THE

WANG
PROFESSIONAL
COMPUTER

PC/2200 BASIC-2
Compdatiolhty
Gulde

The Wang
Professional Computer

PC/2200 BASIC-2
Compatibility Guide

First Edition — May 1984
Copyright © Wang Laboratories, Inc., 1984
715-0005

WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 ¢ TEL. (617) 459-5000, TWX 710-343-6769, Telex 94-7421

DISCLAIMER OF WARRANTIES
AND LIMITATION OF LIABILITIES

The staff of Wang Laboratories, Inc., has taken due care in preparing this manual. However, nothing
contained herein modifies or alters in any way the standard terms and conditions of the Wang
purchase, lease, or license agreement by which the product was acquired, nor increases in any way
Wang’s liability to the customer. In no event shall Wang or its subsidiaries be liable for incidental or
consequential damages in connection with or arising from the use of the product, the accompanying
manual, or any related materials.

SOFTWARE NOTICE

All Wang Program Products (software) are licensed to customers in accordance with the terms and con-
ditions of the Wang Standard Software License. No title or ownership of Wang software is transferred,
and any use of the software beyond the terms of the aforesaid license, without the written authorization
of Wang, is prohibited.

WARNING

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in
accordance with the instructions manual, may cause interference to radio communications. It has been
tested and found to comply with the limits for a Class A computing device, pursuant to Subpart J of
Part 15 of FCC rules, which are designed to provide reasonable protection against such interference
when operated in a commercial environment. Operation of this equipment in a residential area is likely
to cause interference, in which case the user, at his own expense, will be required to take whatever
measures may be required to correct the interference.

»

®|

PREFACE

The PC/2200 BASIC-2 Compatibility Guide provides information on using the
BASIC-2 language on the Professional Computer (PC) and the 2200. Users
unfamiliar with the BASIC language are encouradged to refer to a standard
textbook for an introduction to the language.

Throughout this manual, a general format accompanies each description of
a command or statement. When more than one specific arrangement is permitted,
there are separate, numbered formats. Within a format, key words,
connectives, and special characters appear in proper sequence. Unless
otherwise stated, you can use only the sequence shown.

This manual uses the following conventions to define and illustrate the
components of PC BASIC-2 program statements and commands:

e Uppercase letters (A through Z), digits (0 through 9), and special
characters (such as *, /, +) must always be used for program entry
exactly as presented in the general format.

L All lowercase words represent information that you must supply.

Example:
In the following statement, you must supply the line number.

GOTO line—number

e When braces, { }, enclose a vertically stacked list in a portion of
a format, you must select one of the options within the braces.

Example:
expression
ON
alpha-variable
. Brackets, [], indicate that the enclosed information is optional.
When brackets contain a vertical list of two or more items, you can
use one or none of the items.

Example:

LOAD RUN [filename]

iii

The presence of an ellipsis (...) within any format indicates that
the unit immediately preceding the notation can occur one or more
times in succession.

Example:

COM com-element [,com—element]

When one or more items appear in sequence, these items or their
replacements must appear in the specified order.

iv

o

CONTENTS

CHAPTER 1 GENERAL I/0O STATEMENTS
1.1 150 o8 oo Y L o3 o3 o3 o N PR 1-1
1.2 BIF ON/OFE vt iiteteiieneeeeononeesasnacssoassaasesosnannnans 1-2
1.3 S 0 1-4
Comment Parameterciiiiiiiininiinenernscnsnnnnns 1-4
Device-Address Parameteriiiiiiieieeencensnnnns 1-5
Microcommand-Sequence Parameterieiiuiveriansnanns 1-5
Condition Code ..iviiiiuirnnereeneesoessonesnssssosanonans 1-6
Specification of a Microcommand Sequence 1-7
Registers Parameterciiiiiiiiiiiiinneernneennnns 1-8
Data Buffer Parameterc.iiiiniiinnnroneeennarnannsns 1-8
Character Countciiiiiiienenenonsennnseansnsnensnsnns 1-10
Terminating Multicharacter I/0 Operationseceeee. 1-10
Output Examples of $GIO i iiiiiietinreenneennssananans 1-12
Input Examples of $GI0 . .ciiii it eneeeereeeasnnnanns 1-14
CHAPTER 2 INFORMATION FOR THE 2200 BASIC-2 USER
2.1 Line Number RanNgeuiiiiueiovreneossesosnsssaaseasannssns 2-1
2.2 Differences in Key Implementationciiiiiiencnneens 2-1
2.3 Variable Name Lengthiiiiiiiiiiiiiiiiiiieiiiiiinnnenns 2-1
2.4 o o= £ 2-2
2.5 Scrambled (Protected) Programsceeeveeeeosecssanoasan 2-2
2.6 PC BASIC-2 Statements Not Part of 2200 BASIC-2 2-2
2.7 2200 BASIC-2 Statements Not Part of PC BASIC-2civeevun 2-2
2.8 The LOAD Statementcuiiiiiiiiniienrnnnonnrnsennnnas 2-3
2.9 ON ERROR...GOTO Statementiiitiiiiiiienrnecnnnnenns 2-3
2.10 Statement Differencesceiieeiirinericneocaneraosonanss 2-4
INDE X ittt ittt ineeneoensooseesesetenssssnssessnsssesenssssssassneoees Index-1

TABLES

Table 1-1 Legend N Ceeeeaas et e £ 51
Table 1-2 Summary of Microcommand Categories ceeesees 1-18
Table 1-3 Single Address Strobe¢.ciciiiieiiecnannn ceesenan 1-19
Table 1-4 Control Microcommands Ceteeeneaann ceeeessaees. 1-20
Table 1-5 Single-Character Output Mlcrocommands I
Table 1-6 Single—-Character Input Microcommandscec0eeeeues 1-25
Table 1-7 Multicharacter Output Microcommandsccc0nv0veee. 1-26
Table 1-8 Valid CHECK T Codes for Table 1-7cccievevnccanasen 1-27
Table 1-9 Valid LEND Codes for Table 1-7ccovveeeivecencesass 1-27
Table 1-10 Multicharacter Input Microcommandseco000eeas0. 1-28
Table 1-11 Valid CHECK T Codes for Table 1-10 e e . 1-29
Table 1-12 Valid LEND Codes for Table 1-10 [cheeenen ... 1-29
Table 1-13 Register Usagecceevennn - Ceeseeestearanesesss. 1-30
Table 1-14 Summary of Mlcrocommands for Use w1th PC BASIC-2 1-31
Table 2-1 Comparison of the General Instruction Sets ceeeen 2-4
Table 2-2 Comparison of the System Commands ceenesss 2-11
Table 2-3 Comparison of I/0 Instructions Ceieeaenan ceereese. 2-13
Table 2-4 Comparison of 2200MVP Instructions N .. 2-17

vi

GENERAL I/0O STATEMENTS

b]

1-1

CHAPTER 1
GENERAL I/0 STATEMENTS

1.1 INTRODUCTION

The general I/0 statements, $IF ON/OFF and $GIO, were included as part of 2200
BASIC-2 to access peripherals that could not be accessed by other BASIC-2
statements. The $IF ON/OFF statement in PC BASIC-2 is restricted to the
screen and keyboard. The $GIO statement is implemented in PC BASIC-2
primarily for compatibility with existing BASIC-2 programs; $GIO can be used
with screen and keyboard I/0 only.

NOTE:

Because $GIO and $IF ON/OFF are included in PC BASIC-2 primarily to maintain
compatibility with existing 2200 BASIC-2 programs, you should avoid using
these statements when writing new PC BASIC-2 programs.

The following pages explain the full syntax of these statements as
provided with 2200 BASIC-2. The restricted subset of $GIO operations that can
be used with PC BASIC-2 appears in Table 1-14.

General I/0 Statements

1-2
1.2 $IF ON/OFF

Format:

L=y

ON device-address,
$1F

} line—number

OFF file-number,

The $IF ON/OFF statement determines the ready/busy status of a given
device attached to the system and branches when ready or busy, depending
upon which form of the statement is used.

The $IF ON statement tests the device ready/busy signal for the ready
condition. If device ready is sensed, the program branches to the line
specified in the $IF ON statement. If device busy is sensed, program
execution continues at the next statement.

Conversely, the $IF OFF statement tests the ready/busy signal for
device busy. If device busy is sensed, the program branches to the
specified line. If device ready is sensed, program execution continues at
the next statement.

PC BASIC-2 restricts the use of $IF ON/OFF to the keyboard (address
/001) and the screen (address /005). The keyboard is ready if a key has
been pressed but has not yet been input by PC BASIC-2; the keyboard is busy
if no key has been pressed. The screen is always ready. °

The following methods specify a device-address in a $IF ON/OFF
statement:

e Direct address specification using a slash followed by a
3-hexadecimal-digit device-address

10 $IF OFF/001, 1000

e Indirect address specification using a file-number to which the
desired device-address has been previously assigned

10 SELECT #3/001
20 $IF ON #3, 250

A file-number identifies the slot in the Device Table to which the
address of the I/0 device to be tested has been assigned with the
SELECT statement. (Refer to The Professional Computer BASIC-2
Language Guide.)

° Omitting an address, thereby implying that the device-address
currently selected for TAPE-class operations should be used

10 SELECT TAPE/001 Q)
20 $IF ON 200

General I/0 Statements

Examples of valid syntax:
$IF ON/001, 450

SELECT #7/001
$IF ON #7, 100

SELECT TAPE/001
$IF ON 400

General I/0 Statements

1.3 $GIO

Format:
device—address|,]
$GIO [comment] (microcommand-sequence
file—-number,

[,registers]) [buffer [:;buffer] ...]

where:
comment = A character string, consisting of
uppercase letters, digits, and spaces,
that identifies the particular operation
performed by the 3$GIO sequence
nmicrocommand-sequence = An I/0 operation defined by using a hex

literal, an alpha literal, a string of
hex digits, or an alpha-variable

registers = An alpha-variable whose individual bytes
(registers) store special characters and
error/status information; dimensioned
length must be at least 10 bytes

buffer = An alpha-variable that serves as the
data buffer for multiple-character input
and output operations

The $GIO statement uses a series of microcommands represented by a code
that is two bytes (four hexadecimal digits) in length to write I/O routines.
This code instructs the system to perform one or more specific operations such
as move a specified character into a designated alpha variable or read a
string of characters from an external device into a buffer memory.

