2200

2207A 1/0 Interface
Controller User Manual

2200
2207A 1/0 Interface
Controller User Manual

Copyright ® Wang Laboratories, Inc., 1976
700-3364)

WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 o TEL: 617/459-5000, TWX 710-343-6769, TELEX 94-7421

PREFACE

Information regarding the installation and operation of the Model 2207A
I/0 Interface Controller is provided in this manual.

Chapter 1 describes the features of the controller and includes some
sections of primary interest to persons responsible for interfacing a non-Wang

device to a System 2200.

Chapter 2 describes programming techniques for the Model 2207A
controller.

iii

CONTENTS

CHAPTER 1 MODEL 2207A FEATURES
1.0 General Information. . . .
1.1 Installation
1.2 Connector Pin Assignments.
1.3 Device Address Codes . . .
1.4 Transmission Timing. . . .

CHAPTER PROGRAMMING TECHNIQUES

Device Selection . .

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

INPUT . .
KEYIN . .
MAT INPUT
MAT PRINT
PRINT . .
PRINTUSING.

APPENDIX E

DATALOAD. .
DATALOAD BT
DATASAVE. .
DATASAVE BT
LOAD. . . .
SAVE. . . .

L] L] L] L] L] L]
L[] L] [] L[] L] L]
L] L] L) L] L] L]
L] L] L] L] [] L]
L] L] L] L] L[] °
° o [] L[] L]]

APPENDIX F CUSTOMIZED I/0 STATEMENTS. .

SPECIAL PURPOSE I/0 STATEMENTS

Introduction L] .‘ L] L] L] L] L] L] L] L]

FUNDAMENTAL I/0 STATEMENTS . . .

® o0 e o o

2

2.0

2.1 e s e s e s e
2.2 Choosing BASIC Language Operations
2.3 Customizing Operations
2.4 Controlling a Teletype Terminal. .

$GIOQ o L] L] L] L L] L] L] . L] L] L]

APPENDIX G
APPENDIX H
APPENDIX I
EQUIPMENT MAINTENANCE

CUSTOMER COMMENT FORM

iv

STANDARD ADDRESSES FOR PERIPHERALS AND
I/0-CLASS PARAMETERS AND PRIMARY
BASIC LANGUAGE SYNTAX AND TERMS.

CONTROLLERS
ADDRESSES

ASCIT CONTROL AND GRAPHIC CHARACTERS
SETTING ADDRESS SWITCHES ON THE MODEL 2207A CONTROLLER
MODEL 2207A SPECIFICATIONS & & v ¢ ¢ ¢ ¢ ¢ o o o o o &«

L]] L] [] L] o

L] L) L] L[] L] L[] [] L] L]

[] L] L] L] L]

Page

WP N —

64
Last Page

fﬁg

TABLES

Page
Table 1-1. Transmission Timing for the Model 2207A Controller. . . . 5
Table 2-1. Summary of Input Operations . « « « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢« ¢ o o« 9
Table 2-2. Summary of Output Operations. . « « ¢ ¢« o ¢ ¢ ¢ ¢ o o« o « 10
Table A-1. Device Type Codes for Model 2207A I/0 Operations. 14
Table B-1. Primary Addresses for the System 2200 . . « +« « o ¢ « « . 16
Table H-1. Standard Address Switch Settings

for Model 2207A Controllers « « « o o« o o o o o o o o o o 62
CHARTS

Chart B-1. I/0 Class Parameters and Operations . « « « « ¢ o o « o o 17
FIGURES

Figure 1-1. Model 2207A I/0 Interface Controller.
Figure 1-2. Model 2207A Connector Pin Assignments . . . « « ¢« ¢ o ¢« o 2

L]
L]
L]
L]
L]
L]
L]
.
L]
L]
—

XMT Address Switch

RCV Address Switch s

Mounting Bracket

Connector (Accepts
RS-232-C compatible
male plug)

ASCII/Binary Switch
(ASCIH! = Up;
Binary = Down)

Transmission Rates:
1200 Baud

600 Baud J

300 Baud —

(-

150 Baud

110 Baud

Figure 1-1. Model 2207A 1/0 Interface Controller W

vi

CHAPTER 1
MODEL 2207A FEATURES

1.0 GENERAL INFORMATION

The Wang Model 2207A I/0 Interface Controller plugs into any I/0 slot in
a System 2200 Central Processing Unit (CPU). A 25-pin connector on the
controller facilitates direct hookup of an RS-232-C compatible non-Wang
device. Examples include devices such as the following:

an RS-232-C compatible Te1etyp€®,
a Teletype-equivalent terminal, or

an RS-232-C compatible, asynchronous-transmission laboratory
instrument.

The device to be interfaced to a System 2200 should be equipped with a
suitable cable (maximum length 50 feet, i.e., 15.2 meters) and a compatible
male plug.

The Model 2207A connector pin assignments are described in Section 1.2
for anyone planning to interface a device to a System 2200 CPU. The EIA
(Electronic Industries Association) Standard RS-232-C provides recommendations
for interchange circuits and connector pin assignments for equipment designed
to qualify as RS-232-C compatible; however, generally speaking, users of an
operational System 2200/2207A do not need to read EIA Standard RS-232-C.

The Model 2207A controller is designed to support asynchronous
transmission line speeds up to 1200 baud. The controller has five "baud rate"
switches 1labeled 110, 150, 300, 600 and 1200. See Figure 1-1. A desired
transmission rate is selected by pushing the corresponding switch in. Table
1-1 in Section 1.4 converts the rate in baud to characters per second and
milliseconds per character.

The controller supports two operational modes, called ASCII and Binary,
designed to handle different data formats. The ASCII/Binary switch (shown in
Figure 1-1) determines the operational mode as follows: ASCII = switch out;
Binary = switch in.

In the ASCII mode, the controller treats the data format as 7-level
ASCII code plus an even-parity high-order bit. For input operations, the
parity bit is ignored, i.e., the high-order eighth bit is interpreted as "0"
always. For output operations, the high-order eighth bit is transmitted as a
“0" or "1" depending upon the value needed to conform to an even-parity
condition (i.e., to make the sum of the 1-bits, including the parity bit, an
even number).

Chapter 1. Model 22074 Features

Furthermore, in the ASCII mode, the controller automatically decodes a
standard Teletype BREAK signal and sends a HALT/STEP signal to the CPU, and
decodes a standard ESC (Escape) signal and sends a RESET signal to the CPU.
Therefore, if desired, a Teletype can be installed as a console input device
in 1ieu of a Wang keyboard. See Section 1.3.

In the Binary mode, the controller treats the data format as 8-bits per

character for input and output operations. Decoding of BREAK and ESC signals
is inhibited during input operations.

1.1 INSTALLATION

Installation of a Model 2207A controller is the responsibility of a Wang
Service Representative who should be called when the controller arrives.

1.2 CONNECTOR PIN ASSIGNMENTS

The information in this section can be ignored by readers not
responsible for interfacing a device to a System 2200.

Special attention should be given to the pin assignments for the Model
2207A connector, shown 1in Figure 1-2. The female plug on the controller
accepts an RS-232-C compatible male plug directly; no modem is required.
Therefore, from the controller viewpoint, data ~is received on Pin 2 and
transmitted on Pin 3. On the other hand, from the viewpoint of an
interfaced device (as shown in Figure 1-2), data is transmitted via Pin 2

and received via Pin 3.

Pin Signal (RS-232-C designation) Pin
#

#
25-pin 1 Protective ground (AA)———1 25-pin
Female Plug 2<«— Transmitted data (BA)—2 Male Plug
on 3 Received data (BB)——— 3 on Cable
Model 2207A 5 Clear to send (CB)————» 5 from
Controller 6 Data set ready (CC)——»6 RS-232-C
7 Signal ground (AB) 7 Compatible
8 Data carrier detector (CF)—38 Device
20— Data terminal ready (CD)——20

NOTE: The interfaced device must use Pins 1, 2, 3, 7 and 20. Pins 5,
6 and 8 in the Model 2207A connector are tied to the positive
level voltage defined by Standard RS-232-C. The interfaced
device must supply a positive level voltage on Pin 20.

Figure 1-2. Model 2207A Connector Pin Assignments
(From Viewpoint of Interfaced Device)

fﬁ%

Py (-

Chapter 1. Model 2207A Features

1.3 DEVICE ADDRESS CODES

To control 1/0 operations, the System 2200 utilizes a
three-hexadecimal-digit (12-bit) device addressing procedure with codes of the
form xyy, where

x represents the Device Type, and

yy represents the Preset Address of a specific controller or one
channel of a dual-channel controller.

When a particular I/0 statement is executed, the yy-digits in the device
address determine which controller in the CPU chassis is enabled for the
operation, and the x-digit determines which microcode routines are used by the
system to implement the operation.

Each controller has at least one 8-pole address switch. A dual-channel
controller such as the Model 2207A has two 8-pole address switches. An 8-pole
switch has eight tiny rocker-type switches whose on-off configuration
represents an 8-bit binary number corresponding to the yy-digits in a
three-hexdigit address. See Figure 1-1.

Usually, an address switch is set by Wang Laboratories before a
controller is shipped from the factory or by a Wang Service Representative
when a controller is installed in a CPU. Since an address switch is neither
visible nor accessible after a controller is mounted in a CPU chassis, a label
is attached to the faceplate of each controller to show its address or
addresses.

On Model 2207A controllers sent to customers who assume responsibility
for installation of the controller, the address switches may not be set prior
to shipment. Therefore, information regarding address switches is provided in
Appendix H.

When a Model 2207A controller (or any controller) is installed in a CPU,
care must be exercised to ensure address uniqueness with respect to other
controller boards mounted in the same chassis. For this reason, Wang
Laboratories has adopted a set of standard address codes to be used unless a
customer's requirements indicate a different code is desirable.

In every System 2200 configuration, one controller (usually a keyboard
controller) must be set up with the address 001 for console input operations,
i.e., for entry of system commands, program text, and immediate mode
statements. Another controller (usually a CRT controller) must be set up with
the address 005 for console output operations which provide many automatic
system messages to prompt programmers and operators.

Chapter 1. Model 2207A Features

NOTE:

If a Model 2207A controller 1is used to interface a
Teletype to a System 2200 in lieu of a keyboard and
CRT, the address switches on the controller must conform
to settings ordinarily used for the console keyboard and
CRT; otherwise, the standard Model 2207A settings are
appropriate whether a Teletype or some other device is
being interfaced to the system. Anyone installing a Model
2207A controller should see Appendix A for a 1list of
standard addresses.

If more than one Model 2207A controller is installed in a CPU chassis,
Appendix A gives the standard addresses for additional units.

Chapter 2 contains information regarding the use of device address codes
for program control of I/0 operations.

1.4 TRANSMISSION TIMING

The Model 2207A controller transmits and receives data asynchronously,
i.e., character-by-character with each character initialized by a start
element and terminated by a stop element. In asynchronous transmission, the
start element (usually a logic "0" voltage level) is equivalent in duration to
one data-bit interval, but the stop element (usually a logic "1" voltage
level) is a variable-length interval since the signal is maintained until the
next character 1is transmitted. The stop element has no maximum duration:
however, it does have a minimum duration determined by the design of the
equipment. For the Model 2207A controller, the minimum length stop element is
equivalent to 2.0 data-bit intervals. The minimum length stop element occurs
when data is being transmitted automatically from equipment such as a Teletype
tape unit or some other pre-recorded medium. The variable length stop element
occurs when data is transmitted from a keyboard since the time between
keystrokes varies.

The total number of bits per character for asynchronous data
transmission via the Model 2207A is eleven, effectively, for both ASCII and
Binary mode operations. In ASCII mode operations, the character transmission
consists of one start element (equal to one data-bit interval), seven data
bits, one parity bit, and a stop element equivalent to two data-bit intervals.
In Binary mode operations, the character transmission consists of one start
element, eight data bits, and a stop element equivalent to two data-bit
intervals. Therefore, in either mode, the number of data bit intervals per
character is eleven.

In Table 1-1, the transmission timing for the Model 2207A controller is
converted to characters per second and milliseconds per character for the five
switch-selectable baud rates. The values in the table represent instantaneous
line transmission rates, not data throughput rates. In any configuration,
data throughput is limited by such factors as the transfer rate of I/0
perip?era]s and the overhead time required by the program controlling data
transfer.

Chapter 1. Model 2207A Features

@Nﬁ Only one baud rate button can be pushed in; the button corresponding to
a previously selected rate automatically springs out when another rate is
selected. Choice of an appropriate rate depends upon the specifications of
the device plugged into a Model 2207A controller.

