2200/VSs LCO
PROGRAMMER'S REFERENCE GUIDE

First Edition -- September 1986
Copyright® Wang Laboratories, Inc., 1986
715-0562

Draft Copy Confidential

PREFACE

The Wang 2200/VS Local Communications Option (LCO) (Version 1.0)
enables Wang 2200 users to emulate up to four VS Workstations and
store and access files on a connected VS system. This document
provides information on programming requirements for accessing the
Wang 2200/VS LCO filing services. The primary audience for this
document is the Wang 2200 programmer. Experience with programming on
a Wang 2200 system is recommended for the all users.

Chapter 1 provides background information on the Wang 2200/VS LCO and
an introduction to the rest of the guide. Chapter 2 explains
programming requirements for accessing VDISK files (2200 disk image
files) stored on a VS system. Chapter 3 explains programming
requirements for accessing native DMS files stored on a VS.)
Additional information on the Wang 2200/VS LCO is available in the
following Wang publications:

2200/VS Local Communications Options User's Guide (715-0564)
2200 BASIC-2 Disk Reference Manual (700-4081)

2200 BASIC-2 Error Codes Booklet (700-7170)

2200 BASIC-2 Language Reference Manual (700-4080)
2200 Introductory Guide (700-4613)

VS Data Mangement System Reference (800-1124-01)

iii
Draft Copy Confidential

w
N w

Wwww
> W=

CONTENTS

PROGRAMMER'S INTRODUCTION TO THE 2200 LCO

OVSrVieW LRGBS I BN B B A B B B B B Y AN AN I 2K B I B I B B I Y 1-'1
2200/VS LCO Filing ServicCesccceeveesesescescosnseses 1=l

2200 VDISK ACCESS

Introductioncccieeveienscenccrevencscssssssesssnes 2-1
USing VDISKS ..cccvvecenscesscscenscanssseasocsssossosaces 2-1

Using VDISK With Existing 2200 Programsc.ccoeeees 2=2

Submitting Programs that Access VDISKc000.0.. 2-3
VDISK Performance Considerationscccoceeeee. 2-3
Improving VDISK PerfOrmanceccceesececssccccsccees 2=4
Moving Existing 2200 Files to VDISKcec0eeevseneess 2=5

INTRODUCTION TO NATIVE DMS ACCESS

Introductioncccvieeeieneersscscasescsecosssassascans 3-1
Brief Description of the DMS Access SubroutinesJ» 3-2
Use of the DMS Access Subroutinescceo000e000eenes 3-4
DMS Access Programming Requirements and
Performance Considerationscceceeeeecvcocccnccncns 3-5
Submitting Programs that Access Native DMS Files 3-6
General Notes on the DMS Access Subroutines 3-6
Variables Reserved by the DMS Access Subroutines 3-6
Using Variables or Literals for Input Paragmeters 3-8
Moving Files From the 2200 to the VSccc0vvevennes 3-9
Moving Files From the VS to the 2200cccc0veneeen. 3-10

iii
Draft Copy Confidential

CONTENTS (continued)

CHAPTER 4 DETAILED DESCRIPTION OF THE DMS ACCESS SUBROUTINES

Introductioncvcceeen St eeesrsestsrtesatser et annns . 4-1
Notes on the General Form Section Ceceesecareanas 4-2
GENERAL OPEN Ceecrsarecnnn ceeesecsrescssseosens 4-3
GENERAL CLOSE c¢tcvvecscsvsencsonssnancannosse cesereencae 4-5
CONSECUTIVE READ ...ccvoesvsrscesscnccance cecessseannas 4-7
CONSECUTIVE WRITEccceevtceenecccnsoncoss cecssnses 4-9
CONSECUTIVE REWRITE ...ccecevceececoccvecsssonsscsaces 4&-11
CONSECUTIVE SKIP .¢vceccescssccscccsocssosscncssacsnse 4=13
CONSECUTIVE LOCK .iveceeesecrececccascccassossscsccsces 4-15
CONSECUTIVE UNLOCK .¢cvvevssvoseccccccsccsssosccncasnsas 4=17
INDEXED READcccvevcsvceccccscacaseecssosscsscsses 4-19
INDEXED READ NEXT ...vvecceosecccscccsncssansccsscsnnses &—22
INDEXED REWRITE ...cceccectvececaccccsasccsscscsscsoccee 4=25
INDEXED DELETEc.vccceseccccoscsssssccscasscssnscscnse &=27
INDEXED FIND ..cvoceccecoasossasasccscsnsssssonecsacsses 2=28
INDEXED LOCK ccevvcecsscasascacssccasasacssssssssccscecs 4=30
INDEXED UNLOCK tevcevescasssccessscnsessssssssscsccasse 4—32
RELATIVE READ ...vveveeccencosccovssosscssosccssonsssnssecs 4=33
RELATIVE WRITEccccceveessccccocscccccssasosnsncas 4=36
RELATIVE REWRITEccccoevccevscccssscasasassscnasas 4=38
 RELATIVE DELETE ..cccvvcsoanccansnccsnssccscsscssesses 4-40
BLOCK READ ..ccoveccocvscnssscacsnsnssscccsocsnsocsoss 4—42
- BLOCK WRITE ..vccceccvcccssssvcnccosncasscassoncssacsss 4—43
CREATE FILE ..cvcccccesvoavessccvseoosssaoscssnssssssoasee 4—45
DELETE FILE ...ccccvcecoccccscoccssonssscacsnassscscas 4—48
RENAME FILE ..cccoveecoscccosasassssccssosnsscsccssansss 4—49
GET FILE ATTRIBUTESc.cccovecveecccvscccsccssscsecse 4&=51

N =

APPENDIX A ADDITIONAL INFORMATION

A.l INtrodUCEioN «eivececreersccssosssosnsaceasasossssasnssesoas A-1

A.2 Return CodesS ...cccereesseoccassacssssesesssasssssanncssna A-1

A.3 Extended File Sharing (EFS) Headercccccocevceeces A=2
Error ClaSSeS .ccceeeicesescsssossssossessasosssscasens A-3
Error CodeS .ceeevevesscscasssceessescssscncscssansnse A-4

A.4 File Attribute Information ...cceceveecoceccocascenssanns A-7

A.5 File Create INformationcesveecssncaccsccsensacassss A=10

INDEX DRI I I I B R N N R S R A A I I RO I Y B B A A I I I I I A I A I B N N B IR Index"'l

iv
Draft Copy Confidential

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

3-1
3-2
3-3
4-1
4-2
A-1
A-2
A-3
A-4
A-5
A-6

TABLES

DMS Access Subroutineseoeeeeenecns seeecssesscasncan 3-2
DMS Catalog Functionscceceenivenecannnns cesessecsnanas 3-4
Variables Used by the DMS Access Subroutines 3-7
CONSECUTIVE READ Status Information ceeseeans ceanes 4-8
RELATIVE READ Status Informationcc.eeevevesvescensess 4-34
Return Codes cessen teresececaseenenas ceessscenras A-1
EFS INformation ..ceecececcecorsvsesssssocossssasssosonssens A-2
Error Classes teeseesceesseseseatscssnssessnssreseson A-3
Error COG@8 .vvevrrvecsnercosocrscscnorssscnossssnssscscsscsns A-4
File Attribute Datacc0iveecnnennas cecsesesscasansna A-8

Altemate KeY File Attribute Data L IR I I I B R B B B B B B R N J A-lo

A4
Draft Copy Confidential

CHAPTER 1
PROGRAMMER 'S INTRODUCTION TO THE 2200 LCO

“1.1

1.2

OVERVIEW

The 2200/VS Local Communications Option (ILCQO) is a data communications
hardware (the 2258 controller) and software option that enables a Wang
2200MVP, -LVP, or Micro-VP system to communicate with a Wang VS
computer system. The 2200/VS LCO enables you to perform the following
functions: -

e Log on to the VS and run VS application programs that do not require
the downloading of microcode to a VS workstation.

e Run 2200 application programs that store data to and retrieve data
from 2200 disk-image files (VDISKs) stored on the VS system.

e Run 2200 application programs that store data to and retrieve data
from native VS Data Management System (DMS) files by using
subroutines provided with the 2200/VS LCO package.

This programmer's reference guide explains the programming
requirements for accessing VDISKs and native DMS files stored on the
VS system with new and existing programs. For more information on
using VS Workstation Emulation and Filing Services utilities, refer to
the 2200/VS Local Communications Option User's Guide.

2200/VS LCO FILING SERVICES

The Filing Services utilities of the 2200/VS LCO package enables a
2200 user to access (create, read, and write) VS DMS files through
existing and new 2200 BASIC-2 application programs. The VS DMS files
are stored on an attached VS system. The VS Data Management System
manages all disk file space and services all file I/0 requests on the
VS system.

Introduction 1-1
Draft Copy Confidential

The 2200/VS LCO enables you to store and access information on a VS
system in the following forms:

e VDISK
e Native VS DMS files

VDISKs are 2200 disk-image files that are stored on a VS system
connected to a 2200 system through the 2200/VS LCO. A VDISK acts like
a disk platter to the attached 2200 and enables you to access
information stored at the VDISK address as records, files, or sectors.

You create VDISKs on the VS using utilities provided with the 2200/VS
LCO software. VDISKs can be shared with other 2200 systems equipped
with the 2200/VS LCO package. VDISKs can also be accessed by the VS
gystem. However, you would have to alter the VS application programs
to use the files stored on VDISK. How you access VDISKs from an
attached 2200 is explained in Chapter 2 of this guide.

Native VS DMS files are formatted by the VS DMS. DMS Filing Services
supports several different file types, including: consecutive,
relative, and indexed files. Native DMS files can be accessed both by
VS application programs and by other 2200 systems attached to the VS
and equipped with the 2200/VS LCO package.

To access Native DMS files you must use the DMS Access Subroutines
included with the 2200/VS LCO package. How you access Native DMS
files is explained in Chapter 3 of this guide.

1-2 Introduction
Draft Copy Confidential

CHAPTER 2
2200 VDISK ACCESS

2.1

INTRODUCTION

Using the 2200/VS LCO package to access information stored on an
attached VS system through a VDISK is just like using any other 2200
disk facility.

First you must create the VDISKs and assign them disk addresses using
the Filing Services utilities that come with the 2200/VS LCO '
software. For more information on the VDISK Filing Services

" utilities, refer to the 2200/VS Local Communications Options User's

Guide.

Once you create a 2200 VDISK on the VS, you can use it like any other
formatted disk with existing or new 2200 BASIC-2 application programs
to write data to and read data from the VDISK.

VDISKs can be opened in Exclusive, Read Only, or Shared mode. In
Exclusive mode VDISKs can only be used by the 2200 system they were
opened on. In Shared mode they can be shared with other 2200 systems
that are equipped with the 2200/VS LCO package. Read Only mode is a
form of Shared mode, except that the VDISKs are write protected.
VDISKS can also be accessed by VS application programs; however, it is
not recommended.

When the VDISKs are opened, any user on an attached 2200 can run an
application program and access the disks. The 2258 controller
responds to the disk address it receives from the application program
and pasgses filing requests to the VS Filing Services program. When
the application program is finished processing, you can then run
another 2200 application program.

2200 VDISK Access 2-1
Draft Copy Confidential

2.2 USING VDISKS

You can use VDISKs with both new and existing BASIC-2 application
programs. To access VDISKs, you must know which ones are available.
You can use the View VDISK function (included in the 2200/VS LCO File
Services utilities) to view a list of available VDISKs. Once you know
which VDISKs are available, you can alter existing programs (if
necessary) or create new ones to access the VDISKs.

