alpha array string
array-designator

,DATA JGOTO line number
GOSUB statement label

arg =freceiver, EXCEPT alpha array string
array-designator

$PACK and $UNPACK pack and unpack numeric and character data, in
any of several formats specified by the user, into the alpha receiver or
from the alpha-expression, respectively.

Concerning the operation of PPACK and $UNPACK in general:

1.

An arg of the form "name$()" is always recognized as an array
of elements, never as an alpha array string. Use a STR to get
an array string.

Array elements are generally considered as individual
consecutive values or receivers (row-by-row). The exception
is F format, where a single format applies to all of the array
elements.

BPACK generates an error (or exit) if the alpha receiver is
not long enough to store all of the args in the specified
format. This is true with any of the formats.

JUNPACK generates an error (or exit) if the unpacked data is
not the same type (alpha, numeric) as the receiver.
227

Delimiter Format

Indicated by the presence of "D = alpha-expression". The format
of the $PACKed data is:

data DEL data DEL ces data DEL

where DEL is the user-specified delimiter.

The alpha-expression following "D=" must contain at least 2 bytes:

byte 1 = Conversion code. This is used only by S$UNPACK, but
must have one of the four legal values for either
$PACK or $UNPACK:
byte 2 = (DEL) delimiter character.
Hex Value (UNPACK) Result
00 A) Error if insufficient data in the
buffer.
B) Skip a receiver (or array element) for
each extra delimiter encountered.
0l A) No error if insufficient data in the
buffer -- remaining receivers are left
unchanged .
B) Skip a receiver for each extra
delimiter.
02 A) Error if insufficient buffer data.
B) Ignore extra delimiters.
03 A) No error if insufficient buffer data.
B) Ignore extra delimiters.
1. $PACK:

The general form is as diagrammed above. The structure of the
data entries is as follows:

Numeric -- Exactly like PRINT, without the trailing blank.

Alphanumeric -- Defined length is stored.

228

2. $UNPACK:

@F\ Extra delimiters may be present, as described in the
conversion code above. A missing final delimiter
causes the 1last data value to be considered as
extending to the (defined) end of the buffer
(alpha-expression). Specific data entries allowed:

Numeric -- Allows any numeric constant which would
be allowed on a program line, including leading and
trailing blanks., Exception: As with CONVERT, "“%"
is not recognized as a legal character.

Alphanumeric -- Anything, any length. It will be
right-padded or truncated to fit the receiver.

NOTES:

$UNPACK condition code may be set not to cause an error if
there are not enough data values in the buffer; this is
true only of delimiter (D) format. Any of the other
formats will cause an error (or DATA exit) if the buffer
has insufficient data.

@F\ Any errors incurred in executing $PACK and $UNPACK do not

affect values already packed or unpacked in the same
statement, i.e., the error occurs only when the first
erroneous conversion is encountered. This is like the
regular PACK and UNPACK statements.

Field Format

Indicated by the presence of "F = alpha-expression®". The format of the
$PACKed data is:

field | field | field oo field | field

where field = a skip field
a formatted data value

229

The alpha-expression following "F=" must contain at least as many pairs
of bytes as there are args in the arg list. (Each pair corresponds to an arg,
whether it is a scalar or array arg.)

From left to right, each arg has a corresponding byte pair, in which:

byte 2 = field width (bytes) in hex >0

byte 1 field type
{00 (skip field)
{10 (free-format)
{2h (ASCII integer format)
{r
{3h (IBM display format)
{p
{in (WANG display format)
{pr
{5n (IBM packed decimal format)
{p
{A0 (alphanumeric field)
Field Types
l. 00 Skip

In either $PACK or S$UNPACK, skips the specified number of bytes in
the buffer; skipped characters are unchanged.

A0 Alphanumeric

For alphanumeric data; in either $PACK or S$UNPACK, the value is
padded or truncated on the right to fit the field or receiver,
respectively.

10 Free-format ASCII numeric

$PACK: Same as delimiter format, i.e., same as PRINT, but
right-padded or truncated to fit the field.

SUNPACK: Same as delimiter SUNPACK fields.

2h ASCII Implied decimal
P

Form:

d
s

(ASCII) digit 0-9
sign byte

$PACK: format as shown; sign byte is ASCII
("+" = HEX(2B), "-" = HEX(2D)).

230

$UNPACK: format as shown; all the zone half-bytes are ignored and
thus may have any value,

3h IBM numeric display format
P

Form:

Fh | Fh | Fh eee | Fn | Fh | h h

S
h = hexdigit 0-9 only
h = sign digit
s
§PACK: format as shown
h = C (+)
S D (1)
$UNPACK: format as shown; Fs are ignored. h may be A,C,E,F (+)
4h WANG VS display format
D
Form:

3h | 3h | 3h | ¢eo | 3n | 3h | h D

h = hexdigit 0-9 only
h = sign digit
s

$PACK: format as shown

h = F (+)
s D (-)
$UNPACK: format as shown; 3s ignored
h = D (=)
s all else (+)

5h IBM packed decimal format
b

Form:

hh | hh | hh ees | hh | hh | hh

h = hexdigit 0-9 only
h = sign digit
s

231

$PACK: format as shown; h = C (+)
s D (=)

$UNPACK: format as shown; h = A,C,E
B,D (

Field types 2-5 have the following characteristics in common:

In $PACK, an overflow causes an error, but the field is filled with
zeros and the correct sign.

In 2h , 3h , and 4h zoned format, zones are not checked

1% P P
when $UNPACKed, and thus may take on any values. This includes the
zone of the sign byte in 2h format. One consequence of this is
that blanks are interpreted as zoned zeroes in 2h , 3h , 4h .

P 1% 1%

h in the format specification denotes the number of p digits to
the right of the implied decimal point. It may take on any hexdigit
value, and may be larger than the number of digits in the field (in
which case leading decimal zeroes are implied).

In $PACK, an underflow causes no error and fills the field with
zeros and a + sign, regardless of the sign of the expression itself.

$PACK inserts leading and trailing zeros where necessary.
$UNPACK allows any number of digits; only the first 15 significant
digits are used; the rest only serve to position the decimal

point.

2200 Disk Storage Format

Indicated by the absence of both D and F.

Form:
Sov data Sov data ese Sov data EOB
Ontrol
where:
CONTROL = Pseudo-2200 control bytes (2)

SOV = 2200 Start-of-value byte for the next data value

232

1////) } I | | | 1 i

S <& L >
where:
S = 0 = numeric L = length in bytes (binary)
1l = alpha
data = numeric or alpha value

EOB = end-of-block byte
= HEX(FD)

$PACK Data Format

l. Numeric

Form:

hh |[hh |[hh [hh |hh |[hh |h h |h h
sul t1] 23] 4s5|67|89] 1011} 12 13

Value is decimal floating point.

h
s

sign indicator

= 0, number +, exponent +
1, number -, exponent +
8, number +, exponent -
9, number -, exponent -

h h = exponent (units before tens)
ut

h toh = mantissa, in the usual order, with the
1 13 decimal point assumed between h and h .
1 2

2. Alphanumeric

Form:

leclclcl oo lclcl

The defined length is stored.

3. Control bytes -- HEX(8001)

$UNPACK Data Format

l. Numeric -- Same as $PACK, but allows any sign digit:

$PACK SUNPACK

]
?
?

WEwh
Mmoo

m
5
C
D

O oo+ o
O oo - O

? 1
?]
?]
]]

233

This occurs because the 2 middle bits of the hexdigit are ignored.

Alphanumeric -- Any length, padded or truncated on the right to fit
the receiver,

Control bytes -- Ignored.

234

PI Intrinsic Constant

General Form:

PI

The intrinsic constant PI may appear anywhere a numeric expression may
appear. It has the value 3.14159265358979323.

235

POS Function

General Form:

POS ([-] alpha-expression) >=(alpha-expression)

The POS function searches the first alpha-expression for a character
that is <, <=, >, >z, <> or = the first character of the second
alpha-expression and outputs the location (leftmost=1l) of the first such
character found. The basis of comparison is the ASCII codes of the
characters. POS searches the entire defined length of the alpha-expression.

If no '-' is present, the search executes from left to right, thus
outputting the position of the leftmost such character. If "-" is present,
the search executes from right to left, thus outputting the position of the

rightmost character.

If no character satisfies the condition, P0S=0. The output of POS is an
integer.

Syntax examples:

100 A%=POS(-AB<STR(BB,2,2))
200 FOR A=1 TO 10 STEP POS(C$=B$)

236

PRINT Statement

General Form:

USING Jline number [, expression] ,\ [expression]|... ’
stmt label H H
[prt-elt] [{,} [prt—elt]] ceo [{,}l

where:
prt-elt = character prt—el’c}
control prt -elt

PRINT

character prt-elt = numeric expression
{alpha expression }
HEXOF(alpha expression)
control prt-elt = BELL
PAGE
SKIP[(num-exp)]
TAB(num-exp)
COL(num-exp)
AT (num-exp, num-exp [, num-exp J)

The PRINT statement routes output to either the workstation or printer, depending on
which device is currently selected (see SELECT statement).

The placement and format of the data which are output can be controlled either by the
use of auxiliary format control (FMT and Image (%)) statements, or by the use of the
control print elements described below. If a format control statement is used, the PRINT

statement must contain a USING clause referring to the FMT or Image (%) by line number or
statement label.

In either case, output begins at the current print position, as determined by the
last output operation to the selected device (current print position is indicated on the
workstation by the position of the cursor). After the PRINT statement has been executed,
the new current print position depends on how the PRINT statement ends. If the PRINT
statement ends in a semicolon, a comma, or a control print-element, the current print
position is the first position after the last character output; otherwise, the current
print position is the first position of the next line.

For PRINT output, the output line is divided into as many zones of 18 characters as

possible; thus a 132-column printer has seven zones and the workstation has four. Note
that the last zone may be longer than the rest, extending to the end of the line.

237

Expressions and other print-elements in a PRINT statement must be
separated by either commas or semicolons. If USING is specified, these are
equivalent and serve only to delimit one expression from the next. If USING
is omitted, however, a comma after a character print-element causes the next
print-element to begin at the start of the next zone (if the current print
position is already in the last zone of a line, the next print-element starts
at the beginning of the next line). A semicolon causes no change in print
position. After a control print-element, commas and semicolons are equivalent.

A line is not sent to the printer until either the print position is
moved beyond the line or until a SKIP(0) is encountered. See Chapter 7,
Workstation and Printer Input/Output, for more information on output to the
workstation and printer.

Note that the following discussion of print-elements does not apply to
PRINT statements which specify USING. For details on the operation of the
USING clause, see the entries for the FMT and Image (%) statements.

Print Elements

1. Numeric Expression

=1 15
a. If lexpliklo or lexpi>10 , the format is exponential:
SMDMMMMMMMMMME + XXb
where: minus sign if negative, blank otherwise.
mantissa digit.
decimal point.

exponent digits.
blank.

S
M
D
XX
b

e.g., PRINT .000074679;
b7 .4679000000E-05b
start end

-1 15
b. If 10 < lexpl <10 , the format is fixed-point:

S[Z...][DF...]b

minus sign if negative, blank otherwise.
zoned digit.

decimal point.

fixed digit.

trailing blank.

oMo NG
wouowonon

and total Zs + total Fs < 15.

238

‘D

Leading zeros and trailing (decimal) zeros are not printed (but
zero is printed as 'bOb'). Up to 15 digits plus a decimal
point, if any, are printed.

Alpha-expression

The actual length of the alpha-expression is printed. "Actual®
implies that trailing blanks of an alpha variable or array string
are not printed.

HEXOF (alpha-expression)

The hex value (defined length) of the alpha-expression is printed.
(This includes trailing blanks -- HEX(20).)

e.g., 100 DIMA$ S5
200 A$ = "ABC™"
300 PRINT "HEX VALUE OF A§ =";HEXOF (AS$)
Result: HEX VALUE OF A$ = 4142432020

PAGE

Printer: Advances to line 1, column 1 of a new page.
Workstation: Clears the screen and homes the cursor.

BELL

Printer: Ignored.
Workstation: Sounds the workstation alarm; screen and cursor
unaffected.

SKIP [(n)]

Printer: Advances the print position to column 1 of the nth line
after the current line (default n=1).

If n=0, the current line is printed with a carriage return but
no linefeed, thus causing the next line to overprint.

If n<O0, SKIP is ignored.

Workstation: Advances the cursor print position to column 1 of the
nth line after the current line (default=1).

If n>0, the cursor moves down n lines. Instances where
this would theoretically move to a line off the screen
(i.e., current line + n >2U4) cause a roll-up instead (see
k¥x%%*), The cursor is positioned at the beginning of the
last line moved to (the bottom line of the screen if one or
more roll-ups occurred).

239

7.

8.

9.

If n=0, the cursor returns to the beginning of the current
line.

If n<0, the cursor moves up n lines. A move to a line off
(above) the screen causes a roll-down instead. The cursor
is positioned at the beginning of the last line moved to the
top line of the screen if 1 or more roll-downs occurred.

TAB(n)

Printer: (n>0). The print position is advanced to column n of the
current line. If the column has already been passed, the TAB is
ignored.

Workstation: (n>0). The cursor is moved to column n of the current
line, erasing passed-over characters (by overwriting them with
space characters). If the column has been passed the TAB is
ignored.

In either case, if the tab position is greater than the SELECTed
line length (always 80 characters for the workstation), the print
position is advanced to column 1 of the next line. If N is negative
or zero, the TAB is ignored.

COL(n)
Like TAB, but does not erase any passed-over characters. (TAB and

COL are equivalent for the printer since no characters can be
erased.)

AT(r, c[, [ell)

Printer: Ignored

Workstation: AT(r,c[,[e]]) moves the cursor to rowr, column c of
the screen, and optionally erases e characters starting at
(r,c). The following rules hold:
a. l<r<2l,
b. 1<c<80.

c. e>0; if e 1is greater than the number of characters from
the cursor position to the end of the screen, only
characters to the end of the screen are erased.

d. If e and the preceding comma are omitted, no erasure
ocecurs., If e 1is omitted but the preceding comma is

included, the rest of the screen is erased, starting from
(r,c).

Note that AT, like COL, has no effect on passed-over characters.

240

™

PUT Statement

General Form:

PUT Jfile-exp
alpha-receiver

s DATA JGOTO
GOSUB
where:
arg =[expression
alpha-expr
array-desi

line number
statement labe

[[,]USING line number],arg[,argl...

)

ession
gnator

PUT inserts data
referenced Image or FMT,

PUT does not destroy values not explicitly overwritten.

into the record area or alpha-receiver USING the
if specified, or using standard format.

Data PUT into a

record area may be written to the file by a subsequent WRITE or REWRITE

statement.

The DATA exit is t

Examples:

aken if a data conversion error occurs.

SELECT #1 "EXAMPLE" CONSEC, RECSIZE=16
OPEN #1 EXTEND, FILE="EXAMPLE"™, LIBRARY="DATA" ,VOLUME="VOL444 "

PUT#1,BB

Format Compata
information on
COBOL .

PUT may be used to convert numeric data to a format
acceptable to COBOL programs.

NOTE:

See Appendix E, Numeric Data
bility between VS BASIC and COBOL, for
numeric data compatibility between BASIC and

241

READ Statement

General Form:

READ receiver [,receiver]...

A READ statement causes the next available elements in a DATA 1list
(values listed in DATA statements in the program) to be assigned sequentially
to the receivers in the READ list. This process continues until all receivers
in the READ list have received values or until the elements in the DATA list
have been used up. Each receiver must reference the corresponding type of
data or an error will result.

The READ and DATA statements must be used together. If a READ statement
references more receivers than the number of elements in a data list, the
system uses the next DATA statement in statement number sequence. If there
are no more DATA statements in the program, an error occurs and the program is
terminated.

The RESTORE statement can be used to reset the DATA list pointer, thus
allowing values in a DATA list to be re-used (see RESTORE).

NOTE:

DATA statements may be entered any place in the program as
long as they provide values in the correct order for the
READ statements.

Syntax examples:

100 READ A,B,C
200 DATA 4,315,-3.98

100 READ AB,N,B18(3)
200 DATA "ABCDE",27,"XYZ"

100 FOR I=1 TO 10

110 READ A(I)

120 NEXT I

200 DATA T.2, 4.5, 6.921, 8, 4
210 DATA 11.2, 9.1, 6.4, 8.52, 27

2u2

READ File Statement

General Form:

>
READ file-exp [[,]HOLD] [,] KEY[expl] -{>%} alpha-expl

RECORD=exp2

[[,]USING line number] ,arg[,arg]...]
statement label

,EOD|GOTO line number ,DATA{GOTO | Jline number
GOSUB statement label GOSUB()statement label
where:

hold record for REWRITE or DELETE. The
record is held exclusively if in SHARED
mode, i.e., no other user may access the
record until REWRITE, DELETE, or another
READ HOLD is executed.

HOLD

expl alternate key number for keyed READ on
alternate indexed file (primary key used if

expl = 0 or omitted).

alpha-expl indexed file key specifier; the first record
whose key satisfies the condition is read.
Only as many characters as specified in KEYLEN
are compared; if the alpha-exp is shorter
(defined length) than KEYLEN, only as many

characters as its length are compared.

exp2 = record number (from 1) for CONSEC files only.

Statement) statement describing the input data format.
label

arg = receiver
array-designator

Data is moved (and optionally converted) into
consecutive receivers.

USING.{line# }=1ine number or statement label of FMT or Image

EOD = end-of-data or invalid key exit, overriding
the SELECT EOD.

DATA = data conversion error exit.

243

The READ (file) statement causes a record in a disk or tape file to be
read. The file must have already been opened with an OPEN statement (see
OPEN).

If neither KEY nor RECORD is specified, the next consecutive record is
read (using the established reference key in the case of ALTERNATE INDEXED
files, i.e., the last used in READ KEY).

If no arg list is present, the data are left unconverted in the record
area, and are accessible only through GET.

If USING is omitted, data are assumed to be in internal format. (See
Subsection 8.4.7, Data Representation in File I/0).

Example:

SELECT #1 "EXAMPLE" CONSEC, RECSIZE=16
OPEN #1 INPUT, FILE="EXAMPLE",LIBRARY="DATA" VOLUME="VOLUME"
READ #1,Bp

241

REM[ARK] Statement

General Form:
REM[ARK] [text string]

where:
text string = any characters of lanks (except colons;
a colon indicates the end of the
statement).

The REM statement is used at the discretion of the programmer to insert
comments or explanatory remarks in his program. When the compiler encounters
a REM statement, it ignores the remainder of the statement, but not

necessarily the rest of the line, as the following examples (lines 210 and
300) show.

Syntax examples:

100 REM SUBROUTINE

210 REM FACTOR: F=Y/(X+1)

220 REM THE NUMBER MUST BE LESS THAN 1
300 REM ----~ :PRINT "ERROR":REM STOP:STOP

The statements after the colon in line 210 and after the first and third
colons in line 300 will be executed.

Either REM or REMARK is an acceptable statement.

245

RESTORE Statement

General Form:

RESTORE] [expression

LINE = (line number [, expression]
statement label

where:
1line number = line number jor statement label of a DATA statement
statement label in the program. If omitted, the first DATA statement'

is used.
1 < expression < total number of DATA items in the program,

beginning at the given line, if specified. If omitted,
default = 1.

The RESTORE statement allows the repetitive use of DATA statement values
by READ statements. When RESTORE is encountered, the system resets the DATA
pointer to the specified DATA value. A subsequent READ statement will read
data values beginning with the specified value.

When a RESTORE statement is encountered, the system resets the DATA
pointer to the (expression) data value in the program, beginning either at the
first DATA statement (if 'LINE =' is omitted) or at the DATA statement at the
specified line number or statement label.

If 'expression' is omitted, the pointer is set to the first data value
in the program or in (or beyond) the specified DATA statement.

Syntax examples:

100 RESTORE

200 RESTORE 5
300 RESTORE (X-Y)/2
400 RESTORE LINE
500 RESTORE LINE

100
100, 3

The following program, for example,

100 DATA 1,2,3

200 DIM A(1,10)

300 FOR I=1 TO 10

400 IF I > =6 THEN RESTORE LINE=700, 3
500 READ A(1,I)

600 NEXT I

700 DATA 4,5,6

800 MAT PRINT A;

produces the following output:

1 2 3 45 6 6 6 6 6

246

RETURN Statement

AN

General Form:

RETURN

The RETURN statement is used in a subroutine to return processing of the
program to the statement following the last executed GOSUB or GOSUB' statement.