1.3.1 Comment Parameter

Since the I/0 operation represented by a $GIO statement is not readily
identifiable from its microcommand sequence, a descriptive comment inserted in
the $GIO statement is helpful when reviewing or revising a program (e.g.,
WRITE, READ, and CHECK READY). The comment has no functional purpose; the
system ignores it during execution of the $GIO statement. The comment can
consist of any combination of uppercase letters, digits, and blanks; other
characters are illegal in a comment.

General I/0 Statements

<

1-5

1.3.2 Device-Address Parameter

The following methods specify a device-address for a $GIO operation:

. Direct address specification using a slash followed by a
3-hexadecimal-digit device-address

200 $GIO READ /001 (M$,R$) B$()

° Indirect address specification using a file-number to which the
desired device-address has been previously assigned

300 SELECT #2/001
310 $GIO READ #2, (M$,R$) B$H()

e Omitting an address, thereby implying that the device-address
currently selected for TAPE-class operations should be used

400 SELECT TAPE/001
410 $GIO READ (M$,R$) BS()

1.3.3 Microcommand-Sequence Parameter

Each microcommand in a sequence consists of a 4-hex-digit code of the form
hhhh, where h is a hexadecimal digit (0 to 9 or A to F). The first two hex
digits in a microcommand code usually identify the type of operation to be
performed, for example, single-character output with echo or multicharacter
verify. The last two hex digits supply information, for example, a character
to be stored or a register containing a character to be transmitted. There is
no practical limit on the number of microcommands that can be specified in a
single $GIO statement.

The 21 different categories of microcommands available for use in a $GIO
statement are of two basic types: I/0 microcommands and control
microcommands. Refer to Table 1-2 for a summary of the 21 microcommand
categories and their functions.

I/0 microcommands send one or more characters to an external device or
receive one or more characters from an external device. Each I/0 microcommand
represents a unique signal sequence defining a fundamental I/0 operation. For
example, the microcommand 400D instructs the system to transmit a HEX(0OD)
character (carriage return) to the specified external device. Therefore,
specifying a sequence of I/O microcommands is equivalent to programming the
signal sequence required to perform the desired I/0 operation.

Control microcommands provide the capability of programming complete I/0
routines, including testing and branching within a single $GIO statement.
Control microcommands do not perform input or output operations directly, but
they can perform the following important supplementary programming functions:

General I/0 Statements

. Move, compare, and test specified characters, and set the condition
code, depending upon the result of a test

e Check error/status information in a register and set the condition
code

L] Enable and disable the timeout condition
. Enable and disable a delay before sending all output strobes

° Branch to a specified microcommand within the $GIO sequence or
terminate $GIO execution on condition code true or false

. Set up the next specified data buffer
e Move characters between the data buffer and the register

. Increment or decrement the specified register or register pair

1.3.4 Condition Code

Certain operations within a $GIO sequence set a flag in memory, called the
condition code. The condition code has two possible values: true (on) and
false (off). Initially, the CPU sets the condition code to false. The
condition code remains false until a condition occurs that alters the status.
In general, the condition code is automatically set to true by a variety of
special conditions, including certain error and termination conditions. Aalso,
control microcommands can test for specified conditions and explicitly set the
condition code to true, depending upon the result of the test.

Once the condition code is set to true, execution of the $GIO statement
is terminated. An exception is when the next sequential instruction in the
microcommand sequence is a branch instruction that tests the status of the
condition code and initiates a branch within the $GIO routine. These two
special microcommands have the following forms, where "hhh" is the
3-hexadecimal-digit "address" of a microcommand within the microcommand
sequence:

Dhhh (branch to hhh if condition code is true)
Ehhh (branch to hhh if condition code is false)

The address of each microcommand represents its displacement from the first
microcommand in the sequence. Thus, HEX(000) is the address of the first
microcommand in a $GIO statement, and HEX(00l) is the address of the second
microcommand, and so on.

General I/0 Statements

Example:

If the condition code is true, the following instruction generates a
branch to the second microcommand in the $GIO statement (if the
condition code is false, a branch does not occur, and the next
microcommand in the sequence is executed):

D001

Conversely, if the condition code is false, the following
microcommand generates a branch to the sixth microcommand in the
$GIO statement (if the condition code is true, a branch does not
occur, and the next microcommand in the sequence is executed):

E005

Also, both branch instructions automatically reset the condition
code to false.

The branch instructions provide, in conjunction with the condition code,
a means of responding to special conditions in an I/0 operation without
terminating $GIO statement execution. Additionally, branch instructions serve
as powerful tools for constructing loops and branches within a $GIO statement,
thus facilitating the implementation of sophisticated, custom-tailored I/0
routines in a single statement.

1.3.5 Specification of a Microcommand Sequence

You can specify a microcommand sequence defining a desired I/0O operation
either directly or indirectly in a $GIO statement. Indirect specification of
microcommand codes offers several advantages, including easier modification
and debugging of the microcommand sequence and use of the same sequence in
several different $GIO statements. The following methods specify a
microcommand sequence:

. Direct specification of the microcommand sequence using HEXdigits
10 $GIO (A000, R$) A$
. Direct specification of the microcommand sequence using a HEXliteral
10 $GIO (HEX(A000), R$) A$
. Indirect specification of the microcommand sequence by assigning the
microcommand codes to an alpha-variable and specifying the

alpha-variable in a $GIO statement

10 a$ = HEX(A000)
20 $GIO (A%, R$) B$

General I/0 Statements

1-8

1.3.6 Registers Parameter

The alpha-variable specified as the registers parameter of a $GIO statement
serves as a multipurpose memory area where special characters and error/status
information are stored. Each byte of the alpha-variable is called a register,
and the variable itself is commonly referred to as the register-variable. The
dimensioned length of the register-variable must be at least 10 bytes because
the system stores special information in bytes (or registers) 8, 9, and 10.
The maximum number of registers that can be accessed is 15 (bytes 1 to 15).

If the register-variable contains more than 15 bytes, you cannot use the
additional bytes as registers.

The registers parameter is optional in a $GIO statement. If it is
omitted, the system uses 15 bytes in a reserved section of memory and
initializes them to all zeros. In this case, the BASIC-2 program can neither
read nor modify the values of particular registers.

The BASIC-2 program uses the registers to store data characters or
special termination characters, to store the binary value defining the
duration of an implemented delay or timeout condition, or as a counter to
control the execution of a loop. By using certain control microcommands, you
can compare the contents of two registers, increment or decrement a specified
register or register pair by a fixed amount, and test for specific error bits
in the error register.

Although all 15 registers are available for use, the system uses several
registers to store information during certain operations. In particular,
Register 8 stores error/status information (each bit representing a specific
error condition), and Registers 9 and 10 maintain a count of the characters
processed during a multicharacter operation. During certain multicharacter
input and output operations, Registers 5 and 6 store the calculated LRC
character and the ENDI character, respectively. Note that if the application
program uses any of these Registers (5, 6, 8, 9, 10), the system alters the
values of those registers during certain operations. Refer to Table 1-13 for
a summary of register usage for each of the 15 registers.

Registers 8, 9, and 10 are automatically initialized to binary zero
(HEX(00)) when the $GIO statement begins execution. Subsequently, Registers 9
and 10 are reset to zero whenever the data buffer pointer is set to point to a
new buffer by using one of the following control commands: 18hh, 1AhO, or
1A00. The remaining registers are not initialized automatically and can be
assigned an initial value by the BASIC-2 program.

1.3.7 Data Buffer Parameter

The data buffer parameter of a $GIO statement consists of one or more
alpha-variables used as data buffers. Data buffers are required only for
multicharacter input and output operations. They are not required in a $GIO
statement restricted to single-character input or output.

General I/0 Statements

s

1-9

You can use alphanumeric-scalar and array-variables as data buffers.
The size of the data buffer is equal to the total number of bytes in the
defined length of the variable. The defined length can be the entire
dimensioned size of the variable or some specified portion of its total size.
The STR function can define the length of this specified portion.

If an alphanumeric-array (l- or 2-dimensional) is used as a data buffer,
characters are stored into the array or read from the array sequentially, row
by row. The entire array is treated as one contiguous string of characters,
starting with the first character of the first element. Element boundaries
are ignored.

Multiple data buffers must be separated by semicolons (;). The
particular data buffer to be used in an I/0 operation is indicated by a data
buffer pointer. The pointer is automatically set to point to the first buffer
in the data buffer sequence when a $GIO statement is executed. The pointer
can be set to point to any buffer in the sequence under program control by
using one of three control microcommands.

For sequential processing of buffers, the 1A00 control command
increments the pointer to the next sequential buffer. A subsequent I/0
operation uses that buffer.

For nonsequential processing of buffers, two control microcommands move
the pointer to a specified buffer in the data buffer sequence by specifying
the address of the buffer to be used. The address of each buffer in the
sequence is simply its displacement from the first buffer in the sequence.
Thus, HEX(00) is the address of the first buffer, HEX(0l) is the address of
the second buffer, and so on. The address of the buffer to be used can be
specified immediately in an 18hh microcommand, where hh is the address.
Alternatively, the address can be specified indirectly as the contents of a
register with a 1AhO command, where the third HEXdigit specifies the register
(1 to 15) containing the buffer address. (Refer to Table 1-4.)

The data buffer pointer is moved only by one of the three microcommands
(i.e., 1A00, 18hh, or 1Ah0). The pointer is never moved automatically (i.e.,
implicitly). Thus, sequential multicharacter I/0 commands continue to use the
same data buffer until a new data buffer is designated by explicitly moving
the pointer with either the 1A00, 18hh, or 1Ah0 command. Data continues to be
sequentially sent from or received into the buffer by each microcommand until
a termination condition is sensed or the data pointer is moved to another
buffer.

General I/0 Statements

1.3.8 Character Count

During a multicharacter input or output operation, the system automatically D
maintains a total number count of characters sent from or received into a

particular buffer. The count is a 2-byte binary number stored in Registers 9

and 10. The low-order eight bits of the count are stored in Register 10, and

the high-order eight bits are stored in Register 9. Each time a character is

received into or sent from the currently specified buffer, the count is

incremented. The count for a particular buffer continues to be incremented by
subsequent microcommands that use the same buffer.

