Buffered
Asynchronous
Communications
Controller
User Manual

(Model 2227B or Option 62)

© Wang Laboratories, Inc., 1978

LABORATORIES., INC.

(i u ANG) ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 459-5000, TWX 710 343-6769, TELEX 94-7421

Disclaimer of Warranties and Limitation of
Liabilities

The staff of Wang Laboratories, Inc., has taken due care in
preparing this manual; however, nothing contained herein
modifies or alters in any way the standard terms and conditions of
the Wang purchase agreement, lease agreement, or rental agree-
ment by which this equipment was acquired, nor increases in any
way Wang's liability to the customer. In no event shall Wang
Laboratories, Inc., or its subsidiaries be liable for incidental or
consequential damages in connection with or arising from the use
of this manual or any programs contained herein.

LABORATORIES, INC.

(' i ANG) ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (817) 459.5000, TWX 710 343-8769, TELEX 94-7421

S PREFACE

Information regarding the installation and operation of the Buffered
Asynchronous Communications Controller is provided in this manual.

Chapter 1 describes the features of the controller and some important
modem considerations for communications applications. Chapter 2 describes
programming techniques related to the controller.

Readers of this manual should be familiar with the BASIC 1language

capabilities and general programming techniques of the Wang system being used
in conjunction with the Buffered Asynchronous Communications Controller.

3

iii

CHAPTER 1

—
e o
N =t

—
.
LW

—) — — — — —

—— OO

wn — O

CHAPTER

NN N N
. . [] .
T wWwn =

APPENDIX A
APPENDIX B

CONTENTS

CONTROLLER FEATURES

General Information. ¢« ¢« « . . « . o o e e

Installation . . . ¢« ¢ ¢« v v ¢ 0 ¢ 6 o « & e e e e o :
Modem Considerations . . . ¢ ¢« ¢« ¢ ¢ ¢ o ¢ &« o « «

Connector Pin Assignments. . « . « ¢ ¢ o ¢ « « ¢« . .
Controller and Modem Interaction . « o « ¢ « ¢ « o &

Asynchronous Transmission/Reception. « « o« .« « « &« . . .

Character Transmission . . . « « « « « « « & .

Character Reception. o « . ¢ o « ¢ o « ¢« ¢ o o «
Data Buffering o+ e e
Substitution for Characters Rece1ved 1n Error. o o

Transmission Delays Following Specified Characters

Code Translation e e o o

Insertion and Removal of Sh1ft Characters. o o e .
Detecting End-of-Record Characters
Monitoring Received Timeouts . .« ¢« « o « & « &+ &
Sending and Detecting Break Signals.

PROGRAMMING TECHNIQUES

General Considerations . . . & +. ¢ ¢« ¢ o o « « « o &

Specifying the Communications Contro] Vector .« oo
The Communications Status Vector e .
CPU and Controller Interaction via $GIO Statements

An Example . & ¢ v ¢ 6 ¢ 6 v 6 ¢ 6 o 8 o s o s o o : :

ASCIT CODE SET . . & v 4 ¢ ¢ o o o ¢ o o o« o o o o =
SPECIFICATIONS . & v ¢ 4 ¢ o o ¢ ¢ o o o « o o o o

INDEX ® @ e e e o & & & & ¢ & & © 2 o o o & & 0 & o & o @ * s 2

EQUIPMENT MAINTENANCE & o ¢ ¢ v ¢ e ¢« ¢ o ¢ o o o s o

CUSTOMER COMMENT FORM . . & ¢ ¢ ¢ ¢ ¢ ¢ o o v o ¢ o o ¢ o o o o

iv

Page

WWOWWOWONNOOTLPLPWWE

14
14
19
20
27

32
33

34
37

Last Page

Table 1-1.
Table 2-1.
Table 2-2,
Table 2-3.

Table A-1.

Figure 1-1.
Figure 2-1.

TABLES

Connector Pin Assignments. . . « « v o ¢ ¢ ¢« o ¢ « « . . 4
Valid Communications Control Vector Spec1f1cat1ons A
Communications Status Vector Information 19
Microcommand Sequences for Controller and CPU

Interaction . . & . ¢ @ ¢ ¢ 0 i et e b e e e e e e e 20

ASCIT Code « & v 4 4 v 4 o o v ¢ 0 ¢ ¢ o o o o o« oo 32

» FIGURES

Asynchronous Data Transmission . « « o « « « « « o . e« . 6
Communications Control Vector Format, 16

CHAPTER 1
CONTROLLER FEATURES

1.1 GENERAL INFORMATION

Wang's Buffered Asynchronous Communications Controller is available in
phvsically different but opera{ionally equivalent versions. One version,
called the Model 2227B, is a double-card controller attached to a mounting bar
for plug-in compatibility with the I/0 slots in a 2200 Series CPU (Central
Processing Unit). Another version of the controller, called Option 62, has no
mounting bar and is configured to fit within the housing of compact units such
as the PCS and PCS-II. A copy of this manual is provided with each Buffered
Asynchronous Communications Controller installed in a Wang system.

For program control of data transmission and reception via the
communications controller, the $GI0 statement is required. The $GI0 statement
~ is standard or available as an option in most 2200 Series central processors;
also, the statement is standard in PCS and PCS-II units.

A 3.6-m (12-ft) Wang-supplied cable and a 25-pin EIA (Electronic
Industries Association) RS-232-C, CCITT V.24 compatible connector (on the
Model 2227B mounting bar or on the PCS back cover) facilitate hookup of a
modem, i.e., a modulator/demodulator. A modem is needed for communications
applications since data signals from a computer must be converted (modulated)
into a range of frequencies suitable for transmission over telephone lines;
similarly, data signals received via telephone 1lines must be demodulated
before transfer to a computer. Modem considerations related to the Buffered
Asynchronous Communications Controller are presented in Sections 1.2 and 1.4.

Though primarily designed for communications applications, the
controller 1is well-suited for direct connection of RS-232-C compatible
asynchronous transmission equipment such as the following: Tlocal CRT
terminals, graphic display terminals, analytical equipment and 1laboratory
instrumentation 1in general. For hookup of such equipment, a null modem
(available from Wang Laboratories) may be required. '

The controller has an integrated microprocessor and multicharacter
input/output buffers to simplify telecommunications control procedures and
reduce CPU processing requirements. Fixed microcode, residing in the
controller's read-only-memory, dimplements standard and optional operations
such as the following:

data buffering

CHAPTER 1. CONTROLLER FEATURES

code translation
. substitution for characters received in error

. communications 6ontr01, e.g., monitoring CPU ready/busy conditions,
monitoring modem signals, implementing line turnaround procedures

. break signal detection and transmission
. detection of received timeouts
detection of end-of—recond characters
. automatic insertion and removal of shift characters
automatic transmission delays following several specified characters

sensing the Secondary Received Line Signal Detector and setting the
Secondary Request to Send signal (also called reverse or supervisory
channel data signals).

The standard and special features of the controller enable a Wang system to be
programmed to transmit and receive data using the 1ine discipline of a variety
of asynchronous CRT and mechanical printer terminals.

The controller's 1K-byte random-access-memory is used for storage of
initialization information (including code translation tables and a
communications control vector), storage of current status information, and
input/output data buffering. The desired transmission rate, communication
mode, character format options, and special operations for a particular
application are selected under program control by specified values in a
communications control vector. The vector is loaded into the controller by a
$GI0 statement in the user's application program operating in the CPU.

A selectable-speed clock on the controller supports serial asynchronous
transmission and reception at 1line speeds from 50 to 9600 bits per second
(bps). Any one of the following rates can be set via the initializing control
vector: 50, 75, 100, 110, 134.5, 150, 200, 300, 600, 1200, 1800, 2400, 3600,
4800, 7200 or 9600 bps. Usually, rates from 50 to 1800 bps are used for
point-to-point, dial-up telecommunications applications while rates above 1800
bps are used for directly connected RS-232-C compatible equipment.

The communications controller supports any one of the following
transmission modes:

. half-duplex mode (independent transmission ohe-way-at-a-time
alternately)

. half-duplex mode with automatic deletion of received null characters
full-duplex mode (independent transmission two-ways simultaneously)

. full-duplex mode with automatic deletion of received null
characters.

CHAPTER 1. CONTROLLER FEATURES

The desired mode is set via a particular byte-position in the communications
control vector,

Via other byte-positions in the communications control vector, the
character format can be selected from the following options:

. parity -- odd, even, or no parity
number of data bits per character -- 5, 6, 7 or 8
number of stop bits per character -- 1, 1.5 or 2.

The features of the Buffered Asynchronous Communications Controller are
numerous; descriptions of particular features are presented in this chapter,
Programming techniques are presepted in Chapter 2, where the format of the
communications control vector is shown byte-by-byte in Figure 2-1 and valid
valués representing the asynchronous transmission options are presented in
Table 2-1; also, the format of the communications status vector is given, and
$GI0 microcommand sequences needed to operate the controller are supplied. An
example is included to illustrate some of the programming techniques.

1.2 INSTALLATION

Installation of a communications controller is the responsibility of a
Wang Service Representative. If a controller arrives as an addition to
existing equipment, call the Wang Service Representative; do not attempt to
install the controller--any such attempt may void the warranty.

After the controller is inspected, diagnostically checked, and
installed, one end of the cable supplied with the controller is plugged into
the connector attached to the controller. The other end of the cable has an
RS-232-C compatible male plug.

If the controller is to be used for point-to-point, dial-up
asynchronous telecommunications applications, the other end of the cable
should be plugged into a suitable modem. Installation of a modem is not the
responsibility of a Wang Service Representative.

