S
LSS S s
S SS S S s
S S
S 7S

S S s
S S S
S S S
VAV AV AV AN N AR AV
SSS S SSS S s
S ST
SSS S S S
SIS S S S SSS
S S s SS
S S S s
SIS S S s

S S S S
S ss
S S SsS
S S s
S
S S

. . .
. .. .
. .
. . .
. . .
. . L .
. . . .
* . . . * .. .
.
.
: : * . . M .
*
* T
. t . . S . . .
.
. L -
. . . .
. . .
.
.
. o . . .
. t
‘.
* *
.
. . . . R . . .
.
. * . . c
* ° *
.
. * ‘e
. X
*
.
.
* ¢ . c . M
. . .
c . *, .
‘. .. . L .. .
. . .
* . *
., . .
* . . .
. . P
. . .
. . . N
* . ‘. .. .
. .
. . . .
. . . .
.
. .

Multiusef EKSI(’}-?‘ "
JLanguagé

Reference Miiiitial

7th Edition — March 1991
Copyright © Wang Laboratorles, Inc., 1991
700-4080F

WANG
Wang Laboratorles, Inc.

R One Industrial Avenue, Lowell, MA 01851
Tel. (508) 459-5000, Telex 172108

'y

Disclaimer of Warranties and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care in preparing this manual. However, nothing contained herein
modifies or alters in any way the standard terms and conditions of the Wang purchase, lease, or license agreement by
which the product was acquired, nor increases in any way the liability of Wang to the customer. In no event shall Wang
or its subsidiaries be liable for incidental or consequential damages in connection with or arising from the use of the
product, the accompanying manual, or any related materials.

Software Notice

All Wang Program Products (software) are licensed to customers in accordance with the terms and conditions of the
Wang Standard Software License. No title or ownership of Wang software is transferred, and any use of the software
beyond the terms of the aforesaid license, without the written permission of Wang, is prohibited.

FCC and DOC Notices

The Federal Communications Commission (FCC) and the Canadian Department of Communications (DOC) require
that information regarding the interference potentjal of electrical equipment be included in the user documentation for
the equipment. They also require that specific information be provided for components that will be connected to the
Public Switched Telephone Network (PSTN).

Electromagnetic Interference Requirements

Wang Laboratories, Inc., manufactures both Class A verified computers and peripherals and Class B certified comput-
ers and peripherals. To determine which of the following warnings apply to the equipment, the user should refer to the.
label affixed to the device. .

An example of a Class A verified label is the following:
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This
device may not cause harmful interference, and (2) this device must accept any interference received, including
interference that may cause undesired operation.

An example of a Class B certification label is the following:
FCC 1.D. B4YPC250-16
This device complies with Part 16 of the FCC Rules. Operation is subject to the following two conditions: (1) This
device may not cause harmful interference, and (2) this device must accept any interference received, including
interference that may cause undesired operation.

FCC Warning _

For Class A — This equipment(1,24) has been tested and found to comply with the limits for a Class A digital device,
pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful
interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can
radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause
harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause
harmful interference, in which case the user will be required to correct the interference at his or her own expense.
For Class B — This equipment(1.2,3,4) has been tested and found to comply with the limits for a Class B digital device,
pursuant to Part 16 of the FCC Rules. These limits are designed to provide reasonable protection against harmful
interferencein aresidential installation. This equipment generates, uses, and can radiate radio frequency energy and,
if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communi-
cations. However, there is no guarantee that interference will not occur in a particular installation. Ifthis equipment
does cause harmful interference to radio or television reception, which can be determined by turning the equipment off
and on, the user is encouraged to try to correct the interference by one or more of the following measures:

® Reorient or relocate the receiving antenna.

¢ Increase the separation between the equipment and the receiver.

® Connect the equipment into an outlet on a circuit different from that to
which the receiver is connected.

e Consult the dealer or an experienced radio/television technician for help.

DOC Warning
For Class A-This digital apparatus doesnot exceed the Class Alimits for radio noise emissions from digital apparatus
set out in the Radio Interference Regulations of the Canadian Department of Communications.

For Class B - This digital apparatus does not exceed the Class B limits for radio noise emissions from digital apparatus
set out in the Radio Interference Regulations of the Canadian Department of Communications.

Connection to the PSTN

FCC Part 68 Requirements .

Ifthis equipment connects to the PSTN, it complies with Part 68 of the FCC Rules. A label is affixed to this equipment
that contains, among other information, the FCC Registration Number (REN) and Ringer Equivalence Number (REN)
for this equipment. Upon request, the user must provide this information to the telephone company.

The REN is useful to determine the number of devices that the user may connect to the telephone line and still have all
those devices ring when the telephone number is called. In most but not all areas, the sum of the RENs of all devices
connected to one line should not exceed five (5). Tobe certain of the number of devices that the user may cox:mect tothe
line, as determined by the REN, the user should contact the local telephone company to determine the maximum REN
for the calling area.

If the telephone equipment causes harm to the telephone network, the telephone company may discontinue service
temporarily. If possible, the user will be notified in advance. However, if advance notice is not practical, the user will be
notified as soon as possible. The user will be informed of the right to file a complaint with the FCC.

The telephone company may make changes in its facilities, equipment, operations, or procedures that could affect the
proper functioning of the equipment. If such changes are made, the user will be notified in advance to give the user an
opportunity to maintain uninterrupted telephone service.

Ifthe user experiences trouble with this telephone equipment, the telephone company may ask that the user disconnect
the equipment from the network until the problem has been corrected or until the useris sure that the equipment is not
malfunctioning. For service or repairs, the user should contact the point of sales representative or Wang Laboratories,
Inc.

This equipment may not be used in conjunction with coin service provided by the telephone company. Connection to
party lines is subject to state tariffs. '

DOC Notice for Canadian Users

Notice — If this equipment conteins a Canadian Department of Communications label, it identifies DOC-certified
equipment. This certification means that the equipment meets certain telecommunications network protective,
operational, and safety requirements. The DOC does not guarantee that the equipment will operate to the user’s
satisfaction.

Before installing this equipment, the user should ensure thatitis permissible for it tobe connected to the facilities of the
local telecommunications company. The equipment must also be installed using an acceptable method of connection.
In some cases, the company’s inside wiring associated with a singleline individual service may be extended by means of
a certified connector assembly (telephone extension cord). The user should be aware that compliance with the above
conditions may not prevent degradation of service in some situations.

Repairs to certified equipment should be made by an authorized Canadian maintenance facility designated by the
supplier. Any repairs or alterations made by the user to this equipment, or equipment malfunctions, may give the
telecommunications company cause to request that the user disconnect the equipment.

Usersshould ensure for their own protection that the electrical ground connections of the power utility, telephonelines,
and internal metallic water pipe system, if present, are connected together. This precaution may be particularly
important in rural areas.

Caution: Users should not attempt to make such connections themselves, but should contact the appropriate electrical
inspection authority or electrician, as appropriate.

Load Number — The Load Number (LN) assigned to each terminal device denotes the percentage of the total load that
can be connected to a telephone loop. The termination on aloop may consist of any combination of devices, subject only
to the requirement that the total of the Load Numbers of all devices does not exceed 100. An alphabetical suffix is also
specified in the Load Number for the appropriate ringing type (A or B), ifapplicable. For example, LN=20A designates a
Load Number of 20 and an “A” type ringer. The Load Number for this equipment can be found in the installation
instructions pertaining to connection to the PSTN.

@
@)

®)

(O]

This equipment requires the use of shielded cables.

If the user attaches a Class A verified device to equipment otherwise labeled as Class B,
the combined system meets Class A regulations only. Class A specifications provide
reasonable protection against radio and television interference in a commercial
environment. Operation of Class A equipment in a residential environment may cause
interference.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following
two conditions: (1) This device may not cause harmful interference, and (2) this device
must accept any interference received, including interference that may cause undesired
operation.

Any modifications to this equipment not expressly approved by Wang Laboratories, Inc.,
could void the user’s authority to operate this equipment.

Contents
Preface
Chapter 1
Introduction
L0 =5 o T3 PR 1-1
Multiuser Operationcoiiiiiiiiiiiiiiirneenennnnnn. 1-1
Interpretation Processcoiiiiiiiiiiiiiiininiinennnnnnn 1-2
EditingFeaturescoiiiiiiiiiiiiiiiiiiiiiienenennn.. 1-2
Compatibility Features oo 1-2
Types of BASIC-2Instructionscoitiiiiiiniiiiienenennn. 1-2
System Commandsc.coeiiiiireeenenereeereraeaneannns 1-2
Statementscuiieiiiiiiiiiiiiiii ittt i 1-3
BASIC-2 Statements And Program Execution 1-3
Program Modecccoiiiiiiiiiiiieinernneneenenennnennnns 1-3
Immediate Modecoiiiiiiniiiiiiiiiiiiiiiiineneennnn 14
Multiple-Statement Linescoiiiiiiii ... 1-5
Phases of the Language Processorccooiiiiiiiiiienenenens 1-5
Entry Phasecoieniniiiiiiiiineineeniennenenennaennnns 1-5
Resolution Phaseccvvttiiiiiiiiiiiiiieienieennennnns 1-6
ExecutionPhasecciviiiiiiiiiiiinnnnnn e eeeceeane 1-6
Chapter 2
Editing and Debugging Features
003 o =3 2-1
Line Entryciiuniiiiiiiiiiiiii ittt iiiiiiienaaanannns 2-1
S 72 V- PP 2-2
Maximum LineLength, 2-2
Upper/lowercase Entryccooiiiiiiiiiiiiiiiiiiieaann .. 2-2
Line Editingcccuuiiiiiiiiiiniiieiieneeneeeneaanaeennnns 2-2
Edit Keys and Their Operationt 2-2
Program Developmentcoiiiiiiiiiiiiiiiiiiiiiiiiiin., 2-4
ReplacingLinesoovuiiiiineriinnnnneenneeaennnn L. 24
Deleting Linescoviuuiminiimmiemniieeeieiaeaanaenen. 2-4
Renumbering Program Lines, 2-5
Combining Program Linescccoiiieiiiiiieenen. 2-5
Program Debugging Featuresot 2-6
Descriptive Error Messagescouueiieanenennnnan.. 2-6
Stopping and Resuming Program Execution 2-7
Halting and Stepping Through a Program 2-7
Tracing Through a Programc¢.oiiiiiiiiniiinenn.n. 2-8

Contents (continued)

Listing and Cross-Referencing a Programccoooveeinnee. 2-8
Chapter 3
Screen Operations
OVEIVIOW « o o o e eee e tnenaeseeasasesensnasasanssssssansnanansons 3-1
Screen Control Codes ... oo v it ieeteieiineeneaaseenccnasanaanns 3-2
Cursor Control Codescvvieiinerienneneacsccancancanns 3-2
Character Display Attributes 3-3
HEX Codes Used to Invoke Display Attributes 3-3
Turning On Character Display Attributes 34
Turning Off Character Display Attributes 3-6
Using Isolated HEX(OE)coiiuininiiiieeiinninnnnn, 3-7
Special Uses of Alternate Display Attributes 39
Summary of Display Attribute Rulesot 3-9
Selection of Character Setscitiiiiiiiiiiiiniennennns 3-10
Summary of Character Set Selectiono 3-11
BoxGraphicsoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiaaaaaa 3-12
Chapter 4
Numeric Operations
VO VB &+« o et ee e e ee e e e et taeeessnaeeasnaaeaaeseaeenneennnnns 4-1
Numeric Valuesoitiitnieneeneenenneaneennenaneannaanaas 4-1
Fixed-Point Formatttt iiiiiieiniieennnneeanns 4-2
Exponential Formatot 4-2
Numeric Constantscouiieimueneneeeneennsenneennannans 4-2
Numeric Variablescciiiitiiiiiiiiiiiiiienanieennnnenann 4-3
Numeric EXpressionsoiiiiiiiiiiiiiiienieieranenaenns 44
ArithmeticOperators ...ttt 4-4
Orderof Evaluation..........ccciiiiiiiiiiinieinnennnenaaannns 4-5
Altering the Standard Order of Evaluation 4-5
Round/Truncate Optiont iiiiiiiiiiiiiiaeaenn, 4-6
Computational Errorscouiiiiiiiiiiii i, 4-6
System-defined Numeric Functions i 4-6
INT and FIX Functionsccoitiitin it iniiannannns 4-8
MAX and MIN Functionscoitiiiiiiiiiiienen. 4-8
MOD FUDnCtion . ..o viitii i e et et e ettt et i it 4-9
RND (Random Number) Function 4-9
ROUND FURCEION ..ottt i it e it e iee e eiiiiienaneananans 4-10
SGN (Sign) Functionoiiiuiiiiniiiiiiiieeiaeeennnns 4-11

vi

Contents (continued)

Trigonometric Functions iiinnne .

Special-purpose Numeric Functionsc0ooo.n...
SPACEFunction e seeceiencaens

Chapter 5

Alphanumeric Strings
Alphanumerié Character Strings S,
Alphanumeric String Variablesc0iiuuun...
Alphanumeric-variable Length
STR Functioncoiiiiiiiiiiiiiit ittt ittt iieenaenns
Alphanumeric Literal Stringsc00iiiiiiiiiiinnennnn..
Hexadecimal Literal Stringsttt
Concatenation Of Strings iiiiiiiiiiiniinnnnn..
Using the Alpha-array as a Scalar-variable
Alphanumeric EXpressionsoeiiiiunenernenennnnennennn

General Forms of the Alphanumeric and Special-purpose
Functionsand Operatorscitiiiiiiiennnnnnnnnnn.
ALL Functionititiintnuntrenenenneneenenenenneneenns
AND, OR,XOR Operatorscouieienununnnnnnenennnnnns
BINFunctioncociiiiiitiiiiiiiiereneeneneeeennenennnns

Date ...t i i i et ettt et e e e,

VAL Function .. .oi ittt ittt ittt ittt etteeesnseeeeneennnnnans
VER FUDNCHION .ottt i ittt ittt ittt eeteeeeeeeaenenannaanns

Chapter 6
Binary and Packed Decimal Arithmetic Operators

(0 3 o T
Decimal to Binary Conversion and Two’s Complement Notation
Decimal to Packed Decimal (BCD) Conversion and Ten’s

Complement Representation P

5-1
5-1

5-3

Contents (continued)

General Forms of the Binary and Packed Decimal Operators 6-5
ADD OPETAEOT . .. vovvevanencnronensnensassnoasencesenssances 6-6
DAC OPEratoroveueenerennaneesenronnanseeteantnnces 6-8
DSC OPEIAtOT ... ovvveranenrneranasaeeecnesonenceeensns 6-9
SUB OPEratorcoceeeeenneennsnsenssonnaanneeesccnnsns 6-11

Chapter 7
The Select Statement

OVEIVIEW -« v e e e eeeenenasosaecnesnesaasassnssssasnasasscasenns 7-1

Math Mode Selectionccveeeeuerneenacaceeeaenanasescceans 7-2
Specifying Degrees, Radians, or Gradsocoiennnennnn 7-2
Selecting Rounding or Truncationccoeieneennnnnn. 7-2
Computational EITorscoovevneeinniiiinaeeeeineenns 7-2
Default Math Modesoovveetneeneenneneeaaesoneaanaanses 7-3

Output Parameter Specificationot 7-3
Selecting @ PAUSEo ovvirvrreeeennenieteaeaaeeeaeiinnnns 7-3
Selecting the Number of Output Linesccoveennn 7-4
Selectingthe Line Widthcooiiiiiiiiiiiinnn. 7-4

I/ODevice Selectionoovvevereeeeeeneenenaeneeasasuenaansnans 7-5
The Classes of /O Operationsccoeveeiiiiieniaaennns 7-6
Device-Addresseso eerneeeeataitiaaaaaa e 7-6
Selecting Device-Addresses for I/O Operations 7-7
System Default Device-Addressescooiieiinnennn. 7-7
TheDevice Table . ..o cvviitit et etitiiienneeaeeasasacssnsenns 7-8
Modifying Device Table Entries, 79

Explicit Device Table Modification 7-10
The Console Input Select-Parameterc.coiin.en 7-10
The INPUT Select-Parametercccitiiiiiineeeeneenenns 7-10
The Console Qutput Select-Parametert 7-11
The PRINT Select-Parameterccoiiiiiiiineneeaeneenns 7-11
The LIST Select-Parametercoiiiiiiiiienreeenennns 7-12
The PLOT Select-Parameterccciuiiiiiiiieanrnnnenns 7-12
The TAPE Select-Parameterttt 7-12
The DISK Select-Parameter, 7-13
The File-Number Select-Parameter00.. 7-14
Multiple Select-Parameters in a Single SELECT Statement 7-15

Implicit Device Table Modification e e 7-15
Master Initializationoeneeienen it 7-15
RESET . .ottt et ettt e e e e e 7-16
CLEARand LOAD RUNttt ittt it it i i ee e caeaenn 7-16

Device TYPeB . .« ov ettt ii it e 7-16

Conditional Selection of Select-parameters 7-17

viii

Contents (continued)

Chapter 8

Programmable Interrupts
L0 -
Interrupt Programmingottt
Interrupt Processingcoiiiiiiiiiiiiiii ittt
Listing Interrupt Status i
Definition and Enabling of Interrupts

General Forms of the Interrupt Control Statements
BALE RT ...ttt ittt e e,
93 15 J N

Chapter 9
Error Control Features

L0 0 s 1= 28

Error Recoverabilitycoiiiiiiii i
ERRFunctioncoiiiiiiiiiiiiiiiiiiiiiienninnnnennns

Chapter 10

System Commands

(007 ' = . /8 SN

General Forms of the System Commands
CLEAR . ..ttt e e e e
CONTINUEoti ittt ettt e ettt e e,
FunctionKeys i
L 7N 71
LIST Commandciuitiminininennniannnnnnnan,
LIST ..ottt Pt
LIST COM/DIMttt ittt it ittt e eaeteaaeaaaananenn

8-2

9-1
9-2
9-3
9-6
9-6
9-7

Contents (continued)

0 1o A AT R R 10-14
) 71 o 7 A /2 R R R R 10-16
LIST # oot ee et eeieeneeeeaeenaesanasensanesananssasanses 10-18
)) £ 7 AR R R R 10-20
RENUMBERoiiitiiitieeineetnnsanasesaeacanannasescnces 10-21
) 24 1) 0y AR R R RRR 10-23
RUN oottt ittt eeteeesaaaseesesnsnsnasssseosenenansnsnss 10-24
(1 1 0) -2 R R R R R 10-25
TRACE ...ttt ittt itenasaeasaseesasnsnsasesesnsasasannns 10-26
Chapter 11
General BASIC-2 Statements
O VI VIEW « o o v oo et eeneesessasasasaeaseseseasassnsantossnnonas 11-1
General Forms of the General-purpose Statements 11-3
(0.6). A T I 114
COMOLEAR .. .ooiiiitiinteeeaetatneaeaensnsnsasasacacnnnns 11-7
(670 A2 01 2 ¥ R 119
107\ 7\ 11-13
) 1 0 3 (PR 11-14
DEFFN’ (for Keyboard Text Entry), 11-17
DEFFN’ (Subroutine Entry Point)o, 11-19
) 1. 11-22
1D L0 Y T R 11-24
4 1 11-25
30) 11-26
0 24,1 -\ T 11-29
(7011 01 2 P 11-30
7011) S0 PP 11-31
670 4 10 PP 11-33
HEXPACK .o iiitititititt it tieanentniaeaeannsnsenananenns 11-34
HEXUNPACK ...ttt tatneetienaenesesannanaansns 11-37
A = 1 4 (PP 11-38
IMage (70) « -« o ev ittt ittt it iiiaeaaeaa et 11-41
INPUT ittt ittt ittt ieaeesetaeeeansenananenenennnenns 11-42
|24 34 1. [PP 11-45
"Dead Key” Operationccoiiiiuiniinienneniennn. 11-46
Foreign Character Codesccoiiiiiiiinnaann. 11-46
) 7)1 PP 11-47
LINPUT .ottt ittt e e e e e e e e e e e 11-48
MAT COPY .ottt e e et e e e e e e e 11-51
MAT MOVE . .ottt et et e ettt 11-53
MAT SEARCH ...ttt ittt ittt ittt cia it enaaaanaaannnn 11-57
135, 11-60

Contents (continued)

ONGOTO/GOSUBuiitttttiineeeeenennneenneeeneenannnn. 11-61

PACK . e e e e 11-62

SPACK ..ttt ettt e 11-64

3 1 ¢ 11-74

PRINT AT ..ottt ittt it ittt teeeeeeeeenennenenenenens 11-81

PRINT BOX ...ttt ittt ittt ittteeeeneneenennenennnn 11-83

PRINT HEXOFttt ititteteeeeneeenneneenenns 11-85

PRINTTAB ...ttt ittt ettt eeeannennennn. 11-86

PRINTUSINGitiitttiiiiiiieteiitneaaeaaanennnnnnnn 11-87

PRINTUSINGTO et et e e, 11-94

READcoiiuiinnn. Y e e e e 11-96

REM . i i i i it ettt e et e, 11-97

RESTORE ...ttt ttiitteeeeeaneenasaaenanannnn. 11-98

RETURN ...ttt iiiieitnenseesecnoeesaaaaannans 11-99

RETURN CLEARiittiiiiiiiiiiiineeenacaeenaaasananns 1 1-10
0

ROTATE it it ittt ettt teeeneenenaennn 11-10
2

S 7 X0) PP 11-10
4

S 17N A 11-10
5 ‘

Replacement Procedure i i, 11-10
5

Displacement Procedureccoiiiiiiiiiiiiiiiiiiinn.. 11-10
6

L0557 - P 11-10
8

BUNPACK .. .iiiiiiiiietiaeeetaeeaeeaaeeaneeaseanacenanns 11-10
9

The Delimiter Form of the §UNPACK Statement 11-10
9

The Field Form of the $UNPACK Statement 11-11
2

The Internal Form of the $UNPACK Statement 11-11
7

Chapter 12
Disk I/0 Statements
(0 2 o = 2P 12-1
File CatalogModecouuiinimiuniiiii ittt 12-1
Initializingthe Catalog, 12-3

xi

Contents (continued)

Saving Cataloged Programs on Disk:

The SAVE Statementc.ceoeeeeeeienceeneaeasacceens 12-3
Saving Modified Programs on Disk:

The RESAVE Statementccoveierineeeecennannaaecnnn 12-3
Changing the Names of Files:

The RENAME Statementcocouiueneeeeiiienaeneaens 12-4
Retrieving Programs Stored on Disk:

The LOAD Commandccccvututeennaneeccacaneancnens 12-4
Listing the Catalog Index:

The LISTDC Statementcoiiiiiiiiiiiiiinennn. 12-4
The LOADRUN Commandccoiuiuenrraennseaccacacnnns 12-5
SavingDataFilesccoeurueuereieiiiiiiiiannaeaeeennns 12-5
The DATASAVE DC OPEN Statementcoc0inen.n 12-6
The DATASAVE DC Statementc.ciiiiiiiiaen.. 12-7
Opening a Second Data Fileon Diskoooiinnnen. 12-9
The DATALOAD DC OPEN Statementt 12-10
The DATALOAD DC Statementocviiitinenenneaeennnnns 12-11
The DSKIP and DBACKSPACE Statements 12-12
Scratching Unwanted Filesccoiiiiiiiiiiiiaan.. 12-13
Making Backup Copies of Cataloged Files 12-14
ClosingaDataFile ...t 12-14

Sector AdAress Modeovieieeeeeeneneenannenenaanaassnens 12-15
N, s 1) < 12-16
What is RAMAisk?iitit ittt ittt iiieeanaanaaneeanns 12-16
Settingup RAMdiskccoiiiiiiiiiiiiiiiiiiiiiieann,. 12-16
Accessing RAMdiskccoviiiiiiiniiiniiiii it 12-17
General Forms of the Disk I/O Statements 12-17
(100) "R PP 12-19
DATALOAD BAottt it ittt e i tiienaaaaaaaaaaaas 12-20
DATALOAD BM .. .ottt ieieteeiensneenennensanennnnns 12-21
DATALOAD DA ..ottt ittt et ittaeanennnaananans 12-22
DATALOAD DC . .ttt ittt it ittt i eeeeaeaceeenseneanenaenns 12-24
DATALOAD DCOPENiiiiiiiieieiiitiiiniieaeneaeananans 12-25
DATASAVE BA .. i it ittt ittt iaeaeaaennanns 12-26
DATASAVE BM ...ttt it ittt ee i itniinieaeeneananns 12-27
DATASAVE DA .. ittt ettt 12-28
DATASAVE DC .ottt ittt e e e e et e 12-30
DATASAVEDC CLOSE . ..ot 12-32
DATASAVEDCOPEN P 12-33
DATALOAD AC (CS/3860mnly)covniiiiiiiiaeaeaennn 12-35
ALOAD ACOPEN (CS/3860nly)cviviiiiiiiiiiaannnnnns 12-36
DATASAVE AC (CS/3860nly)covitininiiiiiiiiiiinannnans 12-37
DATASAVE ACOPEN (CS/3860nly)cciivirenenenrnnn. 12-38

xii

Contents (continued)

DATASAVE ACCLOSE (CS/3860nly)ouuueuuunennnnnn.. 12-39
DATASAVE ACEND (CS/3860nly)covuuenununnnnnnn. .. 12-40
DBACKSPACE ...ttt ittt et e e e e 12-41
DSKIP ettt et e e, 12-42
$FORMATDISKoovveeeennnnnnnnn. e, 12-43
LIMITS . ..ot e e e e e e, 12-44
LIST DO ..ttt e e e 12-46
LOAD (Immediate mode)couuueeuemmnnnnennnnnnnnn, 12-49
LOAD (Programmode)oouuuunuiunnenennennnnnnnnn.. 12-50
LOAD DA (Immediatemode)vveueemernennnnnnnn... 12-52
LOAD DA (Statement) S 12-53
LOAD RUN ..ttt et ettt ettt e, 12-55
MOVE (fil€) . .oviitititn ittt ettt et e e e, 12-56
MOVE (diSK) ...ooiiiititit ittt it it et et et et e, 12-57
MOVE END ... ittt it et et et e et et 12-58
RENAME . ..ottt ittt ettt ettt ettt e e, 12-59
LA 7 N 12-60
SAVE . e e e e 12-61
Overwriting an ExistingFile oiiuunnn.... 12-62
Protectinga Program ittt 12-62
SAVE DA . . e e 12-64
[0 7.V 6] - 12-65
SCRAT CH DISK .. .iiitittit ittt ittt ittt e et eeaeaeaaenn, 12-66
VB RIFY ..ottt et e e e 12-68
Chapter 13
Math Matrix Statements
L0 =S o 1= 13-1
Array Dimensioningouvtttitttne ittt it e 13-2
Array Redimensioningcovtiiinnninineneerenennennnann, 13-2
RedimensioningRules 0iiiiuiiiiiiiiiiinnnnnnn.. 13-3
General Forms of the Math Matrix Statements 13-3
MAT Addition: MAT 4 ..ottt ittt ettt teeeeeeeneannn. 13-4
MAT Constant: MAT CON ...ttt e et 13-5
MAT Equality: MAT = ittt ittt iiaennnn. 13-5
MAT Identity: MAT IDNcoitniiti ittt it eeeeeeannn. 13-7
MAT INPUT ..ottt e e e e s s, 13-8
MAT Inverse: MATINV e 13-10
MAT Multiplication: MAT * 13-13
MAT PRINT e e e e e e 13-14
MAT READ ...ttt e e e e e e e 13-15
MAT Redimension: MAT REDIM e, 13-16

xlii

Contents (continued)

MAT Scalar Multiplication: MAT()*ccoieeeeeeeennnn .. 18-17
MAT Subtraction: MAT -ot iiitierneencareananoaeececes 13-18
MAT Transposition: MATTRNooiiiiiiiiciiiiennnnne. 13-19
MAT Zero: MAT ZER ooiii i iiiiiiieneaeencannneanaaasnes 13-20
Chapter 14
Sort Statements
OVEIVIOW &+ o o v v e e oot eeseaneessansaeeseeseessansssassnnssnsanns 14-1
Sorting NumericData ...t 14-2
Representation of Array Subscripts in the Locator-array 14-2
General Forms of the Sort Statements oot 14-3
MAT MERGEciitiititiiiieteteeracaseneneassnsaasancnnns 144
Role of the Control-Variablecciiiiiiiiineeneeeennns 14-6
Replenishing Empty Rows in the Merge-Array 14-8
MAT MOVE . oottt ittt ieieteteteeeeeacneesensessesansansnens 14-13
Numeric to Alpha Conversion: Wang Sort Format 14-14
MAT SORT .ot ititittetereeneeeeesasossesenesssesensasasnns 14-17
Chapter 15
General I/O Statements
OV VIEW &+ o et e et eeeenveaneesoneenseseessosesnsenneansaanssnns 15-1
Considerations for the Use of $GIOo, 15-1
The /O BUS ... viitiiititteeenaeeeensoneeseasssnsssnssnssaassas 15-2
Address Bus Strobesoiiiiit ittt 15-3
Output Bus Strobesot 15-3
Wait For Readycooiiiiiiiiiiiiiiiieneeneeneenaenannnns 15-4
Input Bus Strobesot 15-4
General Forms of the I/O Statements, 15-4
31 0 0 10) - PP 15-5
€ (PP 15-8
Comment Parameterccuiuiieieennieneeenrennanannns 15-8
Device-Address Parameterttt 15-9
File-Number Parameterc.ccuiuiiiiiiiinnrenneennns 15-9
Microcommand-Sequence Parameter 15-9
Types of Microcommandscommtiiinernennenninnnn. 15-9
The ConditionCode e 15-10
Direct Specification of a Microcommand Sequence 15-11
Indirect Specification of a Microcommand Sequence 15-11
Registers Parameter it 15-12
Data Buffer Parametercciuiitiiiiiiiennnennanns 15-13
Size ofthe Data Bufferccuiitiieeeenenenenneenenennns 15-13

Contents (continued)

Multiple Buffers and the Data Buffer “Pointer” 15-13
Character Countc.ciiiuiiiiiiiiiiiiinnnnnnnn.. 15-14
Terminating Multicharacter I/O Operations 15-15
Output Examples of $GIOcccouvuu..... PR 15-17
Input Examplesof $GIOcoiiiiiiiiiiinnnnnnnn... 15-18
Chapter 16
Multiuser Operation
L o -3 16-1
Functional Description P 16-2
User Memory Allocationccoiiiiiiiiiiiiiiiiinnnn... 16-5
Peripheral Allocationcciiiiiiiiiiiiiiiiiniinnn... 16-8
Automatic Program Bootstrappingccciiiiiiiiinenn.... 16-9
Disabled Programmingcoeuiiineenennernnenneennennnns 16-9
Broadcast Messagecovvit ittt ittt ittt ettt 16-10
Foreground and Background Processingc.covuvunn... 16-10
Background Terminal Printer Operation 16-12
Global Partitionsc.ciiiiiiiiiiinii ittt 16-13
Global Program Text ittt 16-14
Local Variables Referenced in a Global Partition 16-15
Nesting Global Subroutines i i, 16-15
Some Programming Considerations for Global Program Text 16-16
Global Variablescciiiiiiiiiiiiiiiiiiiiiiiiinnennn. 16-18
Declaring Global Variables in a Nonglobal Partition 16-19
Using Global Variables for Task Control 16-20
Further Details on Global Partitions 16-21
Terminal Connect/Disconnect Detection 16-29
Multiuser Language Features, 16-29
BB REAKttt i ettt 16-31
BCLOSE ...ttt ittt e 16-32
DEFFN @PARTcuiitiiiititittntnetnenananaanaenannnn. 16-33
SDISCONNECT . ..ottt ittt ettt et itttateeeeeeennnnn, 16-35
Terminal Connect Detection 16-35
Terminal Disconnect Detection 16-37
5 10 16-39
B G ..ttt 16-43
BOPEN 16-44
BP ST AT ... 16-46
SRELEASE PARTottt et e 16-49
$SRELEASETERMINAL0outiitieee it 16-51
SELECT@PART e et 16-52

Contents (continued)

Programming Considerationsc..cvieiiiraaneeinreenans 16-53
General Programming Considerationscooeeeeeeeen 16-63
Considerations for Time-Dependent Programscccovenne 16-54
T/O Operationso.ceeeeeentemnreanneeenneeeanuaaennecees 16-56
1/O Statement Restrictionsc.coveuviiieiriiiirienaeeenns 16-66
Default Diskk Addressccveeueiuirnernacasnceaeasaanacaces 16-56
Special Features of the 2236 MXE Controllercvviuuinenn. 16-56

Appendix A
Key Codes and Character Sets

Standard Key Codesccvuuineeeenetiinnrnnaeeneacaneenns A-1

Special Key Codescooeuueeenrieiinnnreaaanneeeeceennnnns A-2

Character Setscovvriiireteeeeneenenenetenasaeasossasacnennns A-4

Appendix B
Error Messages and Recovery

(000 w7 = AR B-1

Miscellaneous EITorsccvtiiiiiiirenneneeneeonecenncannanns B-2

Syntax BITOTSvvvttttiieeeeeceeeetneannaaasaseaenns B-3

Program Errorsc.eiiiuiieteetiiiiiiiiitiaaiiataananes B4

Computational Errors, B-7

Execution EXrorsccoiiiiiiiiiierenenenaaneaesacancaecnnns B-8

DASK BITOTS - - o o oottt ettt ieeeaeaeeeaeeeeenannnnnneennnnnns B-9

V00 3 ¢ o5 - SO B-10

Appendix C
Compatibility With 2200 Series Cpu’s

OV VI W & o ittt neteieenaseeseaeenenneneenenenaensaasnsans C-1

Wang Basic Language Features not Supported in Basic-2 C-2

Incompatibilities Resulting From Design Changes C-2

Language-independent Incompatibilities C-5

Incompatibilities With Vp Basic-2 coiiiin. C-5
Restrictions Imposed by Multiuser BASIC-2 C-6

xvi

Contents (continued)

