2234A/2244A
(WANG) HOPPER-FEED CARD READERS
REFERENCE MANUAL

el 22

mt............,mmmma-masamm. ceneo PPIE
T!?,.....:--«-WWWHN-."“J‘
. PSR -~ -~ T
._.,......m.;__

AFL T
v« TADSHIGNNN. . .. LR TR T e
«« = s o BOUSBEEGRNE, |

S - - SN

L CYSRNPRERIE - - S OTNRRNE - - - - - S,
Tt oo i o SRERDNGRENNIGINGSINERNINENGNNIINNNEG. o . - o T

12 3.2 3 PUSPTURPN ...,Wmnsmmm...m....-..nm

i i it ST e i AR

2234A/2244A

Hopper - Feed Punched

Card Reader
&
Hopper-Feed

Punched/Mark Sense
Card Reader
Reference Manual

©Wang Laboratories, Inc., 1974

AAAAAAAAAAAAAAAAA

%)

HOW TO USE THIS MANUAL

Wang's Model 2234A and Model 2244A Hopper Feed Card Readers present the
user with a perhaps bewildering variety of card reading capabilities. The Model
2234A offers no fewer than eight separate card reading modes, while the Model
2244A, with its capability to read mark sense as well as punch cards, offers a
total of 12 reading modes. (The characteristic features of the several reading
modes are summarized in Chapters 1 and 3.)

Such wide-ranging versatility presents certain difficulties for the
explanation of card reader operation, since most users are concerned only with
one or two of the many available reading modes, and do not wish to be bothered
with a discussion of capabilities for which they have no use. To provide the
reader with ready access to material which is relevant to his particular needs,
therefore, the Reference Manual is designed in a modular fashion.

Each reading mode is treated in a single, self-contained chapter, which
exhaustively describes the procedures for formatting and reading cards in that
mode. Chapters 4-9 deal with the several modes of reading Hollerith program and
data cards, Chapters 10-14 with the reading of BASIC mark sense program/data
cards, and Chapters 15 and 16 with binary card reading.

The manual's rather imposing size should not, therefore, be a cause for
uneasiness. Apart from the first three chapters, which present general
introductory and operational dinformation of interest to all users, the reader
should find that one or two chapters will provide him with everything he needs
to know for his application.

An omnibus programming chapter (Chapter 17) also is included to provide
assistance 1in programming the card reader. Chapter 17 discusses a variety of
programming techniques for processing data from cards, and for handling error
conditions under program control. Chapter 18, lastly, contains a complete list
of mark sense and punch card specifications, for those who wish to design
customized cards.

Disclaimer of Warranties and Limitation of
Liabilities

The staff of Wang Laboratories, Inc., has taken due care in
preparing this manual; however, nothing contained herein
modifies or alters in any way the standard terms and conditions of
the Wang purchase agreement, lease agreement, or rental agree-
ment by which this equipment was acquired, nor increases in any
way Wang's liability to the customer. In no event shall Wang
Laboratories, Inc., or its subsidiaries be liable for incidental or
consequential damages in connection with or arising from the use
of this manual or any programs contained herein.

LABORATORIES, INC.

(Uq U ANG) ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 459-5000, TWX 710 343-6769, TELEX 94-7421

iv

CHAPTER 1:

1.1

—
0 N O O

CHAPTER 2:

CHAPTER 3:
3.1
3.2
3.3

TABLE OF CONTENTS

PART I
GENERAL INFORMATION

INTRODUCTION TO CARD READER OPERATION

INTRODUCTION. . . . v v v ot e e e e e e e e e e e e e e i, 1
Hollerith and Binary Punched Data Cards. 2
BASIC Mark Sense Data Cards. 2
Custom-Designed Mark Sense Cards 2
"Look-Ahead" Mode. e e . 3
Program Entry with Cards and "Batch Processing". 3

THEORY OF OPERATION & v v v v v e e e e e e e e e e 3

PUNCHED/MARK SENSE CARD SPECIFICATIONS. 5
Punched Cards. ¢ v v v v v v v v e 5
Mark Sense Cards & v v v v v v e e e e e e e 6
Card Stock L e e e e e e e e e e e 9

SUMMARY OF DIFFERENCES BETWEEN THE MODEL 2234A AND THE

MODEL 2244A & . e e e e e e e e e e e e e e 9

FRONT PANEL CONTROL BUTTONS (MODELS 2234A/2244A). 9

FRONT PANEL INDICATOR LAMPS (2234A/2244A) 10

MODEL 2234A REAR PANEL CONTROLS . . v v v v v v v v v v v v .. 11

MODEL 2244A REAR PANEL CONTROLS . . v v v v v v v v v v v v .. 12
DATA MODE/INDEX MARKS Summary. . . . v v v v v o o o o o . . 14

INSTALLING AND OPERATING THE CARD READER

UNPACKING AND INSPECTION. v v v v v v v v uu . . 17
INSTALLATION. . . & v v v e e s e e e e e e e e e e e e o 17
SYSTEM POWER-ON PROCEDURES. v v v v v v v v u . . 19
LOADING CARDS IN THE INPUT HOPPER v v v v v o .. 19

THE MODES OF CARD READER OPERATION

READING PUNCHED AND MARK SENSE CARDS. v v v v o .« . . 20
DATA VALUES VS. CARD "IMAGES" v v v v v v v ... 20
LIMITATIONS OF THE SYSTEM 2200A, AND THE 2200S

FND WCS/10 SYSTEMS WITHOUT OPTION-22 OR -23, IN
CARD READER OPERATIONS. v v v v v v v v v .. 21

3.4
3.5
3.6

CHAPTER 4:

4.1
4.2
4.3
4.4
4.5
4.6

CHAPTER 5:

5.1

5
5.
5

S w N

()]
.
(8,]

CHAPTER 6:

6.1

(=] (=)} (o)) (o))
. . . .
(3] N w n

MODEL 2234A CARD READING MODES. & & « v v v v o o o o 22
MODEL 2244A CARD READING MODES. « « « v v v v v o v e v e o v 24
THE USE OF FILE NUMBERS, AND THE 'SELECT TAPE' STATEMENT. . . . 26
File Numbers v ¢ ¢ v v v v v v v v o v v e v 26
The SELECT TAPE Statement. « « v ¢ v v« ... 26
PART II
HOLLERITH PROGRAM AND DATA CARDS

READING HOLLERITH DATA VALUES (DATALOAD, ADDRESS 628)

INTRODUCTION. & & v v v v v v v e e e e e e v e e e oo o e o s 28
READING HOLLERITH DATA VALUES « ¢ ¢ « ¢ o o .29
HOLLERITH DATA CARD FORMAT. « v ¢ v v v v 0 o o o o o 30
CONTINUATION OF A DATA VALUE. « « « « o o « v ... 33
TESTING FOR THE END-OF-FILE ¢« « o o ¢ ¢« v v o o o o 35
THE SPECIAL "RESET" CARD. P 36

READING HOLLERITH DATA VALUES (INPUT, ADDRESS 62B)

INTRODUCTION. . & v v v v v v e o e v e e e e e o o o o o o o 38
DATA CARD FORMAT FOR 'INPUT'. ¢ ¢« v v v v o v v o ot 38
READING DATA VALUES FROM CARDS WITH 'INPUT' 39
SPECIAL TECHNIQUES FOR USING 'INPUT' TO PROCESS
NUMERIC DATA. &« & ¢ v v v v v o v o v o o o o o o o s o o o s 41
CONTINUING DATA VALUES AND TESTING FOR THE END-OF-FILE. 42
The SPECIAL 'RESET' CARD. [43

READING HOLLERITH DATA CARD IMAGES (DATALOAD BT, ADDRESS 629)
INTRODUCTION. + ¢ v v v v o v o o o o o o o o o o o o o o o o o 44
READING HOLLERITH DATA CARD IMAGES.« « « ¢ ¢ ¢ ¢« &« « & 45
HOLLERITH CARD IMAGE CONVENTIONS. e e s e s e e e e 46
THE LENGTH CODE . . « v ¢ v v v 4 ¢ o o v o o o o o o o o« o o s 48
THE ERROR CODE . . & &« v & &« v v o v v v o o o o o o o o o o » 48

e

gﬁ“

¢

CHAPTER

7.
7.
7.

CHAPTER

CHAPTER

9.

O
~

®» ® ® ® ©

(Yo} (e} o O (o]
. . L] . .
()] o S w N

7:

HOLLERITH LOOK-AHEAD MODE (DATASAVE BT, ADDRESS 42E)

INTRODUCTION. . . & v v v vt et e e s e e e e e e e e e e 51
OPERATION OF THE LOOK-AHEAD MODE. + ¢ v v v v « « o o & 51
CARD READING WITH LOOK-AHEAD. . . « v v v v ¢ v v v v 0 v o o & 52

LOADING HOLLERITH BASIC PROGRAMS AND PROGRAM OVERLAYS
(LOAD, ADDRESS 62B)

INTRODUCTION. . &« v v v v i v vt et e e e e e e e e e o e 55
LOADING HOLLERITH PROGRAM DECKS ¢ v v v ¢« v o 55
LOADING HOLLERITH PROGRAM OVERLAY DECKS 57
HOLLERITH BASIC PROGRAM CARD FORMAT « ¢ « .« 62
END OF PROGRAM. . . . v v v v ittt e et e e e e e e e e v 64
CONTINUATION OF A PROGRAM LINE. . .‘ 65

BATCH PROCESSING HOLLERITH BASIC PROGRAMS
INTRODUCTION TO "BATCH PROCESSING" ON THE MODELS

2234A AND 2244A L e e e e e e e e e e e e e e e e e 66
LOADING HOLLERITH BASIC PROGRAMS WITH CONSOLE INPUT 66
HOLLERITH PROGRAM CARD FORMAT FOR CONSCLE INPUT 68
DIFFERENCES BETWEEN 'CONSOLE INPUT' AND 'LOAD'. 68
BATCH PROCESSING WITH COMSOLE INPUT v ¢ v v v o . . 69
THE USE OF 'LOAD' IN CONJUNCTION WITH 'CONSOLE INPUT'
FOR MORE EFFICIENT BATCH PROCESSING 69
PRINTING BATCHED PROGRAM OUTPUT . . . v « v v v v v v v o v v 69
READING DATA CARDS IN BATCH PROCESSING MODE 70
Batch Deck Protection. 70

vii

CHAPTER 10:

10.1

10.2

CHAPTER 11:

1.1
11.
11.
11.
11.
11.

A 0w N

CHAPTER 12:

12.1
12.
12.
12.
12.
12.
12.

N OO o BN

CHAPTER 13:

13.1
13.2

PART III
BASIC MARK SENSE PRCGRAM/DATA CARDS

MARKING THE BASIC MARK SENSE CARDS

THE TWO BASIC MARK SENSE PROGRAM CARDS. « « « . . 76
Standard Format BASIC Cards. ¢ ¢ v o o . 77
Wang BASIC Cards ¢ ¢ ¢t v v v v ¢t o ¢ o o o o o o o 78

MARKING PROGRAMS AND DATA ON BASIC MARK SENSE CARDS 78

LOADING MARK SENSE BASIC PROGRAMS AND PROGRAM OVERLAYS
(LOAD, ADDRESS 62C)

INTRODUCTION. & & v v v v v v v vt e e o o e v o o e s o v o 82

LOADING MARK SENSE BASIC PROGRAMS e e e e e e e 82

LOADING BASIC PROGRAM OVEﬁLAY DECKS 84

BASIC MARK SENSE PROGRAM CARD FORMAT. . . . « v v v v v « « o . 86

CONTINUATION OF A PROGRAM LINE. . . . +. ¢ v v v v v v v v o o . 87

END OF PROGRAM. . . &+ + ¢ v v v v v v v v v v e e e e e e e o 88

READING DATA VALUES FROM BASIC MARK SENSE CARDS
(DATALOAD, ADDRESS 62D)

INTRODUCTION. & & v v v v v v v v o v e o o o o o o o e e o e 92

READING DATA VALUES FROM BASIC MARK SENSE CARDS 93

BASIC MARK SENSE DATA CARD FORMAT . . . v v v v v v v v v o o s 94

CONTINUATION OF A DATA VALUE. . . « « ¢ ¢ v v v v v v v o o o & 97

TESTING FOR THE END-OF-FILE . . . v v v v v ¢ ¢ ¢ v ¢ o o v o 98

THE SPECIAL "RESET" CARD. . . & v v v v v v ¢ o o o o o o o o & 100

SPECIAL TECHNIQUES FOR PROCESSING NUMERIC DATA

WITH 'DATALOAD' . . . & & & i i it e e e e e e e e e o e e s e 101

READING DATA VALUES FROM BASIC MARK SENSE CARDS
(INPUT, ADDRESS 62C)
INTRODUCTION. « v v v v v v v v v e e e e e v e . 102

DATA CARD FORMAT FOR "INPUT'. . . . v v ¢ v v ¢« v v o o v o o & 103

viii

13.
13.

13.

13.

CHAPTER

14,
14.
14,
14.
14.
14.

14.
14.

CHAPTER

15.
15.
15.
15.
15.
15.

3
4

(o2 TR & 2 BT~ SN VS N AN

~

15:

S O W N

READING DATA VALUES FROM CARDS WITH 'INPUT'

SPECIAL TECHNIQUES FOR USING 'INPUT' TO PROCESS
NUMERIC DATA. . . & o i v e e i ettt e e e e e e e e e

CONTINUING DATA VALUES AND TESTING FOR THE END-OF-FILE.
Continuation of a Data Value « ¢« ¢« v v ¢ o .
Testing for the End-of-File.

THE SPECIAL 'RESET' CARD. v v v v v v v v v v e o v o W

BATCH PROCESSING BASIC MARK SENSE PROGRAMS
INTRODUCTION TO "BATCH PROCESSING" ON THE MODEL 2244A
LOADING BASIC MARK SENSE PROGRAM DECKS WITH CONSOLE INPUT .

BASIC MARK SENSE PROGRAM CARD FORMAT FOR CONSOLE INPUT.
DIFFERENCES BETWEEN 'CONSOLE INPUT' AND 'LOAD'.
BATCH PROCESSING WITH CONSOLE INPUT «
THE USE OF 'LOAD' IN CONJUNCTION WITH 'CONSOLE INPUT'

FOR MORE EFFICIENT BATCH PROCESSING «
PRINTING BATCHED PROGRAM OUTPUT

READING DATA CARDS IN BATCH PROCESSING MODE v « « .« .
Batch Deck Protection. v & v v v v v 4 v v e e e e

PART IV
NON-STANCARD PUNCHED AND MARK SENSE CARDS

READING BINARY CARD IMAGES (DATALOAD BT, ADDRESS 62A)
INTRODUCTION. . . v & v v v e i e et e e e e e e e e e e e

THE LENGTH CODE « .« v vt vt e e e e e e e e u
THE ERROR CODE. . . & v v v v v vt it e e e e e e e e e e e u

ix

CHAPTER 16:
16.1
16.2
16.3

CHAPTER 17:

17.1
17.
17.
17.
17.
17.

S a1 B~ N

17.
17.8

~

CHAPTER 18:
18.1
18.2
18.3

18.4
18.5

APPENDIX A:
APPENDIX B:
APPENDIX C:

BINARY LOOK-AHEAD MODE (DATASAVE BT, ADDRESS 42F)
INTRODUCTION. « v v v v v o v e e e e e e e e e e e ... 126
OPERATION OF THE LOOK-AHEAD MODE. « ¢« ¢ ¢« o « . 126
CARD READING WITH LOOK-AHEAD. L 127
SUPPLEMENTAL PROGRAMMING TECHNIQUES FOR PROCESSING DATA CARD
IMAGES :
INTRODUCTION. . & v v v v v v v e e e e e e v o o s o o o o s 129
DETECTION OF CARD READER ERRORS « v ¢« v v v v v o o 129
EFFICIENT USE OF THE LOOK-AHEAD MODE. e e e e e e 137
DATA VALIDATION AND CONVERSION PROCEDURES 138
NUMERIC DATA CONVERSiON WITH THE 'CONVERT' STATEMENT. 140
VALIDATING NUMERIC DATA WITH THE 'NUM' FUNCTION PRIOR
TO CONVERSION . . . v v v v ittt et e e e e e e e e e s 141
ERROR RECOVERY WITH THE 'ON ERROR GOTO' STATEMENT 143
DATA CONVERSION WITH '$UNPACK' (GENERAL I/0 STATEMENT). 145
DESIGNING CUSTOMIZED CARDS (MODEL 2244A ONLY)
READING CUSTOMIZED CARDS WITH THE MODEL 2244A 157
GENERAL CARD SPECIFICATIONS (MARK SENSE AND PUNCH CARDS). . . . 158
CUSTOM-DESIGNED MARK SENSE CARDS. « ¢ ¢ v v ¢« ¢ o v o & 160
Definitions of Key Terms . . . « « ¢« ¢« v ¢ ¢ v ¢« ¢« ¢ o o o 160
Detail Specifications for Mark Sense Cards 162
STANDARD 80-COLUMN PUNCHED CARDS WITHOUT INDEX MARKS. 167
PUNCH/MARK SENSE CARDS WITH INDEX MARKS « « « « .+ . 167
Combining Punches and Marks on Custom-Designed Cards 167
Detai] Specifications for Punch Data Fields. 168
GENERAL FORMS OF THE CARD READER STATEMENTS AND COMMANDS . . 171
CARD PURCHASING INFORMATION. ¢ ¢ ¢ v v ¢ v v o o« « & 177
CARD READER MAINTENANCE INFORMATION. . . « « ¢ ¢ ¢ ¢ ¢ « & . 179

APPENDIX D: HOLLERITH CODES AND ASCII EQUIVALENTS

............ 181
Table I: Hollerith Codes. o o v v v v v v v v v 182
Table II: HEX, ASCII, and Hollerith Codes for BASIC
Characters and Text Atoms. « ¢« ¢« ¢« ¢« ¢ ¢ o o o & 183
APPENDIX E: SYSTEM ERROR MESSAGES. « « o o ¢ v v v o v v o v o 190
INDEX. & v v o e 191

Xi

4-1:

4-2:

5-1:
5-2:

6-1:
6-2:

7-1:
7-2:

8-1:
8-2:
8-3:

12-1:
12-2:

12-3:

LIST OF EXAMPLES

Example

Loading Hollerith Data Values from Cards

(DATALOAD, Address 628). . . v v v v v v v v e v e e e e,

Loading Hollerith Data Values from Cards into Arrays

(DATALOAD, Address 628). . . v v v v v v v v v v e e e e e e e

Reading Hollerith Data Values and Testing for the End-of-File

(DATALOAD, Address 628). . . v v v v v v v e e e e e e

Reading Hollerith Data Values with INPUT (Address 62B)

Testing and Converting Numeric Data Entered via INPUT

(System 2200S and WCS/10). . . « v v v v v v e e e e e e e

Reading Hollerith Data Card Images (DATALOAD BT, Address 629). . . .
Checking the ERROR Code (Hollerith Card Image)

Processing Hollerith Data Values with Look-Ahead

Processing Hollerith Card Images with Look-Ahead

Loading a Hollerith Program Deck (LOAD Command, Address 62B)

Loading a Hollerith Program Deck (LOAD Statement, Address 62B) .
Loading a Hollerith Program Overlay Deck (LOAD Statement,

Address 62B) . . . v . . i e e e e e e e e e e e e e e e e

Loading a BASIC Program from Mark Sense Cards (LOAD Command,

Address 62C). & v v v v vt e e e e e e e e e e e e e e

Loading a BASIC Program from Mark Sense Cards (LOAD Statement,

Address 62C). . v v v v v e e e e e e e e e e e e e e e

Loading a BASIC Program Overlay from Mark Sense Cards

(LOAD Statement, Address 62C) . « v v v v @ v v v v v v e e

Reading Data Values from BASIC Mark Sense Cards

(DATALOAD, Address 62D) . . v v v v v v v v v e e e e e e

Reading Data Values from BASIC Mark Sense Cards into Arrays

(DATALOAD, Address 62D) . « .« v v v v v v v v e e e e e e

Reading BASIC Mark Sense Values and Testing for the End-of-File

(DATALOAD, Address 62D) v v v v v v v v v v e e e e e e

Page

30

30

36

40

42

46
50

53
54

56
58

58

85

85

85

94

94

‘J

13-1:
13-2:

15-1:
15-2:

16-1:

17-1:
17-2:
17-3:
17-4:
17-5:
17-6:
17-7:
17-8:
17-9:

17-10:
17-11:
17-12:

17-13:

Reading BASIC Mark Sense Data Values with INPUT (Address 62C) . . .
Testing and Converting Numeric Data Entered via INPUT

(A11 Systems Except 2200A). . . . & & v v v i e e e e e e e e e e
Reading a Binary Card Image (DATALOAD BT, Address 62A).
Checking the LENGTH and ERROR Codes (Binary Card Image)
Processing Binary Card Images with Look-Ahead (DATASAVE BT,

Address 42F). v v v v v i e
Checking the LENGTH and ERROR Codes in a Hollerith Card Image . . .
Checking the LENGTH and ERROR Codes in a Binary Card Image.
Use of the AND Function to Test for Individual Error Bits
Response to Error Conditions Without Operator Intervention.
Response to Error Conditions With Operator Intervention
Testing for Card Reader 'Ready' Condition
Testing for Card Reader Error Conditions.
Processing Hollerith Card Images with Look-Ahead.
Processing Numeric Data from a Card Image with CONVERT.
Validating Numeric Data with NUM Prior to Conversion.
Recovering from Numeric Format Errors With ON ERROR GOTO.