2.2.1 Using VDISK With Existing 2200 Programs

Using VDISKs with existing 2200 BASIC-2 programé should require little
or no change to the application programs, except in the following
cases:

e If the disk address is hard-coded in the BASIC-2 application program.

o If the BASIC-2 application program and its data file share the same
disk address.

e If the program contains a disk address verification program that
does not recognize the VDISK addressing scheme. :

What To Do When the Disk Address is Hard-Coded

If the disk address is hard-coded in the application program, you can
go through the program and change all references to the disk address
to the new VDISK address.

Fof example, if the disk address was hard-coded in the program as
follows:

10 SELECT #5 320

You could go through the program and change every occurrence of 320 to
an existing VDISK address. The example above could be written as
follows:

10 SELECT #5 D31

In this example, 320 has been changed to D31, specifying a valid VDISK
address.

You can also substitute a variable for the disk address and have the
program request the address from the user at run time. You could then
assign to the variable the value received from the user.

2-2 2200 VDISK Access
Draft Copy Confidential

2.2.2

What To Do When the Program and Data Files Share the Same Disk

When the program and data files are stored on the same disk, it might
not be advisable to use VDISK for performance reasons (see "VDISK
Performance Considerations" in this chapter).

However, if the data file is sufficiently large to warrant the use of
VDISK, you could follow the suggestions in Section 1 and hard-code the
changes or request the user to input the disk address. In this case,
it would be advisable to separate the application program from the
data file and only store the data files on the VDISK.

For more information, refer to the appropriate BASIC-2 reference and
disk manuals.

What To Do When Verification Procedures Do Not Recognize the Address

If a program contains a disk verification routine that does not
recognize the disk addressing scheme used for VDISK, update the
verification routine to allow valid VDISK addresses. The valid ranges
of addresses for VDISK are as follows:

e DX0 through DXF
¢ DY0 through DYF

The possible values for X are 1, 2, or 3. You set the value for X in
the 2258 controller itself. The value of Y is dependent on the value
you assigned to X as follows:

e If X is 1, then Y must be 5.
e If X is 2, then Y must be 6.
e If X is 3, then Y must be 7.

For more information on how to set the address, refer to the 2200/VS
Local Communications Options User's Guide.

Submitting Programs that Access VDISK

Before you can access a file stored on VDISK, you must make certain
that the following procedures have been implemented:

e The VDISK has been created using the VDISK utilities.

e The 2200 is actively connected to the VS (the attach procedure has
been run).

e The program you submit has or requests a valid VDISK address.

2200 VDISK Access 2-3
Draft Copy Confidential

For more information on how to create VDISKs and how to run the attach
progam, refer to the 2200/VS Local Communications Options User's
Guide. Once you have implemented these procedures, you can submit
programs to access VDISK.

2.3 VDISK PERFORMANCE CONSIDERATIONS

VDISK performance is strongly affected by the following components of
the 2200/VS LCO software package:

e 2258 firmware
e VS serial I/0 processor

2258 Firmware

The 2258 firmware can handle up to four separate tasks: however, only
one of these tasks can be assigned to VS Filing Services. The method
for attaching to VS Filing Services is described in the 2200/VS Local
Communications Options User's Guide. Once the VS Filing Services task
is active, all 2200 partitions (up to 16) can invoke VS Filing
Services through the task.

It is important to remember that the 2258 controller can receive
requests from any of the 16 possible 2200 partitions and that these
requests are handled similarly to 2200 disk requests. As a result,
the more requests that are channeled to the VS through a single 2258
controller, the slower the response time experienced by each
individual partition. '

VS Serial I/0 Processor

The VS serial I/0 processor (SIOP) handles requests in a sgerial
manner, one request at a time. Each file request requires both a
transmission to the SIOP and a response from the SIOP. Since the SIOP
handles these requests in a serial manner and since the 2258 must
-handle requests for all partitions, VDISK performance can be adversely
affected by the number of requests being processed at any given time.

VDISK performance can also be adversely affected by opening VDISKs in
shared mode. Since VDISKs are actually VS files, response time can be
reduced by the additional overhead in the VS system associated with
Shared files.

When you open VDISKs in exclusive mode, the disks are open to all
partitions on the same 2200. You should only open VDISKs in shared
mode when the VDISK must be shared with another 2200 or when it must
be accessed through another 2258 controller on the same 2200.

2-4 2200 VDISK Access
Draft Copy Confidential

2.4

As the number of VDISKs opened in shared mode increases, disk commands
execute more slowly. When a disk command is executed, the 2258
firmware uses VS DMS commands to lock each VDISK opened in shared
mode. The VDISKs are locked to prevent other 2258 controllers from
accessing the VDISK.

If there are many VDISKs open in shared mode, the locking procedure

can add significantly to the processing time required to execute each
disk command.

IMPROVING VDISK PERFORMANCE

To improve, VDISK -performance, you can implement the following
recommendations::

e Use VDISK only to store large data files for data-intensive programs
and for backup storage of program files.

e Do not load programs off VDISK, particularly programs that use
program overlays.

¢ Do not use VDISK to store program-required files, such as screen or
message files.

e Avoid opening VDISKs in shared mode. However, if you must use
VDISKs in shared mode, you may improve performance by bracketing
each string of disk commands with a $OPEN and a $CLOSE to reduce
processing by the 2258 controller for files opened in shared mode.

e In large systems or where heavy use of the 2258 data link is
expected, using multiple 2258 controllers for VDISK access might
increase throughput proportionally. By adding additional 2258
controllers to a single system you can off-load some of the traffic
to the additional controllers.

Note that because of the 2200 disk addressing scheme you are limited
to a maximum of three 2258 controllers on a single system for VDISK
purposes. You can, however, add additional 2258 controllers either
for native DMS access or add more terminals for VS Workstation
Emulation. Adding additional 2258 controllers might also improve
VDISK performance in large systems.

2200 VDISK Access 2-5
Draft Copy Confidential

~

e The 2258 support utilities enable you to define multiple VDISK maps
that assign 2200 platter addresses to an equivalent number of 2200
disk image files. 1In certain cases you might be able to improve
performance by picking a specific VDISK map for a particular
application. Once the application is run, you can then return the
VDISK map to your normal processing configuration. However, it is
recommended that you maintain one VDISK map throughout each session
whenever possible.

2.5 MOVING EXISTING 2200 FILES TO VDISK

To move existing 2200 files to VDISK, use the Move Files Utility. You
access the Move Files Utility from the System Utilities Menu. For
more information on how to use the Move Files Utility, refer to the

2200 Introductory Guide.

2-6 2200 VDISK Access
Draft Copy Confidential

CHAPTER 3
NATIVE DMS ACCESS

3.1

INTRODUCTION

The 2200/VS LCO package enables you to create and access files on the
attached VS system directly from your BASIC-2 application programs.

To create and access Native DMS files using the 2200/VS LCO, you must
use the DMS Access Subroutines that come with the 2200 package. Files
created in this manner are referred to as native DMS files because
they are managed by the VS DMS.

Native DMS files can be accessed by BASIC-2 application programs on
any 2200 system attached to the VS and equipped with the 2200/VS LCO
package. Native DMS files can also be accessed by VS application
programs. ' ‘

The 2200 LCO software supports the following DMS file types:
Consecutive, indexed, and relative.

Consecutive

Consecutive file types allow you to access records sequentially and
read records on disk directly by record sequence number. Records can
only be added at the end of the file and cannot be deleted. This
structure is appropriate for most data entry and batch update
applications. Consecutive files are supported for all types of I/0
devices and are used for specialized puposes, such as printer files
and system-maintained journals.

Indexed

Indexed file types allow you to access records through a key field
that contains unique data values. Indexed files can only be created
and stored on disk storage devices. This structure supports
sequential record retrieval, and rapid non-sequential retrieval of
single records from disk files by key value. You can add, update, or
delete records by specifying the primary key value of the desired
record.

DMS supports both primary key and alternate key indexed files.

Native DMS Access 3-1
Draft Copy Confidential

Relative

Relative files contain sequential, fixed length record slots and can
only be created and accessed on disk storage devices.
allow you to access records either sequentially or directly by record
sequence number. You can add, update, or delete records within a
relative file. However, you must preallocate space for adding
records. Deleting records does not reduce the size of the file. You
should choose a relative file structure if speed of access and ability
to modify and delete existing records is a major consideration.
Relative files are not supported on the VS-50 or VS-80 computers.

NOTE

Relative files

Relative files cannot be opened in shared mode.

For more information about DMS file structures, refer to the VS Data

Mangement System Reference guide.

3.2 BRIEF DESCRIPTION OF THE DMS ACCESS SUBROUTINES

Table 3-1 lists the DMS Access Subroutines available, provides a

description of each subroutine, and lists the subroutine's

corresponding function number.

Table 3-1. DMS Access Subroutines

Function
Function Description Number
GENERAL OPEN Opens any DMS file. '101
GENERAL CLOSE Closes any DMS file. '102
CONSECUTIVE READ Reads a consecutive record. '103
CONSECUTIVE WRITE Writes a consecutive record. '104
CONSECUTIVE REWRITE Rewrites a consecutive record. '105
CONSECUTIVE SKIP Skips a specified number of '106

consecutive records.

CONSECUTIVE LOCK Locks a consecutive file. '107

(continued)

3-2 Native DMS Access

Draft Copy Confidential

Table 3-1. DMS Access Subroutines (continued)
Function

Function Description Number

CONSECUTIVE UNLOCK Unlocks a consecutive file. '108

INDEXED READ Reads an indexed file. '109

INDEXED READ NEXT Reads the next record in an '110
indexed file.

INDEXED WRITE Writes to an indexed file. '111

INDEXED REWRITE Rewrites an indexed record '112
to a file.

INDEXED DELETE Deletes an indexed record '113
from a file.

INDEXED FIND Finds a specified indexed '114
record in and indexed file.

INDEXED LOCK Locks an indexed file. '115

INDEXED UNLOCK Unlocks an indexed file. 1116

RELATIVE READ Reads a record form a '117
relative file.

RELATIVE WRITE Writes a record to a '118
relative file.

RELATIVE REWRITE Rewrites a record to a '119
relative file.

RELATIVE DELETE Deletes a relative record '120
from a relative file.

BLOCK READ Reads a block of data '121
from a block file.

BLOCK WRITE Writes a block of data 1122

to a block file.

Native DMS Access

Draft Copy Confidential

3-3

The DMS Access Subroutines also provide functions for creating,
deleting, and renaming files and for getting file attributes. These
subroutines are called the DMS Catalog Functions. Table 3-2 provides a
brief description of these functions.

Table 3-2. DMS Catalog Functions

Function
Function Description Number
FILE CREATE Creates a DMS file. '200
FILE DELETE Deletes a DMS file. '201
FILE RENAME Renames a DMS file. '202
GET FILE ATTRIBUTES Retrieves the value of one 1203

or more attributes groups
associated with the opened S
file

Refer to Chapter 4 of this guide for a detailed description of the DMS
Access Subroutines and DMS Catalog Functions listed above. !

3.3 HOW TO USE THE DMS ACCESS SUBROUTINES

The DMS Access Subroutines are stored in the following files that are
included with the 2200/VS LCO software:

o VSACESSO This file contains the GENERAL OPEN and GENERAL CLOSE
subroutines. This file also includes the subroutine
used to communicate all requests to the 2200 LCO
controller.

e VSACESS1 This file contains all the subroutines that deal with
consecutive DMS files.

o VSACESS2 This file contains all the subroutines that deal with
indexed DMS files.

e VSACESS3 This file contains all the subroutines that deal with
relative DMS files.

e VSACESS4 This file contains all the subroutines that enable you

to access DMS files in block mode.