The count is reset to binary zero only when the data buffer pointer is
moved to a new buffer. Thus, the count for each buffer initially starts with
a value of zero and is increased cumulatively to reflect the total number of
characters transferred or received by all microcommands using that buffer.

For example, if a buffer is only partially filled by a multicharacter
input command, a subsequent multicharacter input command stores data in the
remaining unused portion of the buffer and continues to update the count to
reflect the total number of characters received in the buffer. If a
multicharacter input command continues to input data after the buffer is
filled, the count continues to be updated to reflect the total number of
characters received. However, the additional characters are lost, and
therefore are not stored.

1.3.9 Terminating Multicharacter I/O Operations

A simple multicharacter output operation always outputs the total number of
characters in the output buffer or the defined portion of the buffer. The
output operation terminates when the last character is sent. However, a
multicharacter input operation can be terminated when one of the following
three conditions occurs:

. An ENDI character is received
e A special termination character is received
e The character count equals the input buffer length

The first way to terminate a multicharacter operation is by "Termination
on ENDI Character."” Certain I/O devices, including the system keyboard, can
send a character with a special ninth bit, called the ENDI bit, in addition to
the eight data bits. For example, pressing a special function (SF) key on the
system keyboard generates a character with an ENDI bit. If this termination
condition 1is specified, the system checks each incoming character for an ENDI
bit and terminates the input operation when one is received. The ENDI
character is stored in Register 6. However, only the eight data bits are
stored; the ENDI bit is removed prior to storage. The character count does
not include the ENDI byte.

0

General I/0O Statements

1-11

Example:

Termination upon reception of a special function key (i.e., by an
ENDI bit that is sent) can be achieved in the following manner:

60 $GIO /001 (C320, R$) A$

The system checks each incoming character to determine if it carries
a special ninth bit (ENDI). If an ENDI character is received, the
system saves the character in Byte 6 of R$ and terminates the input
operation according to LEND; otherwise, the character is saved in A$
and the sequence continues. The character count is maintained in
Bytes 9 and 10 of RS.

The second way to terminate a multicharacter operation is by
"Termination on Special Character." Any character can be a termination
character. The desired character must be stored in Register 1 prior to
beginning the input operation. If this termination condition is specified,
the system compares each incoming character with the character stored in
Register 1. The system terminates the input operation when the specified
termination character is received. The special character can either be stored
with the data characters in the data buffer or be discarded.

Example:

The following example illustrates a variable length input that is
terminated by the input of a specific character:

50 STR(R$,1,1) = HEX(OD)
60 $GIO /001 (C310, R$) a$

Line 50 stores a carriage-return character in the first byte of RS$.
The third digit of the microcommand instructs the system to check
Byte 1 of R} after each character is stored and to terminate the
input sequence according to LEND if the character received is the
same as the character stored in R$. If the character does not
match, the sequence is repeated. The program should check Bytes 9
and 10 of R} to determine how many bytes were actually received.
For example, the following statement calculates the number of
characters input in the $GIO sequence:

70 N = VAL(STR(R$.,9,2),2)

The final way to terminate a multicharacter operation is by "Termination
on Character Count." Most multicharacter input commands can be terminated
when the input buffer is filled. If this termination condition is specified,
the system compares the character count with the total number of bytes
reserved for the buffer after each character is received. The system
terminates the input operation when the character count equals the buffer
length (i.e., when the buffer is filled).

General I/0 Statements

Example:
The following sequence inputs ten characters: o
10 $GIO /001 (C340, R$) STR (A$,1,10)

This microcommand receives one character at a time from the keyboard

and stores it in one of the first ten bytes of A$. After receiving

and storing each character, the third digit of the microcommand

instructs the system to determine if the buffer is full. If so, the !
input sequence terminates according to the last digit in the

microcommand (LEND).

If the character count is not specified as a termination condition, the
number of characters received prior to termination can exceed the available
buffer space. In this case, an error bit is set in the error register
(Register 8), and the excess characters are received but not stored. Whether
or not these characters are stored, the count continues to be updated to
reflect the total number of characters received.

You can specify one, two, or all three termination conditions in a
single multicharacter input command. If multiple conditions are specified, the
input operation terminates when any one of the specified termination
conditions are satisfied. The order in which termination conditions are
checked by the system are defined as follows:

1. ENDI Character)
2. Special Termination Character
3. Character Count

If multiple termination conditions are specified, the system sets a bit
in Register 8 to indicate which condition caused termination. Subsequently,
the program can check Register 8 to determine which of the specified
termination conditions actually caused the input operation to terminate. If
only one termination condition is specified in the input command, the system
does not set a bit in Register 8.

You can select combinations of termination conditions and LEND sequences
by varying the last two digits of the C3tl-type microcommands according to the
desired combination. For instance, the C330 microcommand terminates the input
sequence when either a special character or an ENDI bit is received.

1.3.10 Output Examples of $GIO

The following examples illustrate the use of different $GIO routines to output

one or more characters to a device. Usually, standard BASIC-2 statements such

as PRINT or LIST display information to the screen, rather than the $GIO

statement. To simplify the illustration of these routines, the following |
examples use the screen as the output device. '

General I/0 Statements

1-13

Example:

The following $GIO sequence uses Immediate mode output microcommands
to display the word WANG on the CRT screen:

$GIO /005 (4057 4041 404E 4047)

Most simple output devices indicate their readiness to receive a
byte by setting their ready/busy signal on the I/0 bus to ready.
The first byte of the first microcommand (40) waits for this ready
signal (WR) and then outputs the character indicated by the HEXcode
in the second byte of the microcommand (i.e., 57, which is the
character W). Data output is accomplished with a single OBS for
each character.

Since specifying each character in an individual microcommand is
frequently an inefficient method of outputting data, the data is usually
output from a variable. This method allows you to use one 3$GIO sequence for
all output of this type simply by changing the value of the variable during
program execution. Indirect $GIO microcommands are used to change the value
of the variable that holds the data.

Example:

The following program displays the word WANG on the screen by using
variables with the microcommand:

10 R$ = "WANG"
20 $GIO /005 (4210 4220 4230 4240, R$)

The first byte of each microcommand (42) waits for device ready.
Then an OBS sends the byte of R$ indicated by the second byte of the
microcommand (e.g., 10 sends the first byte, which is the character
W) .

Long data strings are output using multicharacter output commands; the
data to be output is stored in the data buffer.

Example:
The following $GIO statement displays the first 100 bytes of A$():
100 $GIO /005 (AQ00) STR(AS(),1,100)

The STR function indicates that not all of A$() is to be displayed,
just the first 100 bytes.

General I/0 Statements

1-14

1.3.11 Input Examples of $GIO

The following examples illustrate $GIO usage for data input from a single
device. Usually the keyboard is accessed with the BASIC-2 statements KEYIN,
INPUT, and LINPUT, rather than the $GIO statement. The following examples use
the keyboard as the input device to provide examples that illustrate typical
programming situations:

Example:

The following $GIO sequence uses single character input
microcommands to receive three characters from the keyboard. The
first three bytes of R$ contain the three characters input from the
keyboard.

10 $GIO /001 (8701 8702 8703, R$)

If more than a few characters are to be input, multicharacter input
commands should be used.

Example:

The following example accepts a string of characters from the
keyboard and displays each character on the screen as it is entered.

10 $GIO (010D 7101 8702 7105 4220 1B22 1Cl2 E001, R$) 2a$
The microcommand sequence in Line 10 works in the following manner:

. The first microcommand (010D) stores the character whose HEXcode
is the last byte of the microcommand in the register specified
by the second digit of the microcommand. In this case, a
carriage return (HEX(0OD)) is stored in byte 1 of RS$.

° The second microcommand (7101) enables the device whose address
is equal to the second byte of the microcommand (device type
is omitted). In this example, the keyboard is now enabled
(address 01).

. The third microcommand (8702) waits for the device to be ready
and then receives an IBS (and, hence, one character) from the
keyboard, storing it in the register specified by the last digit
of the command.

e The fourth microcommand (7105) enables the device whose address
is equal to the second byte of the microcommand. In this
example, the screen is now enabled (address 05).

. The fifth microcommand (4220) waits for screen ready and

performs an OBS, sending the character in Register 2 back to the
screen,

General I/0 Statements

e The sixth microcommand (1B22) takes the character in Register 2,
places it in the data buffer (A3), and increments the count
maintained in Registers 9 and 10. Additionally, this command
sets the condition code and terminates the $GIO if the data
buffer is already full.

e The seventh microcommand (1Cl12) compares the character in
Register 1 to that in Register 2 and sets the condition code if
the two are equal.

° The eighth microcommand (E00l) tests the condition code. If it
is false, a branch to the second microcommand takes place (001):;
otherwise, the sequence is ended.

Thus, the sequence can be terminated if either the data buffer becomes
full or a carriage return is received. The data buffer A$ contains the
characters received (including the carriage return), and the count is stored
in Registers 9 and 10.

Tables 1-1 through 1-13 show the entire $GIO microcommands set for 2200

BASIC-2. The shaded areas indicate recommended microcommands. Table 1-14
shows the restricted set of microcommands that can be used with PC BASIC-2.

General I/0 Statements

1-16

Table 1-1. Legend?®

Mnemonic Operation

ABS CPU sends an Address Bus Strobe with an immediate or
indirect address to disable the current address and enable
the specified address.

CBS CPU sends a Control Bus Strobe to the enabled device.

CHECK ENDI CPU checks for ENDI condition. If the ENDI bit is sent, the
CPU saves the byte in Register 6 (rather than Register r)
and sets the 20 bit of Register 8.

CHECK T, CPU checks for ENDI and Special Character termination
conditions, and then proceeds according to Code t.

CHECK T CPU checks for both Special Character and full buffer
termination conditions, then proceeds according to code t.

CPB CPU sets its input ready/busy signal to ready.

DATAQUT CPU sends next character from $GIO data buffer, then
increments the count in Bytes 9 and 10.

ECHO The received character is echoed (with either OBS or CBS).
IBS CPU awaits input strobe from enabled device. If the wait is
greater than 8 milliseconds, an error results.

MM Immediate character is HEX(h: h,), specified by the
microcommand.

IND Indirect character is in the register specified by r.