Using Field Form of $UNPACK to Separate Data Values in a
Hollerith Card Image. ¢ ¢ ¢ ¢ ¢t v ¢ 4 v e v o o o o o &

Using Delimiter Form of $UNPACK to Separate Data Values in a
Hollerith Card Image. & ¢ ¢ ¢ ¢ ¢ v v v e v v e e o o o u s

xiii

1-2.
1-3.
1-4.

1-6.

1-7.

1-9.

2-1.

4-2.
4-3.

4-5,

4-6.

6-1.

8-1.

8-2.

LIST OF FIGURES

"Figure Page
The Models 2234A/2244A (The Two Units Have Identical
Front Panels). ¢ ¢ v v v i i i e e e e e e e e e e e e 1
Typical 80-Column Punched Card e e e e 6
Wang BASIC Mark Sense Card « ¢ ¢ ¢ ¢ v v v v v o v 0 o . 7
Standard BASIC Mark Sense Card » e 7

Typical 80-Column Card with Index Marks, for Use Either as
Punch Card or Mark Sense Card. e e e e e e . 8

Typical 40-Column Card With Index Marks, for Use Either as
Punch or Mark Sense Card & & & & & ¢ v v v ¢ v v v o o o 8

Front Panel Control Buttons and Indicator Lamps (2234A/2244A). . . 9

Model 2234A Rear Panel Controls. . . . v «v v v v v ¢ v v v o o o 11
Model 2244A Rear Panel Controls. ¢« ¢ v v ¢ v v v v o o o & 12
Typical System Configuration e e e e e e e e 18

Typical Hollerith Data Card With Multiple Data Values
Separated by Commas. . . «. « « v ¢ ¢ 4t 4t 4 e e e e e e e e e 31

Alphanumeric Values on a Hollerith Card With and Without Quotes. . 32

Continuing a Numeric Value from One Hollerith Card to a Second . . 33
Continuing an Alphanumeric Value from One Hollerith Data

Card toa Secondo ... e e e e e e e e 34
Typical Data Deck With EOF Card Containing Dummy Data

in A11 Fields.« ¢ o v o . . e e e e e [|
Special 'RESET' Card for Hollerith Data Decks. e e e e 37
Bit Positions and HEX Codes. « ¢ ¢ ¢ v ¢ ¢ o v « o & 48

Typical Card Deck Arrangement for Single Hollerith Program
Deck Read with LOAD. ¢ ¢ ¢t ¢ ¢ v o e v v e e o o o e s 59

Typical Card Deck Arrangement for Single Hollerith Program
Deck and Associated Data Deck Read With LOAD 60

Xiv

8-5.

8-6.

9-1.

9-2.

9-3.

9-5.

10-1.
10-2.
10-3.

10-4.

10-5.

11-1.

11-2.
11-3.

Typical Card Deck Arrangement for Hollerith Program Deck

and Associated Data Decks Read With LOAD
Right and Wrong Methods of Recording Multiple-Statement

Lines on a Single Hollerith Program Card
Two Methods of Signalling End-of-Program

Continuing a Single Program Line from One Hollerith Card
toasSecond. Lt i e e e e e e e e e e e e e e e e e e

Typical Card Deck Arrangement for Single Hollerith Program
Deck Read Via Console Input. ¢ v ¢ v v v ¢ v v v v v

Typical Batch Job Stream With Two Program Decks and
Appropriate Control Cards for Entry Via Console Input.

Typical Batch Job Stream With Two Program Decks, Data Deck,
and System Control Cards for Entry Via Console Input

Typical Batch Job With Hollerith Program Deck and Appropriate
Control Cards. Program is Read Under LOAD Control

Typical Batch Job Stream With Program and Data Decks.

Programs Are Read in Under LOAD Control.
Standard BASIC Mark Sense Card e e e e e e e e e e e
Wang BASIC Mark Sense Card ¢ ¢ ¢ ¢ v ¢ ¢t ¢ ¢ v o o o o o

Enlarged Portion of Zone 1 (STATEMENT NUMBER) on a BASIC
Mark Sense Card, Showing Line Number '100' Marked.

Enlarged View of Box in Row 1 of FORMULA ZONE, Showing
Which Boxes Must Be Marked To Indicate Specified Characters. . . .

Enlarged Portion of Zone 3 (FORMULA Zone) on a BASIC Mark

Sense Card, Showing the Statement "A=B4+2+C" Marked
Right and Wrong Methods of Marking Multiple-Statement Lines

on a Single Mark Sense Card. ¢ ¢« ¢ ¢ o v v .. e e

Typical Card Deck Arrangement for Single BASIC Program Deck. . . .

Typical Card Deck Arrangement for Single BASIC Mark Sense
Program Deck and Data Deck « ¢ ¢ v ¢ ¢ ¢ ¢ v ¢ v v 0 ..

Typical Card Deck Arrangement for BASIC Mark Sense Program
Deck With Data Deck and Program Overlay Deck e e

XV

80

81

87

89

90

91

12-1.

12-2.

12-3.

12-4.

12-5.

14-1.

14-2.

14-3.

14-4.

14-5.

15-1.

15-2.

15-3.

17-1.

17-2.

17-3.

17-4.
17-5.

17-6.

Alphanumeric Values on a Wang BASIC Mark Sense Card With .
and Without Quotes &« & ¢ ¢ ¢« ¢ ¢ i it e e e e e e e e e

Continuing a Numeric Value '8001624E07' Onto a Second
Mark Sense Card. & & ¢ ¢ v 4 b b bt e e e e e e e e e e

Continuing an Alphanumeric Value from One Mark Sense Card
toaSecond Card Lttt e e e e e e e e

Typical Data Deck With EOF Card Containing Dummy Data
in ATT Fields. . . ¢ ¢ ¢ v v i i et e e e e e e e e e e e e e e

Typical Card Deck Arrangement for Single Mark Sense Program
Deck Read Via Console Input. ¢ o v v v v v oo

Typical Batch Job Stream With Two Program Decks for Entry
Via Console Input. . . . ¢ & ¢ v ¢ v v i i i e e e e e e e e e e

Typical Batch Job Stream With Two Program Decks, ‘Data Deck,
and System Control Cards for Entry Via Console Input

Typical Batch Job Stream With Program Deck Read in Under
LOAD Control . . & v v v v v v b o o o e o o o o o e e e e e e e

Typical Batch Job Stream With Program and Data Decks, and
System Control Cards. Programs Are Read Under LOAD Control
Bit Positions and Hexadecimal Values . . « . . ¢ ¢« ¢ ¢« ¢« ¢ ¢ « & &

Format of 12-Bit Binary Data Read from Cards in Mode #4
(Binary Image Mode). . . v v v v v v v v v b e e e e e e e e e

Twelve Bits of Binary Data Read from a Single Card Column

inMode #4 0 L 0t e e e e e e e e e e e e e e e
ERROR Code for "Hopper Empty". ¢« ¢ ¢ ¢ ¢ v ¢ v ¢« v ¢ ¢ o
Hollerith Card With Four Data Fields
Typical $UNPACK Statement in Field Format Showing Components -
Field Specification Variable in a $UNPACK Statement.

Field Specification Code Stored in the Field Specification
Variable . . . ¢ ¢ ¢ vt i e e e e e e e e e e e e e e e e e e

Field Specification Code for Eight-Byte Alpha Field.

Xxvi

f

i

17-7.

17-8.
17-9.

17-10.
17-11.
17-12.
17-13.

18-1.

18-2.
18-3.
18-4.
18-5.

18-6.

18-7.
18-8.
18-9.
18-10.
18-11.
18-12.

18-13.

B-1.

B-3.

Field Specification Code for 10-Byte Numeric Field in
BASIC Free-Format. . . . « ¢ « ¢« ¢ ¢ o v v v o o ¢« e o o o o o o

Field Specification Code for Skipping a 16-Byte Field.

Field Specification Code for Seven-Byte Numeric Field in
Integer Format ¢ ¢ ¢ o o 0 0o e e e e e e

Hollerith Card With Six Data Fields.« ¢ ¢ o« &
Delimiter Specification Variable in a $UNPACK Statement.
Typical Delimiter Specification Code « ¢« ¢ ¢« ¢ ¢ o &
Hollerith Card With Slash ("/") Characters Serving

as Delimiters Between Values ¢ ¢ o o o v v o o
Standard 80-Column, 12-Row Card With Index Marks for

Marking or Punching. ¢ ¢ v ¢ v v o v e e h e e e e e
Index Marks, Index Columns, and Data Columns
Data ROWS. . & ¢« ¢ ¢ v v o v v v v v e e e e e e e e e e e e e e

Marking Areas and Typical Marking Constraints.

Minimum Dimensions of Index Marks, and Minimum Distance
from Leading Card Edge to First Index Mark

Minimum Distance Between Consecutive Index Marks for
Mark Sense Data COTUMNS. . « & ¢ & ¢ & ¢ ¢« & ¢« o o o o o o« o o o

Alignment of Index Marks ona Card ¢« . ¢ ¢« o o o o o &
Maximum Width and Spacing of Data Rows
Vertical Spacing of Data Marks and Data Constraints.
Minimum Distance Between Marking Constraints and Index Marks . . .
Detail Specifications for Punch Data Columns and Index Marks . . .

Minimum Distance Between Leading Edge of Punch Hole and
Leading Edge of Index Mark ¢ ¢ ¢ v ¢ v o v v o o 0 .

Card Specifications for 80-Column Punch/Mark Sense Card.

80-Column Hollerith Punch/Mark Sense Card. « . . .
40-Column Hollerith Punch/Mark Sense Card. ¢ ¢« « « « &
Wang BASIC Mark Sense Program/Data Card.

Xvii

LIST OF TABLES

Table : Page
1-1. DATA MODE and INDEX MARKS Settings for Different Types
of Cards. . . . & & ¢ i L e e e e e e e e e e e e e e e e e - 15
6-1. Card Reader Error Codes « + v v v v v v v v v o o o o o o & 49
15-1. Card Image Error CodesS. . « « v v ¢ v v v v v v v o v o v o v v v 124
17-1. Card Reader Error Codes . . . v « v v v v v v v v o o 0 o o o o o » 130
17-2. Valid Field Specification Codes in Hexadecimal Notation. 148

17-3. Valid Delimiter Specification Codes in Hexadecimal Notation 154

Xviii

PART |
GENERAL INFORMATION
CHAPTER 1
INTRODUCTION TO CARD READER OPERATION

Figure 1-1. The Models 2234A/2244A (The Two Units Have Identical Front Panels)

1.1 INTRODUCTION

Wang's two hopper-feed card readers, the Model 2234A and the Model 2244A,
offer a fast and efficient means of entering data from cards into the system.
Both card readers can read standard punched cards. The Model 2244A offers the
additional capability to read mark sense cards, a valuable feature for users who

do not have access to a keypunch, or who want to design their own mark sense
cards for data entry.

Hollerith and Binary Punched Data Cards

The keynote of both card readers is versatility. Both readers simplify
and speed up the processing of standard 80-column Hollerith punched cards by
automatically converting the Hollerith code into ASCII, the code used internally
by the system, as the cards are read. The user is therefore spared the task of
writing his own code conversion routine for Hollerith. For cards punched or
marked in non-Hollerith codes, such as binary cards or custom-designed mark
sense cards, the card readers can read straight binary data from a card (two
binary bytes per card column), without performing a code conversion. In such
cases, it is the programmer's job to write a code conversion routine which will
translate the binary data into a meaningful form under software control.

NOTE:

The automatic Hollerith-to-ASCII conversion performed by the
card readers assumes the expanded version of Hollerith
utilized on the IBM Model 29 Keypunch. The earlier Model 26
Keypunch does not employ expanded Hollerith. There are,
therefore, differences in the codes for certain special
symbols between the Model 26 and the Model 29. Model 26
owners must identify the equivalent Model 29 codes for the
characters in question, and perform their own code
conversions for those characters. '

BASIC Mark Sense Data Cards

With its capability to read mark sense cards, the Model 2244A offers an
additional degree of versatility. In cases where no keypunch is available or
where data collection must be carried out on-site, the use of punched cards may
be impractical or impossible. The Model 2244A provides the capability to read
several types of standard mark sense cards, as well as a wide range of
custom-designed cards. Standard 80-column mark sense cards can, of course, be
marked in Hollerith just as they would be punched. Because the 80-column format
is somewhat inconvenient for marking data, however, two types of cards specially
designed for marking programs or data in a simpler, non-code-oriented format are
available. Standard educational format BASIC mark sense cards and Wang format
BASIC mark sense cards both offer a card format and character code much simpler
and more convenient for marking programs and data than the standard Hollerith
format. The codes used on both BASIC mark sense cards are automatically
converted into ASCII by the card reader as the cards are read. In these cases
as with Hollerith, therefore, the user is not required to write his own code
conversion routines. -

Custom Designed Mark Sense Cards

Mark sense cards also offer an enormous range of flexibility in the design
of customized cards. Special codes and card formats used on custom-designed
cards can be read as pure binary data, and translated into meaningful data under
program control. The data manipulation language features available on most Wang
systems can support a wide variety of code conversion routines.

‘J

"Look-Ahead" Mode

In addition to their versatility in reading a variety of different kinds
of cards, both ‘the Model 2234A and the Model 2244A provide a special
"look-ahead" feature which can speed up the processing of data cards in many
applications. The "look-ahead" feature makes it possible for the card reader to
access and read the next card in the hopper while data from the previous card is
being processed in the CPU. Because card reading is overlapped with CPU
processing, the total throughput time for processing cards can be reduced
substantially in many applications.

Program Entry with Cards and "Batch Processing"

Off-1ine data collection and storage is, of course, only one facet of card
reader operation. The off-line programming capability offered by the card
reader may be equally as important in multiple-user situations. If a keypunch
unit is available, BASIC programs can be punched off-line in Hollerith and
loaded into the system with the Model 2234A or the Model 2244A. The Model 2244A
offers the additional capability to read programs marked on either of the two
types of BASIC Mark Sense program cards. Both punched and mark sense program
decks can be loaded and run in batch processing mode. In this mode, a series of
separate programs (and associated data decks) can be loaded, listed, and run
automatically in sequence. - To facilitate debugging of the individual programs,
erroneous 1lines 1in each program are printed or displayed, along with the
appropriate error codes.

In summary, the Models 2234A and 2244A serve the needs of the user who is
utilizing standard cards and is concerned primarily with ease and simplicity of
operation, while also providing the versatility to handle a wide range of
non-standard card formats and codes. Techniques for reading Hollerith and
non-Hollerith punched cards (available on both the Model 2234A and the Model
2244A) are discussed 1in Chapters 4 through 9, and in Chapters 15 and 16.
Techniques for reading standard and non-standard mark sense cards (available
only on the Model 2244A) are covered in Chapters 10 through 14.

1.2 THEORY OF OPERATION

For purposes of general description, the card reader may be thought to
consist of four basic components:

1. The input hopper, in which the cards to be read are stacked. (Chapter
2, Section 2.4, describes the proper technique for loading card decks
in the input hopper.) The input hopper holds a maximum of 550 cards.

2. The picking mechanism, which picks cards from the input hopper and
passes them through to the reading station.

3. The reading station, which reads data from the cards.
4. The output stacker, in which the cards are stacked after they have

been read. The output stacker, 1ike the input hopper, holds a maximum
of 550 cards.

The card reading mechanism is designed around an air-flow -system which
uses air pressure to separate cards in the hopper, and a vacuum to pick
individual cards from the hopper. Pressurized air from a blower riffles the
first half idinch of cards in the input hopper, so that they stand apart,
individually "air-cushioned" from the rest of the cards and from each other.
The air cushion prevents the cards from sticking together because of static
electricity, hole locking, or torn webs, and eliminates frictional forces
between the cards. When the card reader is in AUTO SHUTDOWN mode (normal
operating mode), the blower is activated by depressing the RESET button on the
card reader front panel, and shuts down automatically when the hopper is emptied
of cards, or when the card deck is momentarily 1ifted from the hopper. In
MANUAL SHUTDOWN mode, the blower operates continuously while the card reader
power is on.

At the outset of the picking operation, a vacuum picker in the bottom of
the input hopper pulls the bottom card down and holds it against the picker's
rubber surface. When a read command is received from the system (or from the
card reader itself, if it is being operated off-line in LOCAL MODE), the picker
mechanism rotates slightly, moving the card forward until its leading edge
catches 1in a pair of rollers. A series of rollers then pass the card from the
input hopper into and through the read station. As the card in the track clears
the picker's surface, the next card is sucked down in preparation for the next
read command. The vacuum picker offers significant advantages over most
mechanical pickers because it subjects cards to a minimum of wear and tear, and
can handle worn cards with much Tless difficulty than a mechanical pick
mechanism.

The read station consists of two parts, a 1light station and, depending'

upon the card reader model, either a single or dual read head. The light
station consists of 12 1ight emitting diodes (LEDs), while the read heads
consist of 12 phototransistor sensors arranged in vertical columns. The Model
2234A has a single punched card read head, located directly opposite the Tight
station. The Model 2244A has a dual read head, one located opposite the light
station for reading punched cards, the second located next to the light station
for reading reflective information from mark sense cards.

As a punched card passes between the 1light emitting diodes of the 1ight
station and the 12 photo transistors of the read head, 1ight and dark conditions
in the twelve rows of each column on the card are sensed and converted to
digital form. A Tlight condition is registered where 1ight passes through a
punched hole, and is read as a 1-bit. A dark condition is registered where no
hole is punched, and is read as a 0-bit.

With mark sense cards, the technique is similar except that the mark sense
read head is positioned to detect 1ight reflecting from the card rather than
light passing through it. Where the reflectivity in a row falls significantly
below the background reflectivity of the card (indicating the presence of a data
mark), a light condition (1-bit) is read. Where the reflectivity remains
constant, a dark condition (no data mark, 0-bit) is read. This process is
repeated for all valid data columns on the card.

‘D

An internal column counter automatically counts data columns as the card
passes through the reading station, synchronizing the mechanical card movement
with the reading electronics. At the same time, an internal timer ensures that
each of the card's 80 columns is properly aligned in the reading station before
an attempt is made to read it. Because the internal timer is set up to expect
80 data columns at specific intervals on the card, data cards which do not have
their own index marks must conform to established punched card standards. (See
Section 1.4 for a description of the applicable standards for 80-column punched
and mark sense cards.)

In the Model 2234A, which cannot sense index marks, only 80-column punched
cards which conform to the specified standards can be read. The Model 2244A,
however, provides an additional capability to sense index marks on a card. When
the INDEX MARKS switch on the rear panel of the Model 2244A is set to CLOCK, the
card reader's internal timer is disabled, and index marks on the card itself are
sensed and utilized to align data columns in the read station. Punched or mark
sense cards which contain index marks (also called "timing marks" and “clock
marks") may have fewer than 80 columns, since the width, spacing and number of
data columns is determined by the spacing of the index marks. General
specifications for custom designing a card with index marks are described
briefly in Section 1.4, and in greater detail in Chapter 18.

When the last data column on the card has been read, the card is
transferred to the output stacker. Cards are stacked in the output stacker in
exactly the same order in which they were read from the input hopper. As the
last card in the input hopper is read and placed in the output stacker, the
machine signals a HOPPER CHECK and STOP condition, and automatically shuts down
the vacuum/blower.