Alternatively, if the controller is to be used to interface RS-232-C
compatible asynchronous transmission equipment such as a non-Wang CRT terminal
or a laboratory instrument, the other end of the cable may need to be plugged
into a null modem (available from Wang Laboratories) or may be suitable for
direct connection to the non-Wang equipment. Installation or interfacing of
non-Wang equipment is not the responsibility of a Wang Service Representative;
therefore, information regarding the controller's connector pin assignments
and voltage levels is given in Section 1.3.

Modem Considerations

The modem used with the communications controller may be rented from the
telephone company serving the locality where a Wang system is installed or may
be purchased from any one of several modem vendors, In either case,
arrangements should be made with the telephone company for installation of a
modem since modems purchased from a vendor must be connected to the telephone
network via telephone company dinstalled data access arrangements (DAA)
consisting of a telephone handset and modem interface rented from the
telephone company.

3

CHAPTER 1. CONTROLLER FEATURES

Before a telephone company representative arrives to 1install a modem,
the location of the Wang system must be planned to ensure its proximity to the
telephone equipment. Normally modems or DAA's are wired permanently to a
wall; in such cases, subsequent relocation of the Wang system any great
distance would necessitate having the telephone company relocate the modem or
DAA. The RS-232-C standard recommends use of short cables (less than 50 feet
or 15 meters) between data terminal equipment and communications equipment.
Longer cable distances are possible for operations at a lower range of
transmission rates in an environment vrelatively free of electromagnetic
interference.

Other modem considerations ?re discussed in Section 1.4.

1.3 CONNECTOR PIN ASSIGNMENTS

Information in this section is provided for readers responsible for
interfacing non-Wang equipment to a Wang system via the Buffered Asynchronous
Communications Controller. Other readers may wish to ignore the section.

The controller conforms to the nationally recognized EIA RS-232-C and
the internationally recognized CCITT V.24 standards for voltage levels and pin
connections., The signal polarity and the voltage of driven and detected
signals are as follows:

Logic_Level Applied Voltage Detected Voltage
0 or ON (Spacing) +8 vdc +5 to +15 vdc
1 or OFF (Marking) -8 vdc -5 to -15 vdc

The pin assignments are listed in Table 1-1 with both the EIA and the CCITT
designations given for the circuit associated with each pin. Also, the signal
descriptions and sources are included in the table.

Table 1-1. Connector Pin Assignments

Pin | EIA CCITT Signal Description Source

1 AA 101 Protective Ground

2 BA 103 Transmitted Data Controller
3 BB 104 Received Data Modem

4 CA 105 Request to Send Controller
5 CB 106 Clear to Send Modem

6 cC 107 Data Set Ready Modem

7 AB 102 Signal Ground

g CF 109 Received Line Signal Detector Modem

10

n SCA 120 Secondary Request to Send Controller
12 SCF 122 Secondary Rec'd Line Sig. Det. | Modem

13* | SCB 121 Secondary Clear to Send Modem

14* | SBA 118 Secondary Transmitted Data Controller
15* | D8 114 Trans, Signal Element Timing Modem

16* | SBB 119 Secondary Received Data Modem
17* 1 DD 115 Receiver Signal Element Timing | Modem

18* 124 Select Frequency Groups Controller
19* | SCA 120 Secondary Request to Send Controller
20 cD 108.2 Data Terminal Ready Controller
21* | €6 110 Signal Quality Detector Modem

22* | CE 125 Ring Indicator Modem

23* | CH/CI 111/112 | Data Signalling Rate Selector Controller/Modem
24* | DA N3 Trans, Signal Element Timing Controiler

L 25 Unassigned]

* Signals not utilized by controller.
4

CHAPTER 1., CONTROLLER FEATURES

1.4 CONTROLLER AND MODEM INTERACTION

The microprocessor on the communications controller can sense the value
of the following modem signals:

. Received Data on Pin 3
Clear to Send on Pin 5
. Data Set Ready on Pin 6
. Received Line Signal Detector on Pin 8
. Secondary Received Line Signal Detector on Pin 12.

The microprocessor can set the 1e%91 of the following modem signals:

Data Terminal Ready on Pin 20
Request to Send on Pin 4
Transmitted Data on Pin 2
. Secondary Request to Send on Pins 11 and 19.

Any Bell 103 or 202 type modem, or equivalent, can be used with the
controller., Very likely, other RS-232-C compatible modems commonly used with
asynchronous terminals having transmission rates in the range covered by the
controller may prove suitable.

Normally, a 103A type modem is used for operations requiring Tline
transmission speeds up to 300 bits per second. The modem should be ordered
with optional features which provide an originate and an answer capability.
Also, a vreceive long space disconnect feature is desirable for use with the
controller, but no special features are necessary for a break signal
capability.

Normally, a 202C or 202S type modem is used for operations requiring
line transmission speeds at 1200 bits per second (and occasionally at Tower
speeds). Options should include originate, answer, and receive long space
disconnect features. Furthermore, if use of a break signal is desired (as is
the case more often than not), the reverse channel option should be included.

NOTES:

1. Modems used at both ends of a point-to-point, dial-up
communications 1link must be of similar type. For
example, if a Bell 103 type modem is used at one end,
another Bell 103 type modem or an equivalent modem
must be used at the other end (not a Bell 202 type
modem).

2. If acoustic couplers are used at both ends of a
communications 1link, one must have the "originate"
feature and the other must have the "answer" feature
-- ideally each should have both features.

CHAPTER 1., CONTROLLER FEATURES

1.5 ASYNCHRONOUS TRANSMISSION AND RECEPTION

Generally speaking, in asynchronous transmission (often called
start-stop transmission?v each character is framed by start and stop elements
as shown in Figure 1-1., The start element is represented by a transition from
a logic "1" voltage level to a logic "0" voltage level. The nominal interval
during which the logic "0" level is maintained for a start element is the same
length as the interval used for each data bit.

Depending upon the design of the transmitting equipment, the data-bit
interval 1is a fixed value or one of several possible values if the
transmission rate for the equipment 1is selectable. Immediately following
transmission of a start element, the voltage level is changed or not changed
depending upon whether the first data bit is 1 or 0. (See Figure 1-1.)
Similarly, after the first data-bit interval, the voltage level is changed or
not, as required, to represent the second data-bit -- and so on successively
for each data bit. The number of data bits transmitted is a fixed value or
one of several possible values, depending upon the equipment being used.

After the last data bit is transmitted, a parity bit may be transmitted
if provisions for parity dinformation are included in the equipment design.
The parity bit interval is the same length as the data bit and start bit
intervals. The voltage Tlevel may be a logic "0" or "1" depending upon the
type of parity (odd or even) and also upon the number of 1's occurring in the
preceding data bits.

Finally, the stop element is transmitted using a logic "1" voltage Tevel
which is maintained until the next character is transmitted. Usually, there
is no upper 1imit to the length of a stop element; however, there is a lower
limit, a fixed value or one of several possible values, depending upon the
design of the transmitting equipment.

Each character is framed by a start

element and a stop element, The

Start element Stop element length of the start element is

(one data-bit interval) (two data-bit equal to the data bit interval (the
intervals) leading edge of the start element

is represented by a transition from
a logic "1" wvoltage level to a
logic "0" level). The stop element

______________ has a minimum length determined by
the design of the equipment

''''' \;"'“ (typical lower limits are 1,0, 1.5
Data bits plus or 2.0 data bit intervals); there

one parity bit (optional) is no upper limit.

Stop element

(one data-bit

interval)
Stop element Stop element
— —_—A

— = —
One 8-bit character a/’ One 8-bit character
Start Start
Start element element

element

Figure 1-1. Asynchronous Data Transmission

CHAPTER 1. CONTROLLER FEATURES

Character Transmission

Wang's Buffered Asynchronous Communications Controller transmits each

character by modulating the Transmitted Data signal on Pin 2 in the connector
as follows:

1.

2.

The Transmitted Data signal is set to "0" for one bit-time,
representing the start bit.

Successively, low-order bit first, the signal 1is set for one
bit-time to the value of each data bit until the number of
transmitted data bits equals the number specified in the
communications control vector; therefore, only the low-order 5, 6, 7
or 8 bits of a characterrare transmitted.

If odd or even parity is specified in the communications control
vector, the signal is set for one bit-time to the appropriate value
for the type of parity specified. In particular, if odd parity is
specified, the parity bit is equal to 1 when the preceding data bits
contain an even number of 1-bits; thus, for odd parity, the total"
number of 1's in the data bits plus the parity bit is an odd number.
If even parity is specified, the parity bit is equal to 1 when the
preceding data bits contain an odd number of 1-bits; thus, for even
parity, the total number of 1's in the data bits plus the parity bit
is an even number. If no parity is specified, Step 3 is omitted.

The Transmitted Data signal is set to "1" for a minimum interval
equal to 1, 1.5 or 2 bit-times depending upon the number of stop
bits specified in the communications control vector.

When no character is being transmitted, the Transmitted Data signal on Pin 2
is held at the value "1".

Character Reception

The communications controller receives a character by detecting changes
in the Received Data signal on Pin 3 in the connector as follows:

.I.

A transition from the voltage level representing logic "1" to the
level representing Tlogic "0" for at least one-half a bit-time is
interpreted as the leading edge of the start bit for an incoming
character.