LEND CPU executes the LRC end sequence specified by 1.

0OBS CPU sends an Output Bus Strobe to the enabled device.

SAVE CPU saves received character in the register specified by r.

SAVE DATA CPU saves received character in the next location of the
data buffer, then increments the count.

SAVE LRC CPU saves calculated LRC character in Register 5.

SEND LRC CPU sends calculated LRC character to enabled device.

®Mnemonics used to describe signal sequences for I/0 microcommands

General I1/0 Statements

Table 1-1. Legend® (continued)

Mnemonic Operation

SET CC CPU terminates microcommand and sets condition code if
specified condition exists.

VERIFY CPU compares received character. If unequal, the CPU sets
the echo-verify error bit (Bit 04 in Register 8) to 1.

WR CPU awaits ready signal from enabled device. If the wait is
greater than 1 millisecond, a break point can result.

W5 CPU waits (5 microseconds) until OBS or CBS is complete.
Symbol Digit in That Position Represents

a Portion of 12-bit microcommand address

c Microcode command specification

d Delay specification

h HEX digit

1 LEND code

r Register

t CHECK-T code

PMnemonics used to describe signal sequences for I/0 microcommands

General I/0 Statements

each character requested

Table 1-2. Summary of Microcommand Categories
Code Operation Refer To
7chih; (c =1, 3, 6) Single address strobe Table 1-3
Orhih: Control —-- store immediate Table 1-4
lh;hzhs Control -- general
75h,h, Control —— delay immediate '
77c0 Control -- delay immediate
Daiazas Branch control
Eaiazas Branch control
4chih; Single character output Table 1-5
5chih; Single character output
with acknowledge
6chih; Single character output with echo
8chih: (c =6, 17) Single character input Table 1-6
8chih: (¢ = 0-3, 8-B) Single character input with verify
9chihs Single character input with echo
AcO1l Multicharacter output Table 1-7
Bectl (c =0, 1, 4, 5) Multicharacter output
with acknowledge
Bctl (c =2, 3,6, 7) Multicharacter output with echo
Bctl (c =8, 9, C, D) Multicharacter output with
each character requested
BAt1 Multicharacter verify
Cctl (c =2, 3,6, 17) Multicharacter input Table 1-10
Cctl (c =0, 1, 4, 5) Multicharacter input with echo
Cectl (c = 8-F) Multicharacter input with

General I/0 Statements

NOTE:
A programmer can use all codes listed in Tables 1-3 through 1-12. However,
shaded areas indicate recommended codes for first-time users.

=

Table 1-3. Single Address Strobe

Code Signal Sequence Verify Character Character to be Saved

73r0 ABS/IND From Register r
760r STATUS REQUEST In Register r
NOTE:

Codes in this category can be used repeatedly in a sequence to disable the
current device address and enable another.

General I/0 Statements

Table 1-4. Control Microcommands

Code

Operation

Orhlhz

1000
1010
1020
1200
1llrir»

12r1

12r2

13d.d:

14r1r2

15r,r2

Store immediate second character (byte), HEX(h:h:) in
Register r.

Set condition code true.

Set condition code if device is ready.

Wait for device ready (with timeout).

Disable previously set delay/timeout condition.
Move contents of Register r; to Register r».

Set a coarse delay before each subsequent OBS or CBS. The
length of the delay in units of 50 microseconds is specified
by a 2-byte binary value stored in Registers r and r+l
(where 1 < r < 14). Maximum delay = HEX(FFFF), which is
approximately 3.3 seconds.

Set a timeout prior to checking each subsequent device ready
signal (for output operations) or input strobe (for input
operations). The interval in units of 1 millisecond is
specified by a 2-byte binary value stored in Registers r and
r+l (where 1 < r < 14), Maximum timeout interval =
HEX(FFFF), which is approximately 65.6 seconds. If a
timeout interval is exceeded, set condition code and set
error bit (Bit 10) in Register 8. (The 2200 multiuser
operating system restricts timeout to 15 milliseconds for
IBS timeout.)

Set a fine delay before each subsequent OBS or CBS. The
duration of the delay is specified, in units of 5
microseconds, by the binary value of the second byte of the
command (d,d.). HEX(03) = 15 microseconds, HEX(04) = 20
microseconds, and so on. If specified delay is less than
actual loop time (currently about 10 microseconds), then
reducing value may not matter. Maximum delay = HEX(FF),
which is approximately 1.275 milliseconds. (When execution
of a $GIO sequence begins, this delay is set to HEX(0A),
which is approximately 50 microseconds.)

If contents of Register r; do not equal contents of
Register r2, set compare error bit (Bit 08, Register 8)
to 1.

If contents of Register r; do not equal contents of
Register r., set compare error bit (Bit 08, Register 8).
Then, if compare error bit 1is set, set condition code.

General I/0 Statements

1-21

Table 1-4. Control Microcommands (continued)

Code Operation
1l6a:a:2 If complemented status code (Register 8) AND a,a. does
not equal HEX(00), set condition code (i.e., set cc if any
bit specified by the mask a,a. is equal to 0).
17a:a2 If status code (Register 8) AND a.a. does not equal
HEX(00), set condition code (i.e., set cc if any bit
specified by the mask a.a, is equal to 1).
18a.a2 Set data buffer pointer to specified buffer in the data
buffer sequence. Buffer pointed to is specified by binary
value of second byte of command (a,a.), which represents
displacement from first buffer in sequence. Thus, HEX(1800)
points to first buffer, HEX(1801) points to second buffer,
HEX(1802) points to third buffer, and so on. If the
specified buffer does not exist (i.e., not enough buffers),
the system signals an error. This command also resets the
count (Registers 9 and 10) to O.
19rc Increment/decrement binary value stored in Register r or in
pair of Registers r and r+l, depending upon value of c.
c Operation
0 Increment Register r by 1
1 Increment Register r by 2
2 Decrement Register r by 2
3 Decrement Register r by 1
4 Increment Register pair by 1
5 Increment Register pair by 2
6 Decrement Register pair by 2
7 Decrement Register pair by 1
If a Register pair is incremented/decremented, it is treated
as a 2-byte binary value, with the low-order byte in
Register r+l.
1Ar0 Same as 18a:;a., except displacement is obtained from
Register r (r > 1).
1A00 Increment data buffer pointer to next buffer. Reset data
count to 0.
1Br; Write one byte from data buffer into Register r. Increment

data count (Registers 9 and 10). Set condition code if
buffer empty, without changing count or storing byte.

General I/0 Statements

1-22

Table 1-4. Control Microcommands (continued)

Code

Operation

lBrz

1Crir»

lDflrz

lErlrz

1Fr1r2

75d.d.

770

Daiazas

Eaiazas

Read one byte from Register r into data buffer. Increment
data count (Registers 9 and 10). Set condition code if
buffer already full, without changing count or storing byte.

Set condition code if Register r, equals Register r».

Set condition code if Register pair (r,, r;+1) equals
Register pair (r., ra+l).

Set condition code if Register r, is greater than
Register r»

Set condition code if Register pair (r:, ri+l) is
greater than Register pair (rz, rz+l).

Delay immediately. This command waits from 0 to 255
milliseconds, using an 8-bit count specified by d.d:,
before continuing to the next command. This delay 1is
invoked only once and is unrelated to other delays.

Delay immediately. Same as preceding delay, except that
count 1is obtained from Register r.

Branch to microcommand whose address is specified by
aiazas if condition code is true. The 12-bit address
specified by aiazas is displacement from first
microcommand in the microcommand sequence. Thus, HEX(D00O)
branches to first command in sequence if condition code 1is
true, HEX(D001l) branches to second command, and so on. If
condition code is false, proceed to next microcommand.
Reset condition code to false.

Branch to microcommand whose address is specified by

arazas if condition code is false. If condition code

is true, proceed to next microcommand. Reset condition code
to false.

NOTE:

Because 12-bit addresses are used in the branch instructions,

of 4,096 microcommands (8192 bytes) that can serve as the destination of a
branch in a $GIO sequence.

General I/0 Statements

there 1s a limit

Table 1-5.

Single—Character Output Microcommands

Code

Signal Sequence

Character
To Be Sent

Character
To Be Saved

4lh:h»

43r0

45h h»

47r0

Single Character

0BS/IMM

OBS/IND

CBS/IMM

CBS/IND

Output

HEX(h:h2)

From Register r

HEX(hi1h3)

From Register r

50h:h:
S5lh:h:
52rirz
53r.r2
54h:h;
55h1h2
56rirs

S7rr2

Single Character
Acknowledge Input

WR, OBS/IMM, W5,
OBS/IMM, W5,
WR, OBS/IND, W5,
OBS/IND, WS,
WR, CBS/IMM, W5,
CBS/IMM, W5,
WR, CBS/IND, W5,

CBS/IND, WS,

Output with

CPB, IBS
CpB, IBS
CPB, IBS, SAVE
CPB, IBS, SAVE
CPB, IBS
CpB, IBS
CPB, IBS, SAVE

CPB, IBS, SAVE

HEX(h,hz)
HEX(h.h)
From Register r;
From Register r.
HEX(hihz)
HEX(h,h»)
From Register r,

From Register r,

Into Register r:

Into Register r,

Into Register r:

Into Register r:

60hih2
61h h>
62r1rz

63r,r,

Single Character
WR, OBS/IMM, W5,

OBS/IMM, W5,
WR, OBS/IND, W5,

OBS/IND, WS,

Output with Echo Input
CpB, IBS, VERIFY
CPB, IBS, VERIFY
CPB, IBS, SAVE, VERIFY

CPB, IBS, SAVE, VERIFY

HEX(h:h2)
HEX(h h:)
From Register r,

From Register r;

Into Register r:

Into Register r»

General I/0 Statements

Table 1-5. Single-Character Output Microcommands (continued)
. Character Character

Code Signal Sequence To Be Sent To Be Saved

Single-Character Input with Echo Output
64h1h; WR, CBS/IMM, W5, CPB, IBS, VERIFY HEX(h,h2)
65hi1h> CBS/IMM, W5, CPB, IBS, VERIFY HEX(hi1hz)
66rirz WR, CBS/IND, W5, CPB, IBS, SAVE, VERIFY From Register r; | Into Register r:
67r.r2 CBS/IND, WS, CPB, IBS, SAVE, VERIFY From Register r, | Into Register r:
68hih; WR, OBS/IMM, W5, CPB, IBS, VERIFY,