1.3 PUNCHED/MARK SENSE CARD SPECIFICATIONS

Punched Cards

Both the Model 2234A and the Model 2244A are equipped to read standard
80-column, 12-row punched cards. In general, data and program cards are punched
on a keypunch, which is designed to align data columns and register punch marks
according to a standard format. The standards which apply to punched cards are
established by the American National Standards Institute (ANSI), and are
detailed in their publication "Rectangular Holes in Twelve-Row Punched Cards"
(ANSI specifications X3.21-1967). Punch cards read by the Model 2234A or 2244A
must conform to these specifications. Figure 1-2 illustrates a typical
80-column punch card.

00
12
11

—a::
—_8 o

22112
3332
4444444444444 4404 0444444444444 44440444 4444444444444 444444444444444444444444444
55
666566686
(RN R R RN R RN R RN R R R R RN RN NN RRREY.
886080800860800008000080800803000803000800008080080080860606688888060608880688888888038088688888888688
9994999999999999999%999999

34567 89101012131415161718192021 222324252627 2829 30 31 32 33 34 35 36 37 38 39 40 4) 4243 44 45 46 47 48 49 50 51 52 53 54 45 56 57 58 5960 61 62 63 64 6566 7686970 71 72737“57671787380/
1om (SOHT)

Figure 1-2. Typical 80-Column Punched Card

Mark Sense Cards

The Model 2244A has the capability to read mark sense cards as well as
punched cards, and to sense index marks on a card and use them to align the data
columns. These additional features make it possible to design special mark
sense cards for processing through the 2244A. Two types of BASIC mark sense
program/data cards, the Wang BASIC mark sense card (111ustrated in Figure 1-3),
and the standard BASIC mark sense card (illustrated in Figure 1-4), can be read
and automatically decoded by the Model 2244A. Note that both types of cards
have fewer than 80 columns. The number and size of data columns on cards which
contain index marks are defined by the spacing of the index marks on the card.
The use of index marks is not restricted to mark sense cards; an 80-column card
which contains index marks, and which can be used either as a punched card or as
a mark sense card, is illustrated in Figure 1-5. Similarly, a 40-column card
with index marks which may be punched or marked is shown in Figure 1-6. In each
case, it is possible to place a combination of punches and marks on the same
card. Standards which prescribe the reflectivity of data marks and printed
material on a mark sense card, as well as the location of data rows and the
spacing of data columns and index marks, are described in ANSI specifications
X3.21-1967, and in Chapter 18 of this manual. Users who wish to design their
own specia] cards should refer to Chapter 18. The cards illustrated in Figures
1-3, 1-5, and 1-6 below may be purchased directly from Wang Laboratories.

NOTE

Printed information on cards which are to be wused
interchangeably for punching and marking must meet the
reflectance requirements for mark sense cards. Refer to
Chapter 18 for a complete discussion of those requirements.

E@BDGDUUHU]MDHMUUMMIuNhL'mu[
iniainjajpiajujanibjnanianapiebkbEbRbiel
ggEEEEEEEEEEEEEEEEEEEEBEEEEE
')

STATEMENT
NUMBER o

] [] i s o e i o] e 8 o o [o T [o B [
aiaaaaAaaRRaRRRRERERREREARER
gi2aRaaERRRRRRR R R RRRERRRE
) B B I B)) B D))) B D)) B B))) B
SRR N SR AR R R R EEREEE
; Al Rl RaRRERaERER
) 0 0 B B) B o B 0 6 B 0 B B B D O
FHEENNEERE NN R R R EE R R
EIEEIE@I@EIEBEQIBEIEIBIBEB@Q

2hojn 23 s hehizhs)9 j20)21 23)24)25)26) 27) 28] 290300 31 1324330 34) 35) 36) 37

%33

mmm:mmuwm

13M 222550 222531

HVO LXIN NO LN3IWILVLS INNILNOD OL FHIH NHYW —=i

= B - B Foauuu
/ sTaTEMENT 77 L] J|(J{_J|(|‘_“(“ r(Jl = (ii= .(_J--vl(. : (- =R ft_ 1 i
NUMBER Hciy puie 9’)_'|7|i)l LID|Y)[,l’)ls,‘_‘)l’l)!") ,{) "'). ‘) "')H'l_]lr

ol 0so"o“c5“o'r Jojlotioiioi o)/ o.o 01i0}!

S31ON

A A + 1A A+A+. +iA|+'A+A '
READ 'c“nu |c"|n|l1c,[m‘|:5c HE) 1c|lwi 1cl nshcl v |Br RE.] |°c| ' Pcl Ei N RE;
- S e T . i
DaTA iR i18.]; [2 l/,} ,— . [o 7
™ e m[ﬂ[ﬂ]u qr] lk’ulzrl.zrlLEJ{zr el) z‘r' 23] 17 Lz_u] e 12 7 I Y% 8
.

m N ;N' 3>'7|"J@' lulil —lLﬂ -ifJL,n,]LJ@xQE"I Iqul_ ILfIJ[;lsx'L _i "{!Ils:‘Q?S"x;i;
“"‘L; *°":",.m J:'L"ﬁu[“—;lulﬁ;llumgﬂg,lul_]E:JD L] Eﬁr;hﬂ 43'3]4 'BL—H&E&?&E 4;:'[:":‘1
5T ol L AN
SICIEIE e Al QQ@QUQ@Q.I!.JQ@I@Q@E@Qﬁu&
Tm":"'ﬂIfQm@lm@@lﬁllﬂm@lﬂﬂ'.ﬂ@ﬁﬁfﬂﬂ“ﬁ
e W B B BB S B s S

B A A

1R 2R3Q4RS ¢6p7Rogopiog1Ig12R13RRsEwii7ele 29 30 3'.32.33.30.35'35.57.

QYYD LX3IN NO LNIWILVLIS 3NNIINOD OL 3YHIH NYYW —,

Figure 1-4 Standard BASIC Mark Sense Card
(Not Available through Wang Laboratories, Inc.)

/GHHHHHHH"HHH"HHHHHHHHHHHHHHHHHHHHHHHHHHHI
e e e e
e e NN
HHHHHHHH"HHHHHHHHHHHHHHHHHHH"HHHHHHHHHHH
T e e

lHHHHHHHHH"HHHHHHHHHHHHHHHHHH"HHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH"HHH
TR R R e e e e e nm
L e ey

R e
TR R R e e e e e e e m

HH"HHHHHHHP“HHUHHHHHHUH”HHHHHH“"HHHHHHHH

Figure 1-5 Typical 80-Column Card with Timing Marks, for Use Either as Punched
Card or Mark Sense Card (Wang Part #700-1222)

mMZ22592 222553

>

/%r»ﬁﬁph%ﬁnnnﬁﬁﬁﬁﬁﬁnrprrrnrpprrnrvrrrnnrr\
A R I I iy
o off off off o} o} o off ofs off of ol e A off ff ks off off off of o} o} o} o o off off ff k] o} off ff kf ok} A} o} ff off ff
R A o T R R TR A A R A R P AR R o A P A R
i
gﬁ%ﬁﬁ%%%%%%%%%%ﬁ%%%ﬁﬁﬁﬁ%%ﬁ%$ﬁ%i%$$:ﬁﬁ%%¥£
o o oS S o ol o S A oA olf oA A O AF oA o o o o o oA S o o o o o o o o o o oA o o o o o o
Eﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ%%k%%%%%ﬁEkhﬁt
oy o A% 15 o8 o1 o o oS o s ol ol ol ol b oF of% o o o off of oF ol o o o ol o ol o o o ol of ol off o off
Rl bEELRLEELELLLEELRELELREELLERERELEELELELEEE
| AR AR A AR R R AR R AR AR AR A O 0 R R R R A R
off o o off ol off off o o of o} of o o o ol o oF o o ok oF o o off o o o ol off ol off o off < o o o o R
AR A A AL A At
T T O I O O A I O

Do

134 222084

-——
o

Figure 1-6 Typical 40-column Card with Timing Marks, for Use Either as Punched
or Mark Sense Card. (Wang Part #700- 1223)

Card Stock

The paper stock used for all types of cards must meet certain requirements
for strength, durability, thickness, etc. These requirements are described in
the American National Standards Institute publication "Specifications for
General Purpose Paper Cards for Information Processing" (ANSI X3.11-1969).
Paper stock for mark sense cards (as well as preprinted information on the
cards) must, in addition, meet certain requirements for reflectivity; these
requirements are spelled out in Chapter 18.

1.4 SUMMARY OF DIFFERENCES BETWEEN THE MODEL 2234A AND THE MODEL 2244A

The Model 2234A reads only punched cards. It has a single optical reading
head designed to interpret punched holes in a card as data, provided the punch
registration and column spacing conform to punch card standards. The Model
2244A reads both punched cards and mark sense cards. The Model 2244A has a dual
reading head; one reading head reads punched holes on a card, the other head
reads #2 pencil marks on a card. Both reading heads may be activated in
conjunction (so that a combination of punches and marks can be read), or the
punched card reading head only may be activated (so that smudges or written
comments on a punched card will not be read and interpreted as data). In
addition, the Model 2244A offers the option to read cards with or without index
marks. (The Model 2234A cannot read index marks.) The ability to read index
marks is particularly valuable for reading mark sense program and data cards
with fewer than 80 columns, and for reading custom-designed cards.

Despite differences in their internal designs, the Models 2234A and 2244A
have the same front panel controls and indicators. In Section 1.5, which
discusses the front panel controls, and 1.6, which discusses the front panel
indicator Tlights, the two card reader models are treated together as one unit.
Rear panel controls on the two models are significantly different, however, due
to the additional features of the Model 2244A. For this reason, the rear panel
goggrols of the two readers are treated in separate sections (Sections 1.7 and

1.5 FRONT PANEL CONTROL BUTTONS (MODELS 2234A/2244A)

Two control buttons are located on the front panel of the Model 2234A and
2244A: STOP and RESET. Their functions are described below.

i 1 - [stor |[meser |

1
1 !
PICK : STACK : HOPPER :

]
CHECK : CHECK : CHECK E

1
4

READ

POWER
CHECK

p—————————
U |

———h

Figure 1-7. Front Panel Control Buttons and Indicator Lamps (2234A/2244A)

STOP - Depressing the STOP button halts the reading operation after the card
currently being processed is read completely. STOP does not cut off
power to the card reader, nor does it shut down the blower. The red
STOP lamp over the STOP button illuminates during a STOP condition.

RESET - Depressing the RESET button clears and resets all error indicators on
the card reader, and activates the blower if it is not already
operational. The card reader is then ready to be accessed by the
system. The RESET button must be depressed for initial start-up of the
card reader, or to restart the reader after it has been halted by a
stop condition. When RESET is depressed, the RESET indicator Tlamp
glows greenly. (Note that the card reader RESET button should not be
confused with the RESET button on the System Keyboard.)

1.6 FRONT PANEL INDICATOR LAMPS (2234A/2244A)

In addition to the control buttons, the card reader front panel presents a
row of five indicator lamps: POWER, READ CHECK, PICK CHECK, STACK CHECK, and
HOPPER CHECK. With the exception of POWER, these lamps are illuminated
automatically by the card reader to indicate specific error condition(s). The
meaning of each indicator lamp is explained below.

POWER - ITluminates when the unit's AC Power Switch, located on the rear
panel of the card reader, is switched ON.

READ CHECK - Indicates that the card just read is torn on the leading edge, or
contains punches or marks before the first data column. Replace
the bad card, and depress the card reader RESET button to restart
the reader.

STACK CHECK - Indicates that the last card read has not been properly seated in
the output stacker. Check the card track to be sure it is clear,
and check the stacker for a badly warped or mutilated card. Clear
and stack the card manually. Depress the card reader RESET button
to restart the reader.

PICK CHECK - Indicates that a card has failed to reach the read station during
a read operation. Inspect the cards in the input hopper for
excessive leading edge damage, torn webs, or cards stapled
together. Remove faulty cards. For stapled cards, remove the
staple, straighten the card, and reinsert. If no faulty cards can
be found, check for excessive warpage in the card deck (in excess
of one inch), and/or ink glaze buildup on the picker face. If
necessary, clean the picker face with denatured alcohol. When
corrective .action has been taken, restart the unit with the card
reader RESET button.

HOPPER CHECK- Indicates either that the input hopper is empty or that the output
stacker is full. In either case, a normal operational occurrence.
Empty the stacker or refill the hopper, and restart the card
reader with RESET.

10

ﬂﬁ%

In certain modes of card reader operation, the error check conditions are
signalled to the controlling program via error codes generated by the card
reader. In such cases, restart procedures may be determined by the controlling
program. :

1.7 MODEL 2234A REAR PANEL CONTROLS

Three control switches are grouped in the upper right-hand corner of the
Model 2234A rear panel: LAMP TEST, SHUTDOWN, and MODE. The AC Power ON/OFF
switgh is isolated in the upper left-hand corner of the rear panel. (See Figure
1-8.

_Ef LAMP TEST SHUTDOWN

@ MAN (é)) AUTO

MODE

=
REMOTE(f%yLOCAL

;—r"“"—--_,\,,//ﬁ"~—~‘~—-‘~—"""\\L

Figure 1-8 Model 2234A Rear Panel Controls
AC POWER SWITCH - Used to power the card reader on and off. The toggle switch
has two positions:

UP - Power on.
DOWN - Power off.

When the power switch is up (ON), the POWER lamp on the front
panel illuminates.

LAMP TEST - This button illuminates all indicator Tlamps on the front

?anel. It should be used periodically to check for burned out
amps.

1

SHUTDOWN - The SHUTDOWN toggle switch controls the blower, and has two
positions, MAN (manual) and AUTO. In MANUAL mode, the blower

- operates continuous]y while power is ON, whether or not there
are cards in the input hopper. This mode is used to operate
the card reader off-line for maintenance purposes. Normally,
the SHUTDOWN switch should be in the AUTO position. In AUTO
mode, the blower is started by depressing the RESET button,
and automatically shuts down when the input hopper is emptied,
or when the card deck is lifted momentarily out of the hopper.
Note that the blower typically requires about three seconds to
reach normal operating speed after it is activated.

MODE - The MODE toggle switch has two settings, LOCAL and REMOTE. In
LOCAL mode, the card reader can be operated off-line by
depressing the RESET button on the front panel. Off-line
operation is useful during certain maintenance procedures.
For normal operation, the MODE switch must be in the REMOTE
position. In REMOTE mode, the card reader is operated under
system control.

1.8 MODEL 2244A REAR PANEL CONTROLS

Five control switcnes are grouped in the upper right-hand corner of the
Model 2244A vrear panel: LAMP TEST, INDEX MARKS, SHUTDOWN, DATA MODE, and
CONTROL MODE. The AC Power ON/OFF switch is isolated in the upper 1left-hand
corner of the rear panel (see Figure 1-9)

LAMP TEST INDEX PAPERS SHUT DOWN

© €

NON- CLOCK CLOCK MAN AUTO

AC POWER \

@

DATA MODE

PUNCH OPT
MARK

REMOTE LOCAL
CONTROL MODE

Fig. 1-9 Model 2244A Rear Panel Controls

12

e

AC POWER SWITCH - Used to power the card reader on and off. The toggle switch

LAMP TEST -

SHUTDOWN -

CONTROL MODE -

DATA MODE -

has two positions:

UP - Power on.
DOWN - Power off.

The POWER lamp on the front panel illuminates when the unit is
powered on, and remains 1it until power is turned off.

This push button illuminates all indicator lamps on the card
reader front panel. It should be used periodically to check
for burned out Tamps.

The SHUTDOWN switch controls the blower, and has two
positions, MAN (MANUAL), and AUTO. In MANUAL mode, the hopper
blower operates continuously while power remains on, whether
or not there are cards in the hopper. This mode is wused to
operate the blower off-line during certain maintenance
procedures. Normally, SHUTDOWN should be 1left in the AUTO
position. In that mode, the blower 1is activated only by
depressing the RESET button on the front panel, and shuts down
automatically when the input hopper is emptied, or when the
card deck 1is Tlifted momentarily from the hopper. Note that
the blower generally takes about three seconds to reach normal
operating speed after it is activated.

The CONTROL MODE switch has two positions, LOCAL and REMOTE.
In LOCAL mode, the card reader can be operated off-line
independently of the system by depressing the RESET button on
the front panel. Off-line operation is often useful during
maintenance procedures. For normal operation, the CONTROL
MODE switch should be set to REMOTE. In REMOTE mode, cards
are read only under system control.

DATA MODE has two settings, PUNCH and OPT MARK. In PUNCH
mode, the card reader's punched card reading head only is
activated, and punched cards only can be read. In OPT MARK
mode, both the punched card reading head and the mark sense
card reading head are activated; therefore both punched and
mark sense cards can be read. Note that the reader should
always be left in PUNCH mode when reading punched cards only,
since there 1is then no possibility of reading printed
material, smudges, or written comments on the cards as data.
(This distinction is significant because punch cards typically
are printed with a non-reflective ink which will be picked up
as data if the card is read in OPT MARK mode.)

13

INDEX MARKS - The Model 2244A is capable of reading cards with or without

DATA MODE/

index marks. Index marks, also called "clock marks" and
"timing marks", are heavy black lines sequenced along the

" bottom edge of the card. They are used by the card reader to
delimit valid data columns on the card. With the INDEX MARKS
switch in NON-CLOCK mode, the card reader does not look for
index marks; instead, it utilizes an internal timer to align
data columns in the reading station. The timer is designed to
expect 80 columns on each card, spaced according to ANSI
specifications X3.21-1967. Cards with or without index marks
may be read in NON-CLOCK mode, as long as the spacing of data
columns and punch or mark registration conforms to the
designated specifications. In CLOCK mode, the card reader's
internal timer dis disabled, and the reader utilizes index
marks on the card itself to delineate data columns. Marks or
punches on the card 1located between two consecutive index
marks are read as data in CLOCK mode. Specifications
governing the design of custom mark sense cards with index
marks are detailed in Chapter 18.

INDEX MARKS Summary

In s
Reader:

The
operation.

ummary, four types of cards can be read by the Model 2244A Card -

Punched cards without index marks (typically, standard Hollerith cards
and binary punched cards).

Mark sense cards without index marks. (Data colurins must be aligned
in standard 80-column spacing.)

Punched cards with index marks.

Mark sense cards with index marks. The 2244A automatically decodes
two types of such cards - standard BASIC mark sense cards and Wang
BASIC mark sense cards. A variety of other formats can be used for
custom-designed cards with index marks. Customized cards may also
combine punches and marks on the same card, provided the punched
columns conform to standard 80-column spacing (most keypunch equipment
punches at 80-column intervals).

table below summarizes the four possible modes of card reader

14

L™

Table 1-1
DATA MODE apd INDEX MARKS Settings for Different Types of Cards

TYPE OF CARD DATA MODE Setting INDEX MARKS Setting

Punched cards without PUNCH NON-CLOCK
index marks (e.g.,
normal Hollerith
punched and binary
punched cards)*

Mark sense cards OPT MARK NON-CLOCK
without index
marks (may be
marked only, or
both punched and
marked)**

Punched cards with PUNCH CLOCK
index marks

Mark sense cards OPT MARK CLOCK
with index marks

(e.g., Standard

BASIC or Wang BASIC

Mark Sense Cards, or
custom-designed cards.
Custom-designed cards
may combine marks

and punches, as long

as punched columns
conform to 80-column
spacing per ANSI x 3.21-
1967.)

*Punched cards without index marks must conform to ANSI standards X3.21-1967.
**Mark sense cards without index marks must conform to ANSI X3.21-1968.

In all cases, card stock must conform to ANSI standards X3.11-1967.

15

NOTE:

The Model 2244A can read a combination of punched and mark
sense " cards 1in the same job stream, provided all cards in
the job stream meet the requirements specified in Chapter 18
for reflectance of printed information on cards. It is
important to recognize that many standard types of punched
cards are printed in a non-reflective ink which will
register as data when read in OPT MARK mode. Such punch
cards cannot be combined with mark sense cards in the same
job stream. Additionally, it is not possible to read cards
which do not have index marks in the same job stream with
cards which do have index marks, since the reader must be
set either to expect index marks on all cards (CLOCK mode),
or to ignore them on all cards (NON-CLOCK mode). Many
standard types of punch cards do not have index marks, while
most mark sense cards do. The 80- and 40- column punch/mark
sense cards sold by Wang (see Figures 1-5 and 1-6) are
printed in reflective ink, and contain index marks. These
cards may be read interchangeably in PUNCH or OPT MARK mode.
The 80-column card may be read in CLOCK or NON-CLOCK mode.
Both cards therefore enable the user to combine punches and
marks on the same card, or to combine punch cards and mark
sense cards in the same deck.

16

CHAPTER 2
INSTALLING AND OPERATING THE CARD READER

2.1 UNPACKING AND INSPECTION

The Model 2234A/2244A is packed in a cardboard shipping crate, with
cushioning and padding to protect it from damage during shipment. Inspect the
outside of the shipping container, and report any sign of physical damage to the
shipping agency at once.

