2200/VSs LCO
PROGRAMMER'S REFERENCE GUIDE

First Edition -- September 1986
Copyright® Wang Laboratories, Inc., 1986
715-0562

Draft Copy Confidential

PREFACE

The Wang 2200/VS Local Communications Option (LCO) (Version 1.0)
enables Wang 2200 users to emulate up to four VS Workstations and
store and access files on a connected VS system. This document
provides information on programming requirements for accessing the
Wang 2200/VS LCO filing services. The primary audience for this
document is the Wang 2200 programmer. Experience with programming on
a Wang 2200 system is recommended for the all users.

Chapter 1 provides background information on the Wang 2200/VS LCO and
an introduction to the rest of the guide. Chapter 2 explains
programming requirements for accessing VDISK files (2200 disk image
files) stored on a VS system. Chapter 3 explains programming
requirements for accessing native DMS files stored on a VS.)
Additional information on the Wang 2200/VS LCO is available in the
following Wang publications:

2200/VS Local Communications Options User's Guide (715-0564)
2200 BASIC-2 Disk Reference Manual (700-4081)

2200 BASIC-2 Error Codes Booklet (700-7170)

2200 BASIC-2 Language Reference Manual (700-4080)
2200 Introductory Guide (700-4613)

VS Data Mangement System Reference (800-1124-01)

iii
Draft Copy Confidential

w
N w

Wwww
> W=

CONTENTS

PROGRAMMER'S INTRODUCTION TO THE 2200 LCO

OVSrVieW LRGBS I BN B B A B B B B B Y AN AN I 2K B I B I B B I Y 1-'1
2200/VS LCO Filing ServicCesccceeveesesescescosnseses 1=l

2200 VDISK ACCESS

Introductioncccieeveienscenccrevencscssssssesssnes 2-1
USing VDISKS ..cccvvecenscesscscenscanssseasocsssossosaces 2-1

Using VDISK With Existing 2200 Programsc.ccoeeees 2=2

Submitting Programs that Access VDISKc000.0.. 2-3
VDISK Performance Considerationscccoceeeee. 2-3
Improving VDISK PerfOrmanceccceesececssccccsccees 2=4
Moving Existing 2200 Files to VDISKcec0eeevseneess 2=5

INTRODUCTION TO NATIVE DMS ACCESS

Introductioncccvieeeieneersscscasescsecosssassascans 3-1
Brief Description of the DMS Access SubroutinesJ» 3-2
Use of the DMS Access Subroutinescceo000e000eenes 3-4
DMS Access Programming Requirements and
Performance Considerationscceceeeeecvcocccnccncns 3-5
Submitting Programs that Access Native DMS Files 3-6
General Notes on the DMS Access Subroutines 3-6
Variables Reserved by the DMS Access Subroutines 3-6
Using Variables or Literals for Input Paragmeters 3-8
Moving Files From the 2200 to the VSccc0vvevennes 3-9
Moving Files From the VS to the 2200cccc0veneeen. 3-10

iii
Draft Copy Confidential

CONTENTS (continued)

