(WANG)

YJ

2200

I

B FRTHE TR b &%

FE AR b B R

S —
- L. S v+ o TSRS ..

TP L

PR & 245]

U —

FU—

ADD .. .
ANDORXOR. ..
BACKSPACE (Cassette) .
BIN .

BOOL
CLEAR Command .

com
COMCLEAR . . .
CONTINUE Command
CONVERT .

DATA
DATALOAD (Cassette) ..
DATALOAD (Card Readers)

DATALOAD (Punched Tape Reader) .

DATALOAD (Teletype)
DATALOAD BT (Cassette) .

DATALOAD BT (Card Readers) .
DATALOAD BT (Punched Card Reader)

DATALOAD BT (Teletype).
DATARESAVE (Cassette) .
DATASAVE (Cassette)
DATASAVE (Teletype®)
DATASAVE BT (Cassette) .
DATASAVE BT (Card Reader)
DATASAVE BT (Teletype) .
DEFFN . .o .
DEFFN’ .

DiM.

END

FN Function

FOR .

GOsSuUB .

GOosuB’ .

GOTO . . .

HALT/STEP

HEX (Hexadecimal) Functlon .

HEXPRINT . .
IF END THEN
IF ... THEN
IMAGE (%) .
INIT

INPUT

ALPHABETICAL INDEX

61
. 63

. 124
64

65

47

67

68

48

69

71

. 125
. 137, 138
. 147

. 154
.. .126
. 139, 140
. 148

. 155
127

. 128

. 156

. 129

. 141

. 157

72

73

76

77

. 78
79

81

83
84
49
31
85
86
87
88
91
92

INPUT (Card Readers)
KEYIN . .
LEN (Length) Functlon .
LET. ..

LIST Command .
LOAD Command (Cassette)

LOAD Command (Card Reader)
LOAD Command (Punched Tape Reader)

LOAD Command (Teletype®)
LOAD (Cassette) . .
LOAD (Card Reader) .

LOAD (Punched Tape Reader)

LOAD (Teletype).
NEXT . .

NUM Function

ON . . .

ON ERROR GO TO
PACK .

PLOT .

POS Function .

PRINT . . .
PRINTUSING .

READ .

REM . .
RENUMBER Command .
RESET

RESTORE

RETURN .

RETURN CLEAR
REWIND (Cassette)
ROTATE. . .

RUN Command . .
SAVE Command (Cassette)

SAVE Command (Teletype®) .

SELECT . .

SKIP (Cassette)

Special Function Key . .
STATEMENT NUMBER .
STOP .

STR (String) Functlon
TRACE .
UNPACK

VAL Function

~

. 142,143

95
96
97
. 51
. 130
. 145
. 149
. 159
A3
. 144
. 160
. 168
. 99
. 100
. 101
. 102
. 103
. 162
. 104
. 105
. 107 7
.10
11
52
. 53
.12
. 113
. 114
. 132
. 115
. 54
. 133
. 160
. 39
. 134
55
. 57
. 116
. 32
.17
. 119
. 120

wang
BASIC Language

Reference
Manual

© Wang Laboratories, Inc., 1976

LABORATORIES, INC.
U UANG 836 NORTH STREET, TEWKSBURY, MASSACHUSETTS 01876, TEL. (617) 851-411, TWX 710 3436769, TELEX 94-7421

Disclaimer of Warranties and Limitation of
Liabilities

The staff of Wang Laboratories, Inc., has taken due care in
preparing this manual; however, nothing contained herein
modifies or alters in any way the standard terms and conditions of
the Wang purchase agreement, lease agreement, or rental agree-
ment by which this equipment was acquired, nor increases in any
way Wang's liability to the customer. In no event shall Wang
Laboratories, Inc., or its subsidiaries be liable for incidental or
consequential damages in connection with or arising from the use
of this manual or any programs contained herein.

LABORATORIES, INC.

(WANG)836 NORTH STREET, TEWKSBURY, MASSACHUSETTS 01876, TEL. {617) 851-4111, TWX 710 343-6769, TELEX 94-7421

if

HOW TO USE THIS MANUAL

This manual has been written for the sole purpose of providing
quick answers to questions concerning the operation of the System
2200. it is designed to be used in conjunction with the Intro-
ductory Manual.

The manual is divided into ten sections covering all the features
of Wang 2200 BASIC. The non-programmable commands in
Section VI and the BASIC statements in Section Vil are arranged
in alphabetical order for ease of locating a desired command
or statement.

If you are seeing, reading, and hearing about the System 2200
and its BASIC language for the first time, we strongly recommend
you first read the BASIC Programming Manual which discusses
in detail the operational and programming features of the
System 2200. Once you have completed the BASIC Programming
Manual, then you can use this manual as a reference for specific
questions concerning the operation of the System 2200.

iii

PREFACE

This manual provides the user with a quick and easy reference guide to questions concerning the
operation of the System 2200. The layout is designed to assist the user in the location of key information.
The manual is divided into ten sections as described below. The title page for each section contains a
table of contents of the section. All BASIC statements and functions are included in the index provided

inside the covers of the manual. For turn-on procedures and preliminary operating instructions, see the
Introductory Manual.

Section |

Section 11

Section 11|

Section IV

Section V

Section VI

Section VII

Section VIII

Section IX

Appendices

Introduces you to Wang BASIC and details the various available systems.

The basic structure and components of the system are covered in this section, such as:
syntax rules and terminology, line numbers, spacing, colons, Immediate Mode vs. Pro-
gramming Mode, and the edit and debug features.

This section describes the elements of a numeric expression including Numeric Variables,
Numeric Constants, System-defined Math Functions, Common Variables, Random Num-
bers and User-defined Functions.

Alphanumeric capabilities are covered in this section, such as: Alpha Strings, Variables,
Literal Strings, Alpha Functions, Hexadecimal and String Functions.

1/0 Device Selection procedures are illustrated in this section; such things as Device
Address for peripherals, Default Address, Input/Output Parameters.

This section describes, in alphabetical order, the non-programmable commands necessary
to communicate with the system.

All the General BASIC statements available in the system are covered here, arranged in
alphabetical order.

This section provides BASIC syntax for statements and commands used to operate
peripherals. The user should also refer to the appropriate peripheral manuals.

This section illustrates the various errors that can occur in both machine and programming
techniques, and includes one of many ways in which an error can be corrected.

This last section is divided into four subsections: Appendix A, ASCIlI and HEX codes with
CRT Character Set; Appendix B, Cross Reference Chart for ASCIi, HEX, Binary and VAL,;
Appendix C, Device Addresses; Appendix D, a description of the hexadecimal system;

Appendix E, CPU Specifications; Appendix F, a list of the error messages, and Appendix G,
a glossary.

iv

TABLE OF CONTENTS

Section | Wang BASIC e 1
Introduction . . . e e e e s e e e e e e e 2
Debugging and Ed|t|ng Features e e e e e e e e e e e e e e e e 4
Edit Keysand EditMode o000 5
Internal Storage L L L oo o e e e e e e e e e e e e 13

Section Il BASIC Language Structure oo 15
Introduction L L L L L 0L L L s e e e e e 16
Symbol Operatorso e e e e e 16
Rules of Syntax . . . e e e e e e e e e e e e 17
Terms Used in Syntax Specrflcatrons e e e e e e e e e e s e e e 18

Section Il Numerics e 19
EXpressions L L L Lo e e e e e e e e e e e e 20
Numeric Variables L Lo e e e e e e 20
Common Data e e e e e e e e e e e e e e 22
Numeric Constants e e e e e e e e e e e e e e 22
System-Defined Math Functlons .. e e e e e e e e e e e e 22
Additional System-Defined Numeric Functlons e e e e e e e e e e e e e 24
User-Defined Functions00 e e 24

Section IV Alphanumericso e e e 25
Alphanumeric String Variables 0. 26
Alphanumeric Variable Length 0oL 27
Alphanumeric Literal Strings e e e e e e e e e e 28
Use of Alpha Values with the INPUT Statement e e e e e e e e e e s s e 28
Lowercase Literal Strings . . . e e e e e e 29
Examples of Statements Using Alpha Varrables and L|teral Strlngs e e e e e e e 29
Alphanumeric Functions 000 0 e e e e e e e e e e 30
HEX Function « .« .o e e e e e e e e e e e e e 31
STRFuUNCtion o e e e e e e e e e e e e e 32

Section V 1/0 Device Selectiono 35
Introduction . . . e e e e e e e e e e e e e s s s e s e e 36
How is a Unit Addressed e e e e s e e e e e e e e e e e e 37
UsingSELECT« o v v vt e e e e e e e e e e e e 37
SELECT e e e e e e e e e e e s e e e s e 39
The INPUT Parameter e 40
The PRINT Parameter « « « v o v v v v v v v v e e e e 40
The LIST Parameter & o v v i v e e e e e e e e e e e e e e 40
Specifying a Pause . . . T T 41
Specifying Degrees, Radlans or Grads e e e e e e e e e e e e e 41
Indirect Selection e e e e e e e e e e e e e e 42
Default Values.« e e e e e e e e e e e e e e e e 43

Section VI Non-Programmable Commands o .. 45
Introduction o e e e e e e e e e e e e e e e e e 46
CLEAR Command« .« v v e e e e e e e e e e e e e e 47
CONTINUE Command« v v v i v i i e e e e e e e e e e 48
HALT/STEP o e e e e e e e e e e e e e e e e e e 49
LISTCommand « o v v v v v e e e e e e e e e e e e e e e 51
RENUMBER Command « . « v v v v v v e i e e e e e e e e e e b2
RESET e e e e e e e e e e e e e e e e e b3

TABLE OF CONTENTS (Continued)
Page —

RUNCommand s e 54
Special Function L. L L e b5
STATEMENTNUMBER o o e e s e s s, 57

Section VIl General BASIC Statements and Functions 59
BASICStatements L o e e e, 60
AND, OR, XOR o s 63
BOOL o e e s, 65
COMCLEAR o e s 68
CONVERT o o e e e s 69
DATA . . . e e e e e e e e 71
DEFFEN . . . o e 72
DEFEN' . . . o 73
FN Function e s, 78
GOSUB e e e s, 81
GOSUB' e e e e s s 83
GOTO o e e e e s s 84 ~
HEXPRINT o e e e e s 85
IFEND THEN o e s, 86
IFLLTHEN . L L L o e s, 87
Image (%) Lo 88
INIT . o o e e e 91
INPUT . . L L o e o e e e 92
KEYIN . . o o o e s 95
LEN Function 96
NEXT . . o o o e 99
NUMFunction 100
ONERRORGOTO o e e e e s s s s s s s s . 102
PACK o o s 103
POS Function s .10
PRINT. o e ... 08
PRINTUSING o s s 107
PRINTTAB Function v v v v o s s .09
READ s s 110
REM s 1
RESTORE o s sy 12
RETURN o oo 113
RETURNCLEAR s e s s s . N
ROTATE. 118
STOP oo 11
TRACE . . . o o 17
UNPACK. 110
VALFunction. 120

vi

TABLE OF CONTENTS (Continued)
Page

Section VIII Peripheral Commands and Statements 12
Introduction L. 0L L s s s s 122
Tape Cassette Drives 123
BACKSPACE e 124
DATALOAD o e e e s e e s s ... s
DATALOADBT v v e e e v o e e e ..y 128
DATARESAVE o s s s s 2
DATASAVE 128
DATASAVEBT o o . D
LOADCommand 130
LOAD e e e e s s 13
REWIND 32
SAVECommand 133
SKIP . . . e e s o 15
CardReaders 138
Console Input . . . i
DATALOAD (Mark Sense Card Reader) .o B K7
DATALOAD (Mark Sense Punched Card Reader) et
DATALOAD BT (Punched/Card Reader) 13
DATALOAD BT (Mark SenseCard Reader}. 140
DATASAVE BT (Punched Card Reader) 1/
INPUT (Mark Sense Card Reader)« 142
INPUT (Mark Sense/Punched Card Reader) . 143
LOAD (Punched Card Reader) . . . " e -7
LOAD Command (Mark Sense/Punched Card Reader) e 1 1Y
Punched Tape Reader 146
DATALOAD o s e e e e e s s sy
DATALOADBT o e e o e e o e e s ... 148
LOADCommand oo 49
LOAD e e s ... 180
Plotters e e e s s 1R
PLOT o o s e2
TeIetype®_ e X
DATALOAD o e .o .. 1k
DATALOADBT o o . e
DATASAVE e e s s . o 56
DATASAVEBT o v o e e e e e s s sy g7
LOAD e e e e e e e e e e soo1bB
LOAD Command e 1)
SAVECommand e e e s 160

Section IX ErrorCodes s 1
Introduction e s e e s s s s s sy 1e2
Typesof Error oo . oo oo 1.2

Appendices . . . e £23e
A — ASCII and Hex Codes W|th CRT Character Set A O [0

B — ASCII, Hex and Binary Codes with VAL Decimal Equwalents O X

C — Device Addresses « v v v u e e e e e e e e e s s 192
D — The Hexadecimal System « . « v v« 19

. E — CPU Specifications . . . P ke 24
F — Abbreviated Error Messages O £ 15
G—Glossary e e e e e e e 196

77

section |
Introduction e e e
Debugging and Editing Features .

Edit Keys and Edit Mode
Internal Storage

WOabhN

Section | Wang BASIC

INTRODUCTION

Wang System 2200 BASIC is a computer language resembling English, modelled after the BASIC language
first written at Dartmouth College. This manual describes 2200 BASIC and gives the programmer the rules
for writing programs. It applies to all the following System 2200 computers:

System 2200A System 2200S WCS/20
System 2200B System 2200T WCS/30
System 2200C WCS/10

Each of these computers utilizes a slightly different subset of the available 2200 BASIC statements

as follows:

System Standard BASIC 1/0 BASIC
Statements (tape cassette statements)
2200A COoMm GOTO READ BACKSPACE
DATA IF END THEN REM DATALOAD
DEFFN IF... THEN RESTORE DATARESAVE
DEFFN’ % (Image) RETURN DATASAVE
DIM INPUT SELECT LOAD
END LET STOP REWIND
FOR NEXT TRACE SKIP
GOSuB PRINT
GOSUB’ PRINTUSING
Functions Commands
ABS INT STR LOAD
ARCCOS LEN SQR SAVE
ARCSIN LOG TAB
ARCTAN RND TAN
cos SGN X"
EXP SIN # PI
HEX
Commands
CLEAR LIST RUN .
CONTINUE RENUMBER
22008 All ‘A’ statements, commands and functions All cassette statements and commands plus
plus the following: the following for all other peripherals:
Statements
ADD INIT PLOT™
AND KEYIN DATALOAD BT
BIN ON ... GOSUB/GOTO DATASAVE BT
BOOL OR COPY DSKIP
CONVE RT/ PACK DATALOAD BA LIMITS
HEXPRINT ROTATE DATALOAD DA LLOAD DA {command)
UNPACK DATALOAD DC LOAD DC
XOR DATALOAD DC OPEN MOVE
. DATASAVE BA MOVE END
NUM L anctions DATASAVE DA SAVE DA {command)
POS DATASAVE DC SAVE DC
DATASAVE DC CLOSE SCRATCH
DATASAVE DC OPEN SCRATCH DISK
DBACKSPACE VERIFY

Section | Wang BASIC

System Standard BASIC I/0 BASIC
2200C All ‘B’ statements, commands and functions All ‘B’ I/0 statements and
plus the following: commands.
COM CLEAR ON ERROR
DEFFN' HEX RETURN CLEAR
2200S All ‘A’ statements, commands and functions All ‘A’ 1/0 statements and
WCS/10 plus the following: ON commands.
CONVERT RETURN CLEAR
HEXPRINT VAL Function
KEYIN NUM Function
2200T All 'C’ statements, commands and functions All ‘C’ 1/O statements and
WCS/20 p lus the following: commands.
WCS/30 MAT + MAT ZER $GIO
MAT CON MAT INPUT $IF ON
MAT = MAT PRINT $PACK
MAT IDN MAT REDIM SUNPACK
MAT INV,d MAT COPY $TRAN
MAT * MAT CONVERT
MAT READ MAT MERGE
MAT () * MAT SEARCH
MAT — MAT MOVE
MAT TRN MAT SORT

For a chart indicating the peripherals and options which can be used with each system, see the
Introductory Manual.

In this manual all BASIC statements except for
°® MAT . .. statements

e $...statements

) disk statements
are described. Refer to Matrix, Sort, General 1/0O and Disk Manuals for information on these instructions.
Refer to peripheral manuals for information on operation of peripherals attached to your system.
A final section of this manual provides BASIC syntax for all peripheral statements except those used in
disk operations. '

For turn-on operating procedures and descriptions of the hardware components of your system,
refer to the Introductory Manual.

Section | Wang BASIC

DEBUGGING AND EDITING FEATURES :
In addition to the features described in the Introductory manual, a number of features are available
on your system to aid in editing and debugging your programs.

Character Erasing BACK
Single keystroke entires in the current text line can be removed by touching the SPACE key.

Example:
:120 X=SQR (2+COS (17_
BACK .
Key SPACE four times
1120 X=SQR (2__
correct remainder of line :120 X=SQR (2 - COS (17)) _

1120 X =SQR (2 - COS (17)) _

Removing the Current Line
The line currently being entered can be removed from the screen by touching the |LINE key.
ERASE

Example:
:300 PRINT “RESULT": A(4 -

Key LINE
ERASE

Deleting a Line
A previously entered text line is deleted by entéring its line number and touching the | EXEC | key.

Example:
10A =14 display
20 PRINT A

Touch 20

10A = 14

When the program is listed again
only line 10 remains.

Replacing a Line
An existing line is replaced by entering the same line number followed by the new line. When the
EXEC key is depressed, the new line is stored in memory.

Section | Wang BASIC

Renumbering a Program

Line numbers in a program must always be integers. When lines of program text must be inserted
between existing line numbers, and there are insufficient line numbers to accommodate the new lines,
the existing line numbers can be automatically renumbered with the RENUMBER command. A suitable
increment can be specified in the text of the RENUMBER command (see Section V, Non-Programmable
Commands for syntax specifications).

Example:

READY

1100 IF 1=4 THEN 102)
1101 PRINT X, Y, |

:102 READ A, B$

:RENUMBER 101, 110 RENUMBER, starting at old

:LIST > line 101, using 110 as a start-
100 IF I1=4 THEN 120 ing statement line number,
110 PRINT X, VY, | using an increment of 10

120 READ A, B$

EDIT KEYS AND EDIT MODE

All system keyboards contain the Edit Mode keys which are convenient for rapid editing of program
text or data being input.

Edit is a standard feature on all 2200 systems except the 2200A and B, on which it may be obtained
as an option. Edit Mode operations are activated and controlled by the Edit Mode keys, the eight right-most
Special Function keys (see Figure).

Each keyboard contains an Edit key, to the right of the sixteenth Special Function key, and is provided
with the Edit Mode keys and an Edit Special Function strip. The Edit Mode keys and their operation are:

< '3

—m-e- , , ===, |—RECALL =

Key Operation

EDIT used to enter Edit Mode; when pressed, an asterisk replaces the usual colon at the
beginning of the current line.

RECALL used to recall a program line in memory to be edited.

- - - moves the cursor five spaces to the left.

-<- moves the cursor a single space to the left.

R moves the cursor five spaces to the right.

> moves the cursor a single space to the right.

INSERT expands a line for additional text or data entry by inserting a space character prior
to the current cursor position.

DELETE deletes the character at the current cursor position.

ERASE erases a line from the current cursor position to the end of the line.

Section | Wang BASIC

[PRemmmmmmmmmmeee A e e

NOTE:
The Edit Mode keys operate as described as long as the
CRT is the Console Output (CO) device and is selected
with a line length of 64 (see SELECT). The CRT is the
default device for CO set when the system is Master
Initialized (see Turn-On Procedure and System Operation
in the Introductory Manual).

NOTE:
These keys do not operate in the manner described on a
System 2200A or 2200B unless Option 3, the Character
Edit ROM s available. On such systems, the keys are
Special Function keys only; the right-most EDIT key
must not be used.

Edit Mode can be entered at almost any time; either just before or during keyboard entry of a BASIC
command, BASIC statement or data line. When the BASIC or data line has been edited, it is stored in
memory by touching the EXEC key. Once the EXEC (or LINE ERASE) key is touched, the system leaves
Edit Mode and the Special Function keys revert to their normal use.

In a line of program or input data text being edited, any keyword (e.g., SIN(, PRINTUSING, etc.)
entered by a single keystroke or recalled from memory acts as a single character when positioning the
cursor. Some keywords (e.g., PRINT) contain a following space, while others [e.g., TAB(] do not. Ex-
perience with using Edit is the best guide. Edit Mode keys should be used to position the cursor when the
system is in Edit Mode; the space bar and BACKSPACE keys overwrite characters in the line being edited
with spaces. The STMT NUMBER and Special Function keys are inoperative when the system is in Edit
Mode. The HALT/STEP key should not be used when the system is in Edit Mode; its use causes an
error message. Any error message causes the system to drop out of Edit Mode.

If the EDIT key is pressed when the system is already in Edit Mode, the system continues to operate as
if nothing had happened. If Edit Mode is entered accidentally, operations can proceed as usual.

Example 1: Given the program line
100 X =SIN (Y - 17.3) + (LOG(Z+4) +5)

in memory, delete the expression [SIN (Y - 17.3) +].

Operating Instructions Display
1. (The line is in memory.)

2. Depress the EDIT key.

Note that an asterisk (*) is substituted for
the usual colon (:). *

3. Key in the line number of the program
statement. *100

Section | Wang BASIC

~

4. Depress the RECALL Special Function key. *100 X=SIN(Y-17.3)+(LOG(Z+4)+b)

Note that the cursor is positioned at the end
of the line.

5. Position the cursor under the first character
to be deleted, using the SPACE (<) and
MULTISPACE (< - - - -) keys. *100 X=SIN(Y-17.3)+(LOG(Z+4)+5)

Note that any keyword such as SIN(needs a
single space only.

6. Depress the DELETE key once. As each char- !
acter is deleted, the line automatically con-
tracts to eliminate spaces. *100 X=Y-17.3)+(LOG(Z+4)+5)

7. Depress the DELETE key eight (8) more
times to delete the rest of the expression
and the plus sign. *100 X=_(LOG(Z+4)+b)

8. Touch the RETURN/EXECUTE key to re-
enter the line and drop the system out of
Edit Mode. The new line automatically re-
places the old line in memory since the state-
ment numbers are identical.

Note that it does not matter where the cursor
is positioned when EDIT operations are con-
cluded. The entire new line is entered into
memory.

Example 2: The line

T0 PRINT “THIS IS A
PROGRAM LINE"”

is in memory. This offset line was created by accidentally touching the INDEX key (on
the Model 2222 Keyboard only) while keying in the line. An invisible index character thus
was introduced in the line before the word PROGRAM. The line can be straightened by
using EDIT. The line is represented in the buffer as indicated in the following keyword/
character string diagram.

CR

mOoP» OOV

7
mOP OOV

b
xXmQ2Z—

©

]

@]

[}

o

b

2
mO»O®n

r

2

m

moOX»Yn
—~z-23T

Section | Wang BASIC

- .

Operating Instructions
1. Key in the line number, depress the EDIT key and the RECALL key.

*10 PRINT “THIS IS A
PROGRAM LINE"”

2. Position the cursor under the first character which foliows the invisible Index character.

NOTE:
SPACE Left until the cursor is under the P, depress the
SPACE Left key once more. The cursor still remains under
the P on the CRT but is positioned correctly to EDIT
the Index character.

*10 PRINT “THIS IS A
PROGRAM LINE"”

3. Depress the DELETE key to delete the Index character.
*10 PRINT “THIS IS APROGRAM LINE”
4. Touch the RETURN/EXECUTE key to enter the line into memory and drop out of EDIT mode.

Example 3: The line of program text
40 GOTO 200: PRINTUSING 700
is in memory. You wish to have it read

40 GOTO 200: GOSUB 700

In this example using the Model 2222 Alphanumeric Keyboard, the new keyword must be
inserted character-by-character rather than with a single keystroke.

1. The CRT displays:
Depress the EDIT key. *
Key in the line number and depress the
RECALL key. *40 GOTO 200: PRINTUSING 700 _

4. Depress the Single SPACE Left key four
times. *40 GOTO 200:PRINTUSING 700

5. Key in the ‘G’ of GOSUB. *40 GOTO 200: G700
The entire word PRINTUSING s overwritten
by the G since once in memory, PRINTUSING
acts as a single character.

6. To complete the line correctly, either enter
“QSUB 700" or depress the INSERT key
four times to allow room for the end of the
word GOSUB. *40 GOTO 200: GOSUB700

Section | Wang BASIC
—
7. Touch the RETURN/EXECUTE key to enter
the new line into memory and drop the
system out of Edit Mode.

NOTE:
If a statement has been partially edited, but not yet
entered into memory, the original statement can be ob-
tained by pressing the RECALL key again (before
dropping out of Edit Mode).

Example 4: The value

1.032E99

in exponential notation is to be keyed in as response to an INPUT statement, but is
incorrectly entered as

1.03299

To correct this value, activate Edit Mode, insert a space and key in the necessary E.

Operating Instructions Display
1. The CRT displays: ENTER DATA
?
o 2. Key in the required value. ENTER DATA
? 1.03299
Depress the EDIT key. *1.03299

4. Position the cursor at the position where the
character is needed, using the Single SPACE
Left key. *1.03299

5. Depress the INSERT key. *1.032_99

Note that the line is expanded to accom-
modate the insertion.

Key in the new character. *1.032E99

7. Touch the RETURN/EXECUTE key to enter
the corrected value and resume program
operation. *1.032E99

Section | Wang BASIC

—
Example 5:

10.

11.

© N OO s N~

To EDIT the line number of a program line recalled from memory. The line 110 GOTO 140

is in memory. You wish to change the line to: 126 GOTO 140. This can be done by
editing the 110 and correcting it to 125 without deleting the line 110, However, the line
110 still remains in memory after the line 125 has been created and you must explicitly
erase line 110 if you do not wish it to remain as part of your program.

Operating Instructions
The CRT displays:

Key in the line number.

Depress the EDIT key.

Depress the RECALL key.

Depress the MULTISPACE Left key once.
Depress the Single SPACE Left key twice.
Key in the number 25.

Touch the RETURN/EXECUTE key.

Key in LIST and touch the RETURN/
EXECUTE key. Both program lines are dis-
played.

In order to delete the line 110, key in the line
number and touch the RETURN/EXECUTE
key.

The line 110 has been eliminated and is no
longer in memory.

10

Display
:110_
*110_
*110 GOTO 140 _
*110_GOTO 140
*110 GOTO 140
*126 GOTO 140
125 GOTO 140

110 GOTO 140

1256 GOTO 140

a—

Section | Wang BASIC

Stepping Through a Program

Program execution can be halted at any time by touching the HALT/STEP key. Variables can be examined
or modified by immediate execution statements; and execution can be continued by keying CONTINUE
CR/LF-EXECUTE. If, after a program has been halted, the user wishes to step through the program, he
continues touching the HALT/STEP key. Each time the key is touched, the next statement is executed; the
executed statement and any normal PRINT class output (see |/O Device Selection) of that statement is
displayed. Program stepping can be started at a particular statement line by entering a GOTO ‘line number’
statement, in the Immediate Mode, so long as the program has been resolved.

Example:

Enter the following program in memory:

10 FORI=1TO10

20 S=S+1
30 PRINTS
40 NEXTI
OPERATING INSTRUCTIONS: CRT DISPLAY
Key GOTO 10 READY

:GOTO 10
Key HALT/STEP :
10 FORI=1TO 10
Key HALT/STEP :
20 S=S+1

Key HALT/STEP :
30 PRINTS
1

Key HALT/STEP :
40 NEXT I

The system can also be placed in TRACE mode and stepped. This provides both a display of each executed
statement and the calculated results of each statement.

Executing a Program at any Given Line
Program execution can be started at any desired line by entering a RUN ‘line number’ command.

Example:

Key RUN 130 CR/LF-EXECUTE

NOTE:

The user should not begin execution in the middle of a
FORINEXT loop or subroutine.

1

Section | Wang BASIC

Programmable Trace

The TRACE statement provides for the tracing of the execution of a BASIC program. TRACE mode is
turned on in a program when a TRACE statement is executed and turned off when a TRACE OFF
statement is executed. TRACE is also turned off when a CLEAR command is executed, the system is
RESET or Master Initialized. When in the TRACE mode, printouts will be produced when:

1. Any program variable receives a new value during execution; e.g., in LET, READ, FOR statements.

2. A program transfer is made to another sequence of statements; e.g., in GOTO, GOSUB, IF, NEXT
statements.

3. A BASIC function is evaluated.

Example:

READY
10 X=1.2
:20 TRACE
30 X=2*X
:40 IF X>2 THEN 100
50 STOP
:100 TRACE OFF
110 Y=X
1120 STOP
:RUN

. Trace X=24

Outputs TRANSFER TO 100

STOP

Programmable Pause

The output of a program can be slowed down for easier visual inspection by selecting a pause of from
zero to one-and-a-half seconds. The selected pause occurs whenever a CARRIAGE RETURN is output to
the CRT display or a printer. The pause is turned on and off by executing the appropriate SELECT P
‘digit’ statement; the digit specifies the number of 6th’s of a second to pause (e.g.,P3=3 X 1/6 = 1/2 sec.
pause). The pause feature is programmable, and can be turned on and off within a program.

Example:

READY

:100 TRACE :SELECTP6
110 FORI1=1TO 20

1120 A(l) = I*COS (32.5)

1130 NEXTI

1132 TRACE OFF :SELECT PO

12

Section | Wang BASIC

- |

INTERNAL STORAGE
How Numeric Values are Stored

In your system, the fundamental unit of storage is the eight-bit byte (a single binary digit is called a bit).
Letters, digits, characters and keywords used in a BASIC program are stored in memory in single bytes
using the ASCI! character code format (see Appendix A). Every numeric data value stored in a numeric
variable or in the elements of a numeric array is stored in eight successive bytes as follows:

byte 1 2 3 4 5 6 7 8

i i | | | ? i !
S:e e}d d:d d}d d:d d:d dId d:d
1 1] 1 1.]] 1
. e’ _ - -’
exponent mantissa
where S is the sign-indicator:

0 if mantissa 2 0 and exponent =2 0
1 if mantissa < 0 and exponent = 0
8 if mantissa 2 0 and exponent < 0
9 if mantissa < 0 and exponent < 0

e are the digits of the exponent (low digit followed by high digit)
and d are the digits of the mantissa (with leading zeros removed).

~ The value is normalized when placed in this form. This is a floating point format which is optimum for

numeric calculations. The six and one-half bytes of the mantissa allow for storage of mantissas of up to
thirteen significant digits. Values between 107°° <|Jvaluel< 10°° can thus be stored in your system,
truncated to thirteen significant digits.

When displayed or printed with a PRINT statement, values whose absolute value is less than 107" or
greater than 10'° are output in exponential format to nine significant digits; the PRINTUSING statement
can be used to output values to full thirteen digit accuracy. Attempting to input numbers of more than
thirteen digits produces the error message ERR 20.

How Alphanumeric Values are Stored
When a value specified as an alphanumeric value (e.g., the name “John Doe" or the code “PR145") is
stored in memory it is stored in one character per byte. For example, the program line:

10 A$ = “JOHN DOE"”
is stored as
byte 12345678910 1112 13 14 15 16

S

o[1 P

0|0| A{$|=|"[J[O/HIN | AlID|O|E|"|C
C R
E

13

Section | Wang BASIC

byte

The size of the alpha scalar can be specified witha DIM or COM statement (see the DIM or COM statement).

123456789 10 11 12 13 14 15 16

[S

@]

I

2
moO»PoON

O

@]

m
mo»owv
mMOP»IOW
mMmoOP»oOWM
moO» o0

rno:p'u(h

moOX»ownm
mMOP»PoOW
moOP»oOWm

How Programs are Stored

The following diagram represents how a program is stored in memory at execution time.

Address O

Fixed Tables

-— Approximately
400 Bytes

BASIC
Program

Inbut/Output Buffers

-gt— Approximately

evaluation of mathematical
expressions

Recursive subroutine tables for l

For/Next loop tables, intermediate
calculations, subroutine information

300 Bytes

Non-common variables

—

Address XXXX

Common Variables

The BASIC program and the fixed tables and buffers are stored starting from address O (zero) in memory
upward. Variables are stored starting at the highest memory address downward. When the program is run,
these two areas are fixed in size. Between these two areas, are two dynamic tables. The table starting from
the program upward stores recursive subroutine return information during evaluation and analysis of
mathematical expressions; the other table, starting from the area for variables, stores subroutine and
FOR/NEXT loop information downward. If at any time during program execution the end of one of these

Figure 16. Memory Allocation

tables meets the end of the other, ERR 02 (Table overflow) occurs.

The amount of space used in memory for a given program can be approximately calculated with the

END statement (see the END statement).

14

LR

and the alphanumeric scalar A$ (set at resolution time [see the RUN command] as 16 bytes long) contains:

—

sectionli

BASIC
Language Structure

Introduction16
SymbolOperators 16
RulesofSyntax 17
Terms used in Syntax Specifications 18

15

‘Section 11 BASIC Language Structure

INTRODUCTION
Programs written in BASIC must adhere to certain rules of syntax. These rules and the terms used to
define them are described below.

SYMBOL OPERATORS

In writing program lines in BASIC, only certain symbols and special characters can be used. They fall
into three categories: arithmetic, relational and assignment symbols.

Arithmetic Symbols

The following arithmetic symbols are used to write formulas.
Operations in expressions are executed left to right in the following order:

Symbol Sample Formula Explanation
t A1tB Raise A to the power B.
* A*B Multiply A by B.
/ A/B Divide A by B.
+ A+B Add B to A.
- A-B Subtract B from A.

1. operations within parentheses

2. exponentiation (1)

3. multiplication and division {* and /)
4. addition and subtraction (+ and -).

Quantities within parentheses are evaluated before the parenthesized quantity is used in further com-
putations. In the absence of parentheses, exponentiation is performed first, then multiplication and
division, and finally addition and subtraction. For example, in the expression 1+ A/B, A is first divided by
B and then 1 is added to the result. When there are no parentheses in the expression and the operators are
at the same level in the hierarchy, the expression is evaluated from left to right. For example, in the ex-
pression A * B/C, A is multiplied by B and the result is divided by C.

NOTE:
Where arithmetic operators occur side by side in an ex-
pression, correct evaluation and valid syntax require the
use of parentheses. For example, the expression
X = 2.4 * —~A is not allowed; it must be written as
X=24*(-A)

Relational Symbols

Relational symbols are used in an IF ... THEN statement when values are to be compared. For example,
when the expression IF G < 10 THEN 60 is executed, if G is less than 10, processing continues at
program line number 60.

The following relational symbols can be used in Wang BASIC:

Symbol Sample Relation Explanation
= A=B A is equal to B.
< A<B A is less than B.
<= A<=B A is less than or equal to B.
> A>B A is greater than B.
>= A>=8B A is greater than or equal to B.
<> A<>B A is not equal to B.

These symbols are also used in the POS function (not available on the 2200A or S); and in MAT
SEARCH.

16

Section Il BASIC Language Structure

Assignment Symbol
The equal sign = is used to indicate assignment of a value to a variable. For example, the formula
A = 10, when written in BASIC, indicates ‘assign the value 10 to the variable A",

RULES OF SYNTAX
The following rules are used in this manual in the syntax specifications to describe BASIC program
statements and system commands.
1. Uppercase letters (A through Z), digits (O through 9) and special characters (*, /, +, etc.) must be
written exactly as shown in the general form.

2. Lowercase words represent items which are supplied by the user.

3. Items in square brackets [] indicate that the enclosed information is optional. For example, the
general form: RESTORE [expression] indicates that the RESTORE statement can be optionally
followed by an expression. For example,

RESTORE
or RESTORE 2*X
are both legal forms.

4. Braces { } enclosing vertically stacked items indicate alternatives; one of the items is required.
For example,

literal
operand = {alpha variable}
expression
indicates that the operand can be either a literal, an alpha variable or an expression.

5. Ellipsis ..., indicates that the preceding item can be repeated as necessary. For example,

INPUT [“‘character string’’ ,] variable [, variable] . ..
indicates that additional variables as needed can be added to the INPUT statement.

6. Except in alphanumeric literals, BASIC ignores blanks. For example, the following statements are
both valid and equivalent:

10 LET A=2*B+C
10 LETA=2*B+C

7. The order of parameters shown in the general form must be followed.

17

Section Il BASIC Language Structure

—
TERMS USED IN SYNTAX SPECIFICATIONS
The following list defines the terms used in the syntax specifications for commands and statements.

Term
alpha array designator

alpha array name

alpha array variable

alpha function

alpha scalar variable

alpha variable

array

array name

character string

expression

line number

literal

numeric array designator

numeric array name

numeric array variable

numeric scalar variable

numeric variable

string variable

variable

o~

Meaning
a parameter of the form: letter [digit] $().

a parameter of the form: A$ which refers to an alpha array.

a parameter of the form: letter [digit] $ (expression [, expression]) in
which the name of an alpha array is modified.

STR and HEX are alpha functions; they can have alpha variables as
arguments and, when used in a program line, can assign alpha values to
other alpha variables.

a parameter of the form: letter {digit] $.

alpha array variable
alpha scalar variable
STR function

alpha array
numeric array

alpha array name
numeric array name
any sequence of letters, digits or symbols in the ASCI| character set not ™

including control codes such as carriage return, backspace. P

a combination of one or more operators and numeric operands valid in
BASIC.

the number of a BASIC statement line in a program; it is of the form
digit [digit] [digit] [digit].