The Received Data signal is sampled successively at times
corresponding to the nominal center of each data bit. In
particular, the nominal center of the first data bit is 1.5
bit-times after the 1leading edge of the start bit, The center of
each subsequent bit occurs one bit-time after the center of its
predecessor, Successively, low-order bit first, the bits in the
character being received are set to correspond to the sampled
values. The number of data bit samples taken by the controller
equals the number of data bits specified in the communications
control vector. If the number of samples is less than 8, the
remaining high-order bits in the received character are
automatically set to O (unless the shift character option is in
effect).

7

CHAPTER 1. CONTROLLER FEATURES

3. A parity bit, if specified, is read by sampling the Received Data
signal again -- one bit-time after the last data-bit is sampled.
The sampled parity value is compared with a calculated value based
on the received data bits and the type of parity specified. If the
received and calculated parity values are unequal, a designated bit
in the communications status vector is set to 1 to indicate a parity
error has occurred.

4. One bit-time after the Received Data signal is sampled for a parity
value (or for the last data bit if a no-parity option is in effect),
the signal 1is sampled again. Now, if the signal is "1", a valid
stop bit is recognized. On the other hand, if the signal is "0", a
framing er;or has occurred and a designated bit in the status vector
is set to 1.

NOTE:

For each application, the transmission rate, number of
data bits, type of parity, and number of stop bits
specified for the communications controller must match the
specifications for equipment in use at the other end of a
communications link.

1.6 DATA BUFFERING

The controller has two multicharacter data buffers, a 175-byte transmit
buffer and a 255-byte receive buffer. With these buffers, data transmission/
reception operations performed by the controller with respect to the modem can
overlap data input/output operations performed by the CPU with respect to the
I/0 peripherals designated for a communications application.

For example, after the CPU sends a data string to the controller, the
CPU is free to perform an independent task such as fetching the next string of
data to be transmitted from the 1input device -- while the controller is
performing such tasks as code translation, character formatting, and
transmission to the modem.

NOTE:

If the transmit buffer becomes full while the CPU is
sending data to the buffer, the data transfer rate from
the CPU to the controller automatically slows to the rate
at which characters are being transmitted from the buffer,
No characters are lost.

On the other hand, the controlier is free to receive a data string,
perform such operations as code translation, and store the data in the receive
buffer -- while the CPU is performing an independent task such as outputting
data to a designated peripheral.

CHAPTER 1., CONTROLLER FEATURES

NOTE:

If characters are received when the receive buffer is
full, a buffer overrun condition occurs and the
appropriate error bit is set in the communications status
vector. No other action is taken by the controller.

1.7 SUBSTITUTION FOR CHARACTERS RECEIVED IN ERROR

When a character is received with either a parity or a framing error, a
substitute character (defined by byte 4 in the communications control vector)
is automatically supplied by the controller, and the appropriate error bit is
set in the communications status vector. For example, a special character
such as @, or any other character not 1likely to occur in the incoming data,
can be specified as the character to automatically replace any characters
received in error. Replacement occurs before code translation, if any, is
performed.

1.8 TRANSMISSION DELAYS FOLLOWING SPECIFIED CHARACTERS

When sending data to a mechanical printer terminal such as an IBM 2741
or a MWang 1200, time delays are needed after transmission of TAB and CR
(carriage return) characters to allow the printing element sufficient time to
reach the proper position without loss of subsequent characters.

A special feature of the controller removes the necessity for the
user's application program operating in the CPU to introduce time delays
following transmission of special characters. Bytes 11 through 18 of the
communications control vector can be used, in four two-byte groups, to define
up to four special characters and the transmission delay associated with each
special character. During data transmission, the controller automatically
delays for the specified time following transmission of any character matching
one of the specified characters.

1.9 CODE TRANSLATION

The code translation feature of the controller allows data interchange
between the CPU and the controller in the ASCII code (American Standard Code
for Information Interchange) native to Wang's System 2200 and PCS --
regardless of the transmission/reception code for a particular application.

Space is reserved in the controller for two 256-byte code translation
tables, a transmit-code translation table and a receive-code translation
table. Specification of such tables 1is optional. Translation tables,
supplied in the user's application program operating in the CPU, must be
loaded 1into the controller by appropriate $GI0 statements in the program.
(See Section 2.4.)

CHAPTER 1. CONTROLLER FEATURES

The automatic code translation operation 1is enabled by 1loading a
transmit or a receive code translation table (or both) after loading the
communications control vector. If no tables are loaded, the code translation
feature is effectively disabled.

During transmission, a character sent from the CPU to the controller
becomes an 8-bit index for a table Tookup in the transmit-code translation
table, An 8-bit character obtained from the table is placed in the transmit
buffer; however, if byte 3 of the communications control vector specifies less
than 8 data bits per character, only the relevant low-order bits of each
character are actually transmitted.

During reception, a character received by the controller is used as an
8-bit dindex for a table Tookup in the receive-code translation table, and an
8-hit character is obtained from the table. If the translated character is a
null character, i.e., (00);g , and the high-order hexdigit in byte-position-2
in the communications control vector has the value 1 or 4, the character is
discarded; otherwise, the translated character 1is placed in the receive
buffer.

NOTE:

Superfluous characters used for timing or fill can be
removed automatically by translating them to null
characters. This feature is applicable to half-duplex and
full-duplex operations. See Table 2-1.

1.10 INSERTION AND REMOVAL OF SHIFT CHARACTERS

For applications involving data transmission and reception in a code set
which utilizes shift characters, e.g., a Baudot code set, an IBM 2741 code
set, or a Wang 1200 code set, a special feature of the communications
controller removes the necessity for the user's program operating in the CPU
to handle insertion and removal of shift characters. Instead, the upshift and
the downshift characters are defined in bytes 7 and 8 of the communications
control vector, The number of data bits per character is set to 5 or 6
(depending upon the application) by choosing an appropriate value for the
high-order hexdigit in byte 3 of the communications control vector. Then, to
activate automatic insertion and removal of shift characters, code translation
tables are suitably defined and loaded into the controller.

During data transmission, the controller examines and interprets the two
high-order bits of each translated character in the transmit buffer as "shift
status" bits as follows:

Two High-order Bits Meaning
00 Downshifted character.
01 Upshifted character,
10 Character doesn't care about shift status,
11 Character doesn't care about shift status.

10

o

CHAPTER 1. CONTROLLER FEATURES

A shift character is automatically transmitted between any two characters
having different "shift status" bits. In such cases, if the second character
has upshifted status, an upshift character is transmitted prior to
transmission of the second character; alternatively, if the second character
has downshifted status, a downshift character 1is transmitted prior to
transmission of the second character. The shift-status bits are not
transmitted since the number of data bits being transmitted per character is
only the low-order 5 or 6 bits if byte 3 in the communications control vector
has been appropriately specified.

During reception, the controller sets the value of the high-order eighth
bit of each received character (beforg code translation) according to the most
recently received shift character as follows:

High-order Bit Meaning
1 Upshifted character.
0 Downshifted character.
NOTE:

If a received character is a shift character, the character
is discarded; otherwise, the character is code translated
and placed in the receive buffer.

1,11 DETECTING END-OF-RECORD CHARACTERS

The end-of-record detection feature is convenient for applications where
a received data stream contains meaningful record delimiters, e.g., CR
(carriage return) codes. The feature is particularly convenient for
applications where there is no necessity to display the data while being
received.

Any number of characters can be defined as end-of-record characters,
thereby permitting the controller to divide a received data stream into
records while eliminating the need for the user's program operating in the CPU
to perform the task.

To activate the end-of-record detection feature, byte 6 in the
communications control vector must be set to HEX(01); also, a suitably defined
receive-code translation table must be 1loaded into the controller. To be
suitably defined, the high-order bit for codes in the receive-code translation
table must be set to 1 for each character defined as an end-of-record
character (and set to zero for all other characters).

During reception, if end-of-record detection is enabled, the controller
maintains a count of the number of end-of-record characters currently stored
in the receive buffer., The count is maintained in byte 5 of the
communications status vector (see Table 2-2).

11

CHAPTER 1. CONTROLLER FEATURES

With an appropriate $GI0 statement (see Section 2.4), the user's
application program can read the status vector into the CPU and subsequently
test the status information to ensure the availability of a complete record
before requesting transfer of buffered data via a $GIO statement which
performs data transfer from the controller to the CPU.

When data is actually transferred from the controller's receive buffer
to the CPU, only those characters up to (and including) the first
end-of-record character are transferred. Furthermore, the high-order bit in
the end-of-record character 1is changed from 1 to O when the character is
transferred.

* NOTE:

If the end-of-record detection feature is not needed for
an application (or cannot be utilized because the
high-order bit for codes in the receive-code translation
table is set to 1 for a purpose other than defining an
end-of-record character), byte 6 1in the communications
control vector should be set to HEX(00) to disable
end-of-record detection.

1.12 MONITORING RECEIVED TIMEQUTS

The communications controller has the capability to monitor received
timeouts. Byte 5 1in the communications control vector is used to set the
binary value of the timeout in units of 0.1 seconds. For example, the minimum
timeout condition, 0.1 seconds, is specified by storing HEX(01) in
byte-position-5. The maximum timeout condition, 25.5 seconds, is specified by
storing HEX(FF) in byte-position-5. On the other hand, storing HEX(00) in
byte-position-5 disables the monitoring feature for received timeouts.

NOTE:

If a timeout interval is specified, the controller
maintains a received data timeout countdown in byte 6 of
the communications status vector (see Section 2.3).