Table 1-1. Transmission Timing for the Model 2207A Controller

Characters Milliseconds
Baud Rate per Second per Character
110 10.0 110.0
150 13.6 73.3
300 27.3 36.7
600 54.5 18.3
1200 109.1 4 9.2

CHAPTER 2
PROGRAMMING TECHNIQUES

2.0 INTRODUCTION

Some programming techniques for control of equipment interfaced to a
System 2200 CPU via a Model 2207A I/0 Interface Controller are presented in
this chapter. For the information to be completely meaningful, a reader must
be familiar with the System 2200 BASIC language and general programming
techniques. Anyone unfamiliar with the system should read the BASIC
Programming Manual provided with the CPU.

The general forms of the I/0 statements discussed in this chapter are
presented in Appendices D, E, and F.

2.1 DEVICE SELECTION

Since a System 2200 can be configured with several input and output
devices, it 1is necessary to have a method of identifying the particular device
to which, or from which, data is to be transferred. For some System 2200 1/0
operations, up to three methods of device identification are possible.

A unique address (or, in some cases, a pair of addresses) is associated
with each I/0 device in a configuration whether the device is a Wang
peripheral, an interfaced non-Wang device, or part of the console 1/0
equipment. Each device address is a three-hexdigit (12-bit) number of the
form xyy, where x represents a device type code and yy represents the
preset address of the controller into which a particular device is plugged.

When executing an I/0 operation, the system utilizes the x-digit (the 4
high-order bits) 1in the address to determine which microcode routines are to
be used to implement the operation, and the yy-digits (the 8 1low-order bits)
to determine which controller is to be accessed for the operation.

The uniqueness of a device address is established by its yy-digits which
correspond to a binary value set on an 8-pole address switch. The value must
be unique with respect to the values set on address switches for all the other
controllers in the same CPU.

Since address switches are set before controllers are mounted in a CPU
chassis and are not visible thereafter, each controller has a label showing
its address or addresses. Labels usually specify three hexdigits by including
a device type code as well as the preset controller address -- because the
BASIC 1language syntax always requires three-hexdigit addresses for 1I/0
operations.

(D

)

Chapter 2. Programming Techniques

Often, one device type code is appropriate for all the I/0 operations
supported by a particular controller, e.g., x=1 for cassette drive
controllers, x=3 for disk controllers. In some cases, several different
device type codes are appropriate for the operations supported by a
controller, e.g., x=0, 2 or 4 can be used with printer controllers to produce
different results. See the PRINT statement in Appendix D.

Different device type codes are used with the controller described in
this manual. Appropriate codes are indicated in the discussions of particular
applications.

- Appendix A gives standard addresses for .device categories such as
keyboards, CRT's, printers, plotters, and interface controllers. Valid device
type codes are described with respect to several I/0 operations and device
categories.

Once an appropriate device type code and the preset controller address
are known, there are alternative ways to specify the device address for an I/0
operation. Three methods, with illustrations, follow.

Method 1. Specify the address directly in the I/0 statement, using a
slash (if permitted by the syntax), e.g.,

100 DATALOAD BT /61D, X$()

Method 2. Specify the address indirectly in the I/0 statement, using a
file number (if permitted by the syntax and if the address
has been assigned to the file number by a SELECT statement),
e.g.,

100 SELECT #3 61D
110 DATALOAD BT #3, X$()

Method 3. Use a SELECT statement to select the device address for the
I/0-class parameter associated with the operation; then, no
address need be specified for subsequent operations
belonging to that class, e.g.,

100 SELECT TAPE 61D
110 DATALOAD BT X$()

Method 3 can be used for every I/0 operation and must be used for any
operation which does not permit specification of a direct or indirect address
in the BASIC statement. Methods 1 and 2, even when permitted, are always
optional.

Chapter 2. Programming Techniques

NOTE:

When an optional address is omitted in an I/0 statement,
the default address is the address last selected for the
I/0-class parameter associated with the operation;
however, if no address has been selected for the
parameter, the system uses the "primary" address -- the
address automatically selected for the parameter when the
system is Master Initialized. See Appendix B, where the
eight I/0-class parameters, the operations associated with
each parameter, and the primary address for each parameter
are summarized.

2.2 CHOOSING BASIC LANGUAGE OPERATIONS

Generally speaking, several BASIC language I/0 statements are feasible
for program control of devices interfaced to System 2200 CPU's via Model 2207A
controllers. Input statements with built-in signal sequences include INPUT,
KEYIN, MAT INPUT, LOAD, DATALOAD, and DATALOAD BT. Output statements with
built-in signal sequences include PRINT, PRINTUSING, MAT PRINT, SAVE,
DATASAVE, and DATASAVE BT. As indicated in the Preface, some statements
discussed 1in this manual are standard in particular CPU models; other
statements are available only if options are added to a standard CPU model.

The characteristics of an interfaced device as well as the requirements
of an online application must be known before suitable BASIC language
statements can be chosen for programming an application. Since the number of
RS-232-C devices which can be interfaced to Wang systems is large and their
characteristics diverse. a sample device and application of general interest
to most readers is difficult to formulate. Because a Teletype represents a
four-in-one device, programming techniques for controlling a Teletype
interfaced to a Wang CPU are presented in Section 2.4. Some of the techniques
may prove helpful for other applications.

The special features of Wang's built-in I/0 operations are described in
detail in Appendices D and E. Brief summaries of the statements are given in
Tables 2-1 and 2-2 to simplify the task of choosing BASIC lanquage statements
for program control of an interfaced device.

o

Table 2-1.

Chapter 2. Programming Techniques

Summary of Input Operations

BASIC
Statement

Device Type
Code

General Features

INPUT

0or?2

For control of input devices not requiring
initialization signals. Can receive data for
storage in several numeric and/or alphanumeric
variables, including STR functions and
specific array elements. Incoming data stream
must be suitably structured with commas and
carriage-return characters serving as data
separators. See Appendix D.

KEYIN

Qor?2

For device-scanning of input devices or
single character - input "handshaking"
applications. Using a loop, multicharacter
input can be received one character at a time
from devices with relatively slow data
transmission rates. See Appendix D.

MAT INPUT

Oor?2

Receives data for storage in one or more
numeric or alphanumeric arrays; otherwise,
similar to INPUT statement. See Appendix D.

DATALOAD

4 or 6

Can be used to read data values from
formatted punched tapes. Device type 4
automatically sends X-ON code to start a tape
reader and an X-OFF to stop the unit. Device
type 6 sends an initialization code for
forward/reverse reading. May be useful for
control of other input devices. See Appendix
E.

DATALOAD BT

4 or 6

Can be used to read program text or data from
unformatted punched tapes. Transmits X-ON
and X-OFF codes automatically if device type
4; transmits initialization code for
forward/reverse reading if device type 6. May
be useful for control of other input devices.
See Appendix E. (Note: With ASCII/Binary
switch in Binary, any 8-bit code can be read.)

LOAD

4 or 6

Reads program text from formatted punched
tapes. See Appendix E.

$GIO

Can be used to customize an input (or output)
operation. Particularly useful for devices
not suitable for the built-in signal sequences
of other statements. See Appendix F.

Chapter 2.

Programming Techniques

Table 2-2.

Summary of Output Operations

BASIC
Statement

Device Type
Code

General Features

PRINT

0, 2or 4

Can be used to output values currently stored
in numeric and/or alphanumeric variables, or
to output any 8-bit code using a HEX function.
Also can be used to output null characters
sometimes used as "fill characters". Choice
of device type code determines whether a
line-feed or null character follows each
system generated carriage-return character and
whether a Tline character count is maintained
or suppressed. See Appendix D.

PRINTUSING

0, 2or 4

Outputs values interspersed with text (if
desired) according to specifications given in
a referenced image (%) statement. See
Appendix D.

MAT PRINT

0, 2or 4

Similar to PRINT except the argument list can
specify numeric and/or alphanumeric arrays.
See Appendix D.

DATASAVE

Outputs data with control information (CR LF
RUBOUT RUBOUT) separating each value from the
preceding one. Numeric values are output in
fixed or floating point formats depending upon
the magnitude; alphanumeric values are output
without trailing spaces. See Appendix E.

DATASAVE BT

Outputs data without control information
between values. See Appendix E. (Note: With
ASCII/Binary switch in Binary, any 8-bit code
can be output.)

SAVE

Outputs program text with control information.
See Appendix E.

$GI0

Can be used to customize an output (or input)
operation. Particularly useful for devices
not suitable for the built-in signal sequences
of other statements. See Appendix F.

2.3 CUSTOMIZING OPERATIONS

If one of Wang's BASIC language I/0 statements with a built-in signal
seaquence 1is not ideally suited to the characteristics of an interfaced device
and its online application, the $GI0 statement provides the capability to

customize

language programming.

input and output operations using a procedure similar to machine

10

Chapter 2. Programming Techniques

Wang's General Input/Output statement fits into the framework of the
high-level BASIC language, yet approaches machine language programming because
a user can specify a desired signal sequence for an input or an output
operation by inserting one or more microcommands in the statement. Each
microcommand is represented by a four-hexdigit-code. Since each code
represents one or more fundamental operations, the microcommands serve as
building blocks which can be assembled in a variety of ways.

The $GIO statement and the microcommands available for programming
customized 1/0 operations are described in the General I/0 Instruction Set
Reference Manual provided with any central processor which has the $GIO
statement in its language set. For completeness, some of the features of the
statement are summarized in Appendix F of this manual.

2.4 CONTROLLING A TELETYPE TERMINAL

A Teletype (or similar) terminal usually has four components: a
keyboard, a printer, a paper tape punch unit, and a paper tape reader unit.
Therefore, when a Teletype terminal is interfaced to a Wang central processor
via a Model 2207A controller, the terminal should be viewed as a four-in-one
package of peripherals which are accessed via one dual-channel controller
board. With such a viewpoint, techniques needed to control a Teletype can be
developed by readers familiar with the keyboard and printer programming
methods described in the BASIC Language Programming Manual provided with each
central processing unit.

Remember one important fact when reading the programming manual -- to
use a System 2200 CPU, at least two devices are required: a console input
device (usually a Wang keyboard) and a console output device (usually a Wang
CRT). If desired, the keyboard and printer components of a Teletype terminal
can serve as console I1/0 devices if a Teletype is plugged into a Model 2207A
controller whose input and output channels are assigned the primary addresses
usually reserved for a Wang keyboard and CRT (i.e., 001 and 005).

If a Teletype is installed as a console 1/0 unit, any BASIC Tlanguage
operations included in the I/0 classes CI, INPUT, CO, PRINT, and LIST (see
Appendix B) are automatically implemented via the Teletype keyboard and
printer. However, any operations in the I/0-class TAPE (e.g., DATASAVE,
DATALOAD, SAVE) used for control of the Teletype read/punch units are not
implemented via those units unless the address 405 is specified in a
particular statement, or selected for TAPE operations using a SELECT
statement.

On the other hand, if a Teletype serves as a peripheral device in a
System 2200 configuration having a Wang keyboard and CRT as the console input
and output devices, the "input channel" address (usually 019) must be selected
for the I/0-class INPUT in order to enter data via the Teletype keyboard in
response to an INPUT statement. Similarly, the Teletype printer is not
accessed for operations in the I/0-classes CO, PRINT and LIST wunless an
"output channel" address (e.g., 01D, 21D or 41D) is selected for the
appropriate class. Furthermore, the reader/punch units are not accessed for
operations in the I/0-class TAPE unless the "output channel" address (usually
41D) is selected for TAPE-class operations or the address is specified in a
particular statement.

11

Chapter 2. Programming Techniques

Another important fact should be kept in mind when a Teletype printer is
installed (or selected) for console output operations -- there is no printable
symbol on the Teletype corresponding to the cursor which appears on the CRT to
show an operator where the next character will appear. Therefore, on a
Teletype printer a "ready condition" is denoted by a colon only, rather than
the colon and cursor which appear on the CRT whenever the system is awaiting a
command or text entry. Other differences between CRT output and Teletype
output can be expected; therefore, notes should be kept by anyone who reads
the programming manual and duplicates its console I/0 examples on a Teletype.

For most Teletype operations the ASCII/Binary switch on the controller

should be in the ASCII position. Also, the 110 baud rate switch should be
depressed unless the specifications for the equipment recommend another rate.