{a character string within double quotes (")]{

} . aone- or two-dimensional set of values

a character string within single quotes (')
HEX function J

a parameter of the form: letter [digit] ()

a parameter of the form: letter [digit] which refers to a numeric array.

a parameter of the form: letter [digit] (expression [,expression]) in which
the name of a numeric array is modified.

a parameter of the form: letter [digit]

numeric array variable
numeric scalar variable

alpha array variable
alpha scalar variable

a quantity that can assume any one
of a given set of values.

alpha scalar variable
numeric scalar variable.

-"N

18

section lil
Numerics

Numeric Variables

Common Data .

Numeric Constants . .
System-Defined Math Functlons . . .
Additional System-Defined Numeric Functuons .
User-Defined Functions

19

20
20
22
22
22
24
24

Section 1l Numerics

EXPRESSIONS

A numeric expression is any valid combination of numeric variables, functions, operators or constants
connected by arithmetic symbols. An expression may be preceded by plus or minus and may be contained
within parentheses. In the following examples valid BASIC expressions are boxed:

x A

5«Y+FNB(X) - LOG(Z)]

J(Ex2:+5] K)=9

FORI = 3+|<2| TO [4+Y] STEP m

PRINT SIN(K) -4+J]

Operations in an expression are executed in sequence from highest priority level to lowest, as follows:
1. Operations within parentheses

2. Exponentiation (1)

3. Multiplication or division (* or /)

4. Addition or subtraction (+or -)

Quantities within parentheses are evaluated before the parenthesized quantity is used in further compu-
tations. In the absence of parentheses, exponentiation is performed first, then multiplication and division,
and finally addition and subtraction. For example, in the expression 1 + A/B, A is divided by B and then 1
is added to the result. When there are no parentheses in the expression and the operations have the same
priority level, these operations are performed from left to right. For example, in the expression A*B/C; B
is multiplied by A and the product is divided by C.

NUMERIC VARIABLES
A variable name is a string of characters that represents a data value. A variable can be given a new value
in certain executable statements such as READ, LET, INPUT, NEXT, FOR. The value assigned to the vari-

able in a program statement will not change until a second program statement is encountered which assigns
a new value to the variable. Numeric variables are stored in memory in eight bytes {see Section |).

Numeric Scalar Variables

A numeric scalar variable is designated by a letter or a letter followed by a digit: there are 286 legal
scalar variable names.
Examples:

A A4

Numeric Array Variables

Array variables are used to operate on the elements of an array. Such variables can refer either to
individual array elements, to parts of an array, or to the entire array.

A numeric array is referenced in BASIC in one of three ways:

1. by its numeric array name (letter [digit])

2. by its numeric array designator (letter [digit] ())

3. as a numeric array variable (letter [digit] (expression [, expression)})
The value of expressions must be 1 < value < 255.

20

-~

Section 111 Numerics

Example of an array using the usual subscript notation of algebra:

(a,,a,,..a)

Example of an array element using algebraic subscripts:
b..

ij

Examples of numeric array names:
A

Ab

Examples of numeric array designators:
Al)
C3()
J2 ()

Examples of one-dimensional numeric array variables:
‘ A (10)
J (N)
Z3 (5)

Examples of two-dimensional numeric array variables:
C3(1,5)
F (N,M+2)

The DIM or COM statement is used to define the amount of memory allocated to an array; when the
array is defined, the parentheses contain constants giving the row and column dimensions of the array. The
DIM or COM statement must precede the first reference to the elements of the array.

Examples using DIM and COM statements:

DIM A(10), C3(1,5), F7(2,4)
COM A(10), C3(1,5), F7(2,4)

NOTE:
Numeric scalar variables and all elements of numeric arrays
are automatically initialized to zero when a program is first
executed (RUN).

Example:

READY
:20 DIM Q(25) <&— defines the 1-dimensional array Q with 25 elements
:30 READ N -— reads value for N from first DATA statement

40 FOR!I=1toN } FOR/NEXT Ioop to read data’

.50 READ Q(1) . _
.55 PRINT Q(1) fill array and output it

:60 NEXTI

:70 DATAS

:80 DATA4,5,19,37,43
etc.

For cases where an array variable is used as common data, it is specified in a COM (common) statement
instead of a DIM statement to provide storage space.

21

Section 1l Numerics

1. The numeric value of the subscript for the first array element must be = 1; zero is not allowed.

2. The dimension(s) of an array (rows, columns) cannot exceed 255.

3. The total number of elements of an array must not exceed 4,096.

An array variable and a scalar variable may have the same name; they are independent, unrelated
variables. Singly subscripted and doubly subscripted arrays must not be defined with the same name.

COMMON DATA
The sharing of data common to several programs is possible by using the COM statement. Variables with
data to be used in subsequent programs are defined to be common in a COM statement.

Example:
COM A(2,4),8B,C

defines the array A (of dimension 2 by 4) and the scalars B and C to be common data. When a RUN command
is issued, all noncommon variables are removed from the system; common variables are not disturbed. In
addition, common data can be retained when a new program is loaded or overlayed, and thus are passed
on to the next program. Common variables are cleared from memory when a CLEAR or CLEAR V

command is executed. COM CLEAR can be used to make common variables into non-common variables
(see COM, COM CLEAR).

NUMERIC CONSTANTS

A numeric constant may be positive or negative and may consist of as many as 13 digits. Numbers with
greater than 13 digits result in an illegal value diagnostic, ERR 18. Very large or very small numbers can be
expressed in exponential form. In this case, the last four digits of the output value are reserved for the
exponent and its sign. For example, 4.5 X 107 is written as 4.5E+07 and 4.5 X 1077 is expressed as
4.5 E-07. The magnitude of a numeric constant can be 10~°° < constant < 1099; exponents must
be integers.

The following are examples of numeric constants in BASIC:

4, -10, 1432443, -.7865, 24.4563

Invalid Use of Scientific Notation

8.7E5.8 Not valid because of the illegal-decimal form of the exponent.
B87E-99 Not valid because it is equivalent to 8.7E-100, which is less than E-99.
-103.2E99 Not valid because it is equivalent to —1.032E101, an exponent greater than E99.

SYSTEM-DEFINED MATH FUNCTIONS

All the standard trigonometric functions (sin, cos, tan, arcsin, arccos, arctan), the logarithmic functions
(log, exponential), exponentiation, taking square roots and assigning the value 7 are standard system-
defined functions. Additionally, the absolute value, the greatest integer value, and the sign of an expression
can be obtained and a random number generator is available. System-defined math functions are detailed
on the next page. Functions are accessed by pressing the appropriate keyword key or entering the function
name character by character.

22

Ea

hamnN

Section 111 Numerics

Mathematical Functions

Keyboard Function

Meaning

Example

SIN{ expression)

Find the sine* of the expression

SIN(n/3) = .866025403784

COS(expression)

Find the cosine* of the expression

COS(.69312) = .8868799122686

TAN(expression)

Find the tangent® of the expression

TAN(10) = .64836082745

ARC SIN({ expression)

Find the arcsine* of the expression

ARC SIN (.003) = 3.00000450E-03

ARC COS(expression)

Find the arccosine* of the ex-

pression

ARC COS (.587) = .9434480794

ARC TAN(expression)

Find the arctangent** of the ex-
pression

ARC TAN (3.2) = 1.2679114584

m Appears as #P1 on CRT
display

Assign the value 3.14159265359
(Displayed and printed as #P1)

4+#P1=12.56637061436

RND(expression)

Produce a random number! be-
tween 0 and 1

RND (X) = .8392246586193

ABS(expression)

Find the absolute value of the
expression

ABS(7+3.4+2) = 25.8
ABS(-6.537)=6.537

INT(expression)

Find the largest integer < value of
the expression

INT (8)=8, INT(3.6)=3

SGN(expression)

Assign the value 1 to any positive
number, O to zero, and -1 to any
negative number

INT(-5.22)=-6
SGN(9.15)=1
SGN(0)=0
SGN(-.124)=-1

LOG(expression)

Find the natural logarithm of the
expression

LOG(3052)= 8.02355239240

EXP(expression)

Find the value of e raised to the

EXP(.33*(5-6))=

value of the expression .71892373343
SQR(expression). Find the square root of the ex- SQR(18+6)=SQR(24)=
pression 4.8989794856

“*Unless instructed otherwise, the argument is interpreted in radians. Degrees, grads (360° = 400 grads),
or radians can be selected by entering the following statements:

SELECT
SELECT R
SELECT

D CR/LF—EXECUTE
CR/LF—EXECUTE
G CR/LF—EXECUTE

—arguments in degrees for all subsequent calculations.
—arguments in radians for all subsequent calculations.
— arguments in grads for all subsequent calculations.

**The arctangent notation ATN(is also a recognized function notation.

t RANDOM NUMBERS

Each time the RND function is used, a random number is produced with a value between 0 and 1. If the argument of the RND function
is not zero, the next number in the ‘random number list’ is produced. If the argument is zero, the first random number in the ‘list’ is
produced. RND (0) is useful when debugging programs involving random numbers since the same results can be produced each time the pro-

gram is executed.

The exampie below prints out the first 100 numbers in the ‘random number list’ each time the program is executed. Deletion of Line
10 produces a different set of random numbers each time the program is executed.

Example:
:10 X = RND (0)
:20FOR1=1TO 100
:30 PRINT RND (3)
:40 NEXT |

Whenever the system is Master Initialized (Power On), the random number generator is initialized; the next time RND is used, the first
random number in the list will be produced. If the argument of the RND function is not otherwise defined, it is set to zero.

23

Section 11l Numerics

_
ADDITIONAL SYSTEM-DEFINED NUMERIC FUNCTIONS
The following additional functions can be used in expressions:

NUM Test if a string of characters is a legal BASIC number.

POS Locate first character in a string meeting specified relation.

VAL Converts the binary value of a character to a numeric value.
LEN Obtain the length of a string (an alpha scalar or alpha array element).

They are described in detail in Section VIII.

USER-DEFINED FUNCTIONS

A user-defined function is a mathematical function of a single variable; once defined, it can be used
repeatedly within a program. A user-defined function is defined by a DEFFN statement; the form and
use of DEFFN are described in Section VIII.

24

section IV
Alphanumerics

Alphanumeric String Variables
Alphanumeric Variable Length
Alphanumeric Literal Strings

Use of Alpha Values with the INPUT Statement

Lowercase Literal Strings

Examples of Statements Using AIpha Varuables and

Literal Strings .
Alphanumeric Functions .
HEX Function .

STR Function .

25

26
27
28
28
29

29
30
31
32

Section IV Alphanumerics

ALPHANUMERIC STRING VARIABLES

The Wang 2200 provides for a non-numeric form of variable, the alphanumeric string variable. It is
distinguished from a numeric variable by the manner in which it is named, a letter or a letter and a digit
followed by a $. String variables permit the user to process alphanumeric strings of characters, (such as
names, addresses and report titles).

Both alphanumeric scalar variables and alphanumeric array variables may be used. The dimensions of
string arrays must be specified in a DIM or COM statement prior to their use in the program.

Formats for alphanumeric string variable names are given below; items enclosed in brackets are optional.

Alphanumeric scalar string variable

Yetter’ [‘digit’l] $ [length] (i.e., AS, B$, C1$)
One-dimensional alphanumeric string array variable

‘letter’ [‘digit’] $ (d,) [length] (i.e., A$ (3), B$ (N))
Two-dimensional alphanumeric string array variable

‘letter’ {'digit’] $(d, ,d,) [length] (i.e., A% (2,3), B$ (N ,M))

where d, and d, are expressions defining the number of rows and columns in an array whose values are
= 1 and less than 256; and length is the number of bytes (characters) of the alpha scalar or alpha array
element. The value of length must be 1 < length < 64; its default value is 16 bytes.

The same variable name can be used as a scalar variable and as an array variable in the same program;
the variables are unrelated. A one and a two dimensional alpha array may not have the same name in the
same program. For example,

, A A$ A(l) AS(1,J)
can all be used in the same program. However,

AS$(1) and A$(1,J)
cannot.

Alpha Scalar Variables
An alpha scalar is designated by a letter or a letter followed by a digit and a dollar sign $.

Examples:
A$
A3%

Alpha Arrays

An alpha array can be either one- or two-dimensional and contains alphanumeric elements. An alpha
array is referenced in BASIC statements in one of three ways:

1. by its alpha array name (letter [digit] $)

2. by its alpha array designator (letter [digit] $ ())

3. as an alpha array variable (letter [digit] $ (expression [, expression]))

The value of an expression must be 1 < value < 255.
Example of alpha array names:
A$
z2%

26

"N Section IV Alphanumerics
/—
Examples of alpha array designators:

A$ ()

P13 () — T ,
Examples of one-dimensional alpha array variables: - T ! f

A$(5)

C3$(25)
Examples of two-dimensional alpha array variables:

B$(1,5)

C98(N,3)
The DIM or COM statement is used to define the amount of memory allocated to an array; in the DIM

or COM statement, the expressions following the array name contain constants giving the row and column

dimensions of the array. The DIM or COM statement must precede the first reference to the array or
any of its elements in the program.

ORI

{
St

Examplies of DIM and COM statements:
DIM A$(10), C3%(1,5), F7$(2,4)
COM A$(12), C5%$(2,2), F1$(1,2)

NOTE:
An alpha scalar or alpha array element is filled with blanks
(HEX(20)) when the scalar or array is initially defined,

~ ALPHANUMERIC VARIABLE LENGTH

The default length of an alpha variable or alpha array element is 16 characters; however, the user may
define the maximum length to be 1 to 64 by defining a different length in a DIM or COM statement (see
DIM or COM). If an alpha variable receives a value of less than its maximum length, it reflects that shorter
length in subsequent operations until it receives another value.

The end of the value of an alpha variable is normally its last nonblank character (except when the value
is all blanks, in which case the value is treated as one blank). Hence, trailing blanks are generally not
considered part of alpha variable values.

For example, :10 A$=""ABC "
:20 PRINT AS$;”DEF”
:RUN
ABCDEF (note, trailing blanks of A$
were not output)

The length function, LEN, determines the number of characters in the current value of an alpha

variable.
Example: :10 A$="ABCD "
:20 PRINT LEN(AS)
:RUN
4 (trailing blanks are not considered
to be part of the value)
o~

27

Section IV Alphanumerics

ALPHANUMERIC LITERAL STRINGS

An alphanumeric literal string is a character string enclosed in double quotation marks (*’). It can be
used with alpha variables to provide an alpha variable with a string value or to output strings of alpha
characters.

For example, :10 A$="BOSTON, MASS.”
:20 PRINT AS
:RUN
BOSTON, MASS.

Literal strings can be any length that can be expressed on one program line. However, when they are used
to store values in alpha variables, they are truncated to the maximum length defined for the alpha variable.

For example,

:10 DIM A$5

:20 A$=""123456789""

:30 PRINT A$

:RUN

12345 (note that the value was truncated to five

characters since the maximum length of
A$ was defined as b)

The minimum length of a literal is 1; the null string (* *'} is not allowed.

NOTE:
If the dimension of an alpha scalar or array element is larger
than needed for storing a given value, the scalar or array
element is filled out with trailing blanks HEX(20)) when the
value is stored. Blanks are not evident in display or printing
from a PRINT statement, but can be found with the HEX-

PRINT statement.

NOTE:
The HEXPRINT statement is not available on a System
2200A.

Alphanumeric literals can in general be used wherever alpha variables are allowed, except where the
statement requires a variable and does not permit the use of an alphanumeric constant.

Example:
INPUT AS, BS, C$(1)
is a legal BASIC statement using alpha variables.

INPUT AS, “B$"’
is not a legal BASIC statement since “B$’’ is not an alpha variable (when enclosed in quotes it is a literal
string).

USE OF ALPHA VALUES WITH THE INPUT STATEMENT
When using the INPUT statement to enter data into memory, it is not necessary to enclose data to be
stored in an alpha scalar or array element in quotes. In the INPUT statement, commas and carriage returns

(touching the EXEC key) act as terminators for variables and leading spaces are ignored. If commas or ___

leading spaces are to be included in any alphanumeric value, the character string of the value must be
enclosed in quotes.

28

Section IV Alphanumerics

Example:
INPUT AS, B$

To enter values for both A$ and B$, enter (for example):

TABLE
CHAIR
or TABLE, CHAIR
To enter any value containing a comma or leading space, enter (for example):
“BOSTON, MA”
NYC

or “BOSTON, MA”, NYC [EXEC

LOWERCASE LITERAL STRINGS

A special form of literal string is available for specifying lowercase characters. The literal string is
entered with uppercase characters but enclosed in single quotes (‘). The single quotes indicate that the
uppercase letters are to be converted to lowercase by the system.

For example, :10 PRINT ““J°; ‘ORN *;”D"’;'OE’
:RUN
John Doe (if device is capable of printing lowercase)
or
JOHN DOE (if device only prints uppercase letters)
The following characters are valid in lowercase literals
letters: ABCDEFGHIJKLMNOPQRSTUVWXYZ
digits: 0123456789

special characters: (space) 1""#8%&()*+~/,.;;<=>7?

EXAMPLES OF STATEMENTS USING ALPHA VARIABLES AND LITERAL STRINGS
Alphanumeric string variables can be used in the BASIC statements listed below. Literal strings can
generally be used in place of alpha string variables, except where a value is assigned to the string variable.

LET LET A$=B$(2)
A$="ABCD"
IF... THEN IF A$=B$ THEN 100

IF A$<”DR" THEN 200
IF “ABCD’">B$ THEN 300

INPUT INPUT AS, B$(4)

READ READ C$, D$, E$(1,2)

DATALOAD DATALOAD #2,A$,B$
DATALOAD A$(1)

PRINT PRINT A$,B$, “ABCD”

PRINTUSING PRINTUSING 50,A$,B$, “LAST"

DATASAVE DATASAVE A$, “GROUP1”

29

Section IV Alphanumerics
L.

DATA DATA “ABCD*, “EFGH", 10
STR A$=STR (BS(I),1) .
HEXPRINT HEXPRINT A$

NOTE:

When comparing alpha string variables with literal strings
or other alpha string variables (e.q., IF A$ < “ABCD"),
values are compared character by character. Trailing
spaces are considered equivalent to hex(20) in determining
where to place each value in the collating sequence. The
variables fall at the same location in the collating sequence
(i.e., they are equal) even if they do not have the same
number of trailing spaces, so long as all their other char-
acters are equal.

Example:
19 DIM Add, B4S, CFS 116 GOTD Zed
28 AE="ERCH 208 PRINT "R$=C$"; AF, CF
20 EF=HEN 4142422410 ZHe HEXPRINT Rf. Bf. C#
48 CE="ABRC " FA¥=CFREC AEC
56 IF Af=Ef THEH 186 414242283
3 IF A$=C4 THEMN 284 41424221203

199 PRINT "Ads=E$"; AL, B¥ 41424322620

ALPHANUMERIC FUNCTIONS
Two functions which can operate on alphanumerics are provided by the system; they are the String
Function STR and the Hexadecimal Function HEX. They are described in the next few pages.

30

~

Section IV Alphanumerics HEX

FUNCTION

m

General Form: HEX(hh [hh] ...)
where: h = hexdigit (0 to 9 or A to F)

Purpose

The hexadecimal function, HEX, is a form of literal string that enables any 8-bit codes to be used in a
BASIC program. It may be used wherever literal strings enclosed in double quotes are allowed. Each char-
acter in the literal string is represented by two hexadecimal digits. If the HEX function contains an odd
number of hexdigits or any characters other than hexdigits, an error results.

The HEX function can be used to send control codes that do not appear on the keyboard to peripheral
devices. For example,

:PRINT HEX(03)
clears the CRT and homes the cursor.
Any character can be represented by two hexdigits. A complete chart of HEX codes pertaining to the
CRT is given in the ASCIlI Character Code Set Appendix. See the appropriate peripheral manual for
codes available on other devices.

Examples:
:10 A$=HEX(0COAOA)
:20 IF A$ > HEX(7F) THEN 100
:40 PRINT HEX(OE);”TITLE"

31

STR Section |V Alphanumerics
FUNCTION -

General Form: STR (alpha variable, s[,n])
where s = starting character in sub-string {an expression)
n = number of consecutive characters desired (an expression)
s and n cannot be zero.

Purpose

The string function, STR, specifies a substring of an alpha variable. With it, a portion of an alpha
value can be examined, extracted or changed. For example,

10 B$ = STR (A$,3,4)
sets B$ equal to the third, fourth, fifth and sixth characters of A$.
If ‘n" is omitted, the remainder of the alpha variable is used, including trailing spaces. For example,

10 A$ = “ABCDE”
20 PRINT STR(A$,3)

produces CDE at execution time.
Examples of Syntax:
STR(AS$,3,4) Takes the third, fourth, fifth and sixth characters of AS$.
STR(AS$,3) Starting with the third character in A$, takes the remaining
characters of A$.
Example:
5 DIM A$20 -
10 B$ = "ABCDEFGH" Assigns the value ABCDEFGH to B$.
20A%$ = STR {B$,2,4) Assigns the value BCDE to AS.
30 STR (A$,4) =BS Assigns the value ABCDEFGH to characters 4 through 11 of A$.
40 STR (A$,3,3) = STR (B$,5,3) Assigns the value EFG to the third, fourth and fifth characters
of AS.
50 IF STR(B$,3,2)=""AB"” THEN 100 Compares the third and fourth characters of B$ (CD) to the
literal AB.
60 READ STR (A$,9,9) Assigns the next data value read to characters 9 through 17 of A$.
70 DATA “A1B2C3D4E5F6G7H8I9”
Example:

The following program assigns a value to B$, extracts characters 2 through 5 from B$ and assigns these
characters to A$.

10 B$ = “ABCDEF”’
20 A$ = STR(B$,2,4)
30 PRINT BS : PRINT A$

Output produced at execution time:

ABCDEF
BCDE

32

S

Section IV Alphanumerics

The following program uses an alpha scalar with a literal and the STR function to riffle through the
literal character by character.

Output at execution time:

If the STR function is used on the left side of an assignment (LET) statement, and the value to be
#= received is shorter than the specified substring, the substring is filled with trailing spaces on a 2200C, S or T.

For example,

output at execution time:

10 B$ = “ABCDEF""
20 FORI=1T0O5
30 A$ =STR(BS$,I)

40 PRINT AS$

50 HEXPRINT A$

60 NEXT I
ARCeF
R P e T TRt Kodend vy hecd vy o, Do o g o, R Qoo B B
EoLEF
4242444 548 DB ZAZAIRIBIAIBZaIBIRID
SDEF
R b T g v Rl ool s Joud v e v e g s b el o ol o o'
CEF
i S T TV S e s Mg e o o e s Bl v Jog o e By g o
er
S BT 1 Tl i oo v e e el g B Tl v o o o e B

10 A$ = “123456789"

20 STR (A$,3,5) = “ABC”
30 PRINT A$

12ABC..89

On a 2200A or B, the remainder of the substring remains unchanged.

output at execution time:
The STR function can be

12ABC6789
used wherever alpha variables are allowed.

Examples:
10 A$ = STR (B$,2,4)
20 STR (D1$,1,J) = B$
30 IF STR (A$,3,5) > STR (B$,3,5) THEN 100
40 READ STR (A$,9,9)
50 PRINT STR (C$,3)

33

AN

sectionV
1/0 Device Selection

Introduction . . . <
How Is a Unit Addressed? - 74
UsingSELECT « v v v v v .. 37
SELECT e |
The INPUT Parameter - 11
The PRINTParameter40
The LISTParameter 4
Specifyinga Pause . . . - X |
Specifying Degrees, Radlans or Grads D X |
IndirectSelection 4
DefaultValues.A43

35

Section V 1/0O Device Selection

L .

INTRODUCTION

Every 1/0O device on your system, whether part of your console or a separate peripheral, has a unique
device address with which it is accessed. Each 1/0 device address consists of three hexdigits.

Example:
100 SELECT PRINT 215, TAPE 10B
- S -

. X
device addresses

The device address has the form xyy, where x represents the device type (i.e., tape, disk, printer, etc.)
and yy represents the unit address which selects the specific unit from the CPU. The three-hexdigit
value is thus called a device address. '

The device type signals the 1/O control routines in the CPU to perform certain functions during the
1/O operation. Functions are related to specific peripherals (a device type for a card reader is non-func-
tional if used with a plotter or disk, etc.). The wnit address represents the specific switches set at the
factory on the 1/0O controller for each peripheral.

The following device types are recognized by the System 2200:

Type Used With Operation

0 Console Input (Cl) devices; Supplies line feed to print or display
Nine-Track Tape Drive*; devices which do not automatically per-
Printing or Display Output Devices; form a line feed after a carriage return.
Teletype

1 Tape Cassette Drives Activates tape accessing and formatting

microcode.

2 Printers; |/O Interface Controllers; Does not provide line feed after carriage
Output Writer; Digitizer; return on printer (printer provides its
Telecommunications Controller own CR/LF).

Disk Drives Activates access routines for disk units.
Plotters, Teletype® Punched Tape Suppresses automatic carriage return
Unit; Printers when line length exceeded on printers.

5 Manual Mark Sense Card Reader Activates access routines for mark sense

cards.

6 Punch Tape, Mark Sense and Punched Activates punched tape and punched or
Card Readers mark sense card access routines.

Each unit on a system must have a unique device address, although in general all units of the same
category (tape cassette drives, plotter, etc.) will use the same device type. The device addresses for all
units are detailed on the Device Address Guide. A system with a single device of a partictilar category uses
the first device address (on the Device Address Guide or in the Device Address Appendix) for the category;
additional units of the same category have addresses sequentially assigned.

*The Nine-Track Tape Drive (Model 2209) is operated exclusively with $GIO statements which ignore the first hexdigit of the device address.

36

Section V 1/0 Device Selection

Y

22008
CPU

Example:
CRT
005 Tape Cassettes
10A 10B
/ l
Disk Units
310 320

Figure V.1 Device Addresses in a Typical Configuration

The device address should be written on the Controller Board to which the unit is attached; it can also be

written on the unit itself.

.. HOWIS A UNIT ADDRESSED?

When a BASIC command or statement which performs an 1/0 operation is executed, a specific unit is

addressed in one of three ways:

1. with a SELECT statement or command

Example:
10 SELECT PRINT 005, LIST 215, CO 005

I—Device Adrdress _1

2. with certain BASIC words that can address units directly (such as LOAD, SAVE, etc.)

Example:

LOAD DC

R/320

Device Address

By using ‘file numbers’, such BASIC words can also address a unit indirectly; in this case, a SELECT
statement must specify the device address of each ‘file number’.

USING SELECT

Example:

10 SELECT #2 10B,#3 10C

20 DATASAVE #2,0PEN“DATAF"
30 REWIND #3
3. by using the Default Value assigned when the system is Master Initialized.

The SELECT word can be used either in the Immediate or the Program Mode. It permits the user to
specify the device addresses (and line length) for entire classes of operations.

37

Section V 1/0O Device Selection

Example:
10 SELECT PRINT 215
L_{device address

|y gt l_——‘l
class parameter

This statement assigns the device address 215 for all operations of the PRINT class. PRINT class oper-
ations include all output from

® PRINT statements

o HEXPRINT statements

® PRINTUSING and % (Image) statements

¢ MAT PRINT statements
(see Figure V.2). Device address 215 specifies the printer as the output unit. Once a device address is
specified for an 1/O class parameter, all 1/0 operations of that class subsequently executed use that
device address until it is changed (by another SELECT statement or by Master [nitialization).

For input as follows: For output as follows:
— , -
10 BASIC commands. 1) Data from !mmediate Mode
2} Immediate Mode statements. PRINT or HEXPRINT statements.
L 3} Program text entry. 2) Literal string messages from

INPUT statements.

For input as follows:
3) Question marks when the system

1) Data for INPUT is awaiting INPUT-class data.
statements. cl 4) Echo of data received for INPUT
2) Data for KEYIN < or MAT INPUT statements.
statements. / 5) Colons when the system is ready for
3) Data for MAT INPUT for Cl-class input,
L statements. INPUT Cco 6) Error message codes.

7) TRACE mode printouts.
8) STEP mode printouts.

% 9) Other system messages.

For output as follows:
1) Data from Program Mode PRINT

For operations:

1) BACKSPACE

2) DATALOAD

3) DATALOAD BT
4) DATARESAVE

1/0 Class
Parameters

5) DATASAVE TAPE PRINT or HEXPRINT statements.
6) DATASAVEBT & 4 2) Data from PRINTUSING and
7) LOAD associated Image statements.
8) REWIND 3) Output from MAT PRINT
9) SAVE statements.
< LIST -
:?: gg:g DISK For output as follows: _
L12) $IF ON) PLOT 1) Program text from LIST
. commands.
_For operations as follows: 2) Disk data from LIST DC
1) copy]) statements.
2) DATALOAD BA For output as follows:
3} DATALOAD DA 1) Graphs and tabels from
4) DATALOAD DC PLOT statements.

5} DATALOAD DC OPEN
6) DATASAVE BA
7) DATASAVE DA
8) DATASAVE DC
9) DATASAVE DC CLOSE
10) DATASAVE DC OPEN
11) DBACKSPACE
12} DSKIP
13) LIMITS
14} LOAD DA
15} LOAD DC
16) MOVE
17) MOVE END
18) SAVE DA
19) SAVEDC
20) SCRATCH
21) SCRATCH DISK
22) VERIFY

— /

Figure V.2 I/O Class Parameters and Their Operations

38

Section V 1/O Device Selection

SELECT

SELECT

General Form: SELECT select parameter [, select parameter. . .]

(CI device address
CO device address [(length)]
DISK device address
TAPE device address

:vTe(:f arameter ‘file number’ device address

electp 4 LIST device address [(length)] \
PRINT device address [(length)]
INPUT device address
PLOT device address
P [digit]
D
R
G)

device address A three hexadecimal digit code specifying the desired

device (see Device Address Guide).

[

length = An integer < 256 specifying the desired
line length.

‘file number’ = One of the following:
#1, #2, #3, #4, #5, #6

Purpose
The SELECT statement is used for three purposes:

1. To select device addresses for input/output statements or commands.

2. To specify a pause after every printed or displayed line of output (used mainly with CRT display), and
3. To specify degree, radian, or gradian measure for the trigonometric functions.
A given 1/0 class (select parameter) cannot occur more than once in a SELECT statement.

Examples:

To change the console device from the Primary (Output) Print Device to another, the following
statement does the job.

SELECT CO 215 (80)

This selects the printer with device address 215 as the new Console Output device and sets the maximum
line length at 80 columns.

39

Section V 1/0O Device Selection

S

THE INPUT PARAMETER

The INPUT select parameter specifies the device address to be used to enter in data for INPUT and
KEYIN statements.

Example:

100 SELECT INPUT 002
110 INPUT “VALUE OF X, Y", X, Y

The message “VALUE OF X, Y?" appears on the console output device, while the values of X and Y are
keyed in on the keyboard whose device address is 002.

THE PRINT PARAMETER

The PRINT parameter specifies the output device on which all program output from PRINT, HEXPRINT,
and PRINTUSING statements are displayed.

Example:

100 SELECT PRINT 213(100)

110 PRINT”X=";X,”"NAME="";N$

120 PRINTUSING 121,V

121 %TOTAL VALUE RECEIVED S$# ###.##

The SELECT PRINT statement in line 100 directs all printed output to a Model 2201 Qutput Writer (device
address (213); the line length is specified as 100 characters.

Example:

SELECT PRINT 005(64)

This statement reselects the CRT as the device to which all PRINT and PRINTUSING output is directed.
The maximum line length is reset to 64 characters.

NOTE:

The output from PRINT statements entered in the immediate
mode always appears on the Console Output Device.

THE LIST PARAMETER

The LIST select parameter specifies which output device is to be used for all program listings and disk
catalog listings.

Example:
SELECT LIST 215(70)

40

Section V 1/0 Device Selection

This statement specifies that a line printer (device address = 215) is to be used for program listings. The
maximum line length is specified as 70 columns.

NOTE:

All SELECT statement formats are legal in either program

mode or immediate mode. Device selections remain in force

until:

1. They are changed by the execution of another SELECT
statement, or

2. They are reset to the currently selected console devices by
the execution of a CLEAR command with no parameter, or

3. They are reset to the Primary Console Devices by a Master
Initialization.

A CLEAR command with no parameters and Master Initiali-
zation (power on) clears all file number assignments. All file
numbers then must be initialized by re-executing the SELECT
statements. Reference to an unassigned or cleared file number
causes an error output.

WARNING: Selecting an illegal device address for Cl or CO
causes the system to become locked out; it can be reset only
by Master Initializing,i.e., by turning the power off then on
again. All programs and variables will be lost.

SPECIFYING A PAUSE:

The ‘P’ select parameter causes the system to pause each time a carriage return character is output to a
CRT so the user can scan the output rather than programming the system to halt execution whenever the
CRT screen is full. The optional digit following the pause specifies the length of the pause in increments of
1/6 second. For example, the following statements generate the indicated pauses:

100 SELECT P1 pause = 1/6 second
SELECT P6 pause = 1 second
SELECT P (or PO) pause no pause

Selecting P or PO removes the current pause.

SPECIFYING DEGREES, RADIANS, OR GRADS:

Degree, radian, or gradian measure may be selected for the trig function arguments by using the ‘D’, ‘R’
or ‘G’ parameters, respectively. For example:

SELECTD

causes the system to use degree measure for the trigonmetric functions. The unit of measure can be changed
by executing another SELECT command or by Master Initialization, which automatically selects radians.

41

Section V 1/0 Device Selection

Example:
SELECT CO 005 (64)

This statement reselects the CRT as the Console Qutput Device. The line length is reset to 64 characters.

Example:
SELECT TAPE 10B

This statement selects the second cassette tape unit (device address = 10B) as the Console Tape Cassette
unit. All statements involving cassette operations will access the second cassette drive unless the statements
contain either of the two optional parameters, #n or /xxx which supply the device address.

INDIRECT SELECTION

The System 2200 provides two other methods for selecting tape cassette drives or other devices for
input and output operations. The individual BASIC statements that execute I/O operations (LOAD,
DATASAVE, SKIP, etc.) each contain two optional parameters designated #n and /xxx. The /xxx parameter
allows the actual device address of a cassette drive to be placed directly in the statement. The xxx represents
the three-character device address of the desired device. This method of selecting tape devices is independent
of the SELECT statement.

Example:
DATASAVE /10B, OPEN “DATFILE”

This statement writes a data file header record on the cassette whose device address is 10B.

The #n parameter permits cassette or other device addresses to be assigned indirectly using the SELECT
statement. #n is called a file number and must be one of the following: #1, #2, #3, #4, #5, #6. A
particular device address can be assigned to a file number by a SELECT statement in a program. Thereafter
in the program, BASIC Input/Output statements which contain that file number automatically use the
previously assigned device address.

Example:
10 SELECT #2 10C, #3 10A

This statement assigns the cassette device address 10C to file #2, and the cassette device address 10A to
file #3. In subsequent program statements which perform input/output operations, the file then can be
used to supply the device address.

Example:

50 REWIND #2
60 DATALOAD #3, A(), B$()

The indirect assignment of device addresses in a program using file numbers offers several advantages.
Subroutines can be written to perform a sequence of |/O operations for several devices. All device address
assignments in a program can be changed by modifying a single statement. For instance, in the following
example addresses can be assigned by changing statement 10.

42

Section V 1/0 Device Selection

Example:

10 SELECT #2 10C, #3 10A
20 SKIP #2, 2F

100 REWIND #3
110 DATASAVE #2, OPEN “DATFILE"

DEFAULT VALUES
When the System 2200 is Master Initialized, the following values are automatically assigned to the
SELECT parameters (see SELECT). The default value pertains to the whole 1/O Class (see Figure V.2).

SELECT Parameter Default Value

Cl (Console Input) 001 (keyboard)

CO (Console Output) 005 (CRT)

INPUT 001 (keyboard)

LIST 005 (CRT)

PRINT 005 (CRT)

TAPE 10A (tape cassette drive)
DISK 310 (disk unit)

PLOT 413 (plotter)

line length 64 (for CO, LIST and PRINT)
‘file number’ 0 (zero)

D,RorG R

Normally the Cl and INPUT addresses are thus 001, the keyboard, the output device for LIST and
PRINT class operations is 005, the CRT, etc. (see the Device Address Guide). Thus Master Initialization
provides device addresses for:

the keyboard

the CRT

the tape cassette drive (if any)
the disk unit (if any)

the plotter (if any).

If a System 2200 does not contain additional input/output devices, then device addresses need not be
specified or selected in the BASIC commands and statements which perform input/output. |f additional
devices are present in the system, device address specification or selection is required.

To change the console output device from the CRT (device address = 005) to another output device,
a statement having the following format can be used:

SELECT CO device address [{length)]

Example:
SELECT CO 215 (80)
This statement selects a line printer (device address = 215) as the new Console Output Device. The maxi-
mum line length to be used on the printer is set at 80 columns.

NOTE:
If a line length is not specified for console output, PRINT
or LIST, the last line lengths selected for these operations
are used. Master Initialization sets line length to 64 char-
acters.