1.13 SENDING AND DETECTING BREAK SIGNALS

The communications controller has the capability to send and detect
break signals under control via the user's program operating in the CPU,
Bytes 9 and 10 in the communications control vector are used to define the
break signal transmission and detection intervals, respectively, in units of
10 milliseconds. For example, HEX(14) stored in byte-position-9 defines an
interval equal to 200 milliseconds for transmitted break signals. Similarly,
HEX(11) stored 1in byte-position-10 defines an 1interval equal to 170
milliseconds for detection of break signals.

12

CHAPTER 1, CONTROLLER FEATURES

In addition to specifying the break signal intervals in bytes 9 and 10
of the communications control vector, it is necessary to use the low-order
hexdigit position in byte 2 to specify the participating modem signals and the
polarity of the break signals as follows:

Byte 2 Break Signal
(Low-order Hexdigit) Polarity Modem Signals
0 none none
1 1 Transmitted/Received Data
1 Tg
?
2 1 Secondary Request to Send, or
—L————J—O Secondary Received Line Signal
Detector
3 [————1 1 Secondary Request to Send, or
0 Secondary Received Line Signal
Detector
NOTES:

1. The Transmitted Data and Received Data modem signals
are used with Bell 103 type modems.

2. Normally the Secondary Request to Send and Secondary
Received Line Signal Detector modem signals are used
with Bell 202 type modems which must be ordered with
the reverse channel option in order to support break
signal operation.

Transmission of a break signal by the controller involves inverting the
level of the specified modem signal (i.e., Transmitted Data or Secondary
Request to Send) for an interval defined by byte 9 of the communications
control vector.

Detection of a break signal occurs when the controller senses the 1level
of a specified modem signal (Received Data or Secondary Received Line Signal
Detectorg is being continuously inverted for an interval at least as long as
the interval defined by byte 10 of the communications control vector.

NOTE:

Detection of a break signal causes the "break signal
received" bit in the status vector to be set. No other
action is taken by the controller.

13

CHAPTER 2
PROGRAMMING TECHNIQUES

2.1 GENERAL CONSIDERATIONS

L

When writing an application program for the Buffered Asynchronous
Communications Controller, a programmer should organize the program in
distinct modules designed to achieve initialization and communications
functions. The communications module could overlay the initialization module
or, if preferred, the two modules could coexist in memory.

Generally speaking, an initialization module defines the 20-byte
communications control vector and assigns particular values to byte-positions
denoting information such as the desired transmission rate in bits per second,
the number of data bits per character, the type of parity (if any), and the
number of stop bits per character, Other values in the control vector
indicate whether the controller is to activate such features as break
detection, monitoring of received timeouts, half or full duplex operation with
or without automatic removal of null characters, and substitution of a special
character for characters received with parity or framing errors. The module
also supplies the $GI0 statement needed to load the control vector into the
controller.

An initialization module also defines transmit and receive code
translation tables, if required for the application, and supplies the $GIO
statements needed to load such tables into the controller. Additionally, the
initialization module might define and initialize variables required by the
communications module even though the variables are stored in the CPU rather
than the controller memory.

2.2 SPECIFYING THE COMMUNICATIONS CONTROL VECTOR

The format of the communications control vector is shown in Figure 2-1,
and valid specifications for the vector are given in Table 2-1, The table is
divided into two portions since the first three bytes of the vector are dual
purpose while the vremaining bytes are single purpose with respect to the
available communications options and features,

14

CHAPTER 2., PROGRAMMING TECHNIQUES

In the application program residing in the CPU, the control vector
should be defined by a one-dimensional array having 18 or 20 elements with one
b%%? per element. For example, to represent the control vector by the array
C$(), use

DIM C$(20)1

Also, as a general programming practice, all elements should be initialized to
binary zero by a statement of the form

INIT(00) C$()
before assigning values to particuhgr elements in the array.
. Then, as 1illustrated by the following statements, individual
byte-positions in the control vector can be assigned values other than binary

zero to select the desired combination of options and define any special
characters for the application.

Statement Comment

C$(1) = HEX(17) One stop bit; 300 bits per second.

C$(2) = HEX(11) Half-duplex with automatic deletion of null characters;
break enabled on transmit/receive.

C$(3) = HEX(23) Seven data bits; odd parity.

C$(4) = HEX(5E) Substitute character for parity or framing error is an
up-arrow, 4 .

C$(5) = HEX(OA) Timeout interval is 1 second.

Care must be exercised when defining some special characters to choose a
compatible value in the first three byte-positions of the communications
control vector. For example, if defining upshift and downshift characters in
bytes 7 and 8, the high-order hexdigit in byte 3 must have the value 0 or 1
(since the shift feature can be used only with code sets having 5 or 6 data
bits per character). See Section 1.10 and Table 2-1.

NOTE:

The communications control vector must be loaded into the
controller via a $GI0 statement having the appropriate
microcommand sequence from Table 2-3. See Section 2.4.

15

PROGRAMMING TECHNIQUES

CHAPTER 2.

JBWA04 403297 [043UO) SUOLIBILUNUWLO) °|-Z 3JnbL4

"l=¢ 9lqel 99S«

¥

(3L6Lpxay 4apJo-mO| Aq pajoudp) d3eY uoLssLusued]
x(31BLpxay Japdo-yblL

y Aq psjousp) 4a3dedey) Jad sitg dois Jo Jaquny

x(3161pxay 4apu0-mo| Aq pajoudp) uoLidg [eublS yeaug
x(316Lpxay uspuo-ybLy Aq pajousp) Spop uoLsstwsued]

x(2L61pxay Japao-mo| Aq pajousp) uoiidg >n@;ma_
»(216Lpxay Japao-ybry Aq pajousp) Jajdedey) Jad sitg eieq JO JaqunNg

SU0JUUT Bulweaq pue A3Lded 404 J93JeJRY) 3INILISGNS ©R(Q PIALIIVYw—
SPU02as [°Q 40 SILUN UL ©[BAJDIUI JnoauwL] ejeq 8>.5uw~_.?||J
xbe[4 UO0L3D933(Q PAOI3U~40-PUTe—
J93004ey) }LYsdne—
J33ordey) 34 LYSuMoge——
SPUOJBSLL[LW Q| 40 SILUN UL ¢ [RAUIIUT FLWSURAL [PUBLS YROU§ €«—
SPUOD3SL|[LW Q] 40 SJLUN UL °[PAJIIU] UOLIDDIB(] [BUBLS HRIUG w—
(dnoub yoes 40
934q puodas ayjz ul ‘sw QL 40 S3Lun ut
‘Ae|op 8yl pue 334q IS4l 3Yy3 uL Jajzoe

-JeYyd ay3 yjLm sdnouab 33Aq-om3 unoy)
sAe[9Q-uUoLSSLWSURUL] /U3 0RURY)- | RLIIAS «—

paAURSAY
____/\
.llﬁllw .

oz|eL|sL|LL|9L|SLipL|EL|eL|LL}OL|6|8|L{9{G(P|E|C]L

SNOILISOd JLAE HOLJIIA TOYINOD SNOILVIINNKWWOD

16

CHAPTER 2. PROGRAMMING TECHNIQUES

Table 2-1. Valid Communications Control Vector Specifications
Byte* High-order Hexdigit Low-order Hexdigit
1 0 = Illegal value 0 = 50 bits per second
1 = 1 Stop bit 1 =75 bps
2 = 1.5 Stop bits 2 = 100 bps
3 = 2 Stop bits 3 = 110 bps
4 = 134.5 bps
5 = 150 bps
6 = 200 bps
7 = 300 bps
8 = 600 bps
9 = 1200 bps
A = 1800 bps
B = 2400 bps
C = 3600 bps
D = 4800 bps
E = 7200 bps
F = 9600 bps
2 0 = Half duplex 0 = Break disabled
1 = Half duplex with 1 = Break enabled on transmit/receive
deletion of 2 = Break enabled on Secondary Req.
received null to Send & Sec. Rec. Line Sig. Det.
characters 3 = Same as 2 with inverted polarity
2 = Full duplex
3 = Full duplex with
deletion of received
null characters
3 0 = 5 Data bits per 0 = No parity
character 1 = Even parity
1 = 6 Data bits 2 = No parity
2 = 7 Data bits 3 = 0dd parity
3 = 8 Data bits
*See Table 2-1 (Continued) for bytes 4 through 20.

17

CHAPTER 2. PROGRAMMING TECHNIQUES

Table 2-1. Valid Communications Control Vector Specifications (Continued)

Bytd High and Low Order Hexdigits* Remarks

4 xy = Substitute character Each received character having a parity
for parity/framing or framing error is replaced by the des-
errors, ' ignated character (replacement occurs

prior to code translation if translation
tables are being used). See Section 1.7.

5 xy = Timeout interval in The specification in hexadecimal notation
units of 0.1 seconds. represents the timeout interval in units
of 0.1 seconds, e.q., (24),¢ = (36),,
specifies an interval of 3.t seconds.
See Section 1.12,

6 00 = Disable end-of-record If enabled, the end-of-record characters
detection. must be defined via the receive-code
01 = Enable end-of-record ' translation table by setting the
) detection. high-order bit to 1 for each code
corresponding to an dincoming end-of-

record character. See Section 1.11.
7 xy = Upshift character. To enable shift code insertion/deletion,

the high-order hexdigit in byte 3 of the
control vector must be 0 or 1 (i.e., the
number of data bits per character must be
5 or 6). Also, the transmit-code
translation table must identify all down-
shifted, upshifted, and '"don't care"
characters by setting the two high-order
8 xy = Downshift character, bits to 00, 01, and 10 or 11 as described
in Section 1.10. The receive-code trans-
lation table must allow for the
controller's automatic setting (before
translation) of the high-order bit to 1
for all incoming upshifted characters.