VSACESS9 This file contains the DMS Catalog Functions.

3-4 Native DMS Access
Draft Copy Confidential

3‘4

To use the DMS Access Subroutines, perform the following steps:

1. Copy the files containing the required DMS Access Subroutines into
your BASIC-2 application program. Usually you are required to
copy VSACESSO and one other file into your program to open and
close files and to handle all other file processing.

NOTE

When you copy the DMS Access Subroutines into your program, be certain
they do not overlay lines of code in your program.

2. Once you have copied the DMS Access Subroutines into your program,
you access the subroutines by writing a GOSUB ' to the specific
function you want to perform.

For example, if you are working with existing consecutive files,
you copy VSACESSO and VSACESS1 into your program. The subroutines
in VSACESSO allow you to open and close. The subroutines in
VSACESS1 allow you to perform other functions, such as reading and
writing to and from the file. '

The following statement is an example of how you would code a
GOSUB ' to perform a GENERAL OPEN:

0100 GOSUB '101 (N$, T$, MS$) '

The variables (N$, T$, and M$) pass the name and organization of
the file, and the mode the file is to be opened in to the
subroutine.

DMS ACCESS PROGRAMMING REQUIREMENTS AND PERFORMANCE CONSIDERATIONS

To use the DMS Access Subroutines, you must copy the required files
into your program.

To save space, only copy the files required by the program. For
example, if your program only uses existing indexed files, you only
need to copy in VSACESSO and VSACESS2. If your program uses more
than one file type, you have to copy more modules into your program.

If your program also creates, renames, or deletes files, you also
have to copy in the DMS Catalog Functions VSACESS9.

Native DMS Access 3-5
Draft Copy Confidential

3.4.1

3.5

3.5.1

Once you have copied the DMS Access Subroutines into your program,
you can save the program with the SR parameter. Saving the program
with the SR parameter removes the REM statements from the program,
thus saving you partition space.

Submitting Programs that Access Native DMS Files

Before you can access a native DMS file, you must make certain that
the following procedures have been implemented:

e The 2200 is actively connected to the VS (that the attach
procedure has been run).

e The program contains the required DMS Access Subroutines.
For more information on how to run the attach progam, refer to the

2200/VS Local Communications Options User's Guide. Once you have
implemented these procedures, you can submit programs from the 2200

to access native DMS files stored on the VS.

GENERAL NOTES ON THE DMS ACCESS SUBROUTINES

This section provides background on and general information common ‘
to all the DMS Access Subroutines.

Variables Reserved by the DMS Access Subroutines

I3

All the variables used by the DMS Access Subroutines start with the
letter V. If you have any variables in your programs that begin
with the letter V, you can either change the variable in your
program or change the variable in the DMS Access Subroutine.

Table 3-3 lists the variables used by the DMS Access Subroutines and
gives a brief explanation of their purpose.

3-6 Native DMS Access

Draft Copy Confidential

Table 3-3. Variables Used by the DMS Access Subroutines

Variable Length
Name Description (in bytes)
v$ Holds the file name. 32
Vo Is a work variable for the 8
CONSECUTIVE SKIP subroutine.
Holds the number of records
to be skipped.
vVo$ Holds the return code. 2
Return codes are explained
in Appendix A,
vl Is a work variable. 8
vi$ Holds the file organization 1
identifier.
V2 Is a work variable. 8
v2$ Holds the open mode identifier. 1
V3 Holds the key position 8 !
for indexed files.
v3s$ Holds the hold option 1
identifier.
V'L Holds the key path for indexed 8
va$ Holds the alternate mask for 2
indexed files.
V') Holds the key length for 8
indexed files.
v5$ Holds the search criteria for 2
the INDEXED FIND subroutine.
v6es$ Holds the key value for indexed 6

files.

{continued)

Draft Copy Confidential

Native DMS Access

3-7

Table 3-3. Variables Used by the DMS
Access Subroutines (continued)

Variable Length
Name Description (in bytes)
v7 Holds the number of records to 8
read.
v7$ Holds the Extended File Sharing 32
(EFS) header.
\'2:E Is a work scalar variable. 16
vas$() Is a work array. 256
vos Holds the file identifier 2
number.
Vvos$() Is the data buffer array for 4096
reading in information form
the file.

3.5.2 Using Variables or Literals for Input Parameters

The DMS Access Subroutines enable you to pass input parameters in the
form of variables or literals. For example, a GOSUB ' to perform a
CONSECUTIVE WRITE can be written as follows:

3000 DIM H1$32,D$50,H$2

3005 H$=V9P: V9P is the file identifier received from the OPEN

3010 H1$ = V7$:REM V78 is the EFS header received from the OPEN
3020 D$ = "This statement is written to the file as a record."”

3030 GOSUB '104 (H$, H1$, D$)

This statement also could be written with a literal for D$ as follows:

3000 GOSUB '104 (H$, V78, "This is written to the file as one
record.")

In this example., a literal is used for the data buffer parameter.

3-8 Native DMS Access
Draft Copy Confidential

3.6

NOTE

In the example above, the DMS Access Subroutine variable (V7$), which
stores the External File Sharing (EFS) information, is used to specify
this information in the GOSUB ' call to the CONSECUTIVE WRITE
subroutine. You can only use the DMS Access Subroutines variables
within your GOSUB ' statements if your program has only one file open
at a time. Otherwise, you must assign the values stored in the DMS
Access Subroutine variables to other variables within your program,
pass the appropriate variables to the DMS then Access Subroutines.

MOVING EXISTING FILES FROM THE 2200 TO THE VS

To use the 2200/VS LCO software package to move files from the 2200 to

the VS, you need to write a utility program to perform the following
tasks:

1. Open the 2200 file.

2. If the file does not exist on the VS, creates the file on the VS.
To create a file on the VS, you can include the CREATE FILE
subroutine in your utility program or you can use the CREATE
utility provided on the VS. For more information, refer to the
detailed description of the CREATE FILE subroutine in Chapter 4 of
this guide.

Uses the GENERAL OPEN (GOSUB 'l101) DMS Access Subroutine, to open
the file if the file already exists on the VS.

3. Read a record from the 2200 file using 2200 disk access statements.

4. Write a record to the VS using the appropriate DMS Access
Subroutine.

5. Repeat steps 3 and 4 until all the records are written to the VS
file.

6. Close the VS file using the GENERAL CLOSE DMS Access Subroutine
(GOSUB '102).

7. Close the 2200 file.
Once you have written the utility program, you must follow the

procedures for submitting programs to access DMS files provided in
this chapter.

Native DMS Access 3-9
Draft Copy Confidential

3.7

3.8

MOVING FILES FROM THE VS TO THE 2200

To use the 2200/VS LCO software package to move files from the VS to
the 2200, you need to write a utility program to perform the following
tasks:

1. Open the DMS file on the VS using the GENERAL OPEN (GOSUB '101)
DMS Access Subroutine.

2. Read the file using the appropriate DMS Access Subroutine (either
consecutive, indexed, relative, or block). .

3. Use the DATA SAVE DC OPEN statement, if the file does not exist on
the 2200 system.

If the file exists on the 2200 system, you can use the DATA LOAD
DC OPEN statement.

4. Write the file to the 2200 using the familiar 2200 BASIC-2
statements.

Once you have written the utility program, you must follow the %
procedures for submitting programs to access DMS files provided in i

. this chapter. %

SAMPLE PROGRAMS

There are three sample programs included on the VSACCESS diskette
shipped with the 2200/VS LCO software package. The sample programs
use the DMS Access Subroutines to create, access and write records to
and from Native DMS files. Each program deals with a different file
type, either Congecutive, Relative, or Indexed. The following list
gives the name of the files containing the sample programs:

o TESTCON1l — Deals with Consecutive files
e TESTREL1 -- Deals with Relative files
e TESTIDX1 —— Deals with Indexed files

Once you have the software installed, you can display these files on
your terminal, or print them out, to get a better idea of how to use
the DMS Access Subroutines

3-10 Native DMS Access

Draft Copy Confidential

CHAPTER 4
DETAILED DESCRIPTION OF THE DMS ACCESS SUBROUTINES

4.1

INTRODUCTION

This section gives a detailed description of the DMS Access
Subroutines. The description of each subroutine includes the
following information:

e General Porm -— This section shows the general format of the cxﬁnng
statement used and includes a description of the required input
parameters. *

e Purpogse — This section explains the function the subroutine
performs.

e Returns — This section explains information returned by the
subroutine.

e Example — This section provides an example of how the subroutine is
used.

o General Notes — This section is also included for certain
subroutines to provide additional information.

DMS Subroutines 4-1
Draft Copy Confidential

4.2 NOTES ON THE GENERAL FORM SECTION

In the General Form section, these basic rules of syntax are followed.

1. Symbols must be included in your BASIC-2 statements exactly as
they appear in the General Form of the statement:

e Uppercase letters A through 2
¢ Comma .

e Double gquotation marks "

e Parentheses ()

e Pound sign #

e Slash /

2. Lowercase letters and words in the General Form of a statement
represent items whose values must be assigned by the
programmer. For example, if the lowercase word "name" appears
in a General Form, the programmer must substitute a specific
file name (such as "PROGl"), or an alphanumeric variable
containing the name, in the actual statement. Similarly, where
the lowercase letter n appears, the programmer must substitute .
an actual file number (from 0 to 64) or a variable contain;ng i% '
file number. ¥ :%
3. 2all information that appears between parentheses must be o
included in the GOSUB' statements.

4. Blanks (spaces) are used to improve readability and are
meaningless.

5. The sequence the terms are listed in must be followed.

4-2 DMS Subroutines
Draft Copy Confidential

GENERAL OPEN

General Form

GOSUB '101 (file-name , org , mode)

where

file-name is the name of the file. The file name can include
the //SYSTEM/VOLUME/LIBRARY/FILENAME. The file name
can also be written as ///VOLUME/LIBRARY/FILENAME.
The SYSTEM, LIBRARY, and FILENAME can each be up to 8
characters in length. The VOLUME can be up to 6
characters in length.

org is the organization of the file. The valid file
organization parameters and their meaning follow:
¢ C - consecutive file :
e I - indexed file :%
e R - relative file %§
e B - be accessed in block mode %?

mode is the mode the file is opened in. The valid mode
parameters and their meaning follow:
e R - read only access !
e S - shared access
e X - exclusive access
¢ E - extended access

Purpose

The GENERAL OPEN ('l10l) subroutine enables you to open any DMS file.
The subroutine enables you to specify the file name, including the
system, the volume, the library, and actual name of the file. The
library, volume, and file name are required; the system name is
optional. The GENERAL OPEN subroutine also enables you to specify the
file type (Indexed, Consecutive, or Relative) and the access mode
(Read Only, Shared, Exclusive, or Extended.)

NOTE

Relative files cannot be opened in shared mode

DMS Subroutines 4-3
Draft Copy Confidential

Returns

The GENERAL OPEN subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

e V1 is the length of valid data in V9$() array (the file data field).

e V7$ is the EFS header information for the file indicated by V9§ (the
file identifier). Refer to Appendix A for more information.

e V93 is the file identifier assigned to the file.

e V9$() is an array of 64 or 75 bytes that contains file attribute
information. Refer to Appendix A for more information.