If entry was made to a marked subroutine via a special function key on
the keyboard, the RETURN statement will return control to the interrupted
INPUT or STOP statement.

Repetitive entries to subroutines without executing a RETURN should not
be done., Failure to return from these entries causes return information to be
accumulated which can eventually cause a stack overflow and the premature
termination of the program. (Also see RETURN CLEAR.)

Examples:

100 GOSUB 300

200 PRINT X:STOP

300 REM THIS IS A SUBROUTINE
400 -

@M“- 500 -

900 RETURN:REM END OF SUBROUTINE

100 GOSUB'03(A,B$)

200 END

300 DEFFN'03(X,N$)

400 PRINT USING 500,X,N§

500 % COST = $it,##i#,###.4# CODE = #i###
600 RETURN

247

RETURN CLEAR Statement

General Form:

RETURN CLEAR [ALL]

Return Clear subroutine return-address information, generated by the
last or all executed subroutine calls, from memory.

The RETURN CLEAR statement is a dummy RETURN statement. The RETURN CLEAR
statement causes subroutine return address information from the 1last
previously executed subroutine call to be removed from the internal tables;
the program then continues at the statement following the RETURN CLEAR.

If RETURN CLEAR ALL is specified, all subroutine return information is
removed from the program stack. No RETURN or RETURN CLEAR may be executed
before a subsequent GOSUB or GOSUB'.

The RETURN CLEAR statement is used to avoid memory stack overflow when a
program continually exits from subroutines without executing a RETURN. This
is particularly useful when using the Program Function keys to control program
execution (from either STOP or INPUT). When a Program Function key is used in
this manner, a subroutine branch is made to the appropriate DEFFN' statement
to continue execution.

A subsequently executed RETURN statement causes the STOP or INPUT
statement to be repeated automatically. However, the user may wish to
continue a program without returning to the STOP or INPUT. In this case, the
RETURN CLEAR statement should be used to exit from the DEFFN' subroutine,
Executing a RETURN CLEAR statement when not inside a subroutine will result in
an error.

Syntax example:

100 DEFFN'15
200 RETURN CLEAR

248

REWRITE Statement

General Form:

REWRITE file-exp [[,]SIZE = expl[[,]MASK = alpha-expl]
[,]JUSING fline number ,argl ,argl...
statement label

sDATA {GOTO line number
GOSUB statement label
where:
USING)linet# = line number or statement label of FMT or
statement label Image(%) describing the output format.

alpha-expression
array-designator
DATA = data conversion error exit.

arg ={num—expression }

REWRITE is used to overwrite an existing record, which must have been
read with the HOLD option.

If the arg list is omitted, the record is assumed to have already been
formatted in the record area with a PUT statement.

If the arg list is present, it is converted value-by-value using the
Image or FMT Statement, if specified. Otherwise, standard format is used.

If the file is not an INDEXED VAR[C] file, the rewritten record size

will be the same as that of the overwritten record; SIZE and the implicit
arg-list size are ignored.

If the file is an INDEXED VAR[C] file, the size of the rewritten record
is determined in one of the following ways:

1. Record size = SIZE expression, if included.

2. Record size
(see WRITE).

resultant size of the formatted arg list, if specified

3. If arg list omitted, the rewritten record will be the same size aé
the record it overwrites.

REWRITE is not allowed for CONSEC VARC files.

249

MASK is used to set the alternate key mask for alternate indexed files.
See the explanation of the MASK function in Section 8.5, Intrinsic File I/0 Aﬁ%

Function, for more information. If MASK is omitted, the alternate-key mask
for the record is rewritten unchanged.

Examples:
100 REWRITE #1,SIZE=A ,MASK=MASK(#2), USING 300,A8,B,C% !

200 DATA GOTO 1000
300 FMT CH(20), PIC(##.#), PD(3)

250

RND Function

@V*

General Form:

RND(numeric expression)

The RND (random number) function is used to produce a pseudorandom
number between 0 and 1. The term "pseudorandom" refers to the fact that BASIC
cannot produce truly random numbers. Instead, it relies on an internal
algorithm which uses the last random number to generate the next one. The
resulting sequence (list) of values, though obviously not truly random, is
scattered about in the range zero to one in such a manner as to appear
statistically random; thus the term "pseudorandom."

There are three ways to use RND(exp), based on the value of the argument:

l. exp <0 or exp >1 -- This produces the next pseudorandom number
in the list as produced by the internal algorithm . If this is the
first use of RND in the program, the previous value is set by the
compiler at compilation.

2. O<exp <1 -- This simply returns exp as the result and resets the
list to this value.

@ 3. exp =0 -- This is similar to Option 2, but produces a number whose
value is computed from the time of day when the RND is executed,
rather than from a user or compiler specified value.

See Section 2.6 for more information on RND.

Examples :

100 A=RND(.5)

200 B=RND(2)

300 C=RND(1)

400 PRINT "A=";A,"B=";B,"C=";C

Result: A=.5 B=.259780899273209 C=.298807370711264

251

ROTATE[C] Statement

General Form:

ROTATE[C] (alpha-receiver, numeric expresion)

where:
-8 < numeric expression< 8

This statement rotates bits in the given alpha-receiver. If expression
<0, rotation is left to right. If expression >0, rotation is right to
left. Bits which are moved past one end of the receiver will be moved to the
other end of the receiver.

If C is not specified, rotation occurs for each byte in the receiver.
If C is specified, the entire receiver is rotated.

ROTATE operates on the defined length of the alpha-receiver.

Examples:

100 DIM A5
200 A$ = HEX(345678AD)
300 ROTATE (AS$,4)
400 PRINT HEXOF(A$)
Result:

436587DA02

500 ROTATE C (A$,-8)
600 PRINT HEXOF (A$)

Result:

02436587DA, assuming the previous result

252

ROUND Function

General Form:

ROUND(exp,exp)

ROUND(X,N) is equivalent to the expression:
SGN(X)*(INT(ABS(X)*10%#N%+0.5)/10%%N%)

Its effect is to round off the value of X to the precision specified by
N. If N is positive, X is rounded off to N decimal places. If N is negative,

X is rounded off to the Nth place to the left of the decimal point. If N is |
not an integer, it is truncated. For example:

ROUND(123.4567 ,4)
ROUND(123.4567,3)
ROUND(123.4567,2)
ROUND(123.4567,1)
ROUND(123.4567,0)
ROUND(123.4567,-1)
ROUND(123.4567,-2)
ROUND(123.4567,-3)

123.4567

123.4570
123.4600

123.5000
123.0000

120.0000
100.0000 |

0 etec.

@W“ Note that "rounding upward" occurs, unlike the INT function; when rounding
\ 4.7 to 0 decimal places, it produces 5, not i.

253

SEARCH Statement

General Form:
<
<=
SEARCH [-] alpha-expl) > | alpha-exp2

<>

TO Jnumeric array-designator [STEP numeric expression]
alpha-receiver

SEARCH searches alpha-expl (defined length) for substrings of the same
length as alpha-exp2 (actual length) satisfying the given relation.

If "-" is not specified, the SEARCH begins with the substring starting
at the leftmost byte (byte 1) of alpha-expl; each subsequent substring
checked has starting byte n bytes to the right of the previous substring,
where n is the value of the STEP expression.

If "-" is specified, the SEARCH begins with the rightmost substring,
i.e., starting at the (defined 1length alpha-expl minus actual 1length
alpha-exp2 +1)th byte of alpha-expl. Subsequent substrings have starting byte
n bytes to the left of that of the previous substring.

If STEP is omitted, nz1 and all substrings will be checked.

SEARCH terminates when it runs out of substrings of the proper length or
reaches the limit of the TO argument. If expl is initially too short, no
substring is checked.

Upon completion, the TO argument will contain the starting positions of
the substrings found (from 1) in one of the following formats:

l. If "numeric array-designator", the array will contain the numeric
starting positions in the order in which they were found. The first
unused array element (if any) will contain 0. Any other unused
elements remain unchanged.

2. If "alpha-receiver", each pair of bytes will contain the 2-byte
binary representation of the starting positions, as with Option 1.

The first unused pair of bytes (if any) will contain binary O. Any
other unused bytes remain unchanged.

254

In either Case 1 or 2, if the array or receiver is too short to contain all
(‘ positions found, remaining ones are lost.

Example:

100 DIM A$U40, N(1,8)

200 A$="SESSIONS OF SWEET SILENT THOUGHT"
300 SEARCH AB=STR(A$,1,1) TO N()

400 SEARCH -A$=STR(A$,1,1) TO B$

500 PRINT HEXOF(B§)

600 MAT PRINT N

Qutput:
0013000D000800040003000100002020
1 3] 8
13 19 0 0

255

SELECT Statement

General Form:

where:

PAUSE[int]=

RADIANS
DEGREES
G RADS

PRINTER
CRT
WS

PCOL

BLOCKS

int

4
select-elt = | PAUSE[int]

SELECT select-elt [,select-elt][...]

RADIANS
DEGREES
GRADS
PRINTER [(exp)] e
CRT

WS

L?OOL file number[,file number]...,BLOCKS=int

A

/
[intl/10second execution pause after each write to the work-

station. If d=0 or omitted, no pause. System default = no

pause.

trig arguments/results in radians, degrees or grads,
respectively. (360 degrees = 2 radians = 400 grads.)
System default = radians.

route PRINT'ed output (PRINT, PRINTUSING, etc.) to the
line printer or workstation, as specified. If no SELECT
has been executed, such output is routed to the work-
station by default.
exp may be used following printer to specify non-standard
printer line width, where

1 < exp < 162
(if omitted or invalid, default = 132)

a buffer pool for the specified files. (Files must be
indexed.)

the number of 2048 byte buffers in the pool.

an integer from 1 to 255.

A POOL specification can only appear after the SELECT File statements
for the pooled files, and a particular file-number can only be included in a
single POOL. Only indexed files OPENed in INPUT or IO modes can be pooled.
Otherwise, this statement may be used anywhere and as often as desired.

select-elt's ar

Example:

e processed one at a time, left to right.

100 SELECT PAUSE 9,PRINTER,DEGREES,POOL{#1,#2,BLOCKS=2

256

The

SELECT File Statement

General Form:

SELECT file-number [,] "prname"[,] (Consecutive [,IOERR exit]
Indexed
Tape
Printer

where:
File-number = #n, where n is an integer from 1 to 64.

prname = 1-8 characters (alphanumeric, including @,#,§
Consecutive = [VAR[C][,]] CONSEC, RECSIZE = intl[,EOD exit]

Indexed = [VAR[C][,]] INDEXED, RECSIZE = intl, KEYPOS = int2,
KEYLEN = int3 [,{ALTERNATE} alt-spec[,alt-spec...]] [,EOD exit]
ALT

KEY int4, KEYPOS = int5, KEYLEN = int6 [,DUP]
1 to 16, may not be repeated.
IL
tape = [VAR[C][,]J TAPE, NL >|, RECSIZE = int7, BLKSIZE = int8,

alt-spec
intly

AL
DENSITY = [800|\[,EOD exit]
1600

printer = PRINTER, RECSIZE = intl0

exit = |GOTO line number
GOSUB()statement label

IL = IBM Labelled Tapes
NL = Non Labelled Tapes
AL = ANSI Labelled Tapes

SELECT file specifies the characteristics of a file which is to be
opened (see the OPEN statement) and read from and/or written to (see READ,
WRITE, REWRITE, GET, PUT, DELETE, and SKIP).

SELECT can specify four types of files:
Consecutive disk files -- Files which can only be read or

written to sequentially. READ, WRITE, REWRITE, GET, PUT, and
SKIP may be used.

Indexed disk files -~ File indexed via a key field. The key
length and position must be specified. Alternate keys may also
be specified. Records can be accessed sequentially or by a
specific key. READ, WRITE, REWRITE, GET, PUT, DELETE, and SKIP
may be used.

257

Tape -- Files may be read from or written to a tape. READ, WRITE,
GET, PUT, and SKIP may be used.

Printer -- Files may be written for output to the printer. The
first two bytes in each record must be printer control characters
(see VS Principles of Operation). Only WRITE and PUT may be used,
and only OUTPUT mode can be used in the OPEN statement.

The SELECT statement sets up a user file block (UFB) of file information
and a record area for the specified consecutive, indexed, tape, or printer
file, referenced by the file number, with the supplied parameters used to set
initial values in the UFB.

A file number may appear in at most one SELECT statement. All SELECTs
must appear before any file I/0 statements in the program.

file-number -- Pound-sign (#) followed by an integer from 1 to 64
inclusive. This file-number is used in all other I/0 statements to
refer to the file specified by this SELECT statement.

prname -- Literal string consisting of 1-8 alphabetic or numeric
characters including $, #, and @€). This is the external name used by
the operating system to access the file and to prompt the user for file
information.

VAR[C] -- Variable-length [optionally compressed] records. Neither VAR
nor C need be set for any existing file, but they must be set for a file
to be created (output mode) with variable-length (or compressed) records.

RECSIZE -- Record size for fixed-length files; maximum record size for
variable-length files.

Limits:

CONSEC lg;ntlg?OHS
VAR CONSEC 1<int1<2024
INDEXED 1<int1<2040
VAR INDEXED 1<intl<2024

258

KEYPOS -- Key position in record (from 1) for indexed files.
KEYLEN -- Key length (maximum = 255) for indexed files.
IOERR -~ Branch taken if I/0 error occurs on the selected file.

EOD -- Branch taken if end-of-data, invalid key or duplicate key on an

I/0 operation not having an EOD exit of its own.

ALTERNATE KEY, KEYPOS, KEYLEN, DUP (Duplicate Key values allowed) -- Key
number, position, and length for one alternate key. This applies to
Indexed files which allow (up to 16) alternate key access paths. For an
existing file, the ALTERNATE key list may be either omitted or a subset
of the existing alternate key structure. The key numbers specified must
be identical to those used when creating the file. Alternate keys which
are not included are not accessible by either READ or the KEY() function.

Syntax examples:

100 SELECT #1,"HEAP",VAR,CONSEC,RECSIZE=100,EOD GOTO 1000 !
200 IOERR GOSUB 200

300 SELECT#2,"OF",CONSEC.RECSIZE=50

400 SELECT#3,"BROKEN",INDEXED,RECSIZE=200,KEYP0S=1,KEYLEN= !
500 10,ALT KEY1,KEYPOS=11,KEYLEN=10,KEY2,KEYPOS=21 ,KEYLEN=10

600 SELECT#4"IMAGES" ,VAR,TAPE,NL,RECSIZE=15, BLKSIZE=1000 !
700 DENSITY=1600,EOD GOSUB 1000

800 SELECT#5,"WHERE" ,PRINTER,RECSIZE=134

259

SGN Function

General Form:

SGN(numeric expression)

The SGN function returns an integer value equal to -1 if the argument is
less than zero, 0 if the argument equals zero, or +1 if the argument is
greater than zero.

260

SIN Function

General Form:

SIN(numeric expression)

The SIN function returns a floating-point value that is the sine of the
numeric expression specified as its argument. The expression is considered to
be in units of radians, degrees, or grads, depending on the ¢trig mode
specified by the most recently executed SELECT statement. If no SELECT

statement has been executed in the program or subprogram, the default mode is
radians.

261 .

SIZE Function

General Form:

SIZE (file expression)

SIZE returns the size in bytes of the last record read from the
specified file. The result is an integer.

262

-

SKIP Statement

General Form:

SKIP file-expf[,]BEG ,EOD GOTO line number
,hum-exp GOSUB statement label

where:

num~exp = number of records to skip; forward if n>0;
backward if n < 0.

BEG skip to beginning of file.

SKIP positions a CONSEC file forward or backward a number of records or
to the beginning (BEG) of the file. The EOD exit is taken if a SKIP results
in a position before the beginning or past the end of the file.

For example, if record 1 was just read, SKIP#n,2 will cause the next
record read to be record 4. SKIP #n,-1 causes the same record to be reread by
the next READ or GET statement. A SKIP value of 0 is effectively ignored.

Syntax examples:

100 SKIP #A,BEG
200 SKIP #1,B,EOD GOTO 1000

263

SQR Function

General Form:

SQR(numeric expression)

The SQR function returns a floating-point value that is the square root
of the numeric expression specified as its argument.

264

STOP Statement

General Form:

STOP [alpha-expression]

The STOP statement interrupts program execution. When STOP is
encountered, the word STOP followed by the given alpha-expression is printed
at the workstation.

Execution may be continued in either of two ways:

1. ENTER continues execution at the next executable statement following
the STOP statement.

2. Depressing a PF key corresponding to a marked subroutine causes the
program to continue at the entry point of the subroutine. A
corresponding RETURN will cause the STOP to re-execute.

Note that the execution of STOP is exactly like that of INPUT with no
arguments. This applies to the use of PF keys for DEFFN' strings and
subroutine entry. Although data cannot be entered directly into a variable
from STOP, data may be passed to the arguments of a DEFFN' subroutine.

Syntax examples:

100 STOP
200 STOP A$
300 STOP "TWAS BRILLIG AND THE SLITHEY TOVES"

265

STR Function

General Form:

STR(Jalpha expression [,[s1[,[n]]])
alpha array string

where:
s

starting character in sub-string (an

expression) (1 if omitted); cannot be zero or negative.
n = number of consecutive characters desired

(an expression); cannot be zero or negative.

The string function, STR, specifies a substring of an alpha variable or
array string. With it, a portion of an alpha value can be examined, extracted
or changed. For example, the statement

100 BB=STR(AS$,3,4),

sets the receiver B equal to the third, fourth, fifth, and sixth characters
of AS$.

If n is omitted, the remainder of the alpha value is used, including
trailing spaces.

The STR function can also be used as a receiver on the left side of an
assignment (LET) statement to assign a value to a substring. For example:

100 AB="ABCDEF"
200 STR(A$,4,3)="XYZ"
300 PRINT AB

Output: ABCXYZ
If the STR function is used on the left side of an assignment (LET)
statement, and the value to be received is shorter than the specified

substring, the substring is filled with trailing spaces. In this case, the
first argument of the STR function must be an alpha receiver.

266

(‘*

SUB Statement

General Form:

SUB "name" [[ADDR](argl,argl...)]

statements in subroutine
L]
L]

where:
"name" = name of subroutine (1-8 alphabetic or
numeric characters; 1lst alphabetic,
including @,#, and $).

arg = alpha scalar variable
numeric scalar variable
array-designator
file number

SUB defines a subroutine with (or without) an argument list. (The SUB
statement and use of external subroutines are discussed in Section 6.5,
External Subroutines.) Its logical end is signalled by an END statement, just
as in a main program. The optional return code is ignored by the BASIC
calling program. SUB must be the first statement, other than REM, in the
program.

The name specified in the SUB statement need not be the same as the
object file name. Subroutines must be linked to their calling program prior
to run-time; a CALL statement in the calling program initiates a branch to the
beginning of the subprogram.

The optional ADDR syntax specifies the type of address list which the
SUB routine expects to be passed to it to locate the passed args. This is
explained in more detail in Subsection 6.5.4, Passing Arguments to External
Subroutines.

Generally, when dealing entirely with BASIC programs/subprograms, ADDR
should not be used; it should usually be used if the BASIC SUBroutine is being
called from a non-BASIC (e.g. COBOL) subroutine.

Variables and arrays local to the subroutine (i.e. not in the arg list)
obey the usual rules. However, they are initialized only on the first
subroutine call; on subsequent calls, they retain their previous values and
dimensions.

The file number argument, used in file I/0 statements, is 1logically
replaced by the passed file number or file-expression when CALL is executed.
The file number thus refers to SELECT and other I/0 operations executed in the

267

main program; dummy file numbers may not, therefore, appear in SELECT
statements in the subroutine, i.e., when a file number is received as a
parameter, a SELECT statement for that file number in the subroutine is not
permitted.

However, local file numbers may be used to set up (SELECT) an I/O area
local to the subroutine, independent of and inaccessible to the calling
program.