9 xy = Break signal transmit TJo enable break signal transmis-
interval in units of sion/detection, the low-order hexdigit in
10 ms., byte 2 of the control vector must specify

the polarity and the modem signals. If
bytes 9 and 10 are both HEX(00), the
low-order hexdigit in byte 2 should be 0.
10 Xy = Break signal detection |[The byte 9 and 10 specifications in

interval in units of hexadecimal notation represent break
10 ms. signal transmit and receive intervals in
un1ts of 10 milliseconds, e.g., (12)1g=
(18)1+ specifies @ 180 ms interval. See
Section F
11 Xy = Special character. Up to four special characters can be

defined in bytes 11, 13, 15 and 17. The

12 00 = No transmission delay. |[delay associated with a particular
Xy = Transmission delay in character 1is specified in the following

units of 10 ms. byte, 1in hexadecimal notation repre-

senting the interval in units of 10

13 Same as byte 11. milliseconds. The maximum delay,
HEX(FF), is 2.5 seconds. During

14 Same as byte 12, transmission, the controller automati-
cally delays for the specified time

15 Same as byte 11. following the transmission of one of the
specified characters. If a transmit-code

16 Same as byte 11. translation table is used, each special
character must be defined with respect to

17 Same as byte 11, its code after translation. If the auto-
matic transmission delay capability is

18 Same as byte 12. not desired, bytes 11 through 18 should

each be set to HEX(00).

*x and y each denote any hexdigit (0 through 9, A through F). If a feature is
not desired, the byte positions associated w1th the feature can be ignored if
the communications control vector has been initiated to binary zero.

18

CHAPTER 2. PROGRAMMING TECHNIQUES

2.3 THE COMMUNICATIONS STATUS VECTOR

Space is reserved in the random access memory of the controller for a
communications status vector whose byte and bit positions are used
automatically as shown in Table 2-2. The first three bytes of the status
vector are cleared automatically whenever it is read and when the
gommunicgtions control vector is loaded into the controller from the CPU. See

ection 2.4.

Flags are set in particular bit positions in the first three bytes of
the status vector during controller operation. 1In bytes 4 and 5, the current
number of characters in the receive buffer and the number of end-of-record
characters are maintained as binary counts. Similarly, in byte 7, the current
number of characters in the transmit buffer is maintained. Byte 6, on the
other hand, is similar to a real time clock whose value is initiated to the
timeout interval specified in byte 5 of the communications control vector each
time one of the following events occurs:

a) a $GI0 "start receiving data" operation begins,

b) a Tine turnaround occurs during a $GI0 "“send, then receive data"
operation, or

c) a character is received during either operation.

However, if the value in byte 6 of the status vector is not reset by one of
these operations, the countdown proceeds to zero.

Whenever desired, the information in the status vector can be read
(transferred to the CPU) by a $GI0 statement having the appropriate
microcommand sequence from Table 2-3. See Section 2.4. After transfer to the
CPU, status vector information can be tested, as required, by the application
program,

Table 2-2. Communications Status Vector Information

Byte Bit* Meaning

1 1 1
2

Break signal received

Received Line Signal Detector On
Sec. Rec'd Line Sig. Det. On

1
2 1
3 Data Set Ready modem signal On

Receive parity error detected
Receive buffer overrun error detected
Receive framing error detected

wn —
p—
n Hn o

4 al Binary count of the number of characters
in the receive buffer.

5 all Binary count of the number of end-of-record
characters in the receive buffer.

6 all Received data timeout countdown.

7 all Binary count of the number of characters in

the transmit buffer.

*Bit positions in each byte are numbered from 1 (low-order) to 8 (high-order).
19

CHAPTER 2. PROGRAMMING TECHNIQUES

2.4

CPU AND CONTROLLER INTERACTION VIA $GIO STATEMENTS

To operate the Buffered Asynchronous Communications

Controller, the

user's application program residing in the CPU should include $GIO statements
A list of valid microcommand sequences
for controller operations-is presented in Table 2-3.

with suitable microcommand sequences.

Table 2-3. Microcommand Sequences for Controller and CPU Interaction
Microcommand
Controller and CPU Interaction Sequence# Remarks

Set communications control vector !
Read communications status vector
Load transmit code translation table
Load receive code translation table
Disconnect

4y02 A000 4iOC
(See ** below)
4uo4 AOOO 4loC
4305 A0OO HuoC
4406

Send break signal 4yo7
Start receiving data 4408 For half or full duplex.
Transfer received data to CPU (See ** pelow)|For half or full duplex.

Send data

440A AOOO UiOC

For

half or full duplex.

Send, then receive data 440B A00O0 UYOC|For half duplex only.
Stop transmitting yyoc For full duplex protocols.
Continue transmitting 4u0D For full duplex protocols.

#)p microcommand sequence can be specified directly or indirectly in a $GIO
statement. If specified directly as the arg-l component, each
four-hexdigit-code can be separated from the previous one by a space for
readability as shown in this table. If specified indirectly by
assigning the sequence to a variable and including the variable in a
statement, spaces cannot be used between the four-hexdigit-codes, e.g.,
AP = HEX(4402A0004Y40C); furthermore, the dimension of the variable must
be large enough to ensure the presence of two trailing space characters
which serve as the pseudo-microcommand 2020 denoting the end of the
sequence. Unpredictable results may occur if at least one trailing
blank does not follow an indirectly specified microcommand sequence.
(See the General I/0 Instruction Set Reference Manual which accompanies
each Wang system having the $GIO statement in its BASIC 1language
instruction set, or see the BASIC-2 Language Reference Manual if using a
2200VP or 2200MVP system.)

#%The valid microcommand sequence is dependent upon whether the controller
is installed in either a 2200MVP central processor or some other 2200
central processor. See the following table.

Controller and CPU Interaction

Non-2200MVP

Sequence for 2200MVP

Read communications status vector
Transfer received data to CPU

4403 C620
4409 C620

4403 1020 O2FF O3FF 1223 C620
4409 1020 02FF 03FF 1223 C620

20

CHAPTER 2, PROGRAMMING TECHNIQUES

Brief descriptions of ®ach of the operations in Table 2-3 follow. A
sample §GIO statement is shown for each operation; however, the comments and
variables used in the statement may be given different names in a user's
program, and the address 01C may not be appropriate for the communications
controller in the system being used.

Set Communications Control Vector

$GIO SET cCV /01C (4402 A00O uu0C, GB) CB()

The communications control vector (CCV) defined by the array CH() is set
(loaded) into the controller when the statement is executed. Here, 01C is the
address of the controller, and G$ represents the error/status/general-purpose
registers.

NOTE:

The controller's transmit and receive buffers, as well as
the communications status vector and code translation
tables, are cleared automatically when the communications
control vector is loaded.

Read Communications Status Vector

$GIO READ CSV /01C (4403 C620, GB) A
or for a 2200MVP central processor
$GIO READ CSV /0l1C (4403 1020 02FF 03FF 1223 C620, G§) AB
The information currently in the communications status vector is read into the

CPU and stored in the character string AP (which must be at least 7 bytes
long).

NOTE:

The error and received break indicators (i.e., bytes 1 and
3) in the communications status vector are cleared
automatically after the status vector information is read
into the CPU. In a program for a 2200MVP central
processor, insert a 1line containing a $BREAK statement
before each line containing a ™read communications status
vector" statement. :

21

CHAPTER 2.

PROGRAMMING TECHNIQUES

Load Transmit Code Translation Table

$GIO LOAD TTBL /01C (4404 A000 440C, G$) C1$()

The transmit code translation table is loaded into the controller from the
array C1$() if such an array is previously defined in the application program.

The optional transmit code translation feature is enabled only if a transmit

code translation table is loaded after the communications control
loaded into the controller.

NOTES:

The transmit code trgnslation table should be exactly
256 bytes in length and represent the codes to which
System 2200 ASCII characters are to be converted prior
to storage in the transmit buffer. The byte positions
in the table should contain the "after translation
characters" arranged in a sequence corresponding to
the "before translation characters", i.e., the System
2200 ASCII characters.

If shift character automatic insertion/removal is in

effect (i.e., the specified number of data bits per

character is 5 or 6), the two high-order bits of each

code 1in the transmit code translation table must

$onform to the appropriate values given in Section
.10.

22

CHAPTER 2., PROGRAMMING TECHNIQUES

Load Receive Code Translation Table

$GIO LOAD RTBL /01C (4405 ADOO 440C, G$) C2$()

The receive code translation table is loaded 1into the controller from the
array C2$() if such an array is previously defined in the application program.
The optional receive code translation feature is enabled only if a receive
code translation table is loaded after the communication control vector is
loaded into the controller.

NOTES:

1. The receive code translation table should be exactly
256 bytes Tlong., The byte positions 1in the table
should contain ASCII characters (the "after
translation characters" in this case) arranged in a
sequence corresponding to the "before translation
characters". The translation procedure is equivalent
to using the binary equivalent of an incoming
character's hexadecimal code as an index for a table
look-up operation by which the appropriate translation
character is found. For example, 1if the incoming
non-ASCII character is a HEX(18), the binary value is
24; therefore, the corresponding ASCII character
should be located in the 25th position of the receive
translation table. (Keep in mind that the first
posit;on in the table corresponds to the binary value
zero,

2. If shift character automatic insertion/removal is in
effect, the 256-byte receive code translation table
represents two 128-byte tables. The first 128 byte
positions in the table should represent the
conversions for incoming downshifted characters
corresponding to the hexadecimal codes HEX(00) through
HEX (7F). The second 128 byte-positions should
represent conversions for incoming upshifted
characters corresponding to the hexadecimal codes
HEX(80) through HEX(FF).