CHAPTER 4 DETAILED DESCRIPTION OF THE DMS ACCESS SUBROUTINES

Introductioncvcceeen St eeesrsestsrtesatser et annns . 4-1
Notes on the General Form Section Ceceesecareanas 4-2
GENERAL OPEN Ceecrsarecnnn ceeesecsrescssseosens 4-3
GENERAL CLOSE c¢tcvvecscsvsencsonssnancannosse cesereencae 4-5
CONSECUTIVE READ ...ccvoesvsrscesscnccance cecessseannas 4-7
CONSECUTIVE WRITEccceevtceenecccnsoncoss cecssnses 4-9
CONSECUTIVE REWRITE ...ccecevceececoccvecsssonsscsaces 4&-11
CONSECUTIVE SKIP .¢vceccescssccscccsocssosscncssacsnse 4=13
CONSECUTIVE LOCK .iveceeesecrececccascccassossscsccsces 4-15
CONSECUTIVE UNLOCK .¢cvvevssvoseccccccsccsssosccncasnsas 4=17
INDEXED READcccvevcsvceccccscacaseecssosscsscsses 4-19
INDEXED READ NEXT ...vvecceosecccscccsncssansccsscsnnses &—22
INDEXED REWRITE ...cceccectvececaccccsasccsscscsscsoccee 4=25
INDEXED DELETEc.vccceseccccoscsssssccscasscssnscscnse &=27
INDEXED FIND ..cvoceccecoasossasasccscsnsssssonecsacsses 2=28
INDEXED LOCK ccevvcecsscasascacssccasasacssssssssccscecs 4=30
INDEXED UNLOCK tevcevescasssccessscnsessssssssscsccasse 4—32
RELATIVE READ ...vveveeccencosccovssosscssosccssonsssnssecs 4=33
RELATIVE WRITEccccceveessccccocscccccssasosnsncas 4=36
RELATIVE REWRITEccccoevccevscccssscasasassscnasas 4=38
 RELATIVE DELETE ..cccvvcsoanccansnccsnssccscsscssesses 4-40
BLOCK READ ..ccoveccocvscnssscacsnsnssscccsocsnsocsoss 4—42
- BLOCK WRITE ..vccceccvcccssssvcnccosncasscassoncssacsss 4—43
CREATE FILE ..cvcccccesvoavessccvseoosssaoscssnssssssoasee 4—45
DELETE FILE ...ccccvcecoccccscoccssonssscacsnassscscas 4—48
RENAME FILE ..cccoveecoscccosasassssccssosnsscsccssansss 4—49
GET FILE ATTRIBUTESc.cccovecveecccvscccsccssscsecse 4&=51

N =

APPENDIX A ADDITIONAL INFORMATION

A.l INtrodUCEioN «eivececreersccssosssosnsaceasasossssasnssesoas A-1

A.2 Return CodesS ...cccereesseoccassacssssesesssasssssanncssna A-1

A.3 Extended File Sharing (EFS) Headercccccocevceeces A=2
Error ClaSSeS .ccceeeicesescsssossssossessasosssscasens A-3
Error CodeS .ceeevevesscscasssceessescssscncscssansnse A-4

A.4 File Attribute Information ...cceceveecoceccocascenssanns A-7

A.5 File Create INformationcesveecssncaccsccsensacassss A=10

INDEX DRI I I I B R N N R S R A A I I RO I Y B B A A I I I I I A I A I B N N B IR Index"'l

iv
Draft Copy Confidential

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

3-1
3-2
3-3
4-1
4-2
A-1
A-2
A-3
A-4
A-5
A-6

TABLES

DMS Access Subroutineseoeeeeenecns seeecssesscasncan 3-2
DMS Catalog Functionscceceenivenecannnns cesessecsnanas 3-4
Variables Used by the DMS Access Subroutines 3-7
CONSECUTIVE READ Status Information ceeseeans ceanes 4-8
RELATIVE READ Status Informationcc.eeevevesvescensess 4-34
Return Codes cessen teresececaseenenas ceessscenras A-1
EFS INformation ..ceecececcecorsvsesssssocossssasssosonssens A-2
Error Classes teeseesceesseseseatscssnssessnssreseson A-3
Error COG@8 .vvevrrvecsnercosocrscscnorssscnossssnssscscsscsns A-4
File Attribute Datacc0iveecnnennas cecsesesscasansna A-8

Altemate KeY File Attribute Data L IR I I I B R B B B B B B R N J A-lo

A4
Draft Copy Confidential

CHAPTER 1
PROGRAMMER 'S INTRODUCTION TO THE 2200 LCO

“1.1

1.2

OVERVIEW

The 2200/VS Local Communications Option (ILCQO) is a data communications
hardware (the 2258 controller) and software option that enables a Wang
2200MVP, -LVP, or Micro-VP system to communicate with a Wang VS
computer system. The 2200/VS LCO enables you to perform the following
functions: -

e Log on to the VS and run VS application programs that do not require
the downloading of microcode to a VS workstation.

e Run 2200 application programs that store data to and retrieve data
from 2200 disk-image files (VDISKs) stored on the VS system.

e Run 2200 application programs that store data to and retrieve data
from native VS Data Management System (DMS) files by using
subroutines provided with the 2200/VS LCO package.