Other arguments are passed as follows:

l. Non-ADDR Form -- All array args must be specified as to type

(matrix, vector) for proper argument passing to occur. This may be
dore in either of 2 ways:

a. In one or more DIM statements occurring before the use of any of
the dummy arrays. The dimensions specified are of no
significance; only the vector - matrix distinction is noted by
the program.

b. If not in a DIM statement, the array is assumed to be a matrix.

Arrays and receivers are not physically moved; the subroutine
receives pointers to their locations and dimensions. Thus, changed
values and array dimensions (MAT REDIM) may be returned to the
calling program.

Expressions and alpha-expressions that are not receivers must be
created in temporary locations by the calling program; otherwise,
pointers to their locations (and lengths, for alphas) are passed to
the subroutine as in (A). Although values may be changed in the
subroutine, these new values are not accessible by the calling
program.

In either case, the defined dimensions and lengths received by the
SUBroutine specify the maximum area, as in a DIM or COM. MAT REDIM
may change these dimensions subject to the usual rules and, as
indicated, these new dimensions are retained upon return to the
calling program.

2. ADDR Form -- SUB passes pointers to the locations of the passed
arguments. All array dimensions and alphanumeric lengths are as
specified in the SUB program (or are the default values).

Otherwise, ADDR works the same as the non-ADDR form. Specifically,
any changes to the data are reflected in the calling program upon
return from the subroutine.

268

However, note that MAT REDIM has no effect outside the subroutine,
‘ since the dimensioning information from the calling program is
G inaccessible to the called subprogram.

No subroutine dummy argument may have the same name as either another
dummy argument of the same type (scalar/array) or a COM argument specified in
the subroutine.

A subroutine may call other subroutines, but may not call itself.

A source file may contain exactly one module, either a program or a
subroutine.

100 SUB "AND"

200 AP = STR("THE DRY STONE NO",5,3)
300 PRINT A$' "SOUND OF WATER"

400 END

100 SUB "ONLY" ADDR(AS$,B,BC(),#N)
200 IF A$ AND "THERE IS A SHADOW" THEN B=20
300 END

100 SUB "123456" (AB)
100 PRINT A$
300 END

269

TAN Function

General Form:

TAN(numeric expression)

The TAN function returns a floating-point value that is the tangent of
the numeric expression specified as its argument. The expression is
considered to be in units of radians, degrees, or grads, depending on the trig
mode specified by the most recently executed SELECT statement. If no SELECT
statement has been executed in the program or subprogram, the default mode is

radians.

270

I

F TIME Function

General Form:

TIME

TIME returns an 8-character string containing the current time (accurate
to hundredths of a second) in the form HHMMSShh.

271

TITLE Compiler Directive

General Form:

TITLE (expression)

The TITLE statement is a compiler directive (see Subsection 2.4.2,
Compiler Directives)., A TITLE statement must be the only statement on a
line. When a TITLE statement is encountered during compilation, the compiler

skips to the top of the next page of output listing and titles that page with
the expression in the TITLE statement. All subsequent pages of the listing

will be printed with the specified title until another TITLE statement occurs
in the program text.

Example:
100 TITLE PART I: VARIABLE INITIALIZATION SECTION
When this statement is encountered the title
PART I: VARIABLE INITIALIZATION SECTION

would appear at the top of the page of source listing.

TITLE statements may not be continued nor may they be used in a multiple
statement line.

272

(‘

TRAN Statement

General Form:

TRAN (alpha-receiver, alpha-expression) [REPLACING]

TRAN
alpha-expression as a translate table or list,

translates (in place) the alpha-receiver, using the

The defined length of the alpha-receiver is translated left-to-right,
one byte at a time, as follows:

1.

2.

The alpha-expression (translate table) is moved to a sepérate
location; thus, it cannot be affected by the translation.

Each byte is translated, in one of the following ways:

a.

REPLACING specified: The alpha-expression is treated as a list
of consecutive byte pairs, ending either at a HEX(2020) pair or
at the end (last full byte pair) of the alpha-expression. The
second byte of each pair is a "translate from" byte, and the
first a "translate to" byte.

The alpha-expression is searched from left-to-right until a
"translate from" matching the subject byte is found. The
subject byte is then changed to the corresponding "translate-to"
character, If a matching byte is not found, the subject byte is
not changed.

REPLACING not specified: The alpha-expression is treated as a
table of consecutive "translate to" bytes. The subject byte is
changed to the (n+l)th byte in the table, where n is the hex
value of the subject byte. If the alpha-expression has fewer
than n+l bytes, the subject byte is not changed.

Program example:

100 AB="JOHN"
200 B$=HEX(00010203)

300 TRAN(AB,"MJAORHYN")REPLACING
400 TRAN(B$,"ABCDEF")
500 PRINT AB,BH

Output:

MARY ABCD

273

UNPACK Statement

General Form:

UNPACK PIC (image) alpha-expression TO
numeric array-designator , jnumeric array-designator| ...
numeric variable numeric variable

where:
image = [+)[#...1[.J[#...1[+444] (at least 1 "#")

The UNPACK statement is used to unpack numeric data that was packed by a
PACK statement. Starting at the beginning lof the specified alphanumeric
expression, packed numeric data is unpacked and converted to internal
floating-point values, and stored into the specified numeric variables or
arrays. The format of the packed data is specified by the image (see PACK);
thus, the same image that was used to pack the data should be used in the
UNPACK statement. An error results if more numeric values are attempted to be
unpacked than can exist in the alphanumeric expression (defined length used).

Syntax examples:

100 UNPACK PIC (#i###)AS TO X,Y,2

200 UNPACK PIC (+i#.##)STR(A$,4,2) TO X
300 UNPACK PIC (+i#.ii# YAB() TO N()

400 UNPACK PIC (#i#i###)A$() TO X,Y,N(),M()

Program example:

100 X=24:DIM A$3

200 PACK PIC (i#i#i##)AS FROM X
300 PRINT X

400 PRINT HEXOF (AB)

500 UNPACK PIC (iH#HH#)A$ TO Y
600 PRINT AS,Y

Output:
24

002420
B 24

274

-

C

$UNPACK Statement

General Forms:

SPACK[([{ =}]alpha-exp) alpha-receiver FROM argl,argl...

,DATA |GOTO line number
GOSUB()statement label
where:

line number = line number or statement label of
statement label data conversion error exit

arg = (expression
alpha-expression, EXCEPT alpha array string
array-designator

$UNPACK [(\{Di}]alpha—exp) alpha-expression TO argl,argl...
F=

s DATA JGOTO line number
GOSUBf]statement label
where:

arg = receiver, EXCEPT alpha array string
array-designator

See $PACK for explanation of syntax.

275

VAL Function

General Form:
VAL(alpha-exp[,d])

where:
d =1,2,3,4 (default = 1)

The VAL function converts the first d characters of the specified
alphanumeric value to an integer. (The VAL function is also discussed in
Section 5.6, Numeric Functions with Alpha Arguments.) The VAL function is the
inverse of the BIN Function. VAL can be used wherever numeric functions
normally are used.

VAL is particularly useful for code conversion and table lookups, since
the converted number can be used as a subscript to retrieve the corresponding
code or data from an array, or codes or information from DATA statements.

Syntax examples:

100 X=VAL(AB)

200 PRINT VAL("aA")

300 IF VAL(STR(AB,3,1) 80 THEN 100
400 Z=VAL(A$)*10-Y

276

g’“

WRITE Statement

General Form:
WRITE file-expl[,]SIZE=exp]l[[,] MASK = alpha-expl]

[JUSING Jline number ,argl,argl...
statement label

EOD GOTO line number DATA GOTO line number
GOSUB r

tatement label GOSUB statement numbe

where:
SIZE = record size for VAR files.
MASK = 2 byte mask alternate index mask for alternate indexed
files. (If only 1 byte, right-padded with HEX(00)).
USING Jline# = line number of Image or FMT describing the
statement label formatting to be used on the output data.

If USING is omitted, internal format is used.

arg = expression
alpha-expression

array-designator
EOD = duplicate-key exit; overrides the SELECT EOD.
DATA = data conversion error exit (formatting error).

WRITE writes the next sequential record to a CONSEC file (OUTPUT,
EXTEND, or SHARED mode) or a keyed record to an INDEXED file (IO, OUTPUT or
SHARED mode). (The WRITE statement is also discussed in Section 8.4, The File
I/0 Statements.)

If an arg list is present, the data is moved one value at a time, using
the format specified by Image(%), FMT, or internal formatting. If an arg list
is not present, the data are taken directly from the record area, where they
have already (presumably) been formatted with a PUT statement.

For non-VAR[C] files, the record size is as specified in SELECT; the SIZE |
parameter is ignored. For VAR[C] files, the record size is determined in one
of the following ways:

277

1. Record size = SIZE expression, if specified.

2, If an arg-list is present, record size = resulting formatted record
size. If USING is omitted, the data is left in internal format,
with record size = sum of individual sizes:

floating-point = 8 bytes
integer = 4§ bytes
alphanumeric = defined length

3. If no arg-list, then record size is identical to that of the last
record read or written, if any, or to the maximum RECSIZE.

For alternate indexed files, MASK is used to set the alternate key mask
for the record (see description of the MASK function in Section 8.5, Intrinsic
File I/0 Functions). If omitted, the current MASK is used.

Syntax example:

100 WRITE #N,SIZE=100,MASK=A§,EOD GOTO 1000,DATA GOTO 1200

278

XOR Statement

General Form:

[LET] alpha-receiver = [logical exp] XOR logical exp

logical exp -- see Section 5.7, Logical Expressions.

The XOR operator logically exclusive OR's two or more alphanumeric
arguments.

If the operand (logical expression) is shorter than the receiver, the
remaining characters of the receiver are left unchanged. If the operand is

longer than the receiver, the operation stops when the receiver is filled.

(See Section 5.7, Logical Expressions, for more information on logical
expressions.)

Examples:

HEX (0000)=HEX(OFOF) XOR HEX(OFOF)
HEX(OFFO)=HEX (OOFF) XOR HEX(OFOF)

279

APPENDIX A
VS BASIC RESERVED WORDS

"When I use a word, it means just what I
choose it to mean-- neither more nor less."
-=- H. Dumpty,
Through the Looking-Glass

The following is a list of all VS BASIC reserved words. Reserved words
have a specific meaning to the BASIC compiler as statement verbs and keywords,
and cannot be used either as variable names or statement labels. Some words
on this list are not documented in this manual, since they are reserved for

features to be implemented in future versions of the BASIC compiler.

$PACK SUNPACK ABS ACCEPT ADD ADDC
ADDR AL ALL ALT AND ANY
ARCCOS ARCSIN ARCTAN ASORT AT ATN
BEG BELL BI BIN BLANK BLINK
BLKSIZE BLOCKS BOOL BOOLO BOOL1 BOOL2
BOOL3 BOOLA4 BOOLS BOOL6 BOOL7 BOOLS8
BOOL9 BOOLA BOOLB BOOLC BOOLD BOOLE
BOOLF BRIGHT BY CALL CH CHAR
CLEAR CLOSE CcoL CoM COMMON CON
CONSEC CONSTANT CONVERT CcoPY CcoS CRT
CURSOR DATA DATE DECIMAL DEF DEFAULT
DEFFN DEFFN' DEGREES DELETE DENSITY DIM
DISPLAY DO DPACK DSORT DUP EJECT
ELSE END ENTER EOD ERROR EXP
EXTEND FAC FILE FILESEQ FILL FL
FLOAT FMT FN FN! FOR FORM
FR FROM FS GET GO GOSUB
GOSUB' GOTO GRAD HALT HEX HEXOF
HEXPACK HEXPRINT HEXUNPACK HOLD IDN IF

IL INDEXED INIT INPUT INT INTEGER
INTO INV I0 IOERR IPACK KEY
KEYLEN KEYPOS KEYS LEN LET LGT
LIBRARY LINE LOG LONG MASK MAT

MAX MIN MOD NEG NEXT NL
NOALT NODISPLAY NOGETPARM NOT NUM NUMERIC
OBJECT ON ONLY OPEN OR OUTPUT
PACK PAGE PAUSE PD PI PIC
POOL PRINT PRINTER PROTECT PUT RADIANS
RANGE READ REAL RECORD RECSIZE REDIM
REM REMARK REPEAT REPLACING RESTORE RETURN

280

REWRITE
SEARCH
SIZE

STOP

TAN

TO
UPPERCASE
VARC

XX

RND
SELECT
SKIP
STR
TAPE
TRACE
USING
VOLUME
ZD

ROTATE
SGN
SOURCE
SUB
THEN
TRAN
VAL
WINDOW
ZER

ROTATEC
SHARED
SPACE
SUB!
TIME
TRN
VALIDATE
WRITE
ZERO

281

ROUND
SHORT

SQR

TAB
TIMEOUT
UNDERLINE
VALUE

WS

SCREEN
SIN
STEP
TABLE
TITLE
UNPACK
VAR
XOR

APPENDIX B
VS BASIC COMPILER OPTIONS

The following options are provided by the VS BASIC compiler:

SOURCE

If SOURCE = YES, the compiler produces a source listing of the compiled

program, with accompanying diagnostics. If SOURCE = NO, no source listing is
produced. (Diagnostics are produced if either SOURCE, PMAP, XREF, or ERRLIST

is specified.)

PMAP

If PMAP = YES, the compiler produces a PMAP (program map) for the
compiled program. A PMAP contains the machine instructions generated by each
BASIC verb, with the address of each instruction, as well as a map of the
static area showing the values and locations of all data items. A PMAP

consists of five basic columns:

column 1 - BASIC verbs and line numbers.

column 2 - Address and object code.

column 3 - Assembler instructions.

column 4 - Operands for instructions, hex codes for literals.

column 5 - Comments.

If the program contains common variables (i.e., listed in a COM
statement), a map of the common area will follow the PMAP, beginning with
#COMMON on a new page. In the common area map the columns serve the same
purpose as in the PMAP, with the exception of the first column, which will

contain only ¥*COMMON at the beginning of the map.

If there is no common area, a map of the static area immediately follows
the PMAP, beginning with the word STATIC in column 1 on a new page.

In the static area map, the columns serve the same purpose as in the
PMAP, with the exception of the first column. This first column contains
either ¥STATIC, indicating the address of the contents of the Static section
follow, or ¥*PGT (Program Global Table) indicating the address of the
information in that table follow. The Static section contains variables,
while the PGT contains subroutine addresses, miscellaneous constants, and the

like.

282

XREF

The XREF (cross reference listing) consists of five parts;

1. A listing of line number references (column one) and the line
numbers where they are referenced (following columns).

2. A listing of the variable names, their lengths (alpha only), and,
for arrays, their dimensions (all in column one). Each variable is
followed by the location of the variable's storage area (or, for
arrays, the descriptor and data area) on the same line, and the line
numbers which reference the variable (on succeeding lines).

3. A 1listing of user-defined functions and the 1line numbers which
reference them.

4, A listing of BASIC functions referenced, and the line numbers where
they are referenced.

5. A listing of DEF FN' subroutines contained within the program and
the line numbers which reference them.

LOAD

If LOAD = YES, the compiler creates an object program in VS object

program format, and stores it in an output file. If LOAD = NO, no object
program is produced and the compiler does not display an output definition

screen to name the output file.

SYMB

If SYMB = YES, the compiler inserts symbolic debug information in the
object program. If SYMB = NO, this information is not inserted, and the
symbolic debug facility cannot be used to debug the object program at run time.

SUBCHK

If SUBCHK = YES, the compiler generates special code which checks the
ranges of subseripts during program execution, and causes a program
cancellation (execution interruption) if a subscript exceeds its defined
limit. Otherwise, no check is performed on subscripts during execution.

ERRLIST

If ERRLIST = YES, a separate listing of the compiler diagnostics is
produced.

283

FLAG

FLAG specifies the lowest level of error severity which will cause the
compiler to print a diagnostic message. Any error with a severity code less
than the specified FLAG value will not produce a diagnostic message.

STOP

STOP specifies the lowest level of error severity which will cause the
compiler to abort the compilation. Any error with a severity code greater
than or equal to the specified STOP value will terminate the compilation (no

object program is produced).

LINES

LINES set the number of 1lines per page for all compiler produced
printouts.

284

APPENDIX C
NUMERIC DATA REPRESENTATION IN VS BASIC: HEXADECIMAL/DECIMAL CONVERSION ERRORS

VS BASIC stores and operates upon numeric data represented as
hexadecimal (base 16) numbers. Since 16 is not a power of 10, non-integral
quantities which can be precisely represented in one number system (decimal or
hexadecimal) cannot always be precisely represented in the other. Some
numbers represented as non-repeating decimals, for example, become repeating
hexadecimals when converted to hex representation. VS BASIC's input/output
routines (PRINT, ACCEPT, INPUT, etc.) automatically take care of the
interconversions of numeric data between the decimal form shown in ASCII
characters on the workstation or printer, and the hexadecimal form stored
internally.

There are situations, however, where small errors unavoidably occur when
converting data between the two number systems. These are typically
situations where many calculations are performed which compound small errors,
such as in some trigonometric functions. For example, it 1is true by
definition that the arcsine of the sine of 90 degrees is 90 degrees. However,
if we run the program

100 SELECT D /% SET TRIG MODE TO DEGREES */
200 PRINT ARCSIN(SIN(90))

the result shown on the workstation is not 90, but 89.9999994771725. 1In
programs which do many numerical operations, such small conversion errors can
accumulate through intermediate stages of a calculation to give larger errors
in the final result. For example, if the arcsine expression just mentioned
were to be used in subsequent calculations, the "correct" value to be used
would be 90 degrees. If the result of the ARCSIN function were simply used
directly, its value would not be precisely 90. Thus, the final results of
subsequent calculations would be slightly inaccurate; if further conversion
errors occurred in these calculations, the results would be even more
inaccurate.

Accumulation of conversion errors of this sort can be avoided by
judicious use of the ROUND function. 1In most cases, it is sufficient to use
the ROUND function to round the final result to the desired precision
immediately before it is output. In situations where many complicated
calculations are being done, and greater precision is required in the final
result, the ROUND function may be used at several intermediate points in the
calculation to ensure that intermediate values are not processed with more
significant digits than are warranted by the application. This will prevent
conversion errors in low-order digits from propagating into the high-order
digits of the final result.

285

APPENDIX D
FLOATING-POINT AND INTEGFR CALCULATIONS

INTRODUCTION

In VS BASIC, the programmer has a choice between two types of numeric
formats: integer and floating-point. FEach format has unique features and
limitations which make it particularly suitable for some applications and
unsuitable for others. The programmer should clearly understand the
differences between the two formats in order to intelligently select the most
appropriate format for each application. In general, integer arithmetic is
somewhat faster than floating point and requires less storage space. Integer
results are precise, but the range of integer values is limited, and fractions
cannot be used at all. Floating-point arithmetic does permit operations with
fractions (that is, digits to the right of the decimal point) and it supports
a much wider range of values than integer format; under certain conditions,
however, floating-point results may lose some degree of precision (this
problem is discussed below). A third type of numeric data format, packed
decimal, is not available in VS BASIC but is supported in COBOL. The packed
decimal format is briefly discussed at the conclusion of this appendix.

INTEGER FORMAT

Integer calculations are precise and consistent for a limited range of
values. On the VS the range is from -2,147,483,648 to 2,147,483,647. Except
for the occurrence of integer overflow, the standard set of integer
operations, including arithmetic and relational operators, produce the
expected results and obey the standard set of mathematical laws such as those
concerning the associativity and commutativity of operations. Thus, integer
equality ('=') tests for exactly equal and it is easy to understand when two
integers are exactly equal.

Integer variables should be used whenever precise results are required
and the expected range of values falls within the limited range supported by
VS BASIC.

FLOATING-POINT FORMAT

Integer format is also referred to as "fixed-point" format because the
decimal point is assumed to be permanently fixed just to the right of the
low-order digit. In order to represent fractions, however, it is necessary to
be able to locate the decimal point any place within the number (hence the
term, "floating-point"). For a floating-point number, therefore, two pieces
of information are required, a "fraction" and an "exponent": the "fraction"
represents the number itself and the "exponent" specifies its magnitude.

(That is to say, the exponent specifies the location of the decimal point.)