3. If end-of-record character detection is enabled, the
high-order bit for <codes in the receive-code
translation table must be set to 1 for each character
defined as an end-of-record character (and set to zero
for other characters).

23

CHAPTER 2. PROGRAMMING TECHNIQUES

Disconnect —

$GIO DISCONNECT /01C (4406, G§)

The controller disconnects from the line by setting the Data Terminal Ready
signal to zero for a period of three seconds.

Send Break
$GIO BREAK /01C (4407, G§)
The controller sends a break signal in accordance with the circuit and

polarity denoted by the 1low-order hexdigit in Dbyte-position-2 of the
communications control vector. See Table 2-1 and Section 1.13.

Start Receiving Data

$GIO START RCV /01C (4408, G§)

One "start receiving data" statement is needed to enable data reception via
the controller whether set for the full or half duplex mode. If set for
half-duplex mode, the transmit and receive buffers are cleared first. The
controller enters the receive mode and starts receiving data. Also, the
receive timeout countdown 1is started by initiating byte 6 of the
communications status vector to the value specified as the timeout interval
(if different from binary zero).

Transfer Received Data to the CPU

$GIO RCV /01C (4409 c620, GB) DB()
or for a 2200MVP central processor
$GIO RCV /01C (4409 1020 O2FF 03FF 1223 C620, GH) DB()

All or part (if an end-of-record character is detected) of the receive buffer
characters are transferred from the controller to the CPJ and stored in the
array DBP(). (See Section 1l.11.) The BGIO data buffer, denoted here by DB(),
should be at least 255 bytes long since the controller has a 255-byte receive
buffer. Bytes 9 and 10 in the error/status/general-purpose registers provided
by the variable GB, i.e., arg-2 of the $GIO statement, are set to the binary
representation of the number of bytes transferred whether stored or not. 1In a
program for a 2200MVP central processor, insert a line containing a $BREAK
statement before each line containing a "transfer received data" statement.

Send Data

$GIO SEND /01C (440A AOOO 4u0C, GB) FB() <1, N>
If set for half-duplex mode, the receive buffer is cleared first. For half or
full duplex mode, bytes 1 through N of the array FB() are transferred from the

CPU to the controller where they are stored in the transmit buffer after code
and remains in the transmit mode (if set for the half-duplex operation).

24

o~

CHAPTER 2., PROGRAMMING TECHNIQUES

NOTES:

1. The $GI0 microcommand AO0O implements a particular
signal sequence repeatedly (once per character until
each character in the arg-3 data buffer is transferred
from the CPU to the controller). Unless a 2200VP
central processor is being used, the $GI0 syntax
requires a single argument format for arg-3.
Therefore, generally speaking, a $PACK statement
should be used to pack multi-argument data into a
single argument prior to executing the “send data"
$GIO0 statement if the application requires a specially
formatted buffer. ’

2, If desired, data can be transmitted via the controller
using a PRINT, PRINTUSING, or MAT PRINT statement in
conjunction with $GI0 statements by employing
techniques such as those described in Section 2.6.

Send Then Receive Data

$GIO SEND RCV /01C (440B A0OO 440C, G$) F$() <E>

This statement is applicable only for the half-duplex mode of operation.
Beginning with the Eth byte, all remaining bytes of the array F$() are
transferred from the CPU to the controller for storage in the transmit buffer
after code translation is performed, if enabled. The controller transmits the
data and then executes a "start receiving data" operation.

NOTES:

1. For half-duplex communications, the "send data" $GIO
operation should be used to send all but the last
bytes of data. The "send, then receive data" $GIO
operation should be used to send the last bytes of
data, and afterwards the "transfer received data to
CPU" should be used. Use of the "send, then receive
data" $GI0 operation automatically implements a Tine
turnaround procedure, thereby ensuring the
controller's readiness to receive data without loss.

2. For full-duplex communications, only the "send data"
and "transfer received data to CPU" $GIO operations
are needed; the "send, then receive data" $GIO
operation should not be used since, in full duplex
mode, the controller remains in transmit and receive
mode simultaneously and 1line turnaround does not
occur.,

25

CHAPTER 2. PROGRAMMING TECHNIQUES

Stop Transmitting

$GIO STOP SEND /01C (440C, G$)

This statement is applicable for the full-duplex mode of operation, in cases
where the CPU must stop transmission temporarily because a control sequence is
received without clearing the contents of the transmit buffer. Transmission
commences when a "send data" $GIO operation or a "continue transmitting" $GIO
operation is executed.

Continue Transmitting

$GIO CONTINUE SEND /01C (44QD, G$)

This statement can be used to restart transmission if the transmit buffer
contains data and transmission has been halted by a "stop transmitting" $GIO
operation.

2.5 AN EXAMPLE

The program listed 1in this section 1llustrates how a Wang system
equipped with a Buffered Asynchronous Communications Controller can be
programmed to emulate a Teletype terminal. The Wang keyboard corresponds to
the Teletype keyboard and the CRT corresponds to the Teletype printer. Many
REM statements are included in the program to highlight special features such
as the following:

1. An asynchronous format with 7 data bits per character, even parity,
and 1 stop bit is specified.

2. Rate = 300 baud (i.e., line speed is 300 bits per second).

3. Mode = half-duplex with automatic deletion of null characters.
4, Break signal transmission/detection 1is enabled with a 200ms
transmission interval and a 120ms detection interval.

5. End-of-record detection is enabled., The carriage-return and DCI]
(X-ON) characters are defined as terminators in the receive code
translation table. Each carriage-return (0D),g is translated to
(80)16 prior to storage in the receiver buffer., Each DC1 or X-ON
character is translated to (A0);g prior to storage in the receive
buffer. Upon transfer to the CPU, the high-order eighth bit of
these end-of-record characters is changed from 1 to 0; hence, each
(8D),¢ becomes (0D),g which is the ASCII code for a carriage-return,
and (A0) becomes (20) which is the ASCII code for a space
character.!® 16

6. Characters received with a parity or framing error are replaced by
the substitute character (7F),¢, the ASCII code for a DEL character.
Via the receive code translation table, each (7F)16 is converted to
a null character, i,e., (00),q.

26

CHAPTER 2. PROGRAMMING TECHNIQUES

If desired, the program can be keyed into the CPU and saved on disk or
cassette to serve as a test program. However, keep in mind that the program
incorporates special features and cannot be used unless the following
conditions are satisfied:

1.

2,

3.

4.

If the address of the controller is not 01C, change the SELECT
statement in the program accordingly. See line 110.

A suitable modem must be available and modems at both ends of the
communications link must be similar. See Section 1.4.

The number of data bits per character, the number of stop bits, the
type of parity, and the tyansmission rate must be matched at both
ends of the communications link. If necessary, adjust the values in
the communications control vector. See lines 300 through 390.

If attempting to communicate with a host computer, find out what
sign-on procedure is required.

The Sample Program (Requires modification for 2200MVP central processors)

10
20
21
==
23
24
25
30
40
50
&0
70
80
30

100
110
120
130
140
150
160
170
18O
190
200
210
220
230
240
250
255

REM

EXAMPLE --TTY EMULATION-- KYBD FOR INFPUT, CRT FOR OUTPUYT

DIM C2%{(16)16, L${(255)1, K$l, X${(20)1, Z&(7)1

REM
REM
REM
REM
REM
REM
REM

Cas{) IS A 256-BYTE RECEIVE CODE TRANSLATION TABLE
L%{) I5 A 255-BYTE CPU RECEIVE DATA BUFFER

Ke I8 A 1-BYTE CPU KEYBOARD INPUT BLFFER

X$6¢) I8 A 20-BYTE COMMUNICATIONG CONTROL VECTOR

Z%{) IS A 7-BYTE CPU ARRAY FOR READING STATUS VECTOR

- .DEFINE $GI0 MICROCOMMANDS TO OPERATE CONTROLLER

GO$=HEX { 4402A000440C) IREM SET CONTROL VECTOR
Cle=HEX{4403CE20) tREM READ STATUS VECTOR
G3$=HEX (4405A000440C) tREM LDAD RCV TRANSLATE TABLE
GCos=HEX (4408) :REM START RECEIVING DATA
C746=HEX { 4409C620) :REM TRANSFER RECEIVED DATA
GO%=HEX { 440BA000440C) :REM SEND-THEN-RECEIVE DATA

SELECT #1 01iC :REM SELECT 2227B AS #1
REM ..DEFINE RCV TRANSLATION TABLE
INIT(OOYCES() tREM CLEAR RCV TRANSLATION TABLE
C24(1)=HEX (00010203040506070503000BOCRDOEOF) :REM 00-0OF
C2$(2)=HEX(10A012131415161718151A1RI1CIDIEIF) :REM 10-1F
C24(3)=HEX (202122232425262728292A2B2CD2ESF) REM 20-2F
Cas{4)=HEX(3031323334353637383323A3R3C3D3EAF) REM 30-3F
C24(5)=HEX (40414243444 B4C4TH4R4DHALBL4CHDAELGF) IREM 40-4F
C2%(6)=HEX(500152535455565758535ABRCEDRESF) REM 5O-5F
C2$(7)=HEX{G0GI1E620I0H6LORETERBEICACBECEDEESF) IREM &0-6F
Cas(B)=HEX(T707172737475767778737A7B7C7D7EOD) :REM 70-7F
REM ..SPECIAL MEANINGS IN THE ABOVE TABLE ARE AS FOLLOWS
REM HEX OD (CARRIAGE RETURN) SET AS TERMINATOR
REM HEX 11 (DC1l, X-ON) SET AS TERMINATOR/SHOW AS SPACE
REM HEX 7F (DEL, RUBOUT) CONVERT TO NULL
REM HEX BO THRU FF CONVERT TO NULL