This programmer's reference guide explains the programming
requirements for accessing VDISKs and native DMS files stored on the
VS system with new and existing programs. For more information on
using VS Workstation Emulation and Filing Services utilities, refer to
the 2200/VS Local Communications Option User's Guide.

2200/VS LCO FILING SERVICES

The Filing Services utilities of the 2200/VS LCO package enables a
2200 user to access (create, read, and write) VS DMS files through
existing and new 2200 BASIC-2 application programs. The VS DMS files
are stored on an attached VS system. The VS Data Management System
manages all disk file space and services all file I/0 requests on the
VS system.

Introduction 1-1
Draft Copy Confidential

The 2200/VS LCO enables you to store and access information on a VS
system in the following forms:

e VDISK
e Native VS DMS files

VDISKs are 2200 disk-image files that are stored on a VS system
connected to a 2200 system through the 2200/VS LCO. A VDISK acts like
a disk platter to the attached 2200 and enables you to access
information stored at the VDISK address as records, files, or sectors.

You create VDISKs on the VS using utilities provided with the 2200/VS
LCO software. VDISKs can be shared with other 2200 systems equipped
with the 2200/VS LCO package. VDISKs can also be accessed by the VS
gystem. However, you would have to alter the VS application programs
to use the files stored on VDISK. How you access VDISKs from an
attached 2200 is explained in Chapter 2 of this guide.

Native VS DMS files are formatted by the VS DMS. DMS Filing Services
supports several different file types, including: consecutive,
relative, and indexed files. Native DMS files can be accessed both by
VS application programs and by other 2200 systems attached to the VS
and equipped with the 2200/VS LCO package.

To access Native DMS files you must use the DMS Access Subroutines
included with the 2200/VS LCO package. How you access Native DMS
files is explained in Chapter 3 of this guide.

1-2 Introduction
Draft Copy Confidential

CHAPTER 2
2200 VDISK ACCESS

2.1

INTRODUCTION

Using the 2200/VS LCO package to access information stored on an
attached VS system through a VDISK is just like using any other 2200
disk facility.

First you must create the VDISKs and assign them disk addresses using
the Filing Services utilities that come with the 2200/VS LCO '
software. For more information on the VDISK Filing Services

" utilities, refer to the 2200/VS Local Communications Options User's

Guide.

Once you create a 2200 VDISK on the VS, you can use it like any other
formatted disk with existing or new 2200 BASIC-2 application programs
to write data to and read data from the VDISK.

VDISKs can be opened in Exclusive, Read Only, or Shared mode. In
Exclusive mode VDISKs can only be used by the 2200 system they were
opened on. In Shared mode they can be shared with other 2200 systems
that are equipped with the 2200/VS LCO package. Read Only mode is a
form of Shared mode, except that the VDISKs are write protected.
VDISKS can also be accessed by VS application programs; however, it is
not recommended.

When the VDISKs are opened, any user on an attached 2200 can run an
application program and access the disks. The 2258 controller
responds to the disk address it receives from the application program
and pasgses filing requests to the VS Filing Services program. When
the application program is finished processing, you can then run
another 2200 application program.

2200 VDISK Access 2-1
Draft Copy Confidential

2.2 USING VDISKS

You can use VDISKs with both new and existing BASIC-2 application
programs. To access VDISKs, you must know which ones are available.
You can use the View VDISK function (included in the 2200/VS LCO File
Services utilities) to view a list of available VDISKs. Once you know
which VDISKs are available, you can alter existing programs (if
necessary) or create new ones to access the VDISKs.

2.2.1 Using VDISK With Existing 2200 Programs

Using VDISKs with existing 2200 BASIC-2 programé should require little
or no change to the application programs, except in the following
cases:

e If the disk address is hard-coded in the BASIC-2 application program.

o If the BASIC-2 application program and its data file share the same
disk address.

e If the program contains a disk address verification program that
does not recognize the VDISK addressing scheme. :

What To Do When the Disk Address is Hard-Coded

If the disk address is hard-coded in the application program, you can
go through the program and change all references to the disk address
to the new VDISK address.

Fof example, if the disk address was hard-coded in the program as
follows:

10 SELECT #5 320

You could go through the program and change every occurrence of 320 to
an existing VDISK address. The example above could be written as
follows:

10 SELECT #5 D31

In this example, 320 has been changed to D31, specifying a valid VDISK
address.