43

section Vi
Non-Programmable
commands

Introduction 46
CLEARCommand 47
CONTINUECOmmand 48
HALT/STEP « v v v v v v v v . .4
LISTCommandH51
RENUMBERCommand b2
RESET053
RUNCommandH5B4
Special Function55
STATEMENTNUMBER57

45

Section VI Non-Programmable Commands

—~

L]

INTRODUCTION

A BASIC command provides the user with a means for direct communication with the system. A
BASIC command facilitates the running or modification of a program but is not part of the program itself.

For example, the RUN command initiates the execution of a program; the SAVE command instructs
the system to record all program text on a cassette tape.

BASIC commands are entered one line at a time. They differ from BASIC statements in that they are
not preceded by line numbers, and only one command can be entered on one line; multiple commands
separated by colons on one line are not allowed. BASIC program statements are saved in memory for
later execution; BASIC commands cause action and are not saved.

All the 2200 BASIC commands are described on the following pages. Any command that is executed
by touching the EXEC key is described with a General Form; any command that causes immediate action
is described as a Key.

NOTE:
All BASIC commands and statements can either be entered
character-by-character or with the appropriate keyword key.

46

Section VI Non-Programmable Commands CLEAR

COMMAND

General Form: CLEAR P [line number [, line number]]
Vv
N
Purpose

The CLEAR command clears the user program text and variable areas. CLEAR with no parameters
removes all program text and variables from the system. The current console devices (Cl and CO) are
selected for all 1/0 operations and the file numbers previously selected are cleared (see SELECT). Also,
pause and TRACE are turned off. A HEX(03) [clear CRT] is issued to the Console Output device; the
'READY’ message is displayed and control is passed to the keyboard.

CLEAR V removes all variables (both common and noncommon) from memory.

CLEAR N removes all noncommon variables from the system; but names, attributes, and values of com-
mon variables are not changed.

CLEAR P removes program text from the system; variables are not disturbed. CLEAR P with no line
numbers deletes all user program text from the system. CLEAR P with one line number deletes all user
program lines from the indicated line through the highest numbered program line. If two line numbers are
entered, all text from the first through the second line numbers, inclusive, is deleted.

Example:

CLEAR

CLEAR YV
CLEARN
CLEARP 10, 20
CLEARP 10
CLEARP

47

CONTINUE

COMMAND
-

Section VI Non-Programmable Commands

General Form: CONTINUE

Purpose
This command continues program execution whenever the program has been stopped either by a
STOP statement, an Immediate Mode GOTO, or the HALT/STEP key. The program continues with the

program statement immediately following the last executed program statement, or at the program line
specified by the GOTO.

Example:
CONTINUE

NOTE:
CONTINUE cannot be used if the system has dropped out
of execution mode. This occurs whenever:
1. a text or table overflow error has occurred.
2. any CLEAR command is executed.
3. a RENUMBER command is executed.
4.any program text is modified.
5. the RESET switch is used.
6. Edit keys are used to recall program text.

48

SN

Section VI Non-Programmable Commands HALT/STEP

L

Key: HALT/STEP

Purpose

1. If a program is executing, the HALT/STEP key stops execution after the completion of the current
statement. Program execution, beginning with the next statement, can be continued by entering the
CONTINUE command.

2. If a program is being listed, the HALT/STEP key stops the listing after the current statement has been
listed.

3. The HALT/STEP key can be used to step through the execution of a program. If program execution has
terminated due to the execution of a STOP statement or the depressing of the HALT/STEP key,
depressing the HALT/STEP key again causes the next program statement to be listed and executed:;
execution then terminates. In multiple statement lines, those statements which have already been
executed are not listed; however the colons separating these statements are always displayed. The
GOTO statement can be used in the immediate mode to begin stepping execution at a particular line
number (see GOTO). However, protected programs may not be stepped.

NOTE:
An error message is printed out and execution does NOT
continue if the user attempts to STEP program execution
after the system has dropped out of execution mode.
This occurs when: ‘
1.a text or table overflow error has occurred.
2.any CLEAR command is executed.
3. program text is modified.
4. a RENUMBER command is executed.
5. the RESET key has been pressed.
6. Edit keys are used to recall program text,

Suppose the following program is in memory:

Example:

90 Z2=55
:100 PRINT “CALCULATE X, Y”
1110 X=1.2: Y=5*2+X: GOTO 100

and we wish to step through the program from line 90 on. TRACE is turned on so that variables receiving
new values are displayed.

49

HALT/STEP Section VI Non-Programmable Commands
(Continued) :

Turn TRACE mode on :TRACE
Start stepping at line 90 :GOTO 90
Touch HALT/STEP key. 90 2=5.5

z=55

Touch HALT/STEP key. : -
100 PRINT “CALCULATE X, Y”
CALCULATE XY

Touch HALT/STEP key.

110 X=1.2: Y=5*Z+X: GOTO 100
X=1.2 .

Touch HALT/STEP Kkey. :
110: Y=5*Z+X: GOTO 100
Y=28.7

Touch HALT/STEP key. :
110: :GOTO 100
TRANSFER TO 100

Touch HALT/STEP key. :
100 PRINT “CALCULATE X,Y"
CALCULATE XY

Touch HALT/STEP key. :
110 X=1.2: Y=5*2Z+X: GOTO 100
X=1.2

Touch HALT/STEP key. :

110: Y=5*Z+X: GOTO 100
Y=28.7

Touch HALT/STEP key.

110: :GOTO 100
TRANSFER TO 100

50

-

Section VI Non-Programmable Commands LIST

COMMAND
-

General Form: LIST [S] [line number [, line number]]

Purpose

The LIST command instructs the system to display the entire program text in line number sequence. If
one line number follows the command, then one program line is listed. If two line numbers follow the
command, all text from the first through the second line numbers inclusive are listed.

The ‘S’ parameter is a special feature for the CRT terminal. It permits the listing of the program in steps
of 15 lines (the maximum capacity of the CRT screen). After 15 lines have been generated, the listing can
be continued. To continue listing (up to the limit specified in the LIST command), the CR/LF-EXECUTE
key is pressed.

Pressing HALT/STEP during the listing of a program stops the listing after the current statement line has
been finished.

Alternatively, the user may slow down listing on the CRT by selecting a pause of from 1/6 to 1 1/2
seconds by executing a SELECT P statement. A pause will occur after each line is listed.

When the 2200 is Master Initialized (Power off, Power on), the CRT is initially selected for LIST oper-
ations. Other printing devices may be selected for listing by using a SELECT LIST command (see SELECT).

Examples:

:LIST
30 READ A,B,C, M

990 END

or :LIST 30, 50
30 READ A,B,C, M
40 LET G=A*D-B*C
50 IF G=0 THEN 60

or :LIST 30
30 READ A,B,C, M

:SELECT P3 -=—— Select a pause of 1/2 sec.
:LIST

:LISTS

First 15 lines appear on the
CRT; depressing the CR/LF-
EXECUTE key lists the next
15 lines, and so on until the
entire program has been
listed.

51

RENUMBER Section VI Non-Programmable Commands

COMMAND -

General Form: RENUMBER [line number] [,line number] [,integer]
where 0 < integer < 100

Purpose

The RENUMBER command renumbers the lines of the user program currently in memory. The first
line number is the starting number and specifies the first line to be renumbered in the program. All program
lines with line numbers greater than or equal to the starting line number are renumbered. If no starting line
number is specified, the entire program is renumbered. The second line number in a RENUMBER com-
mand is the new line number which is assigned to the first line to be renumbered; note that the new line
number must be greater than the highest line number preceding that line in the program. For example,
if we are to renumber the following program starting with line 12, the new number assigned to line 12
must be >10 since line 10 precedes line 12 in the program.

Examples:

READY

:10 INPUT X

12 FOR1=1TO 10
114 PRINT X=|

:16 IF 1> 100 THEN 20 —_
:18 NEXT I
:20 STOP

:RENUMBER 12, 20

:LIST

10 INPUT X

20 FORI=1T0O10

30 PRINT X*{

40 IF 1> 100 THEN 60
50 NEXTI

60 STOP

The integer specified in the RENUMBER command is the increment between line numbers; if no integer
is specified, the increment is assumed to be 10. If no new starting line number is specified, the new starting
line number equals the increment.

NOTE:

All references to line numbers within the program; e.g., in
GOTO, GOSUB, or PRINTUSING statements are modified.

Examples:

RENUMBER
RENUMBER 100,5 -
RENUMBER 100, 150, 5
RENUMBER b5
RENUMBER ,,5

52

Section VI Non-Programmable Commands RESET

Key: RESET

Purpose

The RESET switch immediately stops program listing or execution, clears the CRT screen, resets all
I/0 devices and returns control to the user. The program text is not lost; all program variables are maintained
with their current values. If the TRACE mode was on, it is turned off.

Normally, program execution is terminated by the HALT/STEP command after which a program can be
continued. RESET, on the other hand, terminates immediate execution statements or commands and restores
the system after a temporary malfunction. RESET can be used to terminate program execution, but the
program cannot be continued. The program can be rerun by touching the RUN key.

NOTE:

RESET should only be used to terminate program execution
if HALT/STEP fails.

If the system has undergone a temporary malfunction which cannot be corrected by RESET, master
initialize the system by turning the power switch on the Power Supply Unit off, then on again. This, however,
erases programs and data previously in the system.

Example:
RESET

53

RUN

COMMAND

Section VI Non-Programmable Commands

General Form: RUN [line number]

Purpose
The RUN command performs four operations:
1. Verifies syntax of the currently loaded program.
2. Resolves the program, setting all new numeric variables to zero and all new alpha variables to spaces.
{Previously entered common variables are left intact.)
3. Resets the DATA value pointer {to be used in a READ statement), if needed, to the first data value in
the program.
4, Executes the program line by line, starting with the lowest numbered line.
If a line number is specified, program execution begins at the specified line number without reinitializing
program variables to zero; the variables are maintained at the last calculated values. Program execution
must not be started in the middle of a FOR/NEXT loop or a subroutine.

NOTE:
Program execution should not be initiated directly with a
Special Function key without using the RUN command;
failure to issue a RUN command may bypass program reso-
lution and cause a program error.

Examples:
RUN
RUN 30

54

Section VI Non-Programmable Commands SPECIAL FUNCTION

Key: Special Function Key

Purpose

There are 16 special function keys available on any system keyboard. Depressing them simultaneously
with the SHIFT key provides up to 32 entry points for the currently loaded BASIC program, and allows
the user to define his own special functions. The entry points are defined by the BASIC statement DEFFN’
XX (where XX = 00 to 31). Thus, depressing special function key 2 causes an entry and execution of a line
or subroutine beginning with a DEFFN’ 2 statement.. With this special entry, text strings can be entered
or multi-argument subroutines can be executed.

If a special function key is defined for text entry, pressing the key causes the character string defined
by the DEFFN’ to be displayed and become part of the current text line (see DEFFN’).

For example, if special function key 2 is defined by the following statement:

100 DEFFN’ 2 “HEX("
pressing the special function key 2 after the following has been keyed in:

:20 PRINT

results in

:20 PRINT HEX(_

on the CRT. cursor

If a special function key is defined for marked subroutine entry (see DEFFN’), the subroutine can
be executed either manually by touching the indicated special function key, or by using a GOSUB’ state-
ment (see GOSUB’) within a program. Arguments are passed to the subroutine either by keying them in,
separated by commas, immediately before the special function key is pressed, or by indicating them as
parameters in the GOSUB’ statement. The number of arguments passed must equal the number of variables
in the DEFFN’ statement marking the subroutine. When a RETURN statement is finally executed, control
is passed back to the keyboard or to the program statement immediately following the GOSUB’ statement.

Example:

112.3, 3.24, “JOHN"
(Depress special function key 3.)
causes the following subroutine to be executed:
:100 DEFFN’ 3 (A, B, C$)

:110...
:120...

:200 RETURN
where A issetto 12.3

B is set to 3.24
C$ is set to “JOHN"

55

SPECIAL FUNCTION Section VI Non-Programmable Commands

(Continued)

Example:
Define the special function key O to evaluate the expression
2=7X*+14Y* -7
READY
:10 DEFFN' 0 (X, Y)
20Z2=7+«X12+14+Y12-7
:30 PRINT “X="":X
:40 PRINT “Y=";Y
:60 PRINT “2Z=";2
:60 RETURN
:70 PRINT “END OF SR”

Execute the subroutine for
X=.092 and Y=-.32

Solution: (A) MANUAL ENTRY (B} PROGRAM ENTRY
Key .092, -.32 READY
Touch special function key 0. 5 GOSUB’ 0 (.092, -.32)
CRT Display: 6 STOP “SUBROUTINE DONE"”
:.092, -.32 :RUN
X=9.20000000E-02 X =9.20000000E-02
Y=-.32 Y =-.32

Z=5.607152 Z =5.507152

STOP SUBROUTINE DONE

A RETURN CLEAR statement can be used at the end of a subroutine to continue execution without
returning to the statement following the subroutine entry point. For example, if line 60 above = RETURN
CLEAR, the output is:

(C) MANUAL ENTRY (D) PROGRAM ENTRY
Key .092, -.32 RUN
Touch special function key 0. X =9,20000000E-02
1,092, -.32 =-32
X=9.20000000E-02 Z =5.507152

=-.32 END OF SR

Z2=5.507152
END OF SR

56

Section VI Non-Programmable Commands STATEMENT NUMBER

(NOT ON ALL KEYBOARDS})

Key: STATEMENT NUMBER KEY

Purpose

This key automatically sets the line number of the next line to be entered. The line number generated is
10 more than the highest existing line number.

The statement number can also be keyed in manually, using the numeric entry keys. Statement numbers
can be any integer from 1 to 4 digits.

Statements may be entered in any order; however, they are usually numbered in increments of five or ten
so additional statements can be easily inserted. The system keeps them in numerical order regardless of how
they are entered.

Example:

READY
10X,Y,Z2=0

{:20 INPUT “ENTER VALUES"”, A, B
:30Z2=A*B+B12

Depressing STMT NUMBER key :40_

Currently Entered Program

57

section Vii

General
BASIC Statements
- and Functions

BASICStatements 60 INPUT09
ADD01 KEYIN®95
AND,OR,XOR 63 LENFunction. 9
BIN.H®64 LET97
BooL.®6b5 NEXT9
com 067 NUMFunction100
COMCLEAR 68 ON10
CONVERT89 ONERRORGOTO102
DATA.7M PACK103
DEFFN172 POSFunction104
DEFFN'13 PRINT105
DIM1786 PRINTUSING107
END 177 PRINTTABFunction.109
FNFunction 178 READ.10
FOR179 REM1m
GosuB8 RESTORE112
gosuB'H83 RETURN13
GOTO.®8 RETURNCLEAR14
HEXPRINT. 85 ROTATE15
IFENDTHEN 86 STOP116
IF..THEN. 87 TRACE117
Image(%) 88 UNPACK19
S 1 R : VALFunction12

59

Section VIl General BASIC Statements and Functions

BASIC STATEMENTS
A BASIC statement is a word or operator defined in the BASIC language, which performs a specific
operation or function, and is combined with an expression, a variable or some data values. BASIC state-
ments are always parts of programs unlike BASIC commands such as RUN which cause immediate action
and cannot be part of a program.
Examples:
READ A, B A statement: verb followed by variables
DATA 1,4 A statement: verb followed by values
LET A=6*B A statement: verb followed by a variable (A),
an equals sign, and an expression (6*B).
BASIC statement lines in a program must always begin with a line number; statement lines in the immedi-
ate mode do not require line numbers.
There are two types of BASIC statements: executable and non-executable. An executable statement
specifies program action:
:10 READ A, B
:20 A =6*B
—

A nor-executable statement provides information for program execution:

:10 DATA 1,4

or for the programmer:

:20 REM THIS ISPROGRAM 1

A series of statements, separated by colons, may be entered on one line.

Example:

:20 FORI=1TO 10 :PRINT I, X(l)*Y :NEXT |

or:

:FORJ=1TO 3 :PRINT J,J12, J13 :NEXT J
1 1 1

2 4 8

3 9 27

The remainder of this section defines the general BASIC statements available in the System 2200 for
programming and their syntax.

60

| Section VIl General BASIC Statements and Functions ADD

(NOT ON 2200A)

-
-

General Form: ADD {C] talpha variable, hh .
alpha variable
where: h = hexdigit
C = add with carry

Purpose

The ADD statement is used to add the binary value specified by the second argument (an alpha-
numeric variable or two hexdigits) to the binary value specified by the first argument, an alphanumeric
variable. The entire defined lengths of both alphanumeric variables are used in the addition, including
trailing spaces. {(Note: For most alphanumeric operations in the System 2200, if an alphanumeric variable
receives a value with a length less than the maximum length of the variable, the remaining characters are
all set equal to spaces. These trailing spaces normally are not considered to be part of the value.) Part of an
alphanumeric variable can be operated on by using the STR function to specify a portion of the variable.

For example,
ADD (STR(AS, 3, 2), 80)
Two types of adding may be done:

ey 1.Immediate. Indicated by the second argument in the statement being two hex digits.
2. String-to-String. Specified by the second argument being a variable.

Immediate ADD
The immediate ADD statement adds (in binary) the character specified by the two hex digits to the
entire value (each character in the define length) of the specified alphanumeric variable. If ‘C’ is not speci-
fied, the character is added independently to each character in the receiving alphanumeric variable with no
carry propagation. If ‘C’ is specified, the character is added to the low order (last) character of the receiving
alphanumeric variable and a carry, if present, is propagated to high order characters.

Example:
If A$ = HEX (0123),
then ADD (AS, 02)
sets A$ = HEX (0325)

If A$ = HEX (0123)
then ADDC (AS, 02)
sets A$ = HEX (0125)

If A$ = HEX (02FFFE),
then ADDC (A$, 02)
sets A$ = HEX (030000)

String-to-String ADD

The String-to-String ADD statement adds (in binary) the entire value of the second alphanumeric variable
to the entire value of the first alphanumeric variable. If ‘C’ is not specified, the add is on a character by
character basis with no carry propagation. That is, the last character of the second value is added to the last

“character of the first value; then, the next to last character of the second value is added to the next to last
character of the first value; and so forth, If ‘C’ is specified, the second value is treated as a single binary
number and is added to the first value with carry propagation between characters.

61

ADD Section VIl General BASIC Statements and Functions

(NOT ON 2200A)
1

A~

If the two alphanumeric variables specified are not of the same defined length, the following rules apply:

1. The addition will be right adjusted, with lead characters of zero binary value being assumed for the

variable of shorter length.
2. The answer will be stored right adjusted in the receiving variable. |f the total answer is longer than the

receiving variable the lower order portion of the answer will be stored.
Example:

If A$ = HEX (0123) and B$ = HEX (00FF),
ADD (AS$, BS) sets A$ = HEX (0122)

If A$ = HEX (0123) and B$ = HEX (OOFF)
ADDC (A$, BS) sets A$ = HEX (0222)

NOTE:

The INIT statement can be used to initialize all characters of
an alphanumeric variable to any character code including
zero. This can be done prior to moving a value into part of
the variable with a STR function to eliminate trailing spaces.

The LEN function is also useful in determining the length of
an alphanumeric variable value in conjunction with ADD
operations.

Examples:

10 ADD (AS$, FF)

20 ADDC (STR(AS, 3, 1), 81)

30 ADD (AS, BS)

40 ADDC (STR(AS, 3, 2), STR(BS, 4, 2))
50 ADD (AS(l,J), 1$)

62

Section VIl General BASIC Statements and Functions AND, OR, XOR

- (NOT ON 2200A)

General Form:

AND hh
OR alpha variable, {alpha variable}
XOR

where: h = hexdigit

Purpose

These statements perform the specified logical operation (AND, OR or EXCLUSIVE OR) on the charac-
ters of the value of the first alphanumeric variable. All characters in this value are operated on including
trailing spaces. (Note: for most alphanumeric operation in the System 2200, if an alphanumeric variable
receives a value with a length less than the maximum defined length of the variable, the remaining charac-
ters are all set equal to spaces. The trailing spaces normally are not considered to be part of the value.)
Part of an alphanumeric variable can be operated on by using the STR function to specify a portion of the
variable. For example,

AND (STR(AS, 3, 2),,80)

AND outputs a 1-bit if both bits are 1; or outputs a 1-bit unless both bits are 0; XOR outputs a 1-bit if
both bits are different.
Two types of logical functions may be performed:
s« 1. Immediate. Indicated by the second argument in the statement being two hex digits.
2. String-to-String. Specified by the second argument being a variable.

Immediate Logical Functions
The immediate logical functions form the logical AND, OR, or EXCLUSIVE OR of the characters
specified by the two hex digits and each character in the defined length of the alphanumeric variable (or

portion of alphanumeric variable if a STR function is used). The result becomes the new value of the alpha
variable.
Example:

if A$ = HEX (41424320), OR(A$, 80)

OR'’s the character ‘80’ with each character

in AS; thus, A$ would equal HEX(C1C2C3A0).
String-to-String Logical Functions

The String-to-String logical functions form the logical AND, OR, or EXCLUSIVE OR of the characters

in the first alphanumeric variable with the characters in the second alphanumeric variable on a character by
character basis starting with the first character of each variable. The first variable receives the result. |f the
second alphanumeric variable is shorter than the first, the remaining characters of the first alphanumeric

variable are unchanged. If the second alphanumeric variable is longer than the first, the remaining characters
are ignored. '

Example:

if A$ = HEX (010203) and
B$ = HEX (4151), OR (AS$, B$)
sets A$ = HEX (415303).

Examples:

- 10 AND (AS, 7F)
20 OR (A$(1), BS)
30 XOR (STR(AS, 2, 3), FO)
40 AND (AS$, STR(BS, 1))

63

BIN Section VIl General BASIC Statements and Functions

(NOT ON 2200A)

—

General Form: BIN (alpha variable) = expression

where: 0 < value of expression < 256

Purpose
This statement converts the integer value of the expression to a character (i.e., to a one-byte binary

number) and sets the first character of the value of the specified alphanumeric variable equal to the

character. BIN is the inverse of the function VAL.
BIN can be especially useful for code conversion or for conversion of numbers from internal decimal

to binary,

Examples:

10 BIN(AS$) =64 sets A$ = HEX(40) (HE X(40) has
20 BIN(STR(AS, I, 1)) = X*T/2 a decimal value of 64)

64

-

Section VIl General BASIC Statements and Functions BOOL

(NOT ON 2200A)

) h
General Form: BOOL h (alpha variable, n :
\ alpha variable

where: h = hexdigit

The statement BOOL is a generalized logical operator that operates on the bits of the characters of the
first alphanumeric variable. All characters are operated on including trailing spaces. (Note: For most
System 2200 alphanumeric operations if an alphanumeric variable receives a value with a length less than
the maximum defined length of the variable, the remaining characters are all set to spaces. These spaces
normally are not considered to be part of the value.) Part of an alphanumeric variable can be operated
on by using the STR function to specify a portion of the variable. For example,

BOOL 9 (STR(AS, 2, 3), A7)
The hexdigit following ‘BOOL’ defines which of the 16 available logical operations is to be performed
(see chart below). Each byte of the first alpha variable, or its specified portion, is operated on, one bit
at a time.

Result if
SESL Logical Operation arg1=1100
and arg 2= 1010
0 null {bits always = 0; logical inverse of BOOL F) 0000
1 not OR (1 iff *corresponding bits of both arg 1 and arg 2 = 0;) 0001
2 (1 iff *corresponding bits of arg2 =1 and arg 1 = 0;) 0010
3 binary complement of arg 1 (1 iff *bitofarg 1=0;
otherwise 0) 0011
(1 iff *corresponding bits of arg 2 = 0 and arg 1 = 1;) 0100
5 binary complement of arg 2 (1 iff *bit of arg 2 = 0) 0101
6 exclusive OR (1 iff *corresponding bits of arg 1 and arg 2
are different) 0110
7 not AND (0 iff*corresponding bits of both arg 1 and arg 2 = 1) 0111
8 AND (1 iff *corresponding bits of both arg 1 and arg 2 = 1) 1000
9 equivalence (1 iff *corresponding bits are the same; i.e., both
=1 or both = 0) 1001
A arg 2 (identical to bits of arg 2) : 1010
B arg 1—arg 2 (arg 1 implies arg 2; 1 unless arg 1=1 and arg 2=0) 1011
C arg 1 (identical to bits of arg 1) 1100
D arg 2—arg 1 (arg 2 implies arg 1; 1 unless arg 2=1 and arg 1=0) 1101
E OR (1 unless both corresponding bits = Q) 1110
F identity (bits always = 1; logical inverse of BOOL 0) ' 111

*iff = if and only if

65

BOOL Section VIl General BASIC Statements and Functions

(NOT ON 2200A)

—_=

Two types of logical operations may be performed:
1. Immediate. Indicated by the second argument in the statement being two digits.
2. String-to-String. Specified by the second argument in the statement being a variable.

Immediate Logical Operations
The logical operation specified by the hex digit after ‘BOOL’ is performed using the character specified

Example:

BOOL 3 (A$, 00) complements each character in the value of AS.

String-to-String Logical Operations

The logical operation specified by the hex digit following ‘BOOL’ is performed on the characters in
the first alphanumeric variable with the characters of the second alphanumeric variable on a character by
character basis starting with the first character of each variable. The first variable receives the result. |f the
second variable is shorter than the first variable, the remaining characters in the first value are unchanged.
If the second variable is longer than the first, the remaining characters are ignored.

Example:
if A$ = HEX (4145) and B$ = HEX (2185),

BOOL 7 (A$, B$) sets A$ = HEX (FEFA). -
Examples:
10 BOOL1 (A$, FO)
20 BOOL7 (A$, B$)
30 BOOLE (STR(AS$, I, 2), A5)
40 BOOLS (A$, STR(BS, 2, 3)
—

66

Section VIl General BASIC Statements and Functions COM

General Form: COM com element [, comelement] ...
numeric scalar variable
where numeric array variable (integer [, integer])
alpha scalar variable [length integer]
alpha array variable (integer [, integer]) [length integer]
0 < length integer < 64
0 < integer < 255

com element =

Purpose

The COM statement defines scalar variables or arrays which are to be used in common by several
program segments. Common variables are stored in an area of memory which is not cleared when subse-
guent programs are run,.

When a program is run, previously existing common variables and their values are not disturbed.
However, all non-common variables are cleared from memory. Common variables are only removed from
the system when a CLEAR or CLEARV command 15 executed or the system is Master Initialized (i.e.,
turned on). The COM statement also provides array definition identical to the DIM statement for array
variables; the syntax for one COM statement can be a combination of array variables (A(10), B(3,3)) and
scalar variables (C2, D, X$). Integers must be used for array dimensions.

The common area variables must be defined before any other variable in the program is defined.
Therefore, COM statements should be assigned the lowest executable line numbers in the program.

The following general rules apply to the COM statement:

1. A COM statement must not change the dimensions of a previously defined common variab!

2. Common variables must be defined before any noncommon variables are defined, or referred to in
the program.

3. The number of array elements must not exceed 4096 in any one array.

The COM statement can be used to set the maximum length of alphanumeric variables (the maximum
length is assumed to be 16 if not specified). The length integer (<64) following the alpha scalar {or alpha
array) variable specifies the maximum length of that alpha variable (or those array elements).

If a particular set of common variables are to be used in several sequentially run programs, the COM
statements do not have to appear in any program other than the first. The variables will remain defined as
common variables with the originally defined dimensions, lengths and values in subsequent programs. The
COM statements may however, be included in subsequent programs (with identical dimensions and lengths)
and new common variables may be defined. Some or all common variables may be defined as non-common
with the COM CLEAR statement.

Examples:
10 COM A(10),B(3,3),C2
20 COM C, D(4,14), E3, F(6), F1(5)
30 COM M1$, M$(24), X,Y
40 COM A$10, B$(2,2) 32

67

COM CLEAR Section VIl General BASIC Statements and Functions

(2200cC, T, WCS/20, WCS/30 ONLY)

General Form:

array designator

COM CLEAR [sca|ar variable]

Purpose

Either defines as non-common some or all previously defined common variables, or defines as common
some or all previously defined non-common variables.

When a variable is not specified in a COM CLEAR statement, all currently defined common variables
are redefined as non-common variables.

When a common scalar variable or array designator is listed in the COM CLEAR statement, all common
variables which are defined in the program prior to the specified variable or defined in previous program
segments are left as common variables; the specified common variable and all variables defined after it in
the program are made non-common variables.

When a non-common variable or array designator is listed in the COM CLEAR statement, all occurrences
of non-common variables defined earlier are made common.

COM CLEAR is extremely useful with program overlaying (chaining) to specify which variables are to
be removed from the system when the overlay is performed.

All common variables are eliminated during overlaying. COM CLEAR also may be useful when debugging
programs involving common variables, temporarily defining them as non-common for debugging. If the
variable specified in the COM CLEAR statement is not defined, error 02 results.

Examples:
:10 COM CLEAR Redefines all previously defined
common variables as non-common.

:11T0COM A, B, X, Y (10)

:200 COM CLEAR X Redefines X and Y as non-common

:10 DIM X (10, 10)

20A=B+C .

:30 COM CLEARB Redefines X and A as common variables

68

Section VIl General BASIC Statements and Functions CONVERT

(NOT ON 2200A)

General Forms: 1. CONVERT alpha variable TO numeric variable
or
2. CONVERT expression TO alpha variable, (image)

where: image = [+] [#...] [.] [#...] [1111]
0 <number of #'s < 14

Purpose
Alpha-to-Numeric Conversion

The CONVERT statement used with the first form converts the number represented by ASCII characters
in the alphanumeric variable to a numeric value and sets the numeric variable equal to that value. For
example, if A$ = “1234"”, CONVERT A$ TO X sets X = 1234. An error will result if the ASCII characters
in the specified alphanumeric variable are not a legitimate BASIC representation of a number. Part of an
alphanumeric value can be converted to numeric by using the STR function. For example,

CONVERT STR(AS, 1,8) TO X

Alpha-to-numeric conversion is particularly useful when numeric data is read from a peripheral device in a
record format that is not compatible with normal BASIC DATALOAD statements, or when a code
conversion is first necessary. It also can be useful when it is desirable to validate keyed-in numeric data
under program control. (Numeric data can be received in an alphanumeric variable, and tested with the
NUM function before converting it to numeric.)

Numeric-to-Alpha Conversion
The CONVERT statement used with the second form converts the numeric value of the expression to an
ASCII character string according to the image specified; the alphanumeric variable is set equal to that char-
acter string. The image specifies precisely how the numeric value is to be converted. Each character in the
image specifies a character in the resultant character string. The image is composed of # characters to
signify digits and optionally +, —, ., and 1 characters to specify sign, decimal point, and exponent characters.
The image can be classified into two general formats:

Format Example:
Fixed Point HHHH
Exponential #H#REIIT

Numeric values are formatted according to the following rules:

1. If the image starts with a plus (+) sign, the sign of the value (+ or -) precedes the character string.

2. If the image starts with a minus (-) sign, a blank for positive values and a minus (=) for negative values
precedes the character string.

3. If no sign is specified in the image, sign is omitted from the character string.

4. If the fixed point image is used, the value is edited into the character string as a fixed point number,
truncating or extending with zeros any fraction, and inserting leading zeros according to the image
specification. The decimal point is edited in at the proper position. An error will result if the numeric
value exceeds the image specification.

5. If the exponential image is used, the value is edited into the character string as a floating point
number. The value is scaled as specified by the image (there are no leading zeros). The exponent is
always edited in the form: E £ XX.

69

CONVERT Section VIl General BASIC Statements and Functions

(NOT ON 2200A) —~

Numeric to Alpha conversion is particularly useful when numeric data must be formatted in character
format in records (especially for alphanumeric sorting).

Examples:

10 CONVERT A$TO X
20 CONVERT STR(AS, 1, NUM(A$)) TO X(1)

Examples:
{numeric to alpha)

10 CONVERT X TO AS, (###)
(result: A$ ="012") where: X = 12.195
20 CONVERT X*2 TO AS, (+##.##)
(result: A$ = "'+24.39")
30 CONVERT X TO STR(AS, 3, 8), (-#.#1111)
(result: STR(AS, 3, 8) =" 1.2E+01")
40 CONVERT X TO AS, (####.#####)
(result: A$ = *0012.19500")

70

Section VIl General BASIC Statements and Functions DATA

General Form: DATANn[,n]...
where n = number or a character string enclosed
in double quotation marks.

Purpose

The DATA statement provides the values to be used by the variables in a READ statement. The READ
and DATA statements thus provide a means of storing tables of constants within a program.

Each time a READ statement is executed in a program the next sequential value(s) listed in the DATA
statements of the program are obtained and stored in the variable(s) listed in the READ statement. The
values entered with the DATA statement must be in the order in which they are to be used: items in the
DATA list are separated by commas. |f several DATA statements are entered, they are used in order of
statement number. Numeric variables in READ statements must reference numeric values; alphanumeric
variables must reference character strings enclosed in quotation marks ('’).

The RESTORE statement provides a means to reset the current DATA statement pointer (and reuse the
DATA statement values (see RESTORE).

The DATA statement may not be used in the Immediate Mode.

Example:

:10 READW

:20 PRINT W, wt2

:30 GOTO 10

:40 DATAD, 8.26, 14.8, -687, 22

:RUN

5 25

8.26 68.2276
14.8 219.04
-687 471969
22 484

10 READ W
tERR27 (insufficient data)

In the above example the 5 values listed in the DATA statement are sequentially used by the READ
statement and printed. When a 6th value is requested, an error is displayed since all DATA statement values
have been used.

Examples:

40 DATA4,3,5,6
50 DATA 6.56E + 45, -644.543
60 DATA "BOSTON, MASS”, “SMITH", 12.2

NOTE:

On the 2200A, statements following DATA statements on
multiple statement lines are not executed.

71

DEFFN Section VI1 General BASIC Statements and Functions

General Form: DEFFN alv) = expression

where a = the identifier, a letter or digit which identifies the function
v a numeric scalar variable, the dummy variable

Purpose

The DEFFN statement is used to define a user's unique functions. Once defined, these functions can
be used in expressions from any other part of the program. The function provides one dummy variable
whose value is supplied when the function is referenced. Defined functions can be referenced up to five
levels. The following program lines illustrate how DEFFN is used.

10 X=3
:20 DEFFN A(Z)=212-2Z
:30 PRINT X + FNA (2*X)
:40 END
:RUN
33
Processing
1. Evaluate the FN expression for the scalar variable (i.e., 2*X=6).
2. Find the DEFFN with the matching identifier (i.e., A).
3. Set the dummy variable (line 20) equal to the value of evaluated expression (i.e., Z=6).
4. Evaluate the DEFFN expression and return the calculated value (i.e., Z12 - 2).
The above example prints the value 33, since 3 + (612 - 6 = 33).

The DEFFN statement may be entered any place in a program, and the expression may be any formula
which can be entered on one line. A function cannot refer to itself (e.g., the statement DEFFN A (X) =
X + FNA(X) is illegal); it can refer to other functions. Up to five levels of function nesting are permitted.
For example, the statements: DEFFN1(A) = 3* A

DEFFN2 (A) = A+FN1 (A)

DEFFN3 (J) = J+FN2(J)

DEFFN4 (1) = FN3(1)/I

DEFFN5 (K) FN4 (K)

DEFFNG6 (L} = FN5 (L)
are nested to six levels and produce ERR 09 at execution time. Two functions cannot refer to each other
(an endless loop); for example, the following combination of statements is illegal.

DEFFNA (A) FNB (A)

DEFFNB (A) FNA (A)
A reference to a DEFFN statement cannot be made from the Immediate Mode. The dummy scalar
variable in the DEFFN statement can have a name identical to that of a variable used elsewhere in the
program or in other DEFFN statements; current values of the variables are not affected during FN
evaluation.

It

Examples:

60 DEFFN A (C) =(3*A) -8C + FNB (2-A)
70 DEFFNB (A)=(3*A) -9/C
80 DEFFN4(C) = FNB(C) * FNA(2)

72

Section VIl General BASIC Statements and Functions DEFFN’

General Form:
DEFFN' integer (variable [, variable] . ..)
or all systems

DEFFN' integer ‘‘character string”’

or {“character string’’ [; f ““character string”’ 2200C, 2200T
DEFFN integer | HEX(hh[hh] ... [;1 HEX(hh[hh]. .)}]} WCS/20, WCS/30
systems only
where integer =) 0 to 31 for keyboard special function key entries
0 to 255 for internal program references

Purpose

The DEFFN’ statement has two purposes:

1. To define a character string to be supplied when a special function key is used for keyboard text entry.

2. To define keyboard special function key or program entry points for subroutines with argument passing

capability.

The DEFFN’ statement must be the first statement on a line (i.e., it must immediately follow the line
number). DEFFN’' may not be used in immediate mode.

KEYBOARD TEXT ENTRY DEFINITION: To be used for keyboard entry, the integer in the DEFFN’
statement must be a number from O to 31, representing the number of a special function key. When the
corresponding special function key is pressed, the user’s “character string’’ is displayed and becomes part
of the currently entered text line. The character string is all characters included between the double
quotation marks.

For example, statement 100 defines special function key number 12 as the character string “HEX ("
:100 DEFFN’ 12 “"HEX({"

Pressing special function key number 12 after the following has been keyed in

:200 PRINT

results in the following line being displayed

1200 PRINT HEX(

Example:

500 DEFFN’ 1 “REWIND”
DEFFN’ HEX (not on 2200A or B; on 2200S and WCS/10 only with Advanced Programming Statements)
The character string may be represented by a character string in quotes, a HEX function or a com-
bination of those elements. For example, line 20 defines Special Function key 01 as the character string
"“LOAD/10B carriage return:’’

20 DEFFN’ 01" LOAD/10B"";HEX(0D)

NOTE:
The Special Function keys can be defined to output char-
acters that do not appear on the keyboard by using the
HEX function to specify the codes for these characters.