Appendix D
Device-Addresses
Figures
Figure 3-1. Examples of Control Codesccouuuun... 3-2
Figure 3-2. The Display Attributes 34
Figure 3-3. HighlightingKeyWords 3-5
Figure 3-4. Using HEX(OF)uiiiirtineriieineinaennnnnnn. 3-6
Figure 3-5. Selecting Another Attribute 3-7
Figure 3-6. Testing Isolated HEX(OE)c.covvuvunnn... 3-8
Figure 3-7. UsingIsolated HEX(0E)ccvviiiniinnnnnn... 39
Figure 3-8. Division of a CharacterSpace 3-11
Figure 3-9. Box Graphic Line Placement Relative to Character Position . 3-12
Figure 3-10. Box Graphic Line Placement Relative to Graphic Character Set 3-13
Figure 7-1. Sample Device Table Screen 7-9
Figure 12-1. The Catalog Index Listing 12-5
Figure 12-2. Logical Record Consisting of One Sector 12-8
Figure 12-3. Two One-Sector Logical Recordsccoo..... 129
Figure 12-4. Logical RecordsinTEST-1cciieuvnnnnnnnn.. 12-12
Figure 14-1. Simplified Merge Sequencec.cccvuvuunnn... 14-5
Figure 14-2. Control-Variable Prior to Beginning MAT MERGE 14-7
Figure 14-3. Control-Variable Following Termination of
MAT MERGE DuetoEmptyRow 14-8
Figure 14-4. Simplified Sort Sequencec..cvvina.... 14-18
Figure 15-1. Schematic of Input and Output Strobes for the
Model 2250 I/O Interface Controller 15-2
Figure 16-1. Memory Bank Organization 16-6
Figure 16-2. The Universal GlobalArea 16-7
Figure 16-3. A Multibank System Configuration 16-7
Figure 16-4. Two Partitions Accessing Global Program Text 16-14
Figure 16-5. Nesting Global Subroutines 16-16
Figure 16-6. Variable Table Entries in Global and Nonglobal
Partitions for Global and Local Variables 16-19
Figure 16-7. Use of Text Pointer and Stack to Control Flow of
Execution Following a Subroutine Call 16-23
Figure 16-8. The Pointer Table, 16-24

xvil

Contents (continued)

Figure 16-9. Job Flow Between Originating Partitions and

Global Partition cvvvveernerenenaanseeenaanaanens 16-25
Figure 16-10.Pointer Table for Partition #2 Following Master

Initializationcooieveererereneneaasatonnanaaanns 16-25
Figure A-1. The Default Font Character Setc.c0en A4
Figure A-2. The Alternate Font CharacterSetoo0vees A-5

Tables

Table 2-1. EditingFunctions 2-3
Table 3-1. Cursor Controlscoivuiiniiiiiiiennanneenes 3-2
Table 4-1. System-Defined Numeric Functions 4-6
Table 4-1. System-Defined Numeric Functions (continued) 4-7
Table 4-2. Special-Purpose Numeric Functions 4-13
Table 5-1. BOOLhA Logical Functionsc.coviiiinien.nn 5-14
Table 5-2. Format-Character Definitionscoivann 5-26
Table 7-1. Default Addresses for Primary I/O Devices 7-8
Table 9-1. SELECT ERROR ReturnValuesco.0n 9-8
Table 10-1. BASIC-2 System Commandsc.cciveniennnnn. 10-1
Table 10-1. BASIC-2 System Commands (continued) 10-2
Table 11-1. General-Purpose BASIC-2 Statements 11-1
Table 11-1. General-Purpose BASIC-2 Statements (continued) 11-2
Table 11-1. General-Purpose BASIC-2 Statements (continued) 11-3
Table 11-2. Binary Values for HEXPACK Characters 11-35
Table 11-3. Valid Field Specifications, 11-67
Table 11-4. Valid Delimiter Specifications 0 11-11
Table 11-5. Valid Field Specifications 3o, 11-11
Table 12-1. Sector Address Mode Statements and Commands 12-16
Table 13-1. MatrixOperations i, 13-1
Table 14-1. Values of Sign Bits and Their Meanings 14-15
Table 14-2. Decimal and Decimal Complement Forms 14-15
Table 15-1. Legend™ot 15-20
Table 15-2. Summary Microcommand Categories 15-21
Table 15-3. Single Address Strobe e 15-21
Table 15-4. Control Microcommandscieitenieenenennn 15-22
Table 15-5. Single Character Output Microcommands 15-24
Table 15-6. Single Character Input Microcommands 15-25

xviii

Contents (continued)

Table 15-7. Multicharacter Output Microcommands 15-26
Table 15-8. Valid CHECK T Codes for Table 15—-7 15-27
Table 15-9. Valid LEND Codes for Table 15-7 15-27
Table 15-10. Multicharacter Input Microcommands* e 15-28
Table 15-11.Valid CHECK T Codes for Table 156-10 15-29
Table 15-12. Valid LEND Codes for Table 1510 15-29
Table 15-13. Register Usagecciiiiiiiiiiiiiiiiennnnnanann 15-30
Table 16-1. Functions of Pointer TableItems 16-27
Table 16-2. Statements Which Modify the Pointer Table 16-28
Table 16-3. Multiuser Functionscoviiiineneennnanennnn 16-30
Table 16-4. Devices to Which BASIC-2 Statements Communicate 16-55
Table A-1. BASIC-2 Standard KeyCodescooviiienn... A-2
Table A-2. BASIC-2 Special KeyCodescoiiiiiuin.n. A3

xix

Preface

This manual is designed as a primary resource for using the BASIC-2 language
on Wang computer systems. Users unfamiliar with the BASIC language are
encouraged to refer to a standard textbook for an introduction to the language.

Throughout this manual, a general format accompanies each description of a
command or statement. When more than one specific arrangement is permit-
ted, there are separate numbered formats. Within a format, key words, connec-
tives, and special characters appear in proper sequence. Unless otherwise
stated, you can use only the sequence shown.

This manual uses the following conventions to define and illustrate the compo-
nents of BASIC-2 program statements and commands:

e Uppercase letters (A through Z), digits (0 through 9), and special charac-
ters (such as *, /, +) must always be used for program entry exactly as
presented in the general format.

e All lowercase words represent information that you must supply.
Example:
In the following statement, you must supply the line-number.
GOTO line-number

e When braces, { } enclose a vertically stacked list in a portion of a format,
you must select one of the options within the braces.
Example:

expression
ON
alpha-variable

e Brackets, [] indicate that the enclosed information is optional. When
brackets contain a vertical list of two or more items, you can use one or
none of the items.

Example:
LOAD RUN [filename]

XX

¢ The presence of an ellipsis (...) within any format indicates that the unit
immediately preceding the notation can occur one or more times in suc-
.cession.

o Example:

COM com-element [,com-element]

e When one or more items appear in sequence, these items or their re-
placements must appear in the specified order.

xxi

Overview

PPN N NN YYIY
R Y PP VYV YN YN YIrYYY,
N PPNy rYYrIYYY,
PP Y YNNIy,
PP IIENES VN YY
s s VORI,
PPN YY, VWYY
RPN, VNP
R VPRI, "YYYYY
A PP PPN oYY,
LSS SIS

VAR AR AV AV AV AV SV AV AV AV SV S GV SV AV v 4V 4
A A A A A A R e e avd

Introduction

BASIC-2 is a high-level programming language designed for interactive pro-
gramming and ease of use. Many extensions and enhancements are included in
BASIC-2 to facilitate the tasks of writing, documenting, and debugging pro-
grams and to provide flexible language capabilities for a wide range of applica-
tions. BASIC-2 includes features that support system operation.

Multiuser Operation

BASIC-2 allows several users to share a single computer efficiently. The oper-
ating system divides the resources of the computer (i.e., memory, peripherals,
and CPU time) among the users. Memory in the system is divided into a num-
ber of sections, called “partitions,” each of which can hold a separate BASIC-2
program. Once each user has been allocated a share of the resources, the oper-
ating system acts as a monitor, allowing each user to use the system in turn
while preventing individual users from interfering with each other.

Most of the discussion in this manual is from the perspective of the operation of
a single BASIC-2 program in a partition. Refer to Chapter 16 for a detailed

discussion of multiuser operation.

Introduction 1-1

Interpretation Process

BASIC-2 analyzes each line syntactically as it is entered and compacts it into a
smaller, more easily interpreted form. By distributing interpretation between
entry time and run time, BASIC-2 significantly accelerates program develop-
ment.

Editing Features

Editing features and system commands enable direct keyboard control of the
development and execution of BASIC-2 programs. Extensive debugging fea-
tures help to identify and isolate possible areas of program failure. In addition,
a number of one-line, immediately-executable BASIC-2 statements provide a
quick and convenient means of performing arithmetical calculations.

Compatibility Features

Software compatibility was the principal goal in the design of BASIC-2. BA-
SIC-2 includes nearly all the capabilities of single-user VP BASIC-2. However,
several language features have been added to BASIC-2 in order to support the
multiprogramming environment. BASIC-2 also includes debugging capability
and a few other language enhancements not found in VP BASIC-2. In addition,
BASIC-2 supports earlier Wang BASIC syntax, providing a significant degree of
compatibility with systems that use Wang BASIC. For the Wang Professional
Computer (PC) Series, Wang offers PC BASIC-2, a language highly compatible
with BASIC-2.

Types of BASIC-2 Instructions

1-2

BASIC-2 consists of various language elements, including statements, com-
mands, operators, and system-defined functions. Of these, the two most impor-
tant classes of instructions are statements and commands. Statements are
programmable instructions used to write programs. Commands control system
operations. Operator and system-defined functions construct numeric or alpha-
numeric expressions within a statement.

System Commands

System commands are instructions that allow you to control major system
functions directly from the keyboard. Commands enable you to perform func-
tions such as initiating program execution, clearing system memory, listing the
program in memory, and renumbering the program in memory. The system
executes commands immediately after entry; commands are not stored in mem-
ory as part of a program.

Introduction

Statements

A statement is a programmable instruction that serves as the fundamental
building block of programs written in BASIC-2. Every line in a BASIC-2 pro-
gram consists of one or more statements; each statement directs the system to
perform a specific operation or sequence of operations. In most cases, a state-
ment includes one or more expressions that provide the information to be oper-
ated on by the system. An expression can consist of numeric or alphanumeric

- data, variables containing such data, or a combination of functions or operators
and data.

BASIC-2 statements are divided into two groups: executable and nonex-
ecutable. Executable statementstdirect the system to perform certain tasks
during program execution. Nonexecutable statements initiate no system action
when encountered during program execution. These statements, such as COM,
DATA, and REM, provide the system with information or aid in program docu-
mentation.

BASIC-2 Statements and Program
Execution

The system generally processes BASIC-2 statements as a sequence of numbered
lines within a program. However, certain BASIC-2 statements function inde-
pendently of a program context and can be executed individually. BASIC-2
defines the former operating mode as Program mode and the latter as Immedi-
ate mode.

Program Mode

A BASIC-2 program consists of one or more numbered program lines, each
consisting of one or more statements. Program lines are not executed immedi-
ately upon entry but are stored in memory for execution at a later time.

A line number consisting of one to four digits must preface all program lines.
The legal range of program line numbers is from 0 to 9999. Line numbers with
fewer than four digits do not need to be padded with leading zeros, although
this is not illegal. For example, the following lines are equivalent:

0010 PRINT A+B-5

10 PRINT A+B-5
Execution of a BASIC-2 program always proceeds in line number sequence from
the lowest numbered line through the highest numbered line unless the normal
sequence of execution is altered by a program branch instruction. However,
program lines can be entered in any order. When you enter a new line having a
unique line number, the system automatically inserts the line into proper line
number sequence in the program residing in memory.

Introducton 1-3

1-4

Immediate Mode

Immediate mode lines, unlike program lines, are not permanently stored in
memory for subsequent execution as part of a program. Rather, the system
executes these instructions immediately upon entry. When you enter a new
Immediate mode line or program line, the system deletes the last entered Im-
mediate mode line from memory.

Although BASIC-2 statements are by definition programmable instructions, you
can execute most statements in Immediate mode by entering them without a
preceding line number and then pressing RETURN. All system commands,
including those that control the loading, running, editing, debugging, and sav-
ing of programs, belong to the group of statements that can be executed in
Immediate mode.

The PRINT statement, which displays the results of evaluating an expression,
can be used in Immediate mode. Using the PRINT statement in Immediate
mode makes the system a powerful on-line calculator.

For example, the following statement evaluates the expression and displays the
result on the screen:

PRINT 150 + 350 + 500

Immediate mode lines can be elaborate programs, but they must be self-
contained. An Immediate mode line cannot transfer program execution to
numbered program text. Therefore, statements that reference program line
numbers are not allowed in Immediate mode. Also, the following statements
cannot be executed in Immediate mode.

DATA ERROR INPUT READ
DEFFN GOSUB LINPUT RETURN
DEFFN’ GOSUB’ ON GOSUB/GOTO

Note: Execution of an Immediate mode PRINT statement does not affect
the contents of variables in memory, even if those variables are referenced
in the PRINT statement. However, other Immediate mode statements (in
particular, assignment statements) can alter the contents of variables in
memory. Variables these statements reference should be carefully se-
lected, since the alteration of one or more variables can affect the opera-
tion of the program currently in memory.

Introduction

Multiple-Statement Lines

BASIC-2 permits the specification of more than one statement on a program

line or in an Immediate mode line. Individual statements on the same line

must be separated by colons. For example, the following three program lines
10 A = A+l ‘ -

20 PRINT A
30 GOTO 100

can also be written in a single line as
40 A = A+l: PRINT A: GOTO 100

Line 40 contains three separate gstatements that instruct the system to add 1 to
the value of A, print the value o%A, and branch to Line 100. The statements in
Lines 10, 20, and 30 perform the same task.

The use of multiple-statement lines allows program statements to be logically
grouped for more readable programs. You can also execute multiple-statement
lines in Immediate mode. For example, the following statement displays the
natural logarithms of the integers 1 through 10:

FOR I = 1 TO 10: PRINT LOG(I): NEXT I

Phases of the Language Processor

The system accomplishes the entry and execution of a BASIC-2 program or
Immediate mode line in three distinct phases: Entry phase, Resolution phase,
and Execution phase. During each phase, the system performs a specific set of
actions and checks for certain types of errors.

Entry Phase

Entry phase occurs as soon as the system enters a program line or Immediate
mode line. During entry phase, the system checks the entered line for such
local syntax errors as misspelled key words and erroneous punctuation. Only
the entered program line is checked, not its surrounding context. If the line
contains an error, the screen displays an appropriate error number or message.

The system saves in memory all entered lines, correct or otherwise, and con-
denses the line into a form that uses significantly less storage space and exe-
cutes faster than the original form. The need for separate source and object
files is thereby eliminated. When you recall a line for inspection or correction,
the system automatically regenerates the original source text from its con-
densed form.

Introduction 1-5

1-6

Resolution Phase

Resolution phase occurs when you execute an Immediate mode RUN or LOAD
RUN command or a Program mode LOAD or LOAD RUN statement. During
Resolution phase, the system sequentially scans the entire program for overall
consistency. The system performs such tasks as checking that statements
throughout the program are in the proper sequence, testing the validity of all
program references, and ensuring that arrays are properly defined.

" If the entire pass is error-free, program execution begins immediately. If the

system detects an error, the screen displays an error number or message, pro-
gram resolution ceases, the program is unresolved, and the system returns to
Entry phase. Only after a program undergoes error-free resolution does the
system enter Execution phase.

Execution Phase

During Execution phase, the system executes program lines in line number
sequence, unless program execution is transferred out of the normal sequence
by a branch statement (e.g., GOTO, GOSUB, FOR...NEXT). Program execution
continues until one of the following conditions occurs:

e The system executes a STOP statement, an END statement, or the last
statement in the program.

e An error occurs (unless the error termination is suppressed with the
SELECT ERROR or ERROR statement; refer to Chapter 8). ‘

¢ You press HALT or RESET.

Introduction

. .

oo

NNNT L

SIS ST S s
.’-,/////// SIS S S
S S

R S N YYD

sty s Ssss

’ A S S R e N
A S T P YN s
N S PP VIV (A
A S PP s Sss s
PPN S ss

RNy rrYrryy
SRR RN Y Y Y Y YYYY,
PSS IS,

Editing and Debugging

Overview

The BASIC-2 language offers a variety of useful editing and debugging fea-
tures. The editing capabilities of the system enable the programmer to edit
program lines, Immediate mode lines, and data values during and after entry.
Additionally, the debugging features of BASIC-2 facilitate the tasks of identify-
ing and isolating bugs in a BASIC-2 program.

Line Entry

When BASIC-2 is ready to accept program lines and Immediate mode text, the
colon (:) prompt is displayed in the first column of the next screen line; the
cursor appears directly to the right of this colon. As you enter text, the cursor
always appears one character beyond the most recently entered character.
Lines being entered can span several CRT lines. If a line is entered longer than
a CRT line, the cursor automatically advances to the beginning of the next CRT
line.

Pressing RETURN terminates the entry of a line. This action passes control to
the system, which then processes the line. If the entered line is a numbered
program line, it becomes part of the program in memory. If the entered line is
an Immediate mode line, it is executed and saved for possible recall.

Editing and Debugging 2-1

Spaces

Spaces can be included within a program line to enhance readability, but they
are not necessary for the system to interpret the line.

Maximum Line Length

The maximum length of line that can be entered is determined by the amount
of memory available for buffering the line. If you attempt to type more charac-
ters than this maximum, the system emits a beep and does not accept any
additional text until you press RETURN.

Upper/lowercase Entry

With BASIC-2, program lines can be entered in either uppercase or lowercase
characters. Lowercase characters are automatically converted to uppercase
when the line is entered. However, lowercase characters within REM state-
ments, Image (%) statements, and literal strings enclosed in quotes are not
translated to uppercase. For example, if the following line is entered:

100 rem print title: print at(0,10); “Summary of New Features”
it is converted to:
100 REM print title: PRINT AT (0,10); “Summary of New Features”

Line Editing

2-2

A line being entered can be edited by positioning the cursor at the desired char-
acter and deleting, inserting, or overtyping characters. When editing a line, the
system makes all changes to a copy of the line. No changes are made to the
actual line until RETURN is pressed.

If an error is discovered in a line that has already been entered, the line can be
recalled. If the last entered line is an Immediate mode line, pressing EDIT
then RECALL recalls that line for editing. If a program line is to be edited, the
line number of the program line is entered before pressing RECALL. These
procedures retrieve the line from memory and displays it on the screen. The
line can then be edited and reentered by pressing RETURN.

Edit Keys and Their Operation

Table 2-1 describes the editing functions performed by various keys in BA-
SIC-2.

Editing and Debugging

Table 2-1.

Editing Functions

Key
EDIT

East cursor control
key —

East five cursor
control key (—)

West cursor control
key ()

West five cursor
control key (¢ —)

North cursor control
key (T)

BEG cursor control
key

South cursor control
key (1)
END cursor control

key (1)
INSERT

DELETE

BACKSPACE
Space bar

ERASE
SHIFT and ERASE
RETURN

RECALL

Function

The EDIT key on terminals with DE-style keyboards activates and
deactivates the function keys for editing use. Pressing EDIT causes

the system to enter Edit mode, indicated by a blinking cursor. In Edit
mode, the function keys are activated for use in editing. Pressing

EDIT again causes the system to leave Edit mode, indicated by a non
blinking cursor. When not in Edit mode, the function keys are not available
for edit functions. Note, terminals with DW-style keyboards have dedicated
editing keys and do not need to use the function keys for editing.

Moves the cursor one position to the right (or to the beginning of the next
screen line whenthe cursor is on the 80th character of a line), as long as
this does not move the cursor out of the current program or Immediate
mode line.

Moves the cursor five positions to the right, as long as this does not move
the cursor out of the current program or Immediate mode line. On a DW-
style keyboard, SHIFT with the East key performs this function.

Moves the cursor one position to the left (or to the end of the previous
screen line when the cursor is on the first character of a line), as long as
this does not move the cursor out of the current program or Immediate
mode line.

Moves the cursor five posttions to the left, as long as this does not move
the cursor out of the current program or Immediate mode line. On a DW-
style keyboard, SHIFT and the West key performs this function.

Moves the cursor up one screen line, as long as this does not move the
cursor out of the current program or Immediate mode line.

Moves the cursor to the beginning of the current line. On a DW-style

keyboard, pressing SHIFT and the North cursor control key performs this
function.

- Moves the cursor down one screen line, as long as this does not move

the cursor out of the current program or Inmediate mode line.
Moves the cursor to the end of the current line. On a DW-style keyboard,
pressing SHIFT and the South cursor control key performs this function.

Inserts a blank character at the current cursor position. All text to the
right of the cursor moves over one position to the right, with the 80th char
acter on a screen line moving to the beginning of the next screen line.

Deletes the character at the current cursor position. All text to the right of
the cursor moves over one position to the left, with the first character on a
screen line moving to the end of the previous line.

Replaces the character to the left of the current cursor position with a
blank. The cursor then moves one position to the left.

Replaces the character at the current cursor position with a blank. The
cursor then moves one position to the right.

Deletes all text from the current cursor position to the end of the line.
Deletes the entire line of text in which the cursor is positioned.

Enters a line of text. The colon then appears, prompting you to enter an
other line of text.

Recalls a specific program line or last entered Immediate mode line.

Editing and Debugging 2-3

Program Development

2-4

BASIC-2 facilitates program development through the following methods:
¢ Replacing lines
¢ Deleting lines
¢ Renumbering program lines
¢ Combining program lines

Replacing Lines

To replace an existing program line with a new line, enter the new line with a
line number identical to that of the original line and press RETURN. This
procedure removes the original line from memory, replaces it with the new line,
and displays the message “Replaced” on line 25 of the screen.

Example:
To replace line 20,

10 INPUT A,B
20 PRINT SQR(A*B):_

Enter a new line with line number 20. This replaces the existing line 20 with
the new line.

:20 PRINT LOG(A) + LOG(B)

Deleting Lines

To delete a program line from memory, enter only the line number and press
RETURN.

Example:
The following entry deletes Line 20 from memory.
:20

If it is necessary to delete entire sections of a program, you can delete a series
of program lines by executing an Immediate mode CLEAR P command. For
additional information, refer to the discussion of the CLEAR P command in
Chapter 10.

Editing and Debugging

Renumbering Program Lines

To change the line number of a specific program line, Recall the line, move the
cursor to the beginning of the line, and edit the line number. Because the ed-
ited line has a new line number, it is saved in memory as a new line, or re-
places any existing line with the same line number. However, the original line,
with the original line number, is not automatically deleted from memory. For
example, if Line 20 is recalled and its line number is changed to 30 and saved,
both Lines 20 and 30 (identical except for different line numbers) are stored in
memory. The original line (Line 20) can be removed only if you delete it or
replace it with a new Line 20.

The Immediate mode RENUMBER command renumbers individual lines or an
entire program, automatically moving renumbered text from the original loca-

tion and inserting it in proper sequence. RENUMBER also allows you to spec-
ify the increment between successive line numbers. This enables you to leave
adequate space between successive lines for inserting of new program text.

RENUMBER also automatically changes all program references to line num-
bers in GOTO, GOSUB, and IF..THEN statements in accordance with the new
numbering scheme. Refer to Chapter 9 for a detailed description of the RE-
NUMBER command.

Combining Program Lines

To combine two or more program lines in memory into a single program line,
perform the following procedure:

1. Recall a program line by entering the line number and pressing EDIT
then RECALL.

2. Enter a colon (¢) at the end of the program line, followed by the line
number of the program line that is to be added to the end of the cur-
rently displayed line.

3. Press the EDIT then RECALL keys. This recalls the specified line from
memory and adds it to the end of the currently displayed line. This
procedure can be repeated to combine multiple lines into a single, com-
plex line.

4. Press RETURN to store the new line in memory. The new line replaces
only the first recalled line in memory, because the new line has the line
number of the first recalled line. When you save the new line, the sys-
tem does not delete from memory any of the program lines that were
recalled and added to the original line. To delete each of these lines,
enter each line number and press RETURN.

Editing and Debugging 2-5

B RPPEIP E

Example:
The following two lines exist in memory:

10 INPUT A,B
20 PRINT A*SQR (B)

To add Line 20 to the end of Line 10, recall Line 10 and enter “:20” at the end.
10 INPUT A,B:20_

To combine Line 20 with Line 10, press RECALL.
10 INPUT A,B: PRINT A*SQR(B)_

When you press RETURN, the new extended version of Line 10 replaces the
original Line 10 in memory. Line 20, however, is not affected, as the following
listing discloses:

:LIST

10 INPUT A,B: PRINT A*SQR(B)
20 PRINT A*SQR (B)

To delete Line 20, enter the line number and press RETURN.

Program Debugging Features

2-6

The process of locating and identifying errors in a BASIC-2 program requires
you to analyze the performance of the program at critical stages in execution.
To aid you in this task, the system provides the following debugging tools:

o Descriptive error messages

¢ Stopping and resuming program execution
¢ Halting and stepping through a program

e Tracing through a program

e Listing and cross-referencing a program

Descriptive Error Messages

The system automatically scans program text for errors during program entry,
resolution, and execution. When the system encounters an error, it displays the
erroneous line and an arrow points to the approximate position of the error. On
the next line, an error message is displayed. The error message includes the
word “ERROR?, the error number, and an explanation of the error condition.

Editing and Debugging

For example:
DATALOAD $c #1, X,A$

ERROR D80: File Not Open

If the system detects an error during text entry, it stores the erroneous line in
memory. If the system encounters an error during program resolution or execu-
tion, it immediately terminates resolution or execution. The system stops error
scanning when it encounters the first error. If a line contains more than one
error, the system detects and reports only the first error. Refer to Appendix B
for a list of errors and suggested recovery procedures.

Stopping and Resuming Program Execution

When you are debugging a program, it is helpful to stop program execution at a
particular point to examine and modify the values of critical variables. Execu-
tion of a STOP statement in a program suspends program execution and dis-
plays the word STOP, optionally followed by a user-supplied message and/or
the line number of the STOP statement.

Strategic placement of STOP statements enables you to monitor the perform-
ance of a program at critical points. Upon execution of a STOP statement, you
can examine the current values of variables with an Immediate mode PRINT
statement and modify them to observe the effect on subsequent processing.
There is no limit to the number of STOP statements a program can contain.

BASIC-2 allows a program stopping point to be set from Immediate mode.
STOP, when used in Immediate mode, sets a stop point at the specified pro-
gram line. Subsequently, when a program is run, execution of that program
stops just before the specified line is to be executed, as if the STOP statement
were the first statement of that line.

To resume program execution following a STOP statement, issue a CONTINUE
command. The CONTINUE command restarts execution at the statement
immediately following the STOP statement, provided you do not modify pro-
gram text. Refer to Chapters 10 and 11 for additional information on the CON-
TINUE command and STOP statement, respectively.

Halting and Stepping Through a Program

You can halt program execution after the currently executing statement by
pressing HALT. At this time, you can examine the values of critical variables
with an Immediate mode PRINT statement and, if necessary, modify the values
of variables. '

You can also step through program execution one statement at a time by re-
peatedly pressing HALT. Each time you press this key, the system lists and
executes the next statement before halting. In this manner, you can closely
observe the action taken by a program following execution of each statement.

Editing and Debugging 2-7

When halting and stepping are no longer necessary, execution of a CONTINUE
command resumes normal program execution. Refer to Chapter 10 for addi-
tional information on the HALT and the CONTINUE commands.

Tracing Through a Program

Trace mode allows you to monitor certain critical operations. The TRACE
statement turns on Trace mode; the TRACE OFF statement turns off Trace
mode.

In Trace mode, the system automatically outputs the variable name and value
each time a new assignment is made and the line number to which execution is
transferred each time a branch is made. You can obtain a more comprehensive
picture of what is happening in the program by stepping through program
execution while in Trace mode.

To produce a printed copy of the Trace output, select the printer for Console
Output operations prior to executing TRACE. You can use the SELECT P
statement to slow the rate at which output is displayed on the screen. Refer to

Chapter 7 for information on selecting devices for Console Output and selecting
pauses; refer to Chapter 10 for information on the TRACE statement.

Listing and Cross-Referencing a Program

The LIST command has a variety of forms that provide listing and cross-refer-
encing capabilities. These forms include the following:

e LIST produces a listing of all or selected portions of program text in
memory.

e LIST D produces a formatted listing of all or selected portions of pro-
gram text. A formatted listing prints each statement of a multiple-state-
ment line on a separate line.

e LIST T produces a cross-reference listing of all program lines containing
a specified text string.

e LIST # produces a cross-reference listing of line numbers the program
references.

e LIST V produces a cross-reference listing of variables the program refer-
ences.

e LIST DIM and LIST COM lists the currently defined variables and their
values.

e LIST’ produces a cross-reference listing of marked subroutines
(DEFFN’) defined and referenced in the program.

e LIST DT lists the contents of the device table. (Refer toChapter 7.)
The LIST command is discussed in detail in Chapter 10.

2-8 Editing and Debugging

SIS SIS
SIS SIS
SIS SIS SIS
SIS IS IS
VALYV AV AV AN AV N VY VAV avarde
SIS SIS y, VR
SIS IS ST VP
SIS SISl s
SIS SIS sl
SIS AN
SIS IS SIS
JIISIIS SIS SIS IS
SISSS IS IS SIS

Screen Operations

Overview

In addition to normal character output to the screen, BASIC-2 provides control
of cursor movement, character display attributes, box graphics, and alternate
character sets (including character graphics). A BASIC-2 print function, the
PRINT BOX statement, allows easy implementation of the box graphics feature.

All other features are programmed by outputting a series of one or more control
codes to the screen. Although the HEX function is used for most examples in
this chapter, cursor control codes can also be stored and transmitted to the
screen from alpha variables.

The HEX function is a special kind of literal string used to describe one or more
characters in terms of their hexadecimal representation. The HEX codes are
composed of a pair of hexadecimal digits (the integers 0 through 9 and the
letters A through F). There is no limit to the number of characters that may be
described in a single HEX function. Since a HEX literal must describe complete
characters, a HEX literal must consist of an even number of hexadecimal digits.

Any character may be represented by a HEX literal. However, HEX literals
usually are used to describe characters not found on the keyboard or codes that
perform control functions.

Screen Operations ~ 3-1

Screen Control Codes

3-2

The codes HEX(00) - HEX(OF) are reserved by the screen for controlling such
features as cursor movements, display attributes, and alarms. The codes
HEX(OE) and HEX(OF) are used for controlling the character attributes, while
the code HEX(02) introduces the start of a multibyte sequence. The various
uses of these three codes are detailed in the following sections. The code
HEX(00) represents a null action. All remaining codes control cursor appear-
ance and movement.

Cursor Control Codes

The cursor can be positioned at any specified row and column on the screen
with the PRINT AT function. In addition, cursor control codes can be sent to
the screen by using the PRINT HEX function. For example, either PRINT AT
(0,0) or PRINT HEX(01) moves the cursor to the top left corner of the screen.
Table 3-1 lists the available cursor controls.

Table 3-1. Cursor Controls

Function Descrliption

HEX(01) Moves cursor to the home position (top left of the screen)
HEX(03) Clears the screen and moves the cursor to home position
HEX(05) Cursor on

HEX(06) Cursor off .

HEX(08) Cursor left 1 position (nondestructive backspacs)
HEX(09) Cursor right 1 position (nondestructive space)

HEX(0A) Cursor down 1 line (line feed)

HEX(0C) Cursor up 1 line (reverse line feed)

HEX(0D) Cursor to the beginning of current line (carriage return).

HEX codes can be combined in a single statement to perform several functions.
Each function is executed as it occurs in the sequence. For example, the state-
ment HEX(030A0909) will clear the screen and home the cursor (03), insert a
line feed (0A), and indent two spaces to the right (0909). PRINT and PRIN-
TUSING statements automatically issue a carriage return and a line feed if
they are not terminated with a comma or a semicolon.

EXAMPLE 1 - EXAMPLES OF CONTROL CODES

WANG LABORATORIES, INC.

ONE INDUSTRIAL AVENUE

LOWELL, MASSACHUSETTS

WANG LABORATORIES, INC.

ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS

Figure 3-1. Examples of Control Codes

Screen Operations

Character Display Attributes

To highlight information on the screen, BASIC-2 provides display attributes
that can be selected for any character displayed on the screen. The following
display attributes are available: o : :

e Bright — Characters are displayed in high intensity.

e Blink — Characters blink.

e Reverse Video — Characters are dark while the character background
display is light (dark on light).

e TUnderline — Characters are displayed with an underscore.
~)

HEX Codes Used to Invoke Display Attributes

When BASIC-2 starts, the screen displays characters in normal intensity, non-
blinking, normal video (light on dark), and non-underlined (normal intensity).
The power-on default meaning of HEX(OE) is bright, non-blinking, normal
video, and non-underlined.

The display attribute to be used is selected by sending a command of the follow-
ing form to the screen:

HEX (02 04 xx yy OE)

or
HEX (02 04 xx yy OF)

where:

02 04 = The control code sequence that indicates to the
screen that special character display attributes are
to be selected.

xx yy = The HEX codes specifying the display attributes to be
selected, where:

xx = 00 for normal intensity, no blink
02 for bright, no blink

04 for normal intensity, blinking

0B for bright, blinking

yy = 00 for normal video, no underline
02 for reverse video

04 for underline

0B for reverse video, underline

OE or OF = A terminator character that causes the display at
tributes selected by xx yy to be turned on or off;
HEX (OE) turns the selected attributes on, HEX(OF)
turns them off.