You can also substitute a variable for the disk address and have the
program request the address from the user at run time. You could then
assign to the variable the value received from the user.

2-2 2200 VDISK Access
Draft Copy Confidential

2.2.2

What To Do When the Program and Data Files Share the Same Disk

When the program and data files are stored on the same disk, it might
not be advisable to use VDISK for performance reasons (see "VDISK
Performance Considerations" in this chapter).

However, if the data file is sufficiently large to warrant the use of
VDISK, you could follow the suggestions in Section 1 and hard-code the
changes or request the user to input the disk address. In this case,
it would be advisable to separate the application program from the
data file and only store the data files on the VDISK.

For more information, refer to the appropriate BASIC-2 reference and
disk manuals.

What To Do When Verification Procedures Do Not Recognize the Address

If a program contains a disk verification routine that does not
recognize the disk addressing scheme used for VDISK, update the
verification routine to allow valid VDISK addresses. The valid ranges
of addresses for VDISK are as follows:

e DX0 through DXF
¢ DY0 through DYF

The possible values for X are 1, 2, or 3. You set the value for X in
the 2258 controller itself. The value of Y is dependent on the value
you assigned to X as follows:

e If X is 1, then Y must be 5.
e If X is 2, then Y must be 6.
e If X is 3, then Y must be 7.

For more information on how to set the address, refer to the 2200/VS
Local Communications Options User's Guide.

Submitting Programs that Access VDISK

Before you can access a file stored on VDISK, you must make certain
that the following procedures have been implemented:

e The VDISK has been created using the VDISK utilities.

e The 2200 is actively connected to the VS (the attach procedure has
been run).

e The program you submit has or requests a valid VDISK address.

2200 VDISK Access 2-3
Draft Copy Confidential

For more information on how to create VDISKs and how to run the attach
progam, refer to the 2200/VS Local Communications Options User's
Guide. Once you have implemented these procedures, you can submit
programs to access VDISK.

2.3 VDISK PERFORMANCE CONSIDERATIONS

VDISK performance is strongly affected by the following components of
the 2200/VS LCO software package:

e 2258 firmware
e VS serial I/0 processor

2258 Firmware

The 2258 firmware can handle up to four separate tasks: however, only
one of these tasks can be assigned to VS Filing Services. The method
for attaching to VS Filing Services is described in the 2200/VS Local
Communications Options User's Guide. Once the VS Filing Services task
is active, all 2200 partitions (up to 16) can invoke VS Filing
Services through the task.

It is important to remember that the 2258 controller can receive
requests from any of the 16 possible 2200 partitions and that these
requests are handled similarly to 2200 disk requests. As a result,
the more requests that are channeled to the VS through a single 2258
controller, the slower the response time experienced by each
individual partition. '

VS Serial I/0 Processor

The VS serial I/0 processor (SIOP) handles requests in a sgerial
manner, one request at a time. Each file request requires both a
transmission to the SIOP and a response from the SIOP. Since the SIOP
handles these requests in a serial manner and since the 2258 must
-handle requests for all partitions, VDISK performance can be adversely
affected by the number of requests being processed at any given time.

VDISK performance can also be adversely affected by opening VDISKs in
shared mode. Since VDISKs are actually VS files, response time can be
reduced by the additional overhead in the VS system associated with
Shared files.

When you open VDISKs in exclusive mode, the disks are open to all
partitions on the same 2200. You should only open VDISKs in shared
mode when the VDISK must be shared with another 2200 or when it must
be accessed through another 2258 controller on the same 2200.

2-4 2200 VDISK Access
Draft Copy Confidential

2.4

As the number of VDISKs opened in shared mode increases, disk commands
execute more slowly. When a disk command is executed, the 2258
firmware uses VS DMS commands to lock each VDISK opened in shared
mode. The VDISKs are locked to prevent other 2258 controllers from
accessing the VDISK.

If there are many VDISKs open in shared mode, the locking procedure

can add significantly to the processing time required to execute each
disk command.

IMPROVING VDISK PERFORMANCE

To improve, VDISK -performance, you can implement the following
recommendations::

e Use VDISK only to store large data files for data-intensive programs
and for backup storage of program files.

e Do not load programs off VDISK, particularly programs that use
program overlays.