73

DEFFN' Section VIl General BASIC Statements and Functions

Examples:
10 DEFFN’ 31 “PRINT HEX("”
40 DEFFN’ 12 HEX (1F)
50 DEFFN’ 02 “PRINT"; HEX(22); “ANYONE CAN PLAY!"; HEX(220D)

NOTE:
When using Special Function keys for Immediate Mode
execution, HEX(0D) must be the last character.

MARKED SUBROUTINE ENTRY DEFINITION

The DEFFN’ statement, followed by an integer and an optional variable list enclosed in parentheses,
indicates the beginning of a marked subroutine. The subroutine may be entered from the program via a
GOSUB' statement (see GOSUB’), or from the keyboard by pressing the appropriate special function key.
If subroutine entry is to be made via a GOSUB’ statement, the integer in the DEFFN’ statement can be any
integer from O to 255; if the subroutine entry is to be made from a special function key, the integer can be
from O to 31. When a special function key is depressed or a GOSUB’ statement is executed, the BASIC
program is scanned for a DEFFN’ statement with an integer corresponding to the number of the special
function key or the integer in the GOSUB’ statement. Execution of the program then begins at that state-
ment (i.e., if special function key 2 is pressed, execution begins at the DEFFN’ 2 statement).

When a RETURN statement is encountered in the subroutine, control is passed to the program statement
immediately following the last executed GOSUB’ statement, or back to keyboard entry mode if entry was
made by touching a special function key. The DEFFN’ statement may optionally include a variable list. The
variables in the variable list receive the values of arguments being passed to the subroutine; if the number
of arguments to be passed is not equal to the number of variables in the list, an error results. In a GOSUB’
subroutine call made internally from the program, arguments are listed (enclosed in parentheses and separ-
ated by commas) in the GOSUB' statement (see GOSUB').

Example:

1100 GOSUB’ 2 (1.2, 3+2 * X, “JOHN")

:1560 STOP
:200 DEFFN’ 2 (A, B(3), C$)

:290 RETURN

For special function key entry to a subroutine, arguments are passed by keying them in, separated by
commas, immediately before the special function key is depressed.

Example:

:11.2, 3.24, “JOHN" (now depress special function key 2)

The DEFFN’ statement need not specify a variable list. In some cases it may be more convenient to
request data from a keyboard in a prompted fashion.

74

Section VIl General BASIC Statements and Functions DEFFN'’

Example:

100 DEFFN’ 4

110 INPUT “RATE”, R
120 C=100+ R - 50
130 PRINT “COST=";C
140 RETURN

When a DEFFN’ subroutine is executed via keyboard special function keys while the system is awaiting
data to be entered into an INPUT statement, the INPUT statement will be repeated in its entirety, upon
return from the subroutine.

Example:

100 INPUT “ENTER AMOUNT"” A

200 DEFFN’ 1
210 INPUT “ENTER NEW RATE" R
220 RETURN

DISPLAY: ENTER AMOUNT?
(Depress Special Function Key 1)
ENTER NEW RATE? 7.5
ENTER AMOUNT?

DEFFN!’ subroutines may be nested (i.e., call other subroutines from within a subroutine).

NOTE:
The DEFFN’ statement may be used in conjunction with the
special function keys to provide a number of entry points to
run a program. Because, however, the system stores DEFFN’
return information in a table, this should not be done repeti-
tively unless:
1. The RESET key is depressed prior to the special function
key.
2. Program operation terminates with a RETURN state-
ment (back to keyboard mode).
Failure to do this will eventually cause a table overflow error
(ERR 02). To eliminate this problem; use the RETURN
CLEAR statement (not available on a 2200A or B).

75

DIM

Section VII General BASIC Statements and Functions.

—

General Form: DIM dim element [, dim element] .. .-
where numeric array variable {integer [, integer])
dim element = {alpha array variable (integer [, integer]) [length integer] }
alpha scalar variable [length integer]
0 < length integer < 64 0 <integer < 255

Purpose

The DIM statement reserves space for one or two dimensional array variables which are referenced in the
program. Space may be reserved for more than one array with a single DIM statement by separating the
entries for array names with commas as shown in line 40 of the example below.

DIM statements must appear before any use of the variables in the program, and the space to be
reserved must be explicitly indicated — expressions are not allowed.

The following rules apply to the use and assignment of array variables in a DIM statement.

1. The numeric value of the subscript of the first element must be 1; zero is not allowed.

2. The dimension(s) of an array cannot exceed 255; the dimensions must be integers.

3. The number of array elements must not exceed 4096 in any one array.

The DIM statement can also be used to set the maximum length of alphanumeric variables {the maximum
length is assumed to be 16 if not specified). The integer (< 64) following the alphanumeric variable or alpha

_
array variable specifies the maximum length of that alpha variable (or those alpha array elements).
Examples:

20 DIM 1{45) Reserves space for a 1-dimensional array of 45 elements.

30 DIMJ (8, 10) Reserves space for a 2-dimensional array of 8 rows and 10 columns.

40 DIM K(35), L(3), M(8,7) Reserves space for two 1-dimensional and one 2-dimensional array.

50 DIM A$32 Sets the maximum fength of the variable A$ = 32 characters.

60 DIMB${(4,4) 10 Reserves space for the 2-dimensional alpha array with the maximum

length of each array element = 10 characters.
-y
4%
s\
b
—_

76

Section VIl General BASIC Statements and Functions END

General Form: END

Purpose

This is an optional program statement used to compute the amount of free space remaining in memory.
It need not be the last executable statement in a program. More than one END statement may be used
in a program.

When the system executes an END statement, the following message is printed out.

END PROGRAM
FREE SPACE = xxxxx

and program execution terminates. "xxxxx"’ is the approximate amount of memory (in bytes) not used by
this program.

In addition, when a program is being keyed into the system, an END statement may be entered without a
line number (immediate mode) to obtain the FREE SPACE available at any particular time in the system.

Example:

1100 X=24 - 2*4
:110 PRINTY,X
:END

END PROGRAM
FREE SPACE = 2379

The amount of free space displayed when END is executed is determined in two different ways:

1. When program is keyed in or loaded from a tape or other peripheral device following a CLEAR
command, the free space displayed after entering an END statement in immediate mode reflects only
the space occupied by the program.

2. After the program has been executed once, the free space displayed after either an immediate mode
END or a program executed END reflects both the space taken up by the program and variables.

Example:
999 END

77

FN Section VIl General BASIC Statements and Functions
FUNCTION

General Form: FN a (expression)

where a is a function identifier previously defined
in a DEFFN statement

Purpose
This function is used to refer to or call a function previously defined in a DEFFN statement which

contains the same identifier. The variables in the FN expression need not be the same as the dummy
variable in the associated DEFFN statement (see DEFFN).

Examples:
10 DEFFN A(A)=3* A
20J=FNA (B) + K

78

-
Section VIl General BASIC Statements and Functions FOR

General Form: FOR v = expression TO expression [STEP expression]
where v = a numeric scalar variable

Purpose

The FOR statement, and the NEXT statement, are used to specify a loop. The FOR statement is used at
the beginning of the loop; the NEXT statement at the end. The program lines in the range of the FOR
statement are executed repeatedly, beginning with v = *1st expression’; thereafter, v is incremented by
the value specified in the STEP expression until the value of v passes the limit specified by the TO expression.
The STEP portion of the statement may be positive or negative or may be omitted. If omitted, a step size of
+1 is assumed. A STEP expression is evaluated only once, at the first entry to the loop. Loops may be
nested with no limit.

If illegal values are assigned to the parameters in a loop (i.e., if the increment designated by STEP is in the
wrong direction or 0), the loop is executed once only and program execution continues, Examples of
invalid values are:

FORR=1TO 10 STEP -1 Wrong Direction of STEP Expression.
FORR=-1TO-10 STEP 1 Wrong Direction of STEP Expression.
FORR=1TO 10 STEPO STEP Expression equals 0.

A loop is executed to completion only if the values assigned the parameters are valid. The following
restrictions apply to the use of FOR loops:

1. Branching into the range of a FOR loop from the loop is not permissible (GOTO, GOSUB, |F-THEN).

2. Branching out of range of a FOR loop is permissible; however, to conserve memory, it should not be
done repeatedly unless a subsequent normal termination of an outer loop occurs or unless the loop is
completely contained in a GOSUB routine. If repetative branches are made out of FOR toops, without
terminating the loops, the FOR loop information is accumulated in an internal compiler table. This
will eventually cause a table overflow condition (ERROR 02). See examples illustrating legal branches
out of a loop .

3. Branching out of a FOR loop with a RETURN statement is legal but the loop is considered to be
complete (i.e., branching back into the loop is illegal and an error message will be issued when the
NEXT statement is encountered).

Example:

READY

:20 FOR Z3 = A(K) TO -COS(J) STEP -8 +.INT(P(2))
:30 R(Z3) = A(K) + A(Z3)

:40 FOR Z4 = R(Z3) TO A(K) : Q(Z4) = 2#Z4+R(Z3)
:50 PRINT Q(24), “VALUE"” ,FN6(Q(Z4))

:60 NEXT Z4: NEXT Z3

79

FOR Section VII General BASIC Statements and Functions

Example:

:TOOFOR1=1T0 X

:1101F A(1) > 100 THEN 130

120 1=X :NEXT | : GOTO 200 Legal branch out of FOR loop which
:130 M=M+ A(l) - B(|) properly terminates loop to avoid
140 NEXT | accumulation of FOR loop information

in internal compiter stack.

:200 C = M+100/I -]

Example:

READY

:20 FOR X =1T050
:30 PRINT X, SQR(X)
:40 NEXT X

Example: -
READY]

50 GOTO 70
[: 60 FOR I1=1TO 10 STEP 2 L lllega! branch into a FOR loop
:70 LET (Z1) = FNA(1)-LOG(I)

:90 NEXT 1 —

100 FORJ=1TO4
110 FORK=1TO 6

:120 IF Z(K) > 10 THEN 160
1150 NEXT K \
:160 NEXT J

:200 GOSUB 300 Proper branches

l~— out of a
'''' FOR loop

FOR Loop :300 FOR X =.1TO Z STEP .05

within a :340 IF A(l) < 3.25 THEN 400
GosuB
routine :390 NEXT X

:400 RETURN —

80

Section VIl General BASIC Statements and Functions GOSUB

L __
General Form: GOSUB line number
Purpose

The GOSUB statement is used to specify a transfer to the first program line of a subroutine. The program
line may be any BASIC statement, including a REM statement. The logical end of the subroutine is a RE-
TURN statement which directs execution of the system to the statement following the last executed GOSUB.
The RETURN statement must be the last executable statement on a line, but may be followed by non-
executable statements as shown below:

READY
1120 X = 20:GOSUB 200: PRINT X
1125

:200 REM SUBROUTINE BEGINS

210 RETURN: REM SUBROUTINE ENDS

The GOSUB statement may be used to perform a subroutine within a subroutine (i’e., a nested GOSUB).
This statement may not, however, be used to branch a program within a FOR loop where a NEXT state-
ment will be encountered before a RETURN statement is encountered. Use of GOSUB is not permitted in
the immediate mode; a GOSUB statement may not be the last statement in a program.

Repeated entries to subroutines without executing a RETURN or RETURN CLEAR should not be
made. Failure to execute a RETURN or RETURN CLEAR causes information to be accumulated in a
table which eventually causes a table overflow error, (ERR 02).

Example:

READY

:10 GOSUB 30
™ :20 PRINT X: STOP __
:30 REM THIS IS A SUBROUTINE The
140 -- subroutine)
:60 --

— [:90 RETURN: REM END OF SUBROUTINE |

81

GOSuUB Section VII General BASIC Statements and Functions

——

NESTED SUBROUTINES

READY
:10 GOSUB 30
—:20 READ Q: STOP

:40
:50
:70 GOSUB 150

»:80 PRINT Q
190 --

:110

—

lllegal GOSUB Transfer into FOR Loop

READY
:500 GOSUB 750

—:30 REM THIS IS A SUBROUTINE T

:150 REM THIS IS A NESTED SUBROUTINE ---=

r_:200 RETURN: REM END OF NESTED SUBROUTINE--i

:100 RETURN: REM END OF SUBROUTINE 30 L subroutine

-
]
[}
]
]
\

A nested-subroutine -
1
]

—_—

FOR
Loop

:700 FOR I =20 TO 50

1760 NEXT |

1750 LET A(l) = LOG(12%A) ~ Z(I)<—

1770 RETURN

82

- Next statement occurs before RETURN

_ Section VIl General BASIC Statements and Functions GOSUB

General Form: GOSUB' integer [{ subroutine argument [, subroutine argument] ...)]
where 0 < integer < 256
character string in quotes
subroutine argument ={ alphanumeric variable }
expression

Purpose

The GOSUB* statement specifies a transfer to a marked subroutine rather than to a particular program
line as with the GOSUB statement; a subroutine is marked by a DEFFN’ statement (see DEFFN’). When a
GOSUB’ statement is executed, program execution transfers to the DEFFN’ statement having an integer
identical to that of the GOSUB' statement (i.e., GOSUB’ 6 would transfer execution to the DEFFN’ 6 state-
ment). Execution continues until a subroutine RETURN statement is executed. The rules applying to
GOSUB usage also apply to the GOSUB' statement. Unlike a normal GOSUB, however, a GOSUB' statement
can contain arguments whose values can be passed to variables in the marked subroutine.

The values of the expressions, literal strings, or alphanumeric variables are passed to the variables in the
DEFFN’ statement (see DEFFN’). Elements of arrays must be explicitly referenced.

Use of GOSUB’ is not permitted in Immediate Mode; GOSUB’ may not be the last statement in a
program.

Repetitive entries to subroutines without executing a RETURN or RETURN CLEAR should not be
made. Failure to execute a RETURN or RETURN CLEAR causes return information to accumulate in a
table which could eventually cause table overfiow error, (ERROR 02).

Example:

READY

:100 GOSuB’ 7

1150 END

:200 DEFFN’ 7 :SELECT PRINT 211 (80)
:210 RETURN

Example:

READY

:25 GOSUB’ 12 (""JOHN", 12.4, 3*X+Y)
:30 END

:100 DEFFN’ 12 (A$,B,C(2))

:110 PRINT AS$,B,C(2)

:120 RETURN

83

GOTO

Section VIl General BASIC Statements and Functions

—_—

General Form: GOTO line number

Purpose

This statement transfers execution to the specified line number; execution continues at the specified
line.

The GOTO statement can also be used in the immediate mode to permit the user to begin stepping
through program execution from a particular line number. The GOTO statement sets the system at the
specified line; execution does not take place until the user touches the HALT/STEP key or enters a
CONTINUE command.

Example:

READY

:10J=25

:20 K=15

:30 GOTO 70

:40 Z=J+K+L+M
:60 PRINT Z, Z/4

:60 END

:70 L=80 —
:80 M=16

:90 GOTO 40

:RUN

136 34

END PROGRAM displayed

FREE SPACE = 3841 output

84

P

HEXPRINT

Section VIl General BASIC Statements and Functions
(NOT ON 2200A)

General Form: HEXPRINT J @/Pha variable . + | @lpha variable oL
alpha array designator ; | alpha array designator

Purpose

This statement prints the value of the alpha variable or the values of the alpha array in hexadecimal
notation. The printing or display is done on the device currently selected for PRINT operations (see
SELECT). Trailing spaces, HEX(20), in the alpha values are printed. Arrays are printed one element after
another with no separation characters. The carriage return is printed after the value(s) of each alpha variable
(or array) in the argument list, unless the argument is followed by a semi-colon. If the printed value of the
argument exceeds one line on the CRT display or printer, it will be continued on the next line or lines. Since
the carriage width for PRINT operations can be set to any desired width by the SELECT statement, this
could be used to format the output from arguments which are lengthy.

Example:

:10 A$="“ABC”

:20 PRINT “HEX VALUE OF A$=":
:30 HEXPRINT A$

:RUN

HEX VALUE OF A$=41424320202020202020202020202020

Examples:

:100 HEXPRINT A$, B$(1), STR(CS, 3, 4)
:110 HEXPRINT AS; BS;
1120 HEXPRINT X$()

85

IF END THEN ‘Section VII General BASIC Statements and Functions

General Form: IF END THEN line number

Purpose

This statement is used to sense an end of file (i.e., trailer record) when reading data files. 1f an end of file
(trailer record) has been encountered during the last data file read operation (DATALOAD), a transfer is
made to the specified line number. The end-of-file condition is reset by the IF END statement, any subse-
qguent DATALOAD operation, or when program execution is initiated. When a trailer record is read,
during a DATALOAD statement, it causes the end-of-file indicator to be set and variables in the DATA-
LOAD argument list to remain unchanged.

Example:

READY

:100 DATALOAD A, B, C$
:110 IF END THEN 130
1120 GOTO 100

:130 PRINT A, B, C$

In this example, values are loaded continuously from tape until the end-of-file (EOF) is encountered;
execution then continues at line 130.

86

—

Section VII General BASIC Statements and Functions IF...THEN

D .

General Form: <
<=
IF operand ;= operand THEN line number
>
<>
literal string
where operand = < alpha or numeric variable
expression
Purpose

The IF statement is a conditional GOTO; it causes the system to go to the line number following THEN,
provided a specified condition is met.

If the value of the first item in the |F statement is in the specified relationship to the second item, pro-
gram execution goes to the line number following THEN. If the specified relationship is not met, the
program execution continues with the next-statement.

1f two alphanumeric values are being compared, the ‘<" operator is interpreted as “‘earlier in the
collating sequence’’; and the “>'" operator, as “later in the collating sequence’”. The ASCII codes (see

~~ Appendix B) of the characters in the alpha values determine the collating sequence. For example, the
character 1 falls earlier than A in the collating sequence since the ASCI| hexcode for 1=31 and the ASCI|I
hexcode for A=41. Trailing blanks (hexcode = 20) are ignored in any comparisons (e.g., “YES’ = “YES ")
and an error occurs if numeric values are compared with alpha values.

The |IF statement cannot be used in the Immediate Mode.

Examples:
40 IF A<B THEN 35
50 IF A$ = “YES" THEN 100
60 IF A$=HEX(8082) THEN 200
70 IF X(1) <> 001 THEN 350
80 IF STR(AS$,1,3) < B$(1) THEN 500

87

(o)
Image (A)) Section VII General BASIC Statements and Functions

format specification
character string [...]
character strings cannot contain #’s or colons (:)

General Form: {
(o)

d#L

+]1 #II (integer)
where format specification = -1 [#..
$1 [#

.
L1 #0001 UI#... 1 (fixed point)
LI#EGCTL #1111 (exponential)

Purpose

This statement provides an image line for formatting output generated by literals and variables in a
corresponding PRINTUSING statement. The Image (%) statement contains text characters and format
specifications; the formats must be in the same order as the variables in the corresponding PRINTUSING
statement. Text characters and formats can be interspersed as needed. The Image statement can be placed
anywhere in a program; it should have a corresponding PRINTUSING statement. The Image statement must
be the only statement on the program line.

Each format specification must have at least one #; it can.begin with any of the allowed characters.
A comma {,) can be placed in the integer portion of a format, so long as it is not the first character of a
format and precedes any decimal point (.) or up-arrow (1).

NOTE:
A format specification used for numeric output can contain
no more than 16 #’s and, in exponential format must contain
t’s as its last four characters.

An Image statement with no formats generates ERR 36; one with less than four t's in exponential
format generates ERR 38.

Examples:
10% CODE NO. = #### COMPOSITION = ####
600% #### UNITS AT $#,###.## PER UNIT

800% +#.## 1111
920% ### #HHHH HHH H
There are three types of format specifications as follows:

Type of format Examples of format .
integer #H## # ### HH#A# HHEH SH#HAH#H
fixed point ##.## +# #HH AH —-#HH#BH SHHEHAH FHHH
exponential #.##M1MY #H# #HHAHIMT #HHA#E I

Values passed to the Image statement from the corresponding PRINTUSING statement are output

according to the format in the Image statement in two forms; there is one form for numeric values and
another for alpha values and literals.

88

-

Section VIl General BASIC Statements and Functions Image (%)

Numeric Values
1. The value is output according to the corresponding format as follows:
integer format: The integer part of the value is output, fractions are truncated and preceding
blanks inserted.
fixed point format: The value is output as a fixed point number; fractions are truncated or filled with

zeros and preceding blanks are inserted.
exponential format: The value is output in floating point exponential format; it is scaled as required

by the format and digits are output as integers or fractions as specified by the format. No preceding
blanks are inserted. The exponent is output as E * ee, where ee are the digits of the exponent.

2. If the format begins with a number sign (#) or a decimal point {.), and the value is positive, the value is
output according to the format; if the value is negative, a minus (=) precedes the value and the
length of the format is increased by one.

3. If the format begins with a plus (+), the sign of the value is placed before the value’s first significant
digit.

4. If the format begins with a minus (), a positive value is preceded by a blank and a negative value,
by a minus.

5. If the format begins with a dollar sign, $, the value is preceded by a $.

6. If the format contains commas (,) in its integer portion, the commas are output as specified, unless
the value has too few significant digits for the commas to be used.

7. If the length of the value being formatted is less than the length of the format (i.e., it is over-
formatted), the value is right justified when output. If the length of the integer portion of the value
being formatted is greater than the length of the format (i.e., it is under-formatted), the format
specification itself is output.

Alpha Values and Literals
1. The value of any alpha scalar, the element of any alpha array or any literal replaces the format in an
Image statement character-for-character, from left to right.

2. If the value is shorter than the format, blanks are inserted at the right.

3. If the value is longer than the format, the value is truncated at the right.

Example 1:
10 PRINTUSING 20, 1242.3, 73694.23
20% TOTAL SALES= #### VALUE $### ### ##

Two fixed point values are output in integer and fixed point form. The first value is truncated; the
second value is preceded by a $.

Output: TOTAL SALES= 1242 VALUE $73,694.23

Example 2:
10 PRINTUSING 20,2. 13E-5, 2. 3E-9
20 % COEFF. =+, ###1111t ERROR=—##1111

Two exponential values are output in exponential form. The values are both scaled so that no significant

" digits are lost with the formats given.

Output:
COEFF =+ .213E-04 ERROR= 23E-10

89

Image (%) Section VII General BASIC Statements and Functions

~

Example 3:
10 PRINTUSING 20, 2. 13E-5,2. 34E-99
20 % COEFF =+. ###111* ERROR=—##1111

Two exponential values are output in exponential form. The exponent of the second value has exceeded
the legal range, so zeros are output.

Output: COEFF =+.213E-04 ERROR= 00E+00

Example 4:
10 PRINTUSING 20,2. 13E-5, 22. 3412356
20 % COEFF =+###1111 ERROR=-##.####

An exponential value and a fixed point value are output in exponential and fixed point formats. The
fixed point value is longer than the corresponding format and is truncated at the right.

Output: COEFF =+.213E-04 ERROR= 22. 3412

Example 5:
10 PRINTUSING 20,2. 13E-5, 422. 3412356
20 % COEFF =+, ###1111 ERROR=-##.#### -

An exponential value and a fixed point value are output in exponential and fixed point formats. The
integer portion of the fixed point value is longer than the corresponding format and the format itself is
output.

Output: COEFF =+. 213E-04 ERROR =—## ####

Example 6:
10 FORI=1TO 10
20 B=45
30 A=B*I
40 PRINTUSING 50,A
50 % ##H#HHHBHBRHBRHHH
60 NEXT I

A FOR/NEXT loop illustrates the use of a 16-digit Image statement. At the tenth pass, the value
output exceeds the format and the format itself is output.

Output:

45

2025
$311as
4100655

HH R ##‘

90

e

Section VIl General BASIC Statements and Functions INIT

(NOT ON 2200A)

General Form: hh . .
INIT [d7*character” alpha variable alpha variable
e alpha array designator(|,)alpha array designator{ "~

alpha variabl

where: h = hexdigit

Purpose

The INIT statement initializes the specified alphanumeric variable(s) and/or array(s). Each character in
the second and subsequent variables or arrays is set equal to the character specified inside the parentheses.
The character may be represented by two hexdigits, a single character literal or an alphanumeric variable.
If an alphanumeric variable is enclosed in the parentheses, the first character of the value of the alpha-
numeric variable will be used. ‘

The INIT statement is particularly useful when used in conjunction with other byte manipulation and

conversion statements. |t permits the user to initialize every character of the defined length of an alpha-
numeric variable to a known value such as zero.

Examples:

10 INIT (00) A8, B$(), C$

20 INIT (" ") A18(), BS()

30 INIT (FF) X$, STR(BS, 3, 8)
40 INIT (A$) BS()

91

INPUT Section VIl General BASIC Statements and Functions

General Form: INPUT [““character string’’,] variable [, variable] . ..
Purpose

This statement allows the user to supply data during the execution of a program already stored in memory.

If the user wants to supply the values for A and B while running the program, he enters, for example,

:40 INPUT AB

or

:40 INPUT “VALUE OF AB”,A,B
before the first program line which requires either of these values (A, B). When the system encounters this
INPUT statement, it outputs the input message, VALUE OF A, B, followed by a question mark (?) and
waits for the user to supply the two numbers. Once the values have been supplied, program execution
continues. The question mark and input request message are always printed on the console output
device. The device used for inputting data is the console input device unless another device has been
specified by using the SELECT INPUT statement (see SELECT).

Each value must be entered in the order in which it is listed in the INPUT statement and values
entered must be compatible with variables in the INPUT statement. If several values are entered on a
line, they must be separated by commas or entered on separate lines. Several lines may be used to enter -
the required INPUT data. To include leading blanks or commas as part of an alpha value, enclose the
value in double quotes (”'); for example, ’‘BOSTON, MASS.".

If there is a system-detected error in the entered data, the value must be reentered, beginning with the
erroneous value. The values which precede the error are accepted.

A user may terminate an input sequence without supplying all the required input values by simply
entering a carriage return (EXEC) with no other information preceding it on the line. This causes the system
to immediately proceed to the next program statement. The INPUT list variables which have not received
values remain unchanged.

When inputting alphanumeric data, the literal string need not be enclosed in quotes. However, leading

«(/‘ bwnored and commas act as string terminators.
‘\‘)/ Example 1:
:10 INPUT X
:RUN
?12.2 CR/LF
Example 2:
:20 INPUT “X,Y”, X, Y
:RUN
X,Y? 1.1, 23 CR/LF
Example 3:
:20 INPUT “MORE INFORMATION", A$
:30 IF A$="NO" THEN 50
:40 INPUT “ADDRESS”’, B$
:60 GOTO 20 —

:RUN
MORE INFORMATION? YES CR/LF
ADDRESS? “BOSTON, MASS’’ CR/LF

92

_ Section Vil General BASIC Statements and Functions INPUT

Example 4:
:10 INPUT “ENTER X", X
:RUN
ENTER X? 1.2734 CR/LF

SPECIAL FUNCTION KEYS IN INPUT MODE

Special function keys may be used in conjunction with INPUT. If the special function key has been
defined for text entry (see DEFFN’') and an INPUT statement is executed, pressing the special function
key causes the character string in the DEFFN' statement to be displayed on the CRT. The displayed value
is stored in the variable which occurs in the INPUT statement when the EXEC key is touched.

For example: 10 DEFFN’' 01 “COLOR T.V.”
:20 INPUT A$
:RUN
?
Now, pressing special function key ‘01
will cause “COLOR T.V.” to appear on the CRT.

?COLORT.V.
. 1+ CRT Cursor

If the special function key is defined to call a marked subroutine (see DEFFN’) and the system is
awaiting input, pressing the special function key will cause the specified subroutine to be executed. When
the subroutine RETURN is encountered, a branch will be made back to the INPUT statement and the
INPUT statement will be executed again. Repeated subroutine entries via special function keys should not
be made unless a RETURN or RETURN CLEAR statement is executed; otherwise return information
accumulates in a table and eventually causes a table overflow error (ERR 02).

For example The program illustrated at the top of the next page enters
and stores a series of numbers. Upon depressing special
function key ‘02, they are totaled and printed.

93

INPUT Section VIl General BASIC Statements and Functions

.

:10 DIM A(30)

20N =1

:30 INPUT “AMOUNT"”, A(N)
:40 N = N+1 :GOTO 30

:50 DEFFN’' 02

60T=0

:70FORI=1TON

:80 T = T+A(l)

90 NEXT I

:100 PRINT “TOTAL=":;T
1M0N =1
:120 RETURN
jRUN| |EXEC
AMOUNT? 7 [EXEC

AMOUNT? 5 EXEC

AMOUNT? 1

AMOUNT? (Depress special function key 2)
TOTAL =23

AMOUNT?

94

KEYIN

Section VIl General BASIC Statements and Functions
- (NOT ON 2200A)

General Form: KEYIN alpha variable, line number, line number

Purpose

This statement checks if there is a character ready to come in from the input device buffer and, if one is
ready, it reads the character into the system. For example, in the case of a keyboard, when a key is pressed,
that character is stored in a buffer and the device is set to ready (i.e., a character is ready to come in). The
following actions take place depending upon input conditions.

1. NOT READY — execution continues at the next statement.

2. READY WITH CHARACTER — the character is stored as the first character of the specified
alphanumeric variable and execution continues at the first KEYIN line number.

3. READY WITH SPECIAL FUNCTION KEY — the hex code representing the special function key
(hex 00 to 1F) is stored as the first character of the specified alphanumeric variable and execution
continues at the second KEYIN line number.

The device used is that device currently selected for INPUT (Console Input device unless selected

otherwise, see SELECT).

The KEYIN statement provides a convenient way to scan several input devices or to receive and edit

keyed in information on a character by character basis. KEYIN may not be used in the Immediate Mode.

Example:

10 KEYIN A$, 100, 200

20 KEYIN A$(1), 100, 100

30 GOTO 20

40 KEYIN STR(A$,1,1), 100, 200

Example:
10 DIM A$1
20 KEYIN A$, 30, 100: GOTO 20
30 PRINT A$: GOTO 20
100 PRINT “SPECIAL FUNCTION";: HEXPRINT A$: GOTO 20

Line 20 waits for a character to be entered or a special function key to be pressed. When a character is
entered it is displayed by line 30. When a special function key is pressed, it is displayed by line 100.

-~

95

LEN Section VIl General BASIC Statements and Functions

FUNCTION
S

—

General Form: LEN (alpha variable)

Purpose
Determines the number of bytes (characters) occupied by the current value of an alpha scalar, an alpha
array element or the result of an alpha function. It can be used wherever an expression is permitted.

NOTE:
Trailing blanks are not considered part of alpha variables
by the LEN function.

Example:
10 A$ = "ABCD”’
20 PRINT LEN (A$)
These program lines give the value 4 at execution time.

Example:
30 X =LEN (AS$) + 2
Combined with lines 10 and 20 above, this line assigns the value 6 to X at execution time.

Example:
110 IF LEN (A$(3)) <8 THEN 150

This line tests the length of the value placed in the third element of the array A$, compares it with 8 and ~
branches to line 150 if the relation is true.
Example:
10 A$ = “ABCD”
20 PRINT LEN (STR(AS$,2))
These lines give the value 15 at execution time. A$ is not explicitly dimensioned so the default value for
its length is 16 bytes. The STR function extracts the bytes from A$, starting at the second byte, to its end.
The length of such a value is 15.
Example:
10 DIM A$64
20 A$ = “ABCD”’
30 PRINT LEN (STR(AS$,POS(A$=20)))
These lines give the value 60 at execution time. The length of the alpha scalar is initially 64; the value of
the POS function is first determined, giving the position of the first blank character in A$. The STR
function then extracts the number of bytes from the first blank character to the end of the scalar.
NOTE:
The POS function is not available on a System 2200A, nor
on a 2200S or WCS/10 without the appropriate option.
—~

96

Section VIl General BASIC Statements and Functions LET

P

[LET] numeric variable [, numeric variable] ... = expression
or [LET] alpha variable [, alpha variable] ... = a_lpha var!able
literal string

Purpose

The LET statement directs the system to evaluate the expression following the equal sign and to assign
the result to the variable or variables specified preceding the equal sign. If more than one variable appears
before the equal sign, they must be separated by commas.

The word LET is, however, optional. If it is omitted, its purpose is assumed.

An error results if a numeric value is assigned to an alphanumeric variable or if an alphanumeric value is
assigned to a numeric value.

Example 1:

40 LET X(3), Z, Y=P+15/2+SIN(P-2.0)
Example 2:

50 LETJ=3
Example 3:

{Here, LET is assumed)
10 X=A*E-Z*Y

:20 A$ = B$

:30 C$, D$(2) = “ABCDE"”

Example 4:
10 C$ = ‘ABCDFE’
20 A$ = “123456"
30 D$ = STR(A$,2)
40 E$ = HEX(41)
50 PRINT A$, C$, D$, ES

This routine produces the following output at execution time:
123456 ABCDE 23456 A

97

LET Section VII General BASIC Statements and Functions

Example 4:
A, B C X=1

NOTE:

In any System 2200C, S, T and WCS/10, /20 and /30, if
the receiving variable is a STR function and the value
assigned is shorter than the length of the STR function,
the receiving variable is padded with trailing spaces. To
eliminate these spaces, put the value in a dummy variable and
use the LEN function as illustrated below. On a 2200A and
B, the receiver is not padded with trailing spaces.

Example of routine and output from System 2200A or B:
10A$ = ““12345"

20 STR {A$,2,3) = “A"
30 PRINT “A$ = "; A$

Output: A$ = 1A345
Output from the same routine on a System 2200C, S, T or WCS/10, /20 or 30:
A$=1A b5

To obtain output without trailing spaces, the following program can do the job:

10 A$="12345"

20 V$=”A"

30 STR(AS, 2, LEN(V$))=V$
40 PRINT “A$=";A%

Output: A$=1A345

98

—

Section VIl General BASIC Statements and Functions NEXT

General Form: NEXT numeric scalar variable

Purpose

The NEXT statement defines the end of a FOR/NEXT loop; it must contain the same index variable
(a numeric scalar) as the corresponding FOR statement. In Immediate Mode, the NEXT and FOR state-
ments must be in the same line.

When a FOR/NEXT loop is encountered, the index variable takes the value initially assigned. When the
NEXT statement is executed, the STEP value is added to the value of the index. (If no STEP value is
given, +1 is used.) If the result is within the range specified in the FOR statement, the result (index +STEP)
is assigned to the index variable and execution continues at the statement following the FOR statement.
If the result is outside the range specified in the FOR statement, the index variable is unaitered and
execution passes to the statement following the NEXT statement.

Example:
10 M=1: N=20: J=3
20 FOR I=M TO N STEP J
30 PRINT “M=";M, “N=""; N, “J="";J, “I="; |
40 IF 1=7 THEN 60

50 GOTO 70

60 J=4: N=15

70 NEXT I:PRINT “INDEX=";l

Output:
M=1 N=20 J=3 =1
M=1 N= 20 J=3 I=4
M=1 N= 20 J=3 I=7
M=1 N=15 J=4 I= 10
M=1 N= 15 J=4 =13
M=1 N= 15 J=4 I= 16
M=1 N= 15 J=4 =19
INDEX=19
Examples:
30 FOR M=2 TO N-1 STEP 30: J(M)=I(M)12
40 NEXT M

50 FOR X=8 TO 16 STEP 4

60 FORA=2TO6 STEP 2

65 LET B(A,X) = B(X,A) —»Nested Loops
70 NEXT A

80 NEXT X

99

NUM

FUNCTION Section VII General BASIC Statements and Functions
(NOT ON 2200A)

General Form: NUM (alpha variable)

Purpose

The NUM function determines the number of sequential ASCII characters in the specified alphanumeric
variable that represents a legal BASIC number. A numeric character is defined to be one of the following:
digits O through 9, and special characters E, ., +, —, space. Numeric characters are counted starting with the
first character of the specified variable or STR function. The count is ended either by the occurrence of a
non-numeric character, or when the sequence of numeric characters fails to conform to standard BASIC
number format. Leading and trailing spaces are included in the count. Thus, NUM can be used to verify
that an alphanumeric value is a legitimate BASIC representation of a numeric value, or to determine the
length of a numeric portion of an alphanumeric value. Note: the BASIC representation of a number cannot
have more than 13 mantissa digits. NUM can be used wherever numeric functions are normally used. NUM
is particularly useful in applications where it is desirable to numerically validate input data under program
control.

Examples:
10 AS$ = "+24.37#JK" NOTE: X =6 since there are six numeric
20 X =NUM(AS$) characters before the first non-
numeric character, #.
10 A$="98.7+53.6" NOTE: X =4 since the sequence of numeric
20 X =NUM(AS$) characters fails to conform to standard
BASIC number format when the ‘+'
character is encountered.
10 INPUT A$ NOTE: The program illustrates how numeric
20 |IF NUM(AS$)=16 THEN 50 information can be entered as a
30 PRINT “NON-NUMERIC, ENTER AGAIN" character string, numerically validated,
40 GOTO 10 and then converted to an internal
50 CONVERT A$TO X number. In this example the variable
60 PRINT “X="; X A$ receives a keyed in value (alpha-
:RUN numeric ASCII characters). |f the value
? 123A5 represents a legal BASIC number,
NON-NUMERIC, ENTER AGAIN NUM(A$) equals 16, the number of
? 12345 characters in the string variable A$.
X=12345
NOTE:

Do not use this function in a statement with PACK, UN-
PACK, CONVERT, SAVEDA, $..., MAT... if your system
isa 22008, C, S or WCS/]0.