Packed with the card reader are the following three items:
. Card Reader Power Cord

. 2234A or 2244A Controller Board (be sure you have the right
board for your model)

. Card Reader - CPU Controller Cable

After removing the above material, 1ift the card reader straight up and
out of the carton, and place it on a flat, sturdy support area. Carefully
inspect all items for damage; if there is any indication of damage, notify the
shipping agency at once. Check all equipment received against the purchase
order (decals specifying model numbers are affixed to all Wang equipment,
usually on the back of the unit).

Tilt the card reader back on its side, and use a phillips screwdriver to
remove the two red shipping screws in the bottom plate. Save these screws; they
lock the blower motor plate in a solid position to prevent damage to the motor
during shipment, and must be reinstalled if the reader is reshipped.

2.2 INSTALLATION

Observe the following steps to install the card reader:

1. Be sure that all AC Power for the card reader and the system Power
Supply Unit is OFF.

2. Insert the card reader controller board in an available slot in the
system CPU.

3. Connect the Amphenol plug on the controller cable to the receptacle on

the controller board, and fasten it in place with the two lock «clips
provided.

17

4.

PERIPHERAL
CONNECTORS

N

DHHNNDBWNN

Connect the other end of the connector cable to the receptacle on the
rear panel of the card reader. Fit the connector over the receptacle,
and screw it in tightly with the thumbscrew provided. The cable
connector cannot be pushed into its receptacle.

MODEL 2234A Hopper-Feed Punched Card Reader
or

MODEL 2244A Hopper-Feed Mark Sense/Punched Card Reader

POWER CORD
CRT

CRT

KEYBOARD

CASSETTE CPU
CONNECTOR

1

CONNECTOR TO
POWER SUPPLY

=N

ON/OFF LIGH
MAIN GHT

POWER
SWITCH

Figure 2-1. Typical System Configuration

18

2.3

2.4

input

SYSTEM POWER-ON PROCEDURES

1.

Set the MODE switch (Model 2234A) or CONTROL MODE switch (Mode1 2244A)
to REMOTE.

Set the SHUTDOWN switch to AUTO.

On the Model 2244A, be sure that the DATA MODE and INDEX MARKS
switches are appropriately set for the type of cards to be read. (See
Section 1.8 for an explanation of how these switches should be set.)

Turn ON the AC power switch on the card reader and all peripherals,
and turn ON the master power switch on the system Power Supply Unit.
Turning on the master power switch automatically Master Initializes
the system.

LOADING CARDS IN THE INPUT HOPPER

The following procedures should be observed when loading and unloading the
hopper and output stacker.

1.

Remove the hopper follower, and load the card deck into the hopper.
The first card to be read should be at the bottom of the deck. All
cards must be face down, with the "9" row toward the back of the
hopper, and the "1" column to the left. For cards with index marks,
the index marks must be at the back of the hopper. The hopper may be
loosely filled with about 550 cards. Avoid packing the input hopper
so full that the bottom half inch of cards cannot be riffled by the
vacuum/blower unit. Replace the hopper follower.

The hopper may be loaded while cards are being read if the operator is
careful to keep tension on the bottom portion of the deck while
loading additional cards on top. Reloading should be done while the
hopper is one-half to one-third full. Keep just enough pressure on
the deck to maintain the riffle action.

Normally all cards in the hopper are processed through the reader.
If, however, it becomes necessary to unload the hopper, simply remove
the follower and extract the card deck. The action of 1ifting the
card deck out of the hopper automatically causes the vacuum/blower to
shut down. If the cards are arranged in a particular order, exercise
care in repacking them to maintain the order.

The stacker is unloaded by pulling the stacker plate down and removing
the card deck. Be careful that deck order is maintained.

The stacker can be unloaded during operation simply by pulling the
stacker plate down and removing some or all of the deck (if the
stacker plate is pushed all the way down, however, a STACK CHECK error
is signalled, and the card reader halts). Take care to allow the
stacker plate to return to its normal position gradually.

19

CHAPTER 3
THE MODES OF CARD READER OPERATION

3.1 READING PUNCHED AND MARK SENSE CARDS

The character code used internally by all Wang systems is ASCII. Because
data and program text are typically recorded on cards in codes other than ASCII,
however (Hollerith and modified versions of Hollerith are the most common), it
is necessary to convert these codes into ASCII before they can be . regarded
meaningfully by the system. In the cases of standard Hollerith code (as used in
the IBM Model 29 Keypunch), and the somewhat modified versions of Hollerith used
on the BASIC mark sense cards, the card reader can convert these codes
automatically into ASCII as the cards are read. For other codes, the data must
be read in pure binary form and converted into a meaningful format under
software control. In this case, the programmer must write his own code
conversion routine.

In all cases, the various types of code conversions to be performed are
indicated by specifying different device addresses when accessing the card
reader. Unique device addresses identify built-in code conversion routines for
Hollerith-to-ASCII and BASIC mark sense card code-to-ASCII conversion, and for
straight binary reading. Other addresses enable the card reader to perform
"look-ahead" operations, in which the next card is read by the card reader while
data from the previous card is still being processed in the system CPU.

When combined with an appropriate BASIC statement or command (LOAD,
DATALOAD, INPUT, DATALOAD BT or DATASAVE BT), individual device addresses make
possible the Tloading of programs or data from cards, and the automatic
conversion of the card code into ASCII or binary format. Each combination of a
BASIC statement and a device address enables the system to load program text or
data in specific code (for example, the statement LOAD/62B loads program text in
Hollerith code, while the statement LOAD/62C loads program text in special mark
sense card code). The BASIC statement determines the type of reading operation
to be performed (load programs, data card images, or discrete data values from
cards). The device address determines the type of code conversion which 1is to
be performed, and/or the type of card format which is to be read. For this
reason, each combination BASIC statement and device address is referred to as a
“reading mode". The several reading modes available on the Model 2234A are
Tisted in Section 3.4. The more extensive range of reading modes available on
the Model 2244A are listed in Section 3.5. Note that the limited BASIC language
sets of the System 2200A and of the 2200S and WCS/10 systems if they do not have
Option -22 or -23, restrict the card reading modes available on these systems.
The Timitations of the System 2200A and System 2200S and the WCS/10 in card
reader operations are explained in Section 3.3.

3.2 DATA VALUES VS. CARD "IMAGES"

Both card readers provide the user with the option of reading either
individual data values from a card, or complete data card "images". Data values
must be punched or marked in a specified system format. (The required format
for Hollerith cards is explained in Chapter 4, and for the BASIC mark sense
cards, in Chapter 12.)

20

The device addresses 628, 62B, 62C, and 62D are used with the statements
INPUT or DATALOAD to read BASIC data values in a prescribed free-format, and to
interpret commas as data separators. These modes of reading are convenient
ones, since they automatically separate discrete data values and perform data
validity checks, functions which would otherwise have to be carried out by the
programmer in his software. At the same time, however, the programmer is
deprived of complete control over his data. A greater degree of control s
obtained by reading the entire card, not as a series of discrete data values but
as a single continuous data card "image". The chief virtue of this approach
lies in the fact that the programmer has greater control over the vresponse to
certain error conditions. Certain data format errors produce an automatic
system error condition and program termination when encountered in data reading
mode. When a card image is read, however, all data validity checks are made
under software control. The program can therefore be designed to ignore an
jnvalid value, and continue processing the remainder of the data deck. Two
types of card images can be read: Hollerith images and binary images. Device
address 629 s used to indicate Hollerith data card images. In this case, the
complete 80 columns are read from the card, and each column 1is converted into
ASCII. Collectively, the 80 characters read in this way represent an exact
ASCII “"image" of the data punched or marked on the card. In addition, the card
reader sends a pair of extra bytes which specify the total number of columns
read from the card, and identify reading errors and other types of card reader
malfunctions which may have occurred. The programmer is then in a position to
examine all of his data under program control, and conduct his own validity
checks. For non-Hollerith punched or mark sense cards, device address 62A is
used to read a binary card image. In this case, 80 columns of data are read as
two-byte binary values which can be interpreted under program control. The
techniques used for reading Hollerith data values are discussed in Chapters 4
and 7. The reading of Hollerith card images is covered in Chapter 5, and binary
card images are covered in Chapter 15.

3.3 LIMITATIONS OF THE SYSTEM 2200A, AND THE SYSTEM 2200S AND WCS/10
WITHOUT OPTION -22 OR -23 IN CARD READER OPERATIONS

The Models 2234A and 2244A are designed to interface with all versions of
the System 2200, as well as all three versions of the Wang Computer Systems
(WCS/10, WCS/20, and WCS/30). However, the more limited BASIC language features
of the System 2200A, and of the System 2200S and WCS/10, if they do not have
Option-22 or -23, preclude the use of a number of card reader operations. (A
System 2200S or WCS/10 equipped with Option 22, the Advanced Programming ROM, or
Option-23, General I/0 ROM, has a language set nearly as extensive as those of
the larger systems, and is not subject to these restrictions.)

21

Standard card reader operations involve the use of the BASIC statements
LOAD, DATALOAD, DATALOAD BT, and INPUT, as well as the use of Console Input
operations. The statements LOAD, DATALOAD, DATALOAD BT, and DATASAVE BT are
unavailable for card reader operations on a System 2200A, or a 2200S or WCS/10
which does not have Option -22 or -23. The DATALOAD BT statement does not
appear at all in the BASIC language repertoire of a 2200A, nor in a 2200S or
WCS/10 without Option-22 or -23. Both LOAD and DATALOAD are used in the 2200A,
2200S, and WCS/10 1in tape cassette operations for loading programs and data.
Despite the fact that these statements are available for tape cassette
operations, however, they cannot be used with the card reader because they do
not include certain additional logic needed to support card reader operations.
(The additional logic required is provided for the System 2200S and WCS/10 in
Option-22 and Option-23.) System 2200A owners, and owners of a System 2200S or
WCS/10 which does not have Option-22 or -23, can operate the card readers with
INPUT and Console Input only. INPUT is covered in Chapters 7 and 12; Console
Input, in Chapters 9 and 14.

3.4 MODEL 2234A READING MODES

The Model 2234A Hopper Feed Punched Card Reader utilizes the BASIC
statements LOAD, DATALOAD, INPUT, DATALOAD BT, and DATASAVE BT for card reader
operations. Alternatively, cards can be read by selecting the Model 2234A for
Console Input operations. (Note that the BASIC statements LOAD, DATALOAD,
DATASAVE BT, and DATALOAD BT are not available on the System 2200A and on
standard versions of the 2200S and WCS/10; hence cards can be read only via
INPUT or Console Input in those Systems.) A total of six reading modes, each
identified with a unique device address, are available on the Model 2234A:

Reading Device BASIC
Mode Address Statement Operation

1 62B LOAD Load or overlay Hollerith program
text from cards, convert
automatically into ASCII and Wang
program format. ’

2 628 DATALOAD Read Hollerith data values in free
format separated by commas from
cards, convert automatically
to ASCII.

3 629 DATALOAD BT Read 80-column Hollerith card
image, convert each character into
ASCII.

4 62A DATALOAD BT Read 80-column binary card image,

store each character as a two-byte
binary value (6/6 format).

22

‘D

5 42E

6 42F

DATASAVE BT Hollerith Look-Ahead Mode: Initiate the
reading and conversion of next card in the

input hopper. The card is read as

a Hollerith card image, converted to
ASCII, and held in the card reader
output buffer while CPU processing
(possibly processing data from the
previous card) continues. Subsequently,
the preprocessed card can be read with
DATALOAD or DATALOAD BT.

DATASAVE BT Binary Look-Ahead mode: Initiate the
reading and conversion of the next card in

the input hopper. The card is read as an
80-column binary card image, and is
held in the card reader output buffer
while CPU processing (typically
processing data from the previous
card) continues. Subsequently, the
preprocessed data can be read with a
DATALOAD BT statement. Each column
is stored as two binary bytes.

In addition to the six standard card reading modes, the card reader can be
used to read Hollerith BASIC program cards if it is selected for Console Input
with a special device address of 02B (see below). Hollerith Data values in
free-format can be read with an input statement if the Card Reader is first
selected for input operations with a special address of 62B (see below).

SELECT Statement/Address
SELECT CI 02B

SELECT INPUT 62B

Operation

Load BASIC program text in Hollerith code from cards,
convert to ASCII. Each card 1is echoed onto the
Console Output device (normally, the CRT) as it is
loaded. Program cards are automatically read,
converted, and 1loaded in a manner similar to the
entry of program text and commands from the keyboard.
Console Input is used in batch processing operations
(see Chapter 9).

When the card reader is selected for INPUT
operations, an INPUT statement reads Hollerith data
values in free format from punched cards, and
converts them automatically into ASCII. Each data
value is echoed onto the Console Output device
(normally the CRT) as it is read.

23

3.5 MODEL 2244A CARD READING MODES

The Model 2244A Hopper Feed Punched/Mark Sense Card Reader utilizes the
statements LOAD, DATALOAD, INPUT, DATALOAD BT, and DATASAVE BT for standard card
reader operations. Alternatively, cards can be read by selecting the Model
2244A for Console Input operations. (Note that the BASIC statements LOAD,
DATALOAD, DATASAVE BT, and DATALOAD BT are not available for card reader
operations on the System 2200A or on standard versions of the System 2200S or
WCS/105; hence, cards can be read only via INPUT or Console Input in those
systems.) A total of eight standard reading modes are available on the Model
22447, each identified with a unique device address. The eight standard modes
and their device addresses are listed below:

Reading Device BASIC
Mode Address Statement Operation
1 62B LOAD | Load Hollerith program text from
punched or mark sense cards, convert
automatically into ASCII and Wang
program format.
2 628 DATALOAD Read Hollerith data values in free

format and separated by commas
from punched or mark sense
cards, convert to ASCII.

3 629 DATALOAD BT Read 80-column Hollerith punched or
mark sense card image, convert each
character to ASCII. (Cards may
have fewer than 80 columns if they
contain index marks.)

4 62A DATALOAD BT Read 80-column punched or mark sense
binary card image, store each
card column as a two-byte binary
value (6/6 format). (Cards may
have fewer than 80 columns if they
contain index marks.)

5 42E DATASAVE BT Hollerith Look-Ahead mode: Initiate
the reading and conversion of the
next card in the input hopper. Read
this card as an 80-column Hollerith
card image, and hold the data in the
card reader output buffer while CPU
processing (typically, processing the
previous card) continues. Subsequently,
the preprocessed data can be read with
DATALOAD or DATALOAD BT.

24

6 42F
7 62C
8 62D

DATASAVE BT Binary Look-Ahead mode: Initiate

the reading and conversion of an 80-
column binary card image, and hold the
data in the card reader output buffer
while CPU processing (typically,
processing data from the previous
card) continues. Subsequently, the
preprocessed data can be read with
DATALOAD BT. Each card column is
stored as two binary bytes.

LOAD Load BASIC program text from BASIC mark

sense program cards (standard format
or Wang format), convert into ASCII
and Wang program format.

DATALOAD Read data values in free format and

separated by commas from

BASIC mark sense program cards (standard
format or Wang format), convert into
ASCII.

In addition to the eight standard reading modes, the card reader can be
used to read Hollerith or BASIC mark sense program cards if it is selected for
Console Input with an appropriate device address (02B or 02C). Data values in
free format on Hollerith or BASIC mark sense cards can be read with INPUT if the
card reader is first selected for INPUT operations with an appropriate address

(62B or 62C).
SELECT Statement/Address
SELECT CI 02B

SELECT CI 02C

Operation

Load BASIC program text from Hollerith punched or
mark sense cards, convert te ASCII and Wang program
format. Each statement line is echoed on the Console
Output device (normally, the CRT) as it 1is Tloaded.
Program cards are automatically read, converted to
ASCII, and loaded in a manner analagous to keyboard
entry. Command cards are executed immediately when
read. Console Input has an important use in batch
processing operations (see Chapter 9).

Load BASIC mark sense cards program text from BASIC
mark sense cards convert into ASCII and Wang program
format. Each card is echoed on the Console Output
device (normally, the CRT) as it is loaded. Program
cards are automatically read, converted to ASCII, and
loaded in a manner analagous to keyboard entry.
Command cards are executed immediately upon being
read. Console Input has an important use 1in batch
processing (see Chapter 14).

25

SELECT INPUT 62B When the card reader is selected for INPUT operations
with device address 62B, a subsequent INPUT statement
instructs the card reader to read Hollerith data
values in free format from punched or mark sense
cards, and convert each valid data character into
ASCII. Each value is echoed onto the Console Output
device (normally, the CRT) as it is read.

SELECT INPUT 62C When the card reader is selected for INPUT operations
with device address 62C, a subsequent INPUT statement
instructs the card reader to read data values from
BASIC mark sense program cards and convert each valid
data character into ASCII. Each data value is echoed
onto the Console Output device (normally, the CRT)
when read.

3.6 THE USE OF FILE NUMBERS AND THE 'SELECT TAPE' STATEMENT

Although in most cases it is most convenient to include a particular
device address directly in the appropriate BASIC statement or command (for
example, 'LOAD/62B' for 1loading Hollerith program cards) there are two
alternative methods of specifying a device address indirectly. A device address
may be assigned to a file number, or it can be designated as the default address
for Console Tape operations in a SELECT TAPE statement.

File Numbers

File numbers provide one technique for specifying a device address
indirectly. The device address is first assigned to one of the six available
file numbers, #1 - #6, in a SELECT statement. Subsequently, the file number can
be used in place of its assigned device address in a BASIC statement. For
example, the device address 628 is used in a DATALOAD statement to initiate the
reading of free-format data values in Hollerith code. Instead of including
'628' directly in the DATALOAD statement, a file number could be used:

10 SELECT #3 628
20 DATALOAD #3, A$, B$, N

The SELECT TAPE Statement

For each class of I/0 peripherals on the system, one device is designated
as the default device in that class. The device address of the default
peripheral becomes the default address, and is used whenever no other address is
specified. For tape-class peripherals (of which the card reader is one), the
default device (referred to as the "Console Tape" device) is the console tape
cassette drive in the CRT; its address is 10A. When a tape statement (such as
LOAD, DATALOAD, DATALOAD BT, or DATASAVE BT) is executed with no device address
specified (directly or indirectly), the system automatically utilizes address
10A, and attempts to access the tape cassette drive.

26

®

The SELECT TAPE statement can be used to designate any one of the card
reader device addresses as the Console Tape address instead of 10A. For
example, the following statement designates address 62C (BASIC mark sense
program cards) as Console Tape address:

100 SELECT TAPE 62C

Once this statement is executed, any tape-class operation which does not specify
a different address automatically defaults to address 62C. Thus, the statement

150 LOAD 100, 200

initiates the loading of BASIC mark sense program cards, even though no device
address is specified.

27

PART II
HOLLERITH PROGRAM AND DATA CARDS
CHAPTER 4 :
READING HOLLERITH DATA VALUES (DATALOAD, ADDRESS 628)

4.1 INTRODUCTION

Hollerith data cards may be read in two ways. A complete 80-character
card "image" can be read with the DATALOAD BT statement and a device address of
629. In this case, the card reader reads the entire 80 columns from each card
into a single alpha array, without testing for invalid data formats; individual
data values must be separated and verified by the programmer under software
control. This mode of reading data (Mode #3) is discussed in Chapter 6.
Alternatively, the card reader can be instructed to read discrete Hollerith data
values from each card. In this case, the DATALOAD statement with a device
address of 628 is used. Individual data values on a card must be separated by
commas. Numeric data values in a non-legal format, or containing illegal
characters, generate an automatic error message, and halt program execution.
;235 chapter discusses the use of DATALOAD to read Hollerith data values (Mode

Note that Mode #2 1is not recommended for data processing operations
involving significant quantities of data. For such a plications, the preferred
reading mode is Mode #3 (DATALOAD BT, address 6295, in which a complete
Hollerith card image is read for each card. In Mode #3, error conditions (both
card reader errors and data format errors) can be detected and dealt with under
program control, without affecting continued program execution. Unacceptable
data values can be printed or displayed for the operator's benefit, and
processing of the remaining cards can resume. In Mode #2, however, invalid
numeric data produces an automatic error condition, and causes program execution
to terminate.

For reading with the Model 2234A in Mode #2, data cards must be standard
80-column cards punched in Hollerith code. For the Model 2244A, the cards may
have fewer than 80 columns (provided they also have timing marks), and they may
be either punched or marked; however, the data must be in Hollerith code.