SET CC (if VFY bit set) HEX(h:h3)
69h:h> OBS/IMM, W5, CPB, IBS, VERIFY,

SET CC (if VFY bit set) HEX(h1h2)
6Ar r: WR, OBS/IND, W5, CPB, IBS, SAVE, VERIFY,

SET CC (if VFY bit set) From Register r, | Into Register r:
6Brir: OBS/IND, WS, CPB, IBS, SAVE, VERIFY,

SET CC (if VFY bit set) From Register r, | Into register r:
6Chh> WR, CBS/IMM, W5, CPB, IBS, VERIFY,

SET CC (if VFY bit set) HEX(h:h:)
6Dh,h, CBS/IMM, W5, CPB, IBS, VERIFY,

SET CC (if VFY bit set) HEX(hihz)
6Er;r, WR, CBS/IND, W5, CPB, IBS, SAVE, VERIFY,

SET CC (if VFY bit set) From Register r, | Into register r:
6Frir: CBS/IND, W5, CPB, IBS, SAVE, VERIFY,

SET CC (if VFY bit set)

From Register r;

Into Register r:

General I/0 Statements

Table 1-6. Single-Character Input Microcommands

X Verify Character
Code Signal Sequence Character To Be Saved
Single-Character Input
8600 CPB, IBS
860r CPB, IBS, SAVE Into Register r
862r CPB, IBS, CHECK ENDI + SAVE Into Register r
8700 WR, CPB, IBS

ot

el
S

S5
o
r Regi =
L SEoLs e
ENDI
&

Single~Character Input with Verify

80hih: CPB, IBS, VERIFY/IMM HEX(h:hz)
81lh:ih> WR, CPB, IBS, VERIFY/IMM HEX(h1hz)
82r r: CPB, IBS, SAVE, VERIFY/IND In Register r) Into Register r:
83rire WR, CPB, IBS, SAVE, VERIFY/IND In Register r, Into Register r:
88hih: CpPB, IBS, VERIFY/IMM,

SET CC (if VFY bit set) HEX(h:hz)
89h:h; WR, CPB, IBS, VERIFY/IMM,

SET CC (if VFY bit set) HEX(hih2)
8Ar.r: CPB, IBS, SAVE, VERIFY/IND,

SET CC (if VFY bit set) In Register r; Into Register r:
8Brir: WR, CPB, IBS, SAVE, VERIFY/IND,

SET CC (if VFY bit set) In Register r; Into Register r2

Single-Character Input with Echo Output

920r CPB, IBS, SAVE, WR, ECHO/OBS Into Register r
930r CPB, IBS, SAVE, ECHO/0BS Into Register r
960r CPB, IBS, SAVE, WR, ECHO/CBS Into Register r
970r CPB, IBS, SAVE, ECHO/CBS Into Register r

General I/0 Statements

1-26

Table 1-7. Multicharacter Output Microcommands

Code

Signal Sequence®

Multicharacter Output

A101 (DATAOUT/OBS), LEND
A201 25 microsecond version of A0C0l; no timeout or delay
A401 (WR, DATAOUT/CBS), LEND
A501 (DATAQUT/CBS), LEND
A601 SCAN DATA BUFFER, CALCULATE LRC, LEND
Multicharacter Output with Acknowledge Input
BOt1 (WR, DATAQUT/OBS, W5, CPB, IBS, CHECK T), LEND
Bltl (DATAOUT/OBS, W5, CPB, IBS, CHECK T), LEND
B4tl (WR, DATAOUT/CBS, W5, CPB, IBS, CHECK T), LEND
B5t1 (DATAOUT/CBS, WS, CPB, IBS, CHECK T), LEND
Multicharacter Output with Echo Input
B2tl (WR, DATAOUT/OBS, W5, CPB, IBS, VERIFY, CHECK T), LEND
B3tl (DATAOUT/OBS, W5, CPB, IBS, VERIFY, CHECK T), LEND
Botl (WR, DATAOUT/CBS, W5, CPB, IBS, VERIFY, CHECK T), LEND
B7tl (DATAOUT/CBS, W5, CPB, IBS, VERIFY, CHECK T), LEND
Multicharacter Output with Each Character Requested
B8tl (CPB, IBS, CHECK T, WR, DATAOUT/OBS), LEND
BItl (CPB, IBS, CHECK T, DATAQUT/OBS), LEND
BCtl (CPB, IBS, CHECK T, WR, DATAOUT/CBS), LEND
BDt1 (CPB, IBS, CHECK T, DATAQUT/CBS), LEND

Multicharacter Verify (of Multicharacter Input}

‘A sequence in parentheses is repeated for each character in the data

buffer.

General I/0 Statements

i

(

1-27

Table 1-8. Valid CHECK T Codes for Table 1-7

. . . . d .
Termination Condition Microcommand

BOtl B4tl | B2tl B6tl | B8tl BCtl | BAtO
Bltl B5tl | B3tl B7tl | B9tl BDtl

Terminate output sequence 1f
verify unequal; set cc 1 9

Terminate output sequence if
ENDI logic level 'l'; set cc 2 2 2 A

Terminate output sequence on

either condition; set cc 3 B

Table 1-9. Valid LEND Codes for Table 1-7

LRC® End Sequence Microcommand
Actl BOt1l through B8tl BItl
B7tl BCtl BDtl
None; go to next microcommand 0 0 0
WR, SEND LRC/O0BS, SAVE LRC 2 2
SEND LRC/0OBS, SAVE LRC 3 3

R, SEND LRC/CBS,
SEND LRC/CBS, SAVE LRC J 7

9These termination conditions end the microcommand, not the $GIO, and do
not set the condition code.

°The LRC is the XOR of all bytes transferred to or from the buffer in the
present command.

General I/0 Statements

1-28

Table 1-10. Multicharacter Input Microcommands

Code Signal Sequence

Multicharacter Input
c221 (CPB, IBS, no timeout or delay, CHECK ENDI, SAVE DATA), LEND
C7tl (Delay 50 microseconds, CPB, IBS, CHECK T., SAVE DATA,

CHECK T.), LEND

Multicharacter Input with Echo
cotl (CPB, IBS, WR, ECHO/OBS, CHECK T;, SAVE DATA, CHECK T,), LEND
Cltl (CPB, IBS, ECHO/OBS, CHECK T;, SAVE DATA, CHECK T:), LEND
Catl (IBS, WR, ECHO/OBS, CHECK T,, SAVE DATA, CHECK T.), LEND
C5t1 (CPB, IBS, ECHO/OBS, CHECK T,, SAVE DATA, CHECK T.), LEND

Multicharacter Input with Each Character Requested
Cc8tl (WR, OBS, W5, CPB, IBS, CHECK T, SAVE DATA, CHECK T.), LEND
Cstl (OBS, W5, CPB, IBS, CHECK T,, SAVE DATA, CHECK T:), LEND
CAtlS (CPB, WR, OBS, IBS, CHECK T., SAVE DATA, CHECK T.), LEND
CBt1¢ (CPB, OBS, IBS, CHECK T., SAVE DATA, CHECK T.), LEND
CCtl (WR, CBS, W5, CPB, IBS, CHECK T,, SAVE DATA, CHECK T.), LEND
CDt1 (CBS, W5, CPB, IBS, CHECK T, SAVE DATA, CHECK T:), LEND
CEt1¢ (CPB, WR, CBS, IBS, CHECK T,, SAVE DATA, CHECK T.), LEND
CFt1°® (CPB, CBS, IBS, CHECK T,, SAVE DATA, CHECK T.), LEND

fA sequence in parentheses is repeated until a valid termination

condition occurs.

the l-value the LEND code.

In each command, the t-value is the termination code;

9The four indicated microcommands cannot be used with a 2200 multiuser

operating system.

General I/0 Statements

An illegal microcommand error results.

1-29

Table 1-11. Valid CHECK T Codes for Table 1-10

(] Termination Conditions® (order of checking from left to right)
ENDI-level =1 Special Character Received | Character Count
t | when Character Received Matches Character in Equals Buffer
Register 1 Length
0 No action Check; save in buffer, No action

include in LRC and count

1 No action Check; do not save No action

3 Check; save in Register 6 Check:; do not save No action
4 No action No action Check
5 No action Check; do not save Check
6 Check; save in Register 6 No action Check
7 Check; save in Register 6 Check; do not save Check

)

Table 1-12. Valid LEND Codes for Table 1-10

1 | LRC' End Sequence

2 Calculate LRC, save, compare with ENDI character, and set LRC error
bit. (Use only if t = 2.)

PThese termination conditions end the microcommand, not the $GIO, and do
G not set the condition code.

'The LRC is the XOR of all bytes transferred to or from the buffer in the
present command.

General I/0 Statements

Table 1-13. Register Usage

Register Bit W
(Byte) Positiond | Use

0 All Dummy location; if written to, data is lost; if
read, data is always 00

1 All General-purpose or special termination character

2, 3, 4 All General-purpose

5 All General-purpose or automatic storage of an LRC
character

6 All General-purpose or automatic storage of an

ENDI-level = 1 character

7 All General-purpose
8 01 1 = Buffer overflow
02 1 = LRC error
04 1 = Echo/Verify error
08 1 = Compare error
10 1 = Timeout
20 1 = ENDI-level termination
40 1 = Special character termination
80 1 = Count termination
9, 10 All Automatic storage of the count of transferred
characters to or from the currently selected data
buffer
11, 12, 13,
14, 15 all General-purpose
NOTE

When $GIO begins execution, the system sets Registers 8, 9, and 10 to O.
Whenever an 18a:a., 1A00, or 1Ar0 command is executed, the system resets
Registers 9 and 10 to O.