Screen Operations ~ 3-3

3-4

There are two ways to code the attribute “blinking.” However, on most termi-
nals, blinking normal-intensity and blinking high-intensity characters both
appear as blinking normal-intensity characters.

Turning on Character Display Attributes

To highlight portions of the display area, you must execute the appropriate
HEX(0204...) sequence before the character or string of characters that require
an attribute is output. A sequence ending in OE, e.g., HEX(020400020E), se-
lects and immediately activates (turn on) an attribute. However, a sequence
ending in OF, e.g., HEX(020402040F), selects an attribute but does not turn it
on. Execute the following program to see the possible display attributes, i.e.,
bright, blinking, underline, and reverse video. Each HEX statement is located
before output to be highlighted, and each HEX sequence ends with an OE.
(Refer to Figure 3-2.)

5 PRINT HEX(03)

10 PRINT “EXAMPLE 2 - THE DISPLAY ATTRIBUTES”

20 PRINT

30 PRINT HEX(020402000E); “THE STAR IS BRIGHT.”

40 PRINT

50 PRINT HEX(020400040E); “PLEASE UNDERLINE YOUR NAME.”

60 PRINT70 PRINT HEX (020400020E); “DO YOU LIKE REVERSE
VIDEO?”80 PRINT 90 PRINT HEX (020404000E); “THE EMERGENCY LIGHT
IS BLINKING.”

100 PRINT HEX (OF)

EXAMPLE 2 - THE DISPLAY ATTRIBUTES.
THE STAR IS BRIGHT.

PLEASE UNDERLINE YOUR NAME.

DO YOU LIKE REVERSE VIDEO?

THE EMERGENCY LIGHT IS BLINKING.

Figure 3-2. The Display Attributes

Screen Operations

If the appropriate code is used, any combination of one or more attributes is
possible. The following HEX sequences and their respective screen displays are
examples of possible combinations of attributes. :

¢ PRINT HEX(020402020E) — Sequence for a bright, reversé_video display.

e PRINT HEX(O204OBOBOE) — Sequence for a bright, blinking, under-
lined, reverse video display.

By placing the HEX(0204...) sequence in the appropriate position, Figure 3-2
could be modified to highlight only the key words that describe an attribute.
Also, instead of using the PRINT statement to insert blank lines between each
displayed sentence, use the control code for line feed, HEX(0A). In Figure 3-3,
notice the changed location of the HEX sequence and the difference between the
two screen displays.

5 PRINT HEX(03)

10 PRINT “EXAMPLE 3 - HIGHLIGHTING KEY WORDS”

20 PRINT HEX (OA)

30 PRINT “THE STAR IS ”; HEX(020402000E); “BRIGHT.”

40 PRINT HEX (OFOA)

50 PRINT “PLEASE ”; HEX(020400040E); “UNDERLINE”; HEX (OF);

” YOUR NAME.,”

60 PRINT HEX (0A)

70 PRINT “DO YOU LIKE THE ”; HEX(020400020E); “REVERSE VIDEO?”
80 PRINT HEX (OFOA)

90 PRINT “THE EMERGENCY LIGHT IS ”; HEX(020404000E); “BLINK-
ING.”

100 PRINT HEX (OF)

EXAMPLE 3 - HIGHLIGHTING KEY WORDS
THE STAR IS BRIGHT.

PLEASE UNDERLINE YOUR NAME.

DO YOU LIKE THE REVERSE VIDEO?

THE EMERGENCY LIGHT IS BLINKING.

Figure 3-3. Highlighting Key Words

Screen Operations 3-5

3-6

Turning off Character Display Attributes

Once turned on, the selected attribute remains in effect until it is turned off.
Since there are several ways to turn an attribute off, first consider the following
example.

5 PRINT HEX(03)

10 PRINT “EXAMPLE 4 - THE USE OF HEX(OF)”; HEX(0A)

20 PRINT HEX(020402000E); “WE HAVE SELECTED THE BRIGHT
ATTRIBUTE.”

30 PRINT “THE LIGHT IS VERY BRIGHT.”

40 PRINT “THE ATTRIBUTE REMAINS IN EFFECT UNTIL IT IS TURNED
OFF."”

50 PRINT “ALL THESE LINES ARE BRIGHT.”; HEX(0A)

60 PRINT “HEX(OF)”; HEX(OF); ” IS USED TO TURN OFF AN
ATTRIBUTE.”

The HEX sequence in Statement 20 selects and activates the attribute “bright
intensity” (normal video, no blink, no underline). Notice how the attribute
remains in effect for as many lines as desired. (Refer to Figure 3-4.) Each of
the four sentences (Statements 20-50) appear on the screen in bright intensity.
In this example, the HEX(0F) in Statement 60 is used to turn off the selected
attribute and restore normal intensity. An isolated HEX(OF) will always turn
off a selected attribute and restore normal intensity.

EXAMPLE 4 - THE USE OF HEX (OF)

WE HAVE SELECTED THE BRIGHT ATTRIBUTE.
THE LIGHT IS VERY BRIGHT. :
THE ATTRIBUTE REMAINS IN EFFECT UNTIL IT IS TURNED OFF.

HEX (OF) IS USED TO TURN OFF AN ATTRIBUTE.

Figure 3-4. Using HEX(OF)

The second way to turn off a selected attribute is to select another attribute. As
demonstrated in the next example, each new HEX(0204...) sequence turns off
the previous attribute.

5 PRINT HEX(03)

10 PRINT “EXAMPLE 5 - SELECTING ANOTHER ATTRIBUTE”; HEX (0A)

20 PRINT HEX (020402000E); “THIS LINE IS BRIGHT.”; HEX (0A)

30 PRINT HEX(020400040E); “OUR SECOND LINE IS UNDERLINED.”

40 PRINT “THIS LINE IS ALSO UNDERLINED.”; HEX (0A)

50 PRINT HEX (020400020E); “NOW WE HAVE SELECTED REVERSE
VIDEO.”; HEX (0A)

60 PRINT HEX (OF); “NORMAL INTENSITY RESTORED.”

Screen Operations

The HEX sequence in Statement 20 selects and activates the attribute “bright
intensity.” Therefore, the sentence “This line is bright.” appears on the screen
in bright intensity. However, the new HEX sequence in Statement 30 selects
and activates the attribute “underline,” thus turning off the bright intensity
attribute. Both Statements 30 and 40 are underlined when displayed on the
screen. Similarly, the HEX sequence in Statement 50 selects and activates the
attribute “reverse video,” thus turning off the underline attribute. Lastly, the
HEX(OF) in Statement 60 turns off the attribute and restores normal intensity.
(Refer to Figure 3-5.)

EXAMPLE 5- SELECTING ANOTHER ATTRIBUTE

THIS LINE IS BRIGHT.
)

OUR SECOND LINE IS UNDERLINED.
THIS LINE IS ALSO UNDERLINED.

NOW WE HAVE SELECTED REVERSE VIDEO.

NORMAL INTENSITY RESTORED.

Figure 3-5. Selecting Another Attribute

Using Isolated HEX (OE)

An isolated HEX(OE) may be used to activate the last attribute selected by a
HEX(0204...) sequence. However, when an attribute is turned on in this man-
ner, the attribute will remain in effect for a maximum of one text line. There-
fore, either an automatic carriage return, a programmed carriage return issued
with a HEX(OD), or a HEX(OF) turns the attribute off. Execute the following
program:

5 PRINT HEX(03)
10 PRINT “EXAMPLE 6 - TESTING ISOLATED HEX(OE)“
20 PRINT
30 PRINT HEX(020400020E); “SELECTING REVERSE VIDEO”; HEX(OF)
40 PRINT
50 PRINT “HOW MUCH OF THIS LINE ”; HEX(OE); “APPEARS IN RE
VERSE VIDEO?”
60 PRINT “NOTICE THAT NORMAL INTENSITY HAS BEEN RESTORED.
WHY?"”
70 PRINT
80 PRINT HEX (OE); “REVERSE VIDEO HAS BEEN REACTIVATED.";
HEX (ODOA) ; “WHAT HAPPENED WHEN WE PROGRAMMED A
CARRIAGE RETURN?”

Screen Operations ~ 3-7

3-8

Statement 30 selects and activates reverse video and then immediately turns
the attribute off after one line. The HEX(0F) statement turns the attribute off
and restores normal intensity. The beginning of Statement 50 appears on the
screen in normal intensity until the isolated HEX(OE) reactivates the reverse
video attribute for the remainder of the line. Since the attribute was activated
by a HEX(OE), the attribute is turned off by the implied carriage return pro-
duced by not ending the statement with a comma or semicolon. Therefore,
Statement 60 appears in normal intensity. The attribute is reactivated with the
HEX(OE) in Statement 80. In this case, the programmed carriage return,
HEX(0D), turns off the reverse video attribute and again restores normal inten-
sity. HEX(0A) in Statement 80 issues a line feed so that the second statement
of Line 80 does not strike over the first statement of Line 80. HEX(0A) itself
does not deactivate the current attribute. In any of these cases, the attribute
also could have been turned off by a HEX(0F). (Refer to Figure 3-6.)

EXAMPLE 6 — TESTING ISOLATED HEX (OE)
SELECTING REVERSE VIDEO

HOW MUCH OF THIS LINE APPEARS IN REVERSE VIDEO?
NOTICE THAT NORMAL INTENSITY HAS BEEN RESTORED. WHY?

REVERSE VIDEO HAS BEEN REACTIVATED.
WHAT HAPPENED WHEN WE PROGRAMMED A CARRIAGE RETURN?

Figure 3-6. Testing Isolated HEX(OE)

The isolated HEX(OE) can be extremely helpful when highlighting portions of
one or more lines that require the same attribute. Consider the following ex-
ample:

5 PRINT HEX(03)

10 PRINT “EXAMPLE 7 - USE OF ISOLATED HEX(OE)”; HEX (0A)

20 PRINT HEX(020400040E); “THIS ENTIRE SENTENCE IS UNDER

LINED.”; HEX (OFOA)
30 PRINT “ONLY THE WORD ”; HEX(OE); “ATTRIBUTE”; HEX(OF); ” IS

UNDERLINED.”; HEX(0A)
40 PRINT “PART OF THIS LINE ”; HEX(OE); “IS UNDERLINED.”

Statement 20 selects and activates the underline attribute for the first line of
output. The beginning of Statement 30 appears in normal intensity without
underline, but the HEX(0E) reactivates the last attribute selected (in this case,
underline). After just one word, the attribute is again turned off and the re-
mainder of the sentence appears in normal intensity. The HEX(0E) in State-
ment 40 then reactivates the underline attribute for the last part of the
sentence. Since a HEX(0E) was used to reactivate the attribute, the underline
attribute will be turned off by the automatic carriage return. (Refer to Figure
3-7.)

Screen Operations

EXAMPLE 7 - USE OF ISOLATED HEX(OE)
THIS ENTIRE SENTENCE IS UNDERLINED.
ONLY THE WORD ATTRIBUTE IS UNDERLINED.

PART OF THIS LINE IS UNDERLINED.

Figure 3-7. Using Isolated HEX(OE)

Special Uses of Alternate Display Attributes
The following list explains special uses of alternate display attributes.
’

1. LISTD

The CPU sends out a HEX(OE) at the beginning of each REM% state-
ment in the program. Thus, comment statements appear in the most
recently selected alternate display attribute.

2. 100 PRINT “PROMPT”;: LINPUT HEX(OE), A$: PRINT A$

The field to be entered appears in the most recently selected alternate
display attribute. When entry is terminated with a carriage return, the
alternate attribute is cancelled, so the PRINT statement prints A$ in
normal intensity.

3. 150 PRINT HEX(OE); “PROMPT”; HEX(0F);
160 LINPUT A$

This time, only the prompt appears in the most recently selected alter-
nate attribute.

Summary of Display Attribute Rules

The following list contains the general rules discussed in the previous sections
for governing the use of display attributes:

1. HEX(02 04 xx yy OE) selects and activates a display attribute. Attrib-
utes activated in this manner are turned off only by HEX(OF) or by
another HEX(0204...) sequence. The attribute is not turned off by car-
riage return, HEX(0D). Therefore it is possible to highlight a portion of
either one or several lines.

2. HEX(02 04 xx yy OF) selects, but does not activate, a display attribute.
Normal intensity is activated instead.

3. An isolated HEX(OE) activates the attribute selected by the last
HEX(0204...) sequence for a maximum of one text line. The attribute
remains in effect until the occurrence of either an automatic carriage
return, a programmed HEX(0D), or a HEX(0F).

4. Rule 1 takes precedence over Rule 3. If an attribute is selected and
activated by Rule 1, a subsequent HEX(0E) will not cause the attribute
to be turned off by the next carriage return.

Screen Operations 39

10.

Selection

An isolated HEX(OF) always turns off the alternate attribute and re-
stores normal intensity.

Screen clear, HEX(03) clears the screen to black but otherwise has no
effect on the meaning of HEX(OE) or the attribute currently in effect.
Likewise, scrolling the screen scrolls in a black line, but otherwise has
no effect on attributes.

Reverse video spaces are white, not black. Zoned format PRINT state-
ments, i.e., PRINT, PRINT TAB, and the third parameter of PRINT AT,
use spaces to clear the screen. These statements will leave white areas
on the screen when reverse video is activated.

The RESET key causes normal-intensity characters to be selected and
HEX(OE) to be defined as high-intensity characters.

The system considers all codes HEX(00) - HEX(0OF) to occupy no space on
the output medium. Thus, attribute selection sequences do not cause
the system to issue automatic carriage returns or throw off the column
count used by TAB and zoned format PRINT statements.

Control codes HEX(00) - HEX(OF) do not have attributes. It is not possi-
ble to change the attribute of a character by passing the cursor through
it with a PRINT AT statement.

of Character Sets

BASIC-2 offers two character sets: the normal character set and the alternate
character set. (Refer to Appendix A.) The following sequence is used for select-

ing either character set.
HEX (02 02 xx OF/OE)
where:
02 02 = The control code sequence that indicates to the

screen that a character set will be selected.

xx = A HEX code specifying the character set to be
selected.

If xx = 00 The normal character set is selected. The
codes HEX(90) to HEX(FF) are underline
versions of characters from HEX(10) to HEX(7F).

If xx = 02 The alternate character set is selected.
The codes HEX(80) to HEX(FF) represent the
graphic characters and symbols.

OF/0E = A terminator character that signals the end of the
character selection sequence.

3-10 Screen Operations

In the character set selection, the following items should be noted:

1. With the exception of the HEX(80) code, the characters represented by
_the codes HEX(10) to HEX(8F) are identical in both the normal and the
‘alternate character set.

2. Inthe altémate character set, .the codes HEX(9C) to HEX(BF) are pres-
ently undefined and reserved for future expansion. Any use of these
codes involves the risk of being incompatible with future use of the
screen.

The 64 graphic characters, HEX(C0) to HEX(FF), are represented by all the
_combinations of sixths of a character space, where the character space is di-
vided as shown in Figure 3-8. When displayed, graphic characters are extrapo-
lated to fill the entire character position. For this reason, adjacent areas of two
graphic characters will touch; thus, continuous lines (bars) of light or dark
areas can be displayed on the screen. When combined with display attributes,
character graphics are useful for the construction of bar graphs, histograms,
and other special displays.

Figure 3-8. Divislon of a Character Space

Summary of Character Set Selection

The rules concerning the use of character set selection can be summarized as
follows:

1. HEX(02 02 00 OF) selects the normal character set. The meaning of
codes HEX(90) to HEX(FF) are defined to be the normal characters
HEX(10) to HEX(7F) with underline.

2. HEX(02 02 02 OF) selects the alternate character set. The codes

HEX(80) to HEX(FF) represent the graphic characters and other special
symbols.

3. Power on and RESET select the default character set.

4. Carriage return does not affect character set selection. The sequences
given in Rules 1 to 3 are the only methods for changing character sets.

5. As with attributes, the character set selection sequences affect the inter-
pretation of characters at the time they are received by the screen.
Therefore, underlined and graphic characters may be used in different
areas of the same display. Once on the screen, a character is modified
only by explicitly striking over it with another character or by screen
clear.

6. All display attributes can be used with both the normal and the alter-
nate character set.

Screen Operations 3-11

Box graphics can also be used for highlighting entry fields as shown in the
following example:

10 PRINT “PROMPT”; BOX(1l, 17);:LINPUT A$

Box Graphics

3-12

By using the PRINT BOX (height, width) statement, one can display continuous
horizontal or vertical lines, enabling forms to be drawn or information to be
separated by lines or boxes. The horizontal line unit is a line segment the
width of a character space but positioned from the middle of one character
space to the middle of the next character space. Horizontal lines are displayed
between rows of characters.

The vertical line unit has the height of a character space. Vertical lines are
drawn through the middle of a character space; the line coexists with the char-
acter at that location.

Note: Since the height and width of a character space are not the same
unit measurement, boxes are not drawn proportionally. However, be-
cause of these measurements, you can easily box fields of characters.

Figures 3-9 and 3-10 illustrate the placement of box graphic lines. Figure 3-9,
which shows the smallest possible box, was produced by the statement PRINT
BOX(1,1); “AB”. It illustrates the placement of horizontal and vertical box
graphic lines relative to the character position. Figure 3-10, which was pro-
duced by the statement PRINT BOX(1,1); HEX(0202020F); HEX(E1CC), dem-
onstrates where box graphic lines appear relative to character set graphic
blobs.

You can consider the screen as both a box graphics display and a character
display that just happen to be displayed on the same screen. While in Charac-
ter mode, only the characters and their attributes are modified while box graph-
ics remain intact. For example, within a boxed area used to highlight a prompt,
the prompt may be rewritten a number of times without altering or erasing the
box itself. The one exception to this rule is screen clear, HEX(03) which clears
both characters and box graphics. During a box graphics sequence, characters
and their attributes are undisturbed.

Because the Character and Box Graphic modes are independent, you can easily
update portions of either display. The third argument of PRINT AT is useful
for clearing portions of the display. Though slower than screen clear, the state-
ment PRINT AT (0,0) is useful for clearing the characters from the screen with-
out disturbing the box graphics.

Figure 3-9. Box Graphic Line Placement Relative to Character Position

Screen Operations

- Figure 3-10. Box Graphic Line Placement Relative to Graphic Character Set

Refer to Chapter 10 for more information on the PRINT BOX statement.

Screen Operations

3-13

A Y Y S A RPN Y Y I YIY,
R S S S N S RN NN

R S S S R R R R YN
SIS
SIS s
A S S s
SIS s
A S R s S
IS s
A Y YR s
LSS SIS
PSS
S A R R R

NN NN NNNN
NONN NN N NN

.

Numeric Operations

Overview

BASIC-2 distinguishes between numeric data and alphanumeric data. The two
types of data are stored in different types of variables. Only numeric data can
participate in arithmetic operations; although the system does provide some
limited binary and packed decimal arithmetic operations, which are performed
on data in alphanumeric format. Alphanumeric data is discussed in Chapter 5;
the binary and packed decimal math features are discussed in Chapter 6.

Numeric Values

The system stores floating-point values in a format containing 13 digits, a sign,
and a signed 2-digit integer exponent. Numeric values can be stored in memory
in the form of a constant or as the value of a numeric-variable. Numeric values
can be values you enter or values the system produces as the result of evaluat-
ing a numeric expression. In any case, the legal range of numeric values that
the system can handle is as follows:

-10100 < value < =10-99, 0, 10-99 < value < 10100

If more than 13 digits are entered for a numeric value, the system1signals an
error and the number is rejected. However, the system ignores leading zeros
before the decimal point. The numeric values you enter from the keyboard can
be specified in either fixed-point or exponential format.

Numeric Operations 4-1

Fixed-Point Format

A numeric value entered in fixed-point format can contain a maximum of 13
digits, a sign, and a decimal point. The system ignores embedded spaces in the

~ value. The sign of the value must precede the digits; unsigned values are re-

garded as positive numbers. If a decimal point is not entered, it is assumed to
be at the right of the last digit. The following examples illustrate legal numeric
entries in fixed-point format:

12.003
+1234567890.123
-.00725

Exponential Format

A numeric value entered in exponential format can contain a maximum of 13
digits, a sign, a decimal point, and a signed 1- or 2-digit exponent that is de-
noted by the letter E. In exponential format, the value is equal to the entered
number times 10 to the power of the exponent. The number must conform to
the rules for fixed-point values. The exponent consists of the letter E followed
by an integer value. The integer value can contain a maximum of two digits.
The sign of the exponent must precede the exponential digits; unsigned expo-
nents are regarded as positive. The following examples illustrate legal numeric
entries in exponential format.

4.56E5
-125021E+10
+23.005E-07
-1.026E-85

Numeric Constants

4-2

A constant is a legal numeric value that appears in a BASIC statement. Con-
stants must conform to the format rules for legal numeric entries detailed in
the section entitled “Numeric Values”. Numeric constants must not be enclosed
in quotation marks since values enclosed in quotes are treated as alphanumeric
character strings rather than numeric values. Constants are simple expres-
sions and can be used wherever numeric expressions are permitted. The value
of a constant is not altered during program execution. In the following state-
ments, the boxed items are examples of numeric constants:

N = 1.256
PRINT 165 *N
K = 5.7001E-03

Numeric Operations

Numeric Variables

Numeric variables store numeric data in memory. Unlike constants, whose
values are fixed and cannot be changed during program execution, variables
can be assigned new values during program execution by a variety of state-
ments.

You must identify each variable with a unique variable name. In BASIC-2,
numeric variable names consist of an an uppercase letter optionally followed by
a digit. The following are examples of legal variable names:

A, X0, Y9
A numeric-scalar variable stores a,single value.

A numeric-array-variable consists of a group of array elements, identified by a
single array name. Each array element can be assigned a single numeric value;
thus, an array can store and process multiple numeric values. Numeric-array-
variable names consist of a single uppercase letter, optionally followed by a
digit, with parentheses enclosing the subscripts.

BASIC-2 defines an array as the array name immediately followed by parenthe-
ses. The following variables represent an entire array:

A(), BO(), 29()

A particular element in an array is identified by specifying its subscript(s) in
parentheses following the array name. The following examples represent an
element of a numeric-array:

T(12,6), C1(55)

A scalar-variable and an array-variable can have the same name since they are
independent variables, but a 1-dimensional array-variable and a 2-dimensional
array-variable cannot have the same name in the same program.

Before referencing or assigning data to variables, you must define and reserve
space in memory for certain variables. You do not need to explicitly define
numeric-scalar-variables; they are automatically defined when first referenced
in a program. However, you must explicitly define array-variables with a DIM
or COM statement. Any reference to an undefined variable results in an error.

Example:

The following statement defines two numeric-arrays: N() is a 1-dimensional
array of 10 elements; Q1() is a 2-dimensional array of 5 rows and 5 columns (25
elements).

DIM N(10), Q1(5,5)

The numbers in parentheses in this case refer not to specific elements but to
the total number of elements in the array. These numbers are called the array
dimensions.

Numeric Operations 4-3

In general, the following rules apply when defining array-variables.

e The numbering of array elements starts at 1 rather than 0. Thus, a
subscript of 0, as in A(0), is not permitted.

e An array can be defined to have one or two dimensions.

e The dimension of an array with one dimension can not exceed 65635;
dimensions of arrays with 2 dimensions cannot exceed 255.

Numeric Expressions

A numeric expression can consist of a single variable or constant or a series of
variables and constants separated by arithmetic operators and numeric func-
tions. Numeric expressions can be evaluated in a variety of BASIC statements.
For example, the assignment (LET) statement evaluates numeric expressions
and assigns the result to a variable; the PRINT statement evaluates numeric
expressions and displays the result on the specified device. The following ex-
amples illustrate numeric expressions.

A=B

PRINT 4*A+B

N = N+SQR (A+B*2)
ON 3*J-1 GOTO 100, 200, 300

Arithmetic Operators

4-4

The following arithmetic symbols or operators perform mathematical operations
in BASIC-2:

+ Addition (“A+B” means “Add B to A”)

- Subtraction (“A-B” means “Subtract B from A”)

* Multiplication (“A*B” means “Multiply A by B”)

/ Division (“A/B” means “Divide A by B”)

T Exponentiation (“A A B” means “Raise A to the power of B”)
A BASIC-2 expression cannot contain two consecutive arithmetic operators.
For example, the following statement violates BASIC-2 syntax and is illegal:

20 PRINT A * -J

Parentheses must be used to separate the operators. Line 20 can be written
correctly with the following statement:

20 PRINT A * (-J)

Numeric Operations

Order of Evaluation

Numeric expressions are evaluated from left to right. For example, the expres-
sion A+B-C is evaluated by adding B to A and then subtracting C from the sum.
When different types of operators are used in an expression, the following pri-
orities in evaluation are observed: o .

1. Exponentiation (T) is performed from left to right.

2. Multiplication and division (*, /) are performed from left to right.

3. Addition, subtraction, and negation (+,-) are performed from left to right.

Altering the Standard 'Order of Evaluation

Parentheses can alter the standard order in which a numeric expression is
evaluated. When parentheses are included in an expression, the portion of the
expression enclosed within parentheses is always evaluated first. Note the
different results obtained in evaluating the following two expressions, which
are identical except for parentheses:

Expression Result

PRINT5*2 T 2 Raise 2 to the 2nd power (=4) and multiply the result by 5. Answer: 20.
PRINT (5‘2)T 2 Multiply 5 by 2 (=10) and raise the result to the 2nd power. Answer: 100.

In constructing expressions, you can nest parentheses within parentheses;
there is no practical limit to the number of pairs of parentheses used in this
manner. The portion of the expression enclosed within the innermost set of
parentheses is always evaluated first.

The use of parentheses can be particularly critical when raising a negative
number to an even power.

Example:

The following statement yields the result -9 because the exponentiation is per-
formed prior to the negation:

30 prINT -3 T 2

To raise -3 to the second power, the statement must be modified by using pa-
rentheses.

30 PRINT (-3) T 2

In this case, the unary negation is performed first and then the exponentiation,
yielding the desired result of 9.

Numeric Operations 4-5

Round/Truncate Option

The results of all arithmetic operations (+, -, *, /,)), as well as the square root
(SQR) and modulo (MOD) functions, are rounded to 13 significant digits. Alter-
natively, results can be truncated to 13 significant digits by executing a SE-
LECT NO ROUND statement.

Once a SELECT NO ROUND statement is executed, all results are truncated to
13 digits. Rounding can be restored subsequently with a SELECT ROUND
statement. Rounding is selected automatically when the system is master
initialized.

Computational Errors

Computational errors can be produced in the course of performing arithmetic
operations or evaluating numeric functions. Usually, when a computational
error other than underflow occurs, the system displays an error message and
terminates program execution. An alternative method of handling computa-
tional errors is available which enables a program to respond to errors under
program control without terminating program execution. This technique in-
volves the use of the SELECT ERROR statement and the ERR function and is
described in detail in Chapter 9.

System-defined Numeric Functioﬁs

The system provides a variety of built-in trigonometric and mathematical func-
tions. These functions are summarized in Table 4-1; those that require a de-
tailed explanation are discussed in the following pages.

Table 4-1. System-Deflned Numeric Functions

Function Meaning Examples
INT(x) Returns the greatest integer INT(13.5) = 13
value of the expression. INT(-5.2) = -6
FIX(x) Returns the integer portion FIX(13.5) =13
of the expression. FIX(-5.2) = -6
ABS(x) Returns the absolute value ABS(7 T 2) =49
of the expression. ABS(-6.536) = 6.536
SGN(x) Returns the value 1 if the SGN(8.15) = 1
expression is positive, -1 if SGN(-.123) = -1
negative, and O if zero. SGN(0) =0
MOD(x,y) Returns the remainder of x/y. MOD(8,3) = 2
MOD(4.2,4) = .2

4-6 Numeric Operations

(continued)

Table 4-1. System-Defined Numerlc Functions (continued)

Function
ROUND(x,n)

RND(x)
SQR(x)

MAX
X,Yse0sZ)

MIN .
(%,Yyee0r2)

LGT(x)
LOG(x)

EXP(x)

#P|
SIN(x)
COS(x)
TAN(x)
ARCSIN(x)
ARCCOS(x)

ARCTAN(x)
or ATN(x)

Meaning

Returns the value of x rounded to the nth
decimal place if n > 0, rounded to the
nearest integer if n = 0, rounded -(n) + 1
places to the left of the decimal pointifn<0.

Produces a random number between O and 1.

Returns the square roo} of the expression.

Returns the maximum value among
the specified expressions or numeric array(s).

Returns the minimum value among
the specified expressions or numeric array(s).

Returns the common logarithm (log base 10)
of the expression.

Returns the natural logarithm (log base e)
of the expression.

Returns the value of e raised to the power

of the expression (i.e., the natural antilog of
the expression).

Assigns the value 3.14159265359.

Returns the sine of the expression.
Returns the cosine of the expression.
Returns the tangent of the expression.
Returns the arcsine of the expression.
Returns the arccosine of the expression.

Returns the arctangent of the expression.

Examples

ROUND(1.234,2) = 1.23
ROUND(5.06,1) = 5.1
ROUND(5.5,0) = 6
ROUND(-3.8,0) = -4
ROUND(-3.2,0) = -3
ROUND(1256,-2) = 1300
ROUND(1256,-1) = 1260

RND(1) = .8392246561935

SQR(1847) = 5
SQR(25) = 5

MAX(1,3,2) = 3

MIN(-6,-3,-1) = -6
LGT(1000) = 3

LOG(3052) =
8.023552392404

EXP(.34*(5-6)) =
7117703227626
EXP(1) = 2.718281828459

4'#P| = 12.56637061436

SIN(#PU3) =
8660254037847
Ccos (693 T2) =
8868799122685
TAN(10) =
6483608274591
ARCSIN(.003) =
3.00000450E-03
ARCCOS(.587) =
9434480794406
ARCTAN(3.3) =
1.276561761684

Numeric Operations

4-7

INT and FIX Functions

The INT function is the greatest integer function, often depicted in algebra with
square brackets (e.g., [5.6]). For integer values, the INT of a value is identical
to the original value (e.g., INT(4) = 4, INT(-3) = -3). For noninteger values, INT
returns the greatest integer that is less than the value.

Examples:

INT(3.8)= 3

INT (6.1)= 6

INT (-2.6)= -3

INT (-2.1)= -3

INT (30)= 30

INT (-30)= -30
The FIX function returns the integer portion of a value. For positive values,
FIX operates the same as the INT function, truncating the decimal portion and
returning the integer. For negative numbers, FIX operates on the absolute
value of the number, truncating the decimal portion and returning the integer.
The true sign of the number is restored following the truncation, allowing the
FIX function to be expressed in terms of the following functions:

SGN (x) * INT (ABS(x))

Examples:
FIX(3.8) = 3
FIX(6.1) = 6
FIX(-2.6) = -2
FIX(-2.1) = -2
FIX (30) = 30
FIX(-30) = =30
MAX and MIN Functions

The MAX and MIN functions can have one or more arguments, each of which is
either a numeric expression or a numeric-array-variable. The MAX function
returns the largest value of the expression or numeric-array-element in the list
of arguments; the MIN function returns the smallest value.

Examples:

This example assumes that the following values exist for a numeric-array and a
numeric-variable.

A(l) = 5
A(2) = 3
A(3) = -10
X = -12

4-8 Numeric Operations

The following values are returned for the given expression:

MAX (A()) = 5
MAX (7, 2! A()) = 17
MAX (3, A()) = 5
MAX (-2*X, A()) = 24
MIN (A()) = =10
MIN (A(), =-50) = =50
MIN (A(), X) = =12

MOD Function

MOD, a function of two expressions, returns the remainder when the first ex-
pression is divided by the second. The MOD function simulates modulo arith-
metic if the second expression has a positive integer value. If the magnitude of
the first expression is significantly greater than that of the second, modulo is
essentially meaningless. Also, if the second expression is 0, MOD returns the
first expression. The MOD function is equivalent to the following expression:

x -y * INT(x/y)

Examples:

MOD (10, 5)
MOD (15, 4)

0
3
MOD (6.2, 6) 2

RND (Random Number) Function

The RND function generates uniformly distributed random numbers with val-
ues between 0 and 1. RND can be regarded as a means of extracting a random
number between 0 and 1 from a fixed list of such numbers. Only two types of
arguments are distinguished by RND: zero and nonzero.

Whenever the RND function is used with a zero argument, it always extracts
the first number from the random number list. If the argument is not zero,
RND extracts the next random number from the random number list. Ifit is
necessary to reuse the same series of random numbers (e.g., when debugging a
program), you can use the RND function with a zero argument to reset the list
to the first random number.

If RND is first executed with a nonzero argument, however, it produces a num-
ber from a random location in the random number list. When the RND func-
tion is executed for a second time with a nonzero argument, it produces the
next number in the list, and so on. As a result, each time RND is executed with
a nonzero argument, it produces a new random number. The value of the RND
argument has, apart from the fact that it is nonzero, no relation to the random
number produced.

Numeric Operations 4-9

4-10

Example:

The following routine prints out the first 100 random numbers in the random
number list each time the program is run. If Line 10 is deleted, the program
produces a different set of random numbers each time it is run.

10 X = RND(0)

20 FOR N = 1 TO 100

30 PRINT RND (1)
40 NEXT N

Following Master Initialization of the system or execution of a CLEAR com-
mand, the first use of RND with a nonzero argument produces a number from
an arbitrary location in the list. Subsequently, a second use of RND with a
nonzero argument produces the next number from the list, and so on. The use
of RND with a zero argument resets the list pointer to the first number in the
list.

On a multiuser system, eachpartition has a list of random numbers. Resetting
the list to the beginning by using RND(0) only affects the partition that exe-
cutes the RND(0).