Example (GENERAL OPEN)

10 DIM N$32,T$1,.M$1
20 N$="//SYSNAM/ANYVOL/ANYLIB/FILENAME": T$="1I", M$="S"

30 GOSUB '101 (N$, T$, M$) p
40 IF VO$=HEX(FF) THEN 60
50 STOP "ERROR IN OPEN" %

60 HP=V9$: REM V9$ is the file identifier

In this example, variables are used to represent the name, org, and
mode parameters. This example could have been written as follows:

10 GOSUB 'l101 ("///ANYVOL/ANYLIB/FILENAME","I", "S")
20 IF VO$=HEX(FF) THEN 40

30 STOP "ERROR IN OPEN"

40 REM Good general open. Continue processing.

50 HP=V9$: REM V9$ is the file identifier

In the examples above, the specified files are opened. In the second
example, the system name is replaced with a slash (/).

4-4 DMS Subroutines
Draft Copy Confidential

GENERAL CLOSE

General Form

GOSUB '102 (file-id , efs)

where
file-id igs an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
Purposge

The GENERAL CLOSE ('102) subroutine enables you to close any DMS file
that had been previously opened for I/O functions. You must specify
the file identifier assigned to the file.

Attempting to close a file that was not previously opened by an OPEN
statement causes a recoverable program error at run time.

Returns

The GENERAL CLOSE subroutine returns the following information:

e VO is the return code. Refer to Appendix A for more information.

e V1 ig the length of valid data in V9$() array (the file data field).

e V7$ is the EFS header information for the file indicated by V9§ (the
file identifier). Refer to Appendix A for more information.

e V9$() is an array containing 3 bytes and should be HEX(00).

DMS Subroutines 4-5
Draft Copy Confidential

Example (GENERAL CLOSE)

10 H1$=V7$:REM V7$ is the EFS header.

20 H$=V9$: REM V9§ is the file identifier
30 GOSUB '102 (H$,H1S$)

40 IF VO$=HEX(FF) THEN 60

50 STOP "ERROR IN CLOSE"

60 ...

In this example, a variable (H$) is used to represent the file
identifier and the EFS information (H1$).

erdenang

4-6 DMS Subroutines
Draft Copy Confidential

CONSECUTIVE READ

General Form

GOSUB '103 (file-id ., efs , hold , time)

where

file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.

efs is an alpha-numeric variable that represents the EFS
information for the gpecified file.

hold indicates the hold option and can be either "H" which
"H" holds the record for exclusive processing, or " "
allows other programs to access the record.

time is the amount of time in seconds the system waits if
the record is being held by another user. The time ¥
parameter must be zero, unless the file is opened in:
shared mode. Specifying a value of zero indicates
that the system waits indefinitly.

Purpose '

The CONSECUTIVE READ ('103) subroutine enables you to read the next
consecutive record in a specified file. The file must have previously
been opened.

Returns

The CONSECUTIVE READ subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

e V7$ is the EFS header information for the file indicated by V9% (the
file identifier). Refer to Appendix A for more information.

e V9$() contains eight bytes of status information and the data read
from the file. Refer to the CONSECUTIVE READ General Notes section
for more information.

DMS Subroutines 4-7
Draft Copy Confidential

General Notes

In the CONSECUTIVE READ subroutine, the V9$() array is used to store
status information and the data read from the file. The first eight
bytes of the array are used to store the status information. Table
4-1 describes the status information.

Table 4-1. CONSECUTIVE READ Status Information

Byte(s) Description

01 Contains internal processing information.
This value should always be equal to 0l.

. 02 and 03 Contain the number of records read.
04 and 05 Contain the number of bytes in the bfte
block.
4]} Contains the data block ID. This value

A

should always be equal to 0l.

07 and 08 Contains the number of bytes read. The %
value of these two bytes can be up to 64K.

The remaining bytes of the array (starting at the ninth byté) are
used to store the data read from the file. If you know the length
of the records read, you know how many bytes of V9$() are used to
store the data. If you do not know the length of the records in
the file, or the file contains variable length records, you can
use the VAL function on the 7th and 8th bytes of V9$() array to
get the length of the data read. See the Example section for more
information.

The V9$() array is originally dimensioned to hold 4096 bytes of
information (including the status information). However, you can
decrease the size of the array depending on your needs.

4-8 DMS Subroutines
Draft Copy Confidential

Example (CONSECUTIVE READ)
The following is an example of the CONSECUTIVE READ subroutine:

10 DIM C1$5,N1$30,B1$3,W$8

20 H3=VI9$:H1$=V7$:T=25

30 W$=HEX(A005A01EA0035205)

40 GOSUB '103 (H$, H1$, "H", T)

40 IF VO$=HEX(FF) THEN 60 ELSE 50

50 STOP "ERROR IN READ"

60 $UNPACK (F=W$) STR(VI$().9,VAL(STR(V9S$(),7.,2),2)) TO C1$,N1$,B1$,Al

In this example, the next consecutive record is read. If the record

is being held by another user, the system waits 25 seconds before an
error occurrs.

In line 60 the VAL function is used on the seventh and eigthth bytes
of V9$() array to determine the number of bytes read.

DMS Subroutines 4-9
Draft Copy Confidential

CONSECUTIVE WRITE

General Form

GOSUB '104 (file—-id , efs , data)

where

file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.

efs .is an alpha-numeric variable that represents the EFS
header information for the file indicated by V9¢$ (the
file identifier).

data can be either an alpha-numeric literal or an array
designator. If a literal string is used, the
information must be enclosed in double quotation marks.

*
Purpose *

The CONSECUTIVE WRITE ('l104) subroutine enables you to write the next
sequential record to a specified consecutive.file.

To write the information contained in more than one wvariable éo a file
at one time, you can use the $PACK statement (or some other

appropriate BASIC-2 statement) to pack the information into a single
variable.

Returns
The CONSECUTIVE WRITE subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

e V7§ is the EFS header information for the file indicated by V9$ (the
file identifier). Refer to Appendix A for more information.

e V9$() contains the following five bytes of status information:

- Byte 01 contains internal status information. This value should
always be equal to 0l.

- Bytes 02 and 03 contain the number of bytes written.

- Bytes 04 and 05 contain the number of bytes in the byte block and
should be HEX(0000).

4-10 DMS Subroutines
Draft Copy Confidential

Example (CONSECUTIVE WRITE)

10 DIM Cl1$5, N1$30, Bl$3, W$8, D$43, H$2, H1$32
20 HP=VI$:H1$=V7$

30 W$=HEX(AO0SAQ1EA0035205)

40 $PACK (F=W$) D$ FROM Cl$, N1$, Bl$, al

50 GOSUB '104 (H$, H1$, D$)

60 IF VO$=HEX(FF) THEN 80

70 STOP "ERROR IN WRITE"

80 ...

In this example, the data held in the variable D$ is written to the

file specified by H$.

Draft Copy Confidential

DMS Subroutines

4-11

CONSECUTIVE REWRITE

General Form

GOSUB '105 (file—-id , efs , len , data)

where

file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.

efs is an alpha-numeric variable that represents the EFS
header information for the file indicated by V9§ (the
file identifier).

len indicates the length of the record to rewritten. The
value of the len parameter must matcha the record
length exactly, including trailing spaces.

data can be either an alpha-numeric literal or an array %
designator. If a literal string is used the =
information must be enclosed in double quotation marks.

Purpose ‘

The CONSECUTIVE REWRITE ('l05) subroutine enables you to overwrite an
existing record in a consecutive file. The record must have been
previously read with the HOLD option.

To write the information contained in more than one variable to a file
at one time using the REWRITE subroutine, you can use the $PACK

statement to pack the information into a single variable or some other
appropriate BASIC-2 statement.

Returns
The CONSECUTIVE REWRITE subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

e V7$ is the EFS header information for the file indicated by V9$ (the
file identifier). Refer to Appendix A for more information.

4-12 DMS Subroutines
Draft Copy Confidential

e V9$() contains the following three bytes of status information:

- Byte 01 contains the number of words in the word block that should
be equal to HEX(00).

- Bytes 02 and 03 contain the number of bytes in the byte block that
should be equal to HEX(0000).

Example (CONSECUTIVE REWRITE)

10 DIM C1$5, N1$30, B1$3, W$8, D$43, H$2, H1$32
20 W$=HEX(A005A01EA0035205)

30 $PACK (F=W$) D$ FRCOM Cl$, N1$, Bl$, Al$

40 GOSUB '105 (HS, H1$, 43, D$)

50 IF V0§ = HEX(FF) THEN 70

60 STOP "ERROR IN REWRITE"

70 ...

S s

DMS Subroutines 4-13
Draft Copy Confidential

CONSECUTIVE SKIP

General Form

GOSUB '106 (file-id , efs , nnnnnnnn)

where
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
nnnnnnnn is the number of records to skip; nnnnnnnn must be
between 2**? and -2*%%,
b3
Purpose %

The CONSECUTIVE SKIP ('l06) subroutine posxtxons a consecutive file
forward or backward a given number of records in the file. For
example, if the first record of a file has been read, a SKIP value of
2 causes the next record read to be record 4. A SKIP value of -1
causes the same record to be reread by the next CONSECUTIVE READ
('103). A SKIP value of 0 is ignored.

4-14 DMS Subroutines
Draft Copy Confidential

Returns ~
The CONSECUTIVE SKIP subroutine returns the following information:
e V0§ is the return code. Refer to Appendix A for more information.

e V7$ is the EFS header information for the file indicated by V9% (the
file identifier). Refer to Appendix A for more information.

e V9$() contains the following three bytes of status information:

- Byte 01 contains the number of words in the word block that should
be equal to HEX(00).

- Bytes 02 and 03 contain the mumber of bytes in the byte block that
should be equal to HEX(0000).

Example (CONSECUTIVE SKIP)

10 GOSUB '106 (H$, 30) .
20 IF VO$=HEX(FF) THEN 50:STOP "ERROR IN SKIP" x

In this example, the next 30 records in the specified file are skipped.

DMS Subroutines 4-15
Draft Copy Confidential

CONSECUTIVE LOCK

General Form

GOSUB '107 (file-id , efs , mode)

where

file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.

efs ig an alpha-numeric variable that represents the EFS

header information for the specified file.

mode is the mode the file is opened in. The following lists the
valid mode parameters and their meaning:

read only access
shared access
exclusive access
extended access

o & 0 0
X nno
(]

Purpose

The CONSECUTIVE LOCK ('107) subroutine enables you to have exclusive
rights to a consecutive file. No other program can access the file
until you unlock the file.

Returns
The CONSECUTIVE LOCK subroutine returns the following information:
e VO$ is the return code. Refer to Appendix A for more information.

e V7$ is the EFS header information for the file indicated by V9$ (the
file identifier). Refer to Appendix A for more information.

e V9$() contains the following three bytes of status information:

- Byte 01 contains the number of words in the word block that should
be equal to HEX(00).

- Bytes 02 and 03 contain the number of bytes in the byte block that
should be equal to HEX(0000).

- .
-

4-16 DMS Subroutines
Draft Copy Confidential

Example (CONSECUTIVE LOCK)

10 H$=V9$

20 GOSUB '107 (H$, H1$, "X")

30 IF VO$=HEX(FF) THEN 50

40 STOP "ERROR IN LOCK"

50 REM File was locked successfully. Continue processing.

In this example, the "X" indicates the specified file is held for
exclusive use. H1$ identifies the EFS header information.