’Bit position labels for status code (Register 8) are as follows:

80 40 20 10 08 04 02 O1

T e ™ e ™

L——~—Low‘order HEX digit 8-4-2-1 bit positions

High-order HEX digit 8-4-2-1 bit positions

General I/0 Statements

1-31

Table 1-14 Summary of Microcommands for Use with PC BASIC-2

(] Code Operation Refer To
7chih; (¢ =1, 3, 6) Single address strobe Table 1-3
Orh:h; Control —- store immediate Table 1-4
lh,hzhs Control -- general
75h.1h, Control -- delay immediate
77r0 Control —-- delay immediate
Daiazas Branch control
Eaiazas Branch control
40h,h,, 42h:h; Single character output Table 1-5
8chih, (¢ =6, 7) Single character input Table 1-6
AcOl Multicharacter output Table 1-7
0
Cctl (c =2, 3,6, 17) Multicharacter input Table 1-10

PC BASIC-2 $GIO is restricted to the keyboard (/001) and the screen
(7/005).

General I/0O Statements

0l 1

INFORMATION FOR THE
2200 BASIC-2 USER

0 1

0 1

CHAPTER 2
INFORMATION FOR THE 2200 BASIC-2 USER

This chapter is included primarily for the benefit of those users already
familiar with the BASIC-2 language as used on the 2200. It summarizes the
language incompatibilities between 2200 BASIC-2 and PC BASIC-2 and describes
the implementation of individual statements in Wang BASIC (BASIC as used on
the 2200B, 2200C, 2200S, and 2200T), 2200 BASIC-2, and PC BASIC-2.

Programs transferred between the two systems may require adjustments.

BASIC-2 users on both the 2200 and the PC should be aware of language
differences described in the following sections.

2.1 LINE NUMBER RANGE

The range of legal line numbers in 2200 BASIC-2 is from 0 to 9999. 1In PC
BASIC-2, the line number range is from 0 to 999999.

2.2 DIFFERENCES IN KEY IMPLEMENTATION

Several keys on 2200 series keyboards, such as CLEAR and LOAD, do not have
counterparts on the Wang PC keyboard. However, you can obtain the functions
these keys provide in 2200 BASIC-2 through combinations of keys on the PC
keyboard. Refer to The Professional Computer BASIC-2 Language Guide for more
information.

2.3 VARIABLE NAME LENGTH

In 2200 BASIC-2, a variable name consists of a single uppercase letter,
optionally followed by a single numeral. In PC BASIC-2, variable names can
contain up to 63 characters. The first character is always a capital letter:;
the remaining characters can include lowercase letters, digits, and periods.

Information for the 2200 BASIC-2 User

2-2
2.4 ARRAYS

2200 BASIC-2 arrays contain either one or two dimensions. In PC BASIC-2, an i
array can contain up to 255 dimensions. The following restrictions apply to
PC BASIC-2 array size:

¢ An array cannot contain more bytes than are in memory.

e A single dimension cannot contain more than 65535 elements.

2.5 SCRAMBLED (PROTECTED) PROGRAMS

The PC BASIC-2 interpreter cannot load scrambled programs (2200 programs saved
with the ! or P options of the SAVE DC or SAVE DA commands). Also, the ! and
P options of these commands have no effect when saving a program on a PC
BASIC-2 disk image.

2.6 PC BASIC-2 STATEMENTS NOT PART OF 2200 BASIC-2

2200 BASIC-2 does not support the PC BASIC-2 RENAME and SOUND statements. In
addition, some statements differ in their implementation under 2200 BASIC-2.
Refer to the tables in Section 2.10 for a full explanation.

2.7 2200 BASIC-2 STATEMENTS NOT PART OF PC BASIC-2

PC BASIC-2 does not support the following 2200 BASIC-2 statements:

LIST I

SELECT @PART
SELECT TC
SELECT ON/OFF
SALERT

$CLOSE
$DISCONNECT
$FORMAT DISK
$IF ON/OFF
$MSG

$OPEN
$RELEASE PART
$RELEASE TERMINAL

If these statements exist in a PC BASIC-2 program, they will either be
ignored or will generate an error when executed. In addition, some statements
differ in their implementation under PC BASIC-2. Refer to the tables in f
Section 2.10 for a full explanation.

Information for the 2200 BASIC-2 User

2.8 THE LOAD STATEMENT

The PC BASIC-2 LOAD statement can load programs saved in PC format or programs
saved on a 2200 system in 2200 format and transferred to a PC disk image.
However, the loading time for programs saved in 2200 format is relatively slow
because PC BASIC-2 must convert the program to PC format. After loading a
program in 2200 format, you should save the program so that it will be in PC
format and thus load more quickly.

Programs that are saved by PC BASIC-2 and then transferred to a 2200
system cannot be loaded by 2200 BASIC-2.

2.9 ON ERROR...GOTO STATEMENT

For compatibility, PC BASIC-2 includes the Wang BASIC statement

ON ERROR...GOTO. However, the minimum size of the variables that receive the
error number and the line number on which the error occurred are changed. PC
BASIC-2 requires that three bytes be used to receive the error number and six
bytes be used to receive the line number.

Information for the 2200 BASIC-2 User

2.10 STATEMENT DIFFERENCES

The following tables provide a statement-by-statement description of the
compatibility and differences among Wang BASIC, 2200 BASIC-2, and PC BASIC-2.

Table 2-1. Comparison of the General Instruction Sets
Instruction Wang BASIC 2200 BASIC-2 PC BASIC-2
ADD Yes Yes Yes
(Statement only) (Statement and (Statement and
operator) operator)
ALL No Yes Yes
AND, OR, XOR Yes Yes Yes
(Statement only) (Statement and (Statement and
operator) operator)
BIN Yes Yes Yes
(Statement only) (Statement and (Statement and
function) function)
BOOL Yes Yes Yes
(Statement only) (Statement and (Statement and
operator) operator)
COM Yes Yes (Variables Yes (Up to 255
can specify dimensions are
dimensions) allowed:; 32767
is the maximum
subscript value)
COM CLEAR Yes Yes Yes
CONVERT Yes | Yes (Extended Yes (Extended
image) image)
DAC No Yes Yes
DATA Yes Yes (Hex values Yes (Hex values
are legal) are legal)
DATE No Yes Yes
DEFFN Yes Yes Yes
DEFFN' Yes Yes Yes (Integer that
follows prime can
now be up to 32767)

Information for the 2200 BASIC-2 User

2-5

Table 2-1. Comparison of the General Instruction Sets (continued)
T
Instruction Wang BASIC 2200 BASIC-2 PC BASIC-2
DEFFN @PART No Yes No
ERR No Yes Yes
ERROR No Yes Yes
EXP Yes Yes Yes
FIX No Yes J Yes
|
FOR Yes Yes 4JYes
[
SFORMAT No Yes Yes
$GIO Yes Yes (Includes new | Yes (Limited
microcommands and | implementation;
faster transfer refer to Chapter 1)
speeds)
GOSUB Yes Yes Yes
GOSUB' Yes Yes Yes (Integer that
follows prime can be
up to 32767)
GOTO Yes J Yes Yes
HEX Yes AAJ Yes Yes
HEXPACK No f Yes Yes
HEXPRINT Yes Yes (Replaced by Yes
PRINT HEXOF)
HEXUNPACK No Yes Yes
IF END THEN Yes Yes (A statement Yes
after THEN 1is
allowed and an
ELSE clause is
supported)
$IF ON Yes Yes Yes (Use restricted
to screen and
keyboard)
$IF OFF No Yes Yes (Use restricted

to screen and
keyboard)

Information for

the 2200 BASIC-2 User

Table 2-1. Comparison of the General Instruction Sets (continued)

Instruction Wang BASIC 2200 BASIC-2 PC BASIC-2

IF/THEN Yes Yes (Multiple Yes (Parentheses
conditions are can be used in
allowed, a conditional expres-—
statement after sion to alter
THEN is allowed, precedence; NOT
and an ELSE clause | operator allowed in
is supported) relational expres-

sions)

Image (%) Yes Yes (May be Yes (As in 2200
specified as BASIC-2)
literal in
PRINTUSING
statement or as
value of an
alpha-variable;
expanded numeric
formats)

INIT Yes Yes Yes

INT Yes Yes Yes

INPUT Yes Yes (Hex literal Yes (As in 2200
legal for INPUT BASIC-2)
message)

KEYIN Yes Yes (Line-numbers Yes (Can only
optional, explicit | receive characters
device-address from keyboard)
allowed)

LET Yes Yes (Wider range Yes (As in 2200
of alpha expres- BASIC-2)
sions allowed)

LEN Yes Yes Yes

LINPUT No Yes Yes (2200 BASIC-2

concept of edit
mode not applicable;
question mark is
ignored)

LOG Yes Yes Yes

LGT No Yes Yes

Information for the 2200 BASIC-2 User

Table 2-1. Comparison of the General Instruction Sets (continued)
Instruction Wang BASIC 2200 BASIC-2 PC BASIC-2
MAT Addition Yes Yes Yes (Up to 255
dimensions allowed)
MAT CON Yes Yes Yes (Up to 255
dimensions allowed)
MAT CONVERT Yes Yes (Replaced by Yes (Up to 255
MAT MOVE variation) |dimensions allowed)
MAT COPY Yes Yes (Alpha-scalar- |Yes (Up to 255
variables can be dimensions allowed)
specified)
MAT Equality Yes Yes Yes (Up to 255
dimensions allowed)
MAT IDN Yes Yes Yes (Array must be
square)
MAT INPUT Yes Yes Yes
MAT INV Yes Yes (Normalized Yes (As in 2200
determinant BASIC-2)
returned; error
messages are
suppressed if
determinant
specified)
MAT MERGE Yes Yes Yes
MAT MOVE Yes Yes (Automatic Yes (Up to 255
alpha-to-numeric, dimensions allowed)
numeric-to-alpha
conversions are
performed; locator
array optional)
MAT
Multiplication Yes Yes Yes
MAT PRINT Yes Yes Yes
MAT READ Yes Yes Yes
MAT REDIM Yes Yes Yes
MAT Scalar Yes Yes Yes
Multiplication

Information for the 2200 BASIC-2 User

Table 2-1. Comparison of the General Instruction Sets (continued)

Instruction Wang BASIC 2200 BASIC-2 PC BASIC-2

MAT Subtraction Yes Yes Yes

MAT SEARCH Yes Yes (Alpha-scalar- | Yes (As in 2200

variable or a BASIC-2)
literal can be

searched; literal

can specify target
substring)

MAT SORT Yes Yes Yes (Up to 255
dimensions allowed;
array having two
dimensions can have
no array greater
than 255)