ROUND Function

The ROUND function rounds a value to a specified decimal or integer position.
ROUND has two arguments. The first argument is the expression whose value
is to be rounded. The second argument is the rounding factor.

Example:

In the following statement, the value to be rounded is 5.374, and the rounding
factor is 2:

ROUND (5.374, 2)

If the rounding factor is not an integer value, its fractional portion is automati-
cally truncated. The rounding factor has a different significance, depending
upon whether its truncated value is greater than, less than, or equal to 0.

A positive rounding factor rounds the value to a specified decimal place (i.e., a
specified position to the right of the decimal point). A rounding factor of 1
rounds the value to the nearest tenth; a rounding factor of 2 rounds the value to
the nearest hundredth, and so on.

Examples:
ROUND (3.6839, 1) = 3.7
ROUND (3.6839, 3) = 3.684

A rounding factor of 0 rounds the value to the nearest integer.

Examples:
ROUND (3.25, 0) = 3
ROUND (-2.2, 0) = -2

Numeric Operations

A negative rounding factor rounds the value to a specified integer place (i.e., a
specified position to the left of the decimal point). In this case, the absolute
value of the rounding factor plus 1 (factor + 1) specifies the integer position for
rounding. In effect, a rounding factor of -1 rounds the value to the nearest ten;
a rounding factor of -2 rounds the value to the nearest hundred, and so on.

Examples:

ROUND (651, -1) = 650
ROUND (651, =-2) = 700
ROUND (-1601, -3) = -2000

The ROUND function is equivalent to the following expressions, where X is the
value to be rounded and N is the,rounding factor:

SGN (x) *INT (ABS (x) *10 T (FIX(n))+.5)/10 T (FIX(n))

SGN (Sign) Function

The SGN function performs a numeric comparison of the argument with zero.
SGN returns a result of -1 if the argument is less than 0, 0 if the argument
equals 0, or +1 if the argument is greater than 0.

Examples:
SGN(.0001) = 1
SGN(-9.76) = -1
SGN (0) = 0

Trigonometric Functions

The trigonometric functions SIN, COS, and TAN and their inverse functions,
ARCSIN, ARCCOS, and ARCTAN, can be calculated in one of three modes:.
radians, degrees, or grads (360 degrees = 400 grads). Trigonometric functions
are evaluated in radians, unless the system is explicitly instructed to use de-
grees or grads. If degrees or grads are required, they must be specified with
the following SELECT statements prior to performing trigonometric calcula-
tions:

SELECT D — Use degrees in all subsequent trigonometric calculations.

SELECT G — Use grads in all subsequent trigonometric calculations.

SELECT R — Use radians in all subsequent trigonometric calculations.

Radian measure is automatically selected upon Master Initializing the system
or when a CLEAR command is issued.

Numeric Operations 4-11

Special-purpose Numeric Functions

412

A second group of numeric functions is available for certain special-purpose
operations. These functions are summarized in Table 4-2. With the exceptions
of the #ID, ERR, SPACE, and SPACEK functions, the remaining special-pur-
pose numeric functions operate on alphanumeric arguments and are described
in detail in Chapter 5. The ERR function is discussed with the error control
features in Chapter 9.

SPACE Function

The SPACE function returns the amount of memory not currently occupied by
program text or data, minus the amount of memory occupied by the value
stack. The value returned represents the actual amount of free space in mem-
ory at any point during execution.

The Value Stack initially occupies zero bytes but expands during program
execution. To determine how much free space is actually available, check the
value of SPACE during program execution when the Value Stack attains its
maximum size. Typically, the value stack reaches maximum size when the
program executes the innermost loop in a series of nested loops.

SPACEK Function

Before memory has been partitioned, the SPACEK function returns the total
amount of available user memory divided by 1,024. For example, a system with
56K of user memory returns SPACEK = 56. After a system has been parti-
tioned, SPACEK returns the size of the partition that executes the SPACEK
function.

SPACE S and SK

SPACE S determines the amount of memory that is not currently occupied by
any partition. This is Ramdisk Memory. SPACE SK returns the total amount
of memory including all allocated and Ramdisk memory. This is the total mem-
ory on the CPU board.

#ID Function

The #ID function returns the value of the CPU identification number (a number
from 1 to 65535). With the #ID function, a program can distinguish one system
from another. This capability is useful in licensing software to specific installa-
tions..

Numeric Operations

Table 4-2. Speclal-Purpose Numeric Functions

Function Meaning Examples

BIN Converts an integer value to a binary number. A$ = BIN(65)

ERR Returns the error code of the last error condition. X=ERR

LEN Determines the length of a character string. X = LEN(A$)

NUM Determines whether or not a character string X = NUM(A$).
Is a legal representation of a BASIC number.

POS Returns the position of the first (or last) character X = POS(A$="$")
in a character string that meets a specified condition.

VAL Computes the decimal equivalent of a binary value. X = VAL(A$)

VER Verifies that a charactef string conforms to a Y = VER(BS,"###")
specified format. =

SPACE Determines the amount of free space available Z = SPACE
in memory.

SPACE K Returns the total user memory size or partition size Z1 = SPACE K

’ divided by 1,024.

SPACE s* Determines the amount of memory that is not Z2 = SPACE S
currently occupied by any partition (Ramdisk Memory).

SPACE SK* Returns the total amount of memory including all Z3 = SPACE SK
allocated and Ramdisk memory.

#ID Returns the CPU identification number. PRINT #ID

Note: * CS/386 ONLY

Numeric Operations

4-13

S LSS s S s ssss
PIIIIISSIS SIS
SISSISIIIIII SIS
VIS IS SIS
SIS P RX
PP ENYY, waEyay
SIS sl
YNy, YW
SIS SIS s ss
SIS SIS DIV,
VIIIIISISS SIS SIS
SIS SIS SIS
SIS SIS

Alphanumeric Strings

Alphanumeric Character Strings

In addition to its capability for manipulating and operating upon numeric val-
ues, BASIC-2 also provides an extensive capability for processing information
in the form of alphanumeric character strings. A character string is a sequence
of characters treated as a unit. A character string can consist of any combina-
tion of keyboard characters, including the letters A to Z, the numbers 0 to 9,
and special symbols such as the plus sign (+), minus sign (-), and dollar sign
($). Characters not found on the keyboard can be represented in the form of
hexadecimal codes. Typical examples of character strings are names, ad-
dresses, and report headings. Character strings are represented in a program
in two basic forms: as the values of alphanumeric string variables or as literal
strings.

Alphanumeric String Variables

Alphanumeric character strings are stored and processed in a type of variable
called the alphanumeric string variable or simply the alpha-variable. The pro-
grammer must identify each variable with a unique variable name. Alpha-
variables consist of an uppercase letter optionally followed by a digit and are
distinguished from numeric-variables by the presence of a dollar sign ($). The
following are examples of legal alphanumeric-variable names:

N$, S0S$, n9s

Alphanumeric Strings 5-1

A numeric-variable and an alpha-variable are different variables that are dis-
tinguished by a dollar sign. Data stored in an alpha-variable can be operated
on with logical operators and alphanumeric functions. It can also participate in
binary or packed decimal arithmetic operations, but it cannot take part in
standard numeric arithmetic operations. Only numeric data can be used in
arithmetic operations. (Refer to Chapter 4 for a discussion of numeric opera-
tions.)

Alpha-variables are of two types: scalar and array. An alpha-scalar- variable
can store a single character string. An alpha-array-variable consists of one or
more array elements, each of which can store a character string. Array-vari-
ables are useful because they enable the programmer to reference a collection of
data with a single array name. (Under certain conditions, the separate charac-
ter strings stored in the elements of an alpha-array can be treated together as a
single contiguous character string. The technique is explained in the section
entitled “Using the Alpha-Array as a Scalar-Variable”.)

Alpha-array-variables can be either 1-dimensional or 2-dimensional arrays. A
1-dimensional array resembles a list because it has a single column of ele-
ments. The dimension of a 1-dimensional array must not exceed 65535. A
2-dimensional array resembles a table because it has both rows and columns of
elements. Dimensions of 2-dimensional arrays must not exceed 255.

BASIC-2 regards scalar-variables and array-variables as different types of
variables. However, array-variables containing different numbers of dimen-
sions are different but related kinds of arrays. This allows the same name to be
used in a program for an alpha-scalar-variable and an alpha-array-variable, but
the same name cannot be used for a 1-dimensional alpha-array and a 2-dimen-
sional alpha-array in the same program. For example, the variable names A$
and A$(5) can both be used in the same program, but A$(5) and A$(6,6) cannot.

Alphanumeric-variable Length

5-2

An alphanumeric-variable identifies a unique location in memory reserved for
the storage of alphanumeric data. During program resolution, the system scans
the program for all variable references and then reserves space for each vari-
able. You use a DIM or COM statement to specify the amount of space re-
served for each variable. The maximum length of an alpha-scalar-variable or of
an element in an alpha-array is 124 characters (bytes), while the minimum
length is one byte in each case. If you do not explicitly dimension an alpha-sca-
lar-variable in a DIM or COM statement, the system automatically reserves 16
characters (bytes) for the variable. Similarly, if you do not specify an element
length when dimensioning an alphanumeric-array, the system automatically
reserves 16 characters (bytes) for each element of the array.

Alphanumeric Strings

The length of an alpha-variable or array element specified in a DIM or COM
statement is called its defined length. In many cases, however, the character
string stored in an alpha-variable does not occupy the entire defined length.
The end of the value of an alpha-variable is usually assumed to be the last
nonblank character. When the value of the alpha-variable is all blanks, how-
ever, its value is assumed to be one blank. Trailing blanks generally are not
considered part of the value of an alpha-variable.

Example:
In the following program, the trailing blanks of A$ are not printed:

:10 A$ = “ABC "

:20 PRINT AS$;”DEF”

:RUN

ABCDEF
The character string stored in an alpha-variable is called the current value of
the alpha-variable. Its length, up to the first trailing blank, is called the cur-
rent length of the variable. The length function, LEN, determines the current
length of an alpha-variable.

Example:

In the following program, the LEN function does not consider trailing blanks to
be part of the value of the alpha-variable.

:10 A$ = “ABCD "

:20 PRINT LEN (A$)

:RUN

4
Most alphanumeric instructions operate on the current length of an alpha-vari-
able. In some cases, however, the entire defined length of the variable can be
used. It is important to understand the distinction between defined length and
current length.

STR Function

The STR (string) function examines or operates on a specific portion of the
value of an alpha-variable. STR permits the programmer to define a substring
of one or more consecutive characters within an alpha-variable. The substring
defined by a STR function can be used wherever alpha-variables are legal.

Alphanumeric Strings 5-3

Example: :
The following examples assume that A$ = “ABCDEFG”:

Statements Results

STR(A$,1,4) Defines a substring beginning with the first byte of A$, four bytes in length.
A$ = "ABCD"

STR(A$,5,3) Defines a substring beginning with the fifth byte of A$, three bytes in length.
A$ = “EFG”

STR(A$,2,2) = “12 Defines a substring beginning with the second byte of A$, two bytes in
length and assigns the characters 12 to these byte positions. A$ =
*A12DEFG”

STR(A$) Defines a substring beginning with the first byte of A$ and ending with the

last byte of A$, including any tralling spaces. A$ = “ABCDEFG "

Example:

:10 A$ = “ABCDEFG”

:20 PRINT STR(A$,1,4)

:30 B$ = STR(AS$,5,3): PRINT B$
:40 STR(AS$,2,2) = “12”: PRINT A$
:50 PRINT STR(AS$);”X"

:RUN

ABCD

EFG

A12DEFG

A12DEFG X

Alphanumeric Literal Strings

5-4

An alphanumeric literal string is a character string enclosed in double quota-
tion marks (” “). Literal strings can be specified as constant data, usually in a
PRINT statement, to create headings or titles.

Example:

In Line 10, the character string “VALUE OF X=" is a literal string that is
printed exactly as it appears. The character X immediately following the semi-
colon and not enclosed in quotes is a numeric-variable name.

:10 PRINT “VALUE OF X="; X

Literal strings also can be assigned to alphanumeric-variables. A literal string
can be up to 255 characters in length. However, when the value of a literal

string is stored in an alpha-variable, it is truncated to the defined length of the
alpha-variable.

Alphanumeric Strings

Example:

In the following program, the value is truncated to five characters because the
defined length of A$ is five bytes:

:10 DIM A$5

:20 A$ = “123456789”

230 PRINT A$:RUN
12345

The minimum length of a literal string is one; the null string (*”) is not allowed.

An alphanumeric literal string can contain any character, with the exceptions

of a carriage return (RETURN), the quotation mark (“), and the characters

represented by codes HEX(FB) to HEX(FF), which are reserved for system use.
[

Hexadecimal Literal Strings

Hexadecimal literal strings are a form of literal strings consisting of one or
more hexadecimal codes specified in a HEX function. (Refer to the discussion of
the HEX function in the section entitled “General Forms of the Alphanumeric
and Special-Purpose Functions and Operators”.) Hexadecimal codes are com-
posed of a pair of hexadecimal digits (0 to 9 or A to F). Each pair of hexadeci-
mal digits specifies the value of a byte in the string. Hex codes are particularly
useful for representing special characters not found on the system keyboard
and system control codes.

Hex literal strings are legal wherever alphanumeric literal strings are allowed.
In particular, the programmer can assign hex literal strings to alpha-variables
in an assignment statement.

Example:

In the following program, the characters 123 are printed, since they are repre-
sented by the hex codes 31, 32, and 33.

:60 AS$ = HEX(313233)
:70 PRINT AS$
:RUN123

Concatenation of Strings

The concatenation operator (&) combines two strings; one string is placed di-
rectly after another, without intervening characters. The two strings combined
by the concatenation operator are treated as a single string.

Alphanumeric Strings ~ 5-5

Example:

:10 A$ = “BRIAN”
:20 B$ = “JAMES.”
:30 C$ = AS$ & BS
:40 PRINT C$

:RUN

BRIANJAMES.

Literal strings can be concatenated with values of alpha-variables.

Example:

:10 AS$ = “WANG”

:20 B$ = “LABS.”
:30C$ =A% & " " & BS
:40 PRINT C$

:RUN

WANG LABS.

Any legal alphanumeric operand, including hex literal strings, can be concate-
nated with alpha-literals or alpha-variables.

Example:
:10 A$ = “SMITH”
:20 C$ = A$ & HEX(2C) & “JOHN”
:30 PRINT CS$
:RUN
SMITH, JOHN

The concatenation operator can be used only on the right side of an alphanu-
meric assignment statement; it is not legal in any other statement. Although
more than one concatenation operator can be used in the same assignment
statement, the concatenation operator cannot appear in combination with other
alphanumeric operators in the same statement. For example, the following
program statements are legal:

:10 A$ = B$ & C$ & D$
:10 AS = B$ AND C$ AND D$

The following statement, however, produces an error:
:10 A$ = B$ & C$ AND D$

Using the Alpha-array as a Scalar-variable

5-6

Wherever alpha-variables are allowed, an alphanumeric-array-variable can be
referenced as though it were a scalar-variable containing a single contiguous
character string. An alpha-array, however, cannot be referenced as a scalar-

~ variable in certain statements that always treat arrays on an element-by-ele-

ment basis. When used as a scalar-variable, the array is denoted with an
alpha-array designator, which consists of the array name followed by closed
parentheses; e.g., A$(), B4$().

Alphanumeric Strings

A portion of the string can be referenced by using the STR function; e.g., STR
(A$(),4,4).

The order of the elements in an nx m array is

(1,1), (1,2), ..., (1,m),
2,1, (2,2), ..., (2,m),

(nli;r (n,2), ..., (n,m)

For example, the following statement dimensions A$ to be a 2 x 3 array with
each element four bytes in length.

DIM A$ (2,3)4 !
Example:
Assume that the following assignments are made to the elements of A$():
A$(1,1) = “ABCD”
A$(1,2) = “EFGH"
A$(1,3) = “IJKL”
A$(2,1) = “MNO”
AS (2'2) = W“p”
3$(2,3) = “Q”
The array A$() has the following form, where the character “b” denotes a space:
1. 2 3
1 ABCD EFGH IJKL
2 MNODb Pbbb Qbbb

Trailing spaces in every element but the last are considered part of the value of
the array. If the last element of the array is completely blank, however, any
trailing spaces in the next-to-last element are not considered part of the value
of the array.

¢PRINT A$()
ABCDEFGHIJKIMNO P Q
:PRINT LEN(AS$())

21

Notice that the LEN function counts to the last nonblank character in the ar-
ray. Trailing spaces in A$(2,3) are not counted as part of the value of A$(),
although trailing spaces in A$(2,1) and A$(2,2) are counted because they pre-
cede the last nonblank character Q. In effect, these spaces are regarded as
embedded spaces when the array is treated as a single contiguous character
string. If Q is removed from A$(2,3), the length of A$(), as computed by LEN,
drops from 21 to 17 because the trailing spaces in A$(2,2) do not precede any
nonblank character and are no longer counted as part of the value of A$().

Alphanumeric Strings 57

Alphanumeric Expressions

Just as you can use numeric expressions on the right side of numeric assign-
ment statements, alphanumeric expressions can be used on the right side of
alpha assignment statements. The alphanumeric assignment statement has
the following form:

alpha-variable [,alpha-variable] ... = alpha-expression

A variable on the left side of the equal sign is called a receiver-variable because
it receives a value. For example, in the following statement A$ is the receiver:

A$ = B$ AND C$

The statement is read as “let A$ = B$, then logically AND C$ with the current
value of A$.” The general form of an alpha expression is as follows:
alpha-operand
[alpha-operand] operator alpha-operand [operator alpha-operand]...
[alpha~operand] & alpha-operand [& alpha-operand]...
The concatenation operator (&) cannot be combined with other operators in the
same expression. An alpha expression is processed from left to right, one term
at a time. Parentheses cannot be used to alter the order of processing. Each
operator performs the specified binary operation on the defined length of the
receiver-variable and the value of the operand following the operator. The
receiver is then set equal to the result of the operation.

Example:

The following statement logically ANDs the value of B$ with A$, then logically
ORs each byte of A$ with hex FO. The result is stored in A$.

A$ = AND B$ OR ALL (HEX(FO0))

Any number of alpha operators and operands can be combined in a single ex-
pression, with the exception of the concatenation operator. Table 5-1 summa-
rizes the available alphanumeric operators. Table 5-2 summarizes the
available alphanumeric operands; these can be alpha-variables, literal strings,
or alpha-functions.

General Forms of the Alphanumeric and
Special-purpose Functions and Operators

5-8

General forms of the alpha functions and operators are discussed in alphabeti-
cal order on the following pages. The special-purpose numeric functions BIN,
LEN, NUM, POS, VAL, and VER are discussed in this chapter because they
operate on alphanumeric arguments and are used primarily in the analysis and
manipulation of alphanumeric string data. However, the special alpha opera-
tors ADD, DAC, DSC, and SUB, which are used for binary and packed decimal
operations, are discussed in Chapter 6.

Alphanumeric Strings

ALL Function

Format:
" hh
ALL . alpha-variable
: literal-string
where:

h = hexadecimal digit (0-9 or A-F)

The ALL function defines a character string of unlimited length in which every
character is equal to the character specified in the function. The character can
be specified with a pair of hex digits or as the first character of a literal string
or alpha-variable. The ALL function can be used to initialize alphanumeric-
variables and arrays; it is legal only in the alpha-expression portion of an al-
phanumeric assignment statement. (Refer to the discussion of alpha
expressions and the alpha assignment statement in the section entitled “Alpha-
numeric Expressions”.) For example, the following statement sets each charac-
ter in A$() equal to binary 0:

A$() = ALL(00)
ALL is also useful in logical operations for changing certain bits in every char-
acter of an alpha-variable or array.

Example:

The following statement sets A$ = B$ and masks off the high-order bit of each
character in A$ by ANDing each character with HEX(7F).

A$ = B$ AND ALL(7F)
Examples of valid syntax:

A$ = ALL(“.”)

B$ = AND ALL (HEX (OF))

STR(C$,2,3) = B$ XOR ALL(FF) ADD C$
A$ = ALL(BS)

Alphanumeric Strings 5-9

5-10

AND, OR, XOR Operators

Format:

AND
OR
XOR

The logical operators AND, OR, and XOR (exclusive or) perform the specified
logical operations on the value of an alpha-variable. These operators can be
used only in the alpha-expression portion of an alphanumeric assignment state-
ment. (Refer to the discussion of alpha expressions and the alpha assignment
statement in Section 5.8.) The value of the operand immediately following the
logical operator and the defined length of the receiver-variable are operated
upon, and the result is assigned to the receiver-variable.

Example:

The following statement logically ANDs the value of B$ with A$; the result is
stored in A$:

AS$ = AND B$

The logical operations are performed on a character-by-character basis from left
to right, starting with the leftmost character in each field.

e If the defined length of the operand is shorter than that of the receiver,
the remaining characters of the receiver are not changed.

o If the defined length of the 6perand is longer than that of the receiver,
the operation terminates when the last character in the receiver is oper-
ated on.

¢ The entire contents of the receiver-variable, including trailing spaces,
are operated on.

e The entire contents of the operand, including any trailing spaces, are
used. (Trailing spaces usually are not considered to be part of the value
of an alphanumeric-variable.)

A portion of the alpha-variable can be operated on by using the STR function to
define a substring in the variable. For example, the following statement oper-
ates only on the third and fourth bytes of A$:

STR(A$,3,2) = XOR B$

The logical operators AND, OR, and XOR also can be used in the IF.. THEN
statement to separate multiple conditions. Refer to Chapter 10.

Examples of valid syntax:

AS AND HEX (7F)

aAS OR B$

STR(A$,1,2) = XOR ALL (HEX(FF))
C$ = A$ AND B$

Alphanumeric Strings

BIN Function

Format:
BIN(expression [,length])

where:
length= numeric-variable or the digit 1, 2, 3, or 4

If length= 1, 0 <= value-of-expression < 256

If length= 2, 0 <= value-of-expression < 65,536

If length= 3, 0 <= value-of-expression < 16,777,216

If length= 4, 0 <= value-of-expression < 4,294,967,296

)

BIN is an alphanumeric function that uses a numeric argument, but returns an
alphanumeric value; it is the inverse of the VAL function. The BIN (binary)
function converts the integer value of the expression to a binary value. The
number of bytes in the binary value is specified by the digit; if no digit is in-
cluded, the length is assumed to be one byte. A numeric-variable can now be
used to specify the length of the binary result of the BIN function. The BIN
function can only be used in the alpha-expression portion of an alphanumeric
assignment statement. BIN is especially useful for code conversion and conver-
sion of numbers from internal decimal format to binary.

Example:

Sets A$ = A since the binary value of decimal 65 is the character code for the
letter A. '

$ = BIN(65)
Examples of valid syntax:

B$ = BIN(X,L)

A$ = BIN(X)

TR(AS$,I,2) = BIN(X,2)
C$ = BIN(X*Y/Z,4)

Alphanumeric Strings 5-11

5-12

BOOL Operator

Format:
BOOL h

where:

h= hexadecimal digit (0-9 or A-F)

BOOL is a generalized logical operator that performs a specified operation on
the value of the receiver-variable. The operation to be performed is specified by
the hexadecimal digit following BOOL (refer to Table 5-3). BOOL can be used
only in the alpha-expression portion of an alpha assignment statement. (Refer
to the discussion of alpha expressions and the alpha assignment statement in
the section entitled “Alphanumeric Expressions”.) The value of the operand
and the value of the receiver-variable are operated upon, and the result is
assigned to the receiver-variable. For example, the following statement logi-
:&}ly not-ANDs the value of B$ with the value of A$ and assigns the result to

A$ = BOOL7 B$

The logical operations are performed on a character-by-character basis from left
to right, starting with the leftmost character in each field.

e Ifthe defined length of the operand is shorter than that of the receiver-
variable, the remaining bytes of the receiver-variable are not changed.

e Ifthe defined length of the operand is equal to that of the receiver-vari-
able, the entire values of both, including any trailing spaces, are oper-
ated on. (Trailing spaces usually are not considered part of the value of
an alpha-variable.)

e Ifthe operand is longer than the receiver-variable, the operation termi-
nates when the last byte of the receiver-variable has been operated on.

A specified portion of an alpha-variable can be operated on if the portion is
defined with a string function. For example, the following statement operates
only on the third and fourth bytes of A$:

STR(AS$,3,2) = BOOLY B$

In every case, the logical operation to be performed is identified by the hex digit
following BOOL. The hex digit used to identify each operation is a kind of
mnemonic that represents the logical result of performing the operation on the
following bit combinations:

receiver-variable: 1100 (hex C)
operand: 1010 (hex A4)

Alphanumeric Strings

For example, the hex digit E identifies the OR operation. When 1100 is ORed
with 1010, the result is 1110 or hex digit E. Note that several commonly used
BOOL operations are available as separate operators: BOOLE is equivalent to
OR, BOOL6 TO XOR, and BOOLS to AND. The 16 posmble logical functions
are listed in Table 5-3.

Table 5-1. BOOLh Logical Functions

Blnar&
Hex Digit Representation Loglcal Function
0 0000 null
1 0001 o not-OR
2 0010 operand does not imply receiver
3 0011 complement of receiver
4 0100 " recelver does not imply operand
5 0101 complement of operand
6 0110 exclusive OR
7 0111 not-AND
8 1000 AND
9 1001 equivalence
A 1010 receiver = operand
B 1011 receiver implies operand
C 1100 operand = receiver
D 1101 operand implies receiver
E 1110 : OR
F 1111 identity
Examples of valid syntax:

A$ = BOOLl1l BS$
B$ = C$ BOOL7 D$
STR(A$,3,2) = BOOL9 ALL (HEX(FF))

Alphanumeric Strings 5-13

5-14

Date

Format (as a statement):
alpha-variable alpha-variable
DATE = PASSWORD
literal-string literal-string
Format (as a function):
DATE

The DATE statement sets or changes the system date. The new date is speci-
fied by the alpha-variable or literal-string following the equal sign. The date is
specified as a 6 character ASCII value of the form YYMMDD (year, month,
day). ‘

The alpha-variable or literal-string following PASSWORD specifies the system
password. If the password is correct (i.e., matches the password set in the
@GENPART utility), the date is updated. If the password is incorrect an error
results and the date is not updated.

Examples of valid syntax:

DATE = “820601” PASSWORD “SYSTEM"
DATE = D$ PASSWORD P$

The DATE function is an alphanumeric function that returns a 6 character
ASCII string containing the current date in the form YYMMDD. DATE is used
as an operand within alphanumeric expressions.

Examples of valid syntax:

T$ = DATE & TIME
A$ = DATE AND HEX (FFFF00)

Alphanumeric Strings

HEX Literal

Format:
HEX (hh [hh] ...)
where:
h = hexadecimal digit (0-9 or A-F)

The HEX literal string permits the use of any 8-bit (1-byte) character code in a
BASIC-2 program. A HEX literal can be used wherever alphanumeric literal
strings enclosed in double quotes are allowed. Each character in the literal
string is represented by two hexddecimal digits. If the HEX literal contains an
odd number of hex digits or any characters other than hex digits or spaces, an
error results.

The HEX literal often is used to define control codes that do not appear on the
keyboard for transmission to peripheral devices. For example, the following
statement clears the screen:

PRINT HEX(03)

Any character can be represented by a pair of hex digits. Refer to Appendix A
for a complete chart of control codes; refer to the appropriate peripheral manual
for codes pertaining to other devices.

Examples of valid syntax:
AS$ = HEX(0COAOA)
IF A$ > HEX(7F) THEN 100

$ = A$ & HEX(000000)
PRINT HEX(OE); “TITLE”

Alphanumeric Strings 5-15

LEN Function

Format:
LEN (alpha-variable)

The LEN (length) function determines the number of characters in the value of
an alphanumeric-variable. LEN is a special-purpose numeric function that
uses an alphanumeric argument but returns a numeric value as a result. LEN
can be used wherever numeric functions are legal. (Refer to the discussion of
numeric functions in Chapter 4.)

Trailing spaces are not considered by LEN to be part of the current value of an
alpha-variable. LEN scans the variable and returns the number of characters
up to the first trailing space, including leading and embedded spaces. In the
special case of a variable that contains all blanks, the length is 1.

Example:

:10 A$ = “ABCD "
:20 PRINT LEN(AS$)
:RUN

4 .

:10 A$ = “A BCD "
:20 PRINT LEN (A$)
:RUN

5

:10 A$ - ”

:20 PRINT LEN (A$)
:RUN

1

A LEN function of an STR function returns the length parameter specified in
the STR function, irrespective of the contents of the variable.

Example:

10 DIM A$16

:20 A$ = “AB ”

:30 PRINT LEN(STR(AS,,5))
:40 PRINT LEN (STR(A$))

: RUN

5

16

Examples of valid syntax:
X = LEN(A$) + 2

IF LEN(A$(3)) < 8 THEN 100
X = LEN(A$())

5-16 Alphanumeric Strings

NUM Function

Format:
NUM (alpha-variable) '

The NUM function determines the number of sequential ASCII characters in
the specified alphanumeric-variable that represents a legal BASIC-2 number.
A BASIC-2 number consists of numeric characters in a standard format. A
numeric character is defined to be one of the following characters.

e Blanks

e Digits0to 9 '

e Decimal point (.)

¢ Leading plus or minus sign (+, -)
e LetterE

The counting of numeric characters begins with the first character of the speci-
fied variable or STR function. Leading and trailing spaces are included in the
count. The counting of numeric characters ends when a nonnumeric character
occurs, when the sequence of numeric characters fails to conform to standard
BASIC-2 number format, or when all characters in the specified variable have
been scanned. NUM can be used to verify that an alphanumeric value is a
legitimate BASIC representation of a numeric value or to determine the length
of the numeric portion of an alphanumeric value. (The BASIC-2 representation
of a number cannot have more than 13 significant mantissa digits.) NUM is
particularly useful in applications where it is desirable to numerically validate
data entered under program control.

NUM is a special-purpose numeric function that utilizes an alphanumeric argu-
ment, but returns a numeric result. The NUM function can be used wherever
numeric functions are legal. Refer to the discussion of numeric functions in
Chapter 4.

Alphanumeric Strings 5-17

Examples Comments

110 A$ = “424.37#JK" X = 6 since there are six numeric characters before

20 X = NUM(A$) the first nonnumeric character, #.

:30 PRINT “X ="; X

:RUN

X=6

110 INPUT A$ The program illustrates how numeric information can

20 IF NUM(A$)=16 THEN 50 be entered as a character string, numerically validated,

:30 PRINT “REENTER": GOTO 10 and then converted to an internal number. In this example,
:50 CONVERT A$ TO X the variable A$ receives an entered value (ASCII characters).
60 PRINT “X ="; X If the value represents a legal number, NUM(A$) = 16,
:RUN the number or characters in the alpha variable.

7 123A5

REENTER

712345

X =12345

5-18 Alphanumeric Strings

POS Function

Format:
. | <
’ alpha-variable <= hh :
POS ([-] = alpha-variable)
literal-string >= literal-string
>
<>
where:
h = hexadecimal digit (0-9 or A-F)

The POS (position) function retlirns the position of the first character in an
alpha-variable or literal string that satisfies a specified relation to a given
value. The value against which comparison is made follows the relational
operator and can be specified as the first character of a literal string, the first
character of the value of an alpha-variable, or as a pair of hexadecimal digits.

The position of the first character in the alpha-variable that satisfies the given
relation is returned as a numeric value. If an alpha-variable is specified, its
entire (defined) length, including trailing spaces, is scanned by POS. If no
character is found to satisfy the specified relation, POS equals zero.

The capability to scan a literal string with the POS function can be useful when
a fixed table of characters must be compared to a single character in a variable.
In this case, the use of a literal string saves assigning the data to another vari-

able and results in code that is clearer and more self-explanatory.

Example:

:10 DIM AS1
:20 LINPUT “LOAD, SAVE,VERIFY, OR DISPLAY”, A$
:30 ON POS (“LSVD” = AS$) GOSUB 100,200,300,400:ELSE GOSUB 500

If a minus sign (-) immediately precedes the alpha-variable being searched,

POS returns the position of the last character satisfying the given relation
rather than the first.

Example:

:10 DIM A$64

:20 A$ = “MR. SAM ADAMS, BOSTON, MASS. 01906”
230 PRINT POS(AS$ = “.”)

40 PRINT POS(-A$ = “.”)

:RUN

28

POS is a special-purpose numeric function that uses an alphanumeric argu-
ment, but returns a numeric value as a result. The POS function can be used
wherever numeric functions are legal. Refer to the discussion of numeric func-
tions in Chapter 4.

Alphanumeric Strings 5-19

Examples of valid syntax:

X = POS(A$ = “§")

PRINT POS (STR(A$,I,J) = HEX(OD))

IF POS(A$() = “T”) = 0 THEN 100
B$ = STR(AS$,POS(A$ = “4"))

POS (-B$ < C$)

POS (A$ = OA)

POS (“123456789” = T$)

POS (HEX (0102040810204080) > A$)
POS(-"0:A a” = STR(B$,N,1))

HygHMK
[I |

5-20 Alphanumeric Strings

STR Function

Format:
STR (alpha-variable [,[s][,n]])

where:

s = an expression, of which the integer portion specifies the
position of the starting character of the substring in the
alpha-variable.

n = an expression, of which the integer portion specifies the
number of characters in the substring.

U
s,n > 0; s+n < maximum no. of characters in alpha-variable.

The STR (string) function defines a substring of an alpha-variable. STR per-
mits a specified portion of the alphanumeric value to be examined, extracted, or
changed. For example, the following statement sets B$ equal to the 3rd, 4th,
5th, and 6th characters of A$:

B$ = STR(A$,3,4)

If the s parameter is omitted, the default value is 1 and the substring starts
with the first character in the alpha-variable.