(continued on next page)

27

CHAPTER 2. PROGRAMMING TECHNIQUES

260 REM ..DEFINE COMMUNICATIONS CONTROL VECTOR

280
220
300
310
320
330
350
380
390
400
430
4315
420
430
4450
450
455
456
460

INIT(OO)X&() :REM INITIALIZE CCV TO BINARY ZERO
REM ..IF THE CCV IS NOT SET TO 00, TIME DELAYS MAY OCCUR.
XE(1)=HEX{17) :REM STOP BITS=1, BAUD RATE=300
Xe(2)=HEX{(11) :REM MODE=HALF-DUPLEX., BREAK ENABLED
XE(3)=HEX{J1) ' tREM DATA BITS=7, PARITY=EVEN
XE(H)=HEX(7F) :REM ERROR SUBSTITUTE CHARACTER=DEL
X$(e)=HEX{01) tREM END OF RECORD DETECTION
X%(3)=HEX(14) tREM BREAK SEND INTERVAL=200 MS
X%(10)=HEX{OC) tREM BREAK DETECT INTERVAL=120 M5
REM ..
PRINT HEX{(O3),."EMULATE TTY 300 BALD" :REM CLEAR CRT
PRINT TAB{(3);"KEYBDARD FOR INPUT--CRT FOR DUTPUT®

D, I=1IPRINT)

$GI0 SET CONTROLS #1 (GOF. AFIXEL()
$GI0 SET ROV TABLE #1(C3%,A%)C2%()
$GI0 START RCV #1 (G6H,.A%)

REMEND OF INITIALIZATION MODILE
REM ..PROMPT OPERATOR

PRINT #333B03B3BIEGIN SIGN-ON PROCEDUREH#353t3430430 0 8

470 PRINT TAB(S);"NOTE-~-5.F. ‘15 15 PRDOGRAMMED TO BEND A BREAK
SIGNAL. ™

480 GOTO 540

500 REMMAIN LOOP BECINS

510 REM ..0OUTPUT KEYED DATA TO 2227H

520 4GI0 S5END DATA #1(09%,A%)IKS

520 REM ..KEYBOARD/T.C. TEST LOOR

540 <IF ON /001,770 :REM TEST KYHD READY

550 4GI0 READ BTATUS #1 (GCls,A%)Z%()

560 IF Z&(3)>HEX{(OO)THEN 730 :REM TEST FOR ERRORS
570 IF ZE{(1):HEX(OO)THEN 740 tREM TEST FOR BREAK

580 IF Z4{(4)=HEX{(OO)THEN 540 tREM TEST FOR COUNT ZERO
530 4GI0 TRANSFER RCVD DATA #1 (G74.A%) L&) (I

&00 A= VALIBTH{A%,10)) tREM A IS5 COUNT

610 IF A+D>&4 THEN GBO tREM BRANCH IF AX=64

620 $GI0 /O05(A000, ASILE(ITI A :REM DATA TO CRT IF AdG4

630 D=D+A GOTO &350 :REM D 15 DUTPUT POINTER

&40 REM ..DISPLAY OVERRUN

€50 B=&5-D tREM R IS LINE LENGTH

660 $CIN/N05(A000 400D 400A,.AFILE(ICI BXIREM DATA.CR,LF TO CRT

&70 D=A-B

&80 GI0 /005{A000,A%LE(){I+R,D> tREM NEXT LINE TO CRT

€30 I=I+A IA=I-1

700 IF L${A)HEX(OD)THEN 540

710 PRINT

720 INIT(OO)L$() :ID,I=1 :GOTO 540

725 REM ..L%() IS CLEARED WHEN A C.R. IS5 RECEIVED

730 GOTO 550 tREM RCV ERROR DETECTED

740 PRINT "...BREAK RECEIVED":GOTO 540

28

CHAPTER 2, PROGRAMMING TECHNIQUES

750 REM ...KEYBOARD LDGIC FOLLOWS

770 SELECT PRINT O0B:KEYIN K%,790.880 :REM ACCEPT KYBD INPUT
790 IF K$<HEX{20) THEN 830

800 PRINT K$: :REM DISPLAY K& (N CRT
810 D=D+1:IF D<&5 THEN B520:PRINT :D=1:C0TO 520

820 PRINT :zINIT(OO)L${):D,I=1:C0TC 520

825 REM ..BRANCH AS FOLLOWS FOR A CODE HEX OB THRU OD

830 DN VAL(K$)-7 GOTO 850,800,840,520,520,820 :CGOTO 520

840 PRINT K$::C0TO 520

850 D=D-1:IF D3>0 THEN R&E0:D=64IFRINT HEX(0C);

860 PRINT HEX(082008);:C0TO 520

870 REM ..BRANCH AS FOLLOWS FOR AN S.F. CODE HEX 07 THRU OF

BBO ON VAL(K$)-& GOTO B40,KE0, 800, 840, 520, 520, 520,520,830 160
TO 520

830 PRINT "....SEND BREAK":$GID #1(4407,A%)

300 COTO 540

910 REM ...END OF KEYBOARD LOGIC

920 REMEND OF MAIN LOOP

(See notes on next page.)

29

CHAPTER 2.

PROGRAMMING TECHNIQUES

1.

NOTES:

Wang's Teletype Emulation Utilities software system
has many features not illustrated in the example given
in this section, With the Teletype Emulation
Utilities, data transmission and reception can be
controlled over point-to-point, dial-up communications
links between Wang systems and host computer systems
which support Teletype-like line protocols. From the
viewpoint of a Wang system operating under
control of a Teletype emulation program, the
keyboard is always active as an input device for
data transmission, and the CRT is always active as
an output davice for data reception.
Additionally, and optionally, stored data can be
transmitted from a disk or from a cassette, and
received data can be output to a printer, disk, or
cassette, The active I/0 devices can be changed by
the operator during program operation. During an
initial phase of program operation, a parameter
selection module lets the operator choose a set of
communications options to achieve compatibility with a
host computer system. For convenience, a set of
default conditions can be accepted, if suitable
for a particular communications 1link; otherwise, the
parameter module (via prompts on the CRT) permits the
operator to select the following:

. the desired baud rate
. the type of parity

. the number of data bits per character

o the number of stop bits

and to indicate how the host computer system normally
reacts interactively in the following ways:

whether or not the host echoes each received
character.

. whether the host, upon receipt of a 1line of
data denoted by a carriage return character,
automatically supplies only a 1line feed
character, or supplies a line feed character
followed by one or more characters, or
supplies no characters.

If interested 1in additional information regarding
Wang-developed software systems which can be used with
a Buffered Asynchronous Communications Controller,
contact the Wang Sales Office in the area where a Wang
system is being used.

30

o~
1

CHAPTER 2. PROGRAMMING TECHNIQUES

2.6 TRANSMISSION VIA PRINT, PRINTUSING, OR MAT PRINT STATEMENTS

If desired, data transmission can be implemented via PRINT, PRINTUSING,
or MAT PRINT statements by employing a special technique which effectively
preserves the essential structure of the "send data" $GI10 operation described
in Section 2.4 by breaking the operation into three phases, two of which must
be replaced by $GIO operations introduced in this section,

Consider the following statement:
100 $GIO SEND DATA /01C (440A A0O00 440C, G$) A$()
440A Sends the code (OA)IG’to the controller via a CBS strobe to
‘ initiate data transmission.
A000 Implements a prescribed sequence repeatedly (once for each
character) until all data in the arg-3 buffer A$() is

transferred from the CPU to the controller.

440C Sends (0C),. to the controller via a CBS strobe to terminate
data transmission.

Now, for convenience, let's define two operations not shown in Table 2-3;

Operation Microcommand Sequence
Start send 440A
End send 440C

Using the new $GI0 operations, consider the following alternative programming
sequence as a replacement for the "send data" $GI0O operation shown in line
100:

100 $GI0O START SEND /01C (440A, G$)
110 SELECT PRINT 01C (185)

120 PRINT X(); A$(); C$(5,12)

130 SELECT PRINT 005 (64)

140 $GI0O END SEND /01C (440C, G$)

In the sequence represented by lines 100 through 140, 1line 120 effectively
replaces the microcommand AO0OO in the original 1ine 100. A PRINTUSING or a
MAT PRINT statement could be used in line 120.

The technique described in this section must not occur in the
programming logic until after the communications control vector has been set.
When specifying the communications control vector, it may be desirable to
include provision for automatic delays following transmission of special
characters such as a carriage return or tab character sent to a printer. See
Section 2.2 and Table 2-1.

3]

APPENDIX A
ASCII CODE SET

The System 2200 character set is defined by 8-bit codes of the form
bgb7bgbsby,bsb,b;, where bg=0 and the bits b, through b; correspond to the
ASCII (American Standard Code for Information Interchange) character set
which has 128 assignment positions, as shown in Table A-1.

Wang CRT's and printers use the ASCII code set, but some units may not
display all the graphic characters shown in Table A-1. In some cases,
substitute graphic characters may be displayed by a Wang peripheral. For
details, refer to the manual which accompanies a particular peripheral.