¢ Do not use VDISK to store program-required files, such as screen or
message files.

e Avoid opening VDISKs in shared mode. However, if you must use
VDISKs in shared mode, you may improve performance by bracketing
each string of disk commands with a $OPEN and a $CLOSE to reduce
processing by the 2258 controller for files opened in shared mode.

e In large systems or where heavy use of the 2258 data link is
expected, using multiple 2258 controllers for VDISK access might
increase throughput proportionally. By adding additional 2258
controllers to a single system you can off-load some of the traffic
to the additional controllers.

Note that because of the 2200 disk addressing scheme you are limited
to a maximum of three 2258 controllers on a single system for VDISK
purposes. You can, however, add additional 2258 controllers either
for native DMS access or add more terminals for VS Workstation
Emulation. Adding additional 2258 controllers might also improve
VDISK performance in large systems.

2200 VDISK Access 2-5
Draft Copy Confidential

~

e The 2258 support utilities enable you to define multiple VDISK maps
that assign 2200 platter addresses to an equivalent number of 2200
disk image files. 1In certain cases you might be able to improve
performance by picking a specific VDISK map for a particular
application. Once the application is run, you can then return the
VDISK map to your normal processing configuration. However, it is
recommended that you maintain one VDISK map throughout each session
whenever possible.

2.5 MOVING EXISTING 2200 FILES TO VDISK

To move existing 2200 files to VDISK, use the Move Files Utility. You
access the Move Files Utility from the System Utilities Menu. For
more information on how to use the Move Files Utility, refer to the

2200 Introductory Guide.

2-6 2200 VDISK Access
Draft Copy Confidential

CHAPTER 3
NATIVE DMS ACCESS

3.1

INTRODUCTION

The 2200/VS LCO package enables you to create and access files on the
attached VS system directly from your BASIC-2 application programs.

To create and access Native DMS files using the 2200/VS LCO, you must
use the DMS Access Subroutines that come with the 2200 package. Files
created in this manner are referred to as native DMS files because
they are managed by the VS DMS.

Native DMS files can be accessed by BASIC-2 application programs on
any 2200 system attached to the VS and equipped with the 2200/VS LCO
package. Native DMS files can also be accessed by VS application
programs. ' ‘

The 2200 LCO software supports the following DMS file types:
Consecutive, indexed, and relative.

Consecutive

Consecutive file types allow you to access records sequentially and
read records on disk directly by record sequence number. Records can
only be added at the end of the file and cannot be deleted. This
structure is appropriate for most data entry and batch update
applications. Consecutive files are supported for all types of I/0
devices and are used for specialized puposes, such as printer files
and system-maintained journals.

Indexed

Indexed file types allow you to access records through a key field
that contains unique data values. Indexed files can only be created
and stored on disk storage devices. This structure supports
sequential record retrieval, and rapid non-sequential retrieval of
single records from disk files by key value. You can add, update, or
delete records by specifying the primary key value of the desired
record.

DMS supports both primary key and alternate key indexed files.

Native DMS Access 3-1
Draft Copy Confidential

Relative

Relative files contain sequential, fixed length record slots and can
only be created and accessed on disk storage devices.
allow you to access records either sequentially or directly by record
sequence number. You can add, update, or delete records within a
relative file. However, you must preallocate space for adding
records. Deleting records does not reduce the size of the file. You
should choose a relative file structure if speed of access and ability
to modify and delete existing records is a major consideration.
Relative files are not supported on the VS-50 or VS-80 computers.

NOTE

Relative files

Relative files cannot be opened in shared mode.

For more information about DMS file structures, refer to the VS Data

Mangement System Reference guide.

3.2 BRIEF DESCRIPTION OF THE DMS ACCESS SUBROUTINES

Table 3-1 lists the DMS Access Subroutines available, provides a

description of each subroutine, and lists the subroutine's

corresponding function number.

Table 3-1. DMS Access Subroutines

Function
Function Description Number
GENERAL OPEN Opens any DMS file. '101
GENERAL CLOSE Closes any DMS file. '102
CONSECUTIVE READ Reads a consecutive record. '103
CONSECUTIVE WRITE Writes a consecutive record. '104
CONSECUTIVE REWRITE Rewrites a consecutive record. '105
CONSECUTIVE SKIP Skips a specified number of '106

consecutive records.