28

-

¢

4.2 READING HOLLERITH DATA VALUES

General Form: DATALOAD [4628{] argument list
n,

Where:

The device address which designates the card reader as
the device from which data 1is to be read, and also
determines the type of code conversion routine which is
to be performed, and the data format to be expected.
Address 628 causes the reader to expect discrete data
values, and to perform an automatic Hollerith-to-ASCII
conversion for each data character read.

/628

#n A file number to which the device address has been
assigned in a SELECT statement ('n' is an integer from 1

to 6).

If neither a device address nor a file number is
specified, the address of the default tape device
(normally the console cassette drive, address 10A) is
used. Address 628 can be designated as the default
address in a SELECT TAPE 628 statement. In that case,
the system defaults to address 628 if no address or file
number is specified.

argument Tist = The list of receiving variables, array elements, and/or
array designators, separated by commas. (An array
designator consists of an array name followed by closed
parentheses, e.g., A$(), N().)

Purpose:

The DATALOAD statement with a device address of 628 initiates the reading
of discrete data values in Hollerith code from one or more data cards, converts
each character to ASCII, and assigns the values read sequentially to receiving
variables in the DATALOAD argument Tist. (Arrays are filled row by row.)
Numeric values must be in free-format (see below). Multiple values on a single

card must be separated by commas. If the argument list is not filled by a

single card, additional cards are read until all receiving variables are filled.
Unread data on the last card is lost. Both alphanumeric and numeric values may
be stored 1in alphanumeric variables, but only legitimate BASIC numbers can be
stored in numeric variables (otherwise, an error results and program execution
is terminated).

29

Example 4-1: Loading Hollerith Data Values from Cards (DATALOAD,

Address 628)
10 DATALOAD/628, A, B$, N$

Statement 10 reads Hollerith data values from cards. Because address 628
is specified, individual data values in free-format are expected. Three
values, a numeric (A) and two alphanumerics (B$, N$) are read. The values
may be on three separate cards, or on the same card (separated by commas).
Note that the first value read must be a numeric, and the second and third
may be numeric or alphanumeric. Any attempt to read an alpha value into a
numeric variable produces an Error 43 (Wrong Variable Type).

It is possible to designate entire arrays as arguments in a DATALOAD

argument 1list. In that case, each element of the array receives a separate
value from the card. Arrays are filled row by row.

Example 4-2: Loading Hollerith Data Values from Punched Cards into Arrays

4.3

(DATALOAD, Address 628)
100 DIM A$(10,10)10, B(25)

250 SELECT #3 628
260 DATALOAD #3, A$(), B()

In this example, 100 alphanumeric values are read from cards and stored in
alpha array A$(). (Each value is a maximum of 10 characters in 1length.)
Then, 25 numeric values are read and stored in numeric array B(). Note
that the specified device address, 628, is selected to file number #3, and
#3 then is used to designate 628 in the DATALOAD statement. Address 628
indicates that individual data values punched in Hollerith code in
free-format are to be read. The DATALOAD statement continues reading
cards until both arrays are filled. If there is not sufficient data in
ghe card deck to satisfy both arrays, the system hangs up awaiting more
ata.

HOLLERITH DATA CARD FORMAT

Data values read in Mode #2 must be punched (or marked) on cards in a free

format identical to the format in which data is entered from the keyboard. Each
data character must be punched (or marked) in Hollerith code. The following
rules apply to the preparation and reading of data values in Mode #2:

1. A varying number of data values can be punched on a single card. To
separate individual values, a comma (',') character is punched on the
card following each value; the comma separator must not be punched
following the last value on the card, however.

30

/JOHN JONES, 026380063, 4 OAK DRIVE, A1-001

Figure 4-1.
Typical Hollerith Data Card With Multiple Data Values Separated by
Commas.

Each DATALOAD statement can read one or more cards. If one card does
not contain sufficient data values to fill all receiving variables in
the DATALOAD argument list, the next card is automatically read.
When, however, the last receiving variable in the DATALOAD argument
1ist has received a value from a card, any additional data values on
that card are ignored. A new DATALOAD statement begins reading with
the next card, even if there are unread values on the previous card.

A combination of numeric and alphanumeric data values may be recorded
on the same card (but individual values must be separated by commas).
The receiving variables in the DATALOAD argument list must correspond
sequentially to the values on the card. Alpha variables may receive
either numeric or alphanumeric data, but numeric variables may contain
only legitimate BASIC numbers.

Alphanumeric values may be recorded with or without enclosing
quotation marks:

(a) Without Quotes - If the first character of an alphanumeric value
is not a quote (") character, the entire value, consisting of all
characters up to a comma separator or the end of card, is read.
If the receiving alpha variable is dimensioned to contain fewer
bytes than there are characters in the value, the variable is
filled and additional characters in that value are ignored. If
the receiving variable is larger than the value read, remaining
bytes in the variable are filled with space characters. Leading
and trailing spaces (unpunched, unmarked columns) are not read;
spaces embedded within a value are read, however, and are stored
as part of the value.

31

(b) With Quotes - If the first character of an alphanumeric value is a
quote (") character, all characters following the quote character
up to a second quote character are read and interpreted as
betonging to the same value. In this case, commas within the
quotes do not act as separators, but are read as data characters.
Embedded spaces (unpunched, unmarked columns) as well as leading
and trailing spaces inside the quotes are read as parts of the
value. Leading and trailing spaces outside the quotes are
ignored. The quotes are not considered part of the data.

“JONES, JOHN Q.”, 026380063, 4 OAK DRIVE

Figure 4-2.
Alphanumeric Values on a Hollerith Card With and Without Quotes.
(Because the first value is enclosed in guotes, the embedded comma does
not act as a data separator.) ‘

Numeric data values can be entered in free format in any numeric
representation legal 1in a Wang system (e.g., 2.4, -973, 21.2 E-07,
etc.) The conventions governing numeric free format are as follows:

(a) Optional plus (+) or minus (-) sign. If no sign is specified, the
number is assumed positive. For negative values, a minus (-) sign
must be specified.

(b) From one to 13 digits to represent the value of a number (e.qg.,
400125), or the significant digits of a floating point number,
with or without a decimal point (e.g., 1.45796E07, 240006E-11).

(c) Optional two-digit exponent of number (E+XX).

Leading, trailing, and embedded space characters in a numeric
value are ignored.

Each valid data character is read and automatically converted from
Hollerith to ASCII. Hollerith codes which cannot be converted into
legal ASCII codes are automatically read as ASCII exclamation ('!')
characters (HEX 21). For numeric values, an illegal character causes
the value in which it appears, and all succeeding values, to be
ignored. An error message is generated, and program execution is
automatically terminated (unless the program contains an ON ERROR GOTO
statement). Values preceding the faulty value in the DATALOAD
argument list are read and stored. Illegal characters are stored into
alphanumeric variables without incident.

32

7. Use of the Hollerith codes whose ASCII equivalents are Carriage Return
(multi-punch rows 12, 9, 8, 5) and X-OFF (multi-punch rows 11, 9, 3)
characters is illegal in this mode. (A Carriage Return is not
required to terminate a card.)

8. The last (80th) column on each card is reserved in this mode for a
special character, the ampersand ('&'), and should never be used for
data. The special ampersand character ('&') 1is wused to indicate
continuation of an alpha or numeric value to a second card, and is
discussed in Section 4.4, entitled "Continuation of a Data Value".
Any character other than an '&' punched or marked in column 80 is read
as an ASCII exclamation ('!') character. Except in the special case
of the ampersand character, therefore, column 80 should be left blank.

9. Blank cards are ignored by the system in this reading mode.

4.4 CONTINUATION OF A DATA VALUE

In most cases, a single punched card contains one or more whole data
values, appropriately separated by commas. Occasionally, however, it may be
convenient to extend a single numeric or alphanumeric data value from one card
onto a second card. An ampersand ('&') character marked or punched in the last
(80th) column of the first card is used to indicate continuation. The maximum
length of a numeric value 1is 19 characters (including maximum 13 digits,
optional sign of number, optional exponent, and optional sign of exponent). The
maximum length of an alphanumeric value is 64 characters.

1. Numeric values - To continue a numeric value from one card to another,
simply punch an ampersand ('&') character in column 80 of the first
card, and continue the data value in column 1 on the second card. For
example, the numeric value 8001624E07 is continued from one card to a
second in the following way:

Column#80

8001 &
Card #1

Col #1
Y

Card #2 624E07

Figure 4-3.
Continuing a Numeric Value from One Hollerith Card to a Second.

33

Card #1

Card #2

Note
omitted,
within the

Alphanumeric Values - To continue an alphanumeric value from one card
to another, an ampersand ('&') character must be punched in column 80

of the first card. The following rules should be followed when
continuing an alpha value:

(a) The character string being continued should be enclosed in quotes.

(b) The first column of the second card should contain a quote (")

character. This 1is to ensure that spaces and commas embedded
within the value are preserved when the second card is read.

For example, the a]phanumericlva]ue "Jones, John" 1is continued from
one card to another in the following way:

Ampersand character
(&) inCol #80 L

““Jones, &

Col #1

“John”’

Figure 4-4.
Continuing an Alphanumeric Value from One Hollerith Data Card to a
Second Card.

that if the quote (") character in column 1 of the second card is
leading spaces on the second card (i.e., spaces actually embedded
data value) are ignored, and commas within the data value on card #2

are interpreted as separators rather than data.

34

4.5 TESTING FOR THE END-OF-FILE

Typically, all data cards in a data deck have the same format - that is,
the same number of data fields, in the same order. Each card (or a fixed number
of sequential cards) is read with a DATALOAD statement (address 628), the data
is processed, and the program loops back to read the next card or sequence of
cards. It is convenient in this case to be able to test for the end-of-file
(i.e., no more cards to be read), since it is not always possible to know
beforenand exactly how many cards are to be read. For this purpose, the user
may design his own end-of-file card containing in the first field a special data
value which would never appear as normal data. This special value is tested for
in the program each time a DATALOAD statement is executed. Note that all
remaining fields on the End-Of-File Card must be filled with dummy data values
to satisfy the DATALOAD argument list. See Figure 4-5.

Dummy Data Fields

#1 #2 #3 #4
—Pm A A A
/;éz, 222, 999, 222

Last card is —
special EOF card

Data Deck
Data Field #1 Data Field #2 Data Field #3 Data Field #4
—_—— —N— — —_—N—
-
¢ John Jones, 4 Oak Drive, 026380063, A-1
Data Card # 1=
Figure 4-5 .

Typical Data Deck with EOF Card Containing Dummy Data in All Fields.

Note that the dummy data fields must correspond in number and type (alpha
or numeric) to the legitimate data fields. As each card is read, the
controlling program checks for the presence of the first dummy data value. If
the dummy value is not found, the card contains legitimate data, and normal
processing resumes. If the dummy value is detected, the DATALOAD operation is
terminated, and the program branches to another routine.

35

Example 4-3: Reading Hollerith Data Values and Testing for the End-of-File
(DATALOAD, Address 628)

50 DATALOAD/628, A$, B$, N, F$
60 IF A$ = "ZZZ" THEN 160

(Process data)

150 GOTO 50
160 STOP

This example might be used to read the data deck in Figure 4-5, and test
for an end-of-file condition. Each data card holds four data fields:
data fields #1 and #2 are alphanumeric, and are read into alpha variables
A$ and B$, respectively; data field #3, a numeric field, is read into
numeric variable N; the fourth and last field, an alpha field, is read
into F$. As each card 1is read, the system tests for end-of-file by
checking for the dummy field "ZZZ" in A$. If the dummy value 1is not
detected, the data just read is processed until, at statement 150, the
program is instructed to loop back and read in a new card. If the EOF
card is read, the four dummy data fields are read into variables A$, B$,
N, and F$, respectively, and the program skips down to statement 160 and
stops.

4.6 THE SPECIAL "RESET" CARD

A number of possible error conditions, such as a logical error in the main
program, a miscount of the number of data cards in the data deck, or a missing
end-of-file card, might cause the DATALOAD routine to attempt to continue
reading data cards beyond the last card in the data deck. If the data deck is
followed by a program deck (as in a batched job stream or a series of program
overlays), the system attempts to read the first program cards as data. If the
data deck is the 1last or only deck in the input hopper, the system hangs up
awaiting more cards. Both of these undesirable developments can be avoided by
including a special RESET card at the end of the data deck.

The RESET card is created by multi-punching rows 2, 3, and 4 (i.e.,
multi-punching integers 2, 3, and 4) in the first card column. The remainder of
the card should be 1left blank. When the RESET card is read, it produces a
system RESET condition (identical to the condition generated by touching the
RESET button on the keyboard). The DATALOAD operation is terminated, and
program execution resumes at the next line in the controlling program. In this
way, the possibility of reading into the next program deck, or hanging up with
no more cards to read, is obviated. If there are no errors or other problems
with the DATALOAD routine, the RESET condition does not adversely affect normal
program execution.

36

ﬁlIIIIIIIIIIIIII|IIIIIIIIIIIIIIIIIIIIIIIIIIIIII'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIN

DR R e e e
punch R VLT
'°w=2~3'4§ TR e e

BT e
PR R e e e e e e e e e
DREERR R R v e e e e

TR e e e e e

L LT

| THEREEE R R e e ey i e g e

I
LU L LT

\flmlmuluum_mumuuluuumuuuuuuumlmummummuu

BxZ22! 122883

Figure 4-6. Special 'RESET' Card For DATALOAD Data Decks.

37

CHAPTER 5
READING HOLLERITH DATA VALUES (INPUT, ADDRESS 62B)

5.1 INTRODUCTION

Hollerith data values on punched or mark sense cards can be read with an
INPUT statement, if INPUT operations have been selected to the appropriate card
reader address, 62B. Once INPUT operations have been selected to the card
reader with a SELECT INPUT statement, no input from the keyboard is possible.
INPUT operations must be selected to the address for loading Hollerith data
cards with the following SELECT INPUT statement:

SELECT INPUT 62B

Like DATALOAD, INPUT is not recommended for serious data processing
-operations, principally because it does not provide the capability for adequate
data control and verification. In particular, the use of INPUT poses potential
problems in the handling of erroneous numeric data, since INPUT merely ignores
an invalid numeric, and reads the next data card. There are, however, several
legitimate uses for INPUT:

1. For System 2200A and 2200S, and WCS/10 owners who do not have access
to any other modes of entering data. If INPUT is the only available
means of reading data from cards, it is recommended that all data,
numeric as well as alphanumeric, be read initially into alphanumeric
variables. Numeric data can be converted and stored in numeric
variables after it has been checked for validity. See Section 5.3
below for an example of how this can be done. (This technique is not,
however, possible on a System 2200A.)

2. For testing and debugging a program which normally requires a great
deal of data entry from the keyboard. Programs designed to accept
input from the keyboard can be altered with the addition of a SELECT
INPUT 62B statement to read data from cards instead. A single data
deck can be used repeatedly to check out the program, possibly saving
considerable time in keyboard entry.

3. For educational purposes, as an introduction to card reader
operations. Because of its similarity to keyboard entry operations,
INPUT can serve as a relatively simple and familiar introductory
method of entering data from cards.

5.2 DATA CARD FORMAT FOR 'INPUT'

The required format of Hollerith data values read from cards with INPUT is
identical to the required format of data values entered from the keyboard in
response to an INPUT request. The INPUT format is also identical to the format
required by the DATALOAD statement, discussed in Chapter 4. See Section 4.3 for
a detailed list of format requirements. In brief, the format requirements are:

1. Multiple values on the same card must be separated by commas.
However, a comma must not be placed after the last value on a card.

38

2. Alphanumeric values may or may not be enclosed in quotation marks.
Embedded commas in alpha values which are enclosed in quotes are
interpreted as data rather than as data separators.

3. Numeric values may be punched in any free-format 1legal in a Wang
system.

4. Numeric values can be read into alphanumeric receiving variables, but
alphanumeric values cannot be stored in numeric variables.

5. The 80th card column is reserved in this mode for a special character,
the ampersand ('&'), and cannot be used for any other purpose. The
ampersand indicates continuation of a data value (see Section 5.6).
If an ampersand is not used, the 80th column must be left blank.

6. Carriage Return and X-OFF characters are illegal. (A1l illegal

characters are automatically decoded as exclamation ('!') characters.)
Blank cards are ignored.

5.3 READING DATA VALUES FROM CARDS WITH 'INPUT'

GENERAL FORM: INPUT ["character string",] variable [,variable...]

Purpose:

Once the card reader has been selected for INPUT operations with a SELECT
INPUT 62B statement, the reader functions 1ike a keyboard, reading one or more
data cards in response to each INPUT request from the controlling program. As
each input request is executed, the system displays a question mark ('?'),
preceded by the optional character string. Data values are read from cards and
sequentially assigned to the receiving variables in the INPUT argument list.
Both numeric and alphanumeric values can be stored in alphanumeric variables.
However, only legitimate BASIC numbers in free-format may be read into numeric
variables. Otherwise, an ERROR 29 (I1legal Data Format) is generated, and the
erroneous value 1is skipped. Each value may be marked or punched on a separate
card, or multiple values may be placed on a single card, provided the values are
separated by commas. If the argument list is not satisfied by a single card,
additional cards are read until all receiving variables in the argument list
have been assigned values. Note, however, that each time the INPUT statement is
executed, it automatically begins reading with the next card in the input
hopper, even if there are remaining unread data values on the previous card. It
is not therefore possible to use two or more INPUT statements to read several
data values from a single card. Unread data values on the last card read by an
INPUT statement are lost.

39

The INPUT statement operates in a manner substantially similar to that of
DATALOAD, with one important difference. The DATALOAD statement displays an
error message and terminates program execution when it encounters a format error

in a numeric data value. With INPUT, however, a numeric format error generates

an error code but does not terminate program execution. Instead, the erroneous
value is ignored (along with any remaining values on the same card), and the
INPUT request is repeated. The next data card is automatically read, and values
from that card are sequentially assigned to the remaining unfilled variables in
the INPUT argument 1ist. INPUT is therefore somewhat unpredictable in its
handling of erroneous data values.

Note that a program which utilizes INPUT to read data from the card reader.

can be readily altered to accept data from the keyboard instead, simply by
omitting the initial SELECT INPUT 62B statement (i.e., by not selecting the card
reader for INPUT operations).

Example 5-1: Reading Hollerith Data Values with INPUT (Address 62B)
10 DIM A$3

50 SELECT INPUT 628
60 INPUT A$
70 IF A$ = "999" THEN 200

(Process data read at 1line 60)

190 GOTO 60
200 SELECT INPUT 001
210 STOP

In this example, the card reader is first selected for INPUT operations
with the Hollerith data card address for INPUT (62B). A single value is
then read into alpha variable A$. Immediately following the read, A$ is
checked for the value "999". The dummy value "999" is used in this case
to signal the end-of-file (that is, no more cards in the deck). A card
containing 999" must be included as the last card in the data deck read
by this routine. If a value other than "999" is read, the program drops
through to process the data, and, at line 190, loops back to read in the
next value. If "999" is read, the program branches to line 200, where

INPUT is selected back to address 001 (the keyboard), and the program
stops.

40

ﬁﬁ%

5.4 SPECIAL TECHNIQUES FOR USING 'INPUT' TO PROCESS NUMERIC DATA

Although the INPUT statement is not recommended for serious data
processing work, it 1is the only statement available on the System 2200A and
standard versions of the System 2200S and WCS/10. In cases where INPUT must be
used for data processing on a System 2200S or WCS/10 which does not have
Option-22 or -23, it is strongly suggested that alphanumeric variables be
utilized to receive both numeric and alphanumeric values. (This technique is
not practical for a System 2200A, which lacks the NUM and CONVERT functions used
to validate and convert numeric data from alphanumeric to numeric format.) The
use of alphanumeric receiving variables for numeric values makes the procedure
for handling erroneous numeric values more predictable, since the system will
not in that case automatically ignore an erroneous numeric and proceed to read
in the next card. Because no special format is required for alphanumeric data
(even non-ASCII characters are automatically converted to ASCII exclamation
characters, and stored as valid data), it is not possible for the system to
detect a data format error in an alphanumeric value.

Once the numeric value has been stored in an alpha variable, it can be
tested for validity under program control using the NUM function. If it is
found to be valid, it may be converted to numeric format with the CONVERT
function, and processed in the usual way. If it is found to be invalid, the
system can be instructed to print out an error message to the operator. In this
way, the operator always knows which value is erroneous, and he is assured that
any remaining data values in the data deck will not be affected by the detection
of an erroneous value.

A numeric value punched or marked in Hollerith code in free-format may
consist of a maximum of 19 characters, arranged in the following order:

Optional sign of number.