286

/Q)

For example, the decimal number 15,000 could be represented as 1.5 X 10",
where 1.5 is the fraction and 10" is the exponent. For reasons of accuracy,
range, and performance, the fraction component of a floating-point number is
stored in hexadecimal (base 16), while the exponent is stored in binary. The
range of values that can be represented in floating-point format is much
greater than integer (5.4 x 10-79 to 7.2 x 1075) but the precision of the
value is limited to approximately 15 digits.

A floating-point value is frequently an approximation of the value to
the right of the decimal point. This is because, in contrast to the case of
integer values, there is not an exact one-to-one correspondence between
decimal fractions and hexadecimal fractions. In other words, there are
certain decimal fractions which cannot be represented exactly as hexadecimal
fractions, no matter how many bits of precision are utilized. (This situation
is not uncommon, even in ordinary decimal arithmetic; consider, for example,
the problem of representing 1/3 as a decimal fraction.)

The fact that many decimal fractions don't have exact hexadecimal
equivalents means that some loss of precision can result when a decimal
fraction is converted to hexadecimal. For example, the perfectly harmless
decimal fraction 0.2 has a hexadecimal equivalent which is the repeating
fraction .33333. 1In most cases, the loss of precision has no effect at all on
the final result of a floating-point operation. Sometimes, however, the
accuracy of the result may be affected. 1In particular, loss of accuracy may
result when an iterative series of calculations is performed using decimal
numbers which don't have exact hex equivalents. In such cases, the initially
insignificant 1loss of precision gradually accumulates over a series of
operations until it becomes large enough to influence the end result.

A second situation in which an insignificant loss of precision may
produce unexpected results involves the use of comparison operators. When two
floating-point numbers are compared, the comparison is made on their
hexadecimal values. For example, the statement IF A = B THEN PRINT C compares
the contents (in hexadecimal) of A and B; if the two values aren't exactly
equal, the comparison fails. Consider, for example, the following short
program:

100 A = 12
200 B = (12/10) *10
300 PRTNT "A = "; A, "B = "; B, "THEY ARE";

400 IF A = B THEN PRINT "FQUAL" ELSE PRINT "NOT FQUAL"
Result: A =12 B =12 THEY ARE NOT EQUAL

This seemingly anomalous result illustrates how a loss of precision
which has no noticeable effect on the result of the computation can influence
the results of other operations. In this case, the division on line 200
produces a result, 1.2, which is normal in decimal but which is a repeating
fraction in hexadecimal (because, as noted above, the fraction .2 does not
have an exact hexadecimal equivalent). Thus, when the quotient is multiplied
by 10, the result in B is not exactly the hexadecimal equivalent of 12, but a
very close approximation. Since the comparison at line 400 expects the values
of A and B to be exactly equal, the condition is not met, and the ELSE

287

statement is executed. However, because formatted output statements in BASIC
(such as the PRINT at line 300) perform an implicit rounding of the result
which compensates for the one-bit loss of precision, both A and B print as 12.

CONCLUSION

For most applications, the loss of precision suffered by floating-point
operations is insignificant and is not a cause of concern to the programmer.
In those cases where it is a problem, the programmer has several courses of
action available.

In some cases, use of the ROUND function can reduce the problems
associated with floating-point representation. However, since the defirkition
of rounding (e.g. increase if the digit is greater than or equal to 5) is
based on the assumption of a decimal number system, ROUND may also produce
unexpected results when the digit being rounded is very close to but slightly
less than 5. This is again due to the fact that the floating-point number is
an approximation of the decimal number. For example, consider the following
program:

100 C = 30.5 * 11.69
200 D = ROUND (C,2)
300 PRINT "C=": C, "D="; D

Result: C = 356.545 D = 356.54
The expected result in D would, of course, be 356.55.

For applications in which it is not feasible to use integer arithmetic,
the programmer should consider using a COBOL subroutine to perform the
necessary calculations. COBOL supports packed decimal format, a data format
not available in BASIC. With packed decimal format, arithmetic operations are
performed directly in decimal, with no conversion to binary. Thus, any loss
of precision due to conversion from decimal to binary (or to hexadecimal) is
avoided. See the VS COBOL Language Reference Manual for a discussion of the
COBOL language and the data formats available.

288

(J

APPENDIX E
NUMERIC DATA FORMAT COMPATABILITY BETWEEN VS BASIC AND COBOL

VS BASIC stores integer data as binary integers in four bytes (one full
word) of memory, and floating-point data as hexadecimal fractions in eight
bytes. Other languages, however, may use other formats for storing numeric
data. In particular, COBOL stores integer data as half-word binary integers,
and non-integer numeric data in packed decimal format. In packed decimal
format, each decimal digit of a number is coded into U4 bits of storage; the
sign of the number is indicated by a hexadecimal digit attached to the right
(low-order end) of the number. The decimal point is not stored; its position
is specified only upon input or output.

For most applications, the number representation schemes used by other
languages are of no concern to the VS BASIC programmer. However, if a BASIC
program and a program written in COBOL are to process any of the same data,
this difference cannot be ignored. This situation arises if a BASIC program
and a COBOL program access the same data in either of the following ways:

1. By a BASIC program reading a data file written by a COBOL program,
or vice versa,

2. By passing arguments between a calling program and a subprogram when
one is in BASIC and the other is in COBOL.

Numeric data to be transferred from a BASIC program to a COBOL program
must first be converted to half-word integer or packed decimal format.
Similarly, numeric data transferred from a COBOL program to a BASIC program
must be converted from half-word integer or packed decimal to BASIC full-word
integer or floating-point format before any numeric operations can be
performed on them.

These conversions are most easily accomplished using the BI and PD data
specification of the FMT statement. For example, to write the number 123.45
to a data file to be read later by a COBOL program, one could do the following:

2600 NUMBER = 123.45
2700 WRITE #1, USING PACKED_DECIMAL, NUMBER
2800 PACKED_DECIMAL: FMT PD(5,2)

To read a value from a data file which was written by a COBOL program, one
could do:

3300 READ #2, USING PACKED DECTMAL, VALUE

289

Packed decimal numbers are stored as a series of decimal digits with no
decimal point. When a packed decimal number is read from a file and converted
to VS BASIC floating-point format, the decimal point is inserted at the point
indicated by the PD specification. Consequently, one must know beforehand
where the "implied" decimal point is, so that the PD specification can be
written appropriately.

In the case of numeric data passed between BASIC and COBOL calling
programs and subprograms, data can be converted between full-word integer or
floating-point and half-word integer or packed decimal formats using the PUT
and GET statements in conjunction with a FMT statement with a BI or PD
specification. Note that half-word integer and packed decimal representations
of numbers in VS BASIC must be stored in alpha receivers. For example,
suppose a BASIC program calls a COBOL subroutine to perform some calculations
using the integer variable OPTION% and the floating-point variables RATE,
TIME, and DISTANCE. Before the CALL statement, the data can be converted to
the appropriate COBOL formats (one halfword integer, and three packed-decimal
numbers) by performing

5600 PUT OPTION$, USING PD FORMl, OPTION%

5700 PUT RATE$, USING PD FORM2, RATE

5800 PUT TIME$, USING PD FORM2, TIME

5900 PUT DISTANCE$, USING PD FORM2, DISTANCE

6000

6100 PD FORMl: FMT BI(2)

6200 PD_FORM2: FMT PD(6,2)

6300

6400 CALL ADDR SUB "CRUNCH"™ (OPTTON$, RATE$, TIME$, DISTANCES)

Note that although the arguments passed by the calling program are in a format
designated by BASIC as an alphanumeric format, they correspond internally to
COBOL's half-word integer and packed decimal numeric format. After the
subprogram ends and control returns to the calling program, any changes made
to the argument values by the COBOL subprogram can be retrieved and used as
numeric values by the BASIC program with a conversion routine 1like the
following:

6500 GET OPTION$, USING PD FORMl, OPTION%
6600 GET RATE$, USING PD FORM2, RATE

6700 GET TIME$, USING PD FORM2, TIME

6800 GET DISTANCES$, USING PD:FORM2, DISTANCE

The variables OPTION%, RATE, TIME, and DISTANCF will now reflect any changes
made to these values by the COBOL subprogram.

Similarly, if a BASIC subprogram is called by a COBOL program, the
numeric arguments from the COBOL program will be passed to the BASIC
subprogram as halfword integers and/or packed decimal numbers. Since these
formats can only be received in BASIC by alpha receivers, the parameters in
the SUB statement of the BASIC subroutine must be alpha receivers. Before any
numeric operations can be performed, the data must be converted (or unpacked)
to VS BASIC integer and/or floating-point format(s). This is done using the
GET statement as above, and FMT statements with the appropriate BI and PD
specifications. JTf the subroutine is to pass any numeric data back to the
calling program, they must first be converted back to halfword integer or
packed decimal format by PUT statements using the appropriate BI and PD
specifications in one or more FMT statements.

290

APPENDIX F
VS CHARACTER SET

NOTE: b T =° |° |° !
bg always bp —[0|0 1 1
equals zero .
b3 —»| O 1 0
High-Order Digit —»|] 0| 1 | 2 7
ba| bs| bg| b7 Low-Order Digit
ARARAR. '
0 0 32 |sP P
of of of 1 1 o2 | q
ol o 1]o0 2 » | T r
of of 1] 3 «| 8| = s
ol 1] o0fo0 4 -3 | s t
of 1| of 1 5 -] 3| % u
o 1 110 6 I |e & v
o 1| 11 7 i, w
1{o| oo 8 s 1o | (x
1{of| ofn 9 NHu) y
110] 1|0 A ~ | a . z
1o 11 B m|es |+ s
111] 0]0 c N £
11 0] D N - é
11| 1]o E 3|0 ¢
I T N F q|u |/ ¢

*Bit combinations 10000000 through 11111111 are field attribute characters.

291

APPENDIX G

VS FIELD ATTRIBUTE CHARACTERS

Bright
Bright
Bright
Bright
Bright
Bright

Dim
Dim
Dim
Dim
Dim
Dim

Blink
Blink
Blink
Blink
Blink
Blink

Blank
Blank
Blank
Blank
Blank
Blank

Bright
Bright
Bright
Bright
Bright
Bright

Dim
Dim
Dim
Dim
Dim
Dim

Blink
Blink
Blink
Blink
Blink
Blink

Blank
Blank
Blank
Blank
Blank
Blank

Modify
Modify
Modify
Protect
Protect
Protect

Modify
Modify
Modify
Protect
Protect
Protect

Modify
Modify
Modify
Protect
Protect
Protect

Modify
Modify
Modify
Protect
Protect
Protect

Modify
Modify
Modify
Protect
Protect
Protect

Modify
Modify
Modify
Protect
Protect
Protect

Modify
Modify
Modify
Protect
Protect
Protect

Modify
Modify
Modify
Protect
Protect
Protect

All
Uppercase
Numeric
All
Uppercase
Numeric

All
Uppercase
Numeric
All
Uppercase
Numeric

All
Uppercase
Numeric
All
Uppercase
Numeric

All
Uppercase
Numeric
All
Uppercase
Numeric

All
Uppercase
Numeric
All
Uppercase
Numeric

All
Uppercase
Numeric
All
Uppercase
Numeric

All
Uppercase
Numeric
All
Uppercase
Numeric

All
Uppercase
Numeric
All
Uppercase
Numeric

292

No line
No line
No line
No line
No line
No line

No line
No line
No line
No line
No line
No line

No line
No line
No line
No line
No line
No line

No line
No line
No line
No line
No line
No line

Line
Line
Line
Line
Line
Line

Line
Line
Line
Line
Line
Line

Line
Line
Line
Line
Line
Line

Line
Line
Line
Line
Line
Line

@WN

APPENDIX H

ASCII COLLATING SEQUENCE

10.

12.
13-22.
23.
24,
25.
26.
27-52.

Vll/\w

(space)

(quotation mark)
(currency symbol)
(apostrophe, single
quotation mark)

(left parenthesis)
(right parenthesis)
(asterisk)

(plus symbol)

(comma)

(hyphen, minus symbol)
(period, decimal point)
(stroke, virgule, slash)
0 through 9

(semicolon)

(less than)

(equal sign)

(greater than)

A through 2

293

APPENDIX I
VS BASIC ERROR MESSAGES

The following is a list of VS BASIC error messages. VS BASIC error
messages are designed to be self-explanatory and self-documenting. For more
information regarding the cause or resolution of the error see the section
reference next to the error message.

ERROR SEVERITY SECTION

NUMBER ERROR MESSAGE RETURN CODE REFERENCE

101 Line number contains invalid 12 2.3
characters.

102 Invalid character found. 8 Appendix E

103 Line number is out of sequence. 8 2.3

104 Literal not completed. 8 3.4

105 Literal improperly placed within statement. 8 2.3, 3.4

106 Incorrect constant or delimite. 8 3.3

107 Constant improperly placed within 8 2.3, 3.3
statement.

108 'Non-unique' line number specified. y 2.3

109 Invalid identifier name. 8 6.2

110 Constant too long - Significant digits Yy 3.3
lost.

111 Literal too long - Truncated to 256 Yy 3.1
characters.

112 A character string of length zero is y 3.4
invalid - Single blank substituted.

113 Improperly formed picture constant. 8 3.2

114 Numeric constant too large -Set to] 3.3
largest possible number.

115 Numeric constant too small - Set to zero.] 3.3

116 HEX literal must contain an even 8 3.1
number of characters.

117 Invalid boolean function - Must be 8 5.7
0-9 or A-F.

118 Invalid HEX literal. 8 3.4

119 Numeric constant too large for INTEGER- 8 3.3
Treated as FLOATING POINT.

120 Last line of file contains a continuation 8 2.3
character - your source file may be damaged.

121 Invalid exponent found in floating 8 3.3
point constant.

122 Variable name exceeds 64 characters in 8 3.2

length - Truncated.

29y

ERROR
NUMBER

201
202
203

204
205

206

207
208

209
210
211

212
213

214
215
216
217
218
219
220
221
222
223
224
225

226
227

228
229

230
231

SEVERITY SECTION

ERROR MESSAGE RETURN CODE REFERENCE
Expecting end of statement but xxx was 8 2.3
found.
Expecting line number or label but xxx 8 6.3
was found.
Expecting statement verb but xxx was 8 2.3
found.
Expecting yyy but xxx was found. 8 2.3
Expecting numeric or alpha expression 8 4.3
but xxx was found.
Expecting alpha expression but xxx was 8 5.4
found.
Expecting alpha receiver but xxx was found. 8 5.4
Expecting numeric scalar variable but 8 3.3, 3.5
xxx was found.
Expecting alpha scalar variable but xxx 8 3.4, 3.5
was found.
Expecting numeric array designator but 8 3.5
xxx was found.
Expecting alpha array designator but xxx 8 3.5
was found.
Expecting GOTO or GOSUB but xxx was found. 8 6.1, 6.4
Expecting matrix function or array 8 9.2
variable but xxx was found.
Expecting matrix operator but xxx was found. 8 9.2
Expecting array variable but xxx was found. 8 3.5
Expecting relational operator but xxx was 8 4.2, 5.2
found.
Expecting numeric receiver or numeric 8 3.2, 3.5
array designator but xxx was found.
Expecting numeric array but xxx was found. 8 3.5
Expecting alpha array but xxx was found. 8 3.5, 5.3
Expecting alpha array or alpha array 8 3.5, 5.3
designator but xxx was found.
Expecting print delimiter but xxx was found. 8 7.2
Expecting 1, 2, 3, or 4 but xxx was found. 8
Expecting numeric array or numeric array 8 3.5
designator but xxx was found.
Expecting numeric or alpha array designator 8 3.5, 5.3
but xxx was found.
Expecting matrix variable or matrix 8 9.2
function but xxx was found.
Expecting literal but xxx was found. 8 3.4
Expecting hexadecimal digit but xxx was 8 3.4
found.
Expecting numeric constant or literal but 8 3.3, 3.4
xxx was found.
Expecting numeric constant but xxx was 8 3.3
found.
Expecting image but xxx was found. 8 7.4
Expecting integer constant but xxx was 8 3.3

found.

295

ERROR
NUMBER

2m1
242

243

244

245

2u6
247
248
249
250
251
252

253
254

255
256

257
258
259
260
261
262

263

SEVERITY
RETURN CODE REFERENCE

ERROR MESSAGE

Expecting array variable or alpha scalar
but xxx was found.

Expecting alpha scalar or alpha array
designator but xxx was found.

Expecting 1 or 2 but xxx was found.

SUB statement may not be preceded by

any statements other than comments.

xxx has been previously defined.

Line number does not precede xxx statement.
Expecting GOTO or GOSUB but xxx was found.
Invalid file number - Valid range is 1

to 64,

Expecting prname literal but xxx was
found.

Expecting IOERR or EOD but xxx was found.
Expecting DEGREES, GRADS, RADIANS, PAUSE,
CRT, WS, POOL, PRINTER, or file expression
but xxx was found.

The SELECT statement must precede any disk
Input/Output statements.

Either equal sign is missing in a LET
statement or this statement starts with

an unrecognizable word.

Multiply defined parameter in OPEN
statement.

Expecting DATA but xxx was found.
Expecting EOD but xxx was found.

Function previously defined.

Invalid number of arguments.

Expecting integer 0-255 but xxx was found.
Expecting a function but xxx was found.
Expecting OPEN mode indication (INPUT,
OUTPUT, I0, SHARED, or EXTEND) but xxx
was found.

Invalid argument type in SUB statement.
Expecting format statement specification
but xxx was found.

Expecting file expression but xxx was found.
Expecting error specification but xxx

was found.

Expecting file number or BLOCKS but xxx
was found.

Expecting comma or equal sign but xxx

was found.

This statement too long.

Expecting keyword option but xxx was found.
Missing comma before xxx.

Expecting equal sign or parenthesis after
yyy but xxx was found.

Expecting CONSEC or INDEXED but xxx was
found.

296

8
8

oo

o o oo 0o 00 ™

o] o} o ™ o Co Co 0o o o =

[0] oo Oy 00 OO

SECTION

3.4, 3.5

3.4, 3.5, 5.3

2.3

[0]
.
w

.

[e <20 —go. Wa W —g¥e Mo .
e
W Eswm 2w w

ERROR SEVERITY SECTION

NUMBER ERROR MESSAGE RETURN CODE REFERENCE
264 Invalid use of xxx in ACCEPT statement. 8 7.5
265 Incorrect number of subscripts. 8 3.5
266 Length must be in range 1 to 256. 6 8.3
267 xxx is not a valid name.] 6.2
268 Invalid use of xxx is DISPLAY statement. 8 7.6
269 Nested TF statements are not allowed. 8 4,2, 5.2
270 XXX not yet implemented in ACCEPT or 8 7.5, 7.6
DISPLAY.
271 xxx already specified in ACCEPT. 8 7.5
272 File was not previously specified in a 8 8.3
SELECT statement.
273 Invalid device type for this function. 8 8.3
274 Invalid file attributes for this function. 8 8.3
275 File # xxx is already defined. 8 8.3
276 Invalid alternate key number - Must be 8 8.3
in range 1 to 16.
277 Invalid alternate key for this file. 8 8.3
278 File does not have alternate indices. 8 8.3
279 Alternate index number already used. 8 8.3
280 Expecting TO, SUB, or SUB' but xxx was 8 6.5
found.
281 Pause interval must be in range 1 to 255. 8 8.3
282 Expecting TO or SUB after GO but xxx was 8 6.3, 6.4
found.
283 A field attribute character (FAC) may not 8 7.5
immediately precede a literal.
284 Expecting comma or BEG but xxx was found. 8 8.3
285 Label xxx already exists. 8 2.3
286 Label yyy was previous by defined as a xxx. 8 2.3
287 Variable yyy was previously defined as a 8 3.3, 3.4
XXX,
288 Function yyy was previously defined 8 4.4
as a XXX.
289 Label xxx may not end with a $ or % 8 2.3
character.
290 A string value may not be assigned to 8 3.2, 3.3
numeric receiver xxx.
291 A numeric value may not be assigned to 8 3.2, 3.4
alpha receiver xxx.
292 TRACE statement no longer supported - 8 Appendix A
Use the symbolic debugger.
293 Null statement invalid after THEN or ELSE. 8 y.2, 5.2
294 yyy may not be declared as xxx variable. 8 3.2
295 Array dimension must be in the range 6 3.5
1 to 32767 - Default value of 10 used.
296 Format specifications must be greater than 8 7.4
zZero.
297 Expecting PIC but xxx was found. 8 7.5
298 The FILESEQ option is valid only 8 8.3.2
for TAPE files.
401 Invalid operand in PRINT statement. 8 7.5

297

ERROR SEVERITY SECTION

NUMBER ERROR MESSAGE RETURN CODE REFERENCE

4oz Compiler error. 12 1.4

403 Compiler error due to prior errors. 12 1.4

4oy xxx invalid in USING list. 8 7.4

405 An invalid subroutine name or PRNAME y 6.5, 8.3
has been corrected or replaced.

4oé6 Invalid OPEN option for this file access 8 8.3
method.