DMS Subroutines 4-17
Draft Copy Confidential

CONSECUTIVE UNLOCK

General Form

GOSUB 'l108 (file-id , efs)

where
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
Purpose

The CONSECUTIVE UNLOCK ('108) subroutine emables you to release a fxle
- from exclusive use so that other programs can access the file.

Returns

The CONSECUTIVE UNLOCK subroutine returns the following information:

e V0$ is the return code. Refer to Appendix A for more information.

e V7$ is the EFS header information for the file indicated by V9% (the
file identifier). Refer to Appendix A for more informatiom.

e V93() contains the following three bytes of status information:

- Byte 01 contains the number of words in the word block that should
be equal to HEX(00).

- Bytes 02 and 03 contain the number of bytes in the byte block that
should be equal to HEX(0000).

4-12 ™MMS Suhroutines

Example (CONSECUTIVE UNLOCK)

10 H$=VI$

20 GOSUB '108 (H$, H1$)

30 IF VO$=HEX(FF) THEN 50

40 STOP "ERROR IN UNLOCK"

50 REM Unlock was successful. Continue processing.

In this example, the specified file is released from exclusive use.

DMS Subroutines 4-19
Draft Copy Confidential

INDEXED READ

General Form

GOSUB '109 (file-id , efs , hold , time , key , length , value)

where

file-id

efs

hold

.

key

length

value

is an alpha-numeric variable that represents the file
identifier assigned to the file.

is an alpha-numeric variable that represents the EFS
header information for the specified file.

indicates the hold option and can be either "H" or
" ", "H" holds the record for exclusive processing.
" " allows other programs to access the record.

is the amount of time in seconds the system waits if,
the record is being held by another user. Specifying a
value of zero (0) indicates that the system waits =%
indefinantly. Non-zero values should only be used when

the file is opened in shared mode. ;

is the key path, either the primary (0) or alternate

is a numeric variable or expression that specifies the
length of the key.

is an alpha-numeric variable or literal that indicates
the value of the key.

Purpose

The INDEXED READ ('l09) subroutine enables you to read an indexed
file. The file must have previously been opened. You can use either
a primary or alternate key. For more information, see the General

Notes section.

4-20 DMS Subroutines

Draft Copy Confidential

Returns

The INDEXED READ subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.
e V1 contains the length of data read (in bytes) in V9$() array.

e Va$ is the alternate key mask.

e V9$() the data read from the file.

General Notes

DMS allows a primary key and up to 16 alternate keys. In the INDEXED
READ subroutine, the primary key is indicated by a 0 and the alternate
keys are indicated by the numbers 1 through 16. An example of each is
provided in the Example section.

The V9$() array is originally dimensioned to hold 4096 bytes of
information (including the status information). However, you can
decrease the size of the array depending on your needs.

x

Example (INDEXED READ)

10 DIM Cl1$5, N1$30, Bl$3, W$s

20 W$=HEX(A005A01EA0035205)

30 C1$="00001"

40 GOSUB '109 (H$, H1$, "H", 0, 0, 5, Cl$)

50 IF VO$=HEX(FF) THEN 70

60 STOP "ERROR IN INDEXED READ"

70 REM Successful indexed read. Continue processing
80 $SUNPACK (F=W$) STR(V9$().1,Vl) to K$,6N1$,Bl§,Al

In this example, the path is identified as the primary key by the zero
(0) in the key parameter position. The key length is identified as 5
characters in length, and the value of the key is equal to the value
of C1$. Note also that the hold option is used.

The following example shows how to indicate an alternate key.

10 DIM C1$5, N1$30, B1$3, W8

20 WH=HEX(A005A01EA0035205)

30 C1$="00001"

40 GOSUB '109 (H$, H1$, "H", 0, 4, 5, C1$)

50 IF VO$=HEX(FF) THEN 70

60 STOP "ERROR IN INDEXED READ"

70 REM Successful indexed read. Continue processing
80 $UNPACK (F=W$) STR(V9$().,1l,V1) to K$,N1$,Bl$, Al

DMS Subroutines 4-21
Draft Copy Confidential

In this example, the path is identified as the fourth alternate key by
the four (4) in the key parameter position. The other parameter
values remain the same.

4-22 DMS Subroutines
Draft Copy Confidential

INDEXED READ NEXT —

General Form

GOSUB '110 (file-id , efs , hold , time)

where
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
hold indicates the hold option and can be either "H" or
" *. "H" holds the record for exclusive processing.
" # allows other programs to access the record.
time is the amount of time in seconds the system waits if,
the record is being held by another user. Non-zero *
values should only be used when the file is opened in.
shared mode. ’
~
Purpose ¢
The INDEXED READ NEXT ('110) subroutine enables you to read an indexed
file sequentially. The file must have previously been opened.
Returns
The INDEXED READ NEXT subroutine returns the following information:
e V0$ is the return code. Refer to Appendix A for more information.
e V1 contains the length of data read (in bytes) in V9$() array.
e V4$ is the alternate key mask.
e V9$() the data read from the file.
-

DMS Subroutines 4-23
Draft Copy Confidential

ane

Example (INDEXED READ NEXT)

10 DIM C1$5,N1$30,B1$3,W$8,K1$1,K2$5

20 W$=HEX(A005A01EA0035205)

30 GOSUB '110 (H$, H1$, "H", 25)

40 IF VO$=HEX(FF) THEN 60

50 STOP "ERROR IN READ NEXT"

60 REM Successful READ NEXT. Continue processing
70 ...

In this example, the next record in the file indicated by H$ is read.
If the record is being held by another user, the program waits 25
gseconds before generating an error return code.

4-24 DMS Subroutines
Draft Copy Confidential

INDEXED WRITE

General Form

GOSUB '111 (file-id , efs , alt , data)

where

file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.

efs is an alpha-numeric variable that represents the EFS
header information for the specified file.

alt represents the alternate key mask.

data can be an alpha-numeric, an array designator, or a
literal. If a literal string is used, the information
must be enclosed in double quotation marks.

Purpose

The INDEXED WRITE ('lll) subroutine enables you to write a keyed
record to an indexed file.]
To write the information contained in more than one variable to a file
at one time using the WRITE subroutine, you can use the $PACK
statement (or some other appropriate BASIC-2 statement) to pack the
information into a single variable.

Returns
The INDEXED WRITE subroutine returns the following information:

e VO is the return code. Refer to Appendix A for more information.

Example (INDEXED WRITE)

10 DIM N1$30,B1$3,W$8,K1$1,K$S

20 WS=HEX(A005A01EA0035205)

30 PACK (F=W$) D$ FROM C1$, N1$, Bl$, Al$

40 GOSUB 'l11l (H$, H1$, H2$, D$)

40 IF VO$=HEX(FF) THEN 60

50 STOP "ERROR IN INDEXED READ" :

60 REM Good indexed read. Continue processing.

DMS Subroutines 4-25
Draft Copy Confidential

INDEXED REWRITE

General Form

GOSUB '112 (file-id , efs , alt , len , data)

where
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
alt represents the alternate key mask.
len indicates the length of the record to rewritten. The
value of the len parameter must matcha the record
length exactly, including trailing spaces.
%
&
data can be an alpha-numeric variable, an array designatd},
or a literal. If a literal string is used, the z
information must be enclosed in double quotation marks.
Purpose '

The INDEXED REWRITE ('l12) subroutine enables you to overwrite an
exigting record in an indexed file. The rewritten record size is the
same as that of the existing record.

To write the information contained in more than one variable to a file
at one time using the REWRITE subroutine, you can use the $PACK
statement (or some other appropriate BASIC-2 statement) to pack the
information into a single variable.

Returns

The INDEXED REWRITE subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

General Notes

A record can be rewritten only if the record is read with the hold
option equal "H".

4-26 DMS Subroutines
Draft Copy Confidential

Example (INDEXED REWRITE)

10 DIM C1$5,N1$30,B$3,W$8,D$43

20 W$=HEX(A00SA01EA0035205)

30 $PACK (F = W$) D$ FROM C1$, N1$, Bl$, Al
40 GOSUB 'l112 (H$, H1$, H2$, 43, D$)

50 IF VO$=HEX(FF) THEN 70

60 STOP "ERROR IN INDEXED REWRITE"

70 ...

Draft Copy Confidential

DMS Subroutines

4-27

INDEXED DELETE

General Form

GOSUB '113 (file-id , efs)

where
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
Purpose

The INDEXED DELETE ('l13) subroutine emables you to delete a specific
record from an indexed file.

Lok T Ak

Returns
The INDEXED DELETE subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

General Notes

A record can be rewritten only if the record is read with the hold
option equal "H".

Example (INDEXED DELETE)

10 GOSUB '113 (H$, H1$)

20 IF V0$ = HEX(FF) THEN 40

30 STOP “ERROR IN INDEXED DELETE"

40 REM Indexed delete successful. Continue processing.

In this example, H$ indentifies the file that the INDEXED DELETE
subroutine operates on.

4-28 DMS Subroutines
Draft Copy Confidential

INDEXED FIND

General Form

GOSUB '114 (file-id , efs , select , path , length , value)

where

file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.

efs is an alpha-numeric variable that represents the EFS
header information for the specified file.

select represents the selection critera. The following values
are valid entries for this parameter:
e "8000" indicates equal to
e "2000" represents greater than)
e "6000" indicates greater than or equal to -g

path indicates either primary (0) or alternate key (1-16)%
path number. '

length is a variable or numeric expression that specifies the
length of the key. ' .

value is a variable or an alpha or numeric expression that
indicates the value of the key.

Purpose

The INDEXED FIND ('l14) subroutine enables you to read an indexed file
based on a comparison expressed in the select input parameter to the

primary or alternate key.

Returns

The INDEXED FIND subroutine returns the following information:

e V0$ is the return code. Refer to Appendix A for more information.
e V1 contains the length of data read (in bytes) in V9$() array.

e V43 is the alternate key mask.

e V9$() the data read from the file.

DMS Subroutines 4-29
Draft Copy Confidential

~

EXAMPLE: INDEXED FIND

10 DIM H$2,H1$32,H3$2,K$5

20 K$="00003":REM KEY VALUE

30 K1=0:REM KEY PATH

40 K2=5:REM KEY LENGTH

50 H3$=HEX(2000):REM FIND CRITERIA = GREATERN
60 REM FIND RECORD WITH A KEY VALUE GREATER THAN "00003"
70 GOSUB '114(H$, H1$, H3$, K1, K2, K$)

80 IF VO$=HEX(FF) THEN 90

90 STOP "ERROR IN INDEXED FIND" :
100 REM GOOD INDEXED FIND. CONTINUE PROCESSING."
110 ...

In this example, the selection criterion is set to greater than
(2000). This value indicates that the next record read will have a
primary key value greater than the value of Cl$.

4-30 DMS Subroutines
Draft Copy Confidential

INDEXED LOCK

General Form

GOSUB '115 (file-id , efs ., post , key , length , value)

where

file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.

efs is an alpha-numeric variable that represents the EFS
header information for the specified file.

post represents the position in the record that the key
starts.

key is the key path, either the primary (0) or alternate
key (1-16).

length is a numeric variable or literal that specifies the
length of the key.

value is alpha-numeric variable or an alpha-numeric literal
that indicates the value of the key.

Purpose

The INDEXED LOCK ('l1l5) subroutine enables you to to have exclusive
rights to an indexed file. No other program can access the file until
you unlock the file.

You can use either the primary or alternate key. See the General
Notes section for more information.