Maximum 13 digits in number.

Optional decimal point in number.

Optional 'E' character identifying exponent.
Optional sign of exponent.

Optional two-digit exponent.

For example, the following number consists of the maximum 19 characters:
-123456789.1234E-07

When this number is read into a numeric variable, it is automatically converted
to the system's internal numeric format, and occupies only eight bytes. When it
is read into an alphanumeric variable, however, each character occupies a single
byte; a 19-byte alpha variable is therefore required. Once the numeric value is
stored in an alpha variable, it is verified with a NUM function. NUM determines
the number of legitimate numeric characters (the plus (+) and minus (-) signs,
decimal point, digits, the 'E' character, and spaces all are considered
legitimate numeric characters) in the alpha variable. If the numeric value read
consists of fewer than 19 characters (as it would 1in most cases), INPUT
automatically pads the remaining bytes of the alpha variable with trailing
spaces, which are accepted as numeric characters by NUM. Thus, the number of
numeric characters returned by NUM should be 19 in every case; if fewer than 19
numerics are detected, at 1least one character is non-numeric, and the value
should be rejected. Example 5-2 below illustrates a routine to test and convert
numeric data entered with INPUT.

41

Example 5-2: Testing and Converting Numeric Data Entered Via INPUT
(System 2200S and WCS/10)

10 DIM A$19, B$24, C$9

20 SELECT INPUT 62B

30 INPUT A$, B$, C$

40 IF NUM(A$) <> 19 THEN 150
50 CONVERT A$ TO N '

(Normal Processing)

140 GOTO 30
150 STOP "ERRONEQOUS VALUE"

In this example, three Hollerith data values are read from cards with the
INPUT statement at Tine 30. A1l three values may be on a single card (if
they are separated by commas), or they may be on three separate cards.
The first value read is numeric, the second and third are alphanumeric.
A11 three, however, are read into alphanumeric variables. Alpha variable
A$ is designated to receive the numeric value. It is dimensioned to 19
bytes in length so that it can contain the maximum possible number of
characters in a single numeric value. Following the INPUT request, NUM is
used to determine the number of valid numeric characters in A$. If there
are fewer than 19 numeric characters (trailing spaces are counted as
numeric characters), at least one of the characters is illegal, and the
program branches to an error routine (in this case, an error message is
displayed at Tline 150). If A$ contains 19 valid numeric characters, its
value is converted into numeric format by the CONVERT statement at 1line
50, and normal processing continues.

5.5 CONTINUING DATA VALUES AND TESTING FOR THE END-OF-FILE

Continuation of a Data Value

A single data value may be continued onto one or more cards for reading
with INPUT. In this case, an ampersand ('&') character is punched in the 80th
colum of each intermediate card containing the value (but not on the last card
containing the value). For a more complete discussion of the continuation
feature, refer to Chapter 4, Section 4.4, "Continuation of a Data Value".

Testing for the End-of-File

In cases where a series of data cards are read with an INPUT loop, it is
generally desirable to test for a special end-of-file card indicating that all
data cards in the deck have been read. Such a card is designed by the user to
contain dummy data values in all fields. As each data card is read, the program
checks to see whether one of the dummy data values was received. When the
designated dummy value is read, the system knows that all data cards have been
processed, and terminates the INPUT loop. The logic involved in creating and
testing for an end-of-file card is the same for DATALOAD operations as for INPUT
operations, and is described in detail in Chapter 4, Section 4.5, "Testing for
the End-of-File".

42

5.6 THE SPECIAL 'RESET' CARD

In programs which utilize an INPUT routine to read data cards, there is
always the possibility that a problem such as a logical error in the INPUT
routine or a miscount of the number of data cards in the data deck may cause the
system to continue attempting to read data cards after the data deck has been
exhausted. If the data deck is part of a larger job stream for batch
processing, or is inserted between overlays, the system will attempt to read
program or command cards from the following program deck as data. If the data
deck is the last or only deck in the input hopper, the system hangs up awaiting
additional cards. Both of these situations can be prevented by inclusion of a
special RESET card as the last card in the data deck.

The special RESET card is created by multi-punching rows 2, 3, and 4
(i.e., multi-punch integers 2, 3, and 4) in the first column. A1l remaining
columns are left blank. When the RESET card is read, it generates a System
RESET condition (that is, it has the same effect as touching the RESET key on
the keyboard). The RESET condition returns control to the currently selected
Console Input device. If the card reader is selected for Console Input, the
next program deck is loaded and processed as if no error had occurred. In this
way, the system is prevented from either hanging up or reading into a subsequent
program deck in the event of a card miscount or 1logical error in the INPUT
routine. Note that if no such error exists, the RESET card does not interfere
with normal processing.

The RESET card is illustrated at the end of Chapter 4.

43

CHAPTER 6
READING HOLLERITH DATA CARD IMAGES (DATALOAD BT, ADDRESS 629)

6.1 INTRODUCTION

In Mode #3, the statement DATALOAD BT is used with a device address of 629
to read complete Hollerith data card images. For the Model 2234A, the cards
read must be standard 80-column cards punched in Hollerith code. For the Model
2244A, the cards may be marked or punched in Hollerith code, and may contain
fewer than 80 columns (if they also have index marks).

The principal value of Mode #3 is that it permits the programmer to read
Hollerith cards in any data format, and provides him with total control over
card format error conditions which may arise as the data is read. In Mode #3,
the entire 80 columns of data are read from each card and automatically
converted from Hollerith to ASCII. No check is made by the system for 1illegal
characters or data formats, and no distinction is made between data characters
and control characters; the entire card is simply read into a single alpha
array. The 80 characters read into memory therefore constitute an exact ASCII
"image" of the data punched (or marked) on the card. Once a card image has been
read, the validity of individual data fields can be tested, and the data values
transferred to individual variables under program control. Various BASIC
instructions (such as the STR and NUM functions, and the CONVERT statement) are
available on most systems for this purpose. Additionally, several General I/0
statements, particularly $UNPACK, provide extremely efficient techniques for
verifying and converting data from a data card image. Data conversion
programming techniques are discussed in Chapter 17.

In addition to the 80 characters of data read from each card in Mode #3,
the card reader itself generates two special control characters, a LENGTH code
and an ERROR code. The 81st character transmitted is a LENGTH code, which
contains a binary count of the number of data columns read from the card. The
82nd character transmitted is the ERROR code. Individual bits in the error code
signify different types of error conditions.

44

6.2 READING HOLLERITH DATA CARD IMAGES

g”“

General Form: DATALOAD BT (N=82) [/629{] alpha array designator
#n,

Where:

(N=82) = The number of characters to be received for
each card read. For Hollerith card images
(address 629), a total of 82 characters are
received for each card (80 data characters and
o two control characters). If the card has fewer
than 80 columns, the reader automatically
"pads" the remaining unread characters up to 80
with HEX(FF) characters.

/629

The device address which designates the card
reader as the device from which data is to be
read, and also indicates the type of code
conversion which is to be performed and the
data format which is to be expected. Address
629 initiates the reading of a complete
80-character card image, and causes an
automatic Hollerith-to-ASCII conversion of all
data read.

SFA #n

A file number to which the device address has
been assigned in a SELECT statement (n is an
integer from 1 to 6).

If neither a device address nor a file number
is specified, the address of the default tape
device is wused. Ordinarily, this 1is the
console tape cassette drive, address 10A.
However, address 629 can be designated as the
Console Tape default address with a SELECT TAPE
629 statement. Following execution of such a
statement, address 629 is used if no address or
file number is specified in the DATALOAD BT
statement.

alpha array designator = An alphanumeric array name followed by closed
parentheses (e.g., A$(), F$()).

wt

ie

45

Purpose:

The DATALOAD BT statement with a device address of 629 initiates the
reading and conversion of a complete 80-character Hollerith card image. Each
column is translated from Hollerith code into its ASCII equivalent, and stored
in the receiving alphanumeric array. In this mode, the system always expects to
receive exactly 80 data characters for each card read (blank columns on a card
are read as ASCII space characters). A card which contains timing marks may
have fewer than 80 columns, however. In this case, the card reader itself
generates HEX(FF) characters for all unread characters up to 80, so that exactly
80 data characters are transmitted. In addition, the card reader generates a
LENGTH code and an ERROR code, and transmits them as the 8Ist and 82nd
characters for each card read. The receiving alpha array must therefore be
dimensioned to hold at least 82 characters, and the number of characters read in
every case must be 82 (N=82). If an entire card or any portion of a card
cannot be read (due to a card jam or other reader malfunction), 80 HEX(FF) codes
are transmitted, and the ERROR Code identifies the source of the difficulty.

Example 6-1: Reading Hollerith Data Card Images
(DATALOAD BT, Address 629)

50 DIM A$(3)40

500 DATALOAD BT (N=82)/629,A$()

In this example, the receiving array is dimensioned to contain three
elements, each 40 bytes in length. This arrangement is convenient because
it effectively segregates the two control bytes in A$(3), while the 80
characters of data are stored in A$(1) - A$(2). The first two characters
in A$(3) are the 81st and 82nd characters received; the remaining 28 bytes
of A$(3) retain their original values (that is, they are unaffected by the
DATALOAD BT operation). Note that DATALOAD BT continues reading only
until the specified 82 characters (N=82) have been received, regardless of
whether the receiving array has been completely filled.

6.3 HOLLERITH CARD IMAGE CONVENTIONS

The following conventions apply to Mode #3 reading operations:

1. For each card read, 82 characters are transmitted to the system (80
characters of data from the card, plus two special control
characters). Special mark sense Hollerith cards read by the Model
2244A may have fewer than 80 columns, if the cards contain index
marks.

2. The receiving alphanumeric array in the DATALOAD BT statement should
be dimensioned to hold at least 82 characters of data.

46

%)

10.

The 629 address specifies that 80 characters of data be read and
converted from Hollerith to ASCII. I1legal Hollerith characters are
converted to ASCII exclamation ('!') characters (HEX(21)), and stored
in the receiving array. (In addition, an error bit is set in the
ERROR code character indicating that an illegal character was read.)

The 81st character read for each card is the LENGTH code, a binary
count of the number of columns read from the card.

The 82nd character read for each card is the ERROR code, an 8-bit
character whose individual bits represent different types of card
reader error conditions.

With the Model 2234A, only standard 80-column punched cards can be
read. A correct read, therefore, always results in the reading of 80
data characters. Thus the LENGTH code should always be HEX(50)
(decimal equivalent, 80).

With the Model 2244A, cards having fewer than 80 columns may be read
if they contain index marks. A valid read in this case results in
fewer than 80 characters being read, and the remaining bytes of the
receiving alpha array are filled with HEX(FF) characters up to 80.
The LENGTH code then is set equal to the number of columns actually
read.

If, because of a card reader error condition, the reader cannot read
the next card, 80 HEX(FF) data characters are returned, with an
appropriate ERROR code, and a LENGTH code of HEX(00). For this
reason, it is necessary that the card reader be in a RESET condition
before an attempt is made to read data in Mode #3. The programmer
can, however, design an input loop which continually attempts to read
a card, checking for the 'NOT READY' error code after each attempt.
(If the reader is not in a RESET condition when an attempt is made to
read a card image, the 'NOT READY' bit is automatically set in the
ERROR code.) If the card reader is not ready, suitable action can be
taken by the program (e.g., display a message to the operator). This
is one example of the total control provided in the card image reading
mode over all types of error conditions. A complete discussion of
programming techniques for card image reading is found in Chapter 17.

Unlike Modes #1 (loading Hollerith programs) and #2 (reading Hollerith
data values), Mode #3 attaches no special significance to the 80th
card column. Data may therefore be recorded in all 80 columns on
cards read under Mode #3.

Blank cards are not ignored by the System in Mode #3; instead, 80
space characters (HEX(20)) are read for each blank card.

47

6.4 THE LENGTH CODE

The 81st character transmitted for each card in Mode #3 is the LENGTH
code. In the normal case, 80 columns are read, and the LENGTH code is equal to
HEX(50), the hexadecimal equivalence of decimal 80. - In special cases, fewer
than 80 columns are read. The special cases include:

1. Fewer than 80 columns on the card. This situation cannot occur on
cards read by the Model 2234A, since only standard 80-column punched
cards can be read by the 2234A. Cards read by the Model 2244A may,
however, have fewer than 80 columns if they also contain index marks.
In that case, the LENGTH code indicates the number of columns actually
read from each card.

2. Short Card. The data card may be physically shorter than a standard
80-column card. The deck should be examined for mutilated or
non-standard cards. The card reader cannot process non-standard
cards.

3. Reader Failure. The reading sensors may experience a failure before
an entire card has been read or a card may become jammed in the
reading station. Check the card track and reading station for jammed
cards. If the problem appears to be a sensor failure, call your Wang
Service Representative.

When cards are read in Mode #3, the LENGTH code should be checked for each
card image to ensure that all expected data columns were read. In all cases, if
fewer than 80 columns are read, the remaining unread columns up to 80 are
received as HEX(FF) characters.

6.5 THE ERROR CODE

The 82nd character received for Hollerith card images is the ERROR code.
The ERROR code 1is an 8-bit code, each individual bit of which represents a
unique card reader error condition. The eight bit-positions are identified by
the following eight HEX codes:

Bit Position 8 7 6 5 4 3 2 1

HEX Code 80 40 20 10 08 04 02 01

Error Indicator 1 1 1 1 1 1 1 1
Figure 6-1

48

)

The table below lists the eight bit-positions and the error condition
associated with each:

Table 6-1. Card Reader Error Conditions.

BIT VALUE MEANING

80 1 Machine Not Ready

40 1 Hopper Empty

20 1 Stacker Full

10 1 Pick Check (A motion check: the picker failed to engage

the card after six consecutive attempts.)

08 1 Read Alert (Generally, a card has a tear or marking on
the leading edge, a photoelectric sensor has failed, or
the read head is dirty.)

04 1 Less than expected data received (Short card, jam, read
alert, or special card with fewer than 80 columns.)

02 1 Invalid ASCII conversion converted to ASCII exclamation
(*!') character.

01 1 Invalid Look-Ahead operation (Attempted to perform
Hollerith card read following Binary Look-Ahead, or
Binary card read following Hollerith Look-Ahead.)

Note that the presence of a particular error bit may be anticipated under
certain conditions. Custom-designed mark sense cards having fewer than. 80
columns can be read in Mode #4 (Binary Card image), for example; in such cases,
the 04-bit ('Less than Expected Data') is set in the ERROR code for each card.
Because the card is known to contain fewer than 80 columms in this case,
however, no corrective action is required. The LENGTH code should be checked to
ensure that the expected number of columns actually were read.

In general, both the LENGTH and ERROR codes should be checked following
every card read operation in Mode #3. To perforin such checks most efficiently,
and to ensure that the two control characters are never mistakenly interpreted
as data, it is good practice to isolate the LENGTH and ERROR codes in the last
element of the receiving array.

49

Example 6-2: Checking the ERROR Code (Hollerith Card Image)
60 DIM A$(3)40, N$1

100 DATALOAD BT (N=82)/629, A$()
110 IF STR(A$(3),2,1) <> HEX(00) THEN 350

) (Normal processing)

340 GOTO 100

350 N$ = STR(A$(3),2,1)

360 AND (N$,80):REM CHECK FOR 'MACHINE NOT READY'
370 IF N$ <> HEX(00) THEN 500

) (Test for other error conditions)

500 STOP "MACHINE NOT READY"

This example illustrates a typical processing routine which consists of
two sections, a normal processing routine (lines 100-340) and an error
processing routine (1ines 350-500). At line 100, the 82-character image
is read into array A$(). The 80 data characters are stored in the first
two array elements, A$(1) - A$(2), while the two control characters are
stored in the last element, A$(3). Line 110 performs a test on the ERROR
code, which is the second character in A$(3). If the code is zero, no
errors were detected, and the program proceeds to normal processing. If,
however, the code is other than HEX(00), then at least one error bit must
be on, and the program branches down to the error routine beginning at
Tine 350. At line 350, the ERROR code is stored into N$, a one-byte
working variable. Next, the AND function is used to check for the
presence of an 80 bit (indicating 'Machine Not Ready'). If the 80 bit is
on (line 370), the program branches to line 400, stops, and prints the
appropriate error message. If the 80 bit is off, the routine drops
through to 1line 380, where it may test for other possible error
conditions.

NOTE :

A more detailed discussion of programming techniques for
checking the LENGTH and ERROR codes following a card image
read is presented in Chapter 17.

50

CHAPTER 7
HOLLERITH LOOK-AHEAD MODE (DATASAVE BT, ADDRESS 42E)

7.1 INTRODUCTION

Mode #5 is the Hollerith "Look-Ahead" mode. Look-Ahead mode enables the
card reader to feed a card through the reading station, convert the data to
ASCII, and store it in the card reader buffer. During this entire procedure,
the CPU may be involved with other processing such as operating on data read in
from the previous card. By thus overlapping the card reading/code conversion
operations with CPU internal processing operations, the total throughput time
for processing Hollerith data decks can be significantly reduced in many data
processing applications.

7.2 OPERATION OF THE LOOK-AHEAD MODE

Mode #5, the Hollerith Look-Ahead mode, utilizes the BASIC statement
DATASAVE BT and the special device address '42E'. In this mode, the card reader
reads an 80-character Hollerith card image, converts each character into its
ASCII equivalent, and holds the data in the card reader output buffer, where it
waits to be transferred into memory. Illegal characters are read as ASCII
exclamation ('!') characters. If fewer than 80 characters are read, the output
buffer 1is padded with HEX(FF) characters up to 80. Following the read, two
special characters, a LENGTH code and an ERROR code, are generated by the card
reader and stored as the 81st and 82nd characters in the buffer.

Note that the Look-Ahead mode is used only to read a card and temporarily
store the data in the card reader output buffer. This mode cannot be used to
transmit the data into memory for processing. Data is transmitted from the card
reader output buffer into memory only in one of the two Tlegitimate Hollerith
data reading modes, Mode #2 (DATALOAD with address 628), or Mode #3 (DATALOAD BT
with address 629). Although Hollerith Look-Ahead Mode is employed for both
types of Hollerith data reading (Hollerith data values and Hollerith card
images), the reading mode selected always determines the amount and type of data
actually read into memory. If the data is read in Mode #3 (Hollerith card
images), all 82 characters are transferred from the card reader's output buffer
into the receiving array in memory. If, on the other hand, Mode #2 (Hollerith
data values) 1is utilized to read the data, only legitimate data values
(separated by ASCII comma characters) are read from the output buffer into the
receiving argument list in memory. The 80th character is interpreted as a
control character, and the 81st and 82nd characters are ignored completely. In
short, data read in Mode #2 (DATALOAD, address 628) must conform to the
conventions spelled out in Section 4.3 for Hollerith data values, regardless of
whether the Look-Ahead mode is or is not utilized.

51

7.3 CARD READING WITH LOOK-AHEAD

GENERAL FORM: DATASAVE BT [/42E{] alpha variable
#n,

Where:

The special card reader device address which specifies
Hollerith Look-Ahead operations. Address '42E' causes
the card reader to feed in the next card from the input
hopper, convert the data from Hollerith to ASCII, and
hold the converted data in the card reader output buffer
awaiting transmission to the system.

/42E

#n A file number to which address 42E has been assigned in

a SELECT statement ('n' must be an integer from 1 to 6).

If neither a device address nor a file number is
specified, the address of the device currently
designated as Console Tape device 1is used. Normally,
the Console Tape device is the console tape cassette
drive in the CRT (address 10A). However, address 42E
could be designed as the default address with a SELECT
TAPE 42E statement. In this case, all subsequent card
reader statements which do not specify a device address
or file number automatically default to address 42E.

alpha variable = A "dummy" alphanumeric variable included to satisfy
general format requirements for the DATASAVE BT
statement, but not used in the Look-Ahead operation.
(Note that the operation is somewhat more efficient if
the dummy alpha variable is dimensioned to the wminimum
length of one byte.)

Purpose:

The DATASAVE BT statement with a device address of 42E initiates the
reading of one card into the card reader buffer, and converts the data from
Hollerith to ASCII. Illegal characters are translated as ASCII '!' characters.
LENGTH and ERROR codes are also generated, and can be obtained if a Hollerith
card image (DATALOAD BT, address 629) 1is subsequently read. The Look-Ahead
operation in effect constitutes the first stage of a reading operation in Modes
#2 and #3. The data cannot actually be transmitted from the card reader buffer
into memory, however, until a Mode #2 (DATALOAD, address 628) or Mode #3
(DATALOAD BT, address 629) statement is executed. There are no timing
restrictions governing when a DATALOAD or DATALOAD BT statement may be executed
following a Look-Ahead operation.