CONSECUTIVE LOCK Locks a consecutive file. '107

(continued)

3-2 Native DMS Access

Draft Copy Confidential

Table 3-1. DMS Access Subroutines (continued)
Function

Function Description Number

CONSECUTIVE UNLOCK Unlocks a consecutive file. '108

INDEXED READ Reads an indexed file. '109

INDEXED READ NEXT Reads the next record in an '110
indexed file.

INDEXED WRITE Writes to an indexed file. '111

INDEXED REWRITE Rewrites an indexed record '112
to a file.

INDEXED DELETE Deletes an indexed record '113
from a file.

INDEXED FIND Finds a specified indexed '114
record in and indexed file.

INDEXED LOCK Locks an indexed file. '115

INDEXED UNLOCK Unlocks an indexed file. 1116

RELATIVE READ Reads a record form a '117
relative file.

RELATIVE WRITE Writes a record to a '118
relative file.

RELATIVE REWRITE Rewrites a record to a '119
relative file.

RELATIVE DELETE Deletes a relative record '120
from a relative file.

BLOCK READ Reads a block of data '121
from a block file.

BLOCK WRITE Writes a block of data 1122

to a block file.

Native DMS Access

Draft Copy Confidential

3-3

The DMS Access Subroutines also provide functions for creating,
deleting, and renaming files and for getting file attributes. These
subroutines are called the DMS Catalog Functions. Table 3-2 provides a
brief description of these functions.

Table 3-2. DMS Catalog Functions

Function
Function Description Number
FILE CREATE Creates a DMS file. '200
FILE DELETE Deletes a DMS file. '201
FILE RENAME Renames a DMS file. '202
GET FILE ATTRIBUTES Retrieves the value of one 1203

or more attributes groups
associated with the opened S
file

Refer to Chapter 4 of this guide for a detailed description of the DMS
Access Subroutines and DMS Catalog Functions listed above. !

3.3 HOW TO USE THE DMS ACCESS SUBROUTINES

The DMS Access Subroutines are stored in the following files that are
included with the 2200/VS LCO software:

o VSACESSO This file contains the GENERAL OPEN and GENERAL CLOSE
subroutines. This file also includes the subroutine
used to communicate all requests to the 2200 LCO
controller.

e VSACESS1 This file contains all the subroutines that deal with
consecutive DMS files.

o VSACESS2 This file contains all the subroutines that deal with
indexed DMS files.

e VSACESS3 This file contains all the subroutines that deal with
relative DMS files.

e VSACESS4 This file contains all the subroutines that enable you

to access DMS files in block mode.

VSACESS9 This file contains the DMS Catalog Functions.

3-4 Native DMS Access
Draft Copy Confidential

3‘4

To use the DMS Access Subroutines, perform the following steps:

1. Copy the files containing the required DMS Access Subroutines into
your BASIC-2 application program. Usually you are required to
copy VSACESSO and one other file into your program to open and
close files and to handle all other file processing.

NOTE

When you copy the DMS Access Subroutines into your program, be certain
they do not overlay lines of code in your program.

2. Once you have copied the DMS Access Subroutines into your program,
you access the subroutines by writing a GOSUB ' to the specific
function you want to perform.

For example, if you are working with existing consecutive files,
you copy VSACESSO and VSACESS1 into your program. The subroutines
in VSACESSO allow you to open and close. The subroutines in
VSACESS1 allow you to perform other functions, such as reading and
writing to and from the file. '

The following statement is an example of how you would code a
GOSUB ' to perform a GENERAL OPEN:

0100 GOSUB '101 (N$, T$, MS$) '

The variables (N$, T$, and M$) pass the name and organization of
the file, and the mode the file is to be opened in to the
subroutine.

DMS ACCESS PROGRAMMING REQUIREMENTS AND PERFORMANCE CONSIDERATIONS

To use the DMS Access Subroutines, you must copy the required files
into your program.