Returns
The INDEXED LOCK subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

DMS Subroutines 4-31
Draft Copy Confidential

General Notes

DMS allows a primary key and up to 16 alternate keys. In the INDEXED
READ subroutine, the primary key is indicated by a 0, the alternate
keys are indicated by the numbers 1 through 16.

Example (INDEXED LOCK)

10 H$ = V9$

20 GOSUB '115 (H$, H1$, P, K, L, K1$)

30 IF VO$=HEX(FF) THEN 50

40 STOP "ERROR IN LOCK"

50 REM Indexed file lock successful. Continue processing.
60 ...

4-32 DMS Subroutines
Draft Copy Confidential

INDEXED UNLOCK

General Form

GOSUB '116 (file-id , efs)

where
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
Purpose

The INDEXED UNLOCK ('ll5) subroutine enables you to release an mdexed
file so that other programs can access the file.

- Returns

The INDEXED UNLOCK subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more inforﬁation.

Example (INDEXED UNLOCK)

10 H$ = V9$

20 GOSUB 'l16 (H$, H1$)

30 IF VO$=HEX(FF) THEN 50

40 STOP "ERROR IN UNLOCK"

50 REM Indexed file unlock successful. Continue processing.
60 ...

DMS Subroutines 4-33
Draft Copy Confidential

RELATIVE READ

General Form

GOSUB '117 (file-id , efs , hold , rec-num , number)

where

file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.

efs is an alpha-numeric variable that represents the EFS
information for the specified file.

hold indicates the hold option and can be either "H" or
" ". "H" holds the record for exclusive processing.
" " allows other programs to access the record.

rec-num is the relative number of the record to be read.

number is a numeric variable or expression indicating the :
number of relative records to be read.

Purpose ,

The RELATIVE READ ('117) subroutine enables you to read a specified
record in a relative file. The file must have previously been opened.

Returns
The RELATIVE READ subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

e V7$ is the EFS header information for the file indicated by V9% (the
file identifier). Refer to Appendix A for more information.

e V9$() contains eight bytes of status information and the data read
from the file. Refer to the RELATIVE READ General Notes section for
more information.

4-34 DMS Subroutines
Draft Copy Confidential

General Notes

In the RELATIVE READ subroutine, the V9$() array is used to store
status information and the data read from the file. The first eight
bytes of the array are used to store the status information. Table
4-2 describes the status information.

Table 4-2. RELATIVE READ Status Information

Byte(s) Description

0l Contains the number of words in the word
block. This value should always be equal
to HEX(01l).

02 and 03 Contain the number of records read.

04 and 05 Contain the number of bytes in the byte
block.

06 Contains the data block ID. This value

should always be equal to Ol.

07 and 08 Contains the number of bytes read. The
value of these two bytes can be up to 64K.

L4

The remaining bytes of the array (starting at the ninth byte) are
used to store the data read from the file. If you know the length
of the records read, you know how many bytes of V9$ are used to
store the data. If you do not know the length of the records in
the file, or the file contains variable length records you can use
the VAL function on the seventh and eighth bytes of V9$() array
to get the length of the data read. See the Example section for
more information.

The V9$() array is originally dimensioned to hold 4096 bytes of
information (including the status information). However, you can
decrease the size of the array depending on your needs.

DMS Subroutines 4-35
Draft Copy Confidential

Example (RELATIVE READ)

10 DIM C1$5,N1$30,B1$3,W$8,H$2 ,H1$32

15 H$=V9$

20 W$=HEX(A0Q5A01EA0035205)

30 GOSUB 'l117 (H$, H1$, "H", 100, 125, 1)

40 IF VO$=HEX(FF) THEN 60

50 STOP "ERROR IN RELATIVE READ"

60 REM Good relative read. Continue processing.
70 $UNPACK (F=W$) Q$() to Cl$,N1$,Bl$,Al

In this example, the 125th record of the specified file is read. If
the record is being held by another user, the system waits for up to
100 seconds to read the record before an error occurrs.

4-36 DMS Subroutines
Draft Copy Confidential

RELATIVE WRITE

General Form

GOSUB 'l18 (file-id , efs , number , data)

where

file-id

efs

number

data

is an alpha-numeric variable that represents the file
identifier assigned to the file.

is an alpha-numeric variable that represents the EFS
information for the specified file.

is a numeric variable or expression indicating the
number of relative records to be read.

can be an alpha-numeric variable, an array designator,
or a literal. If a literal string is used, the
information must be enclosed in double quotation marks.

Purpose

The RELATIVE WRITE ('l18) subroutine enables you to write the next
record to a gpecified relative file.

To write the information contained in more than one variable to a file
at one time, you can use the $PACK statement (or some other
appropriate BASIC-2 statement) to pack the information into a single

variable.

DMS Subroutines 4-37
Draft Copy Confidential

Returns
The RELATIVE WRITE subroutine returns the following information:
e VOP is the return code. Refer to Appendix A for more information.

e V7% is the EFS header information for the file indicated by V9% (the
file identifier). Refer to Appendix A for more information.

e V9$() contains the following five bytes of status information:

- Byte 0l contains the number of words in the word block. This
value should always be equal to HEX(01l).

- Bytes 02 and 03 contain the number of bytes written.

- Bytes 04 and 05 contain the number of bytes in the byte block and
should@ be HEX(0000).

Example (RELATIVE WRITE)

10 DIM C1$5,N1$30,B1$3,W$8,D$41,H$2 ,H1$32

20 W$=HEX(A005A01EA0035205)

30$PACK (F=W$) D$ FROM Cl$,N1$,Bl1$,Al

40 GOSUB '118 (H$, H1$, 1, D$)

50 IF VO$=HEX(FF) THEN 70

60 STOP "ERROR IN RELATIVE WRITE"

70 REM Good relative write. Continue processing.
80 ...

In this example, the value of D$ is written to the file as one record.

4-38 DMS Subroutines
Draft Copy Confidential

RELATIVE REWRITE

General Form

GOSUB '119 (file-id , efs , number , len , data)

where
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
number represents the number of the relative record to be
rewritten.
len indicates the length of the record to rewritten. The
value of the len parameter must matcha the record
length exactly, including trailing spaces.
data can be an alpha-numeric variable, an array designator,
or a literal. If a literal string is used, the
information must be enclosed in double quotation marks.
Purpose

The RELATIVE REWRITE ('l1l9) subroutine enables you to overwrite an
existing record in a relative file. The record must have been
previously read with the HOLD option.

To write the information contained in more than one variable to a file
at one time using the REWRITE subroutine, you can use the $PACK
statement to pack the information into a single variable or some other
appropriate BASIC-2 statement.

DMS Subroutines 4-39
Draft Copy Confidential

Returns
The RELATIVE REWRITE subroutine returns the following information:
e VO$ is the return code. Refer to Appendix A for more information.

e V7$ is the EFS header information for the file indicated by V9§ (the
file identifier). -Refer to Appendix A for more information.

e V9$() contains the following three bytes of status information:

- Byte 0l contains the number of words in the word block and should
be equal to HEX(00).

- Bytes 02 and 03 contain the number of bytes written and should be
equal to HEX(0000).

Example (RELATIVE REWRITE)

10 DIM C1$5,N1$30,B1$3,W$8,D$43,HP2 H1$32

20 WH=HEX(A005A01EA0035205)

30 $PACK (F=W$) D$ FROM C1$,N1$,B1$,Al

40 GOSUB '104 (H$, H1$, 5, 43, D$)

50 IF VO$=HEX(FF) THEN 70

60 STOP "ERROR IN REWRITE"

70 REM Good relative rewrite. Continue processing.

80 ...
In this example, the fifth relative record of the specified file is
rewritten to the file.

4-40 DMS Subroutines
Draft Copy Confidential

RELATIVE DELETE

General Form

GOSUB '120 (file-id , efs ., number)

where

file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.

efs is an alpha-numeric variable that represents the EFS
header information for the specified file.

number represents the number of the relative record to be
deleted.

Purpose

The RELATIVE DELETE ('l120) subroutine enables you to delete a specific
record from an relative file.

Returns ‘

The RELATIVE DELETE subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

e V7$ is the EFS header information for the file indicated by V9§ (the
file identifier). Refer to Appendix A for more information.

e V9$() contains the following three bytes of status information:

- Byte 01 contains the number of words in the word block and should
be equal to HEX(00).

- Bytes 02 and 03 contain the number of bytes written and should be
equal to HEX(0000).

DMS Subroutines 4-41
Draft Copy Confidential

Example (RELATIVE DELETE)

10 H$ = V9$:HI$ = V7$

20 GOSUB '120 (H$, H1$, 5)

30 IF VO$=HEX(FF) THEN 50

40 STOP "ERROR IN DELETE"

50 REM Good relative record delete. Continue processing.
60 ...

In this example, H} indicates the file that the fifth relative record
is deleted from.

4-42 DMS Subroutines
Draft Copy Confidential

BLOCK READ

General Form

GOSUB '121 (file-id , efs , block-num)

where

file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.

efs is an alpha-numeric variable that represents the EFS
header information for the gpecified file.

block-num represents the block number of the the block to be
read.

Purpose

The BLOCK READ ('l121) subroutine enables you to read a 2K block of :
information from a consecutive, indexed, or relative file.

Returns

The BLOCK READ subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.
e V9$() contains the data read from the file. This array is 2048

bytes long. -

General Notes

Each block that is read contains 2048 bytes of data.

Example (BLOCK READ)

10 H§ = V9$:H1$ = V7$:Bl1=5

20 GOSUB '121 (H$, H1$, Bl):REM Read block number 5.
30 IF VO$=HEX(FF) THEN 50

40 STOP "ERROR IN BLOCK READ"

50 REM Good block read. Continue processing.

60 ...

In this example, block number five of the specified file is read.

DMS Subroutines 4-43
Draft Copy Confidential

BLOCK WRITE

General Form

1A
GOSUB '130 (file-id , efs , block-num , data)

where
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
block-num represents the block number of the the block to be
written.
data can be either an alpha-nueeric literal or an array
designator. If a literal string is used, the
information must be enclosed in double quotation -
marks.
Purpose

The BLOCK WRITE ('l122) subroutine enables you to write a 2K block of
information to a consecutive, indexed, or relative file.

Returns

The BLOCK WRITE subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

General Notes

Each block contains 2048 bytes of data. When you use the BLOCK WRITE
subroutine, you want to write approximately 2048 bytes of data to the
file.

4-44 DMS Subroutines
‘ Draft Copy Confidential

Example (BLOCK WRITE)

10 H§ = V9$:H1$ = V7$:B1=5

20 GOSUB '122 (H$, H1$, Bl, D$):REM Write block number 5.
30 IF VO$=HEX(FF) THEN 50

40 STOP "ERROR IN BLOCK WRITE"

S0 REM Good block write. Continue processing.

60 ...

In this example, block number five is written to the specified file.

DMS Subroutines 4-45
Draft Copy Confidential

) FILE CREATE

General Form

GOSUB '100 (file-name , org , mode , op-flag , create , alt-key)

where

file-name

org

mode

opt-flag

create

alt-key

represents the name of the file. The file name can
include the //SYSTEM/VOLUME/LIBRARY/FILENAME. The
file name can also be written as
///VOLUME/LIBRARY/FILENAME. The SYSTEM, LIBRARY, and
FILENAME can be up to 8 characters in length. The
VOLUME can be up to 6 characters in length.

is the organization of the file. The following lists
the valid file organization parameters and their
meaning:

o C - consecutive file
¢ I - indexed file

o R - relative file

e B - block file

is the mode the file is openéd in. The following lists
the valid mode parameters and their meaning:

e R - read only access
® S - shared access

e X - exclusive access
e E - extended access

indicates whether the file is created or created and
opened. "T" indicates the file is created. " "
indicates the file is created and opened.

specifies the attribute data for the file. See the
General Notes section for more information.

specifies the alternate key information if required.
See the General Notes section for more information.