Example:

:10 A$ = “ABCDE”

:20 PRINT STR (AS$,,2)
:RUN

AB

If the n parameter is omitted, the remainder of the alpha-variable is used,

including trailing spaces.

Example:

:10 A$ = “ABCDE”
:20 PRINT STR(A$,3)
RUN
CDE
If both the s and n parameters are omitted, the entire value of the alpha-vari-

able is used, including any trailing spaces.

Example:

:10 A$ = “ABCDE”
:20 PRINT STR(A$)
RUN
ABCDE
If the STR function is used on the left side of the equal sign in an assignment
statement and the value to be received is shorter than the specified substring,
the substring is padded with trailing spaces.

Alphanumeric Strings 5-21

Example:

:10 A$ = “123456789”
:20 STR(AS,3,5) = “ABC”
:30 PRINT A$

:RUN

12ABC 89

The STR function can be used wherever alpha-variables are allowed.
Examples of valid syntax:

A$ = STR(BS,2,4)

STR(D1$,I,J) = B$

IF STR(A%,3,5) < STR(B$,3,5) THEN 100
READ STR(AS$(),9,9)

PRINT STR(C$,3)

D$ = STR(AS$(),S,N)

LINPUT STR(AS,,10)

5-22 Alphanumeric Strings

Time

Format (as a statement):

alpha-variable alpha-variable
TIME = PASSWORD

literal-string : literal-string
Format (as a function):
TIME

The TIME statement sets or changes the system time. The new time is speci-
fied by the alpha-variable or literal-string following the equal sign. The time is
specified as a 6 character ASCII value of the form HHMMSS (hour, minute,
second). The hour value is based on a 24 hour clock.

The alpha-variable or literal-string following PASSWORD specifies the system
password. If the password is correct (i.e., matches the password set in the
@GENPART utility), the time is updated. If the password is incorrect an error
results and the time is not updated.

The system time can only be set if a system clock exists in the system. If a
clock is not present and the time is set, an error is returned.
Examples of valid syntax:

TIME = “170001” PASSWORD “SYSTEM”
TIME = T$ PASSWORD P$

The TIME function is an alphanumeric function that returns an 8 character
ASCII string containing the current time in the form HHMMSSCC (hour, min-
ute, second, centisecond). If there is no system clock, the TIME function re-
turns the value 99999999 (i.e., invalid). The TIME function is used as an
operand in alpha expressions.

Example of valid syntax:

A$ = TIME & ” ” & DATE

Alphanumeric Strings 5-23

5-24

VAL Function

Format:
alpha-variable
VAL ([,length])
literal-string
where:

length = numeric-variable or the digit 1, 2, 3, or 4

VAL is a numeric function that uses an alphanumeric argument, but returns a
numeric value; it is the inverse of the BIN function. The VAL (value) function
converts the binary value in the alpha-variable or literal-string to a numeric
value. The number of bytes in the binary value to be converted is specified by
the digit; if no digit is included, the length is assumed to be one byte. A nu-
meric-variable can now be used to specify the length of the binary value in the
VAL function. The VAL function can be used wherever numeric functions are
legal.

VAL is particularly useful in code conversion and table lookup operations since
the converted number can be used as a subscript to retrieve the corresponding
code from an array. Additionally, VAL can be used with the RESTORE state-
ment to retrieve codes or data from DATA statements.

Examples:

:PRINT VAL (HEX (20))
32

:AS$=HEX (1234)
:PRINT VAL (A$,2)
4660

Examples of valid syntax:

X = VAL(AS$,L)
X=VAL (A$)
PRINT VAL (“A”)
Y=VAL (B$, 2)
RESTORE VAL (STR(AS$,I,1))+1
$=A$ (VAL (C$) +1)
IF VAL (X$,2) > 1024 THEN 100

Alphanumeric Strings

VER Function

Format:
‘ alpha-variable
VER (v , format-specification)
literal-string
where:
alpha-variable
format-specification = literal-string

The VER (verify) function verifigs that the value of an alphanumeric- variable
or literal string conforms to a specified format. The first variable or literal
string in the function is verified against the format specified by the second
variable or literal string (the format-specification). The VER function returns
the number of successive characters in the value being verified that conform to
the format-specification. Each character in the defined length of the alpha-vari-
able or literal string is verified by checking it against the character set associ-
ated with the specified format-character in the format-specification (refer to
Table 5-4). If a character in the value being verified does not appear in the
specified format-character set, it is regarded as an illegal character and causes
a termination of the VER operation.

The verify operation terminates when an illegal character is found, when the
end of the value (including any trailing spaces) is encountered, or when the end
of the format-specification is reached.

VER is a special-purpose numeric function that uses an alphanumeric argu-
ment but returns a numeric result. The VER function can be used wherever
numeric functions are legal. Refer to the discussion of numeric functions in

Chapter 4.

Table 5-2. Format-Character Deflnitions

Format

Character Character Set

A Alphabetic only (A to Z or a to z)

Numeric only (0 to 9)

N Alphabetic or numeric (Ato Z, ato z, or 0 to 9)
H Hexadecimal (0 to 9 or A to F)

P Packed decimal

+ Sign (plus (+), minus (-), or blank)

X Any character

Other Only the specified character

Alphanumeric Strings ~ 5-25

Examples:

Assume A$ = “$012.45AB”, then:
VER (AS, “$#44.##20") = 9

VER (A%, “S$###.#%447) =7
VER(A$, “AAAAAAAAA") = 0

VER (STR(AS,6,4), “NNNN") = 4

5-26 Alphanumeric Strings

SIS SSS
LSS ST
VAPV VAV A AV AV AV A GV GV GV A e
SIS S S S S SS
S S S ST A
SIS S ST
S S S e
SIS SSSSS A i ard
SSSS S SS S S
S SSSSSSS 7 /S S
VARV A A A A A A AV AV AV A A A e e e
SIS S S S
VA A A A A A A AV A A A A e e e

Decimal Arithmetic
Operators

Overview

This chapter contains general forms for alpha operators that perform binary
and packed decimal arithmetic on alphanumeric data (literal strings or the
contents of alpha-variables). These instructions do not treat alphanumeric data
as character strings but as binary or packed decimal values or a series of val-
ues. These include the following instructions:

ADD Performs binary addition on a pair of binary values with or without
carry propagation between bytes.

DAC Performs decimal addition on a pair of packed decimal numbers.

DSC Performs decimal subtraction on a pair of packed decimal numbers.

SUB Performs binary subtraction on a pair of binary values with or without
carry propagation between bytes.

The binary operators can be particularly useful when manipulating binary
counters. The packed decimal operators can be useful for extended-precision
decimal addition and subtraction since operationslcan be performed on packed
decimal numbers of almost unlimited length. Packed decimal numbers can be
packed two digits for each byte in an alpha variable, and the only effective limit
to the size of an alpha variable is the amount of available memory.

Decimal Arithmetic Operators ~ 6-1

6-2

Decimal to Binary Conversion and

Two’s Complement Notation

In order to perform binary operations on numbers with BASIC-2, you must first
convert decimal values to binary values. You can convert a nonnegative integer

to binary form by using the following procedure (these examples assume that X
is a numeric value):

Example: Conversion to a 1-Byte Binary Value (0 <= X < 256)
10 DIM AS$1

100 A$ = BIN(X)
Example: Conversion to a 2-Byte Binary Value (0 <=X < 65536)
10 DIM A$2

100 A$ = BIN(X,2)
Example: Conversion to Binary When the Decimal Value Exceeds Four Bytes
10 DIM AS7

90 REM % NUMERIC TO BINARY CONVERSION
100 FOR I = LEN(STR(A$)) -1 TO 1 STEP -4
110 Q = INT(X/4294967296)

120 STR(AS$,I,4) = BIN(X-4294967296*Q,4)
130 X = Q

140 NEXT I

150 IF I > 1 THEN STR(AS$,,1l) = BIN(X,3)
160 RETURN

If a negative number is to be either an operand or the result of a binary arith-
metic operation, the number must be represented in two’s complement form
after conversion to binary format. Using the two’s complement form assures
you that the obtained result is signed correctly. The following example demon-
strates how to obtain a two’s complement representation of a binary number.

Example:
10 DIM A$7, B$7

200 és = ALL (HEX (00)) SUBC A$
210 AS$ = B$
220 RETURN

Decimal Arithmetic Operators

To differentiate between positive and negative binary values, you should ensure
that the high-order bit of the leftmost byte is reservedlto indicate the sign of
the number. The leftmost bit of each value should be either 0 for positive val-
ues or 1 for negative values. Results can be left in this form until they are
converted back from binary format to decimal format. .

To convert these values, you should first check the high-order (leftmost) bit to
determine the sign of the value. If the value of the bit is 1, the number is nega-
tive and the two’s complement should be obtained (as described previously)
before conversion. The numeric result of the conversion should then be multi-
plied by -1 to ensure the correct sign.

Example: '

The following program illustrates several routines to convert binary values to
decimal values (with or without the sign) and vice versa:

10 DIM A$7, BS7

90 REM % NUMERIC TO BINARY (UNSIGNED)
100 FOR I = LEN(STR(A$)) -1 TO 1 STEP -2
110 Q = INT(X/65536)

120 STR(AS,I,2) = BIN (X-65536*Q, 2)

130 X = Q

140 NEXT I

150 IF I > 1 THEN STR(A$,,1) = BIN(X)
160 RETURN... '

190 REM % TWO’S COMPLEMENT

200 B$ = ALL(HEX(00)) SUBC A$210 A$ = B$
220 RETURN

290 REM % BINARY TO NUMERIC (UNSIGNED)

300X =0

310 FOR I = 1 TO LEN(STR(A$))-1 STEP 2

320 X = X*65536 + VAL(STR(A$,I,2),2)

330 NEXT I

340 IF I+1 < LEN(STR(A$)) THEN X = X*256 + VAL (STR(A$, I+2))
350 RETURN

490 REM % SIGNED NUMERIC TO BINARY500 X = INT(X)
510 IF X >= 0 THEN 540

20 X = ABS(X): GOSUB 100: GOSUB 200

530 GOTO 550

540 GosuB 100

Decimal Arithmetic Operators ~ 6-3

6-4

590 REM % SIGNED BINARY TO NUMERIC
600 IF STR(AS$,,1l) < HEX(80) THEN 640
610 GOSUB 200: GOSUB 300

620 X = -X

630 GOTO 650

640 GOSUB 300

Decimal to Packed Decimal (BCD) Conversion
and Ten’s Complement Representation

To operate on decimal values with packed decimal (Binary Coded Decimal or
BCD) arithmetic operators, you must first convert the value to the packed
format. You can convert a nonnegative integer to packed decimal form by using
the PACK statement.

Example:
10 DIM AS7

90 REM % NUMERIC TO BCD CONVERSION

100 PACK (##d##i######4#4##) AS FROM X

110 RETURN
If a negative number is to be represented, the ten’s complement of the value
must be obtained after conversion to BCD format. After first converting the
absolute value of the decimal number to BCD format, you can determine the
ten’s complement of the BCD value in the following manner:

190 REM % TEN’S COMPLEMENT REPRESENTATION

200 B$ = ALL(HEX(00)) DSC A$

210 A$ = BS

220 RETURN
You differentiate between positive and negative BCD values in the same man-
ner as for binary values. You should reserve one extra digit to the left of the
most significant digit of the largest BCD value. The value of this digit is then 0
for positive values and 9 for negative values. You can leave the results in this
form until you need to convert back to decimal format. '

To convert to decimal format, you should first check the high-order digit to
determine its value. If the value is 9, the ten’s complement of the value should
be obtained (as previously described) before conversion. The resulting decimal
value should then be multiplied by -1 to ensure the correct sign.

Decimal Arithmetic Operators

e e

Example:

The following program illustrates routines for signed and unsigned conversion
of decimal to BCD and of BCD to decimal values.

10 DIM A$7, B$7

90 REM % NUMERIC TO BCD CONVERSION
100 PACK (####44444444#44) A$S FROM X
110 RETURN

190 REM % TEN’S COMPfEMENT REPRESENTATION
200 B$ = ALL(HEX(00)) DSC A$

210 A$ = B$

220 RETURN

290 REM % BCD TO NUMERIC (UNSIGNED)
300 UNPACK (##############)A% TO X
310 RETURN

490 REM % SIGNED NUMERIC TO BCD

500 X = INT (X)

510 IF X >= 0 THEN 540

520 X = ABS(X): GOSUB 100: GOSUB 200
530 GOTO 550

540 GOSUB 100

590 REM % SIGNED BCD TO NUMERIC

600 IF STR(AS$,,l) < HEX(80) THEN 640
610 GOSUB 200: GOSUB 300

620 X = -X

630 GOTO 650

640 GOSUB 300

General Forms of the Binary and Packed
Decimal Operators

General forms of the binary and packed decimal arithmetic operators ADD,
SUB, DAC, and DSC are discussed in alphabetical order on the following pages.
Other operators that take alphanumeric arguments are described in Chapter 5.

Decimal Arithmetic Operators ~ 6-5

6-6

ADD Operator

Format:
ADD [C]

The ADD operator performs binary addition on a pair of binary values. The
binary value of the operand is added to the binary value of the receiver-vari-
able, and the sum is assigned to the receiver-variable. You can use ADD only
in the alpha expression portion of an alphanumeric assignment statement.
(Refer to the discussion of alpha expressions and the alpha assignment state-
ment in Chapter 5.)

Addition is performed on a character-by-character basis from right to left, start-
ing with the low-order (rightmost) character of each field. ADD treats each
byte of the operand and receiver-variable as a separate value, with no carry
propagation between characters. The last (rightmost) byte of the value of the
operand is added to the last (rightmost) byte of the receiver-variable. The
next-to-last byte of the operand is then added to the next-to-last byte of the
receiver. The addition continues until ADD operates on the entire value in the
receiver-variable.

Example:

:10 DIM A$2

:20 A$ = HEX(0123)

:30 A$ = ADD HEX (00FF)

:40 PRINT “RESULT = ”; HEXOF (A$)

: RUN

RESULT = 0122

ADD operates on the entire value in the receiver-variable, including trailing
spaces. Similarly, if the operand is a variable, ADD uses the entire value of the
variable, including trailing spaces. (Trailing spaces usually are not considered
to be part of the value of an alphanumeric-variable.)

Part of an alpha-variable can be operated on by using the STR function to spec-
ify a portion of the variable. For example, the following statement operates
only on the third and fourth bytes of A$:

STR (A$,3,2) = ADD B$

If the C parameter follows ADD, the value of the operand is treated as a single
binary number and added to the binary value of the receiver-variable with
automatic carry propagation between characters.

Decimal Arithmetic Operators

Example:

:10 DIM A$2

:20 A$ = HEX(0123)

:30 A$ = ADDC HEX(OOFF)

+40 PRINT “RESULT = %; HEXOF (A$)
:RUN

RESULT = 0222

If the operand and the receiver are not the same length (i.e., if each contains a
different number of characters), the following rules apply:

1. The addition is right-justified, with leading zeros assumed for the
shorter value.

2. The result is stored rightJustified in the receiver-variable. If the answer
is longer than the receiver-variable, the low-order portion of the value is
stored, and high-order bytes that cannot be stored in the receiver-vari-
able are truncated.

It is also possible to perform multiple ADDs on one statement. For example,
the following statement adds Y$ to X$ three times:

10 X$ = ADDC Y$ ADDC Y$ ADDC Y$
Examples of valid syntax:

A$ = ADD HEX(FF)

A$ = ADDC ALL (HEX(FF))
STR(A$,1,2) = B$ ADDC C$

Decimal Arithmetic Operators ~ 6-7

DAC Operator

Format:
DAC

The DAC (decimal add with carry) operator performs decimal addition on a pair
of unsigned packed decimal numbers. The value of the operand is added to the
value of the receiver-variable, and the sum is assigned to the receiver-variable.
You can use DAC only in the alpha-expression portion of an alphanumeric-as-
signment statement. (Refer to Chapter 5.)

The DAC operator does not check the values of the operands for valid packed
decimal format. (Any characters other than hex digits 0 to 9 are illegal in a
packed decimal number.) Since decimal addition with nonpacked decimal val-
ues produces undefined results, use the VER function to verify that the values
of the operands are expressed in valid packed decimal format. Decimal addi-
tion, like binary addition, is performed on a character-by-character basis from
right to left, starting with the low-order (rightmost) characters of the receiver-
variable and operand. Each value is treated as a single decimal number, with
automatic carry propagation between characters.

DAC operates on the entire value of the receiver-variable, including trailing
spaces. Similarly, if the operand is a variable, DAC uses the entire value of the
variable, including trailing spaces. (Trailing spaces usually are not considered
to be part of the value of an alphanumeric variable.)

Example:
:10 DIM A$3, BS2
:20 A$ = HEX(012345)
:30 B$ = HEX(0101)
140 AS$ = DAC B$
:50 PRINT “RESULT = ”; HEXOF (A$)
:RUN

RESULT = 012446
Examples of valid syntax:

A$ = DAC HEX(0001)
B$ = A$ DAC F$

6-8 Decimal Arithmetic Operators

DSC Operator

Format:
DpSC

The DSC (decimal subtract with carry) operator performs decimal subtraction
on a pair of unsigned packed decimal numbers. The value of the operand is
gubtracted from the value of the receiver-variable, and the difference is as-
signed to the receiver-variable. The programmer can use DSC only in the alpha
expression portion of an alphanumeric assignment statement. (Refer to the
discussion of alpha expressions and ¢he alpha assignment statement in
Chapter 5.)

The DSC operator does not check the values of the operands for valid packed
decimal format. (Any characters other than hex digits 0 to 9 are illegal in a
packed decimal number.) Since decimal subtraction with nonpacked decimal
values produces undefined results, the programmer should use the VER func-
tion to verify that the values of the operands are expressed in valid packed
decimal format.

Decimal subtraction, like binary subtraction (SUB), is performed on a charac-
ter-by-character basis from right to left, starting with the low-order (rightmost)
characters of the receiver-variable and the operand. Each value is treated as a
single decimal pumber, with automatic carry propagation between characters.

DSC operates on the entire value of the receiver-variable, including trailing
spaces. Similarly, if the operand is a variable, DSC uses the entire value of the
variable, including trailing spaces. (Trailing spaces usually are not considered
to be part of the value of an alphanumeric variable.)

Example:

:100 DIM A$2, B$2, Cc$2:110 PACK ($###) A$ FROM 100
:120 PACK (####) B$ FROM 75

.130 Cc$ = A$ DSC B%

<140 PRINT “RESULT = n . HEXOF (C$)

:RUN
RESULT = 0025

The answer, 25, occupies the low-order character of the receiver-variable, while
the leading zeros indicate that the answer is positive. Suppose, however, that
Line 130 is changed to the following statement:

130 C$ = B$ DSC AS
If the program is run again, the result is the ten’s complement notation for -25.

:RUN
RESULT = 9975

Decimal Arithmetic Operators 6-9

Examples of valid syntax:

A$ = DSC B$
B$ = HEX(9999) DSC A$
D$ = B$ DSC HEX(01)

6-10 Decimal Arithmetic Operators

SUB Operator

Format:
SUB [C]

The SUB operator performs binary subtraction on a pair of binary values. The
binary value of the operand is subtracted from the binary value of the receiver-
variable, and the difference is assigned to the receiver-variable. You can use
SUB only in the alpha-expression portion of an alphanumeric-assignment state-
ment. (Refer to the discussion of alpha-numeric and the alpha-numeric state-
ment in Chapter 5.) R

Subtraction is performed on a character-by-character basis from right to left,
starting with the low-order (rightmost) character of each field. SUB treats each
byte of the operand and receiver-variable as a separate value, with no carry
propagation between characters. The last (rightmost) byte of the value of the
operand is subtracted from the last (rightmost) byte of the receiver-variable.
The next-to-last byte of the operand is then subtracted from the next-to-last
byte of the receiver. The subtraction continues until SUB operates on the en-
tire value in the receiver-variable.

Example:

:10 DIM A$2, B$2, C$2

:20 A$ = HEX(0401)

:30 B$ = HEX(0202)

:40 C$ = A$ SUB B$: PRINT “RESULT = ”; HEXOF (C$)
:RUN

RESULT = O02FF

The entire value in the receiver-variable, including trailing spaces, is operated
upon. Similarly, if the operand is a variable, SUB uses the entire value of the
variable, including trailing spaces. (Trailing spaces usually are not considered
to be part of the value of an alphanumeric-variable.)

Part of an alpha-variable can be operated on by using the STR function to spec-
ify a portion of the variable. For example, the following statement operates
only on the third and fourth bytes of A$:

STR(A$,3,2) = SUB B$

If the C parameter follows SUB, the value of the operand is treated as a single
binary number and subtracted from the binary value of the receiver-variable
with automatic carry propagation between characters.

Decimal Arithmetic Operators 6-11

6-12

Example:

:10 DIM A$2, B$2, C$2

:20 A$ = HEX(0401)

:30 B$ = HEX(0202)

:40 C$ = A$ SUBC BS$: PRINT “RESULT = ”; HEXOF (C$)
:RUN

RESULT = O1FF

If the operand and the receiver are not the same length (i.e., if each contains a
different number of characters), the following rules apply:

1. The subtraction is right-justified, with leading zeros assumed for the

shorter value.

2. The result is stored right-justified in the receiver-variable. If the answer

is longer than the receiver-variable, the low-order portion of the value is
stored, and high-order bytes that cannot be stored in the receiver-vari-
able are truncated.

Example:

:10 DIM AS$1l, BS$1, C$1

:20 AS$ = HEX(08)

:30 B$ = HEX(04)

:40 C$ = A$ SUBC BS

:50 PRINT “RESULT = ”; HEXOF (C$)
:RUN

RESULT = 04

In this case, the answer is hex 4 (binary 0100), and the leading hex digit, 0,
indicates that it is positive. Changing Line 40 results in the two’s complement
form of -4. '

:40 C$ = B$ SUBC A$
:RUN
RESULT = FC

Examples of valid syntax:
A$ = SUB HEX (FF)
A$ = B$ SUBC ALL (HEX (FF))

STR(A$,1,2) = B$ SUBC C$

Decimal Arithmetic Operators

Overview

RPN YYYY,
T SSSIIII LIS
YYD E YNy,

Ces S sSSSSs Va4
a4
RPN o e
SIS S S SS

SSSSSSSSS SIS

) R A S R e

The Select Statement

The SELECT statement is used to direct I/O to specified devices and to select
various modes of operation. SELECT is used to select device-addresses for /O
operations, to specify various options for mathematical operations, and to select
certain parameters for output devices.

Because the SELECT statement has a wide variety of uses and can accept a
broad range of parameters, it is the principal subject of this chapter. Specifi-
cally, this chapter discusses the following subjects:

The SELECT statement, including its various functions and available
parameters.

The Device Table, a special area of memory used to store device-ad-
dresses and other information required to access and control external
devices. The contents of the Device Table can be modified by means of
the SELECT statement.

The ON...SELECT statement, a conditional SELECT statement in which
the selection of specified parameters is determined by the value of a
numeric expression or alpha-variable.

The LIST DT command, a form of the LIST command used to list the
contents of the Device Table.

The LIST SELECT command, a form of the LIST command used to
display the options currently SELECTED, including SELECT T (date/
time) and SELECT H (platter hogging).

The Select Statement 7=1

e The SELECT function, an alphanumeric function that returns device
addresses set in the Device Table.

Math Mode Selection

7-2

This section discusses the SELECT D, SELECT G, SELECT R, SELECT NO
ROUND, SELECT ROUND, and SELECT ERROR statements.

Specifying Degrees, Radians, or Grads

The trigonometric functions can be calculated in one of three modes: degree,
radian, or grads (360 degrees = 400 grads). Trigonometric functions are evalu-
ated in radians unless the system is explicitly instructed to use degrees or
grads. If degrees or grads are required, they must be specified with the follow-
ing SELECT statements prior to performing trigonometric calculations:

SELECT D — Use degrees in all subsequent trigonometric calculation.
SELECT G — Use grads in all subsequent trigonometric calculation.
SELECT R — Use radian measure.

Radian measure is automatically selected when the system is Master Initialized
or when a CLEAR command is issued. Radian measure can also be explicitly
selected by executing a SELECT R statement.

Selecting Rounding or Truncation

Results of all arithmetic operations (+, -, *, /, T) and the square root (SQR) and
modulo (MOD) functions are rounded to 13 significant digits. Results can also
be truncated to 13 digits by executing a SELECT NO ROUND statement.

Once a SELECT NO ROUND statement is executed, all results are truncated to
13 digits. Rounding can be restored subsequently with a SELECT ROUND
statement. Rounding is selected automatically when the system is Master
Initialized.

Computational Errors

Computational errors are those produced by the math package when perform-
ing an arithmetic operation or evaluating a function. Normally, when a compu-
tational error other than underflow occurs, the system displays an error
message and terminates program execution. However, if a statement of the
form

SELECT ERROR > error-code

The Select Statement

is executed, the system does not display an error message. Instead, program
execution continues with default values for all math errors whose error-codes
are less than or equal to the specified error-code. Math errors whose error-
codes are greater than the specified code result in an error message and pro-
gram termination. : : '

The SELECT ERROR statement is further discussed in Chapter 9.

Default Math Modes

Upon Master Initialization or after a CLEAR command is executed, the follow-
ing modes of operation are auto;natica]ly selected:

e Radian measure for all trigonometric functions.
¢ Rounding to 13 significant digits for all math operations.

¢ The display of the appropriate error message and halting of program
execution if a computational error other than underflow occurs. (Under-
flow causes the program to proceed with a value of zero for the affected
operation.)

Output Parameter Specification

The following three special output parameters can be specified in a SELECT
statement to control the operation of one or more output devices, such as print-
ers and the screen: '

e The P select-parameter is used to select a pause.

e The LINE select-parameter is used to select the maximum number of
output lines for an output device.

e The WIDTH select-parameter is used to select the maximum line width
for an output device in a particular class of output operations.

Selecting a Pause

The P select-parameter can be used to cause the system to pause for a specified
period each time a carriage return is issued in Program mode or Immediate
mode. A pause is used to slow down the rate at which output lines are dis-
played on the screen, enabling you to read the output easily. The SELECT P
statement can also be used during a TRACE operation, allowing you to read
debugging information more easily.

The Select Statement 7-3

7-4

The optional digit following P specifies the length of the pause in increments of
1/6th of a second. For example, the following statements implement the indi-
cated pauses:

SELECT Pl - Pause = approximately 1/6 second
SELECT P6 — Pause = 1 second
SELECT PO - Pause = null (SELECT PO and SELECT P are
equivalent statements.)
A selected pause remains in effeet until a different pause is selected or the
pause is reset to null by any of the following operations:

e Executing a SELECT P or SELECT PO statement
e Master Initialization of the system

e Pressing the RESET key

¢ Executing a CLEAR or LOADRUN command

Selecting the Number of Qutput Lines

The LINE select-parameter is used to specify the maximum number of lines to
be displayed or listed on a screen or printer for Console Output (CO) and LIST
operations. The LINE parameter has no effect on output produced by a PRINT
or PRINTUSING statement executed in Program mode. In addition, the SE-
LECT LINE statement can be used to restrict cursor movement to a specified
range of lines during INPUT operations.

Upon Master Initialization, the LINE parameter defaults to 24. The LINE
parameter is also reset to the default value following the execution of a CLEAR,
LOAD RUN, or RESET command.

Selecting the Line Width

The maximum width of an output line for PRINT and LIST operations can be
specified with the optional width select-parameter. Normally, the system is-
sues a carriage return at the end of each output line. If the line exceeds the
maximum line width of the output device, the system automatically issues a
carriage return when the device’s line width is exceeded. A maximum line
width other than that of the device itself can be specified for a particular class
of output operations with the width parameter.

If the line width set by “width” is longer than the maximum line width of a
specified output device, the resulting output will differ according to the charac-
teristics of the particular device.

Most printers automatically generate carriage returns when their maximum
line widths are exceeded, irrespective of the selected width. In general, the
printer automatically continues printing an overlong output line on the next
printer line. Since some printers may not follow this procedure, widths that
exceed the maximum line width of the printer should not be selected.

The Select Statement

It must be emphasized that a selected width applies only to a specified output
device when accessed during operations in a particular output class. The state-
ments -

SELECT LIST/215 (100)

) - and

SELECT PRINT/005 (60)
could be used to specify line widths of 100 and 60 for LIST and PRINT opera-
tions, respectively.

You can have different line widths selected for CO, PRINT, and LIST opera-
tions concurrently. When this situation occurs, a combination of operations in
different output classes may produce unpredictable results, particularly on the
screen.

A line width of 0 has a special significance. If the width parameter is set to O,
the line width is disregarded, and no carriage return is issued until the end of
the output line is reached, irrespective of its length. The statement

SELECT PRINT/005 (0)

causes the system to continue displaying PRINT output on the same screen line
until the end of the output line is reached or a carriage return code is explicitly
issued by the program. The column counter used by the system to keep track of
how many characters have been output and where the next character will be
placed is not updated when a line width of 0 is selected. This feature is useful
for moving the cursor on the screen without altering the column count. (Note,
however, that the TAB and AT functions cannot be used when a line width of
zero is selected; refer to the discussion of the PRINT statement in Chapter 11.)

Upon Master Initialization, the line width for all output classes (CO, PRINT,
and LIST) is automatically set to 80. The line width also is reset to its default
value following execution of a CLEAR or LOADRUN command. RESET causes
the CI and CO parameters to return to default values. CLEAR selects PRINT
and LIST to be set to the current CO address and INPUT to be set to the cur-
rent CI address (Address /001).

The currently selected line widths for CO, PRINT, and LIST operations are
stored in slots assigned to each of these I/O classes in the Device Table (refer to
Table 7.1).

I/0 Device Selection

A principal function of the SELECT statement is to assign the device-addresses
of specified devices to the various classes of /O operations.

The Select Statement 7-5

7-6

The Classes of /O Operations

All /O operations performed by the system are divided into the following major
classes: v :

1. CI(Console Input) Keyboard entry of programs, commands, and
Immediate mode lines.

2. INPUT Operator input for INPUT, LINPUT, and KEYIN
statements.

3. CO (Console Output) Echo of characters entered from keyboard, output
from Immediate mode PRINT and PRINTUSING
statements, system error messages, STOP and

END messages, TRACE output, HALT key dis-
plays, INPUT and LINPUT messages.

4. PRINT Output from Program mode PRINT and
PRINTUSING statements.
5. LIST Output from LIST commands.
6. PLOT Output from PLOT statements.
7. TAPE ' Input and output for $GIO statements.
8. DISK Input and output for all disk operations.
Device-Addresses

Each I/O device attached to the system is assigned a unique device-address. A
device-address is composed of three hexadecimal digits. The first hex digit
identifies the device-type. The next two hex digits constitute the unit device-
address. A device-address should always be preceded by a slash (/) when
specified. For example, the device-address of the Primary screen is /005; this
address is broken down by the system as follows:

0 05
device-type unit device-address

The system uses the device-type to identify the I/O class to which the device
belongs and to specify certain control procedures to be used in communicating
with that device. Different types of devices often require different control pro-
cedures to perform I/O operations. Devices are explained in greater detail in
the section entitled “Device Types”.

BASIC-2 requires that the addresses of all devices to be used (other than the
keyboard (/001), screen (/005), the terminal printer (/004), and null output
(/000)) be declared in the Master Device Table when the system is configured
with the @GENPART utility. Attempting to access an undefined device results

in an error. Refer to Chapter 16 for more information on the Master Device
Table.

The Select Statement

Selecting Device-Addresses for I/O Operations

When an I/O operation is initiated, the system uses either the default device-
address or the specified device-address to determine which I/O device to access.
There are three ways to select a specific device-address for a particular /O
operation. :

o Default Addresses (Primary 1/O Devices) — The system automatically
provides default device-addresses for each class of I/O operations (refer
to Table 7-1). The I/O devices associated with these default addresses
are referred to as the primary I/ O devices. If no device-address is se- -
lected or specified for a particular I/O operation, the system uses the
default address for operations in that class.

e The SELECT Statement — The SELECT statement can be used to assign
device-addresses for specified I/O classes. Once a device-address is
selected for a particular I/O class, all operations in that class automati-
cally use the selected address. For example, the statement

SELECT LIST /215

selects device-address /215 for all LIST operations. Use of the SELECT
statement to select device-addresses is further explained in the section
entitled “Explicit Device Table Modification”.

o Direct Specification of the Device-Address — Certain I/O instructions in
the DISK and TAPE I/O classes permit a device-address to be directly
specified in the instruction itself. The specified address always overrides
the default address or the device-address selected for that I/O class with
a SELECT statement. For example, the statement

SAVE T/D20, “PROGl”

saves program PROGI on the disk image at address /D20, irrespective of
which device-address is currently selected for DISK operations.

System Default Device-Addresses

Each system has built-in default addresses for I/O devices in five of the eight
1/O classes. These /O devices are designated the primary I/O devices for the
system. Upon Master Initialization, the default device-addresses are automati-
cally selected for I/O operations. The primary I/O devices and their associated
default device-addresses appear in Table 7-1.

The Select Statement 7-7

7-8

Table 7-1. Default Addresses for Primary /O Devices

1o Primary

Operation 1o Default
Class Device Address
Console Input (Cl) Keyboard /001
INPUT Keyboard /001
Console Output (CO) Screen /005
PRINT Screen /005
LIST Screen /005
PLOT Screen /005
TAPE Null Output /000
DISK Disk Drive /D10

If the system contains no additional I/O device beyond the primary devices (e.g.,
if there is only one disk drive), you never have to select device-addresses or
specify them explicitly in a DISK or TAPE statement. The system automati-
cally uses the default addresses and accesses the appropriate device for each
I/O class. For example, disk operations use the DISK default address, /D10,
and access the Primary Disk. If additional devices such as a second disk drive
or a plotter are added in any I/O class, device-address selection or (where possi-
ble) direct specification is required to identify which device is to be accessed.