To save space, only copy the files required by the program. For
example, if your program only uses existing indexed files, you only
need to copy in VSACESSO and VSACESS2. If your program uses more
than one file type, you have to copy more modules into your program.

If your program also creates, renames, or deletes files, you also
have to copy in the DMS Catalog Functions VSACESS9.

Native DMS Access 3-5
Draft Copy Confidential

3.4.1

3.5

3.5.1

Once you have copied the DMS Access Subroutines into your program,
you can save the program with the SR parameter. Saving the program
with the SR parameter removes the REM statements from the program,
thus saving you partition space.

Submitting Programs that Access Native DMS Files

Before you can access a native DMS file, you must make certain that
the following procedures have been implemented:

e The 2200 is actively connected to the VS (that the attach
procedure has been run).

e The program contains the required DMS Access Subroutines.
For more information on how to run the attach progam, refer to the

2200/VS Local Communications Options User's Guide. Once you have
implemented these procedures, you can submit programs from the 2200

to access native DMS files stored on the VS.

GENERAL NOTES ON THE DMS ACCESS SUBROUTINES

This section provides background on and general information common ‘
to all the DMS Access Subroutines.

Variables Reserved by the DMS Access Subroutines

I3

All the variables used by the DMS Access Subroutines start with the
letter V. If you have any variables in your programs that begin
with the letter V, you can either change the variable in your
program or change the variable in the DMS Access Subroutine.

Table 3-3 lists the variables used by the DMS Access Subroutines and
gives a brief explanation of their purpose.

3-6 Native DMS Access

Draft Copy Confidential

Table 3-3. Variables Used by the DMS Access Subroutines

Variable Length
Name Description (in bytes)
v$ Holds the file name. 32
Vo Is a work variable for the 8
CONSECUTIVE SKIP subroutine.
Holds the number of records
to be skipped.
vVo$ Holds the return code. 2
Return codes are explained
in Appendix A,
vl Is a work variable. 8
vi$ Holds the file organization 1
identifier.
V2 Is a work variable. 8
v2$ Holds the open mode identifier. 1
V3 Holds the key position 8 !
for indexed files.
v3s$ Holds the hold option 1
identifier.
V'L Holds the key path for indexed 8
va$ Holds the alternate mask for 2
indexed files.
V') Holds the key length for 8
indexed files.
v5$ Holds the search criteria for 2
the INDEXED FIND subroutine.
v6es$ Holds the key value for indexed 6

files.

{continued)

Draft Copy Confidential

Native DMS Access

3-7

Table 3-3. Variables Used by the DMS
Access Subroutines (continued)

Variable Length
Name Description (in bytes)
v7 Holds the number of records to 8
read.
v7$ Holds the Extended File Sharing 32
(EFS) header.
\'2:E Is a work scalar variable. 16
vas$() Is a work array. 256
vos Holds the file identifier 2
number.
Vvos$() Is the data buffer array for 4096
reading in information form
the file.

3.5.2 Using Variables or Literals for Input Parameters

The DMS Access Subroutines enable you to pass input parameters in the
form of variables or literals. For example, a GOSUB ' to perform a
CONSECUTIVE WRITE can be written as follows:

3000 DIM H1$32,D$50,H$2

3005 H$=V9P: V9P is the file identifier received from the OPEN

3010 H1$ = V7$:REM V78 is the EFS header received from the OPEN
3020 D$ = "This statement is written to the file as a record."”

3030 GOSUB '104 (H$, H1$, D$)

This statement also could be written with a literal for D$ as follows:

3000 GOSUB '104 (H$, V78, "This is written to the file as one
record.")

In this example., a literal is used for the data buffer parameter.

3-8 Native DMS Access
Draft Copy Confidential

3.6

NOTE

In the example above, the DMS Access Subroutine variable (V7$), which
stores the External File Sharing (EFS) information, is used to specify
this information in the GOSUB ' call to the CONSECUTIVE WRITE
subroutine. You can only use the DMS Access Subroutines variables
within your GOSUB ' statements if your program has only one file open
at a time. Otherwise, you must assign the values stored in the DMS
Access Subroutine variables to other variables within your program,
pass the appropriate variables to the DMS then Access Subroutines.