4o7 Line number xxx missing before this line. 6 2.3

408 Constant invalid - Cut of range. 8 3.3

409 SUB argument may not be declared in COMMON. 6 6.5

410 Invalid picture used in PACK, UNPACK, or 6 9.1
CONVERT statement.

411 Invalid line length in SELECT statement. y 8.3

412 FORM statement contains an invalid number 6 2.3
in a FL or BI data specification.

413 Target line number is invalid for this 8 6.4, 6.5
type of statement.

41y This file was not previously SELECTed. y 8.3

415 File already specified in SELECT, POOL y 8.3
statement.

416 Code efficiency reduced due to complexity 4 4.3, 5.4
of expression.

ha7 Invalid constant used as a subscript. 8 3.3, 3.4

418 Alternate key number must be in range 1 8 8.3
to 16.

419 Invalid alternate key specification. 8 8.3

420 File number must be within range 1 to 64. 8 8.3

421 This file has already been SELECTed. 8 8.3

422 Invalid record size specified. 8 8.3

423 The last character of the key is beyond 8 8.3
the end of the record.

oy Target line number for EOD or DATA exit 8 8.3
is invalid.

425 Integer matrix may not be the result 8 9.2
operand of matrix inversion.

426 Prname truncated to eight characters.] 8.3

yo7 Prname contains invalid character or 8 8.3
starts with a digit.

428 Generated STATIC area too large. 12 1.4

L29 Program too large to compile: xxxX. 16 1.4

430 The selected file is not an indexed file - 2} 8.3
Buffer pooling may not be used.

431 Compiler error: XxX. 12 1.4

h32 User function or routine is not defined. 6 h.4, 6.4

433 Generated COMMON area too large. 12 6.5

43y Combined COMMON and STATIC areas too large. 12 6.5

435 Array xxx too large. 12 3.5

436 Block size invalid. y 8.3

437 Invalid tape density. y 8.3

298

ERROR SEVERITY SECTION
NUMBER ERROR MESSAGE RETURN CODE REFERENCE

438 Line numbers greater than 65535 are incom- 6 1.4, 2.3
patible with SYMBOLIC DEBUG - Use the
EDITOR to renumber your program in
smaller increments if you wish to use the
symbolic debugger.

439 Statement will cause run-time 8 1.4
Stack overflow.

4uo Statement too long. 12 2.2, 2.3

yn] Label xxx missing. 6 2.3, 6.2

4u2 Primary key length may not exceed 255 8 8.3
characters.

443 Alternate key extends beyond the end of 8 8.3
the record.

hyy Alternate key length may not exceed 255 8 8.3
characters.

hus Alternate key number has already been 8 8.3
specified for this file. '

hue The sum of the lengths of the primary key 8 8.3

and any alternate key may not exceed 255
characters.

yy7 XXX, yyy is referred to only once in this y N/A
program. Check for possible spelling errors.

299

APPENDIX J
CVBASIC USER AID (CONVERSION from BASIC 2.3 to 3.2)

CVBASIC is provided as an aid to the BASIC programmer for converting
from Version 2.3 of VS BASIC to Version 3.2 of VS BASIC. CVBASIC converts
source code, single files or libraries, from Version 2.3 syntax to 3.2
syntax. Input to the utility must be syntactically correct source code
(Version 2.2). Once the conversion program is complete, the output source
file/library is created and an update listing is produced which indicates the
success or failure of the conversion. This listing may be displayed at the
workstation or printed. If the conversion was not successful, an error
message is displayed which indicates the reason for the error and suggested
corrective action. The output source code may then be compiled by ,the Version
3.2 BASIC compiler.

The new version of BASIC supports variable names up to 64 characters in
length. CVBASIC accommodates this by inserting necessary spaces between the
elements in the language, such as variables, reserved words and constants.

A summary of additional syntax changes which are automatically converted
by CVBASIC include:

l. insert spaces around all VS BASIC reserved words;

2. convert SELECT D to SELECT DEGREES,
SELECT R to SELECT RADIANS,
SELECT G to SELECT GRADS,
SELECT P to SELECT PAUSE;

- 3. convert #PT to PI;
4. convert CONVERT X to Y, (###) to
CONVERT X to Y, PIC (###);
5. convert FMT PD (X.Y) to FMT PD (X,Y);
6. convert TRANS (A$,B$)R to TRANS(A$,B$)REPLACING;
7. convert PACK (###) TO PACK PIC (###);
8. convert UNPACK (###) to UNPACK PIC (###);

300

USING CVBASIC

The screens in the figures below indicate the information needed to
define the input and output of this program. Once CVBASIC is run
successfully, the output source programs must then be compiled under Version
3.2 of the compiler. 1In addition, a listing of the files that were converted
and any errors that occurred is produced. These error messages explain the
condition that prevented the conversion and provide possible error correction
solutions. If the 1library option is chosen and any of the files in the
library are not valid source files, those files are automatically skipped.
The names of the skipped files are written to the error listing.

®es NESSAGE TKPT @y nvBSIC ees MESSAGE LTB By CveSIC
INFORMATTON REQUTRED BY PROGRAM CrVBASIC INFORMATION REQUIRED BY PROGRAM CVBASI”
TO OEFTKE TNPUT TO DEFTNE QUTPUT
CVBASIN varsioa 1.N0.9 - VS AASIM snurce conversion utfility VBASIC - Snurce librarv conversion parameters
This utility convarts VS AASTT 2.% source files tn VS BAST. 3,2 soures flles. Please ENTER the autout library for the converten source files:
Plasse spacifv the f{le or librarv tn ba converted: LTBRARY « TESTLID® VOLUKE = SYSTEM
FILE u ®essscss | IBRARY = TESTLIB® VOLUME = SYSTEM
02 vou want to b= notifled of anv
and selact: conversinn errors as thav accur? NOTTFY « NO® (YES/NOD)
(2) Convert a slagle file
() Convert sn antire library (leave the FILE name dlank)
ar salect:
or select: (1%) Tnstructions

(1%) instructions (14} Return to main menuy
(16) Exit froa CVBASIC

Information required to define input and output for CVBASIC

CVBASIC may be run from a procedure or from the Command Processor. The
parameters for proceduralizing are listed in the table below. Conversions may
be run as batch tasks only if they are fully parameterized (see VS Procedure
Language Reference 800-1205PR).

PRNAME Keyword Length Option(s) Default PF keys

(Main menu)

INPUT FILE 8 Blank (2) Convert file
LIBRARY 8 Source 1lib (3) Convert library
VOLUME 6 Source vol (13) Instructions

(16) Exit program

(File)

OUTPUT FILE 8 Output file (13) Instructions
LIBRARY 8 Cutput 1ib (16) Main menu
VOLUME 6 Output vol

(Library)

OUTPUT LIBRARY 8 Output 1ib (13) Instructions
VOLUME 6 Output vol (16) Main menu
NOTIFY 3 YES/NO NO

(Output Listing)

PRINT FILE 8 Work name (16) Main menu
LIBRARY 8 Print 1lib
VOLUME 6 Print vol

(If no conversion errors occurred)

ERROR (1) Main menu

(11) Display results
(15) Print results
(16) Exit CVBASIC

301

PRNAME Keyword Length Option(s) Default PF keys

(If conversion errors occurred)

ERROR (1) Main menu
(11) Display errors
(13) Instructions
(15) Print errors
(16) Exit CVBASIC

(Edit the file and renumber it)

RENUMBER (1) Skip this file
(5) Renumber file
(13) Instructions
(16) Main menu

If CVBASIC is run interactively from a workstation, the name of the file
undergoing conversion processing is displayed along with file size
information. TIf the NOTIFY option is selected or just a single file is being
converted, the user is notified, when the conversion is complete, of any
errors that occurred. If the error can be corrected by renumbering the file,
the user has the option of calling FDITOR to renumber, and then the conversion
is automatically reattempted. If errors occur during processing, the error
screen is displayed for the user to display or print the listing, return to
the CVBASIC Main Menu, or exit from the program.

PROGRAM EXAMPLE

The following is a compilable program under Release 2.3 of VS BASIC that
must be converted before running under Release 3.2 of VS BASIC:

100 SELECT D,P9

200 INPUTX

300 Y=SIN(X)

400 CONVERT Y TO Z$, (##.##)
500 PRINTZ$

600 GOT0200

When this program is used as the input program file for CVBASIC, the
resulting file will be:

100 SELECT DEGREES, PAUSE 9

200 INPUT X

300 Y=SIN(X)

400 CONVERT Y TO Z$, PIC (##.#4#)
500 PRINT Z$§

600 GO TO 200

Note that spaces have been provided, the abbreviated names have been
expanded to their more self-documenting form, and the PIC clause has been
added. These changes make long variable names possible and generally increase
the clarity, readability and self-documenting nature of VS BASIC.

302

™

INDEX

€-\ ABS (Absolute Value) FUnCtion .eeececseceessescasososssscsccsssessassensass 119
ACCEPT Statementecoeceveese Getecscsecccessssasessans sesesns 85,86,88,90,120
ALT ClauSe€ ceeeecessccsasssas s eessrerseseestsessssesesesccstesasase s 90

AT ClaUSE@ ceeessesscecccassecansesscsccssscscacassanas cesscssscscsssascasses 86

CH ClaUSE seeescssccscsccscsacsssssasaanes - Y £
DATA Entry cceeeeececececacces ceeecsescssesenanene . eeees 88
DATA Validation .eeeeseececcecsescesscesosssssssssccssssssssscsossccsasscsssas 38
FAC ClAUSE seveveccoccccccccccooosoosssossssssossssssssssossscsccsssscsacsence 8T

5 = e - S e ee.. 86
Key ClausSe sececesse e = 1]

NO ALT ClAUSE€ tecescsccccscsscsasssscssscssccccsccs csesescserssscesescscascns 90

ON Key Clause seceeeoese P [0}

PF KEYS cecececcncasass cestecscisesssscccnssasnanen P 1
PIC ClaUSE c.eceescscececnn Ceeeteseseessacoo st os oo ecetostcesr st ccenoe . 87
Positioning Data ...eeeececsccoscccsans cececnsan cecesssans cecens tecesssss 86
Range ClauSe scveecsssscccasssasnanns teseseesecens sttt ssscasottssennanns 88
Screen Formatting S cecesecsssaseseccesssssesassesetsesrsassnonnns ees 86
ADDIC] ... cessss e esecsssessesescesersonsessesenns ceessssecssccsansssnes 126
Addition ..eeeeenee ceseacascas s ecssescsscacssaassaseensenns cececs cecsnonas . 32
Priority of .¢e.c.e e esersessesscsseasessesessecsessssesan e ceceseesces 32
ADDR-type Subroutines .ceeeeeessecccesosscsacsccsscssssssassssanceseaes 068,71,72
ALL tevieeneenconscnanss ceccccecssscsssssssesss teecseseensecssasanses eeessesss 128
Alpha Array Strings .c.ceeeeees cessee ciecesecssssans cecetessasssscscsancasas UT
Alpha EXpressions .eeesssessccsescssssessscsssssces cesesesesscscsssans eeeseees UB
Alpha RECEAVEIrS teceveesrsescnscsansescssccssscsssosssscsosssssssssasscsscscsoscsacss 48
S Alphanumericcceceee ceeeesescsrsessessssesesesesnaens csesense ceeesess 23,U5
g@m 3 o - 2 cesercssresssercaans cecescssscsanss 2U
Constants (see Literal Strings) ceceeeesececscccscsecocccncocans i
Datd ceeeeececcecccosesccoscssseananns teesecescsssenancas ecsssccccocssnnas . 23
EXPreSSiONS 4eeeeecescerecsocscsosossoossooccncosssossossosssssocsansas eees U8
Functions .eeeeecececccccscccns cescettsrecsananan cecesecnans cecssseanans . U9
Literal Strings .cceecececccccccsces s eeteseseseccrseserssstrsessssssscnas 23
Operations .ceeceeeececss cesesssesesscranas 1)
Operators (see also Alphanumeric Data, Logical Operators with) 45
SCAlAr ceeeecsssssttccsaccacnconns tceeseracsesccans ceeessssetsanaanans ceses 2N
TERMS (cccececosceccnscssssccacccas cecccssccsnocne cvessccenesssessssee eeess BT
VariablesS .ceceesccccscsscs ceessescsseseas cesnss cesessesesasasns ceesscass 2U
Alphanumeric Data Formats ..ieeeeseereceecccccecscccsooscosscsconnanes cecesss 56
Alphanumeric Length cseeserecsssscnsann ceeessressaananns ceesessses 56
Defined Length Ceectcectsesesonesecsrseresssssse s s eseenans Y
AND Logical Operator cesesescsesescsannans ceesesesssssssascessscscss 129
ARCOOS (Arc Cosine) Function ..eeeecececces tevesscessesssesssrcans ceeseaenn 130
ARCSIN (Arc Sine) Function ...eeececesesccceccccneen seeesssssecsencssasesnss 131
ARCTAN (Arc Tangent) Function cessesnane ceecsecensescsesnanas cresese 132
Argument in User-defined Functions ...eceeeeeeens cesscsssesanas cecsecssenas . 40
Arithmetic seeeeececccecens cesecccssessnenea ceecscacas ceesenns cesescssesnes 114
APPAYS ceeeecocccccssncoscscs ceessescssseresencne ceesecescnes ceescsenscsaces 18
Alphanumeric ...c.c.. ceesenene e vececeseccnncs ceeccrccsenvanecene ceevecnne 24
Array Strings cecrevecessennne ctseecenssanane ceetrtescssenenan erecsees 56
Comparison between One- and Two-dimensionaleececeoseceocnscas .. 27,28,29
Default Dimensions ...ceeececcccss esesesscesanne teeresessanene sevesvessen 30
(ﬂ" Defining .eceeeece. Cesiteeereenenanan Cetrtececaenenennn ceeeterenenen 18,24,26
\ Dimensioning ecceeeeecececes cececcccsns tecteascsssenscscsesanncs cesess 29,115
Elements Of .eeeecevecceccccences cecsanaes cecesses ceesersrassesrens e 21,26

EXPresSSions IN ceecececscescssccassescasssasssscsassosssessnacnscsscnsoses 20
Input Values for, Through INPUT Statement ..ceeeeeccesecsssesscsscsccccsse 26
Length of Elements ceeeeecersccccccccccsesssscsssoscccsssscssssssccssacscsss 29
NAaMiNg eceeeesocscrscosonsessssosssssosscsassasssssassssosscssscsscsscnscss 20
NUMEPrIiC e oecoeooacossocssscsssssssosssssossssssssscsssossscosssscssssecsss Ul
ONe-dimensSional ceeecessvscsesssesscscsscsoscssscscsscsssscsscssscsscscscscsses 21
SUDSCPIPLS ceeeceeroccesscsccscssssssssssssscesssscssscsosssssssscsssanssse 28
TWO-dimenSioNal ceeececcesescssssssssssocscssssssssccsssscsccasssscsssssee 2T
Array Assignment Statement ..eeceececescesccosscessssscsossscssssccssssosssees 11U
Operations With ceeeecevesecoccosssasosscsccsasesssensssosssssocssanssses 11U
Redimensioning Arrays wWith «.cceecescccossecessecscsssssscsccscsnsss 114,115
Array VariableS .ceecececececesccccccsssosccscccsccsosccasosososcsscsscsasascees 20
Assignment Statementecececececrsecocscscscscscscssrssscssencscsses 114,188
ATN (arc tangent) Function .eeeeececcescccssscsscssscecsssscscssssscsscssesss 113

BASIC Character Set cececececcccccscocscsscssocssscssscsssscssssensscsascesss 289
BASIC COMPIiler useesececesscccceasseosscsosssosesassenososossscssassssssscsncssssss O
LOBD e evececoncoososcocesosssssossoscsossoocosascsssscsssssssoscssosssssssses 8
OPLIONS eeveeeecesssarsvossossossososssscssssnoossssocssessssssoossosssssssse O
SOURCE cecvceccccses PP -

SYMB © 06 006 0000000006800 0000000000600000060600000000060000000000060600000000000000 8

BASIC Statements ceecesecesescccccccs o b I
BIN FUNCLION teeveececeeceoccocasccoossasssscococccsccccccccosccscssssasssses 134
BlanKsS seeeeceessccsoosceosaoossassssssccccccoosssssscsssssssossssssssssccssse LU

In ITmage Statement ..cccevecerceceoscscesscsssccscsosnscsscsssosnsescscsccses 179
BOOLh Logical Operator ..cececesceccecscoscsssssscscscscsssssscscscssosscsscses 135
BranChing ..ceeeeeeeeesescesassecessasssssossssasscscssssosscsssscsscsssscscssse Ol

PPOgPam esc0e0 s © 0 0000000000 0I 0000000000000 00 00000 EP00000000COCSESICESIEITCY 61

SUbPOUtine © 9 000000000000 000000000000 0000000000000000CVPCIOCIOCIOCEIOIDNEGEOINEOGEOIOIEOIEOIEOEOIOIOITOITETS 62

CALL Statement «..ceeeeveceeossccocecsosassscsssscssosssssccossssssscccccsssse 137
Character Set, BASIC cecevececcccccscacsssssssesssessssassesssssacscsssscscs 289
ASCTI Collating Sequence Of .ceeesescccncoosssassssssssssscccsscsssessess 291
Character String c.eeeececeescscsscsscsssecsscssssosscscsssssssscsssesssssssscscs 25
CLOSE Statement ceeeeeceececosececsccccossoosscssccosscsssccosssosssscscsrosssssee 1UQ
Closing Files (see CLOSE statement) .cceeeececeecceescessssnoasscssscccssaess 1U0
COM Statement ..ceeevececcsccocsoscccoosossssssosssssssccssscscssccssscncssasseee 1U1
COMMA veeeecevoooccccoosccooscoscossscssssssceasssssssssssssssssssscsssesnssccee 162
As an Insertion Character in FMT Statement ...ceceeveececccccccccccccces 162
Use in INPUT Statement ...ceeeeecccescsecccsccsccccssscssssosssseossscassss 182
Use in PRINT Statement ...ccveeeceecessscscscscsescscesccasosssscscncssccss 237
COMMENT +oveceoseeccccstsasesesssscsssosssssossonesscssossscsossosssscsassassncanssse 10
IN PrOGram seeceessacscccsssoscssssosscnsscoscsscsssosccnssssoscsssscsssses 16,17
Tn REM Statementeceecececccccccsorsssassccsscssasssssssscsssssaase 16
In ¥ Statement cceeeeesvecsosccosscossocssssssssnsessscscosssssssscassscss 10
COMPIlEr ceeieerosseccecescacsccosossssasesscsososssssssssasssossscscccsscccsccscne D
BASIiC stecerescrcascssescsosccsaoscocsacesssscscscncas 5
EAitOr cececesscesceasssoscscssscasassnesossanscsscssossscsoscsssssosssesasscssose D
COMPTILER OPTTONS vtteetcocconoocsotssccsasscoscsosoesssssesnsossassasaascssasse 282
Computed GOSUB Statement ..ceveesccesssscerssscssssscsscssssscacsassssscsses 169
Concatenation (&) ceeeeeeecesceesssccsossccsssssssssscnssssssaasssssasccccass 46
ConsecutivVe FileS cececececoscecerosssscescssssssssssssssssssssssssssssssssss U
CONSEANES ceveeecvecrsoosonceoroassosssssssocssssscscssssesssssssssssssssscens 18