52

[

Example 7-1: Processing Hollerith Data Values with Look-Ahead (DATASAVE BT,
Address 42E)

10 DIM F$1 - (Dimension dummy variable to one byte
for efficient operation)

200 DATALOAD/628, A$, B$, N (Read a card)
210 IF A$ = "ZZZ" THEN 460 (Test for last card)
220 DATASAVE BT/42E, F$ (Initiate reading the next card)

(Process data read at line 200; simultaneously, the next card is
read and converted to ASCII by the card reader.)

450 GOTO 200 (Loop back to get converted data from
card reader buffer)
460 STOP (Stop if last card is read)

In this example, the Hollerith Look-Ahead mode is used to speed up
processing of Hollerith data cards. Data values from the first card are
read at line 200. At line 220, the card reader is instructed to feed in
the next card, convert from Hollerith to ASCII, and store in the card

Gﬂﬁ reader buffer. While this procedure takes place, data processing

N continues in the CPU at line 230. When processing is completed at line
450, the program loops back to line 200 to read in the next set of values,
already converted to ASCII and waiting in the output buffer of the card
reader. Note that F$ in line 220 is a dummy variable which is dimensioned
to the minimum length of one byte for more efficient processing. Data
read at line 200 must conform to the conventions for Hollerith data values
listed in Section 4.3.

53

Example 7-2: Processing Hollerith Card Images With
(DATASAVE BT, Address 42E)

70 DIM A$(3)40, F$1

200 DATALOAD BT (N=82)/629, A$()
210 IF STR (A$(1), 1, 3) = "ZZZ" THEN 630
220 DATASAVE BT/42E, F$

Look-Ahead

(Dimension receiving alpha array
and dummy variable)

(Read a card)
(Check for last card)

(Initiate reading the next card) -

(Process data read at line 200; simultaneously, the next card is
read and converted to ASCII by the card reader.)

620 GOTO 2100

630 STOP

(Loop back to get converted data
from card reader buffer)

(Stop if last card read)

In this example, the Hollerith Look-Ahead mode (address '42E') is used to
speed up the processing of Hollerith data card images. A card image (82

characters) is read at line 200. At 1line

210, the card reader is ﬁm%

instructed to feed in the next card, convert from Hollerith to ASCII, and N
store in the output buffer. While this procedure takes place, the data

read at Tine 200 is processed by the system.

When processing is completed

at 1line 620, the program loops back to 1ine 200 to read in the next card
image, already converted to ASCII and waiting in the card reader's output

buffer. Note that F$ in line 210 is a dummy

affected by the Lpok-Ahead operation.

54

variable whose value is not

J

o

CHAPTER 8 |
LOADING HOLLERITH BASIC PROGRAMS AND PROGRAM OVERLAYS
(LOAD, ADDRESS 62B)

8.1 INTRODUCTION

This chapter covers the loading and overlaying: of BASIC programs from
standard 80-column Hollerith punched cards. Although the term "punched cards"
is used throughout, cards read by the Model 2244A may be either punched or
marked. For reading with a Model 2234A, of course, only punched cards are
legal. The LOAD statement and the LOAD command are used with a device address
of 62B to 1load and overlay Hollerith program decks. Batch processing of
Hollerith program decks involves a somewhat different loading technique, and is
discussed in Chapter 9.

The BASIC program cards read by the Model 2234A in Mode #1 must be
standard 80-column cards punched in Hollerith. BASIC program cards read by the
Model 2244A in this mode may contain fewer than 80 columns (if the cards have
timing marks), and they may be either marked or punched, as long as they are in
Hollerith Code.

8.2 LOADING HOLLERITH PROGRAM DECKS

A "program deck" is a deck of BASIC program cards which conform to the
format conventions given in Section 8.4, and containing a series of program
Tines which collectively constitute a complete BASIC program. A "program
overlay deck" is identical to a program deck, except that it typically
constitutes only a segment or portion of a complete BASIC program, and is loaded
in or "overlayed" under program control with a LOAD statement. The last card in
a program or program overlay deck must always be an End card, as described in
the section entitled "End of Program".

BASIC program and program overlay decks are loaded into memory from cards
with the LOAD instruction. The LOAD instruction has two forms, the LOAD command
and the LOAD statement, distinguished by their mode of execution. When LOAD is
executed in immediate mode (no line number), it is always interpreted as the
LOAD command. When LOAD is executed in a program (in a numbered statement
Tine), it is always interpreted as the LOAD statement. Typically, the LOAD
command is used to load program decks, while the LOAD statement is used to load
program overlay decks. The LOAD command is described in this section, the LOAD
statement in the following section.

55

General Form: LOAD [/623]
#n

Where:

/62B = The device address which designates the card reader as the
device from which programs are to be Tloaded, and also
determines the type of code conversion which is to be
performed. =~ Address 62B causes program text to be converted
from Hollerith to ASCII.

#n = A file number to which the device address 62B has been
aisigned in a SELECT statement ('n' is an integer from 1 to
6).

If neither a device address nor a file number is specified,
the address of the Console Tape device (normally, the
Console Tape cassette drive, address 10A) is used. Address
62B can be designated as the Console Tape address with a
SELECT TAPE 62B statement. In that case, any subsequent
card reader statements which do not specify a device address
or file number automatically default to 62B.

Purpose:

The LOAD command with a device address of 62B initiates the reading of
BASIC program cards, and automatically converts the program text from Hollerith
to ASCII. Newly-loaded program text is appended to the current program in
memory, with new program 1lines which have the same line numbers as existing
lines replacing the old lines in memory. Otherwise, existing program text in
memory is unaffected by the LOAD operation. For example, if the old program in
memory has line numbers 10,20,30, etc., and the newly loaded program has line
numbers 15,25,35, etc., the resultant program in memory following the LOAD is
numbered, 10,15,20,25,30, etc. Lines which contain syntax errors are loaded and
displayed with an appropriate error code. The LOAD operation is not terminated
by syntax errors, but the program cannot be run until all syntax errors are
corrected. The last card in the program deck must be an END card (with an 'E'
in column 80); otherwise, the system continues attempting to load program lines.

To avoid the problem of accidentally including old program text 1in the
newly loaded program, the old program should be cleared from memory prior to the
LOAD. After the new program has been loaded from cards, the operator must enter
RUN, EXECUTE to run the program.

Example 8-1: Loading a Hollerith Program Deck (LOAD Command, Address 62B)

CLEAR
LOAD/62B

In this example, old program text and variables are cleared from memory,
and a new program is loaded from Hollerith cards. After the new program
is loaded, the operator must enter RUN, EXEC to run the program. The
program must be terminated by an 'E' in the last (80th) column of the last
program card, or by the inclusion of an END card as the last card in the
deck.

56

B

If a syntax error is detected in a program line as the card is read, the
faulty 1line 1is displayed or printed, along with an appropriate error code, on
the Console Output device. The system continues loading program lines until an
END card is read. The program cannot, however, be run until all syntax errors
have been corrected. If the system does not encounter an END card (or an 'E' in
the last column of a program card), it continues reading cards, and hangs up
when no more cards are in the hopper.

8.3 LOADING HOLLERITH PROGRAM OVERLAY DECKS

General Form: LOAD [/6231 [L1, L2]
#n,

Where:

/62B

The device address which designates the card reader as the
device from which programs are to be Tloaded, and also
determines the type of code conversion which 1is to be
performed. Address 62B causes program text to be converted
from Hollerith into ASCII.

. #n A file number to which the device address 62B has been
aisigned in a SELECT statement ('n' is an integer from 1 to
6).

If neither a device address nor a file number is specified,
the address of the device currently selected as Console Tape
device (normally, the console tape cassette drive, address
10A) is used. Address 62B can be designated as the Console
Tape address with a SELECT TAPE 62B statement. In this
case, any subsequent card reader statements which do not
specify a device address or file number automatically
default to address 62B.

L1

The Tine number of the first line of resident program text
to be cleared from memory prior to 1loading in the new
program, and the first line to be executed in the overlayed
program.

L2

The 1ine number of the last line of resident program text to
be cleared from memory prior to loading in the new program.

Purpose:

The LOAD statement with address 62B initiates the reading and conversion
of BASIC programs from Hollerith cards. The LOAD statement must be executed on
a numbered statement line (otherwise, it is interpreted as a LOAD command).
When the LOAD statement is executed, it produces an automatic combination of the
following operations:

STOP - Stop current program execution.

57

CLEAR P Clear all resident program text, or that portion specified by
lines L1 and L2. If one line number is specified, (L1), all
resident program text beginning with that line is cleared. If"
"two line numbers are specified (L1, L2) all lines between and
including those 1lines are cleared. If no line number is

specified, all resident program text is cleared.

CLEAR N - Clear all non-common variables. Common variables are
unaffected.

LOAD - Load BASIC program from cards, convert from Hollerith to
ASCII. Stop 1loading when an END card ('E' in column 80) is
read.

RUN - Run the program, beginning at line L1, if specified, or at the

lowest 1ine number in memory, if L1 and L2 are not specified.

The LOAD statement is useful in loading program overlays because of its
ability to automatically clear a specified portion of resident program text
prior to loading, and to automatically execute the newly loaded program segment
after loading. Non-common variables are cleared along with the program text,
but common variables, which may be needed by successive overlays, are
unaffected. The LOAD statement also may be used to load complete programs. In
that case, no line numbers are included in the LOAD statement, so that all
program text in memory is cleared before the new program is loaded.

Example 8-2: Loading a Hollerith Program Deck
(LOAD Statement, Address 62B)

100 LOAD/62B

Statement 100 automatically clears all program text and non-common
variables from memory, and loads in a new program from cards. Program
text is automatically converted from Hollerith to ASCII. Loading stops
when an END card is read. After loading, the new program is automatically
run from the lowest statement line.

Example 8-3: Loading a Hollerith Program Overlay Deck
(LOAD Statement, Address 62B)

500 LOAD/62B, 100, 500

When it is executed, statement 500 clears statement lines 100 through 500
inclusive from the resident program, along with all non-common variables.
The new program is then read from cards, converted to ASCII, and stored.
Loading stops when an END card is read. After loading, the new program is
automatically run starting at line 100. (If there is no line 100 in the
new program, an error is signalled.)

58

Note that if the LOAD statement includes one or two line numbers (L1,L2),
the program to be overlayed must have a 1ine number identical to the first line
number specified in the LOAD statement (L1). Otherwise, an error is signalled.
when the system attempts to run the program from that line. Note, too, that the
overlay deck must be terminated with an END card. If no END card is read, the
system continues reading cards until it encounters an END card or hangs up with
no more cards to read.

If a program and several program overlays and data decks are to be read
from cards, the main program deck should be loaded in the input hopper first
(and followed by an END card). Program overlay and data decks should then be
loaded into the hopper in the order in which they will be read or called in by
the main program. Each overlay deck also must have an END card as the last card
in the deck (the End card is discussed below in Section 8.5, "End of Program").

SELECT CO 005

Immediate Mode SELECT PRINT 005 (64)

SELECT statements to
return Console Output
and PRINT operations)
to CRT. —

Optional END card, used /70 END
only if last card in
program deck does not
have an ‘E’ in column 80.

M FORI=1TO20

Program Deck.

SELECT CO 215 (132)

Optional cards with SELECT PRINT 215 (100)

immediate mode
SELECT statements.

Figure 8-1.
Typical Card Deck Arrangement for Single
Hollerith Program Deck Read with LOAD.

59

Immediate Mode SELECT PRINT 005 (64)
SELECT statements

to return Console Output SELECT CO 005 (64)
and PRINT operations

to CRT.

Special RESET card, used 2% RESET
if data is read with .

DATALOAD

or INPUT.

JOHN JONES, 8 OAK DRIVE

Optional Data Deck

Optional END card, used 4 100 END E
only if last card of program
deck does not have an ‘E’ in
column 80.

10FORI=1TO 20

Program Deck

SELECT PRINT 215 (132)

SELECT CO 215 (132)
Optional cards with
immediate mode
SELECT statements.

Figure 8-2.
Typical Card Deck Arrangement for Single Hollerith

Program Deck and Associated Data Deck Read with
LOAD.

60

e

SELECT PRINT 005 (64)

Immediate Mode SELECT CO 005 (64)

SELECT statements to
return Console

Output and PRINT
operations to CRT.

Optional END card, 200 END E
used only if last
card of program
deck does not have
- an ‘E’ in column 80.

100 FOR1=1TO 20

Program overlay deck. -

Special RESET card, used
if data is read with
DATALOAD or INPUT.

-4mmn'}

W Data deck for
\ main program.

Optional END card,
used only if last card in /

program deck does not END E
have an ‘E’ in column 80.

200 LOAD/628B, 100, 200

10 DIM A$ 26, B$ 24

Main program deck.

SELECT CO 215 (80)

o SELECT PRINT 215 (80)
Optional cards with
immediate mode
SELECT statements.

@ 7 Figure 8-3.

Typical Card Deck Arrangement for Hollerith
Program Deck with Program Overlay Deck and
Associated Data Decks Read with LOAD.

61

8.4 HOLLERITH BASIC PROGRAM CARD FORMAT

Program text loaded from cards in mode #1 must conform to the same
conventions which govern program text entry from the keyboard. Additionally,
certain conventions concerned exclusively with the reading and recording of

program text on Hollerith cards must be observed. Briefly, the conventions are
as follows:

1. The line number must occupy the first column(s) on the card. No data
may be marked or punched before the line number. Leading spaces
(i.e., blank columns preceding the line number) are read as part of
the line number. The use of leading spaces is not recommended.

2. Multiple-statement lines on a card are legal, provided the individual
statements are separated by colons (:). However, only one numbered
statement 1line may be entered on a card. A single numbered 1line may
consist of one or more statements (appropriately separated by colons),
but attempts to record more than one line number on the same card will
produce a reading error:

Right / 100 FOR A=1TO 10: PRINT A: NEXT A

Wrong / 100 FOR A =1TO 10: 110 PRINT A: 120 NEXT A

Figure 8-4.
Right and Wrong Methods of Recording Multiple-Statement Lines on a
Single Hollerith Program Card. (Multiple-statement lines separated by
colons are permitted; multiple line numbers are not. The second card
produces an ERROR 31 [lllegal Line Number] when read.)

62

It is possible to continue the same program line onto a second card.
See Section 8.6, "Continuation of a Program Line".

In general, cards containing program lines without line numbers
produce unpredictable results, and should not be used in this reading
mode. There are, however, two exceptions to this rule:

a. The special END card (discussed under convention #8 and in Section
8.5, "End of Program") requires no line number.

b. SELECT statements can be recorded on cards without Tline numbers.
The availability of SELECT statements in immediate mode makes
possible the dynamic selection of device addresses.

The use of Hollerith characters whose ASCII equivalents are Carriage
Return (multi-punch rows 12, 9, 8, 5) or X-OFF (multi-punch rows 11,
9, 3) characters is illegal in this mode. (Note that a Carriage
Return is not required to terminate a line on a card.)

Every column on the card from the first digit of the 1line number to
the Tlast character in the line is read and converted from Hollerith
into ASCII. Unpunched or unmarked columns are treated as space
characters. Space characters embedded within the program text are
read; space characters which follow the last character on the 1line
(trailing spaces) are ignored, however. This is important, because
space characters occupy memory when a program is stored in the system.

Any Hollerith code which does not convert into a legal ASCII character
is automatically read as an ASCII exclamation character ('!'). Such
illegal characters normally cause the program 1line in which they
appear to be displayed on the CRT (or the selected output device) with
an appropriate syntax error code, thus facilitating easy
jdentification and correction of the erroneous character(s). One or
more lines with syntax errors do not prevent the program from loading
(1oading continues until an END card is read), but the program cannot
be run until all syntax errors have been corrected.

The last (80th) column on a program card is reserved for two special
characters, dindicating continuation (an '&' character), or end of
program (an 'E' character). Any other character punched or marked in
the 80th column is read as an exclamation character ('!'), and
generally will produce a syntax error when the card is read.
Therefore, if the special characters for continuation or end of
program are not used, the 80th column should always be left blank.

63

8. Each program or program overlay must be ended with an end character
('E') in the 80th column of the last program card, or with a special
End card. (See Section 8.5, "End of Program".)

9. Blank cards are ignored by the card reader.

8.5 END OF PROGRAM

The end of a program deck or program overlay deck is indicated in one of
two ways:

1. Punching or marking an 'E' in the last (80th) column of the 1last
program card in the deck, or

2. Including a special END card, which has an 'E' in column 80, as the
last card in the deck.

If the 'E' character is included on the last program card in the deck,
that card must contain some program text. A card containing an 'E' character in

the 80th column, but with no other columns punched or marked, is ignored by the
system.

A special END card can be created by punching or marking the characters
'END' in the first three columns on the card, and punching or marking an 'E' in
the last column. This card should then follow the Tlast program card in the

deck. In this case, the 80th column on the last program card should be left
blank.

Last line of program ‘E’ in Column 80

500 STOP E

Method 1

‘E’ iin Column 80

510 END E

Method 2

Figure 8-5.
Two Methods of Signalling End-of-Program. In the
First Case, an "E” Is Punched o Marked in the

80th Columin of the Last Progiam Card. In the
Scecond Case, a Special Card Is Crcated with the
Word “END’ ind an “E’ in Column 80, Tias Card
Is Added at th: End ot the Deck.

b4

It is imperative that every program deck end with one of the two types of
END cards described above, since it is the END card which terminates the program
loading operation. - If no end-of-program condition is detected, the system
continues loading any remaining cards in the input hopper (with unpredictable
results, if they happen to be data cards), or hangs up if the hopper is empty.

8.6 CONTINUATION OF A PROGRAM LINE

In most cases, each program line occupies a single card. An unusually
long program line may, however, extend onto two or more cards. To indicate that
a single program line is to be continued onto a second card, an ampersand
character ('&') must be marked or punched in the last (80th) column of the first
card. The maximum legal length of a single program 1line is 192 characters
(about 2-1/2 80-column cards), including embedded space columns (unpunched,
unmarked), but not including trailing spaces on the last card. If a line is
continued onto more than one card, every card except the last must contain an
ampersand ('&') in column 80. The last card must not have an ampersand in the
80th column.

Ampersand character (&)

in column 80 of first card
v

Y
200 FOR 1 =1 TO 100: PRINT AS$(l): PRINT B$(l): &

Card 1

Program line continues in column 1
of next card

]
NEXT I

Card 2

Figure 8-6.
- Continuing a Single Program Line from One Hollerith
Card to a Second.

65

CHAPTER 9
BATCH PROCESSING HOLLERITH BASIC PROGRAMS

9.1 INTRODUCTION TO "BATCH PROCESSING" ON THE MODELS 2234A AND 2244A

The term "batch processing" denotes an operation in which a series of
discrete program decks and associated data decks are automatically loaded and
run in sequence without normal user intervention. A ‘“batch" of individual
program and data decks are loaded into the input hopper, separated by system
command cards such as CLEAR, LOAD, LIST, and RUN. The card reader is then
selected for Console Input operations, and automatically begins loading in the
first program deck. If the program requires data to be entered from cards, an
accompanying data deck is automatically read. Thus, in effect, the card reader
assumes the role normally taken by the keyboard. At any point where the system
would normally expect a program line or system command to be entered from the
keyboard, the card reader is accessed instead to automatically read the next
card. Program 1lines are therefore loaded from cards just as if they had been
keyed in from the keyboard, and system commands and immediate mode statements
(such as LIST, LOAD, RUN, CLEAR, SELECT, etc.) are executed immediately upon
being read from cards. When the first program has completed execution, the
system command cards are read and executed, and the next sequential program is
automatically loaded and run. Hardcopy output and listings for each program can
be generated on a line printer or output writer by dynamically changing the
LIST, PRINT and CO parameters with immediate mode SELECT cards. The batch
operation continues until all cards have been read and processed.

9.2 LOADING HOLLERITH BASIC PROGRAMS WITH CONSOLE INPUT

The principal value of Console Input mode derives from its usefulness in
batch processing operations. On the System 2200A, however, and on a System
2200S or WCS/10 system without Option-22 or -23, Console Input provides the only
method of Toading BASIC programs from cards. Hollerith cards are read under
Console Input control by selecting the card reader for Console Input operations
with a device address of 02B:

SELECT CI 02B

66

gﬁk

-

Immediately after this statement is keyed in and executed, the card reader
assumes all program input operations normally associated with the keyboard. The
following sequence of events then takes place:

1. If the card reader is in a ready condition, cards are read and
automatically converted from Hollerith to ASCII.

2. Numbered program lines are read from cards, displayed on the currently
selected Console Output device (normally, the CRT), and entered into
memory, just as if they had been entered from the keyboard.