MOVING EXISTING FILES FROM THE 2200 TO THE VS

To use the 2200/VS LCO software package to move files from the 2200 to

the VS, you need to write a utility program to perform the following
tasks:

1. Open the 2200 file.

2. If the file does not exist on the VS, creates the file on the VS.
To create a file on the VS, you can include the CREATE FILE
subroutine in your utility program or you can use the CREATE
utility provided on the VS. For more information, refer to the
detailed description of the CREATE FILE subroutine in Chapter 4 of
this guide.

Uses the GENERAL OPEN (GOSUB 'l101) DMS Access Subroutine, to open
the file if the file already exists on the VS.

3. Read a record from the 2200 file using 2200 disk access statements.

4. Write a record to the VS using the appropriate DMS Access
Subroutine.

5. Repeat steps 3 and 4 until all the records are written to the VS
file.

6. Close the VS file using the GENERAL CLOSE DMS Access Subroutine
(GOSUB '102).

7. Close the 2200 file.
Once you have written the utility program, you must follow the

procedures for submitting programs to access DMS files provided in
this chapter.

Native DMS Access 3-9
Draft Copy Confidential

3.7

3.8

MOVING FILES FROM THE VS TO THE 2200

To use the 2200/VS LCO software package to move files from the VS to
the 2200, you need to write a utility program to perform the following
tasks:

1. Open the DMS file on the VS using the GENERAL OPEN (GOSUB '101)
DMS Access Subroutine.

2. Read the file using the appropriate DMS Access Subroutine (either
consecutive, indexed, relative, or block). .

3. Use the DATA SAVE DC OPEN statement, if the file does not exist on
the 2200 system.

If the file exists on the 2200 system, you can use the DATA LOAD
DC OPEN statement.

4. Write the file to the 2200 using the familiar 2200 BASIC-2
statements.

Once you have written the utility program, you must follow the %
procedures for submitting programs to access DMS files provided in i

. this chapter. %

SAMPLE PROGRAMS

There are three sample programs included on the VSACCESS diskette
shipped with the 2200/VS LCO software package. The sample programs
use the DMS Access Subroutines to create, access and write records to
and from Native DMS files. Each program deals with a different file
type, either Congecutive, Relative, or Indexed. The following list
gives the name of the files containing the sample programs:

o TESTCON1l — Deals with Consecutive files
e TESTREL1 -- Deals with Relative files
e TESTIDX1 —— Deals with Indexed files

Once you have the software installed, you can display these files on
your terminal, or print them out, to get a better idea of how to use
the DMS Access Subroutines

3-10 Native DMS Access

Draft Copy Confidential

CHAPTER 4
DETAILED DESCRIPTION OF THE DMS ACCESS SUBROUTINES

4.1

INTRODUCTION

This section gives a detailed description of the DMS Access
Subroutines. The description of each subroutine includes the
following information:

e General Porm -— This section shows the general format of the cxﬁnng
statement used and includes a description of the required input
parameters. *

e Purpogse — This section explains the function the subroutine
performs.

e Returns — This section explains information returned by the
subroutine.

e Example — This section provides an example of how the subroutine is
used.

o General Notes — This section is also included for certain
subroutines to provide additional information.

DMS Subroutines 4-1
Draft Copy Confidential

4.2 NOTES ON THE GENERAL FORM SECTION

In the General Form section, these basic rules of syntax are followed.

1. Symbols must be included in your BASIC-2 statements exactly as
they appear in the General Form of the statement:

e Uppercase letters A through 2
¢ Comma .

e Double gquotation marks "

e Parentheses ()

e Pound sign #

e Slash /

2. Lowercase letters and words in the General Form of a statement
represent items whose values must be assigned by the
programmer. For example, if the lowercase word "name" appears
in a General Form, the programmer must substitute a specific
file name (such as "PROGl"), or an alphanumeric variable
containing the name, in the actual statement. Similarly, where
the lowercase letter n appears, the programmer must substitute .
an actual file number (from 0 to 64) or a variable contain;ng i% '
file number. ¥ :%
3. 2all information that appears between parentheses must be o
included in the GOSUB' statements.

4. Blanks (spaces) are used to improve readability and are
meaningless.

5. The sequence the terms are listed in must be followed.

4-2 DMS Subroutines
Draft Copy Confidential