Table A-1. ASCII Code*

Low-order:

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
abus || O 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
00 01 10 11 00 01 Iy 10 11 00 01 10 11 00 01 10 11
High hex-
order- digit
hex’ 0 1 2 3 4 5 6 7 8 9 A B C D E F
4 bty digit
NUL [soH |[sTtx | eTx | EoT ENQ | ACK | BEL BS HT LF vT FF CR sa Si
0000 0
1 2 3 4 5 6 7 8 9 10 n 12 13 14 15
0001 1 DLE | DC1 | Dc2 | bc3 | bca NAK | SYN | ETB | CAN | EM | sus ESC FS GS RS us
16 17 18 19 20| 21 22 23 24 25 26 27 28 29 30]
0010 2 Space | e # $ % & (lP‘OS.) () . + (com'ma) {dash) (pori.od) /
32 33 34 35 36 37 38 39 40 a1 a2 43 44 45 46 47
. = ?
0011 3 0 1 2 3 4 5 6 7 8 9 ; < > ?
) 48 49 50 51 52 53 54 55 5 57, 58 59 60 61 62 63
0100 a @ A B C D E F G H | J K L M N 0
64 65 66 67 68 69 70 7 72 73 74 75 76| 77 78 79
{under.
o101| s P Q R S T uj| v w | X Y | 2 [\] ! tine)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
o110| 6 fc':::' a b c d e f g h i i k | m n o
96 97 a8 99 100 101 102| 103 104 105| 106 107 108 109 110 11
0111] 7 p q r s t u v w x y z { : ; ~ |oEL
112 113 114 115 116] 117 118 119 120 121 122 123 124 125 126 127

"Numbers in the lower right corner of each box represent the decimal equivalent of the binary and
the hexadecimal code for the character shown i the box, e.g., A = {41)g = (01000001) 5 = (65} 49.

LEGEND FOR ASCII CONTROL CHARACTERS
NUL Null DLE Data Link Escape
SOH Start of Heading DC1 Device Control 1
STX Start of Text DC2 Device Control 2
ETX End of Text DC3 Device Control 3
EOT End of Transmission DC4 Device Contro! 4
ENQ Enquiry NAK | Negative Acknowledge
ACK Acknowledge SYN Synchronous Idle
BEL Bell {audible or attention signal) ETB End of Transmission Block
BS Backspace CAN | Cancel
HT Horizontal Tabulation EM End of Medium
{punched card skip) suB Substitute
LF Line Feed ESC Escape
vT Vertical Tabulation FS File Separator
FF Form Feed GS Group Separator
CR Carriage Return RS Record Separator
SO Shift Out us Unit Separator
Si Shift In DEL Delete

32

APPENDIX B
SPECIFICATIONS

Power Reguirements

Supplied by the CPU.

Electrical Connection

A 25-pin RS-232-C, CCITT V.24 compatible female plug facilitates hookup
of a modem,

Cable

A 12-foot (3.6m) cable, equipped with 25-pin RS-232-C compatible male
connectors on each end, is fUpp]ied as an accessory,

Asynchronous Transmission Rates

50, 75, 100, 110, 134.5, 150, 200, 300, 600, 1200, 1800, 2400, 3600,
4800, 7200 or 9600 bits per second.

Character Format Options

Parity: odd, even, or no parity.
Number of Data Bits: 5,6,7 or 8.
Number of Stop Bits: 1, 1.5 or 2.

Communication Mode

Full or half duplex.
Compatible Modems

Bell 103 or 202 type, or equivalent.
Null modem, available from Wang, for direct communications 1link.

Standard Warranty Applies

33

INDEX

Acoustic couplers ., . . .

Application program
ASCII

Assignments, pin . . .
Asynchronous contro]]er
Asynchronous equipment .
Asynchronous transmission

Bell modem . .
Bit, parity . .

Bit, start

Bit, stop

Bits, shift status
Bits, status vector
Break signal

Buffer, transmit
Bytes, control vector

Bytes, status vector .

Cable
cCITT
Character count
Character format .

Buffer, receive . . .

Character substitution .

Clock, real time . .

Clock, selectable speed

Code, ASCII . .

Connector
Continue transm1tt1ng

Control vector

Countdown, timeout .
CPU
DAA
Data bits

Data buffering

Delays, automatic

Detection,
Detection,
Detection,
Detection,
Detection,

2,9-12,14,15,19-21,23
9,22,23,32
4

. 1,8,14,20

Bits, data . . . o o s e .

1-3
6-8

5,13,33
6-8
6-8
6-8

. 3,6-8,11,14,16,17,33

10,11,22

. 19

. 8-10,19,21

. .8
.3
]

Code translation . . .
Communication mode . .

Deletion, null characters
break signal

end-of-record .
par1ty error

receive buffer overrun .
received timeouts
Disconnect . « ¢ ¢ ¢« ¢« ¢« ¢« «

34

2,5,12,13,16,18,20,24
»10,19,21

»9-18

9
1,3,4,33

-8,11,14,16,17,33
18

6
s
)

»12,16,18,19,23

7
6-18,21
2,
»19,21

uooo—-r\:o- L
.

EIA

End-of-record cha;acters .

End send

Error, parity .

Error, receive buffer overrun

e -ee e .

Error, framing

Example, programming

Fi1l characters
Format, character

Format, control vector

Format, status ve

Framing error . .

Full duplex

Half duplex

ctor

?

Initialization information
Initialization module
Insertion, shift character
Installation, controller .

Installation, mod
Interfacing . .
Line speeds . .
Line turnaround
Logic levels , .

MAT PRINT
Microcode . . .
Microcommands .
Microprocessor .
Mode, communicati
Model 2227B . .
Modem . . .
Monitoring . . .

Null characters
Null modem . . .

Option 62 . . .
Pari ty *® L] * o *

Pin assignments
Polarity, break s

em .

on

ignal

Polarity, controller signals

PRINT
PRINTUSING . . .
Program control
Programming techn

Random-access-mem
Rates, transmissi
Read-only-memory
Reception . . .
Receive buffer .
RS-232-C

iques

ory .
on

35

1,4

2,11,12,16,18,19,23

3]
9,18,19,21

. 9,18,19,21

9,19
26-30

10

2,33

14,15

19

9,18,19,21
2,17,20,24-26,33

2,17,20,24,25,33

2,15
14
2,10
3

3
3,4

2,5
25

. 4,6,7

25,31
1

. 20-26,31

1,5
2,3,33
1

3,6-8,16-18,33
4

13

4
25,31
25,31
1

. 14-3]

-

2,19
2,5,8,16,17,33
1

6-8
8-10,19,21
1-5

Send break . [) [))) [) L [))) [) [) [) . 20’24
Send data . . . L) [L) [] L L]] L] . [L L L 20’24
Send then receive . . .- « o o o . 20,25

Shift characters . .

. 2,10,11,15,16,18,22,23

Signals 2,5,7,8,13,19

Stop transmitting .

)) . 20,26
Substitution characters

. 2,9,16,18

Specifications, control vector ., 17,18

Specifications, controller 33

Start bit/element ¢ ¢ ¢ ¢ ¢ ¢ o . . B

Start receiving ¢ ¢ . ¢ o e . . . o 20,28

Start send 0 0 e e et e e e o .o 3

Statements, $GIO . e o o o o o o o o o o 1,2,9,12,14,15,19-26,31
Status vector . . . o . o« o o o » . 9,11-13,19-21

Stop bit/element ¢« . ¢« . . .

. . 3.6-8,16,17,33

Tables, code translation . . . % 2,9-11,14,20-23
Table 100KUP &« ¢ ¢« ¢« ¢ ¢« ¢ o o ¢« o « o « « « 10,23

Teletype emulation . . « « ¢ ¢ ¢« ¢ ¢ « « « o 26-30

Timeout countdown R 4

Timeout interval . &« ¢« ¢« ¢« ¢« ¢« ¢ ¢ ¢« & « « « 12,16,18,19
Transfer to CPU . . « & ¢ ¢ ¢« ¢ ¢ ¢« o ¢« + & 12,19,20,24
Transmission delays . « « « « ¢« o o« « « « « 2,9,16,18
Transmission modes . . . ¢ « « « o « o « . . 2,16,17,33
Transmission rate . « « « « « « o « « « « « 2,5,8,16,17,33
Vector, communications control 2,3,9-12,14-16,20,21
Vector, status e e e e e e e e 9,11-13,19-21
Voltage . . ¢« ¢ ¢ ¢ ¢ ¢« ¢ o o o o o @ . . 4,6

36

	Cover
	Preface
	Table of Contents
	Chapter 1: Controller Features
	1.1 General Information
	1.2 Installation
	1.3 Connector Pin Assignments
	1.4 Controller and Modem Interation
	1.5 Asynchronous Transmission and Reception
	1.6 Data Buffering
	1.7 Substitution for Characters Received in Error
	1.8 Transmission Delays Following Specified Characters
	1.9 Code Translation
	1.10 Insertion and Removal of Shift Characters
	1.11 Detecting End-of-Record Characters
	1.12 Monitoring Received Timeouts
	1.13 Sending and Detecting Break Signals

	Chapter 2: Programming Techniques
	2.1 General Considerations
	2.2 Specifying the Communications Control Vector
	2.3 The Communications Status Vector
	2.4 CPU and Controller Interaction Via $GIO Statements
	2.5 An Example
	2.6 Transmission Via PRINT, PRINTUSING, or MAT PRINT Statements

	Appendix A: ASCII Code Set
	Appendix B: Specifications
	Index