MAT TRN Yes Yes Yes

MAT ZER Yes Yes Yes

MAX No Yes Yes

MIN No Yes Yes

MOD No Yes Yes

NEXT Yes Yes (Multiple Yes (As in 2200

indices allowed) BASIC-2)

NUM Yes Yes Yes

ON ERROR GOTO Yes Yes (For compat- Yes (Alpha-variable

ibility with to receive error

Wang BASIC) number must be at
least three bytes
long; alpha-variable
to receive line
number must be at
least six bytes
long)

ON/GOTO, GOSUB Yes Yes (Line—numbers Yes (As in 2200

optional; alpha- BASIC-2)
variable may be
used for
expression)
ON/SELECT No Yes Yes

Information for the 2200 BASIC-2 User

(]

(§

Table 2-1. Comparison of the General Instruction Sets (continued)
’ Instruction Wang BASIC 2200 BASIC-2 PC BASIC-2
| PACK Yes Yes Yes
$PACK Yes Yes (Additional Yes (As in 2200
formats) BASIC-2)
#PI Yes Yes Yes
PLOT Yes Yes Yes (Requires
medium-resolution
graphics board:
different syntax)
POS Yes Yes (Supports Yes (As in 2200
last occurrence; BASIC-2)
target character
can be specified
by an alpha-
variable; can
search a literal)
PRINT Yes Yes (Numeric value | Yes
with absolute
value, which can
be expressed in
14 digits is
printed in normal
| format)
PRINT AT No Yes Yes
f
PRINT BOX No Yes Yes (Need a
medium-resolution
graphics board)
PRINT HEXOF No Yes Yes
' PRINTUSING Yes Yes (Expanded Yes (As in 2200
image; hex liter- | BASIC-2)
als legal)
‘ PRINTUSING TO No Yes Yes
[]
PRINT TAB Yes Yes [Yes
READ Yes Yes Yes
REM Yes Yes (Special for- | Yes (As in 2200
matting features BASIC-2)
added for LIST)

Information for the 2200 BASIC-2 User

Table 2-1. Comparison of the General Instruction Sets (continued)
Instruction Wang BASIC 2200 BASIC-2 PC BASIC-2
RENAME No No Yes
RESTORE Yes Yes (Line-number Yes (As in 2200
of DATA statement BASIC-2)
may be specified)

RETURN Yes Yes Yes

RETURN CLEAR Yes Yes (ALL parameter | Yes (As in 2200
added) BASIC-2)

RND Yes Yes Yes

ROTATE Yes Yes (Supports Yes (As in 2200
entire string BASIC-2)
rotation; left or
right rotation)

ROUND No Yes Yes

SELECT Yes Yes Yes

SELECT ERROR No Yes Yes

SELECT LINE No Yes Yes

SELECT ON, OFF No Yes No (Gives execution

phase error)

SELECT [NO] ROUND | No Yes Yes

SGN Yes Yes Yes

SOUND No No Yes

SPACE No Yes Yes

SOR Yes Yes (Increased Yes (As in 2200
accuracy) BASIC-2)

STOP Yes Yes (Hex literals Yes (As in 2200
allowed; line- BASIC-2)
number can be
displayed)

Information for the 2200 BASIC-2 User

—

Table 2-1. Comparison of the General Instruction Sets (continued)

6 Instruction Wang BASIC 2200 BASIC-2 PC BASIC-2
STR Yes Yes (Arrays may Yes (As in 2200
be specified: BASIC-2)
starting byte
optional)
SUB No Yes Yes
TIME No Yes Yes
Trig Functions Yes Yes Yes
(All)
$TRAN Yes Yes (Literal can Yes (As in 2200
be used as table) BASIC-2)
UNPACK Yes Yes Yes
$UNPACK Yes Yes (Additional Yes (As in 2200
format) BASIC-2)
VAL Yes Yes (Two-byte Yes (As in 2200
fe conversion BASIC-2)

‘ supported)

VER No Yes Yes

Table 2-2. Comparison of the System Commands

Instruction Wang BASIC 2200 BASIC-2 PC BASIC-2
CLEAR Yes Yes (Line-numbers | Yes (Implemented on
optional in the 2ND + ERASE
CLEAR P) keys)
CONTINUE Yes Yes (Immediate Yes (Implemented on
mode statements) the 2ND + GO TO
‘ keys)
|
HALT/STEP } Yes Yes Yes (Implemented on
the 2ND + STOP keys)
LIST S Yes Yes (Programmable; | Yes (As in 2200
(] title may be BASIC-2)
specified)

Information for the 2200 BASIC-2 User

Table 2-2. Comparison of the System Commands (continued)
Instruction Wang BASIC 2200 BASIC-2 PC BASIC-2
LIST D No Yes Yes
LIST DT No Yes Yes (Different table
format; refer to
the PC BASIC-2
Language Guide)
LIST I No Yes No
LIST V No Yes Yes
LIST # No Yes Yes
LIST' No Yes Yes (Integer
following the prime
can be up to 32767)
RENUMBER Yes Yes Yes (Line numbers
up to 999999 are
legal; uses comma
instead of a dash)
RESET Yes Yes (CI and CO Yes (Implemented on
automatically the 2ND + HELP keys:;
reselected to does not reset a
keyboard and CRT, "hung'" system)
respectively)
RUN Yes Yes (Program exec- Yes (As in 2200
ution can start at BASIC-2)
a specified
statement within
a line)
Special Function | Yes Yes (INPUT logic Yes (Special
Keys used for sub- Function Keys 1
routine entry) to 32 on the PC
keyboard correspond
to '0 to '31 on the
2200 series
keyboards)
TRACE Yes Yes Yes
TRACE DISK No Yes No

Information for the 2200 BASIC-2 User

¢

2-13

Table 2-3. Comparison of I/0O Instructions

I/0 Instruction Wang BASIC 2200 BASIC-2 PC BASIC-2

BACKSPACE (tape Yes No (Device not No (Device not

drive) supported) supported)

COPY Yes No (Replaced by No
COPY TO)

COPY TO No Yes (Drive-to- Yes (Copy from one
drive copy) disk image to

another)

DATALOAD (2214 Yes No No

Manual-Feed Card

Reader)

DATALOAD (tape Yes No No

cassette drive)

DATALOAD Yes No No

(teletype)

DATALOAD (all Yes Yes No

other devices)

DATALOAD BA Yes Yes (Return- Yes (As in 2200
variable optional) BASIC-2)

DATALOAD BT (2214 | Yes No No

Manual-Feed Card

Reader)

DATALOAD BT (tape | Yes No No

cassette drive)

DATALOAD BT Yes No No

(teletype)

DATALOAD BT Yes Yes (Some devices No

(all other not supported on

devices) 2200MVP; refer to
the 2200MVP Intro-
ductory Manual)

DATALOAD DA Yes Yes (Return- Yes (As in 2200
variable optional) BASIC-2)

DATALOAD DC Yes Yes Yes

DATALOAD DC OPEN | Yes Yes Yes (No TEMP files)

Information for the 2200 BASIC-2 User

Table 2-3. Comparison of I/0 Instructions (continued)
I/0 Instruction Wang BASIC 2200 BASIC-2 PC BASIC-2
DATASAVE (tape Yes No No
cassette drive)
DATASAVE Yes No No
(teletype)
DATASAVE Yes Yes (Some devices No
(all other not supported on
devices) 2200MVP; refer to
the 2200MVP Intro-
ductory Manual)
DATASAVE BA Yes Yes (Return- Yes (As in 2200
variable optional) BASIC-2)
DATASAVE BT Yes No No
(tape cassette |
drive) |
DATASAVE BT Yes No No
(teletype)
DATASAVE BT Yes Yes (Some devices No
(all other not supported on
devices) 2200MVP; refer to
the 2200MVP Intro-
ductory Manual)
DATASAVE DA Yes Yes (Return- Yes (As in 2200
variable-optional) BASIC-2)
DATASAVE DC Yes Yes Yes
DATASAVE DC CLOSE | Yes Yes Yes
I
DATASAVE DC END Yes Yes Yes
DATASAVE DC OPEN | Yes Yes (Syntax for Yes (Except no
renaming scratched TEMP files)
file conforms to
SAVE DC)
DATARESAVE (tape | Yes No No
cassette drive)
DBACKSPACE Yes Yes Yes
DSKIP Yes Yes

|

Information for the 2200 BASIC-2 User

¢

¢

Table 2-3.

Comparison of I/0 Instructions (continued)

I/0 Instruction Wang BASIC 2200 BASIC-2 PC BASIC-2

FILE NUMBERS Yes (0-6) Yes (0-15) Yes (0-15)

$FORMAT DISK No Yes No

LIMITS Yes Yes (Status of Yes (As in 2200
file may be BASIC-2)
returned)

LIST DC Yes Yes (S parameter Yes (As in 2200
allowed; available BASIC-2)
free space returned
for each file)

LOAD (2214 Yes No No

Manual-Feed Card

Reader)

LOAD (tape Yes No No

cassette drive)

LOAD (teletype) Yes No No

LOAD Yes Yes (Some devices Yes

(all other not supported on

devices) 2200MVP; refer to
the 2200MVP Intro-
ductory Manual)

LOAD DA Yes Yes (Return- Yes (As in 2200
variable is BASIC-2)
optional)

LOAD DC Yes Yes Yes

LOAD RUN No Yes Yes

MOVE Yes No (Replaced by No
MOVE TO)

MOVE TO No Yes (Drive-to- Yes (Moves files
drive move; from one disk image
individual files to another)
can be moved)

MOVE END Yes Yes Yes (Can enlarge a

disk image but
cannot truncate it)

Information for the 2200 BASIC-2 User

Table 2-3. Comparison of I/0 Instructions (continued)

I/0 Instruction Wang BASIC 2200 BASIC-2 PC BASIC-2

REWIND Yes No No

(tape cassette

drive)

SAVE DA Yes Yes (Return- Yes (As in 2200
variable 1is BASIC-2 except that
optional) ! and P parameters

have no effect)

SAVE DC Yes Yes (Programmable; Yes (As in 2200
DC parameter BASIC-2 except that
optional; new ! ! and P parameters
parameter provides have no effect)
more sophisticated
program protection
capability; ability
to automatically
delete REMs and
spaces from saved
program)