12

[

"%

APPENDIX A
STANDARD ADDRESSES FOR PERIPHERALS AND CONTROLLERS

Device Category (Model Numbers) Device Addresses*
Keyboards (2215, 2222, 2223) 001, 002, 003, 004
CRT's (2216, 2216A) 005, 006, 007, 008
Cassette Drives (2217, 2218) 10A, 10B, 10C, 10D, 10E, 10F
Line Printers (2221W, 2231, 2261) 215, 216
Output Writers (2201) 211, 212
Plotters (2202, 2212, 2232A) 413, 414
Disk Drives (2230-1, -2, -3; 2260; 310, 320, 330
2270"] s "2 H) "3)
Nine-Track Tape Drives (2209) 078, 07D, O1F
Mark Sense Card Readers (2214) 517
Hopper-Feed Mark Sense/Punch Card 628
Readers (2234A)
Hopper-Feed Mark Sense/Punch Card 628
Readers (2244A) 618
Punched Tape Readers (2203) 25A, 25B, 25C, 25D, 25E, 25F
I/0 Interface Controller, RS-232-C x19, x1A, x1B (Input)
(2207A) x1D, x1E, x1F (Output)
Asynchronous Telecommunications x19, x1A, x1B (Input)
Controller (2227) x1D, x1E, x1F (Output)
I/0 Interface Controller, 8-bit-Parallel x3A, x3C, x3E (Input)
(2250) x3B, x3D, x3F (Output)
Scanning Input Interface Controller, x5A, x5B, x5C, x5D, x5E, x5F
BCD 1-to-10 Digit Parallel (2252A)
Communications Controller (2228) x19, x1A, x1B (Input)
x1D, x1E, x1F (Output)

*In some cases, more than one address is listed for a device category. If a
System 2200 configuration has only one unit belonging to a particular category
(e.g., a Model 2252A controller), the unit is set up with the first address
(x5A). If there are two units, one is set up with the address x5A and the
other with address x5B. The address is written on a label affixed to each
controller. Often a "typical" device-type code 1is included on the Tlabel
(e.g., 25A); however, particular I/0 operations may require a different
device-type code. See Table A-1.

13

Appendix A

Table A-1. Device Type Codes for Model 2207A I/0 Operations

Operations

Device Type
Codes

Remarks

INPUT, KEYIN, MAT INPUT

0or?2

Either code can be used without
affecting the procedure. Oper-
ations may be used with many
peripherals and interface
controllers.

PRINT, PRINTUSING,
MAT PRINT, HEXPRINT

0, 2, or 4

These operations may be used with
many peripherals and interface
controllers. Code 0 supplies a
line-feed character after every
system-generated carriage-return
character. Code 2 supplies a null
character after every system-
generated carriage-return char-
acter, Code 4 suppresses the line
character count and thereby
suppresses the carriage-return
normally generated when the count
equals the currently selected
line-length; otherwise, supplies a
line-feed after every system-
generated carriage-return.

DATALOAD, DATALOAD BT,
LOAD

4 or 6

The procedure 1is dependent upon
the device type code in the
address. Use of particular codes
is restricted to particular
peripherals and controllers.

DATASAVE, DATASAVE BT,
SAVE

The procedure 1is dependent upon
the device type code in the
address. Use of particular codes
is restricted to particular
peripherals and controllers.

$GIO

The device type code is ignored by
the system during an I/0
operation, but is required by the
BASIC language syntax.

14

'Y

W

o

APPENDIX B
I/0 CLASS PARAMETERS AND PRIMARY ADDRESSES

The input/output operations for the System 2200 are divided into eight
groups (classes) identified by the following I/0-class parameters: CI
(console input), CO (console output), INPUT, PRINT, LIST, TAPE, DISK, and
PLOT. The significance of the class parameters is explained in this appendix,
and the particular operations belonging to each class are identified in Chart
B-1.

The general form for each I/0 operation indicates whether address
specification 1in an actual statement is optional or not permitted. However,
address specification for an operation is always possible by the following
technique. First, determine which I/0-class parameter is associated with a
particular operation (e.g., the parameter TAPE 1is associated with the
operation DATALOAD BT). Then, use a statement of the following form to
"select" the desired address for the operation:

SELECT class-parameter xyy [,class-parameter xyy]...
For example,

SELECT PRINT gl§, TAPE, 05A

| I—»addlr'ess
class parameter

P»-address
—»class parameter

Address selection is unnecessary for five addresses called "“primary
addresses" for the System 2200. Whenever the system is Master Initialized, a
primary address is selected automatically for each of the class parameters, as
shown in Table B-1. Thereafter, the primary address associated with a
particular parameter (e.g., 005 for PRINT) is used by the system for all
subsequent operations belonging to the I/0-class represented by the parameter
unless one of the following conditions is in effect:

a different address 1is specified directly or indirectly in a
particular statement, or

a SELECT statement is used to select a nonprimary address for the
parameter.

An address specified in an I/0 statement always has priority over the address
currently selected for the class parameter associated with a particular
operation.

Specification of a 1line 1length (maximum value 255 characters) is
optional for three class parameters (CO, PRINT, and LIST), using a SELECT
statement of the following form:

SELECT class-parameter xyy [(length)] [,class-parameter xyy [(length)]]...

15

Appendix B

For example,
SELECT PRINT 215(80)

If no length is specified, the default value is 64. However, when another
address is selected for a particular class-parameter without specifying a Tine
length, the last length selected for the parameter applies to the new address.

If a CLEAR command is executed, the address last selected for the CI
parameter 1is selected automatically for the parameter INPUT, and the address
last selected for the CO parameter is selected for the parameters PRINT and
LIST; other parameters are not affected by a CLEAR command.

Table B-1. Primary Addresses for the System 2200
(Addresses Automatically Selected After Master Initialization)

Primary Address* I/0-class Parameter
001 CI (console input)
INPUT
005 CO (console output)
PRINT
LIST
10A TAPE
310 DISK
413 PLOT

*Usually, the address 001 accesses a keyboard and 005 accesses a CRT in a
System 2200 configuration.

16

s

For input as follows:

1) System commands.
2) Immediate Mode statements.
3) Program text entry.

For input as follows:
1) Data for INPUT
statements.

2) Data for KEYIN \\\

Cl

statements.
3) Data for MAT INPUT

statements.
L -~

For I/0 operations:

4) Echo of data received for
INPUT or MAT INPUT stmts.

1/0 Class Parameters and Operations

For output as follows:

1) Data from Immediate Mode
PRINT or HEXPRINT stmts.

2) Literal string messages
from INPUT statements.

3) Question marks when the
system is awaiting
INPUT~-class data.

5) Colons when the system is
ready for CI-class input.

6) Error message codes.

7) STEP mode printouts.

8) TRACE mode printouts.

9) Other system messages.

For output as follows:

1) Data from Program Mode
PRINT or HEXPRINT stmts.
~~|2) Data from PRINTUSING and
associated Image stmts.
3) Data from MAT PRINT stmts.

LIST

_ - I/0 Class
1) BACKSPACE* Parameters
2) DATALOAD ~
3) DATALOAD BT PRI
4) DATARESAVE
5) DATASAVE TAPE
6) DATASAVE BT
7) LOAD
8) REWIND -
9) SAVE DISK
10) SKIP*
11) $GIO
12) SIF ON
For disk or diskette operations:
1) COPY 12) DSKIP]
2) DATALOAD BA 13) LIMITS
3) DATALOAD DA 14) LOAD DA
4) DATALOAD DC 15) LOAD DC
5) DATALOAD DC OPEN 16) MOVE
6) DATASAVE BA 17) MOVE END
7) DATASAVE DA 18) SAVE DA
8) DATASAVE DC 19) SAVE DC
9) DATASAVE DC CLOSE 20) SCRATCH
10) DATASAVE DC OPEN 21) SCRATCH DISK
El) DBACKSPACE 22) VERIFY

17

For output as follows:

1) Program text from

PLOT* LIST commands.

2) Disk data from
LIST DC statements.

For output as follows:

1) Graphs and labels
L from PLOT statements.

*Not for Model 2207A
applications.

APPENDIX C

BASIC LANGUAGE SYNTAX AND TERMS

The following syntax is used to denote the components in a general form
of a statement:

1.

Uppercase letters (A through Z) or words must be written in an
actual statement exactly as shown in a general form.

Lowercase letters or words represent items for which specific
information 1is to be substituted in an actual statement. Sometimes
hyphens join lowercase words (or words and numbers) to signify
single items.

Vertically stacked items represent alternatives, only one of which
is to be selected.

When stacked items are enclosed in braces, {}, one item must be
specified. The braces are not included in an actual statement.

When single or stacked items are enclosed 1in brackets, | 1, the
items are optional and may be omitted. The brackets are not
included in an actual statement.

The following characters must be written as shown in a general form,
unless otherwise indicated by a note:

comma
equal sign

parentheses

pound-sign

slash

double quotation marks

NI~ 1l

When an ellipsis, ..., follows an item, the item may be repeated
many times successively in an actual statement.

Blanks, inserted for readability in a general form, are not
required. Wang systems ignore blanks in an actual statement unless
the blanks are embedded in quotation marks.

The sequential order of the components in a general form must be
preserved when writing an actual statement.

The following terms occur in one or more of the general forms in this

manual :

alpha array designator - Any alphanumeric array name followed by closed
parentheses, e.g., A$(), M6$().

alpha variable - Any alphanumeric scalar variable, e.g., BS$,

C2$; any element of a one- or
two-dimensional alphanumeric array, e.q.,
D$(4), X$(15,7); or any string-function,
e.g., STR(Y$, 5, 3).

18

array designator

expression

numeric array designator

numeric variable

Appendix C

Any alphanumeric or numeric array name
followed by closed parentheses, e.g.,

¥$(), X().

Any combination of numeric variables, digits,
arithmetic operations, and built-in
mathematical functions, e.g., 2 * (X+3 +
SIN(Y)).

Any numeric array name followed by closed
parentheses, e.g., X(), Z5().

Any numeric scalar variable, e.g., Y, Z2; or

any element of a one- or two-dimensional
numeric array, e.g., C(7), P3(1), D(4,9).

19

APPENDIX D
FUNDAMENTAL I/0 STATEMENTS

INPUT
KEYIN
MAT INPUT
PRINT
PRINTUSING
MAT PRINT

NOTE:

The operations INPUT, KEYIN, MAT INPUT, PRINT, PRINTUSING,
and MAT PRINT have built-in features which may be suitable
for program control of non-Wang devices interfaced to a
Wang CPU. The six operations are described in detail in
this appendix to assist readers in determining their
appropriateness for particular applications. See
Appendices E and F for descriptions of other 170
operations.

20

INPUT

General Form:

INPUT ["literal string",] variable [, variable]...

Purpose

The INPUT statement controls data input from one device and sends
system-generated information to another device. The statement has many
special features, some designed to prompt an operator when input is required
via a keyboard during program operation; however, the statement can be used to
request data (without operator intervention) from Wang peripherals other than
a keyboard, or from some non-Wang devices interfaced to a 2200 Series CPU.

The primary purpose of an INPUT statement is to receive data from the
device whose address is currently selected for operations in the I/0-class
INPUT. Prior to data reception, however, the literal string message (if any)
and a question mark are sent to the device whose address is currently selected
for the operations in the I/0-class CO (console output); then, the system
awaits data input. As each character is received, an echo is sent to the CO
device.

General Features

The argument list of an INPUT statement can contain several variables
representing memory Tlocations into which data 1is to be stored. Numeric
variables, alphanumeric variables, string (STR) functions, and specific array
elements can be used as arguments, but not array designators; therefore, the
maximum character length per argument is 64. To ensure proper storage of
input data without character loss, a long message or data stream received in
response to an INPUT statement must contain data-separator commas at intervals
not exceeding 65 characters and carriage-return-characters at intervals not
exceeding 191 characters.

Data is stored temporarily in the CPU buffer and not processed for
transfer to variables in the argument list until a carriage-return-character
is received.

When processing begins, several features are jmplemented, e.g., a data
validity check is made before data is transferred to a numeric variable.

If the data delimited by a carriage-return-character does not satisfy
all the variables in the argument 1list, the input procedure resumes
automatically and does not terminate until all variables are satisfied or a
carriage-return-character is received without data.

Special Features

Execution of an INPUT statement is equivalent to the following steps:
1. If the statement contains a literal string message, the message is

sent to the address currently selected for CO-class operations (or
the primary address 005 if no selection has been made).

21

Appendix D
(INPUT)

2.

3.

A question mark character, followed by a space character is sent to
the CO address (usually to prompt an operator that the system is
awaiting data).