Definition Of © 0 € 00 000000000000 00000000000006000600000000c000000000GOCGDS 18

304

Control Specification, in FMT Statement
(See also FOS, SKIP, @nd X) eceeeecccccacscecccessssaoncans cestecerensanens 161
Control Statements ..ccceeeeeccccccascccacannes T) |
BranChing ceceecsececeecscscssessoscacsosassoscesasssassssnscassasscsssssnsncsse Ol
Conditional ceeiecerecococsosorsescscscccscscscscossscscscsssssssscascssece D2
EXit Conditions .eeeceeeceesscocscscecocesscascsccsccconcans cecsesvenea P ¥4
Halting EXecution ..eiveeeecessecescccooosccsososccsccocsace cesecsanans eeses 61
LOOPING ceeeeescosscoccocssnscasscccossassesssccsacascns ceescana ceccsasans 62
SUBroutine .eceeecescesssssesssscsssccsssscssscssccssasscsscncssnscsscses D2
Unconditional .ceeeeeseereccssesccasscassossscsssassssssccssscscscsssssssscs DL
Control variable, in FOR Statement (see Index variable) ..eeeeeceseveeceeee 164
CONVERT Statement ...cceceeceescenscrsostsesossssscsssossssnccscsconsssssnsssse 1U2
COPY Statement ..iceceecteceeoscseosasascccssscsasscssssssssssscsssssssssess 14l
COS (Cosine) Function ceeecececesscceccscosscncsscsssccnasscsscssscsssccscsee 1U5
Current Length ceceeceeceseccccsescecesscscssssscscsssscsscsssosscsscsscsscsscses 25
Current Valu€ .eceecececsccscsvsessescsscsscsssssssssnssancscs essssscssnseses 25

CUPSOP eo e ecc e ee 00 € 0 0 900 000000 L000 L0000 0PINILOISIOINOEOESTOCEOIOETOTDN e 000000000000 2

Data (see Alphanumeric and NUMEriC) .ceeeececoeessvessscccssccssssasesccsccces 18
AlphanumeriC ..ceeceeceesoseasessescssosssssassascsssseasssssscncssssscses 23
In FMT Statement «.ccvececeecesececocessccscsccsscoscssossccsssncecasesse 161
In Image Statement ..cceeceeeroeecssecsssscscscssscssssscsscsssssanssa ee. 179
In INPUT Statement ...c.ceeeeereecccccces cevsessesecsaanaacns eecsessneesss 182
In Scaler Assignment Statement (LET) c.iceeereeteccceccccccccscssccsccnnns 188
Literals (Alphanumeric Constants) ..cceeccevecscesescccncns cecesscccsasses 23
NUmeric ceeececceccss teesccessesssscasssssssssessenssenssone B K |
Data Management System (DMS) .eeeeeceeorocacocccnscccssccanssccssscscasoncsos y
DATA Statement «...uieeeeeeeeccoasescccssorsesssscssosccsssoscssssssssnssease 1UD
Relationship to READ Statementceieviveceecesrscccrsoccsacscsssacanseee 1UB
Relationship to RESTORE Statement ceeneae P 0 11
DATE Function ...ceceeccecscasns eesessecs s essessesssserescsceeans ceavnenes 147
Decimal Point (.) ceeecocecceaecns Ceeessecasssesssscsnesansreesessesrcsaonns
In PRINT Statementcceeeeeeccccceoococonosoassososoncons ceeesesecsecs 238
Insertion Character in FMT Statementcec.... ceesssanessccssseccssss 162
DEF FN Statement .ceeeerieeeerereceececssossvscccssasossoseosscsesossscssssees 1U8
DEF FN' Statement ceecesssssessesesssasserscscsscsssscsscssecsscse 150
DEF Function Definition ..ieeeeeseeccecescecosscccsocosossosososossossonsssens 1U8
DEfININg cooeerevseososesecsootsssssnssansssssossssescsccaansasaascssossossonoscscss
COM Statement ...iceeeeeeeeieceeesocescesssassecsssscsancsacssasceess 69,141
DIM Statementccceee.. ceeecstescssscecsssscscsssssssassssscscscss 29,155
DELETE Statementccececee.e.. cscesesessscacecscssesssscsanane cesececsesess 154
Restriction with consecutive FileS .eieeevescecsvscccecceccossoscoseesees 164
Delimiters (see PRINT, INPUT) cveeoveccccccssccococacccocssoncccncecasssses 228
DIM FUNCLION teveereeeesosoescosoosccosacnoncscosossoessnes cresseccceses 38,156
DIM Statement .ececececeecccsesceoscsoscssoscsosconossoonscsascesss ceesssseses 155
Defining Alphanumeric Data With ..icceeerecrevecscoscesccosccccsosssonocssss 155
Defining Arrays With .eieeeecececeeessecccccossososssssosscscsosssssnsseee 155
DISPLAY Statement ..civciceceeeeeciteasevssssccssessescssssoscsnsanasaass 91,157
DPACK Instruction .cecececececees Gecvecsersessensesasasssscnne esesscsssssses 221

EDITOR ooooooo @0 s 00 ce00 00000000 e v s 0000000 cssesvr e LI BRI IR SR A AN) ®se s eeso0e0000 o0 6

EJECT Compiler Directive .c..ceeeeresccsssasevecossessacscssscancaacanes 17,158
ELSE Keyword in IF Statement tesescsesesssracsssesssesacsvescssssesecss 177

305

END StatemMent eoveeeeeececececeeecaccsosssosassssscsssssssscsccesscsssscsccses 159
ERROR MESSAGES cvceeecocccccccs teesessesvesssessccssscercsssassssscsssccsecs 293
EXP (Natural Exponential) FUNCLion «eeeececesssscccsccosscsccassccsaseeesss 160
Expression, definition Of .ccevcecerescecestcsssscccccscsccacccsccscsscoanss 19
EVAlUALIiON OFf 4eeeoeocascscocosossesooscacsasassssscsascsossssssosnssssses 3l
Relational Operators iN .eeceeecssccssecescsecssaoccscsscnsssoasesasssssscses 3l
EXEEITIAL s eeeoosooecoosossssosssasenescssesssssssssssssassssscssvsscassscssee DT
ArgUmENt TYDPES eeeessoccsccesosssossosssssssscssssssssccossssnsscssscsans T4
ArgUMENES ceeserevsessosascccsosossossesccsorsnssssosccsccocvestcossnacnccnscs 70
COMMON VAriableS eeeeesececesscccsssossosssossassosasssssacosoncosassscnosses [2
COMPILANG vevveeeeeceaaascccossassssssscassescsasssssssssssscsssssscsssss 09
FOPM oecececccacaccncocooannannssnns P 1
TNitialiZation .veeeeececceeesccossscosssscsssoscasossssscsscconsssscsnnnncs [3
LINKINE eeeeeesosconosssanoassscsosssccsssostscsssossasssssceesssssscccnnssse 69
OPEration Of seeeeeeceeeecaseccoscsacsessssssssscasssssnssscssssassasscecs OT
PasSSIiNg VAlUES eeeeecssecencsssnscssscssssosscssssssssncsccasssssesancsse 09
RUNNINE +eveeeeerosooenccossassssssssssssssssasssosasssscscsssssssscscssns 09

USe Of ® 00 0 00000 0 0G0 00 0E 00 CE00E0000 0000000003000 0000P0000000000C0NOOINOSITSIIO 77

FAC (Field Attribute Character) ...eccecececceccecsssosssessssssssssssasssssess Ol
Field For‘mat M EEEEEEEERENENNENN N NI I B R B I R NI R IR R R I IR B B B ® 0 0 00 0000 00 0o 229
Field Types ® 0 9 8 0 0 0 0 00 0 O 0O O T OO OO OO O OO OO P OO SOO O SO NS OeDN TSN ® 0 © 60 00 009 00 0000 OO 230

File HierarChy cceeeeceececsccsosscacerccsssssssoscsccnens ceeeeecccssssssencsss U
File ® 0 0 0 0 0 0 00 0 0 O P O L OGP OO OO O OO OO OO OO NSO OSSOSO POSDS 9 © 0 60 09 900 0 000 00 e ® 0 06 90 0 0 0 0 l'
Volume ® ® 0 9 0 9 O O 9 0O O 0O OGP GO OO SO e 0o ® ® 0 9 00 0 9 0 O 00" 0O ° OO PO OSSO ® 0 & 00 00 00 00 0o)"

File I/0 Buffering and Record Area ...seeeesecssesessesssscsoccsscssassesses 101
File I/0 MOUES vuveeeessocsscsssossassssssssssssossscssssscssasscssssnssssoes 101
File Input/Output Statement ...ccevecccccrecertciocscracrsoresscccnccnns eeses 103
Data Representation ..eseecescsssscscccscscscscoscscsonscssescnsscscscssss 103
EPPOPS coccesocssecsssssssssssccce e Ko
EXAMPLES cevesoesecssscsosososasososssnsssassosssnososssccssossassscscs .. 109
GET File@ teveoeeeceneoocnssenssossosasasassscsasosnsssossssosscsossenssss 103
PUT File€ .cveceesscennscosscsccccacns crececsasessessenns ceecenesssensanss 10U
READ Fil€ cecceeveccoocessrsvsassassencssscsssssseasscncsscssosn cecsessssessees 103
REWRITE Fil@ vvecevconoonesoccacesscsasescesossssssassssesnssssscsnsacess 104
WRITE File veveoececesncsoecsesoeaascsssenssasesensasssssncssssssosaceses 10U
File TYPES cevsesercososssascessccsosssssssscsoscsssssssscscsscssssescssccss I3
Filename, Definition Of tececeecscossessssavsvcnscsoccscssscsassansssccsssnse D
FILESOEQ Instruction ...eccvcecccees ceccececssccsccscsnrascssssecsssacscessss 221
FileS coeececesoccoocooeasscesesssossansosssasssossssssssecscssanscscsssessacss 93
FLOATING POINT AND INTEGER CALCULATION ¢cecevcocsoscscscscaccssscssccacccss 286
Floating Point Calculation eeeeecsesececessssssssssssessocscanacacssssss 22,286
Floating-point Constant (E-format), definition of ...cieveceeieencsecceesees 19
F10ating-point DAta «eceevecsssscsssassoscssssssssossscscsossasansssssscssces Ul
FMT SEALEMENt «oveseoccecacseseanssecscsccssascsssssasssssscssssassnsssss 83,161
USE OF weeveescocacnssnsssasssssesseanssssssssssssssasssasaasscscsase 82,161
Used with FileS cecescccscecncsss e ecesvecessctcessasssesssassesosenenoes 161
Used with PRINTUSING cccecccecccsccesscoscssccsscosscssccsossssccccans eeesesses 161
FOR Statement ...ceeecececeersososossscsssasssscosssoscsccssossssasssasassscsssoss 164
FORM Statement Ceeccceccccccserrsatssesscsncacsevsoe e cecsesssessss 165
Format Control Specifications in FMT Statement
(See also X, POS, SKIP) ceececcccosoecccssssaonsssasssscnsssnccans ceeesess 82
FS FUNCEION o veevosovensccossesessssesassossssssssssssssssssssssssssess 106,166

306

FunCtionS ..D.....O;..O...'..O'O..Q'.....0...0.00.0'0'00..0..t.t...........

ABS © 00 0000 000000000000 E000000000000000 0000000000000 0060000000O0OCCCOCESIIECIDET

ALL 9 5 0 00 00 P00V EPOEOCOOPIPIVOOPOPOCEP 000000000 00R0LOCOELISIEOLOIEOINOEOOEDROETCTOIEOETPTIOIETOIODS

ARCCOS © 0 00 0000000000 000000000 0000000 P OCOPI0ESOPOO00CO0OP000ORPOORPOISERPOEOGEOLIOETOLOE

ARCSIN © 00 0000000 0000000005000 0060000600006060000000600060060000060000606060606000000

ARCTAN © 00 0 0000 000000000000 00000000006060000060000000000600606060600600000e0 ee oo

ATN © 00 00060000000 0000000000060006060000060000600600600000000000000000000000vrs00o0

BIN © 992000000000 000000000800 0000000 00006000000000000060000000000060000600c000so0s

COS © 000 00000000000 00000000600000060000000000600000000000060606060000006000600000

DATE © 0000 0000000000000 0000000000000000000s00 oo 000000 @00 000000000000

DIM ® 0 0 00 20 0000000000 0000 000 0C00000 0000000080000 000000000000INCOOLCGOOE

EXP © 6 0 000 00000000000 00000 000000000500 0000000000 00000 0C600OCCEOCIOCI0C0CIO0CIO0CCOCIOCIOCEECIOIEOIETOSIE

119
128
130
131
132
133
134
145
7
156
160

FS ® 00 000000000 DL 000 IP0OPOOIPIPLOPPE0 00 O0PPODPOODPOO00O00P0L0SOCOEOIOEOSIOGEOES 106,166

HEX ® 00 00 060000000000 0000000000000 PENEILPIOEOCI00P0P 00000000 OCEOCEIOCEOIEOOEOIEOIEOSITOIOE

INT © 0 000000000 0000000006000 0000000000006060600000000000600000600600Cs000O0COIOIOIOGIEIEES

KEY © 00 000 0000000000000 0000000000000 00008000000090000000000000O0CO0COCCELIEGEOEE

LEN ® 00 0000000000000 000000C0000000000000000000000005000000000CCELLCIOLIOIOGIEOIEEOSOEEOIOIEOSE

LGT © € 000 000000 000000000000 0000000000000 EOP0I0000000PPE0PGEGIOCEOIEEOTOIEOEOPEOIOIEOEOETOE

LOG ® 00 00 000 00TV 0L LE OO ON0OE00000D0000000000000000000000000600000c00000Ee

MASK © 08 0000000000000 C0 000 00CP0 0000000000000 006000000006060006006000C6O0C6OCOCIOCICIEOIEOSIES

MATHEMATICAL ® 00 000000000 PLOICL DO O00O0 0000 0E0E000C00CPOLOSILISINOSIROOIERRECEEOEOIOEO
MAX (Maximum Value) ® 00 0000 POP L0000 00000000 SELNSEOPRPOOOEOLOOCOLNOEOOLOEEOEEOETOES
MIN (Minimum Value) © 0000000000 00000P 0P 0CCOLLOIEOCEPONELPOEOEIEPNOEOSIOEOIEEOEOIOEOEOTIEEOEOPEOEEOIEEOEEOEEOEEOTEOEOVCE

MOD ® 0 0000 00000000 0L0 0000000 000000000 PINNEP0000000000CCOCICIOCELEOETTE eeevecsccecoe

NUM ® 6 0000000000 000000000006000600006000060006000006000c006ce6co00co0se ®o 0000000000000
OtheP Numerical 9 0 000000000000 0000000000000 006000000000060000060c00006OCROGLEIEGES

PI ® 090 000000000000 0000000000 C000000 0000000000000 000000000060000CCCOCEOIEEOSIEOIEOIETE

POS © 00 0000000000000 P00 0000000000000 0000000000060600600°000000900C0O0PICECIIECEIECEEOITEONON

RND ® 9 00 00 000G 0L LL0LC000000000000000000000000000c000CCCOIECEEE ®e 00 erceovrecoe

ROUND 0000000000000 000000000

SGN @000 s 0000000 ® 0 0000000000000 LLLL00000PPLPO000OC LN OCOOCEONSEOEOOEOEOIEOEBGOETEOETS

SIN oooooo ® 000000000000 0500000000000 0000000600060000060600000600CO0CIO0CO0CIO0CI0CC0IOCIOIEOGIETEIESES

SIZE © 0 00 000000000000 06000000000000000000060000000000C6OCIGCLIOCEOINOIEOGIEOILOIEEOIEOEITON e es 000000

SQR ceesessecccccncconanans

STR ® 0 0000000000920 00000000000 0000000000000 000e000000OC0OCDOCOCLIOIOIDLIOCEOIOAEEONEOIEEOIEEOCTEOIOITES
TAN ® 606 0000000000000 00000000 OD0L0EEN00C000000000 00PN SNCEERPROEOEDNOOEOOIOIOESEES

TIME €9 000000000 0RPLOLEICENIOLIOIOCLEOIPOIOIEPROEOEEOCOEOOEOEEOEOETOTS

Trigonometric ..ieecevecncccencons

0000000000 c000 0P POOOOIOLOEOIIOEOESEOEOIEOOE

VAL © 9 0 00000 0000000800000 0°PEPOLLOL0O0C0E000E0000000600600CCIEEOEESSOSIEOPESEOEOIGEETOIOOIEOEEOEOES

171
185
186
187
190
191
192
212
211
215
216
218
213
235
236
251
253
260
261
262
264
266
270
271
212
276

GET Statement ...eveeececcececssccscesoscscntoncscnnsoss e Y 4
GO SUB Statement ...ceveeeceeceeeeecessscescssessessesscossccsccnscocnses OU,168
GO SUB' Statementccvcivreececcecceccecsencssessesssnssosscssncnnnsces 65,169
GO TO Statement .eceeeceeresesssssasecesccccascanvooocoosoossosacecaocosssss

HEXADECIMAL/DECIMAL CONVERSION ERRORS +evececccosescccassccens ceesrerreencne
Hexadecimal function (HEX) ceveececeocscoooccoceocasanoaseccosnsessssansses
HEXPACK Statement ...eeeeeeeereeoscooscocccosconccccassososssosacsscassasesss
HEXPRINT Statement ..cecccecceccecsceceocooccoosasenoscsacanaasn ceeesesscacns
HEXUNPACK Statement ...c.ceeecceeceecescoscectsccsocsescccsosnossssossosesansas

307

170

285
171
172
175
176

IF Statement ..eeeeecececceeacacecasossoncsascsssasscsssscsonssssscssccsnsenss 177
Tmage (%) Statement c..eeeeceesesccccscoscscscssssssssossssansssssessass 83,179
USE Of ceeeeescasascacscccossssossscssssssosssssssssccossscnsssssnces 85,179
IndeXed FileS cveeeececeeeanccscasosossosssscccsossssssssssssssassscscscancesscses 94
Alternate KeYS .eeeeeceecsecsosssosssessssassassosssssssaasvasssssscccces 9U
Data BlOCKS coceeesocscoosacsonsscncsasssscsonasssasosasassssssoessssssaecs U
TNdeX BlOCKS cecsssccecscecsssossssssscasvsecoscosssssnosesssssssscsasacnes .. 94
MASK eoeecoossooscocscascscssesscssonsassssnsensssessscssssscssscossccssce 9U
Primary KEY «eeeececesccscosscsscososossssssscsansseasssssessssaccssscsscssess U
INIT Statement ceeeececececcescescecscoscscsassoscssssnsosssosssesscssscssess 181
INPUT Statement «.ceeeecececcececocncassoccssssasssasscanssssaascasssase 19,182
Compared to Workstation I/0 Statements ..ecececeeccescesccccceeeesess 80,182
Input/output Statements .eeeeeecsceresessecsssssssscscsecsessssscncess 78,79,114
BCCEPT teveeesovesococescosssoooesososssssaossssasassascssscsosssossssesssccocse (9
DISPLAY eeeeecoooeacoeceosososscscsccsoasnssscascsssssosssnssecscssccncsse 8
INPUT ceveovoeooooasosssassasseccssassssssssesosccscscscssoscssccsscsscssosss (9
PRINT ¢ eeveeccoccccaseceoacessscsoooscssossssscssosssssessassscsssassnsccse 8
INT (Integer) FUNCLion ceeeeecececsceccssosescssssssscsssacssnscsassssnsass 185
Integer Calculation ceeecesesesssssscsscensessssssssccssscssnsscsssssscssssssns 22
Integer Constants cieeeeeeccecscesccsscesssssosssosssossssssssccsssccsssacsss 21
Integer data .eceeececccecocescsssosccsscsssssoosessesasososscosssccssscecnsccses U2
Intrinsic fUNCLiONS ceeeeececeacsscsscsscsasssccscsssscscsssssscsssssesssses 105
FS teeeeeececososonccosssnsssossocsossossssssssseacsssssssasssscosssenssss 106
KEY eeeeecosoooososcsssssossssssssssssessassosssasssssassscsssscssscsssss 106
MASK ceeeveccscesoccsoscocsoascsosnncsssssesssssocsssssssosscscsscssscscsccss 107