100

Section VIl General BASIC Statements and Functions ON

(NOT ON 2200A)

GOSuB

General Form: ON expression 0TO

} line number {,line number] ...

Purpose

The ON statement is a computed or conditional GOTO or GOSUB statement (see GOTO, GOSUB).
Transfer is made to the Ith line specified in the list of line numbers if the truncated integer value of the
expression is |. For example, if | = 2,

ON 1 GOTO 100, 200, 300
would cause a transfer to be made to line 200 in the program. [f | is less than 1 or greater than the number

of line numbers in the statement, no transfer is made; that is, the next sequential statement is executed. The
ON statement may not be used in immediate mode.

Example:

10 ON 1 GOTO 10, 15, 100, 900
20 ON 3*J-1 GOSUB 100, 200, 300, 400

101

ON ‘ERROR GO TO Section VIl General BASIC Statements and Functions

(NOT ON 2200A OR B)*

General Form:
ON ERROR alpha variable, alpha variable GOTO line number

Purpose

Bypasses the normal System 2200 error display when an execution error occurs and branches to a
specified statement number. The error code and line number at which the error occurred are stored in
the variables provided.

The ON ERROR GOTO statement permits a BASIC program to undertake error recovery procedures
when errors occur. When an error occurs during execution of a program, and if the ON ERROR GOTO
statement exists somewhere in the current program, a branch is made to the line number specified in the
ON ERROR GOTO statement. ON ERROR GOTO detects errors only during the execution of a program.
When a program is RUN, the system scans the program, checking validity of line number references and
setting up space for variables before beginning execution. Errors occurring during this scan are not pro-
cessed by ON ERROR GOTO; the normal error message is displayed.

When an ON ERROR GOTO branch is made to the error recovery routine, the first alpha variable
specified in the ON ERROR GOTO statement receives the two ASCII characters of the error code, and
the second alpha variable receives the (four) ASCII characters of the line number.

If an error occurs in the Middie of a FOR/NEXT loop or subroutine and an ON ERROR GOTO state-
ment is executed, the loop or subroutine information is cleared from the internal tables. Thus, transfer
back into the loop or subroutine is illegal and an error (#25 or #26) results when the subsequent NEXT
or RETURN statement is executed. |f more than one ON ERROR GOTO statement occurs in a program,
the one with the lowest line number is executed; a program should thus contain only one such statement.

When doing program overlays, the variables in the ON ERROR GOTO statement must be common
(defined in a COM statement), since all noncommon variables are cleared during the overlay. If an error

occurs during a program overlay, the line number is meaningless (since part of the program has been
cleared).

Examples:
:100 ON ERROR E$, N$ GOTO 900
:900 REM ERROR RECOVERY ROUTINE

10 INPUT ES$

20 ON ERROR E$, N$ GOTO 900

30 GOTO 1000

900 PRINT “E$=", E$, “N$=", :STOP “YOU INPUT THE WRONG VALUE"
1000 PRINT “CONTINUE INPUTTING E$”, E$

1100 GOTO 10

If an illegal value (e.g., “’A) is entered, the program branches to line 900 where the value of the error
message (40) and the line number where the error occurred (10) are displayed with a message.

*Available on 2200S only with Advanced Programming Statements.

102

Section VII General BASIC Statements and Functions PACK

(NOT ON 2200A)

General Form:

numeric variable , numeric variable
alpha variable numeric array designator , numeric array designator} ...
. FROM ; X
alpha array designator expression , expression
where: image={+] [#...0 1 [#..1 (111 1]

0 < number of #'s< 14

Purpose

The PACK statement packs numeric values into an alphanumeric variable or array, reducing the storage
requirements for large amounts of numeric data where only a few significant digits are required. The specified
numeric values are formatted into packed decimal form (two digits per byte) according to the format
specified by the image, and stored sequentially into the specified alphanumeric variable or array. Arrays are
filled from the beginning of the first array element until all numeric data has been stored. An entire numeric
array can be packed by specifying the array with a numeric array designator (e.g., N{}). An error will result
if the alphanumeric variable or array is not large enough to store all the numeric values to be packed.

The image is composed of # characters to signify digits and, optionally, +, -, ., and t characters to
specify sign, decimal point position, and exponential format. The image can be classified into two general
formats:

Format Example
Fixed Point #H#HH#
Exponential #H4H#IT

Numeric values are packed according to the following rules:

1. Two digits are packed per byte. A digit is stored for each # in the image.

2. If a sign (+ or -) is specified, it occupies 1/2 byte and contains the sign of the number and the sign of
the exponent for exponential images.

3. I1f no sign is specified, the absolute value of the number is stored and the sign of the exponent is assumed
to be plus (+).

4. The decimal point is not stored. When unpacking the data (see UNPACK), the decimal point position
is specified in the image.

5. The packed numeric value occupies a whole number of bytes. For example, the image ### indicates
that 1-1/2 bytes are required for storage; however, 2 bytes will be used.

6. If a fixed point image is used, the value is packed as a fixed point number, truncating or extending
with zeros any fraction and inserting leading zeros for nonsignificant integer digits according to the
image specification.

7. I1f an exponential image is used, the value is packed as a floating point number. The value is scaled as
specified by the image (without leading zeros). The exponent occupies one byte. .

Examples of storage requirements:

H#H#H#H# = 2 bytes

#H# = 2 bytes

+##. ### = 3 bytes

+HH##TP1T = 3 bytes

Examples of Syntax:

10 PACK(####)A$ FROM X 40 PACK (+#.##1111)A$() FROM N()
20 PACK(##.##)A$ FROMX, Y, Z 50 PACK (####.#4#) A$() FROM X, Y, N(), M()
30 PACK(+#.##)STR(AS$, 4, 2) FROM N(1) 60 PACK (###.#) A1$(1) FROM X()

103

!3,8%, Section VII General BASIC Statements and Functions
(NOT ON 2200A)

General Form:

l

POS (alpha variable

“character”’
hh

AV V IIAAN
1

\4

where h = hexdigit

Purpose

The POS function finds the position of the first character in the specified alphanumeric value that is <,
s, =, 2, >, or < > the character specified following the relation operator. The character to be compared can
be specified either by enclosing the character in quotes or by representing the character by two hex digits.
If no character in the alphanumeric value satisfies the specified condition, POS = 0. POS can be used
wherever numeric expressions normally are used.

Examples:
10 X=POS (A$="$")

20 PRINT POS(STR(AS, 4, 5)=0D)
30 IFPOS (A$<"A") <16 THEN 100

NOTE:
Do not place this function in a statement with PACK, UN-
PACK, CONVERT, SAVE DA, $..., MAT... in any System
22008 or C.

104

Section VIl General BASIC Statements and Functions PRINT

General Form: PRINT [t] [print element] [t] [t print element] ... [t] ...
where t = acomma or a semicolon
print element = an expression, TAB (expression), an alpha or numeric variable,
an array element, literal string.

Purpose

The PRINT statement causes the values of the listed variables, expressions, or literal strings to be printed
on the output device currently selected for PRINT (see SELECT).

Printing may be done in zoned format which is signaled by a comma, or packed format, which is
signaled by a semicolon separating each print element.

ZONED FORMAT: PRINT print element [, print element] ... [,]

The output line is divided into as many zones of 16 characters as possible; the four CRT zones are
columns 0-15, 16-31, 32-47, and 48-63.

A comma signals that the next print element is to be printed starting in the next print zone, or if the
final print zone is filled then the first print zone of the next line. For example

READY 10X=10:Y=-140

110 X=214.230 :Y=3564: 2=-.2379 20 PRINT, , X, Y

:20 PRINT X, Y, 2

:RUN 10 -140
WJ \V_/

214.23 3564 -.2379 Zone 3 Zone 4

PACKED FORMAT: PRINT print element [; print element] ... [;]

A semicolon signals that the next print element is to be printed not by zones but by columns. For
example, the statement

READY
:10 X=2 :Y=-34
:20 PRINT "X="";X;"Y="Y
:RUN
in the following output:
X= 2Y=-34

NOTE:
A positive value is preceded by a space when output,
a negative value, by a minus sign.

105

PRINT Section VII General BASIC Statements and Functions
“

—

A PRINT statement can contain both comma and semicolon element separators. Each separator
explicitly determines the amount of space between elements. If a numeric value is output, it is followed
by a single space. Alpha variables or literals are not followed by spaces.

READY
:10X=2 :Y=3 :Z=—-4.2 :A=10 :B=—20 :A$="Q"
:20 PRINT “X="X,"Y="}Y,"2="Z;A;B;A$;A$

:RUN
results in the following printout:
X= 2 Y= 3 Z=-42 10 -20 QQ,
Zone 1 Zone 2 Zone 3

The end of a PRINT line signals a new line for output, unless the last symbol is a comma or semi-colon.
A comma signals that the next print element encountered in the program is to be printed in the next zone
of the current line. A semicolon signals that the next print element is to be printed in the next available
space. For example, the statements

:10 PRINT “X=";
:20 PRINT 3.2970,

:30 PRINT "“Y=":64
cause the following printout:
X = 3.297 Y= 64
A PRINT statement with no PRINT element advances the CRT cursor one line. If the number of
characters to be output in a given PRINT element exceeds the line length (the default value or as specified
in a SELECT statement, see SELECT), a carriage return/line feed is executed before the characters are
output.
Values of expressions are printed in one of two forms depending on the value:
Exponential Form: SM.MMMMMMMME+XXA [VALUE|<107' or> 10'3
Fixed Point Form: SZZZZZZ.FFFFFFFA 107! > [VALUE| < 10"®
where M = mantissa digits Z = integer digits
X = exponent digits S = minus sign if value < 0, or blank if value > 0.
F = fractional digits A = space
In fixed point form, the decimal point is inserted at the proper position or omitted if the value is an
integer. Leading and trailing zeros are omitted. :
The following are examples of the printing of variables in the two forms:
Exponential 2.34762145E-09
-1.64721000E+22
Fixed Point: 23.47954890123
-.6374
0
-421

106

Section VIl General BASIC Statements and Functions PRINTUSING

General Form: PRINTUSING line number {, print element] [t print element] ... [;]
where line number = Line number of the corresponding
Image (%) statement.

literal string in double quotes

expression
print element =< alpha or numeric variable

t comma or semicolon

Purpose

The PRINTUSING statement permits numeric and alphanumeric values to be output as specified by
formatting in a referenced Image (%) statement on the output device currently selected for PRINT (see
SELECT). Formats are described under the Image statement {see Image (%)).

PRINTUSING operates in conjunction with a referenced IMAGE statement. Print elements in the
PRINTUSING statement are edited into the print line as directed by the IMAGE statement. Each print
element is edited, in the order in the PRINTUSING statement, into a corresponding format in the IMAGE
statement. The IMAGE statement provides both alphanumeric text to be printed between the inserted
print elements, and the format specifications for the inserted print element. The format for each numerical
print element is composed of # characters to specify digits and optionally +, —, ., 1, , and $ characters to
specify sign, decimal point, exponent and edit characters. If the number of print elements exceeds the
number of formats in the IMAGE statement, a carriage return/line-feed occurs, and the IMAGE statement is
reused from the beginning for the remaining print elements. The carriage return/!ine-feed may be suppressed
by replacing the comma, delimiting the print elements with a semicolon. A carriage return/line-feed normally
occurs at the end of the execution of a PRINTUSING statement. This carriage return/line-feed can also be
suppressed by placing a semicolon at the end of the PRINTUSING statement. PRINTUSING may not be
used in the immediate mode.

Example 1:

110 X=2.3 : Y=27.123

:20 PRINTUSING 30, X, Y

:30 % ANGLE - ##.## LENGTH = +##.4#
:RUN

(output) ANGLE = 2.30 LENGTH = +27.1

Example 2:

10 X=1: Y=2: 2=3
:20 PRINTUSING 30, X, Y, 2
130 % #.#
:RUN
{output) 1.0
2.0
3.0

107

PRINTUSING Section VIl General BASIC Statements and Functions

Example 3:
110 X=1: Y=2: Z2=3
:20 PRINTUSING 30, X;Y; Z
30 % #.4

{output) 1.0 2.0 3.0

Example 4:
:100 PRINTUSING 200
:200 % PROFIT AND LOSS STATEMENT
:RUN

(output) PROFIT AND LOSS STATEMENT

Example 5:
:100 PRINTUSING 200, A$, T
:200 % SALESMAN ###44444# TOTAL SALES $## ### #4#
:RUN

(output) SALESMAN J. SMITH TOTAL SALES $9,237.51

Example 6:
10 X=2.3: Y=27.123
20 PRINTUSING 30, X, Y, “ALPHA ZONE"
30 % ANGLE —##### ###### LENGTH=+##.#

(output) ANGLE 2.300000 LENGTH=+27.1
ANGLE ALPHA ZONE LENGTH=

Example 7:
10 X=2.3: Y=27.123
20 PRINTUSING 30,X,Y,”ALPHA ZONE"*;X+3
30 % ANGLE ##.## 1111111111 LENGTH=+##.#

{(output) ANGLE 23.00E-011tt11t LENGTH=+27.1
ANGLE ALPHA ZONE LENGTH=+5.3

108

Section VIl General BASIC Statements and Functions PRINT TAB

FUNCTION

General Form: TAB (expression)

Purpose

This function permits the user to specify tabulated formatting. For example, TAB {(17) would cause the
typewriter carrier or the CRT cursor to move to column 17.

Positions are numbered O to 64 on the CRT, O to 155 on a typewriter, and O to 79 or Oto 131 0on a
printer. The value of the expression in the TAB function is computed, and the integer part is taken.
This becomes the column number to which the cursor, carrier or print head is moved. |f the position
has been passed, the TAB is ignored. If the value of the expression is greater than the maximum allowable,

the output carrier moves to the beginning of the next line. Values of TAB expressions greater than 255
are illegal. For example:

READY
1I0FORI=1TOS5
:20 PRINT TAB(I);l } causes the following output:
:30 NEXTI
:RUN
1
2
3
4
5

In the System 2200, a line length of 64 characters is the default value. |f more than 64 characters are
output without a carriage return, an automatic carriage return is generated. This line length can be changed
to any value (0 < value < 256) by a SELECT statement (see SELECT).

109

READ Section VIl General BASIC Statements and Functions

General Form: READ variable [,variable] ...

Purpose

A READ statement causes the next available elements in a DATA list {values listed in DATA statements
in the program) to be assigned sequentially to the variables in the READ list. This process continues until all
variables in the READ list have received values or until the elements in the DATA list have been used up.
The variable list can include both numeric and alphanumeric variable names. However, each variable must
reference the corresponding type of data or an error will resuit.

The READ statements and DATA statements must be used together. If a READ statement is referenced
beyond the limit of values in a DATA statement, the system looks for another DATA statement in state-
ment number sequence. If there are no more DATA statements in the program, an error message is written
and the program is terminated. DATA statements may not be used in the immediate mode.

The RESTORE statement can be used to reset the DATA list pointer, thus allowing values in a DATA
list to be re-used (see RESTORE).

NOTE:

DATA statements may be entered any place in the program as
long as they provide values in the correct order for the READ
statements.

Example:

:100 READ A, B, C
:200 DATA 4, 315, -3.98

1100 READ AS$, N, B1$ (3)
:200 DATA “ABCDE"”, 27, “XYZ"

100 FOR1=1T0 10

:110 READ A(l)

120 NEXT I

200 DATA 7.2,45,6.921,8,4
210 DATA 11.2, 9.1, 6.4, 8.52, 27

110

Section Vil General BASIC Statements and Functions REM

General Form: REM [text string]
where text string = any characters or blanks (except colons;
colons indicate the end of the statement)

Purpose
The REM statement is used at the discretion of the programmer to insert comments or explanatory
remarks in his program. When the system encounters a REM statement, it ignores the remainder of the line.

Examples:

20 REM SUBROUTINE

210 REM FACTOR

220 REM THE NUMBER MUST BE LESS THAN 1
300 REM

1M1

RESTORE Section VIl General BASIC Statements and Functions

General Form: RESTORE [expression]
where 1< value of expression < 256

Purpose

The RESTORE statement allows the repetitive use of DATA statement values by READ statements.
When RESTORE is encountered, the system returns to the nth DATA value, where n is the truncated value
of the expression if one is included in the RESTORE statement; otherwise, it is assumed to be the first

DATA statement. Then, when a subsequent READ statement occurs, the data is read and used, beginning
with the nth DATA element.

Example:
100 RESTORE

This statement causes the next READ statement to begin with the first data element.
The statement 100 RESTORE 11

causes the next READ statement to begin with the 11th data element.

The statement 100 RESTORE Xt2+7

causes the expression Xt2+7 to be evaluated and truncated to an integer. The next READ statement
begins with the corresponding data element.

112

e

Section VIl General BASIC Statements and Functions

RETURN

General Form:

RETURN

Purpose

The RETURN statement is used in a subroutine to return processing of the program to the statement

following the last executed GOSUB or GOSUB' statement.
If entry was made to a marked subroutine via a special function key on the keyboard, the RETURN
statement will terminate program execution and return control back to the keyboard, or to an interrupted

INPUT statement.

Repetative entries to subroutines without executing a RETURN should not be done. Failure to return
from these entries causes return information to be accumulated in a table which will eventually cause the
table overflow error (ERR 02) (also see RETURN CLEAR).

Example:
10 GOSUB 30
20 PRINT X :STOP
30 REM THIS IS A SUBROUTINE
a0 -
50 -

90 RETURN :REM END OF SUBROUTINE

10 GOSUB’ 03 (A,B$)

20 END

100 DEFFN’ 03 (X,N$)

110 PRINTUSING 111, X, N$

111 % COST = $# ### ###.## CODE = ####
120 RETURN

113

RETURN CLEAR Section VIl General BASIC Statemenfs and Functions

{NOT ON 2200A OR B) . N
—

General Form:
RETURN CLEAR

Purpose

Clears subroutine return-address information, generated by the last executed subroutine call, from
memory.

The RETURN CLEAR statement is a dummy RETURN statement. With the RETURN CLEAR state-
ment, subroutine return address information from the last previously executed subroutine call is removed
from the internal tables; the program branches to the statement following the RETURN CLEAR.

The RETURN CLEAR statement is used to avoid table overflow when a program exits from a sub-
routine without executing a RETURN. This is particularly useful when using the Special Function keys to
start program execution (when either in Console Input mode or using an INPUT statement). When a Special
Function key is used in this manner, a subroutine branch is made to the appropriate DEFFN’ statement to
begin execution. '

A subsequently executed RETURN statement either causes the system to return to the Console Input
mode or causes the INPUT statement to be repeated automatically. However, the user may wish to start
and continue a program without returning when a Special Function key is depressed. In this case, the
RETURN CLEAR statement should be used to exit from the DEFFN’ subroutine.

Examples:
100 DEFFN’ 15: RETURN CLEAR
200 RETURN CLEAR

NOTE:
If a program repeatedly exits from a subroutine without
executing a RETURN or RETURN CLEAR statement,
error 02 results. B
When a program is loaded into memory it must be
initially executed by a RUN command, thereafter, it can
be restarted at any point via special function keys.

114

’ Section VII General BASIC Statements and Functions ROTATE

(NOT ON 2200A)

General Form: ROTATE (alpha variable, d)

where: d = digit from1-7

Purpose ‘ .

This statement rotates the bits of each character in the value of the specified alphanumeric variable to the
left from one to seven places; the high order bits replace the low order bits. All characters in the value are
operated on including trailing spaces. (Note: for most alphanumeric operation in the System 2200, if an
alphanumeric variable receives a value with a length less than the maximum length of the variable, the
remaining characters are all set equal to spaces. The trailing spaces normally are not considered to be part
of the value.)

Example:

if A$ = HEX(0123FE), ROTATE (A$, 4)
sets A$ = HEX (1032EF)

Part of an alphanumeric variable can be operated on by using the STR function to specify a portion of the
variable. For example,

ROTATE (STR(AS$, 2, 3), 3)

Examples:

10 ROTATE(AS, 4)
20 ROTATE(STR(AS$,1),7)

115

STOP Section Vil General BASIC Statements and Functions B

General Form: STOP [“character string”’]

Purpose

The STOP statement terminates program execution. A program can have several STOP statements in it.

When a STOP statement is encountered, the word STOP (followed by the optional specified character
string) appears on the Console Output device.

To continue program execution at the statement immediately following the STOP statement, a CON-
TINUE command must be entered.

Example:

100 STOP
100 STOP “MOUNT DATA CASSETTE”

116

o~

Section VIl General BASIC Statements and Functions TRACE

General Form: TRACE [OFF]

Purpose

The TRACE statement provides for the tracing of the execution of a BASIC program. TRACE mode is
turned on in a program when a TRACE statement is executed and turned off when a TRACE OFF state-
ment is executed. TRACE also is turned off when a CLEAR command is entered, the system is RESET, or
the system is turned on. To trace an entire program, TRACE may be turned on by entering a TRACE
immediate mode statement prior to execution, and similarly turned off by entering an immediate mode
TRACE OFF after execution. When the TRACE mode is on, output on the Console Output device is
produced when:

1. Any program variable receives a new value during execution (LET, READ, FOR statements, etc.).

format: variable = received value
2. A program transfer is made to another sequence of statements (GOTO, GOSUB, IF, NEXT).

format: TRANSFER TO ‘line humber’
3. A BASIC function is executed.

format: function name

Example 1:
5 DIM Z(5)
10 A, B, C=2
30 LET X, Y, Z(5)=A+SIN(B)/C

B=

Z () =2.454648713413

Example 2:
:40 READ A,B,C,D
:60 DATA 9.4, 64.27, 137492.1E8, 99.4
A=94
B =64.27
C=1.37492100E+13
D=994

Example 3:
:100 GOTO 200

produces TRANSFER TO 200

Example 4:
30 GOSUB 10

produces TRANSFER TO 10

117

TRACE Section VIl General BASIC Statements and Functions

Example 5:
:5 DIM X(3)
:10FORI=1TO 3
115 PRINT X(1);
:20 NEXT |

produces =1
0
=2
TRANSFER TO 15
0
I=3
TRANSFER TO 15
0
I=> (end-of-loop indicator)

Example 6:
110 A$=HEX (414243)

produces A$=HEX(414243

Example 7:
:10 STR(AS,1,4)= “ABCD"”

produces STR(
A$=ABCD

Example 8:
10 AND (AS$, 00)

produces A$=HEX (00000000000000000000000000000000

Example 9:
10 DIM A (4)
20 A(1)=24.2: A(2)=25.36: A(3)=48.001: A(4)= 14.759
:100 FORI1=1T04
:110 TRACE
1120 X = X+A(l)
:130 TRACE OFF
1140 NEXT |
RUN

produces X=24.2
X = 49.56
X =97.561
X=112.32

118

UNPACK

Section VII General BASIC Statements and Functions

— {NOT ON 2200A)
L —
General Form:
UNPACK (image) alpha arra.y designator T numer?c arre.:y designator . numeric arra.y designator o
alpha variable numeric variable , humeric variable
where: image=[*] [#...] .1 [#...1 [T
0 < number of #'s < 14

Purpose
The UNPACK statement is used to unpack numeric data that was packed by a PACK statement. Starting

at the beginning of the specified alphanumeric variable or array, packed numeric data is unpacked and
converted to internal floating point values, and stored into the specified numeric variables or arrays. The
format of the packed data is specified by the image (see PACK); thus, the same image that was used to pack
the data should be used in the UNPACK statement. An error results if more numeric values are attempted to
be unpacked than can exist in the alphanumeric variable or array.

Examples of Syntax:

10 UNPACK (####)A$TO X, Y, Z

20 UNPACK (+#.##) STR(AS, 4,2) TO X

30 UNPACK (+#.##1111) A$() TON()

40 UNPACK (######) AS() TOX, Y, N(), M()

Example:
10 X=24: DIM A$3
20 PACK (####) A$ FROM X
30 PRINT X
40 HEXPRINT A$
50 UNPACK (####) ASTOY
60 PRINT AS,Y

output

Ju
2
Ly

f‘§| 4-

3% B
DU

=
fl
jiy

119

Section VIl General BASIC Statements and Functions

FUNCTION
{NOT ON 2200A)

General Form: VAL zflpha varllable
literal string

Purpose

This function converts the mry value of the first character of the specified alphanume_[jg’_y_qlwg_g,to a
floating point number. The VAL Tunction is the inverse of the BIN statement. VAL can be used wherever
numeric functions normally are used (also see VAL decimal equivalents in Appendix B).

VAL is particularly useful for code conversion and table lookups, since the converted number then can
be used either as a subscript to retrieve an equivalent code or data from an array, or with the RESTORE
statement to retrieve codes or information from DATA statements.

Examples of Syntax:

10 X=VAL(AS$)

20 PRINT VAL("A")

30 IF VAL(STR(AS, 3, 1)) <80 THEN 100
40 Z=VAL(A$)*10-Y

NOTE:
Do not use this function on the same program line as PACK,
UNPACK, CONVERT, SAVEDA, 8 ... MAT ... onany
22008 or C.

Example:
A = hex 41
41, =(4x16") +(1x16°)
41, =64+1
41, =65

ngu\' W < I‘o‘ f Aeddgt X [6

NOTE *

[

120

section VIl

Peripheral Commands
- and

Statements

Introduction122 INPUT (Mark Sense Card Reader) 142
Tape CassetteDrives123 INPUT (Mark Sense/Punched Card
BACKSPACE124 Reader)« . . .143
DATALOAD128 LOAD (Punched Card Reader) 144
DATALOADBT126 LOAD Command {Mark Sense/Punched
DATARESAVE127 CardRReader)145
DATASAVE128 Punched Tape Reader146
DATASAVEBT129 DATALOAD147
LOADCommand130 DATALOADBT148
LOAD.131 LOADCommand149
REWIND.13 LOAD.18
SAVECommand133 Plotters151
SKip13 PLOT1%2
CardReaders13 Teletype®153
Console Input 136 DATALOAD14
DATALOAD (Mark Sense Card Reader) . 137 DATALOADBT155
DATALOAD (Mark Sense/Punched DATASAVE156
Card Reader) 138 DATASAVEBT157
DATALOAD BT (Punched Card Reader) . 139 LOAD.158
DATALOAD BT (Mark Sense Card Reader) 140 LOADCommand159
DATASAVE BT (Punched Card Reader). . 141 SAVECommand160

121

Section VIIl Peripheral Commands and Statements

INTRODUCTION

Commands and statements which are used to operate peripherals (1/O devices) are described in this
section of this manual for easy reference. Only the minimum syntax and explanatory information is
provided here; for further information, see the peripheral manual for the unit in question. All disk state-
ments and explanatory information are contained in the System 2200 Disk Memory Reference Manual.
For device addresses, see the Device Address Guide or Device Address appendix in this manual.

The statements and commands used to operate peripherals have been grouped by type of unit.
tape cassette drive
card readers (both mark sense and punched card)
punched tape reader
plotter

® Teletype

Keyboards, CRT’s and printing output devices are operated by INPUT, PRINT, PRINTUSING and
HEXPRINT statements described in Section VII, and by MAT INPUT and MAT PRINT statements
described in the Matrix Statements manual. All other units such as disk drives, the nine-track tape unit,
the Digitizer, Interface Controllers and the Telecommunications Controller are operated by statements
and commands described in their respective manuals.

122

Section VIIl Peripheral Commands and Statements

—
TAPE CASSETTE DRIVES

Tape cassette drives provide low-cost sequential storage for Wang systems. All material is dual-recorded
to prevent loss of data or programs and to permit certain kinds of recovery from such loss. The system
automatically formats both data and programs for the user. A single (150 ft) tape cassette can contain up
to 76,000 bytes of information. Any program to be stored on a cassette can be named for later recall:
its ““‘name”’ is recorded on the cassette.

BASIC logic to support tape cassette drives is available on all systems (except for BT statements, which
are not available on a 2200A and must be obtained for a 2200S and WCS/10 with Option 22).

123

BACKSPACE Section VIl Peripheral Commands and Statements

~~

LY

CASSETTE STATEMENT

General Form: #f, BEG
BACKSPACE n
/xyy, nF
where #f = File number assigned to cassette drive by SELECT statement

(#f = #1, #2, #3, #4, #5, or #6) (see SELECT).
xyy = Device address of cassette drive.

If neither of the above is specified, the default device
address (the device address currently assigned to TAPE [see
SELECT]) is used.

BEG = Backspace to beginning of file. (After header record.)

n = Backspace n logical records.
nF = Backspace n files (Note, if n=1 backspace to beginning of
current file before header record.)
n = Expression {the integer portion of the value of the ex-
pression is used and must always be = 1).
—
Purpose
The BACKSPACE statement allows the user to reposition the cassette in the indicated unit backwards
to the start of any program or data file, or backward a specified nhumber of logical records within a data
file. The ‘BEG’ parameter positions the tape at the beginning of the current file immediately after the
header record. The ‘n’ parameter is for data files only; it allows the user to backspace the tape over n
logical records to the start of any desired logical record. The ‘nF’ parameter backspaces the tape n files;
the tape is positioned before the header record.
Example:
100 BACKSPACE /10A, BEG
220 BACKSPACE #2, 4F
150 BACKSPACE (5-3%X)
—~~

124

Section Vil Peripheral Commands and Statements DATALOAD

CASSETTE STATEMENT
General Form: #f, “name’’
DATALOAD /xyy, argument[,argument] .
#f = File number assigned to cassette drive by SELECT statement

{f is an integer from 1-6)

xyy = Device address of device to load from. If neither of the above
is specified, the default device address (the device address
currently assigned to TAPE (see SELECT)) is used.

‘name” = The name of the data file to be searched.
“’name’’ is from 1 to 8 characters.
alphanumeric variable
argument =<numeric variable

alpha or numeric array designator

Purpose

The DATALOAD statement reads a logical record from the designated tape and assigns the data values
read to the variables and/or arrays in the argument list, sequentially. Arrays are filled row by row. If the
variable list is not complete, another logical record is read. Data in the logical record, not used by the DATA-

-~ LOAD statement, is ignored. If the end of file (trailer record) is encountered while executing a DATA

LOAD statement, the tape remains positioned at the end of file trailer record and the values of remaining
variables in the argument list remain at their current values. An IF END THEN statement will then cause a
valid transfer.

The “name’ parameter permits a data file to be searched out. Upon execution of a DATALOAD
"“name’’ statement, the tape is positioned just after the header record of the specified file.

Example:

DATALOAD “PROGRAM1"

DATALOAD A, B, C(10)

DATALOAD #1, A, B(), C$

DATALOAD /10B, A, B, X1, STR(AS, 3, 5)

125

DATALOAD BT

Section VIl Peripheral Commands and Statements

CASSETTE STATEMENT

General ‘Form:

where:

DATALOAD BT [{N=expression)]

expression = 100 or 256 (size of block to read)

#f = File number assigned to cassette drive by SELECT
statement {f is an integer from 1 to 6).

xyy = Device address of device to load from.

If neither of the above is specified, the default device address
(the device address currently assigned to TAPE (see

#f,

/xyy,

SELECT)) is used.

alpha array designator

Purpose

This statement reads the next block of 100 or 256 bytes from cassette tape and stores the information
in the specified alphanumeric array. If the N parameter is not specified, the block is assumed to be 256
bytes. An error will result if the array is not large enough to hold the entire block to be read.

The DATALOAD BT statement permits 2200 programs to be read as data. Thus, tape duplication,
program conversion, and program packing programs can be written. In addition, Wang 1200 cassettes
which have a block size of 100 characters can be read.

Example:

DATALOAD BT A$()
DATALOAD BT (N=100) A$()
DATALOAD BT /10B, B1$()
DATALOAD BT (N=100) #5, Q$()

ments are available.

NOTE:
This statement is not available on a 2200A; it is available on
a 2200S or WCS/10 only if Advanced Programming State-

126

A

—

-

Section VIl Peripheral Commands and Statements DATARESAVE

_ _
CASSETTE STATEMENT
General Form: M op
f, EN “name”’
DATA RESAVE [/xyy,] {argument {, argument] .. }
where: #5 = File number assigned to cassette drive by SELECT statement
(f is an integer from 1 to 6).
Xyy = Device address of device to save on.
If neither of the above is specified, the default device address {the device address
currently assigned to TAPE (see SELECT)} will be used.
OPEN = Rewrite a data file header record with the name ‘‘name’’.
Name is from 1 to 8 characters.
literal string
argument = alpha or numeric variable
expression
array designator
Purpose

The DATA RESAVE statement allows the user to rewrite (i.e. update) any record, including the header
record, of an existing data file. Rewriting the header record permits the user to rename a file. Rewriting
is done in place on the original tape.

Rewriting (updating) a logical record within a file involves three steps:

1. Locating the beginning of the file with a DATALOAD ‘‘name’’ statement {(see DATALOAD).

2. Locating the particular logical record to be updated using the DATALOAD, SKIP or BACKSPACE
statements.

3. Re-recording the logical record using the DATARESAVE statement.

When executing the DATARESAVE statement, the tape must be positioned just before the record to
be updated. The DATARESAVE statement must be used for updating; if an update is performed using a
DATASAVE statement, there is no assurance that the new record will be written in the proper place —
extraneous information may be left over from the old record. The user must be sure that the number of
physical records in the logical record created by the DATARESAVE statement is the same as the number of
physical records in the logical record being updated. This situation is assured if the ‘argument list’ in the
DATARESAVE statement is identical to the ‘argument list’ in the original DATASAVE statement.

NOTE:

Extensive use of the DATARESAVE command with the same
cassette (e.g., file maintenance) is not advised. Using the
DATARESAVE command repeatedly with the same tape is
not recommended since after a period of time, normal tape
wear, loss of magnetic flux, and accumulation of dust
particles can cause the data integrity to be less reliable.

Example:
DATARESAVE /10B, A, BS, C
DATARESAVE #1, OPEN “DATAFILE”
DATARESAVE A$()
DATARESAVE STR(AS$, 5, 1), HEX (010203), “WANG LABS.”
DATARESAVE R*SIN(X)

127

DATASAVE

Section VIII Peripheral Commands and Statements

CASSETTE STATEMENT

General Form: OPEN “‘name”’

DATASAVE END
/xyy, argument [, argument] . . .

where: #f = File number assigned to cassette drive by SELECT statement
(f is an integer from 1 to 6).

xyy = Device Address of cassette drive on which data is written.

If neither of the above is used, the default device address (the
device address currently assigned to TAPE (see SELECT))

will be used.
OPEN = Write a data file header record with the name ‘‘name”’.
The name is from 1 to 8 characters.
END = Write a data file trailer record.
literal string
alpha or numeric variable
argument = .
expression

array designator

Purpose

The DATASAVE statement causes the values of variables, expressions, and array elements to be written
sequentially onto the specified tape. Arrays are written row by row. Each DATASAVE statement produces
one logical record. Each numeric value occupies 9 characters in a record; each literal occupies the number
of characters in the value +1; each value of an alpha variable string occupies the maximum defined length of
the variable +1.

The OPEN and END parameters are used to write header and trailer records at the beginning and end of a
data file. However, data files can be created without the need for header and trailer records. If a single data
file is to be written on a cassette, it can be done simply by using one or more DATASAVE statements with
argument lists. The data in the file can be retrieved using DATALOAD statements with argument lists. |If
more than one data file is to be written on a cassette, it is common practice to place a header record at the
start of each file and a trailer record at the end of each file. In this way the user can search out any file by
using the assigned ‘name’ in the header record (see DATALOAD) and can test for the end of a file using the
trailer record (see IF END THEN). The header and trailer records can also be used in backspacing over and
skipping records and files (see BACKSPACE, SKIP).

Example:

DATASAVE A, B, C, D(4,2)

DATASAVE #2, A, B, C()

DATASAVE /10A, A$, B, C, D()

DATASAVE OPEN “PROGRAM 1"

DATASAVE #5, END

DATASAVE STR(A$,3,5),,HEX(0102), “WANG LABS."
DATASAVE Y*SIN(R)

128

o~

| Section VIII Peripheral Commands and Statements DATASAVE BT

CASSETTE STATEMENT

General Form:

DATASAVE BT [R] [([N=expression] [,] [H])] [ﬁ(fyy] alpha array designator

where: R = Resave
expression = 100 or 256 (size of block to record)
H = Record header block (0’s timing mark)

#f = File number assigned to cassette drive by SELECT statement
(f is an integer from 1 to 6).

xyy = Device Address of cassette drive on which data is written.

if neither of the above is used, the default device address (the
device address currently assigned to TAPE (see SELECT))
will be used.

NOTE:
A comma must separate the N and H parameters if both
are specified.

Purpose

This statement records a block of data (100 or 256 bytes) on cassette tape with no control information.
If the array is greater than 100 (or 256) bytes, the first 100 (or 256) bytes of the array are recorded. If the
array is smaller than the specified block size, the block is filled with unpredictable characters. If the ‘N’
parameter is not specified, the block is assumed to be 256 bytes.

If a header record is being recorded, the 'H’ parameter is used; this causes a special timing mark to be
written on the cassette indicating that this block is a header block. This timing mark is used by the system
when backspacing files.

The ‘R’ parameter is used to rewrite a block on cassette using DATASAVE BT. Before the record is
written, the tape is automatically backspaced one block.

The DATASAVE BT statement permits tapes containing a number of Program and/or Data Files to be
copied and BASIC programs to be generated by conversion programs.