The CPU enables the device controller whose address is currently
selected for INPUT-class operations (or the primary address 001 if
no selection has been made) and awaits an incoming character.

As soon as a character is received from the input device (via its
controller board in the CPU chassis), the character is transferred
to the CPU buffer for temporary storage; then an echo is sent to the
CO address. The echo-procedure disables the INPUT address, enables
the CO address, outputs the echo character, and usually re-enables
the INPUT address to await the next character.

NOTE:

The following character codes produce special action:

a) Codes (08),s and (5F);s are interpreted as
backspace instructions and are not stored.
Each code effectively removes the previously
buffered character.

b) Code (5C);s is interpreted as a line erase
instruction and is not stored. “The code
effectively removes all the currently-buffered
characters.

c) Code (0D);s is interpreted as a signal to
interrupt data reception and process data
currently in the CPU buffer. See Step 7.

A count is maintained of the number of characters currently stored
in the CPU buffer, and Step 4 is repeated until a
carriage-return-character (0D);¢ is stored in the buffer or until
the buffer contains 191 characters (whichever occurs first).

If the buffer count reaches 191 without an (0D)1¢ code, the CPU
disables the INPUT address, enables the CO address, and outputs an
error message (ERR 45). The buffered data is ignored (not stored in
memory). The count is reset to zero and execution returns to Step
3. If an (0D);gcode is received, execution goes to Step 7.

After an (0D);¢ code reaches the CPU buffer, the CPU disables the
INPUT address and begins to process the buffered data.

The system checks the position of the argument 1list "pointer" to
determine whether the next receiving variable is numeric or
alphanumeric. Also, the system looks ahead in the buffered data
until a data separator is found.

22

LY

Appendix D
(INPUT)

The following rules apply to data separators:

NOTE:

a) A carriage-return code (0D);q can serve as a data
separator in addition to serving as a signal to
process data currently in the CPU buffer.

b) A comma (2C); Serves as a data separator if not
embedded in a pair of quotation marks which
qualify as data delimiters.

c) Quotation marks, i.e., (22)1s the code for double
quotation marks and (27)1¢ the code for single
quotation marks qualify as data delimiters if they
occur in matched pairs as follows:

. the first quotation mark is the first
nonblank character in the buffer or the
first nonblank character following the
last recognized data separator comma, and

. the second quotation mark is followed by a
comma or a carriage-return code.

If the second quotation mark is missing, error
message (ERR 39) is sent to the CO address, the
buffered data is dignored, the argument T1ist
pointer does not move, and execution returns to
Step 2. If the second quotation mark is present
but the separator is missing, error message (ERR
29) is sent, the buffered data 1is ignored, and
execution returns to Step 2.

d) Commas which qualify as data separators and
quotation marks which qualify as delimiters are
not stored in memory., Other commas and quotation
marks are treated as data to be stored.

9. After a data separator is located, the data preceding the separator
is processed for transfer to the receiving variable:

a)

b)

If the receiving variable is numeric, the system tests the data
with respect to legal BASIC language numeric formats. If the
data contains illegal characters, error message (ERR 29) is sent
to the CO address, the buffered data is ignored, the argument
list pointer does not move, and execution returns to Step 2. On
the other hand, legal data 1is converted to Wang's internal
numeric format for storage in the receiving variable.

If the receiving variable is alphanumeric, no data validity
check is made; the characters are transferred to memory
sequentially until the Tocation is filled or the data separator
is reached (whichever occurs first). If the location in memory
is too small, any excess input characters are ignored. If the

23

Appendix D
(INPUT)

lTocation is larger than the data, trailing space characters
(20),6 are transferred. In particular, if the receiving
variable 1is a string (STR) function, only the specified
byte-positions receive data from the buffer. If the input data
is enclosed in single quotation marks, uppercase codes are
converted to lowercase codes before the data is stored.

NOTE:

The codes (00),. and (7F)16 are ignored.
Any code above ?7F)16 may give unpredictable
results.

If no data precedes a data separator carriage-return, execution is
terminated.

10. After data is transferred to a receiving variable, the argument 1ist
pointer moves to the next variable, if any. If there 1is another
variable and the last data separator was a comma, execution returns
to Step 8; if the 1last separator was a carriage-return code,
execution returns to Step 2. On the other hand, if the list
contains no other receiving variables, execution of the INPUT
statement is terminated.

Examples

To illustrate how commas and double-quotation-marks are interpreted by
an INPUT statement, five brief examples are included here. Identical input is
used for each example.

No DIM statement or SELECT statement is included in any of the two-line
programs in Examples D1 through D5. If the programs are entered and run after
the system has been Master Initialized, the keyboard is selected automatically
as the 1input device, and the dimension for each alphanumeric variable is 16
characters (the default value).

The PRINT statement is used in each example to find out what characters
are stored in memory for each variable named in the INPUT statement. However,
the PRINT statement presents the data in a zoned or a packed format depending
upon whether a comma or a semicolon follows each variable. A HEXPRINT
statement could be used to determine what characters are stored in memory.

Examples D1 through D5 are presented here as hardcopy of the CRT display
produced when the short programs are entered, run, and given input especially
prepared to demonstrate the System 2200 INPUT-statement-processing-procedure.
To duplicate any example, first enter the program text (i.e., Tlines 10 and
20). Then enter the command RUN by touching the RUN key followed by the
EXECUTE key. After the question mark appears to indicate the system is
awaiting data, enter the input shown in the fourth line. The output shown in
the fifth line appears automatically.

24

-

Appendix D
(INPUT)

Example D1

:10 INPUT A$, B$
:20 PRINT A$, B$

:RUN
? "AB,CD",M"PQ,RS"
AB,CD M"PQ

The first comma in the input data stream is considered by the system to
be part of the literal string intended for storage in the variable A$ memory
location. The second comma is recognized as a separator and is not stored.
The first double-quotation-mark of the next pair of double-quote characters is
not the first nonblank character after the data-separator-comma; therefore,
the expression "PQ,RS" 1is not recognized as a literal string. Instead,
M"PQ is assigned to B$ because the comma after the letter Q is recognized as
another data separator. Since the INPUT statement requires data for only
two variables, the remaining data RS" is ignored. Output appears in zoned
format because a comma is used after A$ in the PRINT statement.

Example D2

:10 INPUT A$,B$,C$
:20 PRINT A$,B$,C$

:RUN
? "AB,CD",M"PQ,RS"
AB,CD M"PQ RS"

By adding a third variable to the INPUT (and PRINT) statements in
Example D2, the input data previously ignored in Example D1 is stored in C$.

Example D3

:10 INPUT A$,B$
:20 PRINT A$;B$
:RUN

? "AB,CD",M"PQ,RS"
AB,CDM"PQ

By using a semicolon in Line 20, instead of the comma used in Example
D1, the output appears in packed rather than zoned format.

Example D4

:10 INPUT A$,B$,C$
:20 PRINT A$;B$;C$
:RUN

? "AB,CD",M"PQ,RS"
AB,CDM"PQRS"

By using semicolons in Line 20, instead of the commas used in Example
D2, the output appears in packed format.

25

Appendix D
(INPUT)

Example D5

:10 INPUT A$,B$.C

:20 PRINT HEX(22);A$;HEX(22)3HEX(2C);B$;HEX(2C);C
:RUN

? "AB,CD",XYZ,125.3

"AB,CD",XYZ, 125.3

By using the code HEX(22) for each double-quotation-mark and HEX(2C) for
each data-separator-comma, the PRINT statement in Line 20 structures a data
stream which duplicates the input stream (except for the leading space
allotted for a sign when numeric input is assigned to the numeric variable C).
A trailing space is allotted also when the value is printed.

26

KEYIN

General Form:
KEYIN alpha-variable, line-number-1, 1ine-number-2,

where:

alpha-variable a specified alphanumeric varible, a
string function, or a particular

element of an alphanumeric array.

1ine-number-1 a specified 1ine for a conditional

branch.

1ine-number-2 a second (or the same) specified line

for a conditional branch.

Purpose

The KEYIN statement (which can be used only in the Program Mode) checks
the character-ready condition of the device controller whose address is
currently selected for the I/0-class parameter INPUT. Then, one of the
following actions occurs, depending upon the character-ready condition:

Not ready - program execution proceeds to the next statement.

Ready with a character, other than a special function code - the
character 1is stored in the first byte-position of the specified
variable, and program execution branches to 1line-number-1.

Ready with a special function code, i.e., one of the 32 codes
ranging from (00);¢ through (1F),. - the code is stored in the first
byte of the specified variable, and program execution branches to
line-number-2.

Unlike the INPUT statement, the KEYIN statement provides no inherent
display capability, i.e., no character echo is sent to the currently selected
CO address.

Test Program

The following program can be used to demonstrate the conditional
branches of the KEYIN statement. In the program, Line 20 is executed
repeatedly by an endless loop. Each time no character is found in the buffer
on the keyboard controller, the Line 30 message is displayed. However,
touching alpha or numeric keys on the keyboard produces the Line 50 message,
while touching Special Function Keys produces the Line 70 message.

27

Appendix D
(KEYIN)

Statements Remarks

10 DIM A$1 Dimension A$ for one character.
20 KEYIN A$, 50, 70 Scan the keyboard for input.

30 PRINT "¥ddkdkskn

40 GOTO 20

50 PRINT "---to---"

60 GOTO 20

70 PRINT "S.F. KEY"

80 GOTO 20

By including the following line:
15 SELECT INPUT xyy
where xyy is replaced by the "input" address of an interface controller, the

program can be used to demonstrate KEYIN operations for a device plugged into
the interface controller.

NOTE:

For applications not involving single character input, the
$IF ON statement offers advantages over a KEYIN statement.
A $IF ON statement can check the device-ready condition of
an input or an output address, and branch to a specified
line if a ready condition is sensed.

28

MAT INPUT

General Form:
MAT INPUT numeric-array-name [(d; [,d;1)] [se00]
alpha-array-name [(d,[, dy]1)length]]
where:

d = expression specifying a new dimension, 1<d;, d,<255 and
d;*d,<4096 (default d;=d,=10 if no COM or DIM statement
defines the dimensions).

length = expression specifying the dimensioned 1length of
each alphanumeric array element, 1 < length < 64
(default length = 16 bytes).
Purpose

The MAT INPUT statement controls data input from one device and sends
system-generated information to another device wusing a procedure very
similar to the INPUT statement. However, unlike the INPUT statement, the
MAT INPUT statement receives values for storage in numeric and/or alphanumeric
arrays. The syntax requires array names only, not array designators; closed
parentheses are implied and must be omitted when specifying the argument
list. Any arrays previously dimensioned in a COM or DIM statement can be
redimensioned in a MAT INPUT statement.

Arrays are filled element-by-element, row-by-row sequentially. Input
values must be separated by commas or carriage-returns at intervals not
exceeding the element size to prevent data loss. If leading space characters
or commas are to be treated as part of an alphanumeric value, the data should
be enclosed in double quotation marks and followed by a data separator.
Data is temporarily buffered in the CPU until a carriage-return character
is received. For further details, read the discussion of the INPUT statement
presented in this appendix.

29

PRINT

General Form:
PRINT print-element [t print-element]...[t]

where:

literal string

alphanumeric variable

HEX function = output data source
expression

TAB parameter

null

print-element

‘—f
n

semicolon

{comma },= element separator and format indicator

Purpose

The PRINT statement outputs data in zoned, packed, or mixed format
depending upon whether commas, semicolons, or both are used as print-element
separators. For a packed format (indicated by semicolons), data from a
particular print-element is followed immediately by data from the next
print-element. For a zoned format (indicated by commas), data from a
particular print-element is followed by enough space characters to complete a
zone before data from the next print-element begins. (Output zones represent
as many groups of 16 characters each as possible for the currently selected
line length, e.g., there are five zones in an 80 character 1line 1length; the
default line length is 64 characters; the maximum length is 255.)

Features

A PRINT statement can be executed in the Immediate Mode or the Program
Mode; however, different I/0-class parameters are associated with each
operation as follows:

. In the Program Mode, a PRINT statement outputs data to the address
currently selected for the I/0-class PRINT. If no address has been
selected for PRINT operations, the system uses the primary address
005.

In the Immediate Mode, a PRINT statement outputs data to the address
currently selected for the I/0-class CO (console output). If no
address has been selected for CO operations, the system uses the
primary address 005.

Data output is affected by the following general controls:

The data format for each type of print-element 1is fixed by the
system.

Extra space characters (blanks) are output automatically, when
necessary, to satisfy a zoned format.