When the system enters BASIC-2, the default address for the Primary CI de-
vice (/001) is used for INPUT operations, and the default address for the Pri-
mary CO device (/005) is used for PRINT and LIST operation.

The Device Table

When the system is instructed to perform an I/O operation, the device-address
of the device to be used for that operation is obtained from a special section of
memory called the Device Table. A separate Device Table is maintained for
each partition in the system. For example, the statement

100 PRINT “ABCD”

causes the system to check the Device Table for the device-address to be used
for PRINT operations. Direct device-address specification in a statement over-
rides the Device Table entry for the duration of that statement. In most I/O
classes, addresses cannot be supplied in the individual I/O instructions; in these
cases, the Device Table is the only source of device-addresses.

The Select Statement

The Device Table is composed of a number of rows or “slots.” In general, each
/O class is assigned its own slot in the Device Table; either the currently se-
lected or the default device-address for each I/O class is stored in its Device
Table slot, along with certain other information. (The exception to this rule is

 the DISK 1/O class, which has 16 slots in the Device Table.) DISK operations

use the Device Table to store a variety of information in addition to device-ad-
dresses.

The format of the information stored in the Device Table is illustrated in Figure
7-1. When you execute a LIST DT command, a screen with a format similar to
the one shown in Figure 7-1 appears.

cI /001 ’ co /005 WIDTH 80
INPOUT /001 PRINT /215 WIDTH 132
PLOT /413 LIST /005 WIDTH 80
TAPE /000

#0 /D11 #8 /000

#1 /B20 at 530 in 500 to 732 #9 /000

#2 /D12 at 1234 in 1234 to 1945 #10 /000

$3 /320 at 12222 in 11946 to 12223 #11 /000

#4 /000 #12 /000

#5 /000 $13 /000

#6 /000 #14 /000

#7 /000 $#15 /000

MDT: /004 /215-120 /310 /320-03x

PDT: /015 Q@PMO10VO ON /016 @PMO120VO OFF

Figure 7-1. Sample Device Table Screen

Upon Master Initialization, default addresses are placed in each I/O slot in the
Device Table. Additionally, default line widths are placed in the CO, PRINT,
and LIST slots. The line width of the Primary screen, address /005, is used as
the default width. The remainder of the Device Table is set to zeros.

Operations in each I/O class refer to the corresponding slot for that class in the
Device Table. For example, Console Input operations use the CI slot to obtain a
device-address, and PRINT operations use the PRINT slot to obtain a device-
address and line width.

Note: PRINT class operations include only the Program mode execution
of PRINT and PRINTUSING statements. I mmediate mode PRINT and
PRINTUSING statements belong to the Console Output class and use the
CO slot rather than the PRINT slot to obtain the device-address and line
width.

Modifying Device Table Entries

Entries in the Device Table can be modified explicitly with a SELECT state-
ment or implicitly with one of the following operations:

e Master Initialization of the system
e Executing a CLEAR and LOAD RUN command
e Pressing the RESET key '

The Select Statement 7-9

The use of the SELECT statement to explicitly change device-address and
line-width parameters in a Device Table slot is covered in the section entitled
“Explicit Device Table Modification”. The methods used to implicitly modify the
values in the Device Table are described in the section entitled “Implicit Device
Table Modification”.

Explicit Device Table Modification

7-10

Device Table entries for all I/O ciasses can be modified explicitly by executing a
SELECT statement that specifies the I/O class or classes whose entries are to
be modified and the new values for those entries. However, before a class of I/0
operations can be assigned explicitly to a new device, the device-address of the
new device must be known.

Note: If a line width is not specified for Console Output, PRINT, or
LIST operations, the last line widths selected for these operations are
used.

The Console Input Select-Parameter

The Console Input (CI) select-parameter specifies the device-address to be used
for all Console Input operations. Console Input includes the entry and editing
of program text and Immediate mode lines as well as system commands such as
LOAD, CLEAR, and RUN. Characters entered during a Console Input opera-
tion are automatically echoed to the currently selected Console Qutput device.
BASIC-2 only supports address /001 for CI operations.

The INPUT Select-Parameter

The INPUT select-parameter specifies the device-address to be used to enter
data for INPUT, LINPUT, and KEYIN statements, as in the following example:

100 SELECT INPUT /002
110 INPUT “WVALUE OF X,Y”,X,Y

The message “VALUE OF X,Y?” appears on the Console Output device, and the
values of X and Y must be entered from the device selected for INPUT opera-
tions (Address /01C).

The Select Statement

The Console Output Select-Parameter

BASIC-2 uses the device-address /005 for Console Output operations. Console
Output includes output produced by the following operations.

e Echo of characters entered in Console Input operations from the CI
device.

e Echo of characters entered in response to INPUT, LINPUT, and KEYIN
requests from the INPUT device.

e Messages produced by the INPUT and LINPUT statements

e Output of Immediate mode PRINT and PRINTUSING statements
e Output of TRACE operat’ions

e Output of HALT operations

e System-generated error messages

e STOP and END messages

e Output from TRACE operations to be redirected to another device (e.g., a
printer) through the CO select parameter

For example, the statement

SELECT CO/215 (120)
selects the printer with address /215 for TRACE operations by placing
address /215 in the CO slot in the Device Table. The maximum line

width is set at 120 characters. Output from console operations, other
than TRACE, cannot be redirected with BASIC-2.

The PRINT Select-Parameter

The PRINT select-parameter designates the output device on which all program
output from PRINT and PRINTU SING statements is displayed and can specify
the maximum line width to be used for that device, as in the following example:

10 SELECT PRINT /215(100)

20 PRINT”X = “; X,”NAME = “; N$

30 PRINTUSING 40,V

40 STOTAL VALUE RECEIVED:S$#, ###.##
The SELECT PRINT statement in Line 10 directs all printed output to a print-
er with device-address /215 by placing address /215 in the PRINT slot in the
Device Table. The line width is specified as 100 characters. The screen can be
reselected for programmed PRINT output with the following statement:

SELECT PRINT/005 (80)

This statement reselects the screen (address /005) as the device to which all
PRINT and PRINTUSING output is directed and sets the maximum line width
to 80 characters.

The Select Statement 7-11

7-12

Note: The output from PRINT and PRINTUSING statements executed
in the Immediate mode always appears on the Console Output device.

The LIST Select-Parameter

The LIST select-parameter designates the output device to be used for all pro-
gram and cross-reference listings and, optionally, specifies the maximum line
width to be used for LIST operations on that device. For example, the state-
ment

SELECT LIST/215(132)

specifies that a printer (device-address = /215) is to be used for all listings by
placing address /215 in the LIST slot in the Device Table. The maximum line
width is specified as 132 characters.

The PLOT Select-Parameter

The PLOT select-parameter specifies the device-address to be used for output
from PLOT statements. For example, the statement

SELECT PLOT /C13

selects the plotter at Address /C013 for PLOT output. The “C” device-type used
in place of the standard “0” device-type specifies the use of special control proce-
dures that utilize binary plot vectors. Binary plot vectors can substantially
increase the overall speed of a plotting operation.- In this example, the SELECT
statement is used not to select a different output device for PLOT operations,
but to specify a different control procedure to be used in plotting.

The TAPE Select-Parameter

The TAPE select-parameter specifies the device-address to be used by any
TAPE-class instruction that does not specify a device-address or file-number in
the instruction itself. The TAPE-class instructions are $GIO and $IF ON. For
example, the statement

100 SELECT TAPE/005
selects the screen for $GIO operations.

The TAPE-class instructions can specify a device-address directly as part of the
instruction. In this case, the directly specified device-address always overrides
the device-address stored in the TAPE Device Table slot. TAPE-class instruc-
tions can also specify a device-address indirectly by referencing a file-number
from #0 to #15. In this case, the device-address stored in the Device Table slot
identified by the corresponding file-number is used for the I/O operation. The
use of file-numbers to reference device-addresses for DISK and TAPE instruc-
tions is described in the section entitled “The File-Number Select-Parameter”.

The Select Statement

The DISK Select-Parameter

The DISK select-parameter specifies the device-address to be used in any DISK
instruction that does not directly specify a device-address or file-number. For

‘example, the statement

SELECT DISK /D20

selects the disk drive with address /D20 as the Primary Disk. The disk drive is
then used automatically by any DISK instruction that does not specify a device-
address or file-number. The above SELECT statement places address /D20 in
the DISK slot in the Device Table. Because the DISK slot is also identified as
the #0 slot in the Device Table, ’SELECT DISK and SELECT #0 are equivalent.

To manipulate disk files with greater flexibility, the system provides two addi-
tional methods of identifying a desired disk unit in a DISK instruction. Many
DISK instructions can specify the device-address directly within the instruc-
tion. This method of disk device-specification is independent of the Device
Table. For example, the command

LIST DCT/D50

lists the Catalog Index of the disk whose device-address is /D50, irrespective of
the address stored in the DISK Device Table slot.

A second method of specifying the device-address in a DISK instruction involves
the use of file-numbers. When a file-number is included in a DISK instruction,
the device-address stored in the Device Table slot identified by that file-number
is used for the disk I/O operation. For example, the statement

100 LOAD DC T #5, “PAYROLL”
would use the device-address stored opposite file-number #5 in the Device Table
to load the program “PAYROLL.”

Note that the specification of a device-address or file-number directly in a DISK
instruction does not alter the contents of the Device Table.

The File-Number Select-Parameter

In addition to individual slots for the various I/O classes, the Device Table also
contains sixteen slots identified with the file-numbers #0 through #15 (refer to
Figure 7-1). The #0 slot, which is the DISK /O slot, contains the default ad-
dress for the Primary Disk and is generally used only by DISK instructions.
The remaining slots (#1 - #15) may be used by both DISK and TAPE instruc-
tions, although their most common use is in disk operations.

The Select Statement 7-13

7-14

Each file-number slot can contain, in addition to a device-address, several items
of information not found in any of the other I/O slots (refer to Figure 7-1). This
includes the following information:

* A file-status parameter, used in disk operations to report the status of a
cataloged data file

® Three sector-address parameters, used by the system to locate a cata-
loged disk file and point to the specified location within the file

However, for the present discussion of the SELECT statement, only the device-
address parameter in the file-number slot is relevant. :

A SELECT statement can be used to store a device-address in one of the file-
number slots in the Device Table exactly as it is used to store device-addresses
in the other I/O slots. Thus, the statement

100 SELECT #3/D20

places the device-address /D20 in the #3 slot in the Device Table. Subse-
quently, a DISK instruction that references file-number #3 uses address /D20
for its I/O operation. For example, the statement

150 DATALOAD DC OPEN T #3, “FILE”
opens the data file named “FILE” on the disk image whose address is /D20.

The indirect assignment of device-addresses in a program by means of file-num-
bers offers several programming advantages. Subroutines can be written to
perform a sequence of I/O operations for several devices, and all device-address
assignments in a program can be changed by modifying a single statement. For
instance, in the following example, all address assignments can be changed by
modifying Line 10:

10 SELECT #2/D10, #3/D30
20 DATALOAD DC OPEN T #2, “OLDFILE”

110 DATALOAD DC OPEN T #3, “NEW FILE”

Multiple Select-Parameters in a Single

SELECT Statement

As Line 10 in the preceding example illustrates, you can specify multiple select-
parameters in one SELECT statement. You can specify any combination of
select-parameters in the same SELECT statement; the only provision is that

individual parameters must be separated by commas. For example, the state-
ment

50 SELECT D, NO ROUND, CO/215, #5/D50
performs all of the following operations:

The Select Statement

e Selects degree measure for trigonometric functions

e Selects truncation rather than rounding of numeric results

e Selects device-address /215 for Console Output operations

. Assigﬁs deviée-addréss /D50 to the #5 slot in the Device Table

Implicit Device Table Modification

The SELECT statement is used to explicitly modify one or more slots in the
Device Table. However, there are certain system operations that modify entries
in the Device Table as part of a thore general function. This type of modifica-
tion is referred to as implicit Device Table modification. It is performed when-
ever the system is Master Initialized, RESET is pressed, or a CLEAR or LOAD
RUN command is executed. Because each of these operations causes the Device
Table to be modified in a different way, you should be familiar with the specific
effects of each operation.

Master Initialization

Master Initializing the system clears the entire contents of the Device Table
and then performs the following operations:

e Sets the device-address in each /O slot to the system default address for
that /O class (i.e., the address of the primary device for that class). The
disk default address is placed in the #0 slot.

e Sets the line widths in the CO, PRINT, and LIST slots to the line width
of the primary screen (Address 005).

e Sets the remainder of the #0 slot and all items in the #1 - #15 slots to
Zeros. .

RESET

Whenever RESET is keyed, the CO (console output) and CI (console input)
Device Table entries are automatically reset to the system default addresses for
those classes. The following modifications are made to the Device Table:

e The CO entry is set to the system default address for Console Output
(/005). The line width is set to 80.

e The CI entry is set to the system default address for Console Input
(/001).

e LINE and width are set to 24 and 80, respectively.

No other Device Table slots are affected by keying RESET.

The Select Statement 7-15

CLEAR and LOAD RUN

When a CLEAR command with no parameters is executed, the current CO
device is selected for all character output operations, and the current CI device
is selected for all character input operations. Note that the CO and CI entries
themselves are not modified. (Because the LOADRUN command automatically
issues a CLEAR command as part of its execution, its effect is identical to that
of the CLEAR command.) The following modifications are made to the Device
Table:

¢ PRINT and LIST device-address entries are set to the current CO de-
vice-address. PRINT and LIST line widths are set to the current CO
line width. '

¢ The INPUT device-address entry is set to the current CI device-address.

® The #0 slot is zeroed out except for the DISK device-address, which is
not altered.

¢ The #1 - #15 slots are completely zeroed out.

Note that CLEAR does not affect the entries for CI, CO, PLOT, or TAPE, nor
does it change the current address for DISK.

Device Types

7-16

The device-type digit of the device-address is used by the system to identify
what type of device is being selected for an I/0 operation. Since the various
peripheral devices available on the system often require different control proce-
dures to perform an input/output operation, you must indicate to the system
which type of I/0 device is being used. The device-type digit informs the Oper-
ating System of the I/O class of the peripheral device, enabling the system to
utilize the appropriate procedure during I/O.

For character printing and displaying operations (PRINT, LIST, and Console
Output), the following device-types are normally used:

Type 0% = Outputs a line-feed character (hex 0A) after each
carriage return character (hex 0D) is output.

Type 2 = QOutputs a null character (hex 00) after each carriage
return character (hex 0D) is output.

Type 7 = Does not output any extra character after each

carriage return character (hex 0D) is output.

The Select Statement

For other I/O operations, the following device-types are generally used.

Type 0 = Character input (Console Input, INPUT, LINPUT,
' KEYIN)

Type3,B,D = Disk operations

Type 4\ = PLOT output

Type A = 92236MXE Asynchronous Communications

Type C Vectored PLOT operations™**

* This device-type provides faster plotting than device-type 4.

** Type 4 can also be used for character output. It is equivalent to Type O except that the
automatic carriage return norpally issued at the end of a line is suppressed.

Conditional Selection of Select-Parameters

The ability to conditionally select a particular group of select-parameters dur-
ing program execution can be extremely useful in many applications. This
process involves the selection of a specified set of select-parameters from sev-
eral alternatives. A response you enter or a value the program computes deter-
mines which set of parameters is selected. Conditional selection of
select-parameters can be accomplished by writing several SELECT statements
on different program lines and then using an ON/GOSUB or ON/GOTO state-
ment to conditionally branch to a desired line. A more efficient and self-docu-
menting technique, however, is provided by the ON/SELECT statement. The
general form of the ON/SELECT statement is shown in the section entitled
“General Forms of the Select Statement”.

The Select Statement 7-17

7-18

The ON/SELECT statement uses a numeric or alphanumeric value (the “select-
value”) to select a particular set of select-parameters, called a “select-list,” from
several specified select-lists. The select-value is used as an index to determine
which of the specified select-lists will be selected. For example, in the state-
ment

70 ON I SELECT #1/D10; #1/B10; #1/D50

the numeric-variable I contains the select-value, while #1/D10, #1/B10, and
#1/D50 are the select-lists. In this case, if I=1, then SELECT #1/D10 is exe-
cuted; if I=2, then SELECT #1/B10 is executed; and if I=3, then SELECT
#1/D50 is executed. IfI has a value other than 1, 2, or 8, nothing is selected
(i.e., the Device Table is unchanged).

In this example, each select-list is composed of one select-parameter. In a
standard SELECT statement, multiple select-parameters may be specified in a
select-list. When this situation occurs, the individual select-parameters within
a select-list must be separated by commas. The select-lists themselves are
separated by semicolons. The following distinction must be emphasized: Multi-
ple select-lists within an ON/SELECT statement are separated by semicolons,
and individual select-parameters within a select-list are separated by commas.
For example, the statement

100 ON J SELECT CO/005, PRINT/005, LIST/005; CO/215,

PRINT/215, LIST/215; CO/005, PRINT/215, LIST/216

contains three select-lists, each consisting of three select-parameters. In this
case, if J=1, then CO, PRINT, and LIST operations are assigned to address
/005; if J=2, CO, PRINT, and LIST are assigned to /215; and if J=3, CO is as-
signed to /005, PRINT is assigned to /215, and LIST is assigned to /216. For
any other value of J, no selection is made.

The “null select-list” is a special select-list containing no select-parameters. It
is defined by leading and trailing semicolons with nothing (or spaces) between
them. The null select-list is used when no selection is to be made for a particu-
lar select-value. For example, the statement

200 ON I SELECT PRINT/005;;PRINT/215

selects PRINT operations to address /005 if I = 1 or to address /215 if I = 3.
IfI = 2 or if I is outside the range 1 - 3, no selection is made.

Note that if the select-value is a numeric expression, it is truncated before the
ON/SELECT statement is evaluated. You can also use an alphanumeric ex-
pression as a select-value; for a discussion of alpha select-values, refer to the
discussion of ON/SELECT in the section entitled “General Forms of the Select
Statement”.

The Select Statement

General Forms of the Select Statements

This section contains the general forms of the SELECT, ON/SELECT, and LIST
DT statements. The SELECT function is also described. '

The LIST DT statement follows the general rules of the SELECT statement.
For a detailed description of list control, refer to Chapter 10.

[] The LIST SELECT statement is also included in Chapter 10.

The Select Statement 7-19

7-20

LIST DT

Format:
LIST [title] DT

where:

title = alpha-variable or literal-string

LIST DT lists the contents of the Device Table. The current device selections
for the various I/O classes and file numbers are shown. The line width for
character output devices is also included.

For data files that are open, the device type in the disk-address of the associ-
ated file number indicates whether the file was opened with the T, F, or R
platter specification. Device type D indicates T, 8 indicates F, and B indicates
R. For example, if a data file has been opened as follows:

SELECT #1/320: DATALOAD DC OPEN R #1, “PLAYERS”

then, LIST DT displays the selection as: #1 /B20. LIST DT also displays the
current sector location within the open data file. For example, for the file above
the display might be:

#1 /B20 at 530 in 500 to 732

This shows that the current location is sector 530 in the data file that begins at
sector 500 and ends as sector 732..

LIST DT also lists the device entries in the Master Device Table (MDT). Each
entry is displayed in the following format:

/taa[-ppx] where: t = device type (3 if disk, otherwise 0)
aa = device address
pPp = number of the partition using the device
x = X if device open exclusively for parti

tion pp,or O if open for partition pp

The Printer Device Table (PDT) is also listed by LIST DT. An entry for each
available printer supported by the Generalized Printer Driver is displayed.
Each entry includes the printer address, name of the printer table, and whether
the printer table is enabled (ON) or disabled (OFF).

The title parameter and control of the list output is the same as for the other
LIST statements. Refer to the LIST command in Chapter 10.

The Select Statement

Example:

:LIST DT
‘e /001
INPUT /001
PLOT /413
TAPE /000
#0 /D11
#5 /B20
#7 /D12
#15 /320
MDT: /004
PDT: /015

co
PRINT
LIST

#2
at 530 in 500 to 732 #6
at 1234 in 1234 to 1945 #10
at 12222 in 11946 to 12223 #128

/215-1%9 /310 /320-03x

@PMO010VO0 ON /016 @PM0120V0 OFF

/005
/215
/005

/D10
/D1F
/D31
/D5F

width 80
width 132
width 80

The Select Statement 7-21

7-22

ON SELECT

Format:
ON select-value SELECT select-list [; [select-1list]]...

where:

numeric-expression

select-value
alpha-variable

select-list = select-parameter [,select-parameter] ...

The ON SELECT statement is a conditional SELECT statement in which the
specific select-parameter assignment(s) made are determined by the value of an
expression or alpha-variable, called the “select-value.” The select-parameter
assignments specified in the “nth” select-list are made, where “n” is the integer
portion of the select-value. For example, the statement

10 ON X SELECT #0/D10; #0/B10; #0/D20

selects #0 to /D10 when X=1, to /B10 when X=2, and to /D20 when X=3. If the
truncated value of the expression is less than one or greater than the number of
select-lists, no assignments are made.

Each select-list consists of one or more select-parameters separated by commas
(individual select-lists are separated by semicolons). When a select-list is se-
lected, all the select-parameter assignments specified within that select-list are
made. For example, the statement

10 ON X SELECT CO/215,PRINT/215,LIST/215; CO/005,
PRINT/005,LIST/005

selects CO, PRINT, and LIST operations to a line printer (address /215) if X=1.
If X=2, these three output operations are selected to the screen (address /005).

Null select-parameters in the ON statement imply that nothing is to be selected
for the associated select-value. For example,

10 ON I SELECT PRINT/005;; PRINT/215

selects PRINT to address /005 if I=1 and PRINT to address /215 if I=3; nothing
is selected if I=2 (i.e., the current device specification for PRINT remains in
effect).

The select-value may be specified by an alpha-variable as well as by a numeric
expression. If an alpha-variable is used, the binary value of the first character
in the alpha-variable is used as the select-value. For example, if A$=HEX(02),

execution of the statement
10 ON A$ SELECT DISK/D10; DISK/D20; DISK/D30
would select DISK to address /D20.

The Select Statement

Examples of valid syntax:

ON I SELECT PRINT/005; PRINT/215

ON A$ SELECT R;D;G

ON (I+l)/2 SELECT #0/D10; #0/D20; #0/D30

ON X SELECT CO/005,PRINT/005,#0/D10;PRINT/215, LIST/215,
#0/B10 : a ' :

The Select Statement

7-23

SELECT Statement

Format:
SELECT select-parameter [,select-parameter]...

where:
D
R
G
ERROR [> error—code] [NO] ROUNDP [digit]
LINE numeric-expression
CI device—address
INPUT device-address
CO device-address [(width)]
PRINT device-address [(width)]
select-parameter =

LIST device—address [(width)]
PLOT device-address

TAPE device-address

DISK device—-address
file-number device-address
TC port-number

TERMINAL port-number

DRIVER device-address [OFF]

T ON/OFF
H ON/OFF
NEW *
OLD *
device-address = /taa,
< alpha-variable >
where:
t = one hex digit specifying the device-type
aa = two hex digits specifying the physical device
address
alpha-variable = three-byte variable whose value must be
three ASCII hex digits representing the
device type and address
width = an expression 0 < 256 specifying the maximum
number of characters on a single line
file-number = $#n, where n = an integer or numeric-variable

with a value >= 0 and < 16

Note: * CS/386 ONLY

7-24 The Select Statement

The SELECT statement is used for the following purposes:

To select the desired math modes for arithmetic operations; including
type of measure for trigonometric functions, rounding or truncation of
numeric results, and desired system response to specific math errors.
(Refer to the section entitled “Math Mode Selection”.)

To select output parameters for communicating with output devices.
(Refer to the section entitled “Output Parameter Specification”.)

To select device-addresses for accessing specified devices with input/out-
put statements and commands. (Refer to Section 7.4.)

To select a 2236 MXE port for telecommunications. Refer to the Asyn-
chronous Communicatiods User Guide for Model 2236MXE Terminal
Processor and Option-W Terminal Processor (700-8098) for a discussion
of SELECT TC, SELECT TERMINAL, and telecommunications using
the 2236MXE.

To control printer drivers. Refer to the BASIC-2 Utilities Reference
Manual for a discussion the use of SELECT DRIVER for controlling

printer drivers.

To Select the program saving format mode. The option OLD (Default)
signifies format compatible with the current 2200 & VLSI CPUs. The
NEW option is only compatible with the CS/386 CPU. It should be noted
that the CS/386 takes less processing time to resolve the NEW file for-
mat. Because the new format takes more space to save a program line,
old formats being resaved in the new format may fail with an A05 Error.
To overcome this sitution, the program line must be broken into addi-
tional line numbers.

To record DATE and TIME on all programs when using a SAVE or
RESAVE command.

To initiate disk platter hogging on a DS data storage unit with PROMs
Revision 3.0 or greater. It allows you to hog only a platter, and not the
complete storage unit, using the $OPEN command.

The Select Statement 7-25

7-26

SELECT Function

Format:
SELECT select-parameter

where:

select-parameter = CI, INPUT, CO, PRINT, LIST, PLOT, TAPE,
DISK, or file#

file# = #n, where n is an integer or numeric variable
with value between 0 and 15 inclusive.

The SELECT function is an alphanumeric function that returns the current
device selection for the specified I/O class or file number. The value returned is
8 ASCII characters, the first being the device type and the next two being the
device address. The SELECT function is used in alpha-expressions in alpha
assignment statements (refer to Chapter 5).

Example:

SELECT #5/D10
A$ = SELECT #5

Sets A$ to “D10”.
Examples of valid syntax:

AS$=SELECT PRINT
D$ () =SELECT #0 & SELECT #1 & SELECT #2

The Select Statement

LIST SELECT

Format:
LIST SELECT

The LIST SELECT Command genérates a listing of the selected parameters.
This allows the user the ability to view the options they have selected. The
select statement command will produce a complete discripition of all the options
available.

" Example:
10 LIST SELECT
Result Shows

SELECT R, ERROR>60, ROUND, P, LINE 24, NEW
SELECT CI/001, INPUT/001, PLOT/413, TAPE/000
SELECT PRINT/204(80), LIST/005(80), CO/005(80)
SELECT DISK/D10

Example of valid syntax:
LIST SELECT

The Select Statement 7-27

Programmable Interrupts

Overview

The BASIC-2 language provides a limited I/O interrupt handling capability.
The programmable interrupt automatically transfers program control to an

NNNN e
NNNN
NN\

NN N NN NN NN NNNN
NONN NN N NN NNNANN
NN N NN N NN NN NN
NONNNNNNNNNNNN

NNNN N T
NONN N NNNNNNNNN

AN N N N NN N NN .
NNNNNNNNNNNNNL e
NANANNNNNNNNN s
NNNNNNNNNNNNN L
A NN N N N N N N N N
NNNNNNNNNNNNN L T
NNNNNNNNNNNNN e,
ONNNNNNNNNNNNN L

ONNNNNNNNN NN

\

NN
RANANAN
SN

NN

interrupt processing subroutine when an interrupt condition occurs. It subse-
quently returns control to the interruption point in the main program after the
interrupt subroutine processing is finished. Because different devices can be
assigned different priorities in the interrupt scheme, this type of interrupt is

often called a priority interrupt.

Programmable interrupts are useful for real-time instrument control, as well as
in applications where the activity of more than one program needs to be coordi-

nated. However, most users will not use interrupt processing. The system

controls all the low level device handling for common system devices such as

printers, disk, and terminals.

Programmable Interrupts

8-1

Interrupt Programming

The SELECT statement controls interrupts. The following list summarizes
interrupt control features, as well as the statements that implement each fea-
ture.
e Defining interrupts and priorities
SELECT ON interrupt-condition GOSUB line-number
SELECT OFF interrupt-condition GOSUB line-number
e Enabling and disabling individual interrupts
SELECT ON interrupt-condition
SELECT OFF interrupt-condition .

e Inhibiting and reactivating all currently enabled interrupts

SELECT ON
SELECT OFF
e Clearing all currently defined interrupt information for redefinition
SELECT ON CLEAR
Interrupt Processing

8-2

An T/O device signals an interrupt condition when the device ready/busy condi-
tion is ready. A BASIC-2 program can set an interrupt condition for another
partition by executing a $ALERT statement. While normal program processing
continues, the defined interrupts are constantly polled for a ready signal.

When an interrupt condition occurs, the system saves the current BASIC-2
program location and transfers program control to the specified interrupt proc-
essing subroutine upon completion of current statement execution. The inter-
rupt subroutine then performs the necessary processing. At the completion of
subroutine processing, a RETURN statement sends the program control back to
the statement immediately following the last statement executed before the
interrupt occurred, and main processing resumes at that point.

Example:

100 SELECT ON ALERT GOSUB 5000
Executing line 100 activates the checking for ALERT interrupts during the
execution of the remainder of the program. Control is transferred to the sub-
routine at line 5000 when the appropriate SALERT statement is executed by

another program. When subroutine 5000 completes, control is returned to the
interrupted program.

Programmable Interrupts

A program is interrupted between the execution of BASIC-2 statements. The
execution of a BASIC-2 statement cannot be interrupted. For example, if the
system is awaiting operator entry in response to an INPUT request or is per-
forming a disk operation, all interrupt activity is suspended until the statement
completes execution. For this reason, a programmer must be careful when '
designing a program to handle a device that requires immediate responses.
(For example, programmers could use KEYIN loops instead of INPUT if inter-
rupts need to be fielded during keyboard entry.)

The interrupt subroutine itself cannot be interrupted; all interrupt processing is
suspended until the interrupt subroutine executes a RETURN or RETURN
CLEAR to the main program. (The interrupt routine can, however, call subrou-
tines.) SELECT ON statements executed in an interrupt subroutine do not
take effect until the interrupt subroutine executes a RETURN or RETURN
CLEAR. In general, all interrupt control SELECT statements can be legally
executed within an interrupt subroutine. Since interrupts cannot take effect
until the interrupt subroutine executes a RETURN statement, interrupts made
active are not effectively active until the RETURN occurs.

If more than one interrupt is enabled, the system checks each interrupt-condi-
tion according to the priority. Interrupt priority is established by the order in
which interrupts are defined in the program. As a result, the device with the
interrupt first defined has the highest priority. Executing a SELECT OFF
statement and then reenabling the interrupt with another SELECT ON state-
ment does not change the priority of the device.

The programmer changes interrupt priority by clearing all currently defined
information from the system with a SELECT ON CLEAR statement and then
redefining interrupts in the desired priority.

Listing Interrupt Status

Interrupt processing for up to eight different devices is maintained in an inter-
nal system table called the Interrupt Table. The LIST I command lists the
current contents of the Interrupt Table. Examination of the contents of the
Interrupt Table is useful for program debugging. The general form of the LIST
I command and the format of its output are discussed in the section entitled
“General Forms of the Interrupt Control Statements”.

Definition and Enabling of Interrupts

The programmer can combine the ON/OFF parameters and all associated inter-
rupt parameters with other select-parameters in a single SELECT statement,
although such an intermixing of select-parameters is likely to make the pro-
gram confusing. More significantly, a programmer can specify the ON/OFF
parameters in an ON SELECT statement to permit conditional definition and
enabling of interrupts.

Programmable Interrupts ~ 8-3

ON SELECT is a conditional form of the SELECT statement in which a value,
called a select-value, determines which one of a number of specified select-pa-
rameters is selected.

Example: v

The following example illustrates the use of ON SELECT to conditionally en-
able an interrupt for a user-specified device.

40 SELECT OFF/017 GOSUB 3000, OFF/018 GOSUB 4000, OFF/019

GOSUB 5000

50 INPUT “ENTER INTERRUPT DEVICE (1, 2, OR 3)”, N

60 ON N SELECT ON/117, ON/018, ON/019
Interrupts for all devices are initially defined at line 40; at this point all inter-
rupts are disabled. Line 50 prompts the user to identify which device will be
used by specifying a number from 1 to 3. This number represents the select-
value and is assigned to the variable N. At line 60, the value of N determines
which interrupt is enabled. If N=1, device /017 is enabled. If N=2, device /018
is enabled. If N=38, device /019 is enabled. If N has a value less than 1 or
greater than 3, then no device is enabled.

The ON SELECT statement with interrupt parameters is useful in situations
where an operator or the program itself must have the capability to enable or
disable specified interrupts. The general ON SELECT statement is described
in detail in Chapter 7.

General Forms of the Interrupt Control
Statements

The general forms of the $ALERT, SELECT ON/OFF, and SELECT ON CLEAR
statements and the LIST I command are discussed in alphabetical order on the
following pages.

8-4 Programmable Interrupts

$ALERT

Format:
$ALERT partition

where:

partition = numeric expression

The $ALERT statement generates an interrupt to the specified partition. In
order for the interrupt to have any effect, the alerted partition must execute a
SELECT ON ALERT GOSUB statement. The SELECT ON ALERT GOSUB
statement defines that alert interrupts are to be fielded and indicates a subrou-
tine to execute when an alert interrupt occurs.

When an alert interrupt is acknowledged, the programmer knows that at least
one $ALERT statement has been executed by some partition since the last
occurrence of a $ALERT interrupt or a LOAD, CLEAR, or RUN command. The
programmer does not know which partition executed the $ALERT, or whether
or not several $ALERTs have been executed since the last ALERT interrupt
was acknowledged.

The alert interrupt is intended to be an indication to the specified partition that
some other communication area, such as a global variable or shared disk file,
should be polled. Using $ALERT consumes much less CPU or disk I/O time
than repeatedly checking disk files or global variables for the occurrence of an
interrupt change. '

Alert interrupts are defined and fielded according to the same rules as other
programmable interrupts. Refer to the discussion of the SELECT ON/OFF
statement later in this section.