Example:

DATASAVE BT A$()

DATASAVE BT (N = 100) A1%$()
DATASAVE BT (N=100,H) /10C, A$()
DATASAVE BT (H) #6, Q$()

NOTE:
This statement is not available on a 2200A; it is available
on a 2200S or WCS/10 only if Advanced Programming
Statements are available.

129

LOAD , Section VIII Peripheral Commands and Statements

L L

—

CASSETTE COMMAND

General Form:

LOAD l:/#f’ :I [“name’’]
XYY,

where #f = File number assigned to cassette drive by SELECT statement
(f = an integer from 1 to 6)

xyy = Device address of cassette drive to load from.

If neither of the above is specified, the default device address
(the device address currently assigned to TAPE, see SELECT)
is used.

"name”’ Is the name assigned to the program on tape. “name’’ is from

one to eight characters.

Purpose
When the LOAD command is entered, the specified program on the selected tape will be appended to
the current program in memory. If no program name is specified, the next program file on the selected
tape is loaded. This command permits an additional program to be loaded and appended to a program
currently in the 2200, or if entered after a CLEAR command, the entry of a new program. —
LOAD can also be used as a program statement (see LOAD — cassette statement).

Example:

LOAD

LOAD “LINREGR”
LOAD#1, “PROGRAM1"”
LOAD/10B

LOAD#4

130

Section VIIlI Peripheral Commands and Statements LOAD

CASSETTE STATEMENT

General Form:
r LOAD /T;y] [”name”] [line number 1] [, line number 2]

where: #f = file number assigned to cassette device by SELECT statement.
(f is an integer from 1 to 6)

Xyy = device address of cassette drive.

If neither of the above is specified, the default device address
(the device address currently assigned to TAPE (see
SELECT)) is used.

“name’”” = |s the name of the program to be searched and loaded; it is
from 1 to 8 characters. Searching is always forward.

line number 1 = The line number of the first line to be deleted from a currently
loaded program prior to loading the new program. After loading,
execution continues at the line whose number is equal to line
number 1. An error results if there is no line number = ‘line
number 1’ in the new program.

line number 2 = The line number of the last line to be deleted from the program
currently in memory, before loading the new program.

Purpose
This is a BASIC program statement which in effect produces an automatic combination of the following:
STOP (stop current program execution)
CLEARP [line number 1 [, line number2]] (delete current program text)
CLEARN (remove noncommon variables only)
LOAD . [""name’’] (load new program)
RUN [line number 1] (run new program)

If only ‘line number 1" is specified, the remainder of the current program is deleted starting with that line
number. If no line numbers are specified, the entire current program is deleted, and the newly loaded
program is executed from the lowest line number.

This permits segmented jobs to be run automatically without normal user intervention. Common
variables are passed between program segments. LOAD must be the last statement on a statement line. The
LOAD statement must not be within a FOR/NEXT Loop or subroutine; an error results when the NEXT or

RETURN statement is encountered.
In the immediate execution mode, LOAD is interpreted as a command (see LOAD command).

Example:

100 LOAD

100 LOAD #2

100 LOAD *“SAM”

100 LOAD /10A

100 LOAD /10B, “PROG#7"”, 500
100 LOAD #2, ““SAM" 400, 1000

131

REWIND Section VIII Peripheral Commands and Statements

S—

“

CASSETTE STATEMENT

General Form:

REWIND [#f]
/xyy

where: #f = File number assigned to cassette drive by SELECT statement
(f is integer from 1 to 6).
xyy = Device address of cassette drive.

If neither of the above is specified, the default device address (the
device address currently assigned to TAPE (see SELECT))

is used.
Purpose
The REWIND statement causes the cassette in the specified tape drive to be rewound.
Example:
REWIND

100 SELECT #2 10B
110 REWIND #2

30 REWIND

40 REWIND /10C —~

132

——~

Section VIl Peripheral Commands and Statements SAVE

CASSETTE COMMAND

General Form: #f,
SAVE [P] [“name" line number [line number]]

/xyy,
where #f = File number to which device address is assigned (#1 to #6).
xyy = Device address of cassette drive on which output is recorded.

1f neither of the above is specified, the default device address
(the device address currently assigned to TAPE, see SELECT)
is used.

P = Sets the protection bit on the program file to be saved.

“name”’ Is the name assigned to the program on tape. ““name’’ is from
one to eight characters.
1st ‘line number’ = Starting line number to be saved.

2nd ‘line number’ = Ending line number to be saved.

Purpose

The SAVE command causes BASIC programs (or portions of BASIC programs) to be written onto the
selected tape. The program may be named by using the ‘“‘name’ parameter so the user can address this
program file in subsequent LOAD commands.

If no line numbers are specified, the entire user program text is written onto the specified tape. SAVE
with one line number causes all user program lines from the indicated line through the highest numbered
program line to be written onto tape. If two line numbers are entered, all text from the first through the
second line number, inclusive, is written.

The ‘P’ parameter permits the user to protect saved programs. That is, if a program that has been saved
by a SAVE P command is loaded, it may not be listed or saved again. Note, in order to list or save ANY
program after a protected program has been loaded, the user must enter a CLEAR command (with no
parameters) or MASTER INITIALIZE the system, (i.e., turn power off and then on).

SAVE is a command and may not be used within a BASIC program.

Examples:

SAVE

SAVE #3

SAVE/10B

SAVE “MAT INV”
SAVE/10B. 100, 200

SAVE #5, “SUBR1" 400, 500

133

SKIP

D ———

Section VIil Peripheral Commands and Statements

CASSETTE STATEMENT

where #f

xyy

END

nF

General Form: #f, END
SKIP n

/xyy nF

File number assigned to cassette drive by SELECT statement
(f is an integer from 1 to 6).

Device address of cassette drive.

If neither of the above is specified, the default
device address (the device address currently
assigned to TAPE (see SELECT)) is used.

Skip to the end of current data file.
Skip n logical data records.
Skip n files.

expression (the integer portion of the value of
the expression is used, must be = 1)

Purpose

The SKIP statement allows the user to skip over any number of program or data files, or any number of
data records. The END parameter is used with data files only. It causes the indicated cassette tape to skip
to the end of the current data file; the tape is positioned before the trailer record. The n parameter is
also used exclusively with data files. It causes the indicated cassette tape to skip n logical data records. If
the trailer record is encountered, the tape backspaces so that it is positioned before the trailer record. The
nF parameter causes the tape to skip n complete program or data files; the tape is positioned at the

beginning of the next file.

Example:
350 SKIP END
270 SKIP #1, 2F
SKIP 10
SKIP/10B, (X+2)F

134

—

Section VIl Peripheral Commands and Statements

CARD READERS (Mark Sense and Punched Card)

Card readers can be attached to any Wang system, but their use on a 2200A is limited and on a 2200S
or WCS/10 is greatly improved with the addition of Option 22. Cards to be used in Wang card readers can
either be prepared manually or on an IBM keypunch.

135

CONSOLE INPUT Section VIl Peripheral Commands and Statements

L~

MARK SENSE CARD READER

Procedure:
(1) Select the Mark Sense Card Reader for Console Input by entering:

SELECT CI 617

(2) Read one or more mark sense cards containing commands or program text line. If the lines con-
tain a statement number, they will be loaded and saved, if they do not, they will be executed
immediately and not saved. Each card will be displayed on the CRT as it is entered. If a read
error occurs, reread the card.

(3) When loading is complete, reselect the keyboard for Console Input by loading a card which con-
tains:

SELECT CI 001

This procedure allows programs to be loaded from the 2214 Mark Sense Card Reader and displayed, or
commands and immediate execution mode statements to be read and executed.

Card Format:
Program and command lines are marked on each card in ASCI| character code format. Special single

column codes (TEXT ATOMS, see Table at the end of this section} can be marked for BASIC statement verbs,
functions, etc. Unmarked columns are ignored. A carriage return character shouid be marked at the end of
each program line in the last column on the card. Multi-statement lines separated by colons are permissible.
Program lines may overlap from 1 card to the next; the carriage return must only appear on the last card of —~
the program line. If the SKIP position is marked in any column, this column is ignored.

Example:

100 LET X=14-Y12

rllrlllllllfllrllll1TllllTllrlllﬂlllrlll
dIDUHIDUIIDDIDDUDDDDD 0jojo|0(o(o|0j0(0Foy0j0(0|0(o|0j01a|m
~DDDDDDUUDI~DDDI'DDDDU{JDDDDDDDDD{]DDUDDDDDD%
;'DDDDUDDIDl‘llDIDDDDDD-DDDDDDUDDD'DDDDDDDDDIE:
%-’DDDHH['JllUl'DlllDUUDDD-DDDDUDDDDD-DDDDDDDDDI§
'?—lll[llﬂlllU“IDIIIDDDDD-DDDUDDDUDD'DDDUDDUDDU%’:
§~I|IIUIDI|I 8/0/0|0|0|0|0|0|0F0|0|0|0|0|0|0(0|0|O}D|Of0(0|0|0]0|0|0|0)8
;;'DDDUDDIDDU{]DIIDDDDDD{]DDDDDDDDD'DDBDDDDDDD%
z|-0{0{u|v|e{r{0jo|ojoto|ojo|ojolojoio]ojotololoolnlo|o|oia|otolololololololololol®
g%ogggggggﬂQEEDDDDDDDD%DDDDUDDDDDE(_]DDDDDDDDD
| A e
oog':_::é)(u\.:ﬁ|>~..u 4
B b

136

Section VIl Peripheral Commands and Statements DATALOAD

{NOT ON 2200A)
MARK SENSE CARD READER STATEMENT
General Form: #f
DATALOAD [/517] argument [, argument] . ..
where: #f = logical file number assigned to unit by SELECT statement
{f is integer from 1 to 6).
xyy = device address of card reader (517). |f neither of the above is
specified the default device address for TAPE is used {see SELECT).
argument = [variable
array designator
Purpose

This statement reads values from a mark sense card reader and sequentially assigns those values to the
variables in the argument list. A maximum of 40 characters per card can be entered. The values are marked
on the card in ASClH! code. Blank {unmarked) columns are ignored. Each value must be followed by a CR
(carriage return) and LF (line feed) characters. The carriage return and line feed characters for the last value
on the card should always be marked in the last two columns of the card. Alphanumeric or numeric values
may be assigned to alphanumeric variables; values assigned to numeric variables must be legitimate BASIC
numbers. Arrays are filled row by row.

Numeric and alphanumeric values are marked in ASCII in any legal BASIC form (i.e., 4.2, -732.71,
21.2+E07). Quotes are not required with alpha values. Leading space characters (HEX (20)) of alpha-
numeric values will be ignored. All values, whether numeric or alphanumeric, must be separated by a
carriage return and a line feed.

Values are successively read from one or more cards until all arguments are satisfied or until the end-of-
file is encountered. For each card read, a CR and LF character must be the last two characters on the card
(i.e., occupy the last two columns on the card). End of file is indicated by marking an X-OFF character on
a card, followed by a carriage return and line feed. When an end-of-file is encountered, the remaining
variables in the list are left with their current values; an IF END THEN statement then causes a valid
transfer. If the SKIP position is marked in any card column, that column will be ignored. If a read error
occurs which produces an illegal number format, an error message will be displayed, and program execution
terminates. The program can be restarted at the DATALOAD statement and all cards reread.

Examples:

SELECT TAPE 517

DATALOAD X, Y, AS, B$
DATALOAD #3, N(), A$, B$
DATALOAD /517, A1$(), X, A$

|IRERRARRAARREARERRRARA
LY TRl Tt NET Tt O1 Feul RN TR

TIITITITTT
N IR
| ' ‘ ‘
el
,‘.l,

; '
ANERTHIEREEnn ‘ |
: N IRE TS R I R A S A A
!; UULLIRUSERSANR e naiL
ATt 1ol MY |
! Hul b apa(wle
\rll‘llllll el
F

| oo] W IG (Wl | dl x|~

CR
LF
!
2
I,

Ck

W
~

137

DATALOAD Section VIl Peripheral Commands and Statements

(NOT ON 2200A)
T —————————————
MARK SENSE/PUNCHED CARD READER STATEMENT

General Form: DATALOAD #t, argument [, argument] . ..
/628,
where /628 = The device address which designates the card reader as the device

from which data is to be read, and also determines the type of
code conversion routine which is to be performed, and the data
format to be expected. Address 628 causes the reader to expect
discrete data values, and to perform an automatic Hollerith-to-
ASCI1 conversion for each data character read.

#f = A file number to which the device address has been assigned in a
SELECT statement (‘f’ is an integer from 1 to 6).

If neither a device address nor a file number is specified, the
address of the default TAPE device (normally device address
10A) is used.

argument =[variable
array designator

Purpose

The DATALOAD statement with a device address of 628 initiates the reading of discrete data values in
Hollerith code from one or more data cards, converts each character to ASCII, and assigns the values read
sequentially to receiving variables in the DATALOAD argument list. (Arrays are filled row by row.)
Multiple values on a single card must be separated by commas. If the argument list is not filled by a single
card, additional cards are read until all receiving variables are filled. Unread data on the last card is lost.
Both alphanumeric and numeric values may be stored in alphanumeric variables, but only legitimate BASIC
numbers can be stored in numeric variables (otherwise, an error results and program execution terminates).

Examples:
DATALOAD /628 A8, N()
DATALOAD A, B, C, N$

138

Section VIl Peripheral Commands and Statements DATALOAD BT

(NOT ON 2200A)
- -

PUNCHED CARD READER STATEMENT

G | Form: #,
eneral Form DATALOAD BT (N=82) [/629,] alpha array designator

where: (N=82)

It

The number of characters to be received for each card read.
For Hollerith card images (address 629), a total of 82 char-
acters are received for each card (80 data characters and two
control characters). If the card has fewer than 80 columns,
the reader automatically “’pads’’ the remaining unread char-
acters up to 80 with HEX(FF) characters.

/629

The device address of the card reader which also determines
the type of code conversion which is to be performed and
the data format which is to be expected. Address 629
initiates the reading of a complete 80-character card image,
and causes an automatic Hollerith-to-ASCII conversion

of all data read.

#f = A file number assigned to unit in a SELECT statement (f is
an integer from 1 to 6).

If neither a device address nor a file number is specified,
the address of the default TAPE device is used.

Purpose

The DATALOAD BT statement with a device address of 629 initiates the reading and conversion of a
complete 80-character Hollerith card image. Each column is translated from Hollerith code into its ASCH
equivalent, and stored in the receiving alphanumeric array. In this mode, the system always expects to
receive exactly 80 data characters for each card read (blank columns on a card are read as ASCI! space
characters). A card which contains timing marks may have fewer than 80 columns, however. In this case,
the card reader itself generates HEX(FF) characters for all unread characters up to 80, so that exactly
80 data characters are transmitted. In addition, the card reader generates a LENGTH code and an ERROR
code, and transmits them as the 81st and 82nd characters for each card read. The receiving alpha array
must therefore be dimensioned to hold at least 82 characters, and the number of characters read in every
case must be 82 (N=82). If an entire card or any portion of a card cannot be read (due to a card jam or
other reader malfunction), 80 HEX(FF) codes are transmitted, and the error code identifies the source
of the difficulty.

Example:

50 DIM A$(3)40
500 DATALOAD BT (N=82)/629,A$()

The receiving array of three forty-byte elements segregates 80 bytes of data in A$(1) and A$(2) and
the two control bytes in A(3).

139

DATALOAD BT Section VIII Peripheral Commands and Statements

{(NOT ON 2200A)
N T T 7Y T N =t ¥t rem
MARK SENSE CARD READER STATEMENT

General Form: hh hh #1, 7 (alpha variable
DATALOAD BT ([N=expression) [l IL= 1 L1 (s=])][
alpha variable alpha variable /xyy, alpha array designator,

where: N = Number of characters to read (generally 40).

L = Leader code character (ignored when reading until a different character
is encountered). If an alpha variable is specified, the first 8-bits are used.
If L is not specified, no leader code is assumed {optional).

S = Stop character (optional).
If an alpha variable is specified, the first cahracter is used.
hh = Hexdigits.
#f = File number assigned to unit by SELECT statement (# 1 to #6).
xyy = Device address of card reader. If neither of the last two above parameters

is specified, the default device address for TAPE is used (see SELECT).

NOTE:
Commas must separate the N, L, and S parameters when
more than one is specified.

Purpose

This statement allows 8-bit characters in any code format to be read from a mark sense card (up to 40
characters) and stores the characters read in the alpha variable or alpha array designated. The card is read
and characters stored until the specified alpha variable or array is filled or until the specified number of
characters are read, or until the specified STOP character is read.

The 'L’ parameter specifies the leader code on the card; when a card is read, leader code is ignored
(i.e., all characters equal to the specified leader code character are ignored until a character is read that is
not equal to the leader code character).

This statement is generally used when specially coded information, which does not conform to a specific
character code format such as ASCIl, must be read from a mark sense card. The data is read into alpha-
numeric variables or alphanumeric arrays; from there it can be converted and processed. Data manipulation
and conversion features available in the 2200B are particularly useful for this.

Reading can be terminated for each card by specifying the number of characters to be read (N parameter),
or termination character code (S parameter), or both. The recommended procedure is specifying N = 40,
since there are 40 columns on each mark sense card. If termination does not occur with the last character
of the card, another mark sense card operation should not be requested for at least 20 milliseconds times the
number of remaining characters on the card, since some of these remaining characters on the card may be
read if another read operation is initiated rapidly.

If the SKIP position is marked in any column, that column is ignored.

If a device is not specified the device currently selected for TAPE will be used. This should previously
be selected to 517.

Example:
DATALOAD BT (N =40) /517, A$
SELECT TAPE 517
DATALOAD BT (N = 40) A$()
SELECT #1 517
DATALOAD BT (N =40, L = FF, S =99) #1, B$

NOTE:
This Statement is available on a 2200S or WCS/10 only with
Advanced Programming Statements.

140

AN

-,

Section VIil Peripheral Commands and Statements

DATASAVE BT

PUNCHED CARD READER STATEMENT

/42E,

where: /42E

system.

alpha variable

General Form: DATASAVE BT [#f] alpha variable

The special card reader device address which specifies Hollerith
Look-Ahead operations. Address ‘42E’ causes the card reader
to feed in the next card from the input hopper, convert the
data from Hollerith to ASCIlI, and hold the converted data in
the card reader output buffer awaiting transmission to the

#f = A file number to which address 42E has been assigned in a
SELECT statement (‘" must be an integer from 1 to 6).

If neither a device address nor a file number is specified, the
address of the device currently assigned to TAPE device is used.

A ““"dummy’’ alphanumeric variable included to satisfy general
format requirements for the DATASAVE BT statement, but
not used in the Look-Ahead operation. (Note that the dummy
alpha variable is most efficiently dimensioned to the
minimum length of one byte.)

Purpose

The DATASAVE BT statement with a device address of 42E initiates the reading of one card into the
card reader buffer, and converts the data from Hollerith to ASCII. Illegal characters are translated as
ASCII ‘1 characters. LENGTH and ERROR codes are also generated, and can be obtained if a Hollerith
card image (DATALOAD BT, address 629) is subsequently read. The Look-Ahead operation in effect
constitutes the first stage of a reading operation in certain card reader modes. The data cannot actually
be transmitted from the card reader buffer into memory, however, until a DATALOAD, address 628, or
DATALOAD BT, address 629, statement is executed. There are no timing restrictions governing when a
DATALOAD or DATALOAD BT statement may be executed following a Look-Ahead operation.

Example:
10 DIM F$1

100 DATALOAD /628, A$, B$, N

200 DATASAVE BT /42E, F$

141

(initiates reading next card)

INPUT Section VIl Peripheral Commands and Statements

MARK SENSE CARD READER STATEMENT

General Form: INPUT [‘’character string’’,] variable [,variable] . ..

Purpose

This statement allows the user to supply data from the Mark Sense Card Reader during execution of a
program already in memory. The Mark Sense Card Reader is specified with a SELECT statement as the
INPUT device and cards containing the data are read instead of keying in the data from the keyboard.
To reset the keyboard as the input device, another SELECT statement is executed. For example, a program
sequence which allows a user to enter values for the variables A and B via a Mark Sense Card is shown
below:

30 SELECT INPUT 517
40 INPUT “ENTER VALUESOF A, B, A, B
50 SELECT INPUT 001

Line 30 selects the card reader as the INPUT device. The system then displays the input request messaae
ENTER VALUE OF A, B?, and waits for the values to be entered. A mark sense card containing the
values can then be read. As the card is read, the information is displayed on the CRT, just as in keyboard
entry. When the values have been received and assigned to the variables A and B, statement 50 is executed
and INPUT operations are selected back to the keyboard.

Each value must be entered on the card or cards in the order in which variables are listed in the INPUT
statement. If more than one value is entered on a card, they must be separated by commas. A carriage
return character must be marked in the last column of the card. Several cards may be used to enter the
required input data. if the SKIP position in any column is marked, that column is ignored.

If there is a system detected error in the entered data, an error message is displayed and the value must
be re-entered beginning with the erroneous value. The values which precede the error are accepted.
A user may terminate any INPUT statement sequence without supplying all required input values by
using a card containing only a carriage return character. This would cause the system to proceed to the
next program statement. The variables which have not received data will remain unchanged.

Card Format:

Data values are marked on the card in ASCIl code. A carriage return character, HEX (OD), must be
marked in the last column of the card (column 40). If more than one value is entered on a card, they must
be separated by commas. Numeric data is marked in free-form (i.e., 4.2, -7.24 E+05, 2714.132). Space
characters and unmarked columns are ignored. When marking alphanumeric data, the literal string need
not be enclosed in quotes. However, leading blanks are ignored and commas act as string terminators. |f
leading blanks or commas are to be included, enclose the string in double quotes. Space characters must
be marked as ASCI! space codes, HEX(20). Unmarked columns are ignored. If the SKIP position in
any column is marked, that column is ignored.

IAARRRAARERRA]] | I ARRARAERRARRERRRAEERRAAR!
-0 00N n|0j0j0|efoHA[C|e{R|0|A{0{0|0]O+8|0|B|O|0C|N(CID0O[O|0IGIOI0]00(0]8]
#NUUIlﬂlﬂi]ll'll[IU[Il[IUUI"I]Ul[l[lﬂ[l[]l]—[]ﬂi]UUU[JIJLILI'3
;’l'lHIIIUUI'DUIIUlIUlU'DIUlDDUUDU'UUDUDU[IlJﬂlvg'
%-IDI[IH[]IDI.'DUUIUUIU[I(]-DUIUUDHDDU'DUUDDHUDHIE
‘?»[Jllllllﬂﬂﬂﬂ'.l[I[lllDUll—lIIIUDUDUU'DUUDUDHUUHg
é"lllllllﬂl|'|li]l|llﬂl|'|lll[|ﬂﬂUD[H]DI]DDUDDUUE
gHHIJHUH|IDE|U~|][|I[|UDUUDD'DBDUDDDUDD‘HUUUUUDDUU%
§llllllﬂﬂllUﬂﬂ[l-ﬂ[lDDUDDDDD-DDDUDDDDD[H]HDD[]HUDUH§
EEHHHUUIIDUU[HDUDUDUﬂ[lﬂ[ll]DUDDUDHDDEDUUUUUIJUU|

H
Ve~ e Y ieal i~ [q{fre(of 5"’

Values on card: -4.246, +.32E-07, 423496

142

Section VIIl Peripheral Commands and Statements INPUT

MARK SENSE/PUNCHED CARD READER STATEMENT

General Form: INPUT ["‘character string”’,] variable [,variable] . ..

Purpose

Once the card reader has been selected for INPUT operations with a SELECT INPUT 62B statement,
the reader functions like a keyboard, reading one or more data cards in response to each INPUT request
from the controlling program. As each input request is executed, the system displays a question mark
("?"), preceded by the optional character string. Data values are read from cards and sequentially assigned
to the receiving variables in the INPUT argument list. Both numeric and alphanumeric values can be
stored in alphanumeric variables. However, only legitimate BASIC numbers in free-format may be read
into numeric variables. Otherwise, an ERROR 29 (lllegal Data Format) is generated, and the erroneous
value is skipped. Each value may be marked or punched on a separate card, or multiple values may be
placed on a single card, provided the values are separated by commas. If the argi ment list is not satisfied
by a single card, additional cards are read until all receiving variables in the .rgument list have been
assigned values. Note, however, that each time the INPUT statement is executed, it automatically begins
reading with the next card in the input hopper, even if there are remaining unread data values on the
previous card. It is not therefore possible to use two or more INPUT statements to read several data values
from a single card. Unread data values on the last card read by an INPUT statement are lost.

Examples:
30 SELECT INPUT 62B
40 INPUT A, B

143

LOAD

PUNCHED CARD READER STATEMENT

Section VIII Peripheral Commands and Statements

where:

General Form:

/62B

#f

line number 1

line number 2

LOAD [Q?ZB] " [line number 1 , line number 2]

The device address which designates the card reader as the
device from which programs are to be loaded, and also
determines the type of code conversion which is to be
performed. Address 62B causes program text to be converted
from Hollerith into ASCII.

A file number to which the device address 62B has been assigned
in a SELECT statement {‘f’ is an integer from 1 to 6).

If neither a device address nor a file number is specified, the
address of the device currently selected for TAPE is used.
Address 62B can be selected with a SELECT TAPE 62B state-
ment.

The line number of the first line of program text to be cleared
from memory prior to loading in the new program, and the
first line to be executed in the overlaid program.

The line number of the last line of program text to be cleared
from memory prior to loading the new program.

Purpose

The LOAD statement with address 62B initiates the reading and conversion of BASIC programs from
Hollerith cards. The LOAD statement must be executed on a numbered statement line (otherwise, it is
interpreted as a LOAD command). When the LOAD statement is executed, it produces an automatic
combination of the following operations:

STOP

CLEARP

LOAD
RUN

Stop current program execution.

{line number 1] [line number 2] Remove program text.
CLEAR N Remove non-common variables.

Load new program.

[line number 1] Run new program.

Examples:
10 LOAD /62B, 100, 200
500 LOAD /62B

144

—

Section VIII Peripheral Commands and Statements LOAD

MARK SENSE/PUNCHED CARD READER COMMAND

General Form:
/62B
LOAD [#f]
where: /62B = The device address which designates the card reader as the

device from which programs are to be loaded, and also
determines the type of code conversion to be performed.
Address 62B causes program text to be converted from
Hollerith to ASCII.

A file number to which the device address 62B has been
assigned in a SELECT statement ('f’ is an integer from 1 to
6). ‘

#f

If neither a device address nor a file number is specified, the
address of the Console Tape device (device address 10A) is used.
Address 62B can be designated as the TAPE address with a
SELECT TAPE 62B statement.

Purpose

The LOAD command with a device address of 62B initiates the reading of BASIC program cards, and
automatically converts program text from Hollerith to ASCII. Newly-loaded program text is appended
to the current program in memory, with new program lines which have the same line numbers as existing
lines replacing the old lines in memory. Otherwise, existing program text in memory is unaffected by the
LOAD operation. For example, if the old program in memory has line numbers 10,20,30, etc., and the
newly loaded program has line numbers 15,25,35, etc., the resultant program in memory following the
LOAD is numbered, 10,15,20,25,30, etc. Lines which contain syntax errors are loaded and displayed
with an appropriate error code. The LOAD operation is not terminated by syntax errors, but the program
cannot be run until all syntax errors are corrected. The last card in the program deck must be an END
card (with an ‘E’ in column 80); otherwise, the system continues attempting to load program lines.

Loading a Hollerith Program Deck {LOAD Command, Address 62B)

CLEAR EXEC
LOAD/62B EXEC

Old program text and variables are cleared from memory, and a new program is loaded from Hollerith
cards. After the new program is loaded, the operator must enter RUN, EXEC to run the program. The
program must be terminated by an ‘E’ in the last (80th) column of the last program card, or by the inclusion
of an END card as the last card in the deck. If a termination card is not encountered, the system hangs up
when the hopper is empty.

145

Section VIl Peripheral Commands and Statements

PUNCHED TAPE READER

The punched tape reader provides the facility for Wang systems to read punched tapes in both forward
and reverse directions. Reading is done optically. The punched tape reader can accommodate both
standard ASCIi and non-standard punched tape sizes and codes.

This unit cannot be run on a 2200A, and Option 22 must be available to use it on a 2200S or WCS/10.

146

SN

Section VIl Peripheral Commands and Statements DATALOAD

(NOT ON 2200A)

PUNCHED TAPE READER STATEMENT
General Form: DATALOAD [ﬁyy] argument [, argument] . ..
where #f = Logical file number assigned to unit by SELECT statement
(f is integer from 1 to 6).
xyy = Device address of punched tape reader.

If neither of the above is specified, the default device address

(the device address currently assigned to TAPE (see

SELECT)) is used.

argument = {variable . }
array designator

Purpose

This statement reads values from paper tape and sequentially assigns those values to the variables in the
argument list. Numeric values may be assigned to alphanumeric variables; values assigned to numeric variables

must be legitimate BASIC numbers. Arrays are filled row by row.
Values are successively read from the tape until all variables in the list are satisfied or until the end-of-file

=, isencountered (i.e., an X-OFF character is read). When an end-of-file is encountered, the remaining variables

in the list are left with their current values; an IF END THEN statement will then cause a transfer to the

specified line number.
To be read, the paper tape must conform to the following format:

= e =
2 D 2 D
Q O Q O re
o M o o
€ w D D € w D D Q
QO J & o O 4J @x @ , x
® ® ® o e 4 ° 1st channel
[]
CRE CRERE:
............. e e e e e e . . . D TR + « sprocket holes
o e o |0
3 It
VALUE VALUE L, 8th channel
A e g N—— / /
OPTIONAL) OPTIONAL

Values are punched in ASCII character code and are separated by CR LF RUBOUT RUBQUT; the rubouts
are, however, optional. DATALOAD reads only the first seven channels of the tape; the 8th bit is always

read as 0. Nonpunched frames and RUBOUTS are ignored when reading the tape.
Paper tapes punched on a Teletype via DATASAVE statements conform to this format. To read tape not

in this format, use the DATALOAD BT statement.

Example:
DATALOAD X, Y, A$, B$

—_ DATALOAD #3, N(), A$

DATALOAD /618, A1$(), X, Y
DATALOAD STR(AS$, 1, J)

147

DATALOAD BT Section VIl Peripheral Commands and Statements

{(NOT ON 2200A)
PUNCHED TAPE READER STATEMENT

General Form: hh hh #1, | | alpha variable
DATALOAD BT [R] N=expression | [,] L= [L1]s=
alpha variable alpha variable /xyy| { alpha array designator

where: R = Reversey(read in reverse direction).
= Number of characters to read.

L = Leader code character {ignored when reading until a different
character code is read).
If alpha variable is specified, the first character is used to
specify the leader code.
If L is not specified, no leader code is assumed.

S = Stop character.
If alpha variable is specified, the first character is used to
specify the stop character code.

hh = Hexdigits.

#f = Lodgical file number assigned to unit by SELECT statement
(f is integer from 1 to 6).

xyy = Device address of punched tape reader.

If neither of the above is specified, the default device address
(the device address currently assigned to TAPE (see
SELECT)) is used.

NOTE:
Commas must separate N, L, S arquments if more than one
is present.

Purpose

This statement reads a punched tape forwards or backwards and stores the characters that are read in the
alpha variable or alpha array designator specified. The tapé€ is read until the stop character is encountered,
the alpha variable or array is full, or the number of characters specified by N are read, whichever occurs
first. All eight channels of the paper tape are read. The tape is read in the reverse direction if the ‘R’ par-
ameter is included in the DATALOAD BT statement. The ‘L’ parameter specifies the leader code on the
paper tape; when a tape is read, leader code is ignored (i.e., all characters read which are equal to the
specified leader code character are ignored until a character is read that is not equal to the leader code).

DATALOAD BT permits punched tapes in any format to be read by the System 2200. Conversions can
be done with bit manipulation statements such as BOOL.

Examples:

DATALOAD BT /618, A$

DATALOAD BTR (L=FF, S=0D) #1, A$()
DATALOAD BT (N=100) AS$()

DATALOAD BT (N=200, L=00, S=A$) /618, B$()

148

Section VIII Peripheral Commands and Statements LOAD

(NOT ON 2200A)
PUNCHED TAPE READER COMMAND

EamaN

General Form: LOAD #f,]
/xyy

File number assigned to punched tape reader by SELECT
statement (f is an integer from 1 to 6).

where: #f

Xyy Device address of punched tape reader.

If neither of the above is specified, the default device address
(the device address currently assigned to TAPE (see
SELECT)) is used.

Purpose

When the LOAD command is entered, the program punched on the tape is loaded and appended to the
current program in memory. This command permits additions to a current program, or if entered after a
CLEAR command, entry of a new program.

To be read, the paper tape must conform to the following format:

5 5 5 5 5 5
o 9 o o o 0 o
a o o o o o S 6 5
S O r w > D r w > D ? G
. C o O 4 & O 4 & o X X X
' ‘Te o @
- 3 ®lel 8| e |o | o e |0 1st channel
o |e ° o0 ° o |0
b e o o e e .. S N N R R . |+ sprocket holes
e |8 |FIRST |® ¢/ 3/8 *1®13 s o oo
® |® |TEXT e @ | TEXT e o TEXT
oo o0 o |0
LINE LINE LINE ., 8th channel
N e’ N—— N —’ 44 N——
OPTIONAL OPTIONAL OPTIONAL OPTIONAL

Text lines are punched in ASCI| character code and are separated by CR LF RUBOUT RUBOUT; the
rubouts are optional but are punched when a program is saved on Teletype. The program is terminated by an
X-OFF character. LOAD reads only the first seven channels of the paper tape; the 8th bit is always read as
0. Nonpunched frames and RUBOUTS are ignored when reading the tape.

LOAD also can be used as a program statement for program chaining, as is described on the next page.

Examples:

LOAD
LOAD #1
LOAD /618

149

LOAD Section VI Peripheral Commands and Statements
(NOT ON 2200A)
PUNCHED TAPE READER STATEMENT

—

General Form: LOAD [#f,
/xyy

where: #f = File number assigned to unit by SELECT statement
(f is an integer from 1 to 6).

] [line number 1 [,line number 2]]

xyy = Device address of punched tape reader.

If neither of the above is specified, the default device address
(the device address currently assigned to TAPE (see
SELECT)) is used.

line number 1 = The line number of the first line to be deleted from the current
program. After loading, execution continues at the line
‘line number 1°. An error results if ‘line number 1’ does not
exist in the new program.

line number 2 = The line number of the last line to be deleted from the program
currently in memory, before loading tne new program.

Purpose
This is a BASIC program statement which, in effect, produces an automatic combination of the follow-
ing: STOP (stop current program execution)

CLEARP [line number 1 [line number 2]] (remove program text)
CLEAR N (remove noncommon variables only)

LOAD (load new program)

RUN [line number 1] (run new program)

If only ‘line number 1’ is specified, the remainder of the current program is deleted, starting with that line
number. If no line numbers are specified, the entire current program is deleted, and the newly loaded pro-
gram is executed from the lowest line number. This permits segmented jobs to be run automatically without
user intervention. Common variables are passed between program segments. LOAD must be the last state-
ment on a statement line.

To be read, the punched tape must conform to the following format:

L5 e =
g § 3 g S8ttty
g 8 558
=2 ! Y
I E% 2 & = EER
77
* Py 15t channel
3t LNt Bt LRI At 333
ofe o e e- PR . . s PN + | sprocket holes
FIRST o|e o |® ele ie
TEXT TEXT TEXT
LINE LINE LINE |, 8th channet
OPTIONAL OPTIONAL OPTIONAL OPTIONAL

The LOAD statement must not be within a FOR/NEXT Loop; an error results when the NEXT or

RETURN statement is encountered.
Text lines are punched in ASCII character code and are separated by CR LF RUBOUT RUBOUT; the

rubouts are optional but are punched when a program is saved on Teletype. The program is terminated by
an X-OFF character. LOAD reads only the first seven channels of the paper tape; the 8th bit is always read
as 0. Nonpunched frames and RUBOUTS are ignored when reading the tape.
In Immediate Mode, LOAD is interpreted as a command (see LOAD command).
Examples:

100 LOAD

100 LOAD #2

100 LOAD /618

100 LOAD /618, 100

100 LOAD #2, 400, 1000

150

Section VIl Peripheral Commands and Statements
L
PLOTTERS

The PLOT statement can be used to operate any Wang plotter, the Plotting Output Writer, the Analog
or the Digital Plotter.

This statement is not available on a 2200A and must be obtained on a 2200S or WCS/10 with Option 22.

D el

151

PLOT

{NOT ON 2200A)

Section VIl Peripheral Commands and Statements

-
PLOTTER STATEMENT

General Form: literal
alpha variable

D

PLOT [expression 0] < [expression 1] , [expression 2], E >, <lexp 1], [exp 2] , [parameter] >1] ...
S
C

where: expression 0 represents the replication factor, or the number of times the values enclosed in < >>are plotted
(1 < expression 0 <1000). If omitted, expression 0 = 1.
expression 1 represents /A x in increments of .015"* {.01" for Model 2202) (-1000 <expression 1 < 1000).
if omitted, expression 1 = 0.

expression 2 represents Ay in increments of .01”; (-1000 <expression 2 <1000). If omitted, expression
2=0.
All three expressions are truncated to integer values.
literal, alpha variable represent character or characters to be plotted or printed.
Parameters for Plotting:
No parameter and U imply ‘move the distance (A X, A y) specified in expressions 1 and 2 with pen up (without
plotting)’.
D implies ‘draw a line while moving the distance { Ax, Ay) specified in expressions 1 and 2'.
R (RESET) moves the pen to the zero position as manually set on the plotter.
Parameters for Setting Plot Conditions:
C sets the character size (expression 1) for character plotting. Character size is an integer from 1 to 15.
S sets the horizontal {expression 1) and vertical (expression 2) spacing between characters for character plotting.