30

Appendiz D
(PRINT)

A character count is maintained, and a carriage-return character,
followed by either a line-feed or a null character (depending upon
the device type code in the address), is output automatically
whenever one of the following conditions arises:

the current character count equals the 1line length (unless
device type = 4),

the system looks ahead and finds that the sum of the current
character count and the characters to be output for the next
print element exceeds the line length, or

when no punctuation follows the last print-element.

(Note: The character count is reset to zero when a carriage
return character is output.)

Data Formats

Data formats for each type of print-element are determined by the
following rules:

1.

Literal Strings -

Data is output character-by-character, including any blanks, exactly
as shown within the double quotation marks delimiting a string, or,
if single quotation marks delimit a string, uppercase characters are
replaced by lowercase characters in the output.

Alphanumeric Variables -

The characters stored in the specified variable are output, except
for trailing space characters which are ignored. If a variable
contains all space characters, one space character is output. Note:
To output every character in an alphanumeric variable, a string
function should be used as a print-element, e.g., STR(A$,1) outputs
every character in A$, beginning with the first.

HEX Functions -

A HEX function, e.g., HEX(41582C35), defines each character by a
pair of hexdigits. Such functions can be used to output any 8-bit
codes. Data 1is output byte-by-byte sequentially until every
specified character 1is sent. Note: the look-ahead feature is not
implemented before the system outputs HEX function data; therefore,
a system-generated carriage return and line feed (or null) character
sequence is inserted automatically when the character count equals
the line length - then the count is reset to zero and data output
continues.

Null Print-elements -
If a print-element is omitted (i.e., a second element separator

immediately follows a previous one), the system outputs one null
character, (00);¢-

31

Appendix D

(PRINT)

5.

6.

TAB Parameters

First, the expression in a TAB parameter is evaluated and truncated
to an integer (which must be < 256). Then, one of two possible
actions occurs:

. If the current character-count is less than the TAB value, space
characters are output until the count equals the TAB value.

. If the current character-count is greater than or equal to the
TAB value, the TAB parameter is ignored.

Note: Codes whose first hexdigit is zero, do not increment the
character count, e.g., a null character (00),4, a carriage-return
character (0D),s, a 1ine-feed character (0A),¢, etc.

Expressions -

First, the expression is evaluated; then, the value determines
whether a fixed point or a floating point format is used for data
output. Numeric formats for the value of an expression (or a single
numeric variable) are defined as follows, where IQ] represents the
absolute value of the print-element:

Fixed Point Format if .1 <|Ql< 10*!3

Isld]d]... d[.IdI...JdEﬂ

l—>0ne trailing blank = (20);¢.

»Up to 13 digits and an optional decimal
point in ASCII code. Leading and
trailing zeros are omitted. The decimal
point = (2E); is in the proper position
or omitted if Q is an integer.

—»A blank = (20),if Q 2 0, or a minus sign
= (2D),5 if Q < 0.

(Note: The number of characters in a fixed point format
varies from a minimum of three to a maximum of 16,
including the trailing blank.)

32

‘o

%

Appendixz D
(PRINT)

Floating Point Format if 107°% < Q <.1, or 10%13< q <10+100

[sld]. IildldldfdldldlilEISELdlAl

N

[»One trailing blank = (20);,

Two exponential digits in ASCII
code.

——»Sign of exponent: plus = (2B);¢ »
minus = (2D)¢.

3 Character denoting exponential
format, E = (45);6.

—»Eight digits including trailing
zeros in ASCII code.

»Decimal point = (2E);g.

»Non-zero leading digit before
decimal point (scientific notation).

—»Sign of value: blank = (20),¢if Q20,
minus = (2p);g if Q<O.

(Note: The number of characters in a floating point
format is always 16, including the trailing blank.)

General Procedure

Upon execution, a PRINT statement processes the specified print-elements
sequentially.

For each print-element, data is formatted according to the rules
applicable to the element type. After data output is completed for the
print-element currently being processed, one of the following actions occurs:

If a semicolon follows the current print-element, the next element
is processed immediately.

If a comma follows the current print-element, the system determines
how many space characters are needed to complete the current zone
(i.e., to move a printing device to the proper position for
subsequent output). The necessary number of space characters are
output before the next element is processed.

If no punctuation follows the current print-element, the system

outputs a carriage-return character automatically (followed by a
line-feed or null character).

33

Appendix D
(PRINT)

Effect of Device Type Codes on PRINT Statement Output

Printing devices do not have identical characteristics. For example,
some devices automatically supply a line-feed character each time a carriage-
return character is received. Some devices automatically supply a carriage-
return and a line-feed when received data exceeds their physical carriage
width,

However, if an appropriate device type code is used when an address is
selected for the I/0-class parameter PRINT, the System 2200 adjusts its PRINT
statement processing procedure as shown in the following table:

Effect of Device Type Code on PRINT Statement Output

Code System Action

0 Supplies a Tline-feed character automatically after each
system-generated carriage-return (CR) character. Therefore,
device type "0" is appropriate when outputting data to a device
which does not supply its own 1line-feed (LF) character after
receiving a CR. (See Code "4" also.)

2 Supplies a null character automatically after each system-
generated CR. Therefore, device type "2" is appropriate when
outputting data to a device which supplies 1its own LF after
receiving a CR.

4 Suppresses the character count and thereby suppresses any CR
normally generated when the character count equals the currently
selected Tline 1length. Supplies a LF after any other
system-generated CR., Therefore, device type "4" is appropriate
when outputting data to a device which supplies its own CR/LF
when the physical carriage width is exceeded.

(Note: The address 005 with device type "0" is standard for the CRT. The
address 215 with device type "2" is standard for Wang printers. With the
address 215, the printer supplies 1its own LF after receiving a CR/NULL
character sequence; however, if the address 015 is used, the printer supplies
its own LF after receiving a CR/LF character sequence -- thereby causing
double spaced hardcopy.)

34

L)

PRINTUSING

General Form:
PRINTUSING 1ine-number [,print-element] [t print-element]...[;]

where:

the number of the image (%) statement defining
the output format.

1ine-number

literal string
print-element

alphanumeric variable » = output data source.
expression

+
n

comma = element separator.
semicolon

General Form:

‘W

where:
7 = spaces or a literal string (not enclosed in quotation marks) ,
with no pound-sign symbols (#) or colons (:)
f = a data format specification of the following form:
+
{;} # [L,10#...1 0.0 [#...0 [4444]
Purpose

A PRINTUSING statement, in conjunction with a referenced Image (%)
statement, can be used to output print-element data interspersed with
alphanumeric text, according to the data format specifications and text in the
image.

Since PRINTUSING and % statements are executable only in the Program
Mode, data is output to the address last selected for the I/0-class parameter
PRINT. If no address has been selected for PRINT operations, the primary
address 005 is used.

Data Formats

Data format specifications for alphanumeric output should be composed
only of # symbols (as many symbols as the number of characters to be output).
Data format specifications for numeric output should be composed of # symbols
(one for each digit) and optional symbols such as +, -, $, ., and ++4+. (See
the output rules for expressions.) '

35

Appendix D

(PRINTUSING)

OQutput Rules

The

following rules apply to print-element output for PRINTUSING and

Image statements:

1.

Alphanumeric Variables

Data stored in the variable is output one character per # symbol
beginning with the Teftmost symbol in the format specification. If
the variable is shorter than the format, space characters are added
to satisfy the number of # symbols. If the variable is longer than
the format, the excess characters are ignored.

Literal Strings as Print Elements

Data enclosed in quotation marks is output one character for each #
symbol in the format, beginning with the leftmost symbol, until each
symbol is satisfied. If the 1literal string is shorter than the
format, space characters are added until the format is satisfied.
If the string is longer than the format, the string is truncated
(i.e., the excess characters are ignored).

Expressions

Numeric data is output with respect to the format specification as
follows:

a) If the format begins with a plus (+) sign, the actual sign of
the value (+ or -) is output immediately preceding the first
significant digit.

b) If the format begins with a minus (-) sign, a space character (a
blank) is output for a positive value or a minus sign (-) is
output for a negative value immediately preceding the first
significant digit.

c) If the format begins with a dollar ($) sign, a $ character is
output immediately preceding the first significant digit.

d) If no plus, minus, or dollar sign is shown at the beginning of
the format, a minus sign (-) is output for a negative value and
the length of the format is increased by one character
automatically.

e) Any commas in the integer portion of a numeric format
specification are output in the order shown in the format if a
significant digit has been output immediately before their
occurrence; otherwise, a space character is output instead.

General Procedure

Print-elements are processed sequentially. Data corresponding to the
first print-element specified in the PRINTUSING statement is edited to conform
to the first format specification in the Image statement. Image statement
text, if any, is output before or after the edited print-element data as
required by the image.

36

Appendix D
(PRINTUSING)

The process of pairing print-elements and format specifications
continues until all elements are processed. If the number of print-elements
in the PRINTUSING statement exceeds the number of format specifications in the
referenced Image statement, the Image statement is reused from the beginning
for the remaining print-elements. Each time an image statement is reused, one
of the following actions is implemented:

If a semicolon precedes the particular print-element which exceeds
the format specification and thereby initiates reuse of the image,
one space character is output prior to data output.

If a comma precedes the print-element which initiates reuse of the
image, a carriage-return character followed by a 1ine feed or a null
character (depending on the device type code) is output prior to
data output.

37

MAT PRINT

General Form:
MAT PRINT array-name [t array-name]...[t]
where:

t = Jcomma = argument-1ist separator and format indicator
semicolon

Purpose

The MAT PRINT statement outputs data in zoned, packed, or mixed format
depending upon whether commas, semicolons, or both are used as separators in
the argument Tlist.

Data from each two-dimensional array is output row-by-row. The first
element of a row always starts at the beginning of a new output line and
successive elements are output in zoned format unless the array name is
followed by a semicolon, in which case, the elements are output in packed
format. For alphanumeric arrays, the zone 1length is set equal to the
dimensioned Tlength of the array elements (rather than 16). As many output
lines as required for the elements of one row are formatted before data
corresponding to the next row begins. Space characters and carriage-return
characters are inserted in the output data automatically, as required, to
achieve the required format.

Data from each one-dimensional array is output in a column vector
format, i.e., one element per line.

38

L%}

™ APPENDIX E
| SPECIAL PURPOSE 1/0 STATEMENTS

DATALOAD

DATALOAD BT

DATASAVE

DATASAVE BT
» LOAD

SAVE

NOTE:

The statements in this appendix can be used to read/punch
information on some paper tape devices interfaced to a
System 2200 via a Model 2207A controller. It is possible
that the statements can be used to transfer data to or
from other devices also.

39

DATALOAD

General Form:

DATALOAD #f, argument-list

/XYY,
where:

f = An indirect address -- a file number (1,2,3,4,5 or 6) to
which the appropriate three-hexdigit address has been
assigned by a SELECT statement.

Xyy = An absolute address -- a three-hexdigit address with x
representing the appropriate device type code and yy
representing the appropriate controller address.

argument-
list =

Jvariable
array-designatorf ,. . .

Note: If neither a file number nor an absolute address is
specified, the default address is the one last selected
for the 1/0 class TAPE.

Purpose

With the device type code equal to 4 or 6, the DATALOAD statement can
read values from a punched tape and assign the values sequentially to the
variables 1in the argument 1list. Arrays are filled element-by-element,
row-by-row.. Only the first seven channels of a punched tape are read; the
eighth channel is interpreted as a "0" bit whether punched or not.

If device type 4 is used in the address, an X-ON character (11),161s
transmitted automatically to start the tape reader unit; an X-OFF character
(13),¢ is transmitted to stop the unit when reading is completed. These
gutqmatic codes are needed for control of Teletype or Teletype-like read/punch

evices.

If device type 6 is used, X-ON and X-OFF characters are not transmitted
to start and stop a tape reader unit. Such characters are not required to
control a unit like Wang's Model 2203 Punched Tape Reader.

Punched Tape Format

To be read by a DATALOAD statement, a punched tape must conform to the
following format:

40

ﬁf%

o

Appendix E
(DATALOAD)

CR
LF LF RUBOUT
l‘I—RUBOUT lr RUBOUT l— RUBOUT
r—RUBOUT H———RUBOUT l‘——X-OFF

-—

Ted S|—
(e}

2

o9 Ofla—
- 0O

'_D

m

A * oo oo oole v~
l..................%.x::;;“/‘///é :;5.../’/%4 :;;tll......l.
50 Null %ir%..ss%cy °3s V’Lag// 3o 50 NuI
Characters » Value o0 }alue 00 / Value / oo Charactersl#
’ [Y

Required for device type 4.
Optional for device type 6.