SIZE 000 0000000000000 0000000000000 00000000600000000000600006000CCRIIOIOIECEEOITDOIOS 107

IPACK Instructioncoooooooooooooooooo.oooooo'oooco-ooonoooooo-o.oooooo.ooooo 221
KEY FUNCtion © 000 000000 0000000000000 06006000006000000000000000000000 00000000000 186

LEN (Length of Character String) FUNCtioncceeeeececsevecsssssscess 50,187
LET Statement +ececeseosecsecenecseosocasesasecsssssssssssssssesnsscsscesess 188
LGT (Logarithm to Base 10) FUNCEiON..eeeesscesecocososcccssosssscsccssaeses 190
LADPAPY o eeeeeeeooenneroeassscsssssesasssassessassssssssnscsccscssnccsasansase b
LINE FORMAT teeveccecocsssacoccooossosascccosossssascsassssasssssasssscsssssssss 13
LINKER Utility ceececccee P ¢
Literal, definition Of ceeeeesescscscsccososcoscnssssssasessssoscsanssscsscssse 18
LOG (Logarithm to Base e€) FUNCtion ..eseeeeeccececcccccssccsccscsossasssces L91
LOZ ON +eveececncacaassesesancesossssscsssssesssassasssssssssssasscssescssnssce 3
Logical EXPreSSiONS ceeeeceeescscsssssssscescrscscscssscsssssssscssssssssssssse D3

Evaluation Of ceeeecescecoccessescosscoscsssosssssssoassssososssscnsscescsne DU
Logical OpEratorS ceeseecesssssssssccesssssssssscccsosscssssssscssssssssssse D5

Machine LANgUAZE s eesessecrsssscsssssssssscessossossssconososessssnsosssssccsnes O
MASK FUNCLION .eeeeeccsocccssssessssesnnssoscsssoscsssssssccsssssessssccces 107,192
MAT ASSORT/DSORT ¢ ceececccsoscossscsscasscsscasssscssnssessacsccssccssnssssess 19U
MAT CONeeeeeeoooooosoosscosaocsscssssssssssssasasssasssssacnssoscesscsssecss 196
MAT IDNeeeeoecoacooococosoosocsesoscsssosscssoosscocssossscsssescsssccssssess 198

MAT INPUT.......ooooooooocot.oto.c.ooooooooo..oooooooo.ooocooooo.ooco-oocoo 199

MAT INV.00..0'..OI-..CO.'.......OO....0.000..o.o.o..-..o.o.oo..oo....oo.oo. 201

308

MAT PRINT € 9 000 00000 000000 0EPT 0000000000000 00000000000 CN0P0RCCCIIOIOINIIPOIOIEONOIDOITOLITS 20“
MAT READ S0 000 ee0ce00 000000 0P OOLIITOIPROITOCES ® 0000000 000000000 000000 PSOCOOCGROSIEOIOOIEOPTEOIETOITOTS 205
MAT REDIM © 00 0000 0000 0000000000000 0000P0P 000000000000 00000600000600000600s000000 206

MAT TRN ccecececcccces = 0 1
7 A 0 O P -3 [
MAT = ceeceevccscccocccsorsoncssscanccacanse cecevrsecssccseccssrssrrrsscnssesss 197
MAT 4 cecectcecacncns G ecsesseseesssssseseenessesesstecsetetssostess e ans 193

MAT " 2 00 0 0000000000000 0000000000000 0 0000000000 000C00S0EL0CCLEOESISIOINOINOCIEOINIDOLOLEOILIEOITIOS 208

MAT * oo e 00 © 00 000 000000000000 00000 G000 00000000CINISIIEOIOIEOEOIEOIOIDOIOIETOIDOIO OO eesos o0 203

MAT ()% .euveeesosorocsnesacscossoscsssaassccsnasassocsse cecsrens cesvscescssses 207
MATHEMATICAL FUNCTIONS ccee ceeccscccccccncasossons teceecessescssesssssssssss 212
MAX (Maximum Value) Function .eeeeecesses cenene ceeescsescanans cesesssessees 211
MENUS cevesecsocseccsrsossasaosoacsssosssssossoscssscssssscsscsosesscscsosssssssaccs cecacns . 3

Command ProcCesSOr c.escessccces sesssesssesssesessseesescsssr 0t as s eas 3
MIN (Minimum Value) Function ..ecececsceccsccessesscsssoccans cecssssssessess 215
Mixed Mode Arithmetic cececerveccsoscrsosssscnccances cevesserererersenasasens .
Mixed Mode, definition of .eicececcaceces cecesesrsessccce ceesescssesessesanne 19
MOD Function ecececceccscscscaes ceceseesessssesscassessassocanasenoe cesscees 216

NEXT Statement .eeceeececcesccsescscsssososesscscossossssscscosscssncsccscsscsae ees 217
NODISPLAY TNStruction ceeeccecsecsscccssoscasscessascsoscosesccssossesosssssocs 221
NOGETPARM Instruction ..ccc.cvee ceesescesssssssseseesesnsesonsse cessesesese 221
NUM (Number of Numeric Characters in a Character String)

FUNCLION teveeeveeesecesassssasassosasnasssssssccsssssnacncssss «eees 50,51,218
Number, definition of .eeeeeececececcecscccccncncns cecessccsscscscsarsssssscccss 18
NUMEPriC cececooevevoneassossrssesosscssososcsssescssscssscsssoscsssssssassssosse

EXDPreSSioNnS eeveceossccacsoasssesesscscsscsssoscsosssnscscsssscscscscsese 34

Functions

(5€e FUNCTIONS) teeecevecoansocsscocssccsceasscsceassesss 34,35,36,37,38,39

OpPEratorsS ceeeesessccsssescsssecsscsssosesossocncacsccccssscsssesscsss 31,32,33
NUMEric Data .ceeeeesoosrssecncscnerosssesososcasessessssosossoasossosssscscsnscnse 19
Numeric Funhctions with Alpha Argumentsececececccccccccoccnccas cecessesse 50

LEN coevevescesosecossconsescssasnscessosoosessessesnsosssssssosesnsacsasoase 50
NUM ceeeeecncsnoses teecssseeesssersetsstes et essesacass s asrsasassen eees Bl
POS secevcccsccsscssssssscccne L2
VAL ceecvevovocotsssoavssesnorossssssacssosaasassssssas sececsccsesesssosrsens e 52
NUMEPriC TErMS ceeecereossosscssssessascsssssasossssssesosscsascsnsosossassoscss 43
Numeric VariableS cececececercrcsceccscsescsccsscscsssoscssnssascas sesescsseses 21
Array cecececoces I 21
SCAlAY cecescorscosesrsnososcessccssssossssssscssesssecssossoas eeesssesccscses 21

Object File ..eevccces ceesesrsssassas esesesescseesssesstsessesessesessecsscse D
Object Program ..ceececcecccscsesceccsscsoscacsssse cesseessesscsssssssssessesee Dyll
RUNNING ceeeveovceovesososcscsosososcsvsossosssasscsossnss R b |
ON Statement ..ceeeeeecoccecosceorcscnsans cecsessecsassesssssesssssssescsssesses 219
One-dimensional Array eceececsceccccsscoscasscsscsssssscsasascss tecsenescnsass 27,28
Column VeCLOrS ceeeeeseccssscrsssscsosssssosasscsscscsssssssassssssssscones 28
Compared to Two-dimensional Array ceeessececsesccsccscscscsscscsssssse 27,28
LiStS eeveeeconvesvsesnsosssosesansassssassssesssssssssseassososasnesasssse ceeee 28
Restrictions in Redimensioning «eeeeeecececscocsssssscnssscccsccassass 27,28
Singly-Subscripted ArraysS ceecccesseccerscsecsossssassssssassacassnsssssse 28

VECtOrS cevevenoretcccssosssssscsescsssssnsesossscssssssssssnsscssnsscssasssos eees 28

309

OPEN Statement.ceeececcesccoccocssooscsccsssssssscssssscscscasssscssccssccse 220
Openations With .ceeeeceeosccccccccccccssccsssscccsrcocssscncscscsccccncsncsces
AditioNn veeeeeecevecocccscccscssccocssscsscssssssscsssssssssssscscosses 11U
Identity funCtion eceeeecesecssvsassesssesessssssseassacsssscscnsscocssess 11U
Inverse fUNCLion «eceececscsecescocscsssacscsssassscosssssssssosssessessess 11U
Matrix multiplication ceececescescsceccscscssescsscesossosssossesssoscnss 11U
SOPL ceeeecesccosccsscocssscssssssosssssscssosscsssasssscssssesssscccscccss L1U
SUDLraction ceececcscesscosccososcssssosassaanssessssssssosssssssssccssss 11U
Transpose fUNCLion .ececeecececcccccssssscosscssssscesoscssssscansesenss 11U
OPEratorsS ceeeecccccecsecesssanerscssssssssssscscssscsssscscsscscosascsscscsoscs
ArithmeticC (eeeeceseceeccsosccsccssscessssssssssoososssssacsscssssosncsssssee 32
ASSIigNmMeNt ..eeececessescresccccnsssssssssssscsssascsnsssssscssssocscsssscss 31
Assignment Operator .ecceecececcccsscsascescsssssssrsssccsssscsscscscccss U5
Concatenation operator ..c.eeeecesecsssscsssssssseasesssscssssssasescssnse U
Relational .eceeceesceecscccoscescssoanssssvssssssscsessssssscccscscscsscssseses 33
Relational Operator ...ccececesscsccassoscssssssesssscssssssssccsssanssscss UT
OR LOgical Operator cecceesceescescccsscscsesescsscsosnsesssssssssessscasees 22U
Other Numerical FUnNCtionS ..ceeeececeessosscsssscsscsssossssosscsossssccccscsss 213
OULPUL cveeeeoccenoacessosssossacoasosssoscsscsesasssssssssscccssscsssosnsses T8
DISPLAY Statement ceeeeesoecsccecsccssscsssscssossscsenssssssscsenssssscne T8
PRINT Statement «cececeeessesssscoccssssscsssosssesscssossssssssssasscsasee 18

PACK Statment .e.ccecececesscscsccscacacsascacsccscnscssscssoscscssssoscsnssscsnes 225
PT FUNCLion ccecececesoscescsccsnsssscssssascssscssscsssssssasscsasssssssssssese 235
PIC ceecececcsoscscacsscsccscsssscssosscsccescscsessosssossssossssascsscsssssonssscsns 230
POS FUNCLIiON 4seeeecssenceceoccosccscsssssosscscsssssssassscsssscssssses 50,511,236
PRINT ElementsS ceeeecccsccososscosssoossscossossssssccccsassscscsccsosssscsece 238
Print FileS ceeececccccccccoscscoacssscacccnssssssasncecscssccscccses 35, 1U0, 256
PRINT Statement .c.veeececccesescsccscssscascossccsascasscsscssossscssses 19,237

Compared to Workstation and Printer I/0 Statements eceeeccecseccccccscaes 23
PRINT OUTPUT eececocccscccscsccsssocsossssosccsossassasosascssesssascsscossesossscssccs [J

Expanded Print v.ccecececesecececcccscsscscscscscscsscscsssscscsssssssssss 80

Line FEeA seeevesvecccccccsoscsassassssscsssscasssossssscscscoscssosssssascsses [J
Program Development ...cceeeccccccscccscsccccsscsssssccscsssssscsasssascssssass D
Program FUnction Keys (PF) scecececccscacassecsssssssscsasssccsscscscscsecs 2,66
PUT Statement c.ceeeceeeecoosssenscsscsosessssosssssssascsssscsessssscscecs 241

READ file Statement «c.eeesececscocssccssssosssesssssssnssssssacsccasassaes 2U3
READ Statement ..eeeeeececscseosossccsssosvssssssscsssssccaasssssssssnccases 242
Relationship to DATA Statement ...ceeeeeserscessccesssccssscessssasssaess 242
Relationship to RESTORE Statement
(S€€ RESTORE) tecceoccscscocscoccssssssssssssssssssssosscsssssscnenssaae 242
Receiver, definition Of .ceeecereesessscscosccccccecccscccescscsccscscsnssee 19
Relational OpPeratorS..ccesccsccecscscesscsscscsssssssscsssccssssessssssssesse 45
REM Statement....eeeecececeoosscaosssccossscassssasscscosssascsascsscssssaccce 245
RESERVED WORDS tecceccoccscccooasscscsccosssonssssesssscsnsssssssceccess 13,280
RESTORE Statement ..cececeeccescecenscorsccccensvsscsssssssassassassssoscsacse 2UD
RETURN CLEAR Statement .ececevecceocscocscoossccorsssccesnsasesacssassssscses 2U8
Return COGE .ecececessscssassssssocsssessncsssscssssssosssssssscssossossoscssssssecs 10
RETURN Statement cceeeecececercccossccosssosssscosssssssssssssasosssasssases 2UT
Used With GOSUB ceceeeecceosvocscsososcssssssssssessoscsssssoscscssssssconsses 2UT

310

REWRITE Statement ...ciceeiecereeelecieseoceasoensseccescesceocsonconnenses 2U9

Restriction on USe .icceieeeceeeleceenaesesssssnsescacesocscascoanannenses 2UG
RND (Random Number) Functionolececeeeeeeeecceesesncessosaccoceseees 38,251
ROTATE [C] Statement ..ceeivereeeseloecereecceececencessnsosesscscescncaseens 252
ROUND FUNCEiON sececenseeeccecesoatonssscssssassnssscecsccncescncnsscsesoas 253

SEARCH Statementceeeiueeeceeeceenecnsaessesosssocococosecanensoscsenes 254
SELECT File Statementceveeeccececeooessacosonccacccss ceesesscscsssssee 257
SELECT Statement ...ccceeeeiececeresnncscncanss sseesessrstesesesscssses 180,256
SGN (Signum) FUNCLion .eveevevececececoaaseosscsosssscsssee ceesessscssecsss 260
SIN (Sine) FUuNCLion ceeeeeeeescecoscescoocaceeococsessseasosscocsscnsnsnesns 261
SIZE FUnCtion .ceueecceccesnecesaescsccoccccccccssscssscsssssscansensss 105,262
SKIP File Control Statement ...c.cececeeeeereeeccncnnescesescenceccncsaenes 263
0 o ceecessecassecesssas 11U
ASCENAINE ceeeeereeesesoasoasscsoscooeoecsascscososossosessossssscsssceses 11U
DeSeNndIng ceeeeevcecocscccsssssossccesscscsoscoosccsssosocnsccnasscsscecsses 11H
Sort Statements ..ceeeeieeseerrseescesrsscsccscscoscossssscssssccssscesssess 11U
Source File scceeessscevcosccccsone eseesssessesrescssesestsssssssssssssessese 5
SOUPrCe PrOZram «.cceeceeccscoscesssssosseassssssscsesscesossesnssasessccss cessesssese B
Spaces, in Statementsc..iiiiiiiiiiiiiiiiiiiiiiiiiiiitiiteeepeneas 10,200
SPACK Data Format seeecececocccccsoss ceeesesecccssssescscssssasssscssrescncse 233
SPACK Statement ..ceeceieeecrecececssccsosscensscscccccesosasasnsncnosnanes 227
SQR (Square RoOt) FUNCLIOoNn seveeceeecrcscocececoccocaceseonnsccansscsncenss 264
Statement, definition of .eiveeeeececceccococcocccesass cecesessesssasssseses 12
Statement Labels ceveesseesssssssesescsccscstscccocsccsccsnsoososssssssssses 02
Statements
(see I/0 Statement) ...ceveeeeecccoccocenas cececescssssssnsses 12,15,113-116
Arithmetic ciieeeeeeeceeeeeracsoonneccsoossscscsossscacccccoosnsssssssssse 11U
Array Dimensioning ...ceeeecescsecesssceoscocccososcsoccccccnsssssssceaes 115
Assignment Statementviiiirieeeeeeeeeceoeeocesenesccccoocacenonses 113
CALL ettt eeeseeceoceesssssssscscscoocececnsnanssnesosecsccccscccesss eesse 137
CLOSE ceceeesooecceonnososassensssssoeososoasonosasssnsssssscscsonesssses 1U0

COM © 00 000000000000 0000000000000000000000600600600000O00CI0COCCIOCICIOIOCIOCOGCEOIEOSIOIOECEOEOEOCTOIEOIEESES lul

Continuation © 0000000000000 0000000000 000000000000600000006060060060600060O0O0OCOCLOILEIES 15
CONVERT $ 00 0000000000000 0000000000000000000000000060600606000O0OCIOCGILLGIOGOSIOIOIOSIOGEOSIEOES lu?

COPY tvvvecccceceooacocnonoesoasosasacanosonoosscecssssassscessoesss eese 1UY
Data sveeieteccieeasssncrsccocssccccascnasascscsccscscees S 1 1)
Data CONVErSiON eeueeeeestscceeostseceasaccnnsssosscsossssssoncessscesss 113
DEF teeeceesoceoscceoeosossassacasccasoosoccsosasacasesossssscesss eecesess 148
DEF FN' tceivecsccocsecoscscsnons cesceescsssescss cecscsrscsscsssssscanses 150

Delete cevrienireennnnninieeeeeneneeeeecessesosacsocosconssnennsnsnsssesss 15U
L o 7 eese 157
END teececenceeseeeseoseasenseosoccnseseososseosassenssssasescsecnenacsss 159
FMT ceveenenenennneeecetcesenesoceessesesossescoscoscssnsesanessncssnses 161

FOR 0 0 00000 0000000000000 0000000000000 0°0000000000C0CO0COCIOCITCTCOCIOGCIG0CQOCI0IOCQOCOCEOIOCGO0EOCOGCIROEES lsu

FORM ®e 0000000 s 000000 P0ee0eR0se © 000 00v P00 00 0000000000 PeOOOEROEOOEEES oo 0000 165
GET © 000000075 9000000000000 LT0C00000000000C000000COCCOCOCIEOIISIBOIOIETOEOOPINOOOOEOEEOES LI 167
GOSUB © 9900000000000 00000000000r000000000000000000000000 0 LRCIE B NI B A N A A N) 168

GOSUB' es v e cscocove LRI R N A A A A N S LR AL BB A B R R I B R O A I I I I A R A R A A S ees e 169

GOTO @ 9 0000050000020 0000000000000 000000000C00P2PEIP00C0CEELEEIO0E0CCIOICEOIOCIEOCOIOCIOSOIEOEOSES 12,170

311

HEXPACK cccccccccevsscccocaccssosssosssossscscsccssossoscsscscsensosscsoccssssse 172
HEXPRINT «coceccocscccesosssosssososssssascscsssnsossssnensosssscssscssocsccnosnoe 175
HEXUNPACK cococcacecscecsscccsoscssssssscsscscesssssassescsesssosossscscsosososce 176
TF veeeeeecesocnssessssscsscsssinsassnssssssosssssssssssscssesacsnsas 12,177
TF THEN ccvececcecceosososcsscsscsessosessoscsssccsssssscscsssossccscscnosocse 12,177
TF eoo THEN oee ELSE 4teveescecsoccscsccscascscososcscsosossessoccscsscossssccsacse 177
TMAZE () cocecscsccesocssseascanssssssassssssssesessscssssssesccsasoscnse 179
INIT cececccocsescesncsnscscscsesesssssassosessssescescsscsoscsnsosoosscsacocncns 181
INPUT o eececsoccocssscsocossssssssssssssssssasscssssssosssssosscossscsssncs 182
Input/Cutput Statements ..ecececececscscsssescsosccsocrsccscscssoscscscs 114
LET cceeccecsocssosacssssososcscscsnssscsoscsssssssssoscsccssssssccsscscsesessscssosssns 188
LET X=2 tccecccosccscssccscscscscscsosssssosssssssscsassecsscsscscsnssocssssoccscsnscse 12
MAT ASORT/DSORT ccccceccoscscscosscsosscssssssssssesscsssscssscsscscscsossccsccss 194
MAT CON cecceccccssccsssocsesssoscscsssonsssscssasscssssssossscscsossoscsscocsscce 196