4-46 DMS Subroutines

Draft Copy Confidential

Pu se

The FILE CREATE ('100) subroutine enables you to create a DMS file.
The subroutine enables you to specify the file name, including the
system, the library, and actual name of the file. The library,
volume, and file name are required: the system name is optional. The
FILE CREATE subroutine also enables you to specify the file type
{(Indexed, Consecutive, or Relative,) and the access mode (Read Only,
Shared, Exclusive, or Extended).

Returns
The FILE CREATE subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

e V7$ is the EFS header information for the file indicated by V93 (the
file identifier). Refer to Appendix A for more information.

e V9$() contains the following three bytes of status information:

- Byte 0l contains the number of words in the word block that should
be equal to HEX(00).

- Bytes 02 and 03 contain the number of bytes in the byte block that
should be equal to HEX(0000).

General Notes

You can use the VS CREATE utility to create and maintain data files.
Through CREATE you can add, delete, modify, or examine data in the
data files created using the utility. For more information on the
CREATE utility, refer to the VS File Management Utilities Reference.

The create input parameter requires 40 bytes of information for
consecutive, indexed, and relative files. This parameter requires an
additional 8 bytes of information if the file being created is an
indexed file with more than one key. Appendix A explains the content
of the information required for the create parameter.

DMS Subroutines 4-47
Draft Copy Confidential

Example FILE CREATE)

10 DIM N$32, T$1, MPl, A62, Al$8

20 N$="//SYSTEM/ANYVOL/ANYLIB/FILENAME"

30 T$="I"

40 m=nsu

50 GOSUB '200 (N$, T$, M$, " ", A$, AlS)

60 IF VO$=HEX(FF) THEN 80

70 STOP "ERROR IN CREATE"

80 REM Good file create. Continue processing.
90 ...

In this example, variables are used to represent the name,
organization, mode, file atributes, and alternate key attribute data
parameters. The opt-flag parameter value of " " indicates that the
file is created and opened.

gy

4-48 DMS Subroutines
Draft Copy Confidential

FILE DELETE

General Form

GOSUB '201 (file-name)

where

file-name represents the name of the file. The file name can
include the SYSTEM/VOLUME/LIBRARY/FILENAME. The file
name can also be written as
///VOLUME/LIBRARY/FILENAME. The SYSTEM, LIBRARY, and
FILENAME can be up to 8 characters in length. The
VOLUME can be up to 6 characters in length.

Purpose

The FILE DELETE ('201) subroutine enables you to delete any DMS file.

Returns

The FILE DELETE subroutine returns the following information:

e VO3 is the return code. Refer to Appendix A for more information.
e V1 is the length of valid data in V9$() array. What data ???

e V7§ is the EFS header information for the file indicated by V9$ (the
file identifier). Refer to Appendix A for more information.

e V9$() containg three bytes of internal status information.

Example (FILE DELETE)

10 DIM N$32

20 N$="///ANYVOL/ANYLIB/FILENAME"

30 GOSUB '201 (N$)

40 IF VO$=HEX(FF) THEN 60

50 STOP "ERROR IN FILE DELETE"

60 REM File successfully deleted. Continue processing.
70 ...

In this example, the file specified by N$ (///ANYVOL/ANYLIB/FILENAME)
is deleted from the system.

DMS Subroutines 4-49
Draft Copy Confidential

FILE RENAME

General Form

GOSUB '202 (old-name , new-name)
where

old-name represents the name of the file as it currently exists
on the system. The file name can include the
SYSTEM/VOLUME/LIBRARY/FILENAME, The file name can
also be written as ///VOLUME/LIBRARY/FILENAME. The
SYSTEM, LIBRARY, and FILENAME can be up to 8
characters in length. The VOLUME can be up to 6
characters in length.

new-name represents the name of the file as it will be known to
the system after the subroutine executes. The file
name can include the SYSTEM/VOLUMB/LIBRARY/PILENAME;
The file name can also be written as
///VOLUME/LIBRARY/FILENAME. The SYSTEM, LIBRARY,
FILENAME can be up to 8 characters in length. The
VOLUME can be up to 6 characters in length.

Purpose
The FILE RENAME ('202) subroutine enables you to rename any DMS file.

Returns

The FILE RENAME subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.
e V1 is the length of valid data in V9$() array. What data ?2?

e V7$ is the EFS header information for the file indicated by V9§ (the
file identifier). Refer to Appendix A for more information.

e V9$() contains three bytes of internal status information.

4-50 DMS Subroutines

Draft Copy Confidential

Example (FILE RENAME)

10 DIM O#32, N$32

20 O$="///0LDVOL/OLDLIB/OLDNAME"

30 N$="///NEWVOL/NEWLIB/NEWNAME"

40 GOSUB '202 (0%, N$)

50 IF VO$=HEX(FF) THEN 70

60 STOP "ERROR IN FILE RENAME"

80 REM File successfully renamed. Continue processing.
70 ...

In this example, the file specified by N$ (///ANYVOL/ANYLIB/FILENAME)
is deleted from the system.

DMS Subroutines 4-51
Draft Copy Confidential

GET FILE ATTRIBUTES

General Form

GOSUB '203 (file-name)

where

file-name represents the name of the file. The file name can
include the SYSTEM/VOLUME/LIBRARY/FILENAME. The file
name can also be written as
///VOLUME/LIBRARY/FILENAME. The SYSTEM, LIBRARY, and
FILENAME can be up to 8 characters in length. The
VOLUME can be up to 6 characters in length.

Purpose

The GET FILE ATTRIBUTES ('203) subroutine enables you to retrieve the
value of one or more attributes associated with the specified file. -
The file must be opened first.

Returns

The GET FILE ATTRIBUTE subroutine returns the following information:
e V0$ is the return code. Refer to Appendix A for more information.

e V1 is the length of valid data in V9$() array. What data ???

e V7$ is the EFS header information for the file indicated by V9$ (the
file identifier). Refer to Appendix A for more information.

e V9$() contains three bytes of internal status information. See
Appendix A for an explanation of the attributes returned.

4-52 DMS Subroutines
Draft Copy Confidential

Example (GET FILE ATTRIBUTES)

10 DIM N$32

20 N$="///ANYVOL/ANYLIB/FILENAME"

30 GOSUB '203

40 IF VO$=HEX(FF) THEN 60

50 STOP "ERROR IN GET FILE ATTRIBUTES"

60 REM Good read on file attributes. Continue processing."
70 ...

In this example, the file attributes for the file
///ANYVOL/ANYLIB/FILENAME are returned and held in V9$() array.

DMS Subroutines
Draft Copy Confidential

4-53

APPENDIX-A
ADDITIONAL INFORMATION

a.l

A.z

INTRODUCTION
This appendix containg additional information on the following:
¢ Return codes

¢ The Extended File Sharing (EFS) information contained in variable V7$
e The file attribute information contained in variable V9$ &

k)

RETURN CODES

The return codes generated by the DMS Access Subroutines are
represented in HEX format. Table A-1 lists and explains the return
codes generated by the DMS Access Subroutines.

Table A-1l. Return Codes

Return Code
Value Explanation Recovery Action
0o Indicates an error Check your code for possible
in the subroutine programming or syntax errors.
call. Check the EFS header for more
information.
5A Indicates an error Make sure the 2200/VS LCO task
in the 2258 is operational and that the
firmware. DMS task has been assigned.
Check the EFS header for more
information.
FF No errors detected. If an error is present, check
the EFS header for more
information. -

Additional Information A-1
Draft Copy Confidential

A.3

EXTENDED FILE SHARING (EFS) HEADER

The DMS Access Subroutines uses the Extended File Sharing (EFS)

protocol for controlling file information.

The EFS information is 32

bytes long. The DMS Access Subroutines store the EFS header
information in variable V7%.

Table A-2 describes the information contained in the EFS header.

Table A-2. EFS Information

Byte(s) Explanation Initial Value
{in HEX)

01 through 4 Contain identification FF534D42

' A information.

05 Is required. If it is other FF
HEX(FF), an error has occurred. z

06" Contains the error class. 00
See the Error Classes section
in this appendix for more
information.

07 Contains the extended command (Initialized
code. This value is initialized by subroutine
depending on the subroutine invoked.)
used.

08 and 09 Contain a two-byte error code. 0000
See the Error Codes section in
this appendix for more
information.

10 Is reserved for future use. 00

11 through 22 Are reserved for future use. All zeros.

23 and 24 Are required. FFFF

25 and 26 Reserved for future use. 0000

27 and 28 Reserved for future use. 0000

(continued)

. A-2 Additional Information
" ' Draft Copy Confidential

Table A-2. EFS Information (continued)

Byte(s) Explanation Initial Value
. (in HEX)
29 and 30 Contain the User ID number. 0000

Thig value is updated when the
GENERAL OPEN subroutine is used.

31 and 32 Reserved for future use. : 0000

A.3.1 Error Classes

The error class indicates which task was invoked when the error
occurred. Table A-3 explains the values returned for the error

classes.
Table A-3. Error Classes
Value Explanation/Indications
07 Is reserved for 2200SVR. ' N '
08 The CATALOG server.
09 The FILE servef.
10 The WITA server.
11 The PRINT server.
12 The QLI server.
13 The QLI:FORMATER server.
14 The QUEUE:JOB server.
15 The DMPACk server.
20 The User server.

Additional Information A-3
Draft Copy Confidential

P

. A~4¢ Additional Information

A.3.2 Error Codes

The error code indicates why the error occurred.

the values returned for the error:codes.

Table A-4. Efror Codes

Value

Explanation

10

11

No error was detected.

u

An invalid function was specified to
the server indicated by the error
class. ot

The file was not found.

The library indicated was not found.

Too many files were opened.

the user has insufficient access
rights.

An invalid file identifier was
specified.

There was a server processing error.
There was insufficient space
allocated to perform the required
function.

There was a VIOC error.

Invalid parameters were found for
the function required.

An invalid file format was found.

{continued)

Draft Copy Confidential

Table A-4 explains

Table A-4. Error Codes (continued)

Value Explanation

12 An invalid open access mode was
found.

13 There was a disk space or. a disk

space extents error.

14 An in&aiid.function was found for
the IO mode.

15 The voluﬁé requested is not mounted.

16 Delete errors where found.

17 An invalid device was found.

18 A NODATA Read was attempted on a’ ¥
file opened in shared mode. .

19 An invalid function was found during)
a relative read.

20 The file.gifeady exists. ,

21 A file possession conflict.

22 An invalid key size.

23 An invalid.key value.

24 A Boundary violation occurred.

25 The end of -file has been found.

26 An invalid ;ttempt to REWRITE a

compressed record.

{continued)

Additional Information ' A-S
Draft Copy Confidential

. :~Tsble A-4. Error:Codes:(continued)

Value

Explanationm =& -

28

2~38- '
L 39~ 7

41

LO% meane bermiy L 4201

R TP AT bt T T S A

An invalid altermate key was found.
Ce L. Tam fafo

An invalid-function was specified

for an altqrpatghﬁndexed file.

[N

A permarernt I/0 error was found.

An undefined:position was specified
for the READ NEXT function.

Disk problems were encountered.

.