(Note: 8th channel not shown)

Values should be punched in ASCII code since the eighth channel is
interpreted as a "0" bit, whether punched or not. Values should be separated
by the four-character sequence consisting of a CR (carriage-return) LF
(1ine-feed) RUBOUT RUBOUT. The two rubout characters are required if device
type 4 is used; they are optional if device type 6 is used. A1l other rubout
characters and nonpunched frames on a tape are ignored when the tape is read,
whether the device type is 4 or 6.

@”‘ Tapes punched using DATASAVE statements automatically conform to the

' format required by DATALOAD statements. However, to ensure satisfactory
retrieval of data, the DATALOAD argument 1ist used to read a tape should be
jdentical to the DATASAVE argument list used to punch a tape. (Two argument
lists are identical if the number, type, and sequential order of the variables
match -- names may differ.)

Tapes not conforming to the required format for DATALOAD statements
should be read using DATALOAD BT statements.

Special Features

Values read from a punched tape are assigned sequentially to variables
in the argument list under the following conditions:

arrays are filled element-by-element, row-by-row,

both numeric and alphanumeric values can be assigned to alphanumeric
variables, and

only valid System 2200 fixed and floating point numbers can be
assigned to numeric variables since an automatic check is made
before data is stored in a numeric variable.

Values are read from a tape until all variables in the argument list are

@Mﬁ satisfied or until an end-of-file (an X-OFF character) is read. If an X-OFF

character is read before the argument 1list is satisfied, the remaining
variables retain their current values and an end-of-file condition is set.

41

Appendix E
(DATALOAD)

By programming an IF END THEN statement after a DATALOAD statement (and
specifying the initial Tine number of a subroutine), special messages can be
printed or special action taken in response to an end-of-file condition.
During execution of an IF END THEN statement, a branch is made to the
specified line number only if an end-of-file condition currently exists; also,
the condition is reset (removed). In programs without an IF END THEN
statement, the end-of-file condition (if set) is reset when the system
encounters another DATALOAD statement or initiates program execution.

Examples of Valid Syntax
DATALOAD /41D, A1$(), X, Y

DATALOAD #3, N(), A$, STR(B$, I, J)
DATALOAD X,Y,A$,B$

NOTES:

1. When using a DATALOAD statement to control input from
a device interfaced via a dual-address controller, the
yy-digits in the device address for the operation
should be replaced by the "output address".

2. A DATALOAD statement with device type 6 may prove
useful for control of interfaced devices other than
tape reader units if the incoming data values are
separated by carriage-return characters.

42

&

DATALOAD BT

General Form:

DATALOAD BT [R][parameter-set] [#f,] alpha-variable
/xyy,] \alpha-array-designator
where:
R = Read in reverse direction. (Can be used with device type 6

only.)

parameter- *
set ([N = expression], L =Jhh } . |S ={hh
N alpha-variable alpha-variable
8

N = Number of characters to be read (each character = 1 byte =
bits). The expression is evaluated and truncated to an
integer which must be21.

L = The leader code, i.e., a code to be ignored by the system
until a different code is read. The code can be specified by
a pair of hexdigits (represented by hh above) or by an
alphanumeric variable whose first character defines the code.

S = The stop code, i.e., a code instructing the system to stop
reading data. The code can be specified by a pair of
hexdigits (represented by hh above) or by an alphanumeric
variable whose first character defines the code.

f = An indirect address -- a file number (1,2,3,4,5 or 6) to
which the appropriate three-hexdigit address has been
assigned by a SELECT statement.

An absolute address -- a three-hexdigit address with x
representing the appropriate device type code and yy
representing the appropriate controller address.

Xyy

Note: If neither a file number nor an absolute address is
specified, the default address is the one last selected for
the I/0-class TAPE.

* When more than one parameter is specified in the closed
parent?eses, commas must separate the parameters, e.g., (N = 100,
L=200).

Purpose

With the device type code equal to 4 or 6, the DATALOAD BT statement can
read program text or data from a punched tape and store the information in the

spegified alphanumeric variable or array. A1l eight channels of the tape are
read.

43

Appendix E
(DATALOAD BT)

If device type 4 is used in the address, an X-ON character (11);¢ is
transmitted automatically to start the tape reader unit; an X-OFF character
(13),¢ is transmitted to stop the unit when reading 1is completed. These
automatic codes are needed for control of Teletype or Teletype-like read/punch
devices.

If device type 6 is used in the address, an initialization character of
the following form is transmitted automatically:

(xxxx0000) , if the parameter R is omitted, or
(xxxx0001), if the parameter R is included in the statement.

In either case, the four high-order bits are indeterminate. Such codes are
needed to activate a device Tike Wang's Model 2203 Punched Tape Reader. In
particular, the code with Tow-order bit "1" activates "forward reading," and
the code with low-order bit "0" activates "reverse reading".

If the parameter L is used in a DATALOAD BT statement to define a leader
code, the code is ignored when the tape is read, i.e., all characters equal to
the specified code are ignored until the first character not equal to the code
is recognized.,

The following considerations should influence the values used in an
actual statement only if device type 4 is used:

1. For termination by count (the N parameter), the system normally
sends out the X-OFF character after N-2 characters have been read;
therefore, N should be > 3, If N=1 (or 2), the next 2 (or 1)
characters may be lost.

2. If reading is terminated by filling the variable or array, the
number of characters in the variable or array should be >3.

3. If a stop character is encountered, the stop character and the next
two characters are read; then the tape stops.

No Special Tape Format Required

The DATALOAD BT statement permits punched tapes in any format to be read
by the system. If the data is not in a form directly usable by the system,
the data can be retrieved from the alphanumeric variable or array and
converted using other BASIC language statements which perform bit/byte
manipulation or conversion operations.

Examples of Valid Syntax

DATALOAD BT /41D, A$

DATALOAD BT (L = FF, S = OD) #2, A$()
DATALOAD BT (N = 100) X$()

DATALOAD BT (N =20 , L = 00, S = A$) A1$()

44

Appendix E
(DATALOAD BT)

NOTES:

1. When using a DATALOAD BT statement to control input from a
device interfaced via a dual-address controller, the yy-digits
in the device address for the operation should be replaced by
the "output address".

2. A DATALOAD BT statement with device type 6 may prove useful
for control of interfaced devices other than tape reader
units.

45

DATASAVE

General Form:

DATASAVE #f, OPEN "name"
/4yy, END
argument-list

where: |
f = An indirect address -- a file number (1,2,3,4,5 or 6) to

which the appropriate three-hexdigit address has been
assigned by a SELECT statement.

4yy = An absolute address -- a three-hexdigit address with

device type code equal to 4 and yy representing the
appropriate controller address.

OPEN = A parameter indicating that 1leader code is to be

punched (50 null characters).

name = Any 1 to 8 character name (required by the syntax but not

used).
END = A parameter indicating that an X-OFF character and trailer
code are to be punched.
argument-
list =|literal string

alpha variable \,...
expression
array designator

Note: If neither a file number nor an absolute address is
specified, the default address is the address Tlast
selected for the I/0-class TAPE.

Purpose

With the device type code equal to 4, the DATASAVE statement can be used
to punch data files on paper tape. Three versions of the statement perform
distinct phases of a data file punching operation. A statement with the
parameter OPEN (followed by a dummy name in quotation marks) punches leader
code, i.e., 50 null characters. A statement with an argument 1list
sequentially punches data values corresponding to the argument 1list. A
statement with the parameter END punches a file termination code, i.e., an
X-OFF character, followed by trailer code consisting of 50 null characters.

Upon execution, a DATASAVE statement with an argument 1ist automatically
inserts the four-character-sequence CR (carriage-return) LF (line feed) RUBOUT
RUBOUT wherever needed to separate values. Array values are punched
element-by-element, row-by-row sequentially with the four-character-sequence
separating the elements.

46

Q

Appendix E
(DATASAVE)

When a value corresponding to an alphanumeric variable is punched, any
trailing space characters stored in memory are omitted.

When a value corresponding to a numeric variable is punched, the value
is automatically converted from Wang's internal numeric format to either a
fixed or a floating point format, depending upon the magnitude of the value
(denoted by Q) in the following diagrams).

Fixed Point Format if .1 s |Q] < 10+!3

s|d|d]...[d]. [d;[,..lfdl

\

| »-Up to 13 digits in ASCII code
(1eading and trailing zeros
omittedg. The decimal point
(2E),¢ is in the proper position,
or is omitted if Q is an integer.

—»-Sign of the value: minus = (2D);¢
if Q<03 blank = (20),¢ if Q 2 0.

(Note: A fixed point value may have a minimum of two characters
or up to 15 characters.)

Floating Point Format if 10-99 <|Q|<.1, or if 10*13 5[Q|<10+100

s|d|.ld|d|d]|d|d|d|d|d|E|s|d d
. ~ — S——

|—>Two exponential digits in ASCII code.

Sign of exponent: plus = (2B);g, minus =
(2D)16.

L3 Character denoting exponential format,
E = (45)160

—»Eight digits, including trailing zeros,
in ASCII code.

»-Decimal Point = (2E);¢.

»Non-zero leading digit (scientific notation).

»-Sign of value: blank = (20),¢4 if Q 20,
minus = (2D),¢ if Q <O.

(Note: A floating point value always has 15 characters.)

47

Appenarx &
(DATASAVE)

Punched Tape Format:

CR CR
LF LF

u—— RUBOUT RUBOUT
;——RUBOUT E——RUBOUT

CcR
- LF
RUBOUT
RUBOUT
X-OFF

.................... /. °
50 Null EE:::?//;un/::///
Characters p Value /

3
0
3
.
.
°
.
3
.
.
.
.

50 Null
Characters

00000000 |«

—y /

Punched by a

—y

e > | — DATASAVE argument list
T statement

Punched by a
DATASAVE OPEN “name’
statement

(Note: 8th channel on punched tape not shown)

Examples of Valid Syntax

DATASAVE OPEN "TTY"

DATASAVE N(), A$, X,Y,Z

DATASAVE END

DATASAVE /41D, STR(A$,I,J), HEX(FAFB)
DATASAVE #5, A$()

DATASAVE X, Y, A$

ﬁir,

Punched by a
DATASAVE END
statement

NOTE:

device interfaced via a dual-address controller,

be replaced by the "output address".

When using a DATASAVE statement to control output to a

yy-digits in the device address for the operation should

the

48

\&

LT

DATASAVE BT

General Form:

DATASAVE BT [#f, {alpha-vam’able }

/4yy,] \alpha-array-designator
where:
£ = An indirect address -- a file number (1,2,3,4,5, or 6) to
which the appropriate three-hexdigit address has been
assigned by a SELECT statement.
4yy = An absolute address -- a three-hexdigit address with

device type code equal to 4 and yy representing the
appropriate controller address.

Note: If neither a file number nor an absolute address is
specified, the default address is the address last
selected for the I/0-class TAPE.

Purpose

With the device type code equal to 4, the DATASAVE BT statement can be
used to punch on tape the value currently stored in a specified alphanumeric
variable or the values currently stored in an alphanumeric array. No control
information is inserted between values. Data in any 8-bit code format can be
punched.

If the interfaced tape punch equipment is capable of turning its punch
unit on upon receipt of an X-ON code and turning the unit off upon receipt of
an X-OFF code, the hexadecimal equivalent of these codes can be transmitted
under program control prior to and following execution of a DATASAVE BT
statement by using PRINT statements. For example, PRINT HEX(11) transmits the
X-ON code, and PRINT HEX(13) transmits the X-OFF code.

Examples of Valid Syntax

DATASAVE BT /41D, B1$
DATASAVE BT #2, A$()
DATASAVE BT Q$()

NOTE:

When using a DATASAVE BT statement to control output to a
device interfaced via a dual-address controller, the
yy-digits in the device address for the operation should
be replaced by the "output address".

49

LOAD

General Forms for the LOAD Command and LOAD statement:

Command: LOAD #f
/8yy

Statement (Program Mode Only): LOAD [#f [,1ine=1[,1ine-2]]
/

4yy
where:

f = An indirect address -- a file number (1,2,3,4,5 or 6) to
which the appropriate three hexdigit address has been
assigned by a SELECT statement.

4yy = An absolute address -- a three-hexdigit address with

device type code equal to 4 and yy representing the
appropriate controller address.