MAT IDN € 00 0000060000 06000600606000006000000006006060000060000000060000000000000000 198

MAT INPUT cececcecccorscccsssssccas tecesesssecsscssccscsssersssssssnecsss 199
MAT TNV ¢ vveeeesocoaseososascncasescscsscsssssssosansssssosccssssssosssess 201
MAT PRINT ceecccoccoscocssocscsoossccasasossesscsesscosssccssnssscscosasssscsossoscscos 204
MAT READ o evoecocoocescosasseseasesecesscscssssssasssssssscnacsscossnsasss 205
MAT REDIM ccceccocoscsssccsosssrssanssocnsanssonssssassesnsssscscsosossscssscce 206
MAT TRN ¢ evevoeosesocosensnscassassescsssassssscsssssssssesscssassansoss 209
MAT ZER ¢ ececcecsesconocsecosscasascssssssssssssasenssassvsccsssassesscss 210
MAT = o ceeseococesecossesssaneocassssssssssessassassassasasosssscsccsassnscse 197
MAT 4 ooecoccocooescosasasesossssesssssscscsssssosssssssssssanssssessess 193
MAT = ¢ ecoovscccsooscscsosacsssssssosossssssssscsesccssssssscssccssccscossssscss 208
MAT % v veveeeeocccnsaossessossacaccsscssessessssossscsssscssssscnsccssss 203

MAT ()* 0 00 0006006000060 0000600006008 000000000000060060600600000°00000000s000000000s00 207

MATRIX Statements eveeececoeccceccecovosssssssssanssssessssesassssssensee 113
Multiple lineS cececeecsecccesscoscesesassssscsnssososcssccsocscssscccncosss 15
NEXT ¢vecceosoossenssseccassscsasssassssasssesssssssasensssscscsccssssse 21T
ON teveeeeceoecocososossosnssassssessosssssscsccssscsacssasssssssesscsess 219
OPEN ceeesoovooncsososescsecsesccccesossssscennossoscsssonssanscscccccsssscscns 220
PACK seceecocecoscosssesossssneoassssesssoasasosssssssssssssncscsscsscccces 22D
PRINT ecceccocoonococsoccsscsscccssosassccscoscscsoscscsaccsccssssssssscse 237
PUT cececes -2 B §
READ cceccecceccccoscassnsscssssasancsssocossssscsscscsccsoccscosccsocsccscscoccoscsse 242
READ Fil@ toeeceecocsonoonsssessasacncacscasasssssasssssessssascscnsnses 243
REM [ARK] ¢veeooeccoocosesseseasosessoscscscsssssesssascasnsscsscssenses 2U5
RESTORE o cveeeeocococscncsssosesescacsansasscsassssscscscosscassscsssseses 246
RETURN e ovecceoccocoaonseseenesssscsecsoscscsssssosssoansssesssasssses 12,2U7
RETURN CLEAR ¢ eeveeececoeseencaoascaceoscacssosnsosassasasscsssasancscsee 2UT
REWRTTE «veececocnoocasenssossseseseasancacsssssssssassssssssnssnssecnses 249
ROTATE [C] eeeeececacecaccanooscesosssossessssssasosssasssssasossssssoses 202

RUleS © 9 00 0 00 00 0000880000000 000000C00P0E000600C00CQ0CPCEOCICICOIOIOIDOIPOPOIEDPIPOESEOIOIOIEOVTEOIEOIPOEEOCIEOTTITOCETOT 115

SEARCH © 006 90 0000000000000 000000C¢0 0006060606000 000000060009 0000000000000 0000000 25”

SELECT e ccace © 00 00660000 S P S 00U OE0CEEEs 0000 S000000 00 0000000000000 0000000a 256
SELECT File ooooooo € 9 800000000 000L 0T 0000000000000 000000000000000000000 257

SKIP © 60 0606000060600 000606060060600000000000000000000000000c0000c000bosssosresrooroe 263
sort 6 8 P 0 6 8 00 00 00000000 0C000000000000000000600600000000000000000000000000 llu
STOP € 0668 06000000060 06060606060600000060000000000060000060060000000006000000000O0CCELIIIES 265

SUB € © 0000000000000 0600000000060000006006006000000000000000000000c0c0000PCLOLGIIOIOGS 267

SUNPACK © 0 66006000000 C60800¢0 06060060 00060000606000000600006000000000scs0ocerosososoos 275

312

J

TITLE LR RN R A A A N A A A A N N R © 060000000 0000000 0000006000000 000000000c00 272

TRAN © 00 00000 0000000000 0000000000000 0000000000000 00 0000000000000 0000000 273
UNPACK ® 0000000000 0000000000000 0000000000000 0C0OCCCCEOITTBRTOE e sccescccoce . 27“
WRITE © 0 0 0000 00000000 00000000000000000000000°0000000000000600000s000bDCOCGELES e o 277

XOR © 0 0000 000 00 000 00L0 0000000 0000000000600 0000000000000000000PsNRRRGECGIEOELES 279

STOP Statement «.eeeeeeececcecoscsocasecse tececcstcatetccccsssssssrencseness 265
STR (Portion of String) Functioneecerceccccaes ceesssccnssenns ceseesaes 266
SUB Statement c.ceeeececceesesccocscessesasesnsssssssscscsossossssssssccsoscsces 267
Subroutines ceeeececcens s eesssssesssesesscecsssscssssscsnccscsssessees 03,54,65
DEfinition Of ceeeeeecececoesesccsessocosccssonscscsossoscsossosscssscsscsccceccse . 62
External c.eeeeees s esesacassssacsessssssssssesssssssses 07,68,69,70,72,73,74
GOSUB teeeceesecscnsccscssacsseansosaccncs A 1

GOSUB' @00 o0cs 000000 ® 000000V PP CLLOO0OLPIO0E000 00000000 0P0COOLSIONNOCECTEOEOIBNOEOECTE 65

Internal ® 600 00000000000 000000000000606000000606000000000600000600606000ecvec0OCEOGE 64

SUNPACK Data Format .eeceececeecocccecccncons cecessesesecscssscsessssssssnses 233
SUNPACK Statement eceeecececees cececsccsscsesccscssssccene eecscsssssesese 227,275

TAN (Tangent) Functionc.. ceessesscssenconse cececcsetetessecscersenatsaocns 270
THEN keyword in IF statement eescteccvecssssssnrnnan P I A
TIME Function ..eceeees - A]
TITLE Compiler Directive Statement ..cceceeeecececsceccccsccsscosccacsacas 17,272
TRAN Statement ..vvieeevececcecnccas teececsscerescssrsesecsssscscscscssesase 213
Trigonometric FUNCLioNS esisecececsccccacsocssrsosessososscssososcsane cesnes ees 212
TwOo-dimensional ArrayS eceeecesccscscscscsosososscsssoscssssscasssssssssnse eeees 27
Double-subsceripted ArraysS ceeeceececccscssasosssccsossessssssssasccscssanscs 28
Matrices teecececceces ceeccscnses cesees ceesecscnens ceseesane cecesceccnsas 28
Restriction in Redimensioning .ceeeccecceeesesscsccosscscsssosossnscnsoce 2T
Tables .ecececess Cteeeceserecnens cresessens cectscessassenens ceesecssesses 28

UNPACK Statement ..cceeceeccesccccoccsccccscecscsacsacocescss ecesesceserescasses 27U

VAL Function ceessssssssanes ceeesresecsessssssssssssssssssasssse 50,52,276
Variable s.ceeeecccscccacaanss Cecsecsssessesrerscesssrssasacstecerererestsenanns . 18
Definition Of teeeerieeeeeseeccssecasescsoscscssssosessrsossescssssssscsses .. 18
VS Opeprating SyStem .cccececececsossosessassssccscssnssscsssosesossssesssesoce 3
Variable na,e definition Of ..ceeeeeeceerrcecccccacscscocssasecososcssoncosssss 18

Workstation seeeececesscssscossceosconcns cecenas cecsesssesssssesssssansscens 2,80
WORKSTATTON T/0 eeececonccenocns eseersscsssesee Y <14
FAC (Field Attribute Characters) teeeeeeececeesssossoeccecocncssascaacnoss 81
SCrolling seeececesssossscssssssscscscece Gesessessssssessseescscsnsnesses 81
Wraparound .seeeeecsceeessescocsessossssscsccccccccccnne A < ¢
WRITE File Statementcccccee ceecsrsesrsecesstsssscssersansansenens eeee 277

XOR Logical Operator Statementcceecvcececes cescrsesersesesssscscsnssss 279

2200 Disk Storage Format ..ceeeeccceccceeese tecesecscesccscecesanas cesscnne eee 232

313

To help us to provide you with the best manuals possible, please make your comments and suggestions
concerning this publication on the form below. Then detach, fold, tape closed and mail to us. All
comments and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to
include your name and address. Your cooperation is appreciated.

800-1202BA-02

- ————— T ————— " T v ————— — — —_—

TITLE OF MANUAL BASIC LANGUAGE REFERENCE

COMMENTS:

Fold

Fold

(Please tape, Postal regulations prohibit the use of staples.)

(WANG)

Fold

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
]
BUSINESS REPLY CARD S—
]
FIRST CLASS PERMIT NO. 18 LOWELL, MA]
N
POSTAGE WILL BE PAID BY ADDRESSEE CEEEEE—
|
I
]
WANG LABORATORIES, INC. __
ONE INDUSTRIAL AVENUE r————
LOWELL, MASSACHUSETTS 01851 ——
|
|
]
Attention: Technical Writing Department
Fold
Printed in U.S.A.

13-1019

Cut along dotted line.

(J

International

United States

Representatives
‘;’%e“ﬁ"a Alabama Florida lowa Southfield Syossett South Carolina
Bahar_nnas Birmingham Coral Gables Ankeny Minnesota Syracuse Charleston
lei;?; Mobile Hialeah Kansas Eden Prairie Tonawanda Columbia
Holl i i : Tennesse
Botswana :la.;ka Jac::;:eﬁle \?\;::;gd Park M|{1neapolls North Carolina ciglt‘ta?lzoega
Brazil nchorage Miami Mississippi Charlotte Knoxville
Canary Islands Juneau Kentucky Jackson Greensboro 4 !
Chile Arizona Orlando Louisville Mi - Raleigh SHpaE
; o issouri Nashvill
i Phoenix Sarasota Louisiana ; ashville
Colombia T Tampa Creve Coeur Ohio Texas
gusta Rica ‘c”i?f(’“ i i :na:&?rﬁeouge St. Louis ékw" Austin
rus alifornia [incinnati
Dzﬁmark Anaheim _ Atlanta Maine Net‘lraska Cleveland Ela'!.las
Dominican Republic Burlingame Savannah Portland Omaha Independence H ouasstgn
Ecuador Culver City Hawaii Maryland Nevada Toledo San Antonio
Egypt Emeryville Honolulu Baltimore Las Vegas Worthington Utah
El Salvador Fountain Valley Maui Bethesda New Hampshire Okiahoma Salt Lake Cit
Finland Fresno S Gaithersburg Manchester Okiahoma City vy
Ghana Los Angeles Boise Rockville New Jersey Tulsa BN Vport Newrs
Greece Sacramento e Massachusetts Bloomfield Oregon Norfolk
Guam San Diego lllinois Boston Clifton Eugene Richmond
Guatemala gan Fri(l:nCISCO Arlington Heights Buriington Edison Portland Rosslyn
naﬂii V:::ﬁra'ﬂ’a :‘Ihlrt‘:tago Chelmsford Mountainside Salem Springfield
orton i . 2
|c2:1anl;ra§ Colorado Oakbrook Raviones Tomeitiver Pennsylvania Washington
. olar ¢ Littleton New Mexico Allentown Richland
India Englewood Park Ridge Lowell Albuquerque Erie Seattle
Indonesia Connecticut 20‘* Island Methuen Santa Fe Harrisburg Spokane
Ilrelar;d New Haven Sgiimf(i);:j Tewksbury New York Philadelphia Wisconsin
I‘tsarlae Stamford g Worcester Albany Pittsburgh Appleton
Ivo'f e V\{Ethf‘mfldd Indiana Michigan Jericho State College Brookfield
Ia r:n Dlstrlct"of Fort Wayne Grand Rapids Lake Success Wayne Green Bay
¥ Pd Columbia Indianapolis Kalamazoo New York City Rhode Island Madison
K:WE:I Washington South Bend Lansing Rochester Providence Wauwatosa
Korea
Kuwait :
Lebanon a_- . =
Liboria International Offices :
Malaysia
Malta Australia Victoria, B.C. Japan . Malmo
Mexico :\;ar'lg_cfogrxﬂer Pty. Ltd. Winnipeg, Manitoba Wang Computer Ltd. Switzerland
Morocco elaige, o.A. X TOkVO Wang A.G.
New Guinea Brisbane, Qid. - China : Netherlands Zurich
Nicaragua (P:earl':EE\r;?.AAC-E .Y_:?pne? Industrial Co., Ltd. Wang Nederland B.V. Basel
Nigeria » WA, : IJsselstein Bern
somay go;th Mﬁlg&l;lrne. Vic 3 _\Fv_ang Laboratories, Ltd. Groningen Geneva
. Paraguay - yaney, ; aipei : Lausanne
Peru Austria France \I:l':af: Zg:::::ter Ltd StiGallen
Philippines Wang Gesellschaft, mb.H. wang France S.AR.L. Auck?and ; Wang Trading A.G.
Portugal Vienna I Paris Chri Zug
Qatar Belaji Berdbain : hrllstchurch
Saudi Arabia Wang Europe, S.A Lille" Wellington West Germany
. Scotland Bruscelas Lyon Panama gr::%lDeutschland,
Senegal : Erpe-Mere Marseilles Wang de Panama Frankfurt
South Africa S Nantes: (CPEC) S.A. Beriin
Spain 3 Nice Panama City A
SHlanks Wang Canada Ltd. Rotieh Cologne
Sudan Burlington, Ontario Sl Puerto Rico Duasseldorf *
Tasmania Burnaby, B.C. Ak Wang Computadoras, Inc. Essen
Thailand Calgary, Alberta Great Britain Hato Rey Freiburg
Turkey Don Mills, Ontario Woang (U.K.) Ltd. o adle Hamburg
United Arab Emirates - Edmonton, Alberta Richmond Wa?n r::om uter (Pte) Ltd Hannover
Halifax, Nova Scotia Birmingham nang=omp ; Kassel
Uruguay 7 , Singapore A
Venezuela Hamilton, Ontario London N an o
Zimbabwe Montreal, Quebec Manchester Sweden MG eh
Ottawa, Ontario " Hong Kong Wang Skandinaviska AB Nirnberg
Quebec City, Quebec Wang Pacific Ltd. Stockholm Saarbriicken
Toronto, Ontario Hong Kong Gothenburg Stuttgart

=

Printed in U.S.A.
800-1202BA-03
6-81-5M

(WANG)

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01861, TEL. (617) 459-5000, TWX 710 343-6769, TELEX 84-7421

	Cover
	Preface
	Summary of Changes
	Table of Contents
	Part 1: Introduction to BASIC
	Chapter 1: Introductory Concepts
	1.1: An Overview: BASIC on the Wang VS
	1.2: Communicating with the VS
	1.3: The VS Operating System
	1.4: BASIC Program Development

	Chapter 2: Program Format
	2.1: Introduction
	2.2: Statements
	2.3: Line Format
	2.4: Program Documentation

	Chapter 3: Data Formats
	3.1: Introduction
	3.2: Constants, Variables, Receivers, and Expressions
	3.3: Numeric Data
	3.4: Alphanumeric Data
	3.5: Array Variables

	Chapter 4: Numeric Operations
	4.1: Introduction
	4.2: Numeric Operators
	4.3: Numeric Expressions
	4.4: Numeric Functions
	4.5: Mixed Mode Arithmetic
	4.6: Summary of Numeric Data Types and Terms

	Chapter 5: Alphanumeric Operations
	5.1: Introduction
	5.2: Alphanumeric Operators
	5.3: Alpha Array Strings
	5.4: Alpha Expressions and Alpha Receivers
	5.5: Alphanumeric Functions
	5.6: Numeric Functions with Alpha Arguments
	5.7: Logical Expressions
	5.8: Summary of Alphanumeric Data Formats and Terms

	Chapter 6: Control Statements
	6.1: Introduction
	6.2: Statement Labels
	6.3: Subroutines
	6.4: Internal Subroutines
	6.5: External Subroutines

	Chapter 7: Workstation and Printer Input/Output
	7.1: Introduction
	7.2: Printer Output
	7.4: The USING Clause and Format Control Statements
	7.5: The ACCEPT Statement
	7.6: The DISPLAY Statement
	7.7: Workstation Programming Considerations

	Chapter 8: File Input/Output
	8.1: Introduction
	8.2: Files
	8.3: Use of Files by BASIC Programs
	8.4: The File I/O Statements
	8.5: Intrinsic File I/O Functions
	8.6: Error Recovery
	8.7: Examples of File I/O

	Chapter 9: Data Conversion and Matrix Statements
	9.1: Data Conversion Statements
	9.2: Matrix Statements

	Part 2: VS BASIC Statements and Functions
	ABS Function
	ACCEPT Statement
	ADD[C] Logical Operator
	ALL Function
	AND Logical Operator
	ARCCOS Function
	ARCSIN Function
	ARCTAN Function
	ATN Function
	BIN Function
	BOOLh Logical Operator
	CALL Statement
	CLOSE Statement
	COM Statement
	CONVERT Statement
	COPY Statement
	COS Function
	DATA Statement
	DATE Function
	DEF Statement
	DEF FN' Statement
	DELETE Statement
	DIM Statement
	DIM Function
	DISPLAY Statement
	EJECT Compiler Directive
	END Statement
	EXP Function
	FMT Statement
	FOR Statement
	FORM Statement
	FS Function
	GET Statement
	GOSUB Statement
	GOSUB' Statement
	GOTO Statement
	HEX Function
	HEXPACK Statement
	HEXPRINT Statement
	HEXUNPACK Statement
	IF ... THEN ... ELSE Statement
	Image (%) Statement
	INIT Statement
	INPUT Statement
	INT Function
	KEY Function
	LEN Function
	LET Statement
	LGT Function
	LOG Function
	MASK Function
	MAT + (MAT addition) Statement
	MAT ASORT/DSORT Statement
	MAT CON (MAT CONstant) Statement
	MAT = (MAT assignment) Statement
	MAT IDN (MAT identity) Statement
	MAT INPUT Statement
	MAT INV (MAT inverse) Statement
	MAT * (MAT multiplication) Statement
	MAT PRINT Statement
	MAT READ Statement
	MAT REDIM Statement
	MAT ()* (MAT scalar multiplication) Statement
	MAT - (MAT subtraction) Statement
	MAT TRN (transpose) Statement
	MAT ZER (MAT zero) Statement
	MAX Function
	Mathematical Functions
	MIN Function
	MOD Function
	NEXT Statement
	NUM Function
	ON Statement
	OPEN Statement
	OR Logical Operator
	PACK
	$PACK/$UNPACK Statements
	PI Intrinsic Constant
	POS Function
	PRINT Statement
	PUT Statement
	READ Statement
	READ File Statement
	REM[ARK] Statement
	RESTORE Statement
	RETURN Statement
	RETURN CLEAR Statement
	REWRITE Statement
	RND Function
	ROTATE[C] Statement
	ROUND Function
	SEARCH Statement
	SELECT Statement
	SELECT File Statement
	SGN Function
	SIN Function
	SIZE Function
	SKIP Statement
	SQR Function
	STOP Statement
	STR Function
	SUB Statement
	TAN Function
	TIME Function
	TITLE Compiler Directive
	TRAN Statement
	UNPACK Statement
	$UNPACK Statement
	VAL Function
	WRITE Statement
	XOR Statement

	Appendix A: VS BASIC Reserved Words
	Appendix B: VS BASIC Compiler Options
	Appendix C: Numeric Data Representation in VS BASIC: Hexadecimal/Decimal Conversion Errors
	Appendix D: Floating-Point and Integer Calculations
	Appendix E: Numeric Data Format Compability Between VS BASIC and COBOL
	Appendix F: VS Character Set
	Appendix G: VS Field Attribute Characters
	Appendix H: ASCII COllating Sequence
	Appendix I: VS BASIC Error Messages
	Appendix J: CVBASIC User Aid (Conversion from BASIC 2.3 to 3.2)
	Index