NOTE:
Parameters U, D, C, S, R cannot be used with the Model
2202, S and C cannot be used with the Model 2232A.

*These values assume full-scale plotting.

Purpose

This statement moves the plot pen (Model 2212 or Model 2232A) or typing element (Model 2202)
from its current position to a position a distance x (expression 1; to the right if positive, to the left if
negative) and y (expression 2; up if positive, down if negative) from the current position. The movement
can be made with the pen up (U, or no parameter) or down (D). When a literal string or alpha variable is

supplied as the parameter, the movement to the riew position is made with the pen up and then the
characters are plotted.

Example 1:
TMON=10 Advance Ax = 10 increments and print ABC. Do this 10 times.
20PLOTN<10,, “ABC" >

Example 2:

10 PLOT< X, Y, “VALUE" >,<40,60, “-" >, <A+10, B, C$ >
The multiple arguments in the same PLOT statement are
processed sequentially from left to right.

Example 3: .
10 PLOT <10, 20, HEX (FB) >

This statement prints the normal plotting character (the centered dot) of the Model 2202.
For more information on the available plotter, see the plotter manual.

152

Section VIl Peripheral Commands and Statements

TELETYPE
A Teletype® unit appropriately attached to a Wang system can be activated by a number of BASIC

statements and commands. Tapes can be both read and punched.
Teletype-activating statements are not available on a 2200A and must be obtained for a 2200S and

WCS/10 with Option 22,

U

183

DATALOAD

(NOT ON 2200A)

Section VIII Peripheral Commands and Statements

TELETYPE STATEMENT

#f,
/4yy,

where #f = Logical file number assigned to unit by SELECT statement
(f is integer from 1 to 6).

General Form: DATALOAD [] argument [, argument] ...

4yy = Device address of Teletype. Output (41D, 41E or 41F)

If neither of the above is specified, the default device address
(the device address currently assigned to TAPE (see
SELECT)) is used.

variable
array designator
Purpose

This statement reads values from the TeIetype® punched tape and sequentially assigns those values to the
variables in the argument list. Numeric values can be assigned to alphanumeric variables; values assigned to
numeric variables must be legitimate BASIC numbers. Arrays are filled row by row.

Values are successively read from the tape until all variables in the list are satisified or until the end-of-
file is encountered (i.e., an X-OFF character is read). When an end-of-file is encountered, the remaining
variables in the list are left with their current values; an |[F END THEN statement then causes a transfer to
the specified line number.

The System 2200 will automatically transmit a X-ON character to the Teletype to start the tape reader,
and a X-OFF character to stop it when reading is completed.

argument

To be read, the punched tape must conform to the following format:

- =
2 2 2 2
o o Q QO s
Qo @ o o o
£ w 2 2 x uw 2 2 g
O 4 @ @« O 4 @& L, x
7/
L] ° : s L] ° : : : 1st channel
[[BN J [e |®
.............. . ol P P [A P o e . |+ . sprocket holes
e | [[O [BN BN K
[3K e |e [
VALUE - VALUE HEH 8th channel
/ /
7/

Values are punched in ASCII character code and are separated by CR LF RUBOUT RUBOUT. All other
RUBOUTS and nonpunched frames on the tape are ignored when the tape is read. DATALOAD reads only
the first seven channels of the tape; the 8th bit is always read as O.

Paper tapes punched on a Teletype via DATASAVE statements conform to this format. To read tape not
in this format, use the DATALOAD BT statement.

Example:

DATALOAD X, Y, A$, B$
DATALOAD #3, N(), A$
DATALOAD /41D, A1$(), X, Y
DATALOAD STR (AS$, 1, J)

154

Section VIl Peripheral Commands and Statements DATALOAD BT

T (NOT ON 2200A)
TELETYPE STATEMENT

General Form: hh hh \ #1, alpha variable
DATALOAD BT N=expression| [,] | L= [L1]S= []
alpha variable alpha variablef /4yy, alpha array designator

where: N = Number of characters to read.
L = Leader code character (ignored when reading until a different
character code is read). FE

If alpha variable is specified, the first character is used to
specify the leader code.
If L is not specified, no leader code is assumed.

S = Stop character. 30 6R OD

If alpha variable is specified, the first character is used to
specify the stop code.

hh = Hexdigits.

#f = Logical file number assigned to unit by SELECT statement
(f is integer from 1 to 6).

4yy = Device address of Teletype. Output (41D, 41E, or 41F).

If neither of the above is specified, the default device address
(the device address currently assigned to TAPE (see
SELECT)) is used.

NOTE:
Commas must separate N, L, S arquments if more than one
is present.
Purpose
®

This statement reads a punched tape on a Teletype~ and stores the characters read in the alpha variable
or alpha array designator specified. The tape is read until the stop character is encountered, the alpha
variable or array is fuil, or the number of characters specified by N are read, whichever occurs first. All
eight channels of the tape are read.

The System 2200 automatically sends out an X-ON character to start the tape reader and an X-OFF
character to stop it. Because two additional characters are read after the X-OFF is sent, the following
considerations should be observed. For termination by count (N parameter), the system normally sends out
the X-OFF character after N-2 characters have been read. Therefore, if the number of characters to be read
is specified by N, N should be = 3. If N = 1 (or 2), the next 2 or (1) characters may be lost. Similarly, if
reading is terminated by filling the variable or array, the number of characters in the variable or array should
be = 3. If a stop character is encountered, the stop character and the next 2 characters are read; the tape
then stops. The ‘L’ parameter specifies the leader code on the punched tape; when a tape is read, leader
code is ignored (i.e., all characters read which are equal to the specified leader code character are ignored
until a character not equal to the leader code is recognized).

DATALOAD BT permits punched tapes in any format to be read by the System 2200. Conversion to
ASCII code can be effected with BOOL or other bit manipulation statements. e

—. Examples: NATALOAD BT (L= FF, 5-'-3")/4'0 ‘
DATALOAD BT /41D, A$
DATALOAD BT (L = FF, S =0D) #1, A$()
DATALOAD BT (N = 100) AS()
DATALOAD BT (N =20, L =00, S = A$ A1$()

155

DATASAVE Section VIl Peripheral Commands and Statements

(NOT ON 2200A)

TELETYPE STATEMENT
General Form: #f OPEN ‘‘name””
DATASAVE END
/4yy, argument [, argument] . ..
where: #f = FiIL number assigned to unit by SELECT statement

(f is integer from 1 to 6).
4yy = Device address of Teletype. Output (41D, 41E, or 41F)

1f neither of the above is specified, the default device address
(the device address currently assigned to TAPE (see
SELECT)) is used.

literal string
) alpha variable
argument = .
expression
array designator
name = 1 to 8 characters (note, the name is required but is not used).

OPEN = Punch leader code (50 null characters).
END = Punch X-OFF character and trailer code (50 null characters).

Purpose

This statement causes the values specified in the argument list to be punched on tape. Numeric values
are punched in a form identical to that resulting from a PRINT statement (i.e., exponential or fixed
point form).

Alphanumeric values are punched in ASCII character code and separated by CR LF RUBOUT RUBOUT;
trailing spaces in values of alphanumeric variables are not written. Alphanumeric values must not contain
any of the following characters; CR, RUBOUT, X-OFF; trailing spaces are ignored. The OPEN parameter
writes leader code of 50 null characters. The END parameter terminates the data file by punching an
X-OFF character and trailer code of 50 null characters.

The paper tape is punched in the following format:

55 55
t

] g 2 &
£ ow 2 2 £ uw 2 2 e
C 4 T & C Jx & , . X

7/
° ° 1st channet
clo|EE o |83 $
............ [N T N o «fe o« o | | «sprocket holes
e |o L] °
VALUE VALUE ., 8th channel

If the Teletype has the facility for turning the tape punch on and off with TAPE-ON and TAPE-OFF
codes these can be utilized under program control by transmitting the codes to the Teletype by a PRINT
statement prior to and after punching.

Example:

DATASAVE X, Y, A$

DATASAVE OPEN “TTY"”

DATASAVE END

DATASAVE #1, A$()

DATASAVE /41D, N(), AS$, X, Y, Z
DATASAVE STR(AS, I, J), HEX(FAFB)

156

Section VIII Peripheral Commands and Statements DATASAVE BT

(NOT ON 2200A)
TELETYPE STATEMENT

General Form: DATASAVE BT |7 alpha variable
/4yy, alpha array designator
where: #f = Logical file number assigned to unit by SELECT statement
(f is integer from 1 to 6).
4yy = Device address of Teletype. Output (41D, 41E, or 41F)
If neither of the above is specified, the default device address
(the device address currently assigned to TAPE (see
SELECT)) is used.
Purpose

This statement punches the values of an alpha variable or alpha array onto a paper tape with no control
information (i.e.,, no CR LF RUBOUT RUBOUT separating values). Trailing spaces in alpha values are
punched (see other Teletype statements).

DATASAVE BT permits paper tapes to be punched in any format. Any 8-bit codes may be punched.

If the Teletype has the facility for turning the tape punch on and off with FAPE-ON and TAPE-OFF

codes these can be utilized under program control by transmitting the codes to the Teletype by a PRINT
statement prior to and after punching.

Example:

DATASAVE BT #2, A$()
DATASAVE BT /41D, B1$

DATASAVE BT Q$() v
U v w/‘
»‘M L ’
A
; d.,,&‘j }A
/i»‘ ’ G‘/}

167

LOAD

(NOT ON 2200A)

Section VIIl Peripheral Commands and Statements

TELETYPE STATEMENT

General Form:

where: #f

dyy

line number 1

line number 2

#f
LOAD ! i i
[/4W,] [line number 1 {,line number 2]]

File number assigned to teletype by SELECT statement
(f is an integer from 1 to 6).

Device address of Teletype.

If neither of the above is specified, the default device address
(the device address currently assigned to TAPE (see
SELECT)) is used.

The line number of the first line to be deleted from the current
program. After loading, execution continues at the line = line
number 1. An error occurs if ‘line number 1’ does not exist

in the new program.

The line number of the last line to be deleted from the program
currently in memory, before loading the new program.

Purpose

This is a BASIC program statement which produces an automatic combination of the following:

STOP (stop current program execution)

CLEARP [line number 1 [,line number 2]] (remove program text)
CLEAR N (remove noncommon variables only)

LOAD (load new program)

RUN [line number 1] (run new program)

If only ‘line number 1’ is specified, the remainder of the current program is deleted starting with that
line number. If no line numbers are specified, the entire current program is deleted, and the newly loaded
program is executed from the lowest line number. This permits segmented jobs to be run automatically
without user intervention. Common variables are passed between program segments. LOAD must be the

last statement on a statement line.

The LOAD statement must not be within a FOR/NEXT loop or subroutine; an error results when the

NEXT or RETURN statement is encountered.
To be read, the punched tape must conform to the following format:

Text lines are punched in ASCI| character code and are separated by CR LF RUBOUT RUBOUT. The
program is terminated by three X-OFF characters. LOAD reads only the first seven channels of the paper
tape; the 8th bit is always read as 0. Nonpunched frames and RUBOUTS are ignored when reading the tape.

RUBOUT
RUBOUT
RUBOUT
RUBOUT
X-OFF
X-OFF
X-OFF

CR
LF

st channel

L)
00
LN
L)
00
00
~
~
*0
L]
L]

...... ke e e bl b e e e oo L L] sprocket holes

FIRST o |e NEXT
i TEXT i i TEXT oo o
LINE) 8th channel -

7

———
OPTIONAL

In immediate Mode, LOAD is interpreted as a command (see LOAD command).

Example:
100 LOAD
100 LOAD #2
100 LOAD /41D
100 LOAD #2, 400, 1000
100 LOAD /41D, 100

158

.

Section VIII Peripheral Commands and Statements

LOAD

(NOT ON 2200A)

TELETYPE COMMAND

General Form: LOAD [#f]
14xx

where: #f

]

File number assigned to unit by SELECT statement
(f is an integer from 1 to 6).

dyy

is used.

Device address of device to load from. (41D, 41E, or 41 F).

if neither of the above is specified, the default device address (the
device address currently assigned to TAPE (see SELECT))

Purpose

When the LOAD command is entered, the program punched on the paper tape is loaded and appended to
the current program in memory. This command permits additions to a current program, or if entered after a

CLEAR command, entry of a new program.
To be read, the paper tape must conform to the following format:

1st channel

« - sprocket holes

8th channel

55 E 5
© O Q O s
m o 0 oo © O O
o B | c wuw =2 2D 3
T o« O 4 X @ 'y X X X
7/
S |2 ®*le (8|8 3L Sk
[BN) o [N)
° FIRST o (o |0 |0 NEXT
g $ | TEXT - TEXT ¢ (®|®
® | LINE i LINE 4,y
!/ / LS—
OPTIONAL

Text lines are punched in ASCII character code and are separated by CR LF RUBOUT RUBOUT. The
program is terminated by 3 X-OFF characters. LOAD reads only the first seven channels of the paper tape;
the 8th bit is always read as 0. Nonpunched frames and RUBOUTS are ignored when reading the tape.

LOAD also can be used as a program statement, as described on the next page.

Examples:

LOAD
LOAD #1
LOAD /41D

159

SAVE

(NOT ON 2200A)
—
TELETYPE COMMAND

Section VIl Peripheral Commands and Statements

General Form: SAVE |#f [Iine number [,Iiné number”
/4yy,

where #f = File number assigned to unit by SELECT statement
(#1 to #6).
4yy = Device address of Teletype. (41D, 41E, or 41F).

If neither of the above is specified, the default device
address (the device address currrently assigned to
TAPE, (see SELECT)) is used.

Starting line number to be saved.

1st line number

2nd line number = Ending line number to be saved.

Purpose

The SAVE command causes BASIC programs (or portions of BASIC programs) to be punched on paper
tape.

If no line numbers are specified, the entire user program text is saved. SAVE with one line number
causes all user program lines from the indicated line through the highest numbered program line to be
punched on tape. If two line numbers are entered, all text from the first through the second line number,
inclusive, is punched.

The paper tape format is:

RUBOUT
RUBOUT
RUBOUT
RUBOUT

X-OFF
X-OFF
X-OFF

[+ N T
Q -
////

[2K J [) [INN] o |® |0
U RRL 4L 1t L
212! FimsT ¢ *isie NEXT oo |o

S 18| TEXT t SR TEXT
LINE LINE ,
7/

Text lines are punched in ASCII character code and are separated by CR LF RUBOUT RUBOUT. The
program is terminated by 3 X-OFF’s.

Examples:

SAVE

SAVE #3

SAVE /41D

SAVE /41D, 100, 200
SAVE #5, 400

160

section IX
Error Codes

Introduction v v162
TypesofError.162

161

Section IX Error Codes

INTRODUCTION

The Wang System 2200 BASIC checks for and displays syntax errors as each line is entered. The user
may then correct the error before proceeding with his program. When any error is detected, the line being
scanned by the system is displayed with an 1’ symbol just below the point of the error. The arrow is
followed by the error message number (e.g., T ERR 02).

The following example shows the format of the System 2200 error pointer:

:10 DIM A(P)
T ERR 13

The user can refer to the list of error messages to identify the error by code number. The list contains a
description of each and a suggested method for correcting the error.

NOTE:

An error message can only indicate one possible type of error.

Example:

PXINT X
1t ERR 06 (expected equal sign)

The system has interpreted ‘P’ as a variable and thus expects an equal sign following 'P’; whereas, the user
may have meant:

:PRINT X

The system assumes the statement is correct until illegal syntax is discovered.

The error message, SYSTEM ERRORY], is displayed if certain hardware failures occur. The user should
RESET or MASTER INITIALIZE (Power On, Power Off) the system and re-enter the sequence of events
that produced this error.

NOTE:

Certain combinations of illegal or meaningless operations may
also result in a SYSTEM ERROR message.

TYPES OF ERRORS

A Syntax Error occurs when the syntax of a System 2200 BASIC statement is violated. Pressing a
sequence of keys not recognized as an accepted combination produces this type of error. Syntax errors
in a statement are recognized and noted as soon as the EXEC key is touched to enter a statement or pro-
gram line. Examples of this type of error include mispelled verbs, illegal forms for numbers, operators, or
parentheses, and the improper use of punctuation.

Example:
10 DEFFN . (X) =3*X12 - 2*X13
T ERR 21

162

Section IX Error Codes

An Error of Execution occurs when an illegal arithmetic operation is performed, or the execution of
an illegal statement or programming procedure is attempted when a program is executed. This type of
error differs from a Syntax Error since the statement itself uses the proper syntax. However, the execution
of the statement is impossible to perform and leads to an error condition. Typical errors of this type
include illegal branches, arithmetic overflow or underflow, illegal ’“FOR" loops, division by zero, etc.

Example:

(Branch to non existent statement number)
:100 GOTO 110
1105 PRINT “VALUES=" ;A, B, C
1120 END
:RUN
100 GOTO 110

+ ERR 11

A Programming Error occurs when the System 2200 executes the statements entered properly, but the
results obtained are not correct, because the wrong information or logic is used in writing a program.
Although there is no way for the 2200 to identify a programming error, debugging features such as TRACE,
HALT/STEP, CONTINUE, can significantly speed up the process of debugging a program.

163

Section 1X

Error Codes

CODE 01
Error:
Cause:
Action:

Example:

Text Overflow

All available space for BASIC statements and system commands has been used.
Shorten and/or chain program by using COM statements, and continue. The compiler
automatically removes the current and highest-numbered statement.

:10FOR | 1TO 10

:20 LET X SIN(I)

:30 NEXT I

:820IF 2
tERR 01
{the number of characters in the program exceeded the available space in memory for
program text when line 820 was entered)

User must shorten or segment program,

A-B THEN 900

CODE 02
Error:
Cause:

Action:

Example:

Table Overflow

All available space for the program, internal tables and variables has been filled (see

“Internal Storage,” Section). When ERRO02 occurs, all non-common variables

are cleared.

Examine program for:

1) excessive DIM, COM statements.

2) subroutines not terminated by RETURN or RETURN CLEAR, improper exits
from FOR/NEXT loops.

Suggestion: Insert an END statement as the first line in the program and execute the

routine. If END = value appears, the error is probably case 2); otherwise, case 1).

:10 DIM A(19), B(10,10), C(10,10)

RUN

+ERR 02

(the space available for variable tables was exceeded) user must reduce program and

variable storage requirements or change program logic.

CODE 03
Error:
Cause:

Action:
Example:

Math Error
1. EXPONENT OVERFLOW. The exponent of the calculated value was < -99
or >99. (+, -, /, 1, TAN, EXP).
DIVISION BY ZERO.
NEGATIVE OR ZERO LOG FUNCTION ARGUMENT.
NEGATIVE SQR FUNCTION ARGUMENT.
INVALID EXPONENTIATION. An exponentiation, {X1Y) was attempted where
X was negative and Y was not an integer, producing an imaginary result, or X
and Y were both zero.
6. ILLEGAL SIN, COS, OR TAN ARGUMENT. The function argument exceeds
27 X 10" radians.
Correct the program or program data.
PRINT (2E+64 / (2E - 41)
tERR 03 (exponent overflow)

oOrLN

164

Section IX Error Codes
CODE 04
Error: Missing Left Parenthesis
Cause: A left parenthesis (() was expected.
Action: Correct statement text.
Example: :10 DEF FNA V) = SIN(3+V-1)
+ERR 04
:10 DEF FNA(V) + SIN(3%V-1) (Possible Correction)
CODE 05
Error: Missing Right Parenthesis
Cause: A right ()}) parenthesis was expected.
Action: Correct statement text.
Example: :10Y = INT(1.215
+ERR 05
:10Y = INT(1.215) (Possible Correction)
CODE 06
Error: Missing Equals Sign
Cause: An equalis sign (=) was expected.
Action: Correct statement text.
Example: :10 DEFFNC(V) -V +2
TERR 06
:10 DEFFNC(V) = V+2 (Possible Correction)
CODE 07
Error: Missing Quotation Marks
Cause: Quotation marks were expected.
Action: Reenter the DATASAVE OPEN statement correctly.
Example: :DATASAVE OPEN TTTT”
tERR 07
:DATASAVE OPEN “TTTT” (Possible Correction)
CODE 08
Error: Undetined FN Function
Cause: An undefined FN function was referenced. ‘
Action: Correct program to define or reference the function correctly.
Example: 110 X=FNC(2)
120 PRINT “X";X
130 END
:RUN
10 X=FNC(2)
+ERR 08
:05 DEFFNC(V)=COS(2+V) (Possible Correction)

165

Section IX Error Codes

CODE 09
Error: Illegal FN Usage
Cause: More than five levels of nesting were encountered when evaluating an FN function.
Action: Reduce the number of nested functions.,
Example: :10 DEF FN1(X)=1+X :DEF FN2(X)=1+FN1(X)
:20 DEF FN3(X)=1+FN2(X) :DEF FN4(X)=1+FN3(X)
:30 DEF FN5(X)=1+FN4(X) :DEF FN6(X)=1+FN5(X)
:40 PRINT FN6(2)
:RUN
10 DEF FN1(X)=1+X :DEF FN2(X)=1+FN1(X)
1ERR 09
140 PRINT 1+FN5(2) (Possible Correction)
CODE 10
Error: Incomplete Statement
Cause: The end of the statement was expected.
Action: Complete the statement text.
Example: 10 PRINT X"’
tERR 10
:10 PRINT X"
OR
:10 PRINT X (Possible Correction)
CODE 11
Error: Missing Line Number or Continue IHegal
Cause: The line number is missing or a referenced line number is undefined; or the user is
attempting to continue program execution after one of the following conditions: A
text or table overflow error, a new variable has been entered, a CLEAR command has
been entered, the user program text has been modified, or the RESET key has been
pressed.
Action: Correct statement text.
Example: :10 GOSUB 200
1ERR 11
:10 GOSUB 100 (Possible Correction)
CODE 12
Error: Missing Statement Text
Cause: The required statement text is missing (THEN, STEP, etc.).
Action: Correct statement text.
Example: :101F 1+12+X,45
tERR 12
:10IF I=12+«X THEN 45 (Possible Correction)

166

Section I1X Error Codes

—
CODE 13
Error: Missing or lllegal Integer)
Cause: A positive integer was expected or an integer was found which exceeded the allowed
limit,
Action: Correct statement text.
Example: :10 COM D(P)
tERR 13
:10 COM D(8) (Possible Correction)
CODE 14
Error: Missing Relation Operator
Cause: A relational operator (<, =,> ,<=,>=,<>) was expected.
Action: Correct statement text.
Example: :10IF A-B THEN 100
tERR 14
:10 IF A=B THEN 100 (Possible Correction)
CODE 15
Error: Missing Expression
" Cause: A variable, or number, or a function was expected.
Action: Correct statement text.
Example: 10 FOR I=,TO 2
tERR 15
:10FOR 1=1TO 2 (Possible Correction)
CODE 16
Error: Missing Scalar Variable
Cause: A scalar variable was expected.
Action: Correct statement text.
Example: :10 FOR A(3)=1TO 2
tERR 16
:10 FORB=1TO 2 (Possible Correction)
CODE 17
Error: Missing Array Element or Array
Cause: An array variable was expected.
Action: Correct statement text.
Example: :10DIM A2
tERR 17
:10DIM A(2) (Possible Correction)

167

Section IX

Error Codes

CODE 18
Error: Illegal Value for Array Dimension
Cause: The value exceeds the allowable limit. For example, a dimension is greater than 255 or
an array variable subscript exceeds the defined dimension, or an array contains more
than 4,096 elements.
Action: Correct the program.
Example: :10DIM A(2,3)
120 A(1,4) =1
:RUN
20 A(1,4) =1
tERR 18
:10DIM A(2,4) (Possible Correction)
CODE 19
Error: Missing Number
Cause: A number was expected.
Action: Correct statement text.
Example: :10DATAL
tERR 19
;10 DATA + (Possible Correction)
CODE 20
Error: Illegal Number Format
Cause: The form of a number is itlegal.
Action: Correct statement text.
Example: 110 A=12345678.234567 (More than 13 digits of mantissa)
tERR 20
:10 A=12345678.23456 (Possible Correction)
CODE 21 :
Error: Missing Letter or Digit
Cause: A letter or digit was expected.
Action: Correct statement text.
Example: :10 DEF FN.(X)=X15-1

tERR 21
:10 DEF FN1(X)=X15-1

{Possible Correction)

168

Section I1X Error Codes

CODE 22 .
Error: Undefined Array Variable or Array Element
Cause: An array variable which was not defined properly in a DIM or COM statement
is referenced in the program. (An array variable was either not defined in a DIM or
COM statement or has been referenced as both a one-dimensional and a two-dimen-
sional array, or has been changed during execution (CLEAR V to correct the latter).)
Action: Correct statement text.
Example: :10 A(2,2) = 123
:RUN
10 A(2,2) =123
tERR 22
:1DIM A(4,4) (Possible Correction)
CODE 23
Error: No Program Statements
Cause: A RUN command was entered but there are no program statements.
Action: Enter program statements.
Example: :RUN
tERR 23
CODE 24
Error: IHegal Immediate Mode Statement
Cause: An illegal verb or transfer in an Immediate Mode statement was encountered. Re-enter
Action: a corrected Immediate Mode statement.
Example: IFA=1THEN 100

TERR 24

169

Section IX Error Codes

CODE 25
Error: lllegal GOSUB/RETURN Usage
Cause: There is no companion GOSUB statement for a RETURN statement, or a branch was
made into the middle of a subroutine.
Action: Correct the program.
Example: 10 FOR 1=1TO 20
120 X=1%SIN(1+4)
:25 GO TO 100
:30 NEXT I: END
1100 PRINT “X=";X
:110 RETURN
:RUN
=-.7568025
110 RETURN
+ ERR 25
.25 GOSUB 100 (Possible Correction)
CODE 26
Error: lllegal FOR/NEXT Usage
Cause: There is no companion FOR statement for a NEXT statement, or a branch was made
into the middle of a FOR/NEXT loop. —
Action: Correct the program.
Example: :10 PRINT “1="";1
:20 NEXT I
:30 END
:RUN
1=0
20 NEXT I
tERR 26
:5 FORI1=1TO 10 (Possible Correction)
CODE 27
Error: Insufficient Data
Cause: There are not enough data values to satisfy READ statement requirements.
Action: Correct program to supply additional data.
Example: :10 DATA 2
:20 READ X,Y
:30 END
:RUN
20 READ X,Y
tERR 27
:11 DATA 3 (Possible Correction)

170

Section I1X Error Codes

L
CODE 28
Error: Data Reference Beyond Limits
Cause: The data reference in a RESTORE statement is beyond the existing data limits.
Action: Correct the RESTORE statement.
Example: :10 DATA1,2,3

:20 READ X,Y.,2Z

:30 RESTORE 5

190 END

:RUN

30 RESTORE 5

tERR 28

:30 RESTORE 2 (Possible Correction)
CODE 29
Error: lllegal Data Format
Cause: The value entered as requested by an INPUT statement is in an illegal format.
Action: Reenter data in the correct format starting with erroneous number or terminate run

with the RESET key and run again.
Example: 10 INPUT XY

:90 END

:RUN

:INPUT

?1A,2E-30

tERR 29

212,2E-30 (Possible Correction)
CODE 30
Error: lllegal Common Assignment
Cause: A COM statement was preceded by a non-common variable definition.
Action: Correct program, making all COM statements the first numbered lines.
Example: :10 A=1 :B=2

:20COM A,B
:99 END
:RUN

20 COM A,B

+ERR 30
:10[CR/LF—EXECUTE]
:30 A=1 :B=2

(Possible Correction)

171

Section IX

Error Codes

CODE 31
Error: lllegal Line Number
Cause: The ‘statement number’ key was pressed producing a-line number greater than 9999;
or in renumbering a program with the RENUMBER command a line number was
generated which was greater than 9999.
Action: Correct the program.
Example: :9995 PRINT X,Y
:[STMT NUMBER Key]
TERR 31
CODE 33
Error: Missing HEX Digit
Cause: A digit or a letter from A to F was expected.
Action: Correct the program text.
Example: :10 SELECT PRINT 00P
tERR 33
:10 SELECT PRINT 005 (Possible Correction)
CODE 34
Error: Tape Read Error
Cause: The system was unable to read the next record on the tape; the tape is positioned —
after the bad record after attempting to read the bad record ten times.
CODE 35
Error: Missing Comma or Semicolon
Cause: A comma or semicolon was expected.
Action: Correct statement text.
Example: :10 DATASAVE #2 X,Y,2
t ERR 35
:10 DATASAVE #2,X,Y,2 (Possible Correction)
CODE 36
Error: lllegal Image Statement
Cause: No format (e.g. #.##) in image statement.
Action: Correct the Image Statement.
Example: :10 PRINTUSING 20, 1.23

:20% AMOUNT =
:RUN
10 PRINTUSING 20,1.23
tERR 36
:20% AMOUNT = ##### (Possible Correction)

172

Section I X Error Codes

]

CODE 37
Error: Statement Not an Image Statement
Cause: The statement referenced by the PRINTUSING statement is not an Image statement.
Action: Correct either the PRINTUSING or the Image statement.
Example: :10 PRINTUSING 20,X

:20 PRINT X

:RUN

:10 PRINTUSING 20,X

tERR37

:20% AMOUNT = $# ###.## (Possible Correction)
CODE 38
Error: lilegal Floating Point Format
Cause: Fewer than 4 up arrows were specified in the floating point format in an image

statement.
Action: Correct the Image statement.
Example: 110 % ## ##111

t+ ERR 38
110 % ##.##11 11

CODE 39
Error: Missing Literal String
Cause: A literal string was expected.
Action: Correct the text.
Example: :10 READ A3

:20 DATA 123

:RUN

20 DATA 123

tERR 39

20 DATA 123" (Possible Correction)
CODE 40
Error: Missing Alphanumeric Variable
Cause: An alphanumeric variable was expected.
Action: Correct the statement text.
Example: 110 A$, X = "“JOHN"

tERR 40

:10 A$, X$ = “JOHN"
CODE 41
Error: {llegal STR(Arguments
Cause: The STR{ function arguments exceed the maximum length of the alpha variable.
Example: :10 B$ = STR(AS, 10, 8)

tERR 41
:10 B$ = STR(AS, 10, 6) (Possible Correction)

173

Section IX

Error Codes

CODE 42
Error: File Name Too Long
Cause: The program name specified is too long (a maximum of 8 characters is allowed).
Action: Correct the program text.
Example: :SAVE “PROGRAM#1”
tERR 42
:SAVE “PROGRAM1" (Possible Correction)
CODE 43
Error: Wrong Variable Type
Cause: During a DATALOAD operation a numeric (or alphanumeric) value was expected but
an alphanumeric (or numeric) value was read.
Action: Correct the program or make sure proper tape is mounted.
Example: :DATALOAD X, Y
tERR 43
:DATALOAD XS, Y$ (Possible Correction)
CODE 44
Error: Program Protected
Cause: A program loaded was protected and, hence, cannot be SAVED or LISTED.
Action: Execute a CLEAR command to remove protect mode; any program in memory
is cleared.
CODE 45
Error: Program Line Too Long
Cause: A statement line may not exceed 192 keystrokes.
Action: Shorten the line being entered.
CODE 46
Error: New Starting Statement Number Too Low
Cause: The new starting statement number in a RENUMBER command is not greater than
the next lowest statement number.
Action: Reenter the RENUMBER command correctly.
Example: 50 REM — PROGRAM 1
62 PRINT X, Y
73 GOSUB 500
:RENUMBER 62, 20, 5
tERR 46
:RENUMBER 62, 60, 5 (Possible Correction)
CODE 47
Error: Itlegal Or Undefined Device Specification
Cause: The #f file specification in a program statement is undefined.
Action: Define the specified file number with a SELECT statement.
Example: :SAVE #2
tERR 47
:SELECT #2 10A
:SAVE #2 (Possible Correction)

174

Section 1X Error Codes

CODE 48

Error: Undefined Keyboard Function

Cause: There is no DEFFN’ in a user’'s program corresponding to the Special Function
key pressed.

Action: Correct the program.

Example: :[Special Function Key #2]
tERR 48

CODE 49

Error: End of Tape

Cause: The end of tape was encountered during a tape operation.

Action: Correct the program, make sure the tape is correctly positioned or, if loading a program
or datafile by name, be sure you have mounted the correct tape.

Example: 100 DATALOAD X, Y, Z

tERR 49

CODE 50

Error: Protected Tape

Cause: A tape operation is attempting to write on a tape cassette that has been protected
{by opening tab on bottom of cassette).

Action: Mount another cassette or “‘unprotect’” the tape cassette by covering the hole on the
bottom of the cassette with the tab or tape.

Example: SAVE /103

tERR 50

CODE 51

Error: ltlegal Statement

Cause: The statement input is not a legal BASIC statement.

Action: Do not use this statement.

CODE 52

Error: Expected Data (Nonheader) Record

Cause: A DATALOAD operation was attempted but the device was not positioned at a
data record.

Action: Make sure the correct device is positioned correctly.

CODE 53

Error: lllegal Use of HEX Function

Cause: The HEX(function is being used incorrectly. The HEX function may not be used in a
PRINTUSING statement.

Action: Do not use HEX function in this situation.

Example: :10 PRINTUSING 200, HEX(F4F5)

+ ERR 53
:10 A$ = HEX(F4Fb)
:20 PRINTUSING 200,A% (Possible Correction)

175

Section I1X Error Codes

CODE 54
Error: lllegal Plot Argument
Cause: An argument in the PLOT statement is illegal.
Action: Correct the PLOT statement.
Example: 100 PLOT 5, H>
+ ERR 54
100 PLOT<S5,,C> (Possible Correction)
CODE 55
Error: lilegal BT Argument
Cause: An argument in a DATALOAD BT or DATASAVE BT statement is illegal.
Action: Correct the statement in error.
Example: 100 DATALOAD BT (M=50) A$
tERR 55
100 DATALOAD BT (N=50) A% (Possible Correction)
CODE 56
Error: Number Exceeds Image Format
Cause: The value of the number being packed or converted is greater than the number of
integer digits provided for in the PACK or CONVERT Image.
Action: Change the Image specification.
Example: 100 PACK (##) A$ FROM 1234
t+ ERR 56
100 PACK (###4#) A$ FROM 1234 (Possible Correction)
CODE 57
Error: Value Not Between 0 and 32761
Cause: tllegal value specified; value is negative or greater than 32767. (The System 2200
cannot store a sector address greater than 32767 and cannot handle certain MAT
arrays with addresses outside this range.) /
Action: Correct the program statement in error.
Example: 100 DATASAVE DAF (42000 ,X) A,B,C.

+ ERR 57
100 DATASAVE DAF (4200 ,X) A,B,C (Possible Correction)

176

Section IX Error Codes

CODE 58
Error: Expected Data Record
Cause: A program record or header record was read when a data record was expected.
Action: Correct the program.
Example: 100 DATALOAD DAF(0,X) A,B,C
tERR 58
CODE 59
Error: lllegal Alpha Variable For Sector Address
Cause: Alphanumeric receiver for the next available address in the disk DA instruction is not
at least 2 bytes long or MAT locator array too small.
Action: Dimension the alpha variable to be at least two bytes (characters) long.
Example: 10 DIM A$1
100 DATASAVE DAR() ,A$) X,Y,Z
tERR 59
10 DIM A$2 (Possible Correction)
CODE 60
Error: Array Too Smali
Cause: The alphanumeric array does not contain enough space to store the block of infor-
mation being read from disk or tape or being packed into it. For cassette tape and
disk records, the array must contain at least 256 bytes (100 bytes for 100 byte cassette
blocks).
Action: Increase the size of the array.
Example: 10 DIM A$(15)
20 DATALOAD BT A%()
tERR 60
10 DIM AS$(16) (Possible Correction)
CODE 61
Error: Transient Disk Hardware Error
Cause: The disk did not recognize or properly respond back to the System 2200 during read
or write operation in the proper amount of time.
Action: Run program again. If error persists, re-initialize the disk; if error still persists contact
Wang service personnel.
Example: 100 DATASAVE DCF X,Y,Z

TERR 61

177

Section IX Error Codes

CODE 62

Error: File Full

Cause: The disk sector being addressed is not located within the catalogued specified file.
When writing, the file is full; for other operations, a SKIP or BACKSPACE has set the
sector address beyond the limits of the file.

Action: Correct the program.

Example: 100 DATASAVE DCT#2, A$(), B$(), C$()

tERR 62

CODE 63

Error: Missing Alpha Array Designator

Cause: An alpha array designator (e.g., A$()) was expected. (Block operations for cassette
and disk require an alpha array argument.)

Action: Correct the statement in error.

Example: 100 DATALOAD BT A$

1ERR 63
100 DATALOAD BT AS$() (Possible Correction)

CODE 64

Error: Sector Not On Disk or Disk Not Scratched

Cause: The disk sector being addressed is not on the disk. (Maximum legal sector address
depends upon the model of disk used.)

Action: Correct the program statement in error.

Example: 100 MOVEEND F = 10000

tERR 64
100 MOVEEND F = 9791 (Possible Correction)

CODE 65

Error: Disk Hardware Malfunction

Cause: A disk hardware error occurred; i.e., the disk is not in file-ready position. This could
occur, for example, if the disk is in LOAD mode or power is not turned on.