Tine-1 = A number denoting the starting line of text to be deleted

before reading new text into memory. If not specified,

the first 1ine of the text is implied. (After new text is
loaded, execution automatically continues at "line-1"; an

$rror) occurs if the new text does not contain such a
ine.

line-2 = A number denoting the final line of text to be deleted
before 1loading the next text. If not specified, the last
line of the text is implied.

1. The LOAD command differs in procedure from the LOAD statement.
(LOAD is the only System 2200 verb which appears in a command
and a statement. By definition a command is nonprogrammable.)
See the 'functions of the LOAD command and LOAD statement as
described below.

2. If neither a file number nor an absolute address is specified,
the default address is the address 1last selected for the
I/0-class TAPE.

Purpose (LOAD Command)

With the device type code equal to 4 or 6, the LOAD command reads
program text from a punched tape and appends the text to the program currently
in memory. Thus the command permits additions to a current program or, if
executed after a CLEAR command, permits entry of a new program. The new
program is not executed until a separate RUN command is entered.

50

72

Appendix E
(LOAD)

Purpose (LOAD Statement)

The LOAD statement produces an automatic combination of events
equivalent to the following sequence of commands:

STOP - Stop execution of current program.

CLEAR P - Remove program text defined by [,1ine-1[,1ine-2]]
CLEAR N - Remove noncommon variables only.

LOAD - Load new program text.

RUN - Run the new program beginning with [1ine-1].

The . line numbers are optional. In particular, if only 1line-1 is
specified, the current program is deleted starting with the specified 1line and
continuing through the remaining text. If no line numbers are specified, the
entire program is deleted, and execution of the newly loaded program begins
with its lowest line number.

The LOAD statement, if included in a multistatement 1ine, must be the
last statement. A LOAD statement must not appear in a subroutine or within a
FOR/NEXT loop; if so, an error occurs when the RETURN statement or the NEXT
statement is encountered.

With the device type code equal to 4 or 6, the LOAD statement
(executable in Program Mode only) permits segmented, chained, or overlayed
programs to be run automatically, without operator intervention if the
segments are properly formatted on a punched tape.

Required Tape Format for LOAD Commands and LOAD Statements

RLF CRLF CRLFX-OFF

[t [o h—_*zfgn
e e Nrrr s

XXX X) ogéa:\:c:jt;; ooooo V ° %’?7‘.;"/..7“.22::;%;;32'..Zg.%;;:::'.éiéaiie;’..

Tl Optional

RUBOUT
;—RUBOUT

-y
(o]

Required for device type 4.
Optional for device type 6.

(Note: 8th channel not shown)

Text lines must be punched in ASCII character code and separated by the
four-character-sequence CR (carriage-return) LF (line-feed) RUBOUT RUBOUT if
device type code 4 is used. The two RUBOUT characters are optional if device
tﬁpe code 6 1is wused. The program must be terminated by at least one X-OFF
character.

51

Appendix E
(LOAD)

A LOAD command or statement reads only the first seven channels of a -
paper tape; the eighth channel is always interpreted as a "0" bit. Nonpunched o
frames and RUBOUT characters are ignored.

Examples of Valid Syntax

Commands: LOAD
LOAD #1
LOAD /41D

Statements: 100 LOAD
250 LOAD #2
400 LOAD /41D, 100

NOTE:

When using a LOAD command or statement to control input
via a dual-address controller, the yy-digits in the device
address for the operation should be replaced by the
"output address".

52

s

SAVE

General Form:

SAVE [/4yy [,1ine-1 [,1ine-2]]

where:

f = An indirect address -- a file number (1,2,3,4,5 or 6) to
which the appropriate three hexdigit address has been
assigned by a SELECT statement.

4yy = An absolute address -- a three hexdigit address with
device type code equal to 4 and yy representing the
appropriate controller address.
line-1 = A number denoting the starting line of program text to be
saved. If not specified, the first 1line of text is
implied.
line-2 = A number denoting the final line of text to be saved. If

not specified, the last line of text is implied.

Note: If neither a file number nor an absolute address is
specified, the default address 1is the address 1last
selected for the I/0-class TAPE.

-

Purpose

With the device type code equal to 4, the SAVE command punches program
text on a paper tape. Line numbers for a particular command are optional. If
only Tline-1 is specified, a portion of the current program is saved (start1ng
with the specified line and continuing through the remainder of the text). If
no line numbers are specified, the entire text is saved.

Tape Format

Upon execution, a SAVE command punches a tape in the following format:

CR
LF x OFF
RUBOUT RUBOUT RUBOUT X OFF

[RUBOUT rRUBOUT {—RUBOUT X OFF

oo o oo 7.
==//// o e W r s

........... I N NN NNN] ejlocscsopeon
50 Null :: Furs(/ 4 / SQC°V *ees / Last// ®eee 50 Null
Characters :: text text / :: / text
line

. Characters
line / » line
v/

...0
...0

éMm (Note: 8th channel on punched tape not shown)

53

Appendix E
(SAVE)

Beginning with two RUBOUT characters, the tape contains each text 1line
punched in ASCII character codes and separated from the next line by the
four-character-sequence CR (carriage-return) LF (line-feed) RUBOUT RUBOUT.
The last text line is followed by three X-OFF characters.

Examples of Valid Syntax

SAVE

SAVE #3

SAVE/41D

SAVE/41D, 100, 200
SAVE #5, 400

NOTE:

When using a SAVE command to control output to a device
interfaced via a dual-address controller, the yy-digits in
the device address for the operation should be replaced by
the "output address".

54

APPENDIX F
CUSTOMIZED

$GI0

1/0 STATEMENTS

NOTE:

Customizing a $GIO0 operation to suit a particular device
and application is similar to machine language
programming. The $GI0 statement has a "general
input/output" format executable within the framework of
the high-level BASIC language; however, a microcommand
sequence must be directly or indirectly specified in a
statement to define the particular operation to be
performed. Seventeen categories of microcommands are
available for use with the $GI0 statement.

55

General Form:

$GI0 [comment] [#f (arg-1,arg-2) [arg-3]
/Xyy

where:

comment = A character string, similar to a remark, identifying the
operation, e.g., WRITE, READ, CHECK READY; the comment is

ignored by the system.

f = An indirect address -- a file number (1,2,3,4,5 or 6) to
which the appropriate three-hexdigit address has been
assigned by a SELECT statement.

An absolute address -- a three-hexdigit address with "0"
as the recommended value for x, and with yy representing
the appropriate controller address.

Xyy

[

arg-1 = A customized microcommand sequence defining the particular
operation; the sequence can be specified directly by a set
of microcommands ?four-hexdigit-codes), or indirectly by a

variable representing a stored sequence.

"

arg-2 = An alphanumeric variable representing the error/status/
general-purpose registers, i.e., a multi-purpose memory
area where special characters and error/status information

are stored in particular byte-positions called registers.

arg-3 = An alphanumeric variable, array designator, or modified
array designator representing the data buffer (required
only for a microcommand sequence which includes a

multicharacter input or output microcommand).

Note: If neither a file number nor an absolute address is
specified, the default address is the address 1last
selected for the I/0-class TAPE.

Purpose

The $GI0 statement executes a custom-tailored signal sequence defined by
a specified microcommand sequence. The statement is ‘ideally suited for
support of non-Wang devices and instruments interfaced to a System 2200 via
one of Wang's interface controllers.

Features

$GI0 microcommands are similar to machine language codes. Each
microcommand s a four-hexdigit-code representing a fundamental operation
(usually multi-step) which can be used as a "building block" when constructing
a $GI0 operation. Seventeen categories of microcommands are available with
many choices in each category. The capability to customize an operation is
almost limitless since individual microcommands can implement one or more
diverse functions such as the following:

56

Appendix F
($GI0)

. setting a delay condition applicable to subsequent output of each
character

setting a timeout condition applicable to subsequent sensing of
device-ready signals and data input

disabling a previously enabled delay or timeout condition
storing special characters in particular registers

comparing registers and setting error flags or terminating the
operation

outputting immediate or indirect (stored) characters with or without
awaiting an acknowledge or echo character

outputting a device address to deselect a currently selected device
and select a different device

inputting single or multicharacter data with or without echoing or
verifying the received data

sending strobes to request each character during a multicharacter
input operation

setting CPU ready signals
awaiting device ready signals
terminating an operation by count or special-character-comparison

calculating, sending and/or saving the longitudinal redundancy check
(LRC) character for a multicharacter output or input operation.

Several microcommands arranged in a particular sequence in the arg-1 component
of a $GI0 statement can produce a complex operation or a relatively simple
one. Sometimes only one microcommand may be needed for a particular
operation.

The registers (byte-positions) in the variable specified as the arg-2
component of a $GIO statement are reserved for storage of the following types
of information:

an indirect character for a single-character output operation or for
comparison during a single-character input with verify operation

a two-byte value defining a delay or a timeout interval

a special character defining a termination condition for a
multicharacter input operation

an acknowledge or echo character received after a single character
output operation '

57

Appendix F
($GI0)

an LRC character calculated during a multicharacter input or output
operation

a two-byte binary count of the total number of transferred
characters (whether stored or not) when a buffer overflow occurs
during multicharacter input

error/status flags (stored on a bit-by-bit basis in Register 8)
indicating such conditions as buffer overflow, LRC error,
echo/verify error, compare error, timeout exceeded, termination (by
count, special character, or ENDI-level).

Valid Microcommands

The General I/0 Instruction Set Reference Manual, furnished with each
central processing unit which includes the $GI0 statement, contains tables of
all the valid microcommands with a description of the signal sequence
associated with each microcommand. The tables are too lengthy to reproduce in
this appendix.

Example

The following example illustrates some capabilities of the $GIO
statement.

$G10/01D (0202 0300 4011 1221 7105 4000 711D 1200 A000 4013, R$) B$()

Microcommand Function

0202 Store the character (02);5 in Register 2 (the second
byte of R$).

0300 Store the character (00);5 in Register 3.

4011 Send the character (11);5 to the currently selected
address, i.e., 1D.

1221 Set a delay condition equal to 50 microseconds

multiplied by the two-byte binary value stored in
Registers 2 and 3.

7105 Deselect the current address and select the address 05
(the CRT).

4000 Send the null character (00);5 to the current address
(now the CRT).

711D Deselect the current address and select the address 1D.

1200 Disable the delay specified by the microcommand 1221.

A000 Output each character stored in the buffer B$(), using

the following sequence:
WR = wait for a ready signal from the enabled
device.
DATAQUT/OBS = send the next character with an 0BS
strobe.
LEND = the LRC End sequence specified by hexdigit
hy . Since hy = 0, the sequence is "None".
4013 Send the character (13);¢ to the currently selected
address, i.e., 1D.

58

'S

Appendix F
($GI0)

The microcommand sequence above includes some operations which might be
useful for output of data to a punch tape unit. The microcommand 4011 sends
an X-ON character to the unit. The microcommands 1221, 7105 and 4000 send a
null character to the CRT (after a delay of 25.6 seconds) to allow the punch
motor time to reach a specified condition. The delay is disabled before the
multicharacter output operation (represented by A000) begins. Finally, the
microcommand 4013 sends an X-OFF character to the unit.

NOTE:

Before an appropriate microcommand sequence can be chosen,
the application and hardware requirements must be defined
and related to the inherent features of the available
microcommands. Therefore, the example given in this
appendix should not be used to control a particular punch
tape unit until the microcommands and the hardware
requirements are understood.