Recovery problems were encountered.

The file organization needs to be
specified.’ ©

PN X

An invalid WRITE was issued to a
relative file."

An invalid function was specified
for a file opened in shared mode.

An invalid- START function for a file
opened in no-shared mode.

An invalid START for PAM access
method. - A

The request:e&~ device is in use.
The requested device is not attached.

Access was denied.

{continued)

i~A-6': Additional Information

Draft Copy Confidential

a.4

Table Ar-4:. Error Codes (continued)

Value Explanation : et

43 An invalid sequence for delete, BAM
access method, or for a REWRITE to a
consecutive file was encountered.

44 A START WAIT was issued but that no

I/0 wag pending. -
45 No wait.was: issued for the previous
I/0. s.% &g
46 There was a: timeout on a shared mode

resource wait.
.n .

47 An indexed file was requested but
that FDR gndicates the file is not

an indexed file. ¥
48 An attempt. to compress data in a . ;
relative file.::
9% Severe: DMS, errors were encountered.
98 Task prg!-)"lemrfsv ;aefe encountered an '

that the task- indicated by the error
class. should be restarted.

99 A non-specific file system error-was
encountered.

FILE ATTRIBUTE INFORMATION ‘-

This section explains the file attribute information returned when you
use the GENERAL OPEN ('101) or GET FILE ATTRIBUTE ('203) subroutines.

The file attribute data contains 62 bytes of information for
consecutive, indexed, and relative files. This data contains an
additional 8 bytes of information if you are working with an indexed
file with more than one key. Table A-5 explains the initial 62 bytes
of file attribute information.

Additional Information A-7
_Draft Copy Confidential

- Table A-5. File:Attribute Data
Byte(s)
01 = S Th@ flié ‘organization: C for consecutive, I
i ST i R “for- mdexed, R for relative, or B for block.

02
L, TR s
.y oo LpeE
03
e - e et e o
SESEE . T4 SR REIGa VFIS
Jlowe sgd e gr L e
e i08on td e

. IFA‘T " ‘idJmn S

05’threugh 08

: v BURE Y pTe “‘.'e".. b N
[r67 00 sEe oL i(' Lo
-] through .12
oL TR
12 through.ls

—~ e e v o -

‘17 through 20

LY Lo BT IR DRETTIL WWLEaT.

21 through ‘24
25 "through 32

33 'through 38

39 through 44

45 through 50

51

ey rWe

R

’Ihe reco:d format: F for fixed length

fedords or: V for variable length records.

PRI ..,,

The-compresszon flag: Y indicates

. .compression is used, N indicates

compreééion is not used.

-'(}«v .

The ‘£iT6 ‘class: A-Z or #, $, or @.

e

The .approximate number of records the file
cmntains.

,Ihe number of bytes in each record.

SRy S

< The number of extents of disk space

..-Allocated.

The number of blocks in the file.

»; A—b 3

-/Thé mwiber of blocks allocated for the file.
The name of the person who created the file.

The date the creation date of the file.
Format is YYMMDD.

The .last date the file was modified. This
date .is the same as the creation date when
creating the file. Format is YYMMDD.

The expiration date of the file. Format is
YYMMDD,

If the file has a WP prologue and must be N
for no.

(continued)

e —— T

i¢. A—8 . Additional Information
Draft Copy Confidential

Table.A~S5,~ File:-Attribute Data (continued)

Byte(s)

- Degeription

&

et T T

52 and 53

S LSS i

@fr-,he,_ primary key position for indexed
-.fdles,;.. For non-indexed files, this value
is HEX(OOOO)

TR

54 and 55

The pv:.mary key length for mdexed files.
For non-indexed files, this value is

WOOQO) it

56 and 57

“s¢ ';he number of alternate keys for indexed
files. Indexed files can have between 1
-and-16-.glternate keys. For noa-indexed
“files, this value is HEX(0000).

2 Lhdpme st T

58 and 59

"l‘ha altemate key mask for indexed files.
For non-indexzed files, this value is 0000

deypn R A A

60 through 62

The file access. 7?7? for write, ??? for
,x;ead, or 2?7 for execute. - &F
SRl Sl

Table A-6 explains the file attribute mfomatmn retumed or required
for indexed files with alternate keys. i

PR o< S R

PRCEN

Ty
o wlda .

e ':7-'
r,. st

" jﬁ 0 . ‘ s
EC f,..t N

oy tf e v

= - ”
e o e Lan LY
PR N
2ES T e gpnronpt L8
- T -1
- e
: et fotesint AT
S
A
B
-~ Qﬂ ~f’
8
N
e e e e

Additional Information ‘A-9
-Dgaft .Copy. Confidential

[e T e e

Lopl i-Tabke A-6. Alternate¢Key File Attribute Data

e e

Byte(s) Descriphion

e % T, e o A AR T s

- ol1. .. .= - . Whether records with duplicate alternate

fLE - -, . keys are-allowed. Y indicates that
duplicates are allowed. N indicates
R e T E@ECa't.é*B_ are not allowed.

AT gonng, idee v LG b
02 o Whether the alternate key is to be
ST TOUTTIE LU F % Ly compressed. Y indicates the key is
compressed. N indicates the key is not
TTrRe e anenily 2k .' ;.'L:' EESN compregasd.
Sor sl _tnis e O N

03 and 04 The ordinal number.

"""';;“,;’3".05"3"&@“0§§-':3“":'; ;- The:sharksposition of the alternate key.
y...&a»‘ J:!D»

'.I!h_e length in bytes of the alternate key.

© A ammen e s e A b e v — Seemr e

07 and 8

firg cmEd BTUEL T TR b
9lk a3 B S "> M NPT TR

A 5 PILE CREATE INFOMTION L
'x'ﬂ . N v,i ...-' .ta t.. _i'

This section explams the information required for the create input
¢ 7 pacameter forzghe FILE CREATE-{ 100) subroutine.
QLN
The create paramete requuires 40 bytes of information for comsecutive,
R md@xed, ‘and, relative -files.+ This jparameter requires an additional 8
bytes of information if you age:qreating an indexed file with more

than one key. Table A-7 explains the initial 40 bytes of information.

L4

25 i Fuwsf "
.) . ! -
tLOBSIEV CLnY v oL s L R (P IRY
e e
sUi e .k DEXs @B U Va .
Gudioaids 'L 2l : TeAL -
123 L5 LFNE LT A <z
[pyawnst A Der - ~ 8s. 2
Durab - i - iz &I n
[ERPVTATS B RO Lt EF
g TRac L20BE L 3 z o i N
REOL6 1 ST 1.4

i7-A-10 -Additional; Information
Draft' Copy Confidential

Z Table A-7.%Create Pardmiefer Data

Byte(s) neseription i
- 01 *o2File organization: C for consecutive, I for
) el dndexed, R for relative, or B for block.
- . T& BS.ELllgol
02 s « Recordiformat: F for fixed length records
- ——or V_for variable length records.
€ = e~3 i "*""'A.
03 i rue class: A-Z or #, $, or @.
z ¢ Fgeagmns
04 Cammssibn flag: Y indicates comressxon)
e i3 used, N md:.catea..compnasm is not
4 iusedis @ +3 b.e &G
05 through 08 Appt&kmate number of reeota!:ft!;e file
. c.om:amg.. . o s e
. chhoaslop £ fome U0
09 through 12 —— . MNu gf__bytgs 4in each record... . %
13 through 16 Number of blocks allocated fqr._-r the file. 7
s i A':< - R 205
17 through 20 Size of blocks in the file. .
K WOAEVTON L & 2Ny ga @ D SEL BN
21 through 26 'EXpiratiénsdate -of thReIfile’ “Forlit is
YYMMDD.,
Loye R gL Tins L (T EYEQ e 2 i
27 .>~Indi:cates if “the fxle ‘h&s a.WPXPro}.ogue and
_must~ba N Eor nO§ - EBLYT 2N 2T BRIy
- AT uen wna *sﬂ
28 and 29 Primary key posxt:.on for indexed files.
For non-indexed files this value is
HEX(0000).
30 and 31 Primary key length for indexed files. For
non-indexed files this value is HEX(0000).
32 and 33 Number of alternate keys for indexed
files. Indexed files can have between 1
and 16 alternate keys. For non-indexed
files this value is HEX(0000).
34 Indicates whether to take the created space

and must be N for no.

{continued)

e it emes o a o seem s e [
—_—

Additional Information A-11
- DraftiCopy; Confidential

. wfZ:7 Table A-7. ‘Create-PiZameter Data (continued)

Byte(s) Desészpﬁiéu
- : et e S S R
35 . 2 . .Porfpring“files only; otherwise HEX(00).
IR G R ,;”n‘ Ind;eates ‘the print form number. Print
- T f“form numﬁérs are established by your site
.f::,':i»f(; S R Qperatkgnﬁq
T ri‘migi;:Lhﬁ}?a;i;‘hjt:A 'qu*pé;ﬁééfzies only, otherwise HEX(00).
ved ot ozErar. Y D‘;Entﬁhﬁtés “the print class. Print classes
T BEDCRY at, TERIFCLTL are%t 'lfished by your site operations.
ot L LHEREY FS IR
vt e . JFor prink files: only,_otherwxse HEX(00).
‘= ¥ndidatedi the printer device number.
e e - J Pr;n;ax;dav;ce numbers are established by
27 Q%MtWBSEGJoperatxons.
LB R TRNDRE Re Rl Y TN
e e BB _ For ;print_files only: otherwise HEX(00).
: o LB% AN IRl aT ’ u“”ihdicdﬁﬁbﬁ%he number of copies to be
et e LT .._--_przntedﬁ__" -
- 39 - e - For p:;n;‘lees only; otherwise HEX(00).

' Indicates the status; either R for release
.or H for hold.

40 : ‘For print files only; otherwise HEX(dO)
Indicates the disposition; either R for
release or H for hold.

Table A-8 explains the create data required for indexed files with
alternate keys.

— - - s ——— - e — e
A e b e e P . . -

{A-12 Addnﬁ1énallxnformatlon
Draﬁt Gopy Cbuf:deatxal

N

. Table A-6.i7Gedater Data.for Files With Alternate Keys

Byte(s) e
e

nf)01 S In@&qates whether records w:.th duphcate
R N . -dltérnate keys are allowed. Y indicates
s v . ~thatn, duplicates are allowed. N indicates

i B diipgl;:qategyare not allowed.
T 'i-ndﬁ:qa&es whether the altemai:e key is to

T2 5
i e Y Y indicates the key is
L ol N md:.cates the key is not
R % -
. ;_;;mber, 0 through 15.

4oi,r[~ g g emi S eyt _
“sftark poqition of the altemate key ‘l'ha
_start” pos:.t:.on is zeo based.* e

TR ; ey i -~
y _ - f@fﬁt—h _;p;, bytes of the alternate key.

~'A‘-§g \»,

‘e - R o mmmmn s o e aaneem
.. . T c
S 1 93
83 %
° [
e

T dssibL

g e
TN

.)) e B c . '».. - N . e
AT Gl iy . B Als Eoyus o aldl¥
CoeE errnrelis

ERTIETY TR o -

Addxt:.onal Infqrmanon =13
:Draft Gopy C@nﬁzdentxal

	Cover
	Preface
	Table of Contents
	Chapter 1: Programmer's Introduction to the 2200 LCO
	Chapter 2: 2200 VDISK Access
	Chapter 3: Native DMS Access
	Chapter 4: Detailed Description of the DMS Access Subroutines
	Appendix A: Additional Information