Action: Insure disk is turned on and properly setup for operation. Set the disk into LOAD mode
and then back into RUN mode, with the RUN/LOAD selection switch. The check light
should then go out. If error persists call your Wang Service personnel.’

(Note, the disk must never be left in LOAD mode when running.)

Example: 100 DATALOAD DCF A$,B$

TERR 65

178

—

Section I X Error Codes

CODE 66
Error: Format Key Engaged
Cause: The disk format key is engaged. (The key should be engaged only when formatting
adisk.)
Action: Turn off the format key.
Example: 100 DATASAVE DCF X,Y,Z
TERR 66
CODE 67
Error: Disk Format Error
Cause: A disk format error was detected on disk read or write. The disk is not properly
formatted. The error can be either in the medium or the hardware.
Action: Format the disk again; if error persists, call for Wang service.
Example: 100 DATALOAD DCF X,Y,Z
tERR 67
CODE 68
Error: LRC Error
Cause: A disk longitudinal redundancy check error occurred when reading a sector. The data
may have been written incorrectly, or the System 2200/Disk Controller could be
malfunctioning. .
Action: Run program again. If error persists, re-write the bad sector. If error still persists, call
Wang Service personnel.
Example: 100 DATALOAD DCF AS()
tERR 68
CODE 71
Error: Cannot Find Sector
Cause: A disk-seek error occurred; the specified sector could not be found on the disk.
Action: Run program again. If error persists, re-initialize (reformat) the disk. If error still
occurs call Wang Service personnel.
Example: 100 DATALOAD DCF AS$()

TERR 71

179

Section IX Error Codes

CODE 72

Error: Cyclic Read Error

Cause: A cyclic redundancy check disk read error occurred; the sector being addressed has
never been written to or was incorrectly written. This usually means the disk was
never initially formatted.

Action: Format the disk. If the disk was formatted, re-write the bad sector, or reformat the
disk. If error persists call Wang Service personnel.

Example: 100 MOVEEND F = 8000

tERR 72

CODE 73

Error: Illegal Altering Of A File

Cause: The user is attempting to rename or write over an existing scratched file, but is not
using the proper syntax. The scratched file name must be referenced.

Action: Use the proper form of the statement.

Example: SAVE DCF “SAM1”

tERR 73

SAVE SCF (“SAM1”’) “SAM1”’ (Possible Correction)

CODE 74

Error: Catalog End Error

Cause: The end of catalog area falls within the library index area or has been changed by
MOVEEND to fall within the area already used by the catalog; or there is no room left
in the catalog area to store more information.

Example: SCRATCH DISK F LS=100, END=50

tERR 74

SCRATCH DISK F LS=100, END=500 (Possible Correction)

CODE 75

Error: Command Only (Not Programmable)

Cause: A command is being used within a BASIC program: Commands are not programmable.

Action: Do not use commands as program statements.

Example: 10 LIST

tERR 75

180

Section I X Error Codes

CODE 76
Error: Missing < or > (in PLOT statement)
Cause: The required PLOT angle brackets are not in the PLOT statement.
Action: Correct the statement in error.
Example: 100 PLOT A, B, “*"
tERR 76
100 PLOT <A, B, “"*'> (Possible Correction)
CODE 77
Error: Starting Sector Greater Than Ending Sector
Cause: The starting sector address specified is greater than the ending sector address specified.
Action: Correct the statement in error.
Example: 10 COPY FR(1000, 100)
tERR 77
10 COPY FR(100, 1000) (Possible Correction)
CODE 78
Error: File Not Scratched
Cause: A file is being renamed that has not been scratched.
Action: Scratch the file before renaming it.
Example: SAVE DCF (“LINREG”) “LINREG2”
tERR 78
SCRATCH F “LINREG” (Possible Correction)
SAVE DCF (“LINREG”) “LINREG2"”
CODE 79
Error: File Already Catalogued
Cause: An attempt was made to catalogue a file with a name that already exists in the catalogue
index.
Action: Use a different name.
Example: SAVE DCF “MATLIB”

tERR 79
SAVE DCF “MATLIB1” (Possible Correction)

181

Section IX

Error Codes

CODE 80
Error: File Not In Catalog
Cause: The error may occur if one attempts to address a non-existing file name, to load a
data file as a program or open a program file as a data file.
Action: Make sure the correct file name is being used; make sure the proper disk is mounted.
Example: LOAD DCR “PRES”
tERR 80
LOAD DCF "“PRES” (Possible Correction)
CODE 81
Error: /XYY Device Specification lllegal
Cause: The /XYY device specification may not be used in this statement.
Action: Correct the statement in error.
Example: 100 DATASAVE DC /310, X
tERR 81
100 DATASAVE DC #1, X (Possible Correction)
CODE 82
Error: No End Of File
Cause: No end of file record was recorded on file and therefore could not be found in a SKIP
END operation.
Action: Correct the file.
Example: 100D SKIP END
tERR 82
CODE 83
Error: Disk Hardware Error
Cause: A disk address was not properly transferred from the CPU to the disk when executing
MOVE or COPY.
Action: Run program again. If error persists, call Wang Field Service Personnel.
Example: COPY FR(100,500)

TERR 83

182

—~

Section I1X Error Codes

CODE 84
Error: Not Enough System 2200 Memory Available For MOVE or COPY
Cause: A 1K buffer is required in memory for MOVE or COPY operation. (i.e., 1000 bytes
should be available and not occupied by program and variables).
Action: Clear out all or part of program or program variables before MOVE or COPY.
Example: COPY FR(0, 9000)
1ERR 84
CODE 85
Error: Read After Write Error
Cause: The comparison of read after write to a disk sector failed. The information was not
written properly. This is usually an error in the medium.
Action: Write the information again. If error persists, call Wang Field Service personnel.
Example: 100 DATASAVEDCF$ X,Y,Z
tERR 85
CODE 86
Error: File Not Open
Cause: The file was not opened.
Action: Open the file before reading from it.
Example: 100 DATALOAD DC A$
TERR 86
10 DATALOAD DC OPEN F “DATFIL"” (Possible Correction)
CODE 87
Error: Common Variable Required
Cause: The variable in the LOAD DA statement, used to receive the sector address of the next
available sector after the load, is not a common variable.
Action: Define the variable to be common.
Example: 10 LOAD DAR (100,L)
1ERR 87
5 COML (Possible Correction)
CODE 88
Error: Library index Full
Cause: There is no more room in the index for a new name.
Action: Scratch any unwanted files and compress the catalog using a MOVE statement or
mount a new disk platter.
Example: SAVE DCF “PRGM”

tERR 88

183

Section I1X Error Codes

CODE 89
Error: Matrix Not Square
Cause: The dimensions of the operand in a MAT inversion or identity are not equal.
Action: Correct the array dimensions.
Example: :10 MAT A=IDN(3,4)
:RUN
10 MAT A=IDN(3,4)
TERR 89
:10 MAT A=IDN(3,3) {Possible Correction)
CODE 90
Error: Matrix Operands Not Compatible
Cause: The dimensions of the operands in a MAT statement are not compatible; the operation
cannot be performed.
Action: Correct the dimensions of the arrays.
Example: :10 MAT A=CON({(2,6)
:20 MAT B=IDN(2,2)
:30 MAT C=A+B
:RUN
30 MAT C=A+B
TERR 90
:10 MAT A=CON(2,2) (Possible Correction)
CODE 91
Error: Illegal Matrix Operand
Cause: The same array name appears on both sides of the equation in a MAT multiplication
or transposition statement.
Action: Correct the statement.
Example: :10 MAT A=A*B
TERR 91
:10 MAT C=A*B (Possible Correction)

184

Section I X Error Codes

CODE 92
Error: lllegal Redimensioning Of Array
Cause: The space required to redimension the array is greater than the space initially reserved

for the array.
Action: Reserve more space for array in DIM or CON statement.
Example: :10 DIM(3,4)

:20 MAT A=CON(5,6)

:RUN

20 MAT A=CON(5,6)

' 1ERR 92

:10 DIM A(5,6) (Possible Correction)
CODE 93 a
Error: Singular Matrix
Cause: The operand in a MAT inversion statement is singular and cannot be inverted.
Action: Correct the program.
Example: :10 MAT A=ZER(3,3)

:20 MAT B=INV(A)

:RUN

20 MAT B=INV(A)
tERR 93

CODE 94
Error: Missing Asterisk
Cause: An asterisk (*) was expected.
Action: Correct statement text.
Example: :10 MAT C=(3)B

1ERR 94
:10 MAT C=(3)*B {Possible Correction)

185

Section IX Error Codes

_ |
CODE 95
Error: Itiegal Microcommand or Field/Delimiter Specification
Cause: The microcommand or field/delimiter specification used is invalid.
Action: Use only the microcommands and field/delimiter specifications provided.
Example: :RUN
110 $G10 (1023, A$)
t+ ERR 95
:10 $GI10 (0123, A%) (Possible Correction)
CODE 96
Error: Missing Arg 3 Buffer
Cause: The buffer (Arg 3) of the $GIO statement was either omitted or already used by
another data input, data output, or data verify microcommand.
Action: Define the buffer if it was omitted, or separate the two data commands into separate
$GI10 statements.
Example: 10 $G10 /03B (A000 C640 , A$) BS
t ERR 96
10 $G10 /03B (A000, A1$) B1$
20 $GI0 /03B (C640, A2$, B2$ (Possible Correction)
CODE 97
Error: Variable or Array Too Small
Cause: Not enough space reserved for the variable or array.
Action: Change dimensioning statement.
Example: :10 DIM A$6
:20 $GI0 (0123, AS)
:RUN
:20 $GI10 (0123, AS)
t ERR 97
:10 DIM A$10 (Possible Correction)
CODE 98
Error: lllegal Array Delimiters
Cause: The number of bytes specified by the delimiters exceeds the number of bytes in
the array. '
Action:
Example: :10 DIM A$(3) 10, B$(4) 64
:20 STRAN (A$() <10, 23 > ,B$())
:RUN
:20 $TRAN (A$() < 10, 23> ,B$())
t ERR 98
:20 $STRAN (A$() <10, 13> ,B$()) (Possible Correction)

186

Section IX Error Codes

[P P

CODE =1
Error: Missing Numeric Array Name
Cause: A numeric array name [e.g., N()] was expected.
Action: Correct the statement in error.
Example: 100 MAT CONVERT A$() TO N()
t ERR=1

100 MAT CONVERT N() TO A$() (Possible Correction)
CODE =2
Error: Array Too Large
Cause: The specified array contains too many elements. For example, the number of

elements cannot exceed 4096.
Action: Correct the program.
Example: 10 DIM A$(100,50)2, B$(100,50)2, W$(100,50)2

100 MAT SORT A$() TO S$(), B$()

t ERR=2

10 DIM A$(100,40)2, B$(100,40)2, W$(100,40)2 (Possible Correction)
CODE =3
Error: lllegal Dimensions
Cause: The dimensions defined for the array or its element length are illegal.
Action: Dimension the array properly.

Example: 10 DIM A$(63), B$(63)1, W$(63)2

100 MAT SORT A$() TO W$(), B$()

t ERR=3
10 DIM A$(63), B$(63)2, W$(63)2 (Possible Correction)
CODE SYSTEM ERROR!
Error: Either CPU hardware malfunction or operator faux pas (no execution mode).
Cause: Program must be resolved before any Special Function Key can be used or other oper-

ations performed. Certain meaningless operations can cause this error. A true hardware
malfunction can also cause this error.

Action: This error is unrecoverable. Master Initialize to remove error and run program again.
If error persists, call for Wang service.

187

Appendices

A — ASCII and Hex Codes with CRT Character Set . . 190
B — ASCII, Hex and Binary Codes with VAL

Decimal Equivalents191
C —DeviceAddresses192
D — The Hexadecimal System193
E — CPU Specifications194
F — Abbreviated Error Messages195
G-—Glossary « « « « « .« «19

189

APPENDIX A

Appendices

ASCII AND HEX CODES WITH CRT CHARACTER SET

The following chart shows the ASCII codes used by the System 2200. Each peripheral may not use all
these codes. See the appropriate peripheral reference manual for the codes pertaining to a particular device.
Codes not legal for certain devices may default to other characters.

High Order Hexadecimal Digit of Code

0 1 2 3 4 5 6 7
0 | NULL SPACE| © @|p prime| p
HOME (CRT) X-ON ! 1 A | Q q
2 “ 2 B |R b |'r
3 | CLEARSCREEN | X-OFF # 3 cls c | s
(CRT)
4 $ 4 DT d |t
5 % 5 E|U e | u
3 6 & 6 FlvV £ v
S 7| BELL ' 7 G|w g | w
g (apos)
2 8 | BACKSPACE | (8 H | X h | x
3 (CRT CURSOR <)
8 9 | HT(TAB)or CLEAR) 9 1|y i |y
3 (CRT CURSOR) | TAB |
£ A | LINE FEED SET L J |z iz
5 (CRT CURSOR {) | TAB
S B | VT(VERTICAL + s K | (k
§ TAB)
C | FORM FEED OR , <or[| L |\ R
REV. INDEX |
(CRT CURSOR 1)
D | CR(CARRIAGE - = Im[m
RETURN)
E | SO ¢ . >or] N |torMorl | n |~
(SHIFT UP)
F | Sl ° / ? O | <or ° | a
(SHIFT DOWN) (DEGREE) -
NOTE:

Codes 60 to 7F are available only on an upperflowercase
CRT and on a Model 2221 W printer.

190

Appendices

APPENDIX B

ASCII, Hex and Binary Codes with VAL Decimal Equivalents

The character set and control codes are those for the CRT; other devices such as printers have slightly
different character sets (see the appropriate peripheral manuals). Codes between hex (80) and hex (FF)
are Text Atoms and are not normally used as character data.

wex —» | O 1 2 3 4 5 6 7 8 9 A B c D | E F
—_—
BINARY| 0000 | 0001 | 0010 | 0011 | 0100 [@101 | 0110 | 0111 | 1000 | 1001 | 1010 [1011 | oy [1er | 1m0 [1N
SOH (::c'r.::n, {Cursor | HT or LF or “::,_ ('E::: (Silih
Q 0000 NUL | {Cursor Cursor (Alarm) | Back Cursor | Cursor vT Index) CcR Char) | Down)
- o| homel, 2| homel 5 4 5 6 7| Spacelg| right g dewnyq 1" 12 13 14 15
Clear Set
1 0001 DLE X-ON X-OFF Tob o
16 1”7 18 19 20, 21 22 23 24 26| 27 28 29 30 |
= SP] I ¢ . N — .
2 oot figiy | ! # $ % & |iquore | !) + |(Comma)| (Dasht |(Period) | /
2 33 34 35 36) 37, 38 39 40) a a2 43 a8 a5 46 a7
3 0011 0 1 2 3 4 5 6 7 8 9 ; < = > ?
48 a9 50 51 52 53 54 55 56 57 58 59 €0 61 62 63
4 0100 @ A B C D E F G H 1 J K L M N (o]
64 65 86 67 68 69 70 7 72 73 74 75 76 77 78 79
L ~ 5 0101 P Q R S T u \") w X Y 4 [N] t -
80) 81 82 83 84 s 86 87 88 89 90 o1 92 93 94 95
€ | 0110 | pime| @ b c d e f g h i i k A m n o
26 97 o8 29 100 101 102 103 104 105 106 107 108 100 110 m
HIGH |
ORDER 7 01 P q r s t u v w x y z ; | } ~ .
12 113 14 115 116 17 118 119 120 121 122 123 124 125 126 127
8 1000
128 129 130 131 132 133 134 138! 136 137 138 139 140 141 142 143
9 1001
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
A 1010
160 161 162 163 164 165 166 167 168! 169 170 ” 172 173 17 175
B 1011
176 177 178 179 184 181 182 183 134‘ 185 186 187 188 189 190 191
C 1100 J
192 193 194 195 196 197] 198 1 200 201 202 203 204 20 206 207]
\
D} no
208 209 210 211 212 213 214 21 216 217 218 219 220 Fr3] 222 23
E 1110
224 225 226 227 228 2290 230 231 232 233 234 23% 2% 237 238 239
F{ 11
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 5
HEX —» 0 1, 2 3 4 5 6 7 8 9 A B C D E F
SN .
0 Zero Numbers at lower right corner of N\
. . . 1 H
| = Letteri each box are decimal (VAL) equivalents. P

191

APPENDIX C

Appendices
—
DEVICE ADDRESSES
Categories are in alphabetical order; boxed values are Default Device Addresses (also see SELECT).
1/0 Categories Device Addresses
BCD Input Interface 25A, 25B, 25C, 25D, 25E, 25F
CRT Units [005], 006, 007, 008
Digitizer 25A, 25B, 25C, 25D, 25E, 256F
Disk Units , 320, 330 (for the Model 2243, third
device address is 350, 360 or 370; for the WCS/30,
the diskette has device address 310, and the hard
disk has device address 320).
Hopper-Feed Card Readers 628
Keyboards [001], 002, 003, 004
Manual Card Reader 517
Nine-Track Tape Unit 078, 07D, O7F
Output Writer 211, 212
Parallel 1/0 Interface 23A, 23C, 23E Input
23B, 23D, 23F Qutput —_
Plotters , 414
Printers 215, 216
Punched Tape Reader 618
Tape Cassette Units 10A |, 10B, 10C, 10D, 10E, 10F
Telecommunications Controller 219, 21A, 21B Input
21D, 21E, 21F Output
Teletype® Units 019, 01A, 01B input
01D, 01E, O1F Output
Teletype Punched Tape Units 41D, 41E, 41F
WCS/10 Triple Controller (keyboard), 215 (printer),
(tape cassette)
WCS/20 Triple Controller (keyboard), 215 (printer),
(diskette)
WCS/30 Triple Controller (keyboard), 215 (printer),
(diskette), 320 (hard disk)
*The Nine-Track Tape Unit is activated exclusively with $GIO statements which ignore the first hexdigit of the Device Address.
~~

192

Appendices APPENDIX D

o —————————————————————— T —
THE HEXADECIMAL SYSTEM

The binary form used for coding data stored in memory, as its name suggests, is built on a base of two
digits, zero and one. This binary form is used in most computers because the two binary digits can re-
present the ‘on-off’ condition of any electronic switch. Binary forms, however, are extremely cumbersome
because it is necessary to use many places to write down even very small numbers. For example, the
number 7 requires only one place when written as a decimal number, but in binary it requires three (111).

There are many times when it is useful to know the binary form of a number or character stored in
your system. For this purpose, the hexadecimal system of representing binary values is provided. In the
hexadecimal system, each byte is separated into two groups of four bits each and a single hexdigit is
used to express the value of a single group. The hexadecimal system is built on a base of sixteen digits,
the numbers O through 9 and the letters A through F. A comparison of the binary, decimal and hexa-
decimal forms of some numbers is shown in the Table.

Decimal, Binary and Hexadecimal Numbers

Decimal Binary Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
; 10 1010 A
1 1011 B
§ 12 1100 C
i 13 1101 D
| 14 1110 E
{15 1111 F

Example:

The binary value 0101 1101 can be expressed as 5D in the hexadecimal system.

In your Wang system, the ASCI! eight-bit character codes are used for the representation of all letters,
characters and symbols. Each byte is represented by two hexdigits.

For example, the character 1 in ASCI! format is 0011 0001; its hexcode is 31. Letters, characters and
control codes can be decoded in a similar fashion. The Wang HEXPRINT statement provides access to the
binary form of any byte by outputting its value in hexadecimal notation. Appendix A gives the complete
CRT character set with equivalent hex codes; Appendix B provides a chart of the relationships between
ASCII binary, hexadecimal and decimal VAL forms.

193

APPENDIX E

Appendices

CPU SPECIFICATIONS

Average Execution Times (at full 13-digit precision)
Operation Time
add 0.8 ms
subtract 0.8 ms
multiply 3.9ms
divide 7.4 ms
square root 46.4 ms
XY 45.4 ms
e* 25.3 ms
log, x 23.2 ms
integer 0.24 ms
absolute value 0.25 ms
sign 0.25 ms
sine 28.3ms
cosine 38.9 ms
tangent 78.5 ms
arctangent 72.5 ms
read/write cycle 1.6 us
(ms = millisecond = 1/1000 second,
i sec = microsecond = 1/millionth second)
Memory Size

4,096 bytes to 32,768 bytes
Peripheral Capacity

1 to 6 (expandable to 11 maximum) for 2200A, B, C.

1 to 3 (expandable to 9 max) for 2200S, T.
Largest Line Number

9999
Magnitude of Largest Number

1099
Magnitude of Smallest Number

10—99
Precision

13 significant digits
Maximum Nesting of FOR/NEXT Loops and Subroutines

50 levels
Maximum Length of Alpha Variable

64 characters
Storage Code

ASCIi
Size of Byte

8 Bits
Type of Arithmetic

Decimal
System Language

BASIC

194

L~

—

Appendices

APPENDIX F

ABBREVIATED ERROR MESSAGES

ERR 01 TEXT OVERFLOW

ERR 02 TABLE OVERFLOW

ERR 03 MATH ERROR

ERR 04 MISSING LEFT PARENTHESIS
ERR 05 MISSING RIGHT PARENTHESIS
ERR 06 MISSING EQUALS SIGN

ERR 07 MISSING QUOTATION MARKS
ERR 08 UNDEFINED FN FUNCTION
ERR 09 ILLEGAL FN USAGE

ERR 10 INCOMPLETE STATEMENT

ERR 11 MISSING LINE NUMBER OR CONTINUE ILLEGAL

ERR 12 MISSING STATEMENT TEXT

ERR 13 MISSING OR ILLEGAL INTEGER

ERR 14 MISSING RELATION OPERATOR

ERR 15 MISSING EXPRESSION

ERR 16 MISSING SCALAR

ERR 17 MISSING ARRAY

ERR 18 ILLEGAL VALUE

ERR 19 MISSING NUMBER

ERR 20 ILLEGAL NUMBER FORMAT

ERR 21 MISSING LETTER OR DIGIT

ERR 22 UNDEFINED ARRAY VARIABLE

ERR 23 NO PROGRAM STATEMENTS

ERR 24 ILLEGAL IMMEDIATE MODE STATEMENT

ERR 25 ILLEGAL GOSUB/RETURN USAGE

ERR 26 ILLEGAL FOR/NEXT USAGE

ERR 27 INSUFFICIENT DATA

ERR 28 DATA REFERENCE BEYOND LIMITS

ERR 29 ILLEGAL DATA FORMAT

ERR 30 ILLEGAL COMMON ASSIGNMENT

ERR 31 ILLEGAL LINE NUMBER

ERR 33 MISSING HEX DIGIT

ERR 34 TAPE READ ERROR

ERR 35 MISSING COMMA OR SEMICOLON

ERR 36 ILLEGAL IMAGE STATEMENT

ERR 37 STATEMENT NOT IMAGE STATEMENT

ERR 38 ILLEGAL FLOATING POINT FORMAT

ERR 39 MISSING LITERAL STRING

ERR 40 MISSING ALPHANUMERIC VARIABLE

ERR 41 ILLEGAL STR{ ARGUMENTS

ERR 42 FILE NAME TOO LONG

ERR 43 WRONG VARIABLE TYPE

ERR 44 PROGRAM PROTECTED

ERR 45 PROGRAM LINE TOO LONG

ERR 46 NEW STARTING STATEMENT NUMBER
TOO LOW

ERR 47 ILLEGAL OR UNDEFINED DEVICE
SPECIFICATION

ERR 48 UNDEFINED SPECIAL FUNCTION KEY

ERR 49 END OF TAPE

195

ERR 50 PROTECTED TAPE

ERR 51 ILLEGAL STATEMENT

ERR 52 EXPECTED DATA (NONHEADER) RECORD
ERR 53 ILLEGAL USE OF HEX FUNCTION

ERR 54 ILLEGAL PLOT ARGUMENT

ERR 55 ILLEGAL BT ARGUMENT

ERR 56 NUMBER EXCEEDS IMAGE FORMAT
ERR 57 ILLEGAL VALUE

ERR 58 EXPECTED DATA RECORD

ERR 59 ILLEGAL ALPHA VARIABLE

ERR 60 ARRAY TOO SMALL

ERR 61 TRANSIENT DISK HARDWARE ERROR
ERR 62 FILE FULL

ERR 63 MISSING ALPHA ARRAY DESIGNATOR

ERR 64 SECTOR NOT ON DISK OR DISK NOT SCRATCHED

ERR 65 DISK HARDWARE MALFUNCTION

ERR 66 FORMAT KEY ENGAGED

ERR 67 DISK FORMAT ERROR

ERR 68 LRC ERROR

ERR 71 CANNOT FIND SECTOR

ERR 72 CYCLIC READ ERROR

ERR 73 ILLEGAL ALTERING OF A FILE

ERR 74 CATALOG END ERROR

ERR 75 COMMAND ONLY (NOT PROGRAMMABLE)

ERR 76 MISSING < OR > (PLOT STATEMENT)

ERR 77 STARTING SECTOR > ENDING SECTOR

ERR 78 FILE NOT SCRATCHED

ERR 79 FILE ALREADY CATALOGED

ERR 80 FILE NOT IN CATALOG

ERR 81 /XYY DEVICE SPECIFICATION ILLEGAL

ERR 82 NO END OF FILE

ERR 83 DISK HARDWARE ERROR

ERR 84 NOT ENOUGH MEMORY FOR MOVE OR
CcoPY

ERR 85 READ AFTER WRITE ERROR

ERR 86 FILE NOT OPEN

ERR 87 COMMON VARIABLE REQUIRED

ERR 88 LIBRARY INDEX FULL

ERR 89 MATRIX NOT SQUARE

ERR 90 MATRIX OPERANDS NOT COMPATIBLE

ERR 91 ILLEGAL MATRIX OPERAND

ERR 92 ILLEGAL REDIMENSION{NG OF ARRAY

ERR 93 SINGULAR MATRIX

ERR 94 MISSING ASTERISK

ERR 95 ILLEGAL MICROCOMMAND OR FIELD/
DELIMITER SPECIFICATION

ERR 96 MISSING ARG 3 BUFFER

ERR 97 VARIABLE OR ARRAY TOO SMALL

ERR 98 ILLEGAL ARRAY DELIMITERS

ERR=1 MISSING NUMERIC ARRAY NAME

ERR=2 ARRAY TOO LARGE

ERR=3 ILLEGAL DIMENSIONS

APPENDIX G

Appendices

GLOSSARY

argument a syntax entity whose value is used to determine the value of some
function.

collating sequence any logical sequence used to order items of data.

exponent in the floating-point representation of a number, those digits following
‘E’ which represent the power of 10 to which the base is raised; ex-
ponents are of the form: E digit [digit] or € {+} digit [digit].

device address hhh where h = hexdigit.

digit any integer from O through 9.

function an entity valid in BASIC that assigns a value or values to a variable (or
to the elements of an array) on the basis of a definition provided by
the system microcode.

hexdigit a digit in the hexadecimal numbering system; the integers O through 9
and the letters A through F.

image the representation of the form in which data are to be output.

letter any letter of the alphabet from A through Z.

mantissa in the floating point representation of a number, all characters except E
and the digits of the exponent.

operand that which is operated upon.

operator that which indicates action to be performed.

parameter a variable given a constant value for a specific purpose.

196

:To help us to provide you with the best manuals possible, please make your comments and suggestions
¥ concerning this publication on the form below. Then detach, fold, tape closed and mail to us. All comments
=and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to include your
§ name and address. Your cooperation is appreciated.

700-3038G

TITLE OF MANUAL: WANG BASIC LANGUAGE REFERENCE MANUAL

COMMENTS:

Fold

)
1
]
[}
]
]
]
]
]
]
]
)
]
|
]
)
!
|
[}
]
]
!
! Fold
]
[}
(]
]
[}
)
[] (Please tape. Postal regulations prohibit the use of staples.)
9
[}

Ca,

WANG)

Fold

FIRST CLASS
PERMIT NO. 16
Tewksbury, Mass.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY |F MAILED IN THE UNITED STATES

— POSTAGE WILL BE PAID BY —

WANG LABORATORIES, INC.
836 NORTH STREET
TEWKSBURY, MASSACHUSETTS 01876

Attention: Technical Writing Department

Cut along dotted line.

Fold

Printed in U.S.A.

P

e

ADD
ANDORXOR e
BACKSPACE (Cassette) .

BIN . .

BOOL . ..

CLEAR Command .

comMm

COM CLEAR . . .
CONTINUE Command
CONVERT .

DATA

DATALOAD (Cassette) .
DATALOAD (Card Readers)
DATALOAD (Punched Tape Reader) .
DATALOAD (Teletype®)
DATALOAD BT (Cassette) .
DATALOAD BT (Card Readers) . . .
DATALOAD BT (Punched Card Reader)
DATALOAD BT (Teletype®) .
DATARESAVE (Cassette) .
DATASAVE (Cassette)
DATASAVE (Teletype®)
DATASAVE BT (Cassette) .
DATASAVE BT (Card Reader)
DATASAVE BT (Te|etype) .
DEFFN ..
DEFFN' .

DIM.

END

FN Function

FOR

GOSUB

GOSuUB’

GOTO . .

HALT/STEP .
HEX (Hexadecimal) Functlon .
HEXPRINT .

IF END THEN

IF...THEN

IMAGE (%) .

INIT

INPUT

ALPHABETICAL INDEX

61 INPUT (Card Readers)
. 63 KEYIN . .
. 124 LEN (Length) Functlon .
64 LET.

65 LIST Command .
47 LOAD Command (Cassette)
67 LOAD Command (Card Reader)

68 LOAD Command (Punched Tape Reader)

48 LOAD Command (Teletype)
69 LOAD (Cassette) . .o
71 LOAD (Card Reader)
.. 125 LOAD (Punched Tape Reader)
. 137, 138

LOAD (Teletype).
. 147 NEXT . . .
. 154 NUM Function
.. .126 ON . . .
. 139, 140 ON ERROR GO TO
. 148 PACK .
. 165 PLOT
. 127 POS Function .
- 128 PRINT . . .
. 166 PRINTUSING .
. 129 READ .
11 REM
. 157 RENUMBER Command .
72 RESET

73 RESTORE

76 RETURN . .

77 RETURN CLEAR

78 REWIND (Cassette)

79 ROTATE. . .

81 RUN Command . . .

83 SAVE Command (Cassette) .
84 SAVE Command (Teletype®) .
49 SELECT . .
31 SKIP (Cassette)

85 Special Function Key .

86 STATEMENT NUMBER .

87 STOP
88 STR (String) Functlon
91 TRACE .

92 UNPACK
VAL Function

. 142,143

95
96
97
51

. 130
. 145
. 149
. 169
131
. 144
. 160
. 168

99

. 100
101
. 102
. 103
. 162
. 104
. 105
. 107
. 110
1N

52
53

. 112
. 113
. 114
. 132
. 115

54

. 133
. 160

39

. 134

55
57

. 116

32

. 117
. 119
. 120

WANG LABORATORIES
(CANADA) LTD.

49 Valleybrook Drive

Don Mills, Ontario M3B 256
TELEPHONE (416) 449-2175
Telex: 069-66546

A

WANG NEDERLAND B.V.
Damstraat 2

Utrecht, Netherlands

(030) 93-09-47

Telex: 47579

—
WANG EUROPE, S.A.
Buurtweg 13

9412 Ottergem

Belgium .
TELEPHONE 053/704514
Telex: 26077

WANG DO BRASIL
COMPUTADORES LTDA.
Rua Barao de Lucena Na. 32
Botefogo ZC-01 20,000

Rio de Janeiro RJ

Brasil .
TELEPHONE 226-4326
Telex: 2123296

WANG COMPUTERS
(SO. AEBICA} PTY. LTD.

Corner of Allen Rd. & Garden St.

Bordeaux, Transvaal
Republic of South Africa
- TELEPHONE (011) 486123

" WANG INTERNATIONAL
TRADE, INC.
'836 North, Street
Tewksbury, Massachusetts 01876
TELEPHONE (617) 851-4111
TWX 710-343-6769
Telex: 94-7421

WANG SKANDINAVISKA AB
Pyramidvaegen 9A

§-171 36 Solna,

Sweden

TELEPHONE 08-826814
Telex: 11498

WANG PACIFIC LTD.

902-3 Wong House

26-30, Des Voeux Road, West
Hang Kong

TELEPHONE 5-435229
Telex: 74879 -

WANG INDUSTRIAL CO., LTD.

110-118 Kuang-Fu N. Road
Taipei, China
TELEPHONE 784181-3
Telex: 21713

WANG GESELLSCHAFT M.B.H.
Formanekgasse 12-14

.A-1190 Vienna, Austria

TELEPHONE 36.32.80
Telex: 74640

WANG S.A./A.G.
Markusstrasse 20

CH-8042 Zurich 6
Switzerland

TELEPHONE 41.1.26.6866
Telex: 59151

WANG COMPUTER PTY.LTD.
55 Herbert Street

St. Leonards, 2065

Australia

TELEPHONE 439-3511

Telex: 25469

LABORATORIES, INC.

WANG ELECTRONICS LTD.
1 Olympic Way, 4th Floor
Wembley Park,

Middiesex, England
TELEPHONE 01/903/6755.
Telex: 923498

" WANG FRANCE S.A.R.L.

Tour Gallieni, 1
"'78/80 Ave. Gallieni
‘93170 Bagnolet, France
TELEPHONE 33.1.3602211
Telex: 68958F

'WANG LABORATORIES GMBH
Moselstrasse 4

6000 Frankfurt AM Main

West Germany

TELEPHONE (0611) 252061
Telex: 04-16246

WANG DE PANAMA (CPEC) S.A.

Apartado 6425
Calle 45E, No. 9N. Bella Vista
Panama 5, Panama

WANG COMPUTER SERVICE
836 North Street '
Tewksbury, Massachusetts 01876
TELEPHONE (617) 851-4111
TWX 710-343-6769

Telex: 94-7421

24 Mill Street
Arlington, Massachusetts 02174
TELEPHONE (617) 648-8550

- (WANG)

836 ‘NORTH STREET, TEWKSBURY, MASSACHUSETTS 01876, TEL. (617) 851-411, TWX 710 343-6769, TELEX 94-7421

Printed in U.S.A.
700-3038G

. 2-76-5M
Price $15.00

	Alphabetical Index
	Preface
	Table of Contents
	Section I: Wang BASIC
	Section II: BASIC Language Structure
	Section III: Numerics
	Section IV: Alphanumerics
	Section V: I/O Device Selection
	SELECT

	Section VI: Non-Programmable Commands
	CLEAR Command
	CONTINUE Command
	HALT/STEP
	LIST Command
	RENUMBER Command
	RESET
	RUN Command
	Special Function
	Statement Number

	Section VII: General BASIC Statements and Functions
	ADD (Not on 2200A)
	AND, OR, XOR (Not on 2200A)
	BIN (Not on 2200A)
	BOOL (Not on 2200A)
	COM
	COM CLEAR (2200C, T, WCS/20, WCS/30 Only)
	CONVERT (Not on 2200A)
	DATA
	DEFFN
	DEFFN'
	DIM
	END
	FN Function
	FOR
	GOSUB
	GOSUB'
	GOTO
	HEXPRINT (Not on 2200A)
	IF END THEN
	IF...THEN
	Image (%)
	INIT (Not on 2200A)
	INPUT
	KEYIN (Not on 2200A)
	LEN Function
	LET
	NEXT
	NUM Function (Not on 2200A)
	ON (Not on 2200A)
	ON ERROR GO TO (Not on 2200A or B)
	PACK (Not on 2200A)
	POS Function (Not on 2200A)
	PRINT
	PRINTUSING
	PRINT TAB Function
	READ
	REM
	RESTORE
	RETURN
	RETURN CLEAR (Not on 2200A or B)
	ROTATE (Not on 2200A)
	STOP
	TRACE
	UNPACK (Not on 2200A)
	VAL Function (Not on 2200A)

	Section VII: Peripheral Commands and Statements
	Tape Cassette Drives
	BACKSPACE
	DATALOAD
	DATALOAD BT
	DATARESAVE
	DATASAVE
	DATASAVE BT
	LOAD Command
	LOAD Statement
	REWIND
	SAVE
	SKIP

	Card Readers (Mark Sense and Punched Card)
	CONSOLE INPUT
	DATALOAD (Not on 2200A)
	DATALOAD (Not on 2200A)
	DATALOAD BT (Not on 2200A)
	DATALOAD BT (Not on 2200A)
	DATASAVE BT
	INPUT
	INPUT
	LOAD Statement
	LOAD Command

	Punched Tape Reader
	DATALOAD (Not on 2200A)
	DATALOAD BT (Not on 2200A)
	LOAD Command (Not on 2200A)
	LOAD Statement (Not on 2200A)

	Plotters
	PLOT (Not on 2200A)

	Teletype
	DATALOAD (Not on 2200A)
	DATALOAD BT (Not on 2200A)
	DATASAVE (Not on 2200A)
	DATASAVE BT (Not on 2200A)
	LOAD Statement (Not on 2200A)
	LOAD Command (Not on 2200A)
	SAVE (Not on 2200A)

	Section IX: Error Codes
	Appendix A: ASCII and Hex Codes with CRT Character Set
	Appendix B: ASCII, Hex and Binary Codes with VAL Decimal Equivalents
	Appendix C: Device Addresses
	Appendix D: The Hexadecimal System
	Appendix E: CPU Specifications
	Appendix F: Abbreviated Error Messages
	Appendix G: Glossary
	Alphabetical Index