59

APPENDIX G - ASCII CONTROL AND GRAPHIC CHARACTERS IN

BINARY NOTATION

FORMATS:

HEXADECIMAL CODES:
7-BIT BINARY CODES:

HEX (a, a,)

(b, b bg b, by by b,)

HEXADECIMAL AND

Note:
System 2200 Characte
8-bit codes (bgb,b.b
be 0, b7 through b =

r Set--

Rt

b,b,)

THREE BITS 0 0 0 0 1 1 1 1 7-8IT
(HIGH ——= 0 1 1 0 0 1 1 BINARY
ORDER) 0 1 0 1 0 1 0 1 NOTATION

FIRST HEX
DIGIT —— 0 1 2 3 4 5 6 7

(HIGH ORDER) 2, b, b, b, b,

— | NUL | DLE SP 0 @ P \ [0 ofo0 0
SOH | DC1 ! 1 A Q a q 1 0| 0] Of1
STX | DC2 " 2 B R b r 2 0j0({1]0
ETX | DC3 # 3 c S c s 3 fjofo}| 1]
EOT | DC4 S 4 D T d t 4 0| 11 0(0
C
H ENQ | NAK % 5 E V] e u 5 01|01
A ACK | SYN ¢ 6 F v t v 6 o] 11 1]0
R 7
A BEL | ETB | (5004, 7 G w 9 w 7 o] 1] 1|1
$ BS | CAN| (8 H X h x 81ll1/0f{o0f0
E HT EM) 9 | Y i y 9 110]0]1
R LF SuB * J Z j z A 110(1]0
$ VT | ESC| + ; K [k { B{l1/0]1]1
FF FS |icommal < L \ | \ Cilf1]1]0]0
CR | GS | igam | = M] m } Dll1|1] 01
SO RS | iverioa > N t n ~ E 1{1]1f0
st Jus [/] 2] o [T o [oeL BEREE
[}
| : | SECOND HEX FOQUR BITS
CHARACTERS DIGIT (LOW
(LOW ORDER) ORDER)
LEGEND FOR ASCII CONTROL CHARACTERS
NUL | Null DLE Data Link Escape
SOH | Start of Heading DC1 Device Control 1
STX Start of Text DC2 Device Control 2
ETX End of Text DC3 | Device Contro! 3
EOT End of Transmission DC4 Device Control 4
ENQ | Enquiry NAK | Negative Acknowledge
ACK Acknowledge SYN | Synchronous Idle
‘BEL Bell (audible or attention signal) ETB End of Transmission Block
BS Backspace CAN | Cancel
HT Horizontal Tabulation EM End of Medium
(punched card skip) SUB | Substitute
LF Line Feed ESC Escape
vT Vertical Tabulation FS File Separator
FF Form Feed GS Group Separator
CR Carriage Return RS Record Separator
SO Shift Out us Unit Separator
Si Shift In DEL | Delete

60

[’3

K9

APPENDIX H
SETTING ADDRESS SWITCHES ON THE MODEL 2207A CONTROLLER

Two 8-pole address switches, RCV and XMT, are located on the chip side
of the controller board. In each switch, eight rocker-type microswitches are
enclosed in a rectangular frame and covered by a removable transparent shield.
The microswitches are visible through the shield, but the shield must be
removed in order to read the labels on the switch frame. A diagram of the
switch frame is shown in Figure H-1 with a grid added for reference purposes
only.

Centerline of Switch

On Off

OMN © I & M N <¢—— |ndividual Microswitch Numbers

8 K22 I T = «—— Numberson PC Board for Binary
W

T Bit Identification:
Low-order hex digit 8-4-2-1 positions.

High-order hex digit 8-4-2-1 positions.

Figure H-1. Frame for an Address Switch

Each of the eight microswitches (not shown in Figure H-1) is identified
by a position-number printed on the frame. Each rocker-type microswitch
pivots about the centerline of the frame. One end of an individual
microswitch lies in the OFF-row of the grid; the other end lies in the ON-row
of the grid. When one end of a microswitch is DOWN, the other end is UP. The
microswitch is turned ON if the end in the ON-row is DOWN.

To avoid confusion when reading the ON-OFF configuration of a switch,
look only at the ON-row of the grid. Then translate the DOWN position as ON
and the UP position as OFF for each microswitch.

For a System 2200 equipped with one Model 2207A unit, the standard
address codes are x19 for the RCV switch and x1D for the XMT switch. The
standard addresses for a second unit in a configuration are X1A and XIE.
These address codes are of the form xyy. The x-digit (the device-type-digit)
is not considered when setting an address switch; only the last two hexdigits
(i.e., yy) are considered. See Table H-1.

61

Appendix H

The last two hexdigits of a standard address must be converted into an
8-bit binary number. The leftmost digit in the 8-bit binary number
corresponds to the position "8" on the switch frame and the rightmost digit to
position "1" on the frame. When a bit in the 8-bit binary number is zero, the
microswitch in the corresponding position should be turned OFF. When a bit is
one, the corresponding microswitch should be turned ON (see Table H-1).

Table H-1. Standard Address Switch Settings for Model 2207A Controllers

Unit* I/0 Channel Hexadecimal Binary
1 Input (RCV) 19 00011001
Output (XMT) 1D 00011101

2 Input (RCV) 1A 00011010
Output (XMT) 1E 00011110

3 Input (RCV) 1B 00011011
Output (XMT) 1F 0001111

*If a unit is installed for hookup of a Teletype or Teletype-l1ike device to
:g;¥e as a console input/output unit, the address switches should be set as
ollows:

Input (RCV)
Output (XMT)

(o1)
(05) 3¢

zoooooom),
00000101)

62

'3

APPENDIX I
MODEL 2207A SPECIFICATIONS

Size of Controller Board

Length. . « « « « v v .. 14 in. (35.6 cm;

Depth « 6 in. (15.2 cm

Width 1 in. (2.5 cm)
Weight

3 1b (1.4 kg)

Power Requirements

Supplied by the CPU.
Connector
Receives a 25-pin RS-232-C compatible male plug.
Switches
Internal: Two device address switches on printed circuit board.

External: Five transmission rate switches: 110, 150, 300, 600 and
1200 baud.

Asynchronous Transmission Format

ASCII mode: 1 start bit, 7 data bits, even parity bit, 2 stop bits.
Binary mode: 1 start bit, 8 data bits, 2 stop bits.

Transmission Rate

Switch selectable: 110, 150, 300, 600 or 1200 baud.

Special Features

In ASCII mode, automatically decodes a Teletype BREAK signal into a
HALT/STEP signal and decodes an ESC (Escape) signal into a RESET signal.

Standard Warranty Applies

63

Preventive Maintenance Information

It is recommended that your equipment be serviced annually. A
Maintenance Agreement is available to assure this servicing
automatically. If no Maintenance Agreement is acquired, any servicing
must be arranged for by the customer. A Maintenance Agreement protects
your investment and offers the following benefits:

Preventive Maintenance:

Your equipment 1is inspected annually for worn parts,
lubricated, cleaned and updated with any engineering
changes, Preventive maintenance minimizes "downtime" by
anticipating repairs before they are necessary,

Fixed Annual Cost:

When you buy a Maintenance Agreement, you issue only one
purchase order for service for an entire year and receive
one annual billing., More frequent billing can be
arranged, if desired.

Further information regarding Maintenance Agreements can be
acquired from your local Sales-Service Office.

NOTE

Wang Laboratornies, Inc. does not honor
Maintenance Agreements gorn non guarantee
any equipment modified by the usenr.
Damage to equipment incwwred as a result
0f such modification 48 the financial
nesponsibility of the usenr.

64

o)

To Order by Phone, Call:

The completed order form should be mailed to:
A"\ (@B wanG LasoRATORIES, INC. (800) 225-0234
Supplies Division From Mass., Hawaii, and Alaska
51 Middlesex St. (617)256-1400
No. Chelmsford MA 01863
omheme TELEX 951-743
Order Form for Wang Manuals and Documentation
(® Customer Number (If Known)
® Bill To: Ship To:
(-:D Customer Contact: @ Date Purchase Order Number
())
Phone Name

(® Taxable (®Tax Exempt Number

@ Credit This Order to

Yes O A Wang Salesperson
No O Please Complete Salesperson’s Name Employee No. RDB No.
® Document Number Description Quantity Unit Price | Total Price
® Sub Total
Authorized Signature Date Less Any
Applicable
. . , Discount
0O Check this box if you would like a free copy of the Sub Total
. . . ota
Corporate Publications Literature Catalog (700-5294)
LocalState Tax
Total Amount

Ordering Instructions

If you have purchased supplies from Wang before, and
know your Customer Number, please write it here.

Provide appropriate Billing Address and Shipping Address.
Please provide a phone number and name, should itbe
necessary for WANG to contact you about your order.

Your purchase order number and date.

Show whether order is taxable or not.

If tax exempt, please provide your exemption number.

wr o =

o0

7. If you wish credit for this order to be given to a WANG
salesperson, please complete.

8. Show part numbers, description and quantity for each
product ordered.

9. Pricing extensions and totaling can be completed at your
option; Wang will refigure these prices and add freight on
your invoice.

10. Signature of authorized buyer and date.

Wang Supplies Division Terms and Conditions

1. TAXES — Prices are exclusive of all sales, use, and like
taxes.

2. DELIVERY — Delivery will be F.O.B. Wang's plant.
Customer will be billed for freight charges; and unless
customer specifies otherwise, all shipments will go best
way surface as determined by Wang. Wang shall not
assume any liability in connection with the shipment nor
shall the carrier be construed to be an agent of Wang.

If the customer requests that Wang arrange for insurance
the customer will be billed for the insurance charges.

3. PAYMENT — Terms are net 30 days from date of invoice.
Unless otherwise stated by customer, partial shipments will
generate partial invoices.

4. PRICES — The prices shown are subject to change without
notice. Individual document prices may be found in the
Corporate Publications Literature Catalog (700-5294)

5. LIMITATION OF LIABILITY — In no event shall Wang be liable
for loss of data or for special, incidental or consequential
damages in connection with or arising out of the use of or
information contained in any manuals or documentation
furnished hereunder.

DrinmtadinlICA 14 2141 B A AN

Fold

BUSINESS REPLY CARD

FIRSTCLASS PERMITNO.16 NO.CHELSMFORD, MA.

POSTAGE WiILL BE PAID BY ADDRESSEE

WANG LABORATORIES, INC.
Supplies Division

c/o Order Entry Dept.

M/S 56511

51 Middlesex St.

No. Cheimsford, MA 01863

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Fold

-3

2207A1/0 INTERFACE

= Customer Comment Form Title__ CONTROLLER USER MANUAL
- WANG

Publications Number 700-3364

Help Us Help You.. ..

We've worked hard to make this document useful, readable, and technically accurate. Did we succeed? Only you can tell us!
Your comments and suggestions will help us improve our technical communications. Please take a few minutes to let us
know how you feel.

How did you receive this publication? How did you use this Publication?
O Support or O Don'tknow O Introduction O Aid to advanced

Sales Rep to the subject knowledge
O Wang Supplies O Other O Classroom text O Guide to operating

Division (student) instructions
O From another O Classroom text O Asareference

user (teacher) manual
O Enclosed O Self-study O Other

with equipment text
Please rate the quality of this publication in each of the following areas. VERY

EXCELLENT GOOD FAIR POOR POOR

Technical Accuracy — Does the system work the way the manual says it does? O O O O O
Readability — Is the manual easy to read and understand? O O O 0O O
Clarity — Are the instructions easy to follow? O O m} O O
Examples — Were they helpful, realistic? Were there enough of them? m}] O a a
Organization — Was it logical? Was it easy to find what you needed to know? O O] O a
lllustrations — Were they clear and useful? O O O O O
Physical Attractiveness — What did you think of the printing, binding, etc? O O O O O

Were there any terms or concepts that were not defined properly? O Y O N Ifso, what were they?

After reading this document do you feel that you will be able to operate the equipment/software?d Yes O No
0O Yes, with practice

What errors or faults did you find in the manual? (Please include page numbers)

Do you have any other comments or suggestions?

Name Street

Title City

Dept/Mail Stop State/Country

Company ZipCode_____ Telephone

Thank you for your help.

All comments and suggestions become the property of Wang Laboratories, Inc. Printedin US.A. 14-3140 3-82-5C

Fold

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 16 LOWELL, MA

POSTAGE WILL BE PAID BY ADDRESSEE

WANG LABORATORIES, INC.

CHARLES T. PEERS, JR., MAIL STOP 1369
ONE INDUSTRIAL AVENUE

LOWELL, MASSACHUSETTS 01851

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Fold

Cut along dotted line.

ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851
TEL. (617) 459-5000

TWX 710-343-6769, TELEX 94-7421

Printed in U.S.A.
700-3364
10-82-4C

	Cover
	Preface
	Table of Contents
	Chapter 1: Model 2207A Features
	1.0 General Information
	1.1 Installation
	1.2 Connector Pin Assignments
	1.3 Device Address Codes
	1.4 Transission Timing

	Chapter 2: Programming Techniques
	2.0 Introduction
	2.1 Device Selection
	2.2 Choosing BASIC Language Operations
	2.3 Customizing Operations
	2.4 Controlling a Teletype Terminal

	Appendix A: Standard Addresses for Peripherals and Controllers
	Appendix B: I/O Class Parameters and Primary Addresses
	Appendix C: BASIC Language Syntax and Terms
	Appendix D: Fundamental I/O Statements
	Appendix E: Special Purpose I/O Statements
	Appendix F: Customized I/O Statements
	Appendix G: ASCII Control and Graphic Characters in Hexadecimal and Binary Notation
	Appendix H: Setting Address Switches on the Model 2207A Controller
	Appendix I: MOdel 2207A Specifications