Example:
500 SALERT 5: REM alert partition 5

If partition 5 has enabled alert interrupts, the alert interrupt is fielded as soon
as partition 5 comes to the end of processing a BASIC-2 statement that is not in
the interrupt handling subroutine.

Examples of valid syntax:

SALERT 5
$ALERT T (N)

Programmable Interrupts ~ 8-5

LISTI

Format:

LIST [title] I

where:

title = alpha-variable or literal-string

The LIST I command lists the current contents of the Interrupt Table. LIST I
follows the general rules of the LIST statement regarding the title and control
of the list output (refer to Chapter 10).

The system stores the following information in the Interrupt Table for each
interrupt.

The condition of the general interrupt inhibit/reactivate

The currently executing subroutine if the system is currently processing
an interrupt

Status information indicating whether the interrupt is currently active
(ON) or inactive (OFF)

The device address of the device that initiates the interrupt, or the word
ALERT if an alert interrupt is defined

A subroutine line number that specifies the starting point of the inter-
rupt processing routine

The general format of the listing of the Interrupt Table is as follows.

Item In Listing Meaning

ON/OFF Condition of general interrupt inhibit/reactivate

GOSUB (or blank) GOSUB if currently in an interrupt subroutine

ON/OFF aa GOSUB xxxx Parameters of each defined interrupt, including status
ON/OFF aa GOSUB xxxx (ON or OFF), device address (aa) or ALERT, and interrupt

ON/OFF ALERT GOSUB xxxx subroutine line number (xxxx).

Example:

Consider the following program segment:

50 SELECT ON/017 GOSUB 150, OFF/018 GOSUB 250, ON ALERT GOSUB
300
60 SELECT OFF

8-6 Programmable Interrupts

If a LIST I command is executed immediately after line 60 is executed, the
system produces the following listing:

sLIST I
OFF . .
ON 17 GOSUB 0150
OFF 18 GOSUB 0250
ON ALERT GOSUB 0300

Examples of valid syntax;

LIST I
LIST “Interrupt Table” I

:

Programmable Interrupts ~ 8-7

8-8

SELECT ON/OFF

Format:
ON
SELECT [interrupt—-condition [GOSUB line-number]]
OFF
where:
/device—-address
interrupt-condition = file#
ALERT
file# = #n
where:

n is an integer or numeric-variable with a value between 0 and 15.

The SELECT ON/OFF statement is a form of the general SELECT statement
containing special parameters that define, redefine, enable, and disable inter-
rupts. Interrupts cannot be defined in the Immediate mode.

A programmer can include the ON and OFF select-parameters and associated
interrupt parameters with any other select-parameters in a SELECT state-

ment. Additionally, they can be specified in an ON SELECT statement to per-
mit conditional definition and enabling of interrupts. Refer to Chapter 7 for a
discussion of the general SELECT statement and the ON SELECT statement.

Defining Interrupts and Priorities
A programmer can define a maximum of eight interrupts. The following state-
ments define interrupts.

SELECT ON interrupt-condition GOSUB line-number

SELECT OFF interrupt-condition GOSUB line-numer

The interrupt-condition parameter can specify an interrupt for a particular
device (device-address or file# specifying a device address) or for another parti-
tion (ALERT). The GOSUB parameter specifies the location of the interrupt
processing subroutine.

Interrupt priority is established by the order in which the interrupts are de-
fined in a program (i.e., the first interrupt defined has the highest priority, the
second interrupt defined has the next highest priority, and so on).

Programmable Interrupts

Example:
Line 10 defines three interrupts for addresses /017, /018, and /019.

10 SELECT OFF/017 GOSUB 100, ON/018 GOSUB 200, OFF/019 GOSUB
300 - - ~

The interrupt defined for address /017 has the highest priority; the interrupt
defined for address /018 has the next highest priority; and the interrupt defined
for address /019 has the lowest priority. Line 10 also defines the subroutine
branch addresses associated with each interrupt (i.e., 100, 200, and 300). For
example, if the device at address /018 receives a ready signal, program execu-
tion continues at line 200 following completion of the current statement.

The ON and OFF parameters défine the initial status of an interrupt (either
enabled or disabled).

Example:
The following statement defines two interrupts.

10 SELECT OFF/017 GOSUB 100, ON/018 GOSUB 200

The interrupt defined for device /017 is inactive. A ready signal at address /017
does not initiate an interrupt, although an interrupt is defined for that address.
The second interrupt, defined for address /018, is active and a ready condition
at address /018 initiates an interrupt.

Once an interrupt is defined, a second SELECT statement can be executed later
in the program to change the interrupt subroutine address.

Example:

Line 10 defines the subroutine address for device /018 as 200. The programmer
can change this subroutine address by executing another SELECT statement as

in line 50.
10 SELECT OFF/017 GOSUB 100, ON/018 GOSUB 200

50 SELECT ON/018 GOSUB 400
An interrupt initiated at address /018 now causes a branch to line 400. Chang-
ing the subroutine address in this way does not alter the originally defined
interrupt priority.
Enabling and Disabling Individual Interrupts

A SELECT ON or SELECT OFF statement with only an interrupt-condition
specified selectively enables or disables a previously defined interrupt.

Example:
Consider the following program segment.

Programmable Interrupts 8-9

8-10

10 SELECT OFF/017 GOSUB 200, ON ALERT GOSUB 500
50 SELECT ON/017

80 SELECT OFF ALERT

The interrupt defined for address /017 in line 10 initially is disabled; it is en-
abled at line 50 of the program. Similarly, the alert interrupt initially enabled
in line 10, is disabled in line 80.

Individual interrupts are referenced by their associated interrupt-condition.
Once enabled with a SELECT ON statement, an interrupt occurs whenever its
associated device becomes ready. When a defined interrupt is enabled or
reenabled at any point in a program, it automatically assumes its originally
defined priority.

Inhibiting and Reactivating all Currently
Enabled Interrupts

A SELECT ON statement (with no interrupt-condition specified) reactivates all
currently enabled interrupts. A SELECT OFF statement (with no interrupt-
condition specified) inhibits all currently enabled interrupts.

The general form of interrupt inhibit is executed independently of individual
interrupt inhibits (i.e., SELECT OFF interrupt-condition). In effect, when the
general interrupt inhibit is removed by SELECT ON, each individual interrupt
assumes its previously defined status (ON or OFF). Disabled interrupts are not
enabled by SELECT ON.

Examples of valid syntax:
SELECT ON/017 GOSUB 100, ON/018 GOSUB 150, OFF/019 GOSUB 200
SELECT OFF/017, OFF/018, ON ALERT

SELECT ONSELECT ON ALERT GOSUB 5000
SELECT OFF

Programmable Interrupts

SELECT ON CLEAR

Format:
SELECT ON CLEAR

The SELECT ON CLEAR statement clears information on all currently defined
interrupts from the Interrupt Table and turns off all interrupt processing. The

system does not process interrupts again until the execution of a SELECT
ON/OFF GOSUB statement.

Example:

Following execution of line 85, the system clears all interrupts from the Inter-
rupt Table. A programmer can now define a new set of interrupts with new
priorities. '

10 REM INITIAL PRIORITY (/017, /018, /019)
20 SELECT ON/017 GOSUB 100, ON/018 GOSUB 200, ON/019 GOSUB 300

80 REM CHANGE PRIORITY TO (/018, /019, /017)
85 SELECT ON CLEAR
90 SELECT ON/018 GOSUB 200, ON/019 GOSUB 300, ON/017 GOSUB 100

A programmer can include the ON CLEAR select-parameter with any other
select-parameters in a SELECT statement. Refer to Chapter 7 for a discussion
of the general SELECT statement.

Examples of valid syntax:
SELECT ON CLEAR

Programmable Interrupts 8-11

‘/////////////./////
A A A AV A A A A A A
SN SS S SSSSSSSSSSSs
LSS SISy

R Y D Y VA4
Ces s Sssss SS S Ss
A N Vs
R PPV, SSSS S
C LSS S SSs
Y YYIYY, (s

.'//////////////////
LSS S SIS SIS
//////////'////////

Error Control Features

Overview

BASIC-2 provides an extensive set of error detection features designed to auto-
matically detect and report a wide range of error conditions. The system auto-
matically scans program text for errors during program entry, resolution, and
execution.

When the system encounters an error, it displays the erroneous line with an
arrow pointing to the approximate position of the error. The error number and
a descriptive error message are displayed on the next line. For example:
:DATALOAD DC #1, X
ERROR D80: File Not Open
If the system discovers an error during text entry, it stores the erroneous line in
memory. If the system encounters an error during program resolution or execu-
tion, it immediately terminates resolution or execution. The system stops error
scanning when it encounters the first error. For example, if a line contains
more than one error, the system detects and reports only the first error. Refer
to Appendix B for a list of errors and recovery procedures.

Error codes are numbers preceded by a letter, which indicates the class of the
error. Error classes are shown below.

Error Control Features 9-1

Letter Prefix Error Class

o Miscellaneous Errors
Syntax Errors
Program Errors
Computational Errors
Execution Errors
Disk Errors
/O Errors

—oXOTO>

Error Recoverability

9-2

Miscellaneous Errors, Syntax Errors, and Program Errors cause execution of
the program to terminate. These types of errors generally indicate incorrect
syntax or program logic errors, and they must be corrected before the program
can be run. Computational Errors, Execution Errors, Disk Errors, and I/O
Errors typically occur during program execution and are called recoverable
errors. P48 is also a recoverable error. You can respond to recoverable errors
that occur during program execution without aborting the program or disrupt-
ing the display with an error message. The following instructions help to inter-
cept and respond to errors:

SELECT ERROR Specifies which computational errors are
processed by the program and which are
handled with a system response.

ERR Returns the code of the most recent error
condition.
ERRS Returns the descriptive error message for the

specified error code.

ERROR Initiates special error processing when an
error is detected in a BASIC-2 statement
during execution phase.

The general forms of the ERR and ERR$ functions and the ERROR and SE-
LECT ERROR statements are discussed in alphabetical order on the following
pages.

Error Control Features

ERR Function

Format:
ERR

The numeric function ERR returns the code of the most recent error condition.
The ERR function does not discriminate between recoverable and non-
recoverable errors; any error condition sets the value of ERR. Since ERR is
assigned a new value whenever an error occurs, it always returns the code of
the most recent error.

Whenever a program references the ERR function (e.g., X = ERR), it is auto-
matically reset to zero. The ERR function is also reset to zero upon the execu-
tion of a RUN or CLEAR command.

You can use the ERR function with the SELECT ERROR statement to check for
the occurrence of computational errors at the conclusion of a numeric process-
ing routine.

Example:

The following program segment sets variable X equal to the error code returned
by ERR. Line 250 concludes the numeric processing routine by examining the
value of X.

100 SELECT ERROR > 69

(numeric processing)

250 X = ERR: IF X <> 0 THEN PRINT “ERROR = ”;X
260 END

If X does not equal zero (X <> 0), an error occurred. The system then displays
an error code to indicate a problem. IfX equals zero, then an error did not
occur and the program ends.

You can also use the ERR function with the ERROR statement to identify a
specific error.

Example:

In the following line, the ERROR statement checks for an error following execu-
tion of the LOAD statement.

10 LOAD “games”: ERROR X = ERR: GOSUB’ 90

If an error occurs, X is set equal to the error code, and the program branches to
DEFFN’90 to process the error. If an error does not occur, execution continues
at the next program line.

Error Control Features 9-3

Examples of valid syntax:

—~ . X = ERR: PRINT X
LOAD A%$: ERROR X = ERR: GOSUB 250
X = ERR: IF X <> 0 THEN 75

9-4 Error Control Features

ERR$ Function

Format:
ERRS$ (error-code)

where:

error-code = expression, 0 <= value <= 99

ERRS$ is an alphanumeric function that returns the descriptive error message
corresponding to the specified error code. For example,

:DIM A$80

:A$ = ERRS$ (62)

:PRINT A$

Division by Zero

A$ is set to the descriptive error message for Error 62. The function takes the
numeric portion of the error code as its argument. ERR$ can only be used in
the alpha-expression portion of an alphanumeric assignment statement (refer
to Chapter 5). ERR$, in conjunction with the ERR function, is useful for dis-
playing error messages in user error recovery routines.

Examples of valid syntax:

A$=ERRS$ (ERR)
STR(E$, I)="ERROR: ” & ERRS$ (E)

Error Control Features 9-5

9-6

ERROR

Format:

statement [:statement] ...
ERROR
do-group

The ERROR statement provides a means of responding to execution errors
under program control. By using the ERROR statement, a programmer can -
recover from any recoverable error that occurs during program execution.
ERROR cannot be used in Immediate mode.

If a recoverable error occurs in a BASIC-2 statement that is immediately fol-
lowed by an ERROR statement, the normal error response (i.e., program termi-
nation and error message) is suppressed and program execution continues at
the statement immediately following the word ERROR. If ERROR is followed
by a do-group, the statements within the do-group are the error recovery se-
quence. If ERROR is followed by a statement other than DO, the entire rest of
the line is considered to be the error recovery sequence. The error recovery
sequence is only executed if the previous statement causes a recoverable error.
If an error does not occur, execution continues after the do-group or at the next
program line if ERROR is not followed by a do-group. (Refer to Chapter 10 for
more information on do-groups.)

Example:

100 DATALOAD DC OPEN T#1, F$: ERROR E=ERR: GOSUB’50 (E)
110 GOSUB 600

If an error occurs during the execution of the DATALOAD OPEN statement,
execution continues with the statement following ERROR. Subroutine ’50 is

the error handling routine. Otherwise, execution continues at the next program
line (i.e., line 110).

The ERROR statement cannot intercept nonrecoverable errors, nor can it inter-
cept computational errors whose normal system response is suppressed with a
SELECT ERROR statement. For example, if the statement SELECT ERROR >
65 has been executed, ERROR cannot intercept computational errors 60 to 65.
(See SELECT ERROR.)

Whenever an error occurs, the ERR function is set to the error code correspond-
ing to that error. ERR can be checked following an ERROR statement to iden-
tify the error that has occurred.

Examples of valid syntax:
INPUT “Coordinates”,X,Y¥Y: ERROR PRINT “Illegal value,

re—enter”:
READ X: ERROR DO: PRINT “EOF”: ENDDO: GOSUB 500

Error Control Features

SELECT ERROR

Format:
SELECT ERROR [> error code]

where:

error code = any computational error code (60 to 69)

The SELECT ERROR statement suppresses the normal system response to
specified computational errors; it has no effect on errors outside the range 60 to
69. Computational errors are those produced by the math package while per-
forming an arithmetic operation or evaluating a function. Usually the system
responds to a computational error (other than underflow) by terminating pro-
gram execution and displaying an error message. Underflow usually does not
terminate program execution.

The SELECT ERROR statement produces the following results:

¢ A SELECT ERROR statement followed by no error code (e.g., SELECT
ERROR) terminates program execution with an error message for all
computational errors (including underflow).

¢ A SELECT ERROR statement followed by an error code (e.g., SELECT
ERROR > 62), suppresses the system error message for all computa-
tional errors whose error codes are less than or equal to the specified
error code. Program execution then continues with the values shown in
Table 9-1. The system terminates program execution and displays an
error message for computational errors whose error codes are greater
than the specified error code.

Example:

The following statement suppresses normal error response for errors 60 to 65,
while normal system error processing remains in effect for errors 66 to 69.

SELECT ERROR > 65

Typically, the ERR function is used at the conclusion of a numeric processing
routine to determine whether or not an error occurred during processing. If an
error condition is indicated by ERR, you can design a special error recovery
routine in the program. (Refer to the discussion of the ERR function in this
section.) An ERROR statement cannot handle computational errors suppressed
with a SELECT ERROR statement.

Upon Master Initialization or when a CLEAR or LOAD RUN command is exe-
cuted, normal system error response is selected for all computational errors
except underflow. Master initializing the system or executing a CLEAR or
LOAD RUN command has the same effect as executing a SELECT ERROR > 60
statement.

Error Control Features 9-7

9-8

The ERROR select-parameter and associated error code parameters can appear
with any other select-parameters in a SELECT statement. Refer to Chapter 7
for a discussion of the general SELECT statement.

Table 9-1. SELECT ERROR Return Values

Error Code Error Condition Value Returned
60 Underflow 0
61 Overflow +9.999999999999E+99
62 Division by Zero +9.999999999999E+99
63 Zero /or T Zero 0
64 Zero Raised to Negative Power ~ +9.999999999999E+99
65 Negative Number Raised to ABS(X) TY

Noninteger Power
66 Square Root of Negative Value SQR(ABS(X))
67 LOG of Zero -9.999999999999E+99
68 LOG of Negative Value LOG(ABS(X))
69 Argument Too Large 0

Examples of valid syntax:

SELECT ERROR
SELECT ERROR > 69
SELECT ERROR > 63

Error Control Features

Overview

e sy
IS S s

N PN YNy Y YYyyryy
N YN YNy Yy
I R N Y Y Yy Y Y Yy,
PN YYYYYYYYY

NP Vs S S S s
LSS s S s
Ry, Y s ss
Y707 s
C LSS S V4

7/ S S S S
S SS s
S ST ST
//////////.///./////

/
/
/
7/

System Commands

System commands enable you to control system operations directly from the
keyboard. You can enter and execute a command whenever the colon prompt
appears. Special commands enable you to retrieve, examine, modify, document,
and save a program. Table 10-1 summarizes the available system commands.
Most of these commands are discussed in this chapter. Chapter references are
shown for commands described elsewhere. Also, most BASIC-2 statements can
be used in Immediate mode as commands; these statements are discussed in
the corresponding chapters.

Table 10-1. BASIC-2 System Commands

Command Function Chapter

CLEAR Clears from memory all or a specified portion of program 10
text and/or variables.

CONTINUE Continues program execution after a program is halted by 10
a STOP statement or HALT command.

Function key Can be defined to perform various functions, such as 10
beginning program execution or accessing subroutines.

HALT Temporarily halts program execution; normal execution can 10
be resumed by pressing CONTINUE, or you can step through
the program one statement at a time by repeatedly executing
a HALT command.

LIST Lists a program on the screen or a printer. 10

(continued)

System Commands 10-1

Table 10-1. BASIC-2 System Commands (continued)

Command Function Chapter

LIST COM Lists the common variables currehtly defined. 10

LIST DIM Lists the noncommon variables currently defined. 10

LISTDC Lists the contents of the specified disk platter. 12

LISTDT Lists the contents of the Device Table. 7

LisTli Lists the contents of the Interrupt Table. 8

LIST SELECT Lists the options currently selected. 10

LISTT Provides a cross-reference listing of one, some, or all 10
program lines containing a specified character string.

LISTV Provides a cross-reference listing of some or all variables 10
defined in the program.

LIST # Provides a cross-reference listing of some or all line numbers 10
referenced in the program.

LIST’ Provides a cross-reference listing of one or all marked 10
subroutines referenced in the program.

LOAD Loads a user program from disk into memory. 12

LOAD RUN Loads a program from disk into memory and automatically 12
runs the program.

RENAME Changes the name of a disk file. 12

RENUMBER Renumbers all or some of the program with the specified 10
starting line number and increment.

RESAVE Resaves a program on disk. 12
RESET Terminates program execution, clears the screen, resets al 10
/O devices, and returns control to the keyboard.

RUN Begins execution of the pfogram in memory. 10
SAVE Saves a program on disk. 12
STOP Specifies the line number at which the program is to stop. 10
TRACE Enables you to trace through program execution. 10

General Forms of the System Commands

General forms of the BASIC-2 system commands are presented in alphabetical
order on the following pages.

10-2 System Commands

CLEAR

Format:

P [starting-line-number] [, [ending-line-number]]

CLEAR v
N

The CLEAR command removes program text and variables from memory. The
CLEAR command without any parameters performs the following operations:

Removes all program text and variable areas from memory
Closes all devices currently open
Turns off Pause and Trace modes

Selects the current Console Output (CO) device for PRINT, PRINTUS-
ING, and LIST operations

Selects the current Console Input (CI) device for KEYIN, INPUT, and
LINPUT operations

Clears the #0 slot in the Device Table except for the device-address,
which is not altered

Clears all items in the #1 to #15 slots in the Device Table

Clears the screen, displays the READY message, and returns control to
the keyboard

CLEAR P removes program text from memory without disturbing any
variables. CLEAR P does not alter the Device Table. The CLEAR P
command has several forms.

CLEAR P with no line numbers (e.g., CLEAR P) deletes all user program
text from memory.

CLEAR P followed by only a starting-line-number (e.g., CLEAR P 10)
deletes from memory all lines from the specified line to the highest
numbered line.

CLEAR P followed by a comma and an ending-line-number (e.g., CLEAR
P,500) deletes from memory all lines from the lowest numbered line up
to and including the specified line.

CLEAR P followed by a starting-line-number, a comma, and an ending-
line-number (e.g., CLEAR P 40, 90) deletes from memory the two speci-
fied lines and all intervening lines.

CLEAR V removes all variables from memory but does not clear the
program text area or subroutine stacks. CLEAR V also does not alter
the Device Table.

CLEAR N removes all noncommon variables from memory. The names
and values of common variables are not changed and the program text
area and subroutine stacks are not affected. CLEAR N does not alter
the Device Table.

System Commands 10-3

10-4

Examples of valid syntax:

CLEAR

CLEAR P
CLEAR P 10
CLEAR P 200,
CLEAR P, 500
CLEAR P 10,20
CLEAR V
CLEAR N

System Commands

CONTINUE

Format:
CONTINUE

The CONTINUE command resumes program execution after execution is halted
by a HALT command or a STOP statement. Program execution continues at
the program statement immediately following the last executed statement. If
multiple statements with CONTINUE appear in an Immediate mode line,
CONTINUE must be the last command on the line.

The CONTINUE command can be entered by typing each letter individually or
by pressing the CONTINUE key.

Program execution cannot be continued after any of the conditions in the follow-
ing list:
¢ Occurrence of an error

® Modification of program variables by the execution of a CLEAR V or
CLEAR N command or by defining a new variable in Immediate mode

® Modification of program text by entry of a new program line by execu-
tion of a CLEAR, CLEAR P, or RENUMBER command, or by the modifi-

cation of an existing line.
¢ Execution of a RESET command

Example of valid syntax:
CONTINUE

System Commands 10-5

10-6

Function Keys

Yoii ¢an define function keys to perform functions such as initiating program
execution or accessing subroutines. To perform a specific task, the Function
key must be defined with a DEFFN’ statement. Refer to the discussion of the
DEFFN’ statement in Chapter 11. '

When a function key is pressed in Text Entry mode, the system searches for a
DEFFN’ statement with a corresponding number in the program stored in
memory. If the DEFFN’ statement identifies a subroutine, execution of the
subroutine is initiated automatically. If the DEFFN’ statement defines a char-
acter string for text entry, the defined string is displayed on the CRT. If there
is no corresponding DEFFN’ statement for the pressed Function key, the termi-

nal alarm beeps and no action is taken.

Although a Function key that accesses a DEFFN’ subroutine initiates program
execution, it does not cause program resolution. Since an unresolved program
typically does not execute successfully, every program should be resolved with a
RUN command prior to executing it with a function key.

Sixteen (physical) Function keys are available on the keyboard. In conjunction
with the SHIFT key, these keys provide access from the keyboard to 32 pro-
gram subroutines or text entry definitions. (Refer to the appropriate terminal
manual for a more complete description of available keys.)

The KEYIN statement can be used within a program to distinguish between
Function and other keystrokes. Refer to Chapter 11 for a discussion of the
KEYIN statement. '

System Commands

HALT

The HALT key has two functions. When pressed once, program execution or
listing stops. Pressed repeatedly, HALT steps through program execution
statement by statement.

When HALT interrupts program listing, the system terminates the listing
operation after the currently listing line. You cannot continue listing from the
point of interruption.

When HALT interrupts program execution, the system stops execution after
completing the currently executing statement. You can resume program execu-
tion at the point of interruption by executing a CONTINUE command.

Once the HALT command or a STOP statement has halted program execution,
you can again use HALT to display and execute the next program statement
and again halt program execution. Continued use of HALT repeats this proce-
dure. When stepping through execution of a multiple statement line, HALT
displays only those statements in the line that have not been executed. A colon
indicates the position of each executed statement in a multiple statement line.
When stepping through program execution is no longer necessary, the CON-
TINUE command resumes program execution.

If a program has been resolved with a RUN command, you can use a GOTO
statement in Immediate mode to begin stepping execution at a particular line
number. Refer to the discussion of the GOTO statement in Chapter 11.

You can also use HALT to step through a program in Trace mode and examine
the values of variables. Refer to the discussion of the TRACE command later in
this chapter.

You cannot use HALT to step through program execution after any of the condi-
tions in the following list:
¢ Occurrence of an error

¢ Modification of program variables by the execution of a CLEAR V or
CLEAR N command or by defining a new variable in Immediate mode

¢ Modification of program text by the execution of a CLEAR, CLEAR P, or
RENUMBER command by the entry of a new program line or by the
modification of an existing line

¢ Execution of a RESET command

System Commands 10-7

10-8

Example:

The following example assumes that you ran the program, perhaps with a
STOP statement prior to Line 100:

100 GOSUB 200
110 PRINT “CALCULATE X, Y”
120 X = 1.2: ¥ = 5*Z+X: GOTO 30

You can use HALT to step through the program starting at Line 120. TRACE

is turned on so that variables receiving new values are displayed. The instruc-
tions you must follow to step through the program in Trace mode appear in the
left column. The BASIC-2 statements that must be input and the displays that
appear on the screen when HALT is pressed are presented in the right column.

Programmer Action CRT Display Following Action
Turn Trace mode on. TRACE
Start stepping at Line 120. :GOTO 120
Press HALT :
120 X = 1.2: Y = 5*°Z+X: GOTO 30
120 X <- 1.2
Press HALT :
120: Y = 5*Z+X: GOTO 30
120:Y <- 21.6
Press HALT :
120:: GOTO 30
120:: TRANSFER TO 30
System Commands

LIST Command

The LIST command enables you to list and cross-reference a program and then
examine the contents of certain system tables used by the program. Because
each form of the LIST command performs a different function, each is treated
as a separate command with its own format. The following list describes com-
mon features of the LIST commands:

Upon Master Initialization, the screen (Address /005) is initially selected
for LIST operations. The SELECT LIST statement can select other
devices for listing operations. Refer to the discussion of the SELECT
statement in Chapter 7. Execution of a CLEAR or LOAD RUN com-
mand automatically reselects the current Console Output device for
listing operations.

If LIST output is directed to the screen, program listing stops when the
screen is full. To continue listing, press the RETURN key.

Pressing HALT during program listing stops the listing after the current
line. The listing cannot be continued from that point.

The optional title parameter provides a convenient means of identifying
a program listing. If a programmer specifies a literal string as the title
in a LIST command, the system issues a top-of-form command to the
currently selected output device which prints the highlighted title, a
blank line, and the program listing.

The LIST command is programmable (i.e., you can use the LIST com-
mand as a statement within a BASIC program).

System Commands 10-9

LIST

Format:
LIST [title] [D] [starting-line-number] [, [ending-line-number]]

where:

title = alpha-variable or literal-string

The LIST command displays program text in memory in line number sequenée.
You can combine the parameters of the LIST command to produce the following
results.

e LIST with no line numbers (e.g., LIST) lists the entire program.

e LIST followed by only a starting-line-number (e.g., LIST 360) lists the
specified line.

¢ LIST followed by a starting-line-number and a comma (e.g., LIST 10,)
lists all lines from the specified line to the highest numbered line.

e LIST followed by a comma and an ending-line-number (e.g., LIST ,20)
lists all lines from the lowest numbered line up to and including the
specified line.

e LIST followed by a starting-line-number, a comma, and an ending-line-

number (e.g., LIST 60, 150) lists the specified lines and all intervening
lines. '

If the D parameter is included in the LIST command, the system displays mul-
tiple-statement lines in decompressed form (i.e., one statement on each CRT or
printer line). Each line number is output as a 4-digit number and, if necessary,
padded with leading zeros (e.g., 0010). Leading zeros permit uniform align-
ment of listed lines. Additionally, LIST D marks all program lines that are
explicitly referenced by a line number or program label. A minus sign (-) is
displayed before the line number of any referenced line.

You can use the LIST D command with the REM statement to list program
titles and subtitles on a separate line in highlighted print. Refer to Chapter 11
for a discussion of the REM statement.

The END, GOTO, LOAD, and RETURN instructions also cause the system to
skip a line when listing programs under LIST D.

10-10 System Commands

The following examples illustrate the various ways in which a programmer can
use the LIST command to list all or portions of the program (these examples
assume that the following text resides in memory).

10 REM PROGRAM CONVERTS INCHES TO CENTIMETERS

20 REM % Perform Conversion

30 INPUT “Number of inch(es) to be converted”, I

40 C = I * 2.54: PRINT HEX(09)

50 REM % Display Results: PRINT I;”inch(es) =";C;”centime
ter(s)”

60 END

Example: Listing a single line

:LIST 30
0030 INPUT “Number of inch(es) to be converted”, I

Example: Listing from Line 50 to the highest numbered line

:LIST 50,

50 REM % Display Results: PRINT I;”inch(es) =";C;”centime
ter(s)”

60 END

Example: Listing from the lowest numbered line to Line 30

:LIST, 30
10 REM PROGRAM CONVERTS INCHES TO CENTIMETERS
20 REM % Perform Conversion
30 INPUT “Number of inch(es) to be converted”, I

Example: Listing Lines 20 through 40, inclusive

:LIST 20,40
20 REM % Perform Conversion
30 INPUT “Number of inch(es) to be converted”, I
40 C = I * 2.54: PRINT HEX(09)

Example: Decompressed listing of Line 40

:LIST D 40
0040 C = I * 2.54
:PRINT HEX(09)

Example: Decompressed listing of the entire program

:LIST D
0010 REM PROGRAM CONVERTS INCHES TO CENTIMETERS
0020 REM %

Perform Conversion

0030 INPUT “Number of inch(es) to be converted”, I
0040 C =1I * 2.54

: PRINT HEX (09)

0050 REM %

Display Results

: PRINT I;”inch(es) =";C;”centimeter (s)”
0060 END

System Commands 10-11

Examples of valid syntax:

_ . LIST D
LIST D 100, 500
LIST 90,
. LIST D ,200
LIST 10
LIST HEX(03) D
LIST “TITLE” D
LIST T$ D 500,999

10-12 System Commands

LIST COM/DIM

Format:
coM
LIST [title]
DIM
COM/DIM

where:

title = alpha-variable or literal-string

LIST COM/DIM statement lists the currently defined variables and their cur-
rent values. LIST COM lists the defined common variables. LIST DIM lists
the defined noncommon variables. The dimensions of arrays and the length of
alpha variables are shown as would appear in a DIM or COM statement.

Values of alpha variables are displayed in both ASCII and hex notation. Non-
printable characters (i.e., hex(00)-hex(0F)) are displayed as periods (.) in the
ASCII field. If the value is long, only the first 16 characters are displayed.
Alpha array values are displayed as a single string starting at the first element.

For numeric arrays, as many elements that fit on a single line are displayed.
The elements in row 1 are displayed, then row 2, etc.

Example:

:LIST DIM

A 123.45

Bl 0

B2 (5) -12000

B$6 “AB..CD” 41 42 0D OA 43 44

M$ (256) 1 “Wang Laboratories” 57 61 6E 67 20 4C 61 62 6F 72

61 74 6F

N (3,4) .874539284 .777430912 ,314985239222 -.0002438216

.10138327

Examples of valid syntax:

LIST COM
LIST DIM

LIST COM/DIM
LIST “title” DIM

System Commands 10-13

LIST _SELECT
Format:

SELECT select-parameter [,select-parameter l..-

where:
D
R
G
ERROR [> error—code] [NO] ROUNDP [digit]
LINE numeric-expression
CI device-address
INPUT device—address
CO device-address [(width)]
PRINT device-address [(width)]
select—parameter =

LIST device—address [(width)]
PLOT device—address

TAPE device—address

DISK device—-address
file—number device-address
TC port-number

TERMINAL port-number

DRIVER device—address [OFF]

T ON/OFF
H ON/OFF
NEW *
OLD *
device—address = /taa,
< alpha-variable >
where:
t = one hex digit specifying the device-type
aa = two hex digits specifying the physical device
address
alpha-variable = three-byte variable whose value must be
three ASCII hex digits representing the
device type and address
width = an expression 0 < 256 specifying the maximum
number of characters on & single line
file-number = $#n, where n = an integer or numeric-variable

with a value >= 0 and < 16

Note: * CS/386 ONLY

10-14 System Commands

The LIST SELECT statement displays the options currently SELECTED.
(Need a “write—up” from Mike Riley.)

System Commands 10-15

LIST T

Forr_ndt:

literal-string sliteral-string
LIST [title] T
alpha-variable ,alpha-variable
where:

title = alpha-variable or literal-string

The LIST T command generates a cross-reference listing of all program text
lines that contain a specified string of characters. The programmer can specify
each string to be sought as either the value of an alpha-variable or as a literal-
string. When performing the search, the system ignores space characters in the
string being sought and in the program text. Including more than one alpha-
variable and/or literal-string in the LIST T argument list enables the system to
search for more than one character string.