SCRATCH Yes Yes Yes

SCRATCH DISK Yes Yes Yes

SKIP (tape Yes No No

cassette drive)

VERIFY Yes Yes (Location of Yes (As in 2200
bad sector can be BASIC-2)
returned in a
variable without
a system error
message)

Information for the 2200 BASIC-2 User

(

Table

2—-4. Comparison of 2200MVP Instructions

Instruction Wang BASIC 2200 BASIC-2 PC BASIC-2

$BREAK statement No Yes Yes (Creates a
short delay)

$CLOSE statement No Yes No (Statement
ignored)

DEFFN Q@PART No Yes No (Execution phase

statement error)

#ID function No Yes Always returns 0

$INIT statement No Yes Execution of
SINIT"SYSTEM" exits
the PC BASIC-2
interpreter and
returns control to
the DOS Command
Processor or menu
from which PC
BASIC-2 was invoked

$MSG function No Yes No (Statement
ignored)

$OPEN function No Yes No (Statement
ignored)

#PART function No Yes Always returns 1

SRELEASE PART No Yes No (Statement

statement ignored)

$RELEASE TERMINAL No Yes No (Statement

statement ignored)

SELECT @PART No Yes No (Execution phase

statement error)

#TERM function No Yes Always returns 1

Information for the 2200 BASIC-2 User

(

INDEX

(

¢

A

ADD, 2-4

ALL, 2-4, 2-10
Alpha-variable, 1-4
AND, OR, XOR, 2-4
Arrays, 2-2, 2-11

B

BACKSPACE, 2-13

BIN, 2-4

BOOL, 2-4

Branch instructions, 1-7
Buffer, 1-8 to 1-13

c

Character count, 1-10 to 1-12
CHECK READY, 1-4

CLEAR, 2-1, 2-4

coM, 2-4

COM CLEAR, 2-4

Comment, 1-4

Condition Code, 1-6, 1-7
CONVERT, 2-3, 2-4

copy, 2-7, 2-13

COPY TO, 2-13

D

DAC, 2-4

DATA, 2-4, 2-10

Data Buffer Parameter, 1-8
DATALOAD, 2-13

DATALOAD BA, 2-13
DATALOAD BT, 2-13
DATALOAD DA, 2-13
DATALOAD DC, 2-13
DATALOAD DC OPEN, 2-13
DATASAVE BA, 2-14
DATASAVE BT, 2-14
DATASAVE DA, 2-14
DATASAVE DC CLOSE, 2-14
DATASAVE DC END, 2-14

INDEX

Index-1

DATASAVE, 2-14

DATASAVE DC, 2~14

DATASAVE DC OPEN, 2-14

DATE, 2-4

DBACKSPACE, 2-14

DEFFN, 2-4, 2-5
Device-Address Parameter, 1-5
Device Table, 1-2

DSKIP, 2-14

E

ENDI Character, 1-10 to 1-12
ERR, 2-5

ERROR, 2-5, 2-16

EXP, 2-5

F

File number, 1-4, 1-5
FILE NUMBERS, 2-15
FIX, 2-5

FOR, 2-5

G

GOSUB, 2-5
GOSUB', 2-5
GOTO, 2-3

H

HALT, 2-11
HEX, 2-5
HEXPRINT, 2-5
HEXUNPACK, 2-5

I

I/0 operation, 1-4
IF END THEN, 2-5
IF/THEN, 2-6
IMAGE, 2-6

INIT, 2-6, 2-17
INPUT, 2-6

INT, 2-6

INDEX (continued)

K MAT ZER, 2-8
MAX, 2-8
KEYIN, 1-14 Microcommand sequence,
1-4 to 1-7
L MIN, 2-8
MOD, 2-8
LEN, 2-6 MOVE, 2-15
LET, 2-6 MOVE END, 2-15
LGT, 2-6 MOVE TO, 2-15
LIMITS, 2-15
Line Number Range, 2-1 N
LINPUT, 1-14
LIST, 1-12 NEXT, 2-8
LIST D, 2-12 NUM, 2-8
LIST DC, 2-15
LIST DT, 2-12 Q
LIST I, 2-12
LIST S, 2-11 ON ERROR GOTO, 2-8
LIST VvV, 2-12 ON ERROR...GOTO, 2-3
LIST", 1-12, 2-2 ON/SELECT, 2-8
LIST #, 1-12, 2-2
LOAD, 2-1 to 2-3 P
LOAD DA, 2-15
LOAD DC, 2-15 PACK, 2-9
LOAD RUN, 2-15 PLOT, 2-9
LOG, 2-6 POS, 2-9
PRINT, 2-9
M PRINT AT, 2-9
PRINT BOX, 2-9
MAT Addition, 2-7 PRINT HEXOF, 2-5, 2-9
MAT CON, 2-7 PRINT TAB, 2-9
MAT CONVERT, 2-7 PRINTUSING, 2-6, 2-9
MAT COPY, 2-7 PRINTUSING TO, 2-9
MAT Equality, 2-7
MAT IDN, 2-7 R
MAT INPUT, 2-7
MAT INV, 2-7 READ, 2-9
MAT MERGE, 2-7 Register, 1-4, 1-8
MAT MOVE, 2-7 Register—-variable, 1-8
MAT PRINT, 2-7 REM, 2-9
MAT READ, 2-7 RENAME, 2-2, 2-10
MAT REDIM, 2-7 RENUMBER, 2-12
MAT SEARCH, 2-8 RESET, 1-7, 1-8
MAT SORT, 2-8 RESTORE, 2-10
MAT Subtraction, 2-8 RETURN, 2-10
MAT TRN, 2-8 RETURN CLEAR, 2-10
REWIND, 2-16
RND, 2-10

Index-2

¢

(

(

INDEX (continued)

ROTATE, 2-10
ROUND, 2-10
RUN, 2-12, 2-15

S

SAVE DA, 2-2, 2-16

SAVE DC, 2-2, 2-14

Scrambled Programs, 2-2

SCRATCH, 2-16

SCRATCH DISK, 2-16

SELECT, 1-2, 1-3

SELECT ERROR, 2-10

SELECT LINE, 2-10

SELECT ON/OFF, 2-2

SELECT TC, 2-2

SELECT [NO] ROUND, 2-10

SGN, 2-10

SKIP, 2-16

SOUND, 2-2, 2-10

SPACE, 2-10

Special Termination Character,
1-10, 1-12

SQR, 2-10

STEP, 2-11

STOP, 2-10, 2-11

STR, 1-11 to 1-13

SUB, 2-11, 2-12

I
TIME, 2-11
TRACE, 2-12

TRACE DISK, 2-12
Trig Functions, 2-11

U

UNPACK, 2-11

Index-3

v

VAL, 1-11

Variable Name Length, 2-1
VER, 2-11

VERIFY, 1-5, 2-16

W

WRITE, 1-4

S

#ID FUNCTION, 2-17
#PART, 2-2, 2-5

#PI, 2-9
#TERM, 2-17
$

$ALERT, 2-2

$BREAK, 2-17

$CLOSE, 2-2, 2-17
$DISCONNECT, 2-2
$FORMAT, 2-2, 2-5,
$FORMAT DISK, 2-2, 2-15
$GI0, 1-4 to 1-9

$IF OFF, 1-2, 2-5

$IF ON, 1-3, 2-2, 2-5
$INIT, 2-6, 2-17

$MSG, 2-2, 2-17

$OPEN, 2-2, 2-17

$PACK, 2-9

$RELEASE PART, 2-2, 2-17
$RELEASE TERMINAL, 2-2, 2-17
$TRAN, 2-11

SUNPACK, 2-11

«

WANG Title PC/2200 BASIC-2 COMPATIBILITY GUIDE

Publications Number 715-0005

Customer Comment Form
Help Us Help You

We’'ve worked hard to make this document useful, readable, and technically accurate. Did we
succeed? Only you can tell us! Your comments and suggestions will help us improve our
technical communications. Please take a few minutes to let us know how you feel.

Please rate the quality of this publication in each of the following areas.

VERY VERY
GOOD GOOD FAIR POOR POOR
Technical Accuracy — Does the system work the way (]] O a (W]
the manual says it does?
Readability — Is the manual easy to read and O | O O 0
understand?
Clarity — Are the instructions easy to follow? O O O
Examples — Were they helpful, realistic? Were there O a] O O
enough of them?
Organization — Was it logical? Was it easy to find O a O O O
what you needed to know?
lllustrations — Were they clear and useful? a O O O a
Physical Attractiveness — What did you think of the a 0 O a O

printing, binding, etc?

What errors or faults did you find in the manual? (Please include page numbers)

Do you have any other comments or suggestions?

Name

Company

Street
City

State/Country

ZipCode______ Telephone

Thank you for your help.
Printed in U.S.A. 14-3151 8-83-5C

All comments and suggestions become the property of Wang Laboratories, Inc.

FOLD

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 16 LOWELL, MA
POSTAGE WILL BE PAID BY ADDRESSEE

WANG LABORATORIES, INC.
TECHNICAL PUBLICATIONS

ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

CUT ALONG DOTTED LINE

WANG LABORATORIES, INC.
ONE INDUSTRIAL AVENUE, LOWELL, MA 01851
TEL:617/459-5000, TWX 710-343-6769, TELEX 94-7421

Printed in U.S.A.
715-0005
5-84

	Cover
	Preface
	Table of Contents
	Chapter 1: General I/O Statements
	1.1: Introduction
	1.2: $IF ON/OFF
	1.3: $GIO
	Comment Parameter
	Device-Address Parameter
	Microcommand-Sequence Parameter
	Condition Code
	Specification of a Microcommand Sequence
	Registers Parameter
	Data Buffer Parameter
	Character Count
	Terminating Multicharacter I/O Operations
	Output Examples of $GIO
	Input Examples of $GIO

	Chapter 2: Information for the 2200 BASIC-2 User
	2.1: Line Number Range
	2.2: Differences in Key Implementation
	2.3: Variable Name Length
	2.4: Arrays
	2.5: Scrambled (Protected) Programs
	2.6: PC BASIC-2 Statements Not Part of 2200 BASIC-2
	2.7: 2200 BASIC-2 Statements Not Part of PC BASIC-2
	2.8: The LOAD Statement
	2.9: ON ERROR ... GOTO Statement
	2.10: Statement Differences

	Index