The following examples illustrate the various ways in which a programmer can
use the LIST T command to produce a cross-reference listing of character
strings (these examples assume that the following program text resides in
memory):

10 REM PRINTER SELECT IS ON LINE 20

20 SELECT PRINT/215

30 A$ = “CHARLES DICKENS”40 PRINT AT (3,10); AS
50 REM LIST T IGNORES S PA C ES

Example: Cross-reference listing of a specified alpha-variable

:LIST T A$
“CHARLES DICKENS”
- 0030

:B$ = “SPA CE S” :LIST T B$
“SPA CE S”
- 0050

Example: Cross-reference listing of a specified literal-string

:LIST T “SELECT”
“SELECT”
- 0010 0020

:LIST T “/215”"

\\/215”
- 0020

10-16 System Commands

Example: Cross-reference listing of multiple literal-strings
:LIST T \\AII' \\CII' \\H”’ \\ZII

“A”
- 0030 0040 0050
\\Cll
- 0010 0020 0030 0050
\\Hll'
- 0030
\\ZII

Examples of valid syntax:

LIST T “SELECT”

LIST T AS$

LIST T “A”, “B”, \\CII
LIST “title” T “PRINT”

System Commands 10-17

LISTV
Format:
LIST [title] V [variable-name] [, [variable—name]]

where:

letter [digit] (for numeric-scalars)
letter [digit]$ (for alpha-scalars)
variable—name =
letter [digit] ((for numeric—-arrays)
letter [digit]$((for alpha-arrays)

title = alpha-variable or literal-string

The LIST V command generates a cross-reference listing of all references to the
specified variables within the current program.

Note: The program must be free of syntax errors.

If no variable-names are specified following LIST V, the cross-reference listing
is performed for all variables in the program. If a single variable is specified
(e.g., LIST V A$), references to only that variable are listed.

Specifying a range of variables (e.g., LIST VX, Y) causes all references to vari-
ables of the same type within that range, inclusive, to be listed. Four types of
variables are available: numeric-scalar, alpha-scalar, numeric-array, and alpha-
array. Both variables specified in the LIST V command must be the same type.
If the first variable is omitted (indicated by a comma preceding the second
variable, e.g., LIST V, H), the second variable determines the type to be listed,
and references to all variables of that type up to and including the specified
second variable are listed. If the second variable is omitted (indicated by a
comma following the first variable, e.g., LIST V X,), all references to variables
of the type specified by the first variable are listed, beginning with the first
variable.

10-18 System Commands

Example (LISTing Variable References)
Assume the following program lines are in memory:

10 pIM A(3),B$80,C$(2,3),D95(81),N40
20 Al1=5:X,X1,¥Y=0.3

30 A(1) = Al *Y/2

40 B$ = D95$(1)

:LISTV

A(- 0010 0030

Al - 0020 0030

B$ - 0010 0040

C$(- 0010

D9$(- 0010 0040
N(- 0010

X - 0020

X1 - 0020

Y - 0020 0030

Examples of valid syntax:

LIST V

LIST “Variables” V

LIST “Numeric scalars” A,
LIST “A variables” A,A9

System Commands 10-19

LIST #

Format:

LIST [title] # [starting-line-number] [, [ending-line-number]]

where:

title = alpha-variable or literal-string

The LIST # command generates a cross-reference listing of all references to the
specified line numbers within the current program. You can combine the pa-
rameters of the LIST # command to produce the following results:

LIST # with no line numbers (e.g., LIST #) cross-references the entire
program.

LIST # followed by only a starting-line-number (e.g., LIST # 360) cross-
references the specified line.

LIST # followed by a starting-line-number and a comma (e.g.,

LIST # 10,) cross-references all lines from the specified line to the high-
est numbered line.

LIST # followed by a comma and an ending-line-number (e.g.,

LIST # ,20) cross-references all lines from the lowest numbered line up
to and including the specified line.

LIST # followed by a starting-line-number, a comma, and an ending-line-
number (e.g., LIST # 60, 150) cross-references the specified lines and all
intervening lines.

Example:

Assume the following program lines are in memory:

10 GoTo 100

20 IF I=3 THEN 90:IF J=4 THEN 100
30 GosuB 200

40 KEYIN A$,50,300: GOTO 40

50 PRINT A$: GOTO 40

90 X=2.7

100 Y=2/X

110 GOTO 500.

200 REM SUBROUTINE

é90 RETURN
300 END

10-20 System Commands

LISTing all line number references

:LIST #

0040 - 0040 0050
0050 - 0040

0090 - 0020

00100 - 0010 0020
00200 - 0030

00300 - 0040

00500 - 0110

Examples of valid syntax:

LIST #

LIST “title” #

LIST # 10

LIST # 20,LIST # ,999
LIST # 100,200

System Commands 10-21

LIST

Format:
LIST [title] ’/ [integer]

where:
title = alpha-variable or literal-string

integer = value from 0 to 255

This form of the LIST command creates a cross-reference listing for the speci-
fied DEFFN’ subroutines in the program. If no integer is specified in the LIST’
command, a cross-reference for all DEFFN’ subroutines (°0-’255) referenced
and/or defined in the program is produced. If an integer is specified, that par-
ticular DEFFN’ is crogs-referenced. The line in which each DEFFN’ subroutine
is defined and all references to the subroutine in GOSUPB’ statements through-
out the program are included in the listing. If a referenced DEFFN’ is not
defined in the program, the system prints question marks (?77?) instead of a
line-number.

Examples:
Assume the following program lines are in memory:

10 DEFFN’ 15 “TEXT”
20 GOSUB’0: GOSUB'1
30 DEFFN’O
40 GOSUB’1
50 DEFFN’1
60 GOSUB'2

LISTing all DEFFN’ subroutine definitions and references

:LIST’
0030 DEFFN’ 0

- 0020 0030
0050 DEFFN’ 1-

0020 0040 0050
???? DEFFN’/ 2

- 0060
0010 DEFFN’ 15

- 0010

LISTing a specified DEFFN’ subroutine
:LIST /01

0050 DEFFN’ 1
-0030 0040 0050

10-22 System Commands

RENUMBER

Format:
RENUMBER [starting-line-number] [- ending-line-number]

[TO new-starting-line-number] [STEP increment]
where:

increment = positive integer

The RENUMBER command renumbers a program in memory. This statement
performs the following renumbering operations:

¢ RENUMBER with no line numbers (e.g., RENUMBER) renumbers all
program lines.

¢ RENUMBER followed by a starting-line-number and no ending-line-
number (e.g.,, RENUMBER 200,) renumbers all lines from the specified
line to the highest numbered line.

* RENUMBER followed by only an ending-line-number (e.g., RENUM-
BER-20), renumbers all lines from the lowest numbered line up to and
including the specified line number.

¢ RENUMBER followed by a starting-line-number and an ending-line-
number (e.g., RENUMBER 80, 400) renumbers the specified lines and
all intervening lines.

If you do not specify a new starting-line-number, the system begins renumber-
ing at the STEP value. If no STEP value is specified, the system assumes an
increment of 10.

After renumbering, the system automatically places renumbered program lines
into the proper position in the program. All references to line numbers within

the renumbered program (e.g., GOTO, GOSUB, and PRINTUSING statements)
are also automatically modified in accordance with the new numbering scheme.

You can use the RENUMBER command to insert a section of program text
between two program lines. However, if the renumbered program section does
not completely fit between the two specified lines, the system displays an error
message and terminates execution of the command.

System Commands 10-23

The following example illustrates one way in which you can use the RENUM-
BER command. This example assumes that the following program text resides
in memory.

:10 DIM AS$30

:20 GOTO 500 -

:500 AS = 7 “: GOSUB 800
:510 PRINT AS$: STOP #
:800 REM READ SUBROUTINE
:810 READ A$

:820 RETURN

:900 DATA “PAYROLL”

The following RENUMBER command could be executed:
:RENUMBER 800-820 TO 50
If you issue a LIST command, the renumbered program now appears as follows:

10 pDIM A $30

20 GOTO.500

50 REM READ SUBROUTINE
60 READ A$

70 RETURN

500 A$ = ” “: GOSUB 50
510 PRINT A$: STOP #
900 DATA “PAYROLL”

Lines 800 to 820 have been renumbered to Lines 50 to 70 and moved to the
appropriate location in the program. Additionally, the GOSUB reference in
Line 500 has been changed from Line 800 to Line 50.

Examples of valid syntax:

RENUMBER

RENUMBER STEP 20

RENUMBER TO 500 STEP 5RENUMBER 100 TO 1000
RENUMBER 100 STEP 20RENUMBER -1000 TO 10
RENUMBER 100-200 TO 500

RENUMBER 100-200 TO 1000 STEP 5

10-24 System Commands

RESET
When you press the RESET key, the system performs the following operations:

¢ Terminates program execution or listing

¢ Clears the stacks of all FOR...NEXT loops and subroutine information

¢ Turns off Trace and Pause modes

¢ Clears the screen, displays the READY message, and returns control to
the keyboard

RESET does not clear program text from memory or disturb the current values
of variables.

Generally, you should use RESET only as a last alternative to rectify a process-
ing problem; program execution cannot be resumed following a RESET com-
mand. However, if you use the HALT command to halt program execution, a
subsequent CONTINUE command resumes program execution.

System Commands 10-25

RUN

Format:
RUN [line-number [, statement-number]]

The RUN command resolves and initiates execution of a user program. Pro-
gram resolution involves the following operations:

e The system sequentially scans the program for syntax errors, verifies all
references to variables, line numbers, and line labels (e.g., GOTO,
GOSUB, or ON/GOTO/GOSUB statements), and ensures that all refer-
enced array-variables are defined in a DIM or COM statement.

o The system reserves space for all variables not already defined. Nu-
meric variables initially are set to zero, while alphanumeric variables
initially are set to all blanks.

e The system initializes the data pointer used by the READ statement to
the first data value in the first DATA statement.

If program resolution is completed with no errors, the RUN command immedi-
ately begins program execution. If an error is detected during program resolu-
tion, the system signals an error and does not execute the program.

If no line-number is specified (e.g., RUN), the RUN command first clears all
noncommon variables from memory (common variables are not disturbed),
performs program resolution, and then begins program execution from the
lowest numbered line.

If a line-number is specified (e.g., RUN 80), the RUN command resolves the
program and begins execution at the specified program line. However, noncom
mon variables are not cleared from memory, and all variables retain current
values. As a result, a halted program can be continued from a specified line
with the current data values by entering RUN followed by the appropriate line
number. Program execution cannot be restarted in the middle of a FOR/NEXT
loop or a subroutine.

Program execution can be started at a particular statement within a multi-
statement program line by including the statement number after the line num-
ber in the RUN command. Statements on a program line are numbered
sequentially from left to right, starting at 1.

Examples of valid syntax:
RUN

RUN 30
RUN 100,3

10-26 System Commands

STOP

Format:
STOP [line#]

STOP, when used in Immediate mode, sets a program stop point at the speci-
fied program line. Subsequently, when a program is run, that program’s execu-
tion will stop just before the specified line is to be executed, as if the STOP
statement were the first statement of that line. (Refer to the STOP statement
in Chapter 11 for a description of using STOP statements within a program.)
When the program stops, the word STOP followed by the line number is dis-
played. Only one stop point can be set; entering a new Immediate mode STOP
replaces the previous stop point setting. To clear a stop point, enter Immediate
mode STOP without a line number, or RESET LOAD RUN, or enter a CLEAR
command. Immediate mode STOP is especially useful when debugging pro-
grams since STOP need not be edited into the program itself.

To continue a program after the program has stopped, do one of the following:

¢ Press HALT to step through the program execution one statement at a
time. Program stepping begins at the statement immediately following
the stop point.

¢ Enter a CONTINUE command to resume program execution at the
statement following the stop point.
Examples of valid syntax:

STOP 100
STOP

System Commands 10-27

TRACE

Format:
TRACE [OFF]

The TRACE statement produces a trace of important operations in program
execution as an aid in program debugging. Trace mode is turned on when a
TRACE statement is executed within a a program or in Immediate mode; trace
mode is turned off by executing a TRACE OFF statement, by pressing RESET,
or by executing a CLEAR command. While in trace mode, output is produced
from the following program operations:

e Assignment (LET) statements and FOR/NEXT loops
e Program branches (e.g., GOTO, GOSUB, and RETURN)

Whenever a variable receives a new value in an assignment statement or dur-
ing the execution of a FOR/NEXT loop, the variable name and its new value are
output. Whenever the program branches, TRACE outputs the words TRANS-
FER TO followed by the line number branched to. Immediate mode statements
are not traced.

Trace output is sent to the currently selected Console Output (CO) device (see
SELECT). The output of each statement traced is preceded by the line number
of that statement and colons representing statement separators for multi-state-
ment lines. Trace output adheres to the following conventions:

e The equal sign (=) in an assignment statement is replaced in trace out-
put by an arrow (<-). The arrow is more appropriate than an equal sign
since the contents of the variable are not necessarily identical to the
value displayed in the trace output.

Example:

: TRACE

:10 X = 456

:20 A,B,C = 22.11
:RUN

10 X <- 456
20 A <- B <~ C <- 22.11

e Alpha values are displayed in both ASCII and hexadecimal notation.
Only the first 16 characters of an alpha value are displayed. Also, the
hex output of the value is truncated at the end of the output line.

10-28 System Commands

Example:
:10 DIM L$26: L$ = “ABCDEFGHIJKLMNOPQRSTUVWXYZ”
:RUN

10: L$ <- “ABCDEFGHIJKLMNOP” 41 42 43 44 45 46 47 48 49 4A

® Nonprintable characters (HEX(00) to HEX(0F)) are displayed as deci-
mal-point characters in the ASCII values. This prevents screen control

characters from upsetting the display.

Example:

:10 AS$ = HEX(41 03 0A 42)
:RUN

10 A$ <- “A..B ” 41 03 0A 42 20

¢ The termination of a FOR/NEXT loop is indicated with the words NEXT
END.

Example:

:10 DIM A (3

:20 FOR I = 1 TO 3
:30 A(I) = I
:40 NEXT I
:RUN

201 <-1

30 A(<=1

40 I <- 2 TRANSFER TO 30
30 A(<- 2

40 I <- 3 TRANSFER TO 30
30 A(<- 3

40 I <- NEXT END

® Whenever a branch is made within a program, trace outputs the words
TRANSFER TO followed by the line number branched to.

Example:

:10 GOSUB 500
:20 GOSUB "45: GOTO 600

:500 REM SUBROUTINE: RETURN
:550 DEFFN’45: REM MARKED SUBROUTINE: RETURN

:600 REM
:RUN

10 TRANSFER TO 500
500: TRANSFER TO 2020 TRANSFER TO 550

550:: TRANSFER TO 20
20: TRANSFER TO 600

Examples of valid syntax:

TRACE
TRACE OFF

System Commands 10-29

PV YIYY

NNNNN LT

SIS

SISSSIIS SIS SIS
RNy YErYY,
RPN YN YYrrY,
PR Ve WIrrY
SIS Sss / RN
PRy, Y WENYY:
Yy Y2Y VNP
PPy Y., VY WENryr.
sorrsrsr /M, /B,
SISISIS SIS SIS,
PSS SIS SIS
SIS

SIS S Ss

General BASIC-2
Statements

Overview

BASIC-2 general-purpose statements perform such fundamental program op-
erations as assignment, loop control, conditional branching, subroutine defini-
tion and access, keyboard data entry, data conversion, and generation of
printed output. Table 11-1 lists the general-purpose statements that are avail-
able in BASIC-2.

Table 11-1. General-Purpose BASIC-2 Statements

Command Function

COM Defines one or more common variables within a BASIC-2 program.

COM CLEAR Redefines designated common variables as noncommon or noncommon
variables as common.

CONVER Converts a numeric value to an ASCII character string representation of the
number, and vice versa.

DATA Provides data values used by a corresponding READ statement.

DEFFN Allows you to define a function of one variable for use in a program.

DEFFN’ Defines the beginning of a DEFFN’ subroutine. The subroutine can be

accessed in a program by executing a GOSUB' statement or from the keyboard
by pressing a function key. Arguments can be passed to the subroutine.
Defines a character string to be supplied when a function key is used to
keyboard text entry.

(continued)

General BASIC—2 Statements 11-1

11-2

Table 11-1.

General-Purpose BASIC-2 Statements (continued)

Command

DIM
DO

END
FOR

$FORMAT
GOSUB
GOSUB’

GOTO
HEXPACK

HEXUNPACK

IF

Image (%)
INPUT

KEYIN
LET

LINPUT

MAT COPY
MAT MOVE
MAT SEARCH

NEXT
ON

PACK
$PACK
PRINT

PRINT AT
PRINT BOX

Function

Defines one or more noncommon variables.

Allows a group of statements to be conditionally executed by IF, ELSE, or
ERROR.

Terminates execution of a BASIC program; returns the amount of free space in
memory when executed. '

Defines the starting boundary of a loop and determines how many times the
loop is executed. Used with the NEXT statement.

Defines a format specification for the $PACK and $UNPACK operations.
Initiates a branch to the first line of a subroutine.

Initiates a branch to a specified DEFFN’ subroutine. Can pass one or more
arguments to the subroutine.

Branches to a specified line number.

Converts an ASCII character string of hexadecimal digits into the binary
equivalent of those digits.

Converts a binary value in the equivalent ASCII character string of hexadecimal
digits.

Tests one or more conditions and executes the statement immediately following
THEN if the condition is true; otherwise, execution continues at the next
statement.

Defines a format for printed output generated by the PRINTUSING or
PRINTUSINGTO statements.

Accepts entered data during program execution. (Primarily for user entry from
the keyboard; displays an optional prompt to request data.)

Inputs a single character from a keyboard-like device.

Assigns the value of a numeric expression to one or more numeric-variables or
assigns an alphanumeric character string to one or more alpha-variables.

Recalls the value of an alphanumeric-variable to the display for editing or data
entry. Restricts cursor movement to defined limits in the display.

Copies all or a portion of the value of one alpha-variable to a second
alpha-variable.

Moves specified elements of one array to a second array in a specified order.
Optionally, converts numeric data into sort format and vice versa.

Locates all substrings in an alpha-variable that satisfy a given relation to a
specified value.

Delimits the end of a loop initiated with a FOR...TO statement.

Used with the GOTO or GOSUB statement to create a computed branch or call
based on the value of a specified expression.

Converts numeric values to Wang packed decimal format.
Perform packing of data in a variety of user-specifiable formats.

Evaluates and prints the value of a numeric expression, an alpha-variable, or a
character string. Values are printed in a system-defined format.

Moves the cursor to a designated position on the screen.
Draws or erases boxes and lines of specified dimensions.

(continued)

General BASIC—2 Statements

Table 11-1. General-Purpose BASIC-2 Statements (continued)

Command Function

PRINT HEXOF Prints the hexadecimal equivalent of an alphanumeric value.

PRINT TAB Tabs to a specified column in a print line on a CRT or printer.

PRINTUSING Prints values and character strings in a format an image specification defines.

PRINTUSING TO Stores formatted print output in a specified alphanumeric-variable for future
processing.

READ Reads data values from a designated DATA statement.

REM Provides a means of inserting comments anywhere in a program.

RESTORE Resets the DATA pointer used by READ to a specified value in a DATA
statement.

RETURN Returns program execution to the main program following completion of a
subroutine.

RETURN CLEAR Clears subroutine return information from the internal stacks without causing a
branch back to the main program.

ROTATE Rotates the bits of a character or a string of characters.

STOP Terminates program execution and displays an optional message and/or line
number of the STOP statement.

$TRAN Uses table-lookup procedures to provide high-speed character conversion.

UNPACK Converts values in Wang packed decimal format to numeric.

$UNPACK Unpacks data from a variety of user-specifiable formats.

General Forms of the General-purpose
Statements

The general forms of all statements described in Table 11-1 appear in alpha-
betical order on the following pages. Each general form conforms to a standard
notation, which indicates various options, requirements, and features of these
general forms. The rules for this notation are discussed in the Preface. You
should become familiar with this notation before consulting the general forms
of the BASIC-2 statements.

General BASIC-2 Statements 11-3

11-4

COM
Format:

COM com—-element [,com-element] ...

where:
numeric-scalar-variable
numeric-array-name (diml[,dim2})

com—element

alpha-array-name (diml([,dim2]) [length]
alpha-scalar-variable [length]

dim = dimension (numeric-scalar-variable or positive
integer) such that:

For l-dimensional arrays: 1 < diml < 65535
For 2-dimensional arrays: 1 < diml, dim2 £ 255

length

positive integer or numeric-scalar-variable such
that: 1 < length < 124

The COM statement, like the DIM statement, defines variables within a BASIC
program. Unlike variables defined by a DIM statement, variables defined by a
COM statement are maintained when a new program is loaded into memory or
the current program is run. This allows you to use common variables to pass
common data between successive program module overlays.

When a program is run, the system does not disturb currently defined common
variables and their contents. However, the system does clear all noncommon
variables from memory. (Noncommon variables include all variables not explic-
itly defined in a COM statement.) The system clears only commeon variables
from memory following the execution of a CLEAR, CLEAR V, or LOAD RUN
command.

Since common variables must be defined before any noncommon variables are
defined or referenced, COM statements usually are assigned low line numbers
in a program.

The system processes the COM statement during program resolution, which
occurs immediately prior to program execution. You initiate program resolu-
tion by executing either a RUN command or a LOAD statement under program
control. During program resolution, the system scans the entire program for
variable references and reserves space for all variables that have not been

previously defined. During program execution, the system ignores a COM
statement.

General BASIC—2 Statements

When a variable is initially defined in a COM statement, it is assigned space in
a section of memory identified as “common.” If a noncommon variable is de-
fined prior to a common, the system signals an error and halts program resolu-
tion. If a common variable is encountered that has already been defined in the
current program or a previous program, its dimensions must be identical to the
previously defined dimensions; otherwise, the system signals an error. Scalar-
variables do not need to be defined in a DIM or COM statement.

If reference is made to an undefined scalar-variable, the system automatically
reserves space in the noncommon section of memory (undefined alphanumeric-
scalars are allotted 16 bytes). Unless a scalar-variable is defined in a COM
statement, it is assumed to be noncommon. Array-variables, by contrast, must
be defined in a DIM or COM statement. Reference to an undefined array-vari-
able results in an error.

If a set of common variables is to be used in several sequentially run programs,
the COM statements do not have to appear in any program except the first. All
variables defined as common retain their original dimensions and current val-
ues in all subsequent programs. COM statements can, however, be included in
subsequent programs for documentation purposes. In each program, the speci-
fied dimensions for any previously defined variables must be identical to the
original dimensions. The contents of such redefined common variables are not
altered by redefinition. New common variables also can be defined at the be-
ginning of any subsequent program.

Use of Scalar-Variables in the COM Statement

The dimensions and lengths of variables in COM statements can be specified by
numeric-scalar-variables. The numeric-scalar-variables used for this purpose
must have legal values for dimensions and lengths when the COM statement is
processed during program resolution. When a RUN command without a line
number or a program overlay (LOAD statement) is executed, noncommon vari-
ables are set to zero. As a result, scalar-variables used to specify the dimen-
sions and lengths of variables in COM statements generally should be defined
as common variables.

This feature is particularly useful in applications where array sizes must be
dynamically determined at the time of program execution.

Example:
The first program module in a system determines the array dimensions.

10 REM THIS IS MODULE 1
20 COM X, Y

30 INPUT “DIMENSIONS”,X,Y
40 LOAD “MODULE2"

General BASIC—2 Statements 11-5

The second module uses the array dimensions for the array definition.

—~. 10 REM THIS IS MODULE 2
20 COM N (X,Y)

| Examples of valid syntax:
coM A(10), B(3;3), C

CoM D$ (20), E$(2,3)100, F1$64
COM N(R,C), AS$(X,Y)L

11-6 General BASIC—-2 Statements

COM CLEAR

Format:

scalar-variable
COM CLEAR
array

The COM CLEAR statement defines some or all previously defined common
variables as noncommon or defines some or all previously defined noncommon
variables as common. The COM CLEAR statement changes the status of vari-
ables from common to noncommon (or vice versa) by moving the Common Vari-
able Pointer up or down in the Variable Table in memory; it does not actually
clear any variables from memory or change the values of the variables.

If no variable-name is specified in a COM CLEAR statement, all currently
defined common variables are redefined as noncommon variables. A subse-
quent RUN command or program overlay (LOAD statement) clears all noncom-
mon variables from memory.

If a common variable is specified in a COM CLEAR statement, the specified
common variable and all common variables defined after it in the current pro-
gram are changed to noncommon variables; all common variables that are
defined in the program prior to the specified variable or are defined in previous
program modules remain common.

If a noncommon variable-name or array-designator is specified in a COM
CLEAR statement, all noncommon variables defined in the program prior to the
specified variable are made common; the specified variable itself and all vari-
ables defined after it remain noncommon.

COM CLEAR is extremely useful with program overlaying (chaining) to specify
which variables are to be removed from the system when the overlay is per-
formed. (All noncommon variables are eliminated during overlaying.)

If an undefined variable is specified in a COM CLEAR statement, the system
signals an error.

COM CLEAR is an executable statement and is performed in sequence during
normal program execution rather than once at program resolution (as in the
case of the COM statement).

General BASIC-2 Statements 11-7

Expression Result

10.COM CLEAR Redefines all previously defined common variables as noncommon.

110 COM A, B, X, Y(10)

200 COM CLEAR X Redefines X and Y() as noncommon; A and B remain common.

10 COM X(10,10)
20A=B+C
30 COM CLEARB Redefines A as a common variable; B and C remain noncommon; X()

remains common.

11-8 General BASIC—2 Statements

CONVERT

Format 1: (alpha to numeric)
CONVERT alpha-variable TO numeric-variable

Format 2: (numeric to alpha)

CONVERT numeric-expression TO alpha-variable, (image)

where:

image = [$10#0,11 ... [.10#] ... [TTTT)

alpha-variable containing image

length of image < 255

The CONVERT statement either converts an ASCII character string to a nu-
meric value or converts a numeric value to an alphanumeric character string.
Therefore, BASIC-2 provides two formats of the CONVERT statement.

Format 1: Alpha-To-Numeric Conversion

Format 1 of the CONVERT statement converts the character string in the
specified alpha-variable to a numeric value.

Example:

:10 AS$ = “1234”

:20 CONVERT A$ TO X
:30 PRINT X = ”; X
:RUN

X = 1234

If the ASCII character string in the specified alpha-variable is not a legitimate
BASIC representation of a number, the system signals an error. An error-han-
dling routine can anticipate and allow recovery from this error. (Refer to the
discussion of the ERROR statement in Chapter 9.) You can use the STR func-
tion to convert a portion of an alpha-variable to a numeric value.

Example:

:10 A$ = “ABC12.45DEF”

:20 CONVERT STR(A$,4,5) TO X
:30 PRINT “X = ”; X

:RUN

X = 12.45

General BASIC-2 Statements 11-9

Alpha-to-numeric conversion is useful for reading numeric data from a periph-
eral device in a format not directly compatible with numeric input or for vali-
dating keyed-in numeric data under program control. In the latter case,
numeric data can be received into an alpha-variable with a LINPUT statement
and then tested for validity with the NUM or VER function before being con-
verted to numeric format. :

Format 2: Numeric-to-Alpha Conversion

Format 2 of the CONVERT statement converts the numeric value of the speci-
fied expression to an ASCII character string according to the specified image.

The alphanumeric character string is then stored in the specified alpha-vari-
able.

The image specifies precisely how to convert the numeric value. Each character
in the image corresponds to a character in the resultant character string. The
image consists of digit-selector characters (#) to signify digits and (optional)
plus signs (+, ++), minus signs (-, —), decimal points (.), and up arrows M to
specify sign, decimal point position, and exponential format. The image can be
classified into two general formats.

Format 1: Fixed-Point (e.g., ##.##TT1TT)

Format 2: Exponential (e.g., #.##)

The CONVERT statement formats numeric values according to the following
rules:

e If the image starts or ends with a plus sign (+), CONVERT edits the real
sign of the value (+ or -) into the character string at the specified posi-
tion (beginning or end).

e Ifthe image starts or ends with a minus sign (-), CONVERT edits a
blank for positive values or a minus sign for negative values into the
character string at the specified position (beginning or end).

e Ifno sign is specified in the image, CONVERT edits no sign into the
character string (i.e., the absolute value of the specified expression is
output).

e If the image ends with two plus signs (++), CONVERT edits two spaces
for nonnegative values or the characters CR for negative values into the
end of the character string.

o Ifthe image ends with two minus signs (=), CONVERT edits two spaces
for nonnegative values or the characters DB for negative values into the
end of the character string.

o If the image contains a dollar sign ($), comma (,), or decimal point (.),
CONVERT edits the specified character into the character string at the
corresponding position.

11-10 General BASIC—-2 Statements

e Ifthe image is fixed-point (i.e., no up arrows M specified), CONVERT
edits the numeric value into the character string as a fixed-point num-
ber. The fractional portion is automatically truncated or extended with
trailing zeros, and the integer portion is padded with leading zeros to fit
the image-specification. If the integer portion exceeds the image-specifi-
cation, the system signals an error.

e If the image is exponential (i.e., four up arrows (TTTH specified), CON-
VERT edits the value into the character string in exponential format.
The value is scaled to fit the specified image (leading zeros are not used
to pad the integer portion). The exponent is edited into the character
string in the form E+dd.

Note: Exponential format is indicated with exactly four up arrows (i.e.,
T1T1). The specification of any other number of up arrows produces an
error upon entry.

Example: Numeric-To-Alpha Conversions
This example assumes that the following values are provided for X, B$, and C$.

X = 12.345 BS = “#, ###+7 C$ = “$##. #i++”
Statements Results

10 CONVERT X TO A$, (###) A$ = “012"

20 CONVERT X TO AS$, (+#£.4#) A$ = “+12.34"

30 CONVERT X TO A$, (-#4TTT1T ‘ A$ =" 1.2E4+01"

40 CONVERT 100 * X TO A$, (B$) A$ = “1,2344"

50 CONVERT -X TO A$, (C$) A$ = “$12.34CR"

Example: Asterisk Filling

:10 CONVERT 1.23 TO AS$, (+####.##)
:20 PRINT “RESULT OF CONVERT: ”; AS
:30 $TRAN (STR(AS,, MIN(POS(AS$ > “07”), POS(A$ = “.7)), “*x0") R
:40 PRINT ” ASTERISK FILLED: “; AS$
:RUN
RESULT OF CONVERT: +0001.23
ASTERISK FILLED: +4*#**1 23

Example: Removing Leading Zeros

:10 CONVERT 1.23 TO AS, (+####_##)
:20 PRINT ” Result of Convert: “; AS
:30 STR(AS,2) = STR(AS$,POS(STR(AS$,2) <>70") + 1)
:40 PRINT ” With Leading Zeros Removed: “; AS
:RUN

Result of Convert: +0001.23
With Leading Zeros Removed: +1.23

General BASIC-2 Statements 11-11

Note: In some cases, numeric data converted to alphanumeric format
_ with Format 2 of the CONVERT statement can cause an error when

converted back to numeric format with Format 1. Specifically, the follow-
ing characters are invalid in numeric format:

e Dollar sign

e Trailing plus or minus sign

e Debit (DR) and credit (CR) signs
e Comma

Examples of valid syntax (Alpha-to-Numeric Conversion):
CONVERT A$ TO X
CONVERT STR (A$,1,NUM(AS$)) TO X (1)

Examples of valid syntax (Numeric-to-Alpha Conversion):

CONVERT 45.6 to A$, (####)
CONVERT -88.735 TO DS, (S#i#.##++")

11-12 General BASIC-2 Statements

DATA

Format:

number , number
DATA
literal-string srliteral-string

The DATA statement supplies the values to be used by the variables in a READ
statement. In effect, the DATA and READ statements provide a means of
storing tables of constants in a program.

Each time a READ statement is executed in a program, READ obtains the next
sequential value in the DATA statement value list and assigns the value to a
variable in the READ statement variable list. You must specify the values in a
DATA statement in the order in which they are to be used, and must separate
individual values by commas. The DATA statement cannot be used in Immedi-
ate mode.

Example:

:10 FOR I = 1 TO 3

:20 READ W

:30 PRINT W, W*2

:40 NEXT I

:50 DATA 5, 8.26, -687
:RUN

5 10

8.26 16.52
-687 -1374

If a program contains several DATA statements, they are used in line number
sequence. Numeric-variables in a READ statement must be assigned legal
BASIC numbers from a DATA statement, and alphanumeric-variables must be
assigned literal strings. If the DATA statement contains an insufficient

- amount of data, the system signals an error.

The RESTORE statement resets the current DATA statement pointer so that a
READ statement can reuse DATA statement values. (Refer to the discussion of
the RESTORE statement later in this section.)

Examples of valid syntax:

DATA 4, 3, 5, 6

DATA 6.56E+45, -644.543

DATA “BOSTON,MASS”, “SMITH”, 12.2
DATA HEX (0A), “ABC”

General BASIC-2 Statements 11-13

DEFFN

Format:

DEFFN a (v) = expression
where:

a
v

a letter or digit that identifies the function
a numeric-scalar-variable

The DEFFN (define function) statement enables you to define a function of one
variable within a program. The function can be defined with any legal numeric
expression. The defined function can be referenced from other points in the
program with an FN function. The value of the argument specified in the FN
function is automatically passed to the DEFFN statement for evaluation; the
result is returned to the FN function. A user-defined function can be used in a
program wherever system-defined numeric functions are legal. (Refer to Chap-
ter 4 for information on the available system-defined numeric functions.)

A DEFFN statement requires the following three parameters:
¢ The function name

¢ A numeric-scalar-variable that serves as a dummy variable
e An expression that defines the function

The function name identifies the defined function when it is referenced with an
FN function. The variable specified as a dummy variable is a placeholder only,
indicating where in the DEFFN expression the argument value of the FN func-
tion is to be used. The dummy variable plays no functional role in the evalu-
ation of the DEFFN expression, and its contents are not altered by this
operation. For example, in the following statement, A is the user-defined func-
tion name and X is the dummy variable.

10 DEFFN A(X) = X*4-X

An FN function that references a user-defined function requires the following
parameters:

¢ The f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>