3. Numbered program lines which contain syntax errors are printed or
displayed with an appropriate error code, and entered in memory.
Erroneous program lines do not terminate the program loading
operation, but the program cannot be run until all errors have been
corrected.

4. System commands (such as CLEAR, LOAD, LIST, RUN, etc.) are read from
cards, printed on the currently selected Console Output device, and
automatically executed, just as if they had been entered from the
keyboard.

5. Immediate mode statements without 1ine numbers (such as SELECT, PRINT,
etc.) are read from cards, printed on the currently selected Console
Output device, and automatically executed, just as if they had been
entered from the keyboard.

The SELECT CI 02B statement is, of course, entered from the keyboard.
Once it is executed, the keyboard is locked out, and all subsequent commands and
statements must be entered from cards. Typically, control cards with immediate
mode SELECT statements directing the LIST, PRINT, and/or Console Output
operations to a printer are included at the beginning of a card deck.
Corresponding SELECT cards generally are included at the end of the deck to
reselect output back to the CRT. Additionally, each program deck should be
preceded by a CLEAR command card. (Note that if the CLEAR card follows the
SELECT CO card, all PRINT and LIST operations, as well as Console Output
operations, are defaulted to the printer whose address is specified in the
SELECT CO statement.) If Console Output is selected to a printer, each card is
automatically printed out as it is read, thus providing a hardcopy listing of
the entire program deck. In addition, all syntax error messages are printed as
they occur, thereby producing a useful "audit trail" for debugging purposes.

Each program deck must be followed by certain control cards. A RUN command
card must follow the last program card. After the last program card has been
loaded, the RUN card is read, initiating program execution. The very last card
in the batch job stream must be a SELECT CI 001 card which returns Console Input
operations to the keyboard. Once this card is read, any remaining cards in the
input hopper are ignored.

67

9.3 HOLLERITH PROGRAM CARD FORMAT FOR CONSOLE INPUT

The format of program lines read from cards with Console Input is
identical to that of programs entered from the keyboard, and is also quite
similar to the required format of programs read from cards with LOAD. Chapter
8, Section 8.4 ("Hollerith BASIC Program Card Format") lists the applicable
format conventions in some detail. In brief, they are:

1. The Tine number must begin in the first card column; Tleading spaces
are read as part of the line number.

2. Multiple-statement lines are allowed, provided the statements are
separated by colons. ’

3. Hollerith characters which translate to Carriage Return (multi-punch
rows 12, 9, 8, 5) and X-OFF (multi-punch rows 11, 9, 3) characters are
illegal. A Carriage Return is not required to terminate a line on a
card.

4. Hollerith codes which do not convert to legal ASCII codes are
automatically converted to ASCII exclamation ('!') characters.

5. The Tast (80th) card column is reserved for two special characters,
indicating continuation of a program line (an '&' character) or end of
program (an 'E' character). No other characters may be punched or
marked in the 80th column.

6. Blank cards are ignored by the card reader.

9.4 DIFFERENCES BETWEEN 'CONSOLE INPUT' AND ‘'LOAD'

Although program cards read with the LOAD command or program statement
must conform to the same format conventions as programs read with Console Input
(and therefore programs read with LOAD can in general be read with Console

Input, and vice-versa), there are certain important differences between the two
modes :

1. Each card read via Console Input is automatically "echoed" onto the
currently selected Console Output device (typically the CRT display)
as it is entered. This does not occur with cards read by LOAD. Thus
the process of program loading is somewhat faster with LOAD than with
Console Input.

2. Console Input reads and executes system commands cards and immediate
mode statement cards (i.e., cards which do not contain Tine numbers)
such as CLEAR, RUN, LIST, SELECT, etc. In program decks read with
LOAD, only the END card and SELECT statements can be read and executed
in immediate mode. In general, other types of cards which lack line
numbers produce unpredictable results when read under LOAD control.

3. Programs read with LOAD must be ended with an END card. Programs
Toaded via Console Input do not require an END card; it is
recommended, however, that ail programs be terminated with an END
card.

68

9.5 BATCH PROCESSING WITH CONSOLE INPUT

Because of its ability to read and execute immediate mode statements and
commands, Console Input is an extremely valuable reading mode for batch
processing operations. A batched job stream consisting of several programs and
associated data decks separated by appropriate system command cards can be
Joaded and run under Console Input control. Because commands such as CLEAR,
LOAD, and RUN for each program are read from cards rather than entered from the
keyboard, the entire job stream can be processed without user intervention
(provided the programs are free of syntax errors). Each program is
automatically loaded and run; when it has completed execution, it is cleared
from memory, and the next program is loaded. This process continues until a
card is read which reselects Console Input back to the keyboard.

Within the job stream, each program should be preceded by a CLEAR card and
immediately followed by a RUN card. Additional SELECT cards may be inserted at
appropriate points to dynamically control the selection of output devices.
Figures 9-2 and 9-3 below illustrate typical batched job streams with control
cards.

9.6 THE USE OF 'LOAD' IN CONJUNCTION WITH 'CONSOLE INPUT' FOR MORE EFFICIENT
BATCH PROCESSING

Although overall control of a batched job stream must Tlie with Console
Input, it is possible to speed up batch processing time by loading individual
programs with the LOAD command. This can be done by adding a LOAD command card
at the beginning of each program deck (the LOAD card must not have a line
number). When the LOAD card is read and executed, it causes the subsequent
program to be loaded in under LOAD control. In this case, program lines are not
automatically echoed to the Console Output device as the cards are read; the
program therefore loads in more rapidly than would be the case under direct
Console Input control. Program loading continues until an End card is read. If
a listing is desired, an immediate mode LIST card must be inserted at the end of
the program deck (but before the RUN card). A typical batch job stream
illustrating the use of LOAD command cards for batch processing 1is shown in
Figure 9-4.

9.7 PRINTING BATCHED PROGRAM QUTPUT

In batch mode operation, it is generally good policy to maintain hardcopy
listings of the programs Tloaded from cards, along with the printed output of
each program. This is most conveniently done by selecting Console Output
operations to a line printer or output writer. With Console Output continuously
selected to a printer-type device, each card is automatically printed as it is
read and processed, along with all other types of Console Output (including
error codes). The hardcopy record thereby produced can be a useful debugging
tool, since the type and location of all syntax errors are clearly shown.
Console Output is selected to the line printer by including a card containing
one of the following immediate mode statements at the beginning of the first
program deck:

SELECT CO 215 (131) - 2221

SELECT CO 215 (80) - 2231
SELECT CO 211 - 2201

69

Note that the SELECT CO card should not have a program line number.

PRINTUSING statements. In order to produce hardcopy output from these
statements, a SELECT PRINT 215 card should follow the SELECT CO card.
Alternatively, a CLEAR card may be used following the SELECT CO card. CLEAR
automatically resets the PRINT and LIST default addresses to the address
currently selected for Console Output. The line lengths for PRINT and LIST also
default to the line length specified in the SELECT CO statement. (If the CLEAR

card gricedes the SELECT CO card, however, the PRINT and LIST addresses are not
changed.

Console Output does not include the printed output of the PRINT and

In order to cleanly separate individual program 1listings from one another,
a PRINT HEX (0OC) card should be used to eject the printer to the top of the next
page for each new job if a line printer is used for output. If an output writer
is used, a PRINT HEX (OAOAOA) card should be substituted. In this case, each
'OA' causes the typewriter to skip one line. An immediate mode PRINT HEX (0C)
or PRINT HEX (OAOAOA...) card should be inserted at the beginning of - each
program deck to ensure that the program listing begins on a new page.
Similarly, a programmed PRINT HEX (0C) or PRINT HEX (OAOAOA...) may be included
in the program prior to each PRINT or PRINTUSING statement, to ensure that all
prin?ed program output begins on a new page. (Refer to Figures 9-3, 9-4, and

9.8 READING DATA CARDS IN BATCH PROCESSING MODE

A program processed in batch mode may contain one or more INPUT, DATALOAD,
or DATALOAD BT statements used to read in and process data cards from a
subsequent data deck. The data deck accompanying each program should
immediately follow the program (and the RUN command) in the input hopper (see
Figure 9-5). When the program deck has been loaded into memory and the RUN card
is read, control reverts from the card reader to the system CPU, where program
execution begins. If an INPUT, DATALOAD, or DATALOAD BT statement is
encountered in the course of program execution, the card reader is accessed and
the data deck 1is read. When the specified number of data cards or an
end-of-file card have been read, the program proceeds with any further
processing; upon completion of program execution, control reverts to Console
Input, which proceeds to read the next card in the input hopper.

Batch Deck Protection

In programs which read data cards within a batched job stream, there is
always the possibility that a logical error in the program, a miscount of the
number of data cards in the deck, or a missing EOF card will cause the program
to read beyond the data cards and into the control cards which follow. Such an
oversight would destroy the first program (which bombs out with invalid data
values) and the second program (which would lose its initial control cards). To
protect against such an occurrence, a special RESET control card should be
inserted as the last card in each data deck. The special RESET card is produced
by multi-punching rows 2, 3, and 4 (i.e., multi-punch integers 2, 3, and 4) in
the first column of a Hollerith card. The remainder of the card should be left
blank.

70

When a special RESET card is read with INPUT or DATALOAD, it generates a
system RESET condition (that is, it has the same effect as touching the RESET
button on the keyboard). Thus a program which has erroneously attempted to read
data beyond the last valid data card is automatically terminated when the
special card is read, and control reverts to Console Input, which reads in the
next card . If the RESET control card is read following normal processing of
the data deck, the RESET operation does not affect the batch processing
operation. It is recommended that a RESET control card be inserted at the end
of all data decks read with INPUT or DATALOAD in batch processing mode.

Note that the RESET control card does not function as a special card when
read with DATALOAD BT (addresses 629 or 62A). In these reading modes (Modes #3
and #4), a special data termination card can be easily designed and tested for,
since an entire card image is read.

Return Console Input ——— SELECT Ci 001
operations to
keyboard.

SELECT CO 005 (64)

Return Console SELECT PRINT 005 (64)

and PRINT operations
to CRT.

RUN

Run program. ————————=

100 END E

10 DIM A$ 26, BS 24 -

Program Deck.

Optional cards with SELECT PRINT 215 (70)
immediate mode
SELECT CO and
SELECT PRINT SELECT CO 215 (80)
statements.
Clear Memory CLEAR
p—
Figure 9-1.

Typical Card Deck Arrangement for Single Hol-
lerith Program Deck Read Via Console Input.

71

Return Console Input

to Keyboard, ——— g

Clear memory. (PRINT ———m
and LIST default back

SELECT CI1 001

CLEAR

to CRT.)

SELECT CO 005 (64) :
Return Console Output — g
to CRT.

a
2
Run program, ——a RUN i
150 END E
10FORI=1TO 20
2nd Program

Deck.

Optional page eject, ——m-

PRINT HEX(0C)

Clear memory. —_— CLEAR

Run program. — RUN

100 END

10 DIM AS 26, B 24

1st Program
Deck.

/_

Clear memory (LIST and
PRINT operations auto.

matically default to CLEAR
Line Printer.) ——— g

SELECT CO 215 (80)
Select Console —am
Output to Line
Printer (optional),

72

Figure 9-2.
Typical Batch Job Stream with Two Program
Decks and Appropriate Control Cards for Entry .

Via Console Input.

E1)

Run program.

1st program deck.

Select PRINT operations to

Run program.

2nd program deck.

Optional Line Printer

page eject.

Clear

Return Console Output
and PRINT operations SELECT PRINT 005

to Line Printer.

Return Console Input 4
to Keyboard. SELECT Ci 001

SELECT CO 005

Special RESET card (used for
data read with DATALOAD or
INPUT).

Optional data deck
for 1st program.

Y.

-mrmxn

10 FORI=1TO20

PRINT HEX (OC)

CLEAR

JOHN JONES, 8 OAK DRIVE

/RUN

100 END

10 DIM AS 26, BS 24

~Z SELECT PRINT 215 (80)

Line Printer (optional)
Select Console Output operations
to Line Printer (optional)

SELECT CO 215 (80)

CLEAR

Clear Y., ——

Figure 9-3.
Typical Batch Job Stream with Two Program
Decks, Data Decks and System Control Cards for
Entry Via Console Input.

Return Console Input
to keyboard, —————— SELECT Ci 001

Clear memory. (PRINT
and LIST automatically —s= CLEAR
default back to CRT.)

Return Console
Output operations —m SELECT CO 005
to CRT. :

Clear memory, — g CLEAR

Run program, ———

Optional Line Printer
page eject. ——

Optional List program ——pm|
card.

RUN

PRINT HEX (OC)

LIST

END card ———p 120 END

1st Program Deck.

Load ——3m LOAD /62B
program,
Clear memory. (PRINT CLEAR

and LIST automat- —m
ically default to

Line Printer.)
SELECT CO 215 (132)

Select Console —m
Output to Line
Printer,

Figure 9-4.
Typical Batch Job Stream With Hollerith Program

Deck and Approbriate Control Cards. Program Is
Read Under LOAD Control.

74

o

Return Console Input ————»— g LECT CI 001
operations to keyboard.

ELECT LIST 005(64)

ELECT PRINT 005 (64)

Return Console Output, SELECT CO 005 (64)
PRINT, and LIST
operations to CRT
following last program
in batch.

END card (used only if last program

card does not have an ‘E’ in column 80) . ——= 100 END E

2nd program deck.
10 FOR1=1TO 20

Load — -
©ad program LOAD/64B

Optional line printer
page eject.

PRINT HEX(OC)

Clear memory. CLEAR

Special RESET card (used if
data is read with DATALOAD or INPUT).

-mymxn

Optional data deck

for 1st program. JOHN JONES, 8 OAK DRIVE

Run program. ——fnu"
Optional Line Printer - PRINT HEX (OC)

page eject.

Optional LIST card. ———————— LIST

END card (used only if last > END E

program card does not have

an ‘E’ in column 80).

1st Program deck.

Load program. —————3= LOAD/62B

Optional SELECT cards
for Console Output, LIST,
PRINT.

Clear memory. ——— g

S

10 DIM A$ 26, BS 24

SELECT LIST 215 (80
SELECT PRINT 215 (80) Figure 9-5.

SELECT CO 215 (80) Typical Batch Job Stream with Program and Data
Decks. Programs Are Read in Under LOAD Control.

CLEAR

75

PART Il
BASIC MARK SENSE PROGRAM/DATA CARDS
CHAPTER 10
MARKING THE BASIC MARK SENSE CARDS

10.1 THE TWO BASIC MARK SENSE PROGRAM CARDS

The Model 2244A card reader is capable of reading a variety of custom-
designed mark sense cards. The special codes used on such cards must be
converted to a meaningful form by a user-generated program. Two special mark
sense cards are available, however, whose character codes can be read and
converted automatically into ASCII by the card reader itself. The two special
cards are the standard format BASIC mark sense card (Figure 10-1) and the Wang
format BASIC mark sense card (Figure 10-2). Wang BASIC mark sense cards may be

purchased directly from Wang Laboratories. Standard BASIC mark sense cards are
not stocked by Wang.

— LA - N -
//“mH"%IE:(-“ﬁjJ@dﬂwwIW“WVULMHWFMfWHd[M
HNEER aniain R e ekl |,|r), DI

0] 0] o] [0 fsurewenr §0] 0] 0] 0] [0] 0! o] I} o] 0T 101 i 01! loii0]lo; o:o‘o.lo'o ‘oljojio*'o;lo}[ollo;[o £

[I_”I”' ol READ 0% :n T&lpc 4;tlr'_gl R} 1c”tulu‘c '+ad|A°c : : :u %! lm ! IJ Ilg”Ac I |c| nnhcluu-n & '*‘

2 @D“"‘ e 5) B)) B AR ENNER

S3LON

<.

N 260 wJLMQH@D@WUMDUQHQHMDDJ@ME“'%ﬂ@ﬁ?
R Sjciois el AR AR A AR AL S)
) 5585 & 'ﬂQuEBEGH@MEEIQﬂ@&QKNM@DWQA£MM.a
i BEEE wefa HDHE@QQHMEQQIthQQIMEEMJ(2l

Gl Pﬂmlﬂmmmﬁmﬂmmm@lmmﬂlmmuw%ﬁ s

8/ls)[e]fsfr ""':;oﬂﬂl[lul!jﬂ@) e) e e
fo][91[01[of* o llEzZlEﬂE@[@EEI@[&JD@IIEQFEDDI'?@@@@&',z.

IR2R3Q405 cR7gegofofrfiz)izfiafis e 17 e ioJeof2 3.24'25'26.27.20'8.30'3'l32.33l34.35l36.37l

Figure 10-1. Standard BASIC Mark Sense Card

FORMULZ]
EE B@BK]E]E]E]E]EIE]BIDE]E]E)DE]DEIDE]IIIEHBB!DE] it
=y SIS ninjofalolelolaloalbekiahiakEhbhkbibebeb :
DEﬂWEEEEEEEEEEEBEDEDEEDEEEEEEEEEE
DHﬂEi!EEEEEEEEEEEEEEEEEEEEE@E@EEE
[2] (2] [2ford fend [ll@@ll@@@@ll@@ll@l@@@EIIII(‘:&Ig g
3] (3] (] o] (] [} EIIEIEEIE@@@El@@@@l@@@@@@@@l@@g ;
[4] 4] [alfoor][o] [EEIEBE@EEI@I@IEEIIEIE@@IIg :
(51 5] [5~] pd =i IEIIIIEIIIEIIEIEIIIIIQIIEIIE!g
DEHE @EEJEIE@@@E@@IE@@IEIQ@EIEIE@5
b e ; Eﬁ]@Il@@@@ll@@l@lll@l@@l@l@g
EEEE El@@ll@l@l@@l@@@@ﬂ@l@ﬂg
9] (o] [o] [olfex] [rx] o@@@@EEIEEEIEIEIEJEEEQ@@BEI 7
F1gure 10-2. Wang BASIC Mark Sense Card

76

oe

Both types of BASIC mark sense cards are designed to facilitate the
marking of programs and data. Both cards have only 37 columns, fewer than half
as many as a standard 80-column card. Each column is therefore wide enough to
be easily identified and marked. Similarly, both cards contain lists of BASIC
verbs which permit the user to indicate a complete verb with a single mark,
rather than spelling it out in a series of columns.

Standard Format BASIC Cards

The standard format BASIC card is commonly wused in educational
institutions. As Figure 10-1 illustrates, it consists of 37 columns divided
into four zones. Zone 1, consisting of columns 1-4, is used to indicate a
program line number. Zone 2, comprising columns 5 and 6, contains a list of
BASIC statements and commands. Zone 3, the FORMULA zone, comprises columns
7-36, and is used for text. Zone 4, finally, consists of the single column 37,
and is marked to indicate continuation of a program line or data value onto a
second card.

Zone 2 (BASIC commands and statements) contains a list of the following
four commonly used BASIC commands:

SCRATCH* LIST
RUN PUNCH*

Zone 2 also contains the following commonly used program statements:

LET READ
DATA PRINT
GOTO IF

FOR NEXT
DIM END

DEF GOSUB
RETURN STOP
REM RESTORE
MAT* COoM

*SCRATCH is interpreted as CLEAR when read by the system, and PUNCH is
interpreted as DATASAVE. The MAT statement can be used only in systems which
support matrix operations.

NOTE:

Standard BASIC cards are not sold by Wang Laboratories.

77

Wang BASIC cards

The Wang BASIC mark sense card is essentially identical
format card discussed above,

contains an additional column of
BASIC language available on most Wang systems.
the following 1list of 36 commonly used statements and commands:

BASIC verb

to the standard
with the exception that Zone 2 on the Wang card
s to include verbs from the expanded
Zone 2 on the Wang card includes

PRINT PRINTUSING HEXPRINT
GOTO STOP END
GOSuUB RETURN DEFFN
FOR NEXT IF
DATA READ RESTORE
REM INPUT KEYIN
COoM DIM MAT
INIT(PACK(UNPACK
ON TRACE CONVERT
LOAD DATALOAD DATASAVE
REWIND SKIP BACKSPACE
SELECT CLEAR RUN
NOTE:

Use only those statements and commands which are 1legal in
your system. MAT, for example, cannot be used in a system
which does not support matrix operations. INIT, PACK,
CONVERT, etc. are illegal in a System 2200A. Consult your
reference manual for a 1ist of the BASIC statements and
commands legal in your system.

10.2 MARKING PROGRAMS AND DATA ON BASIC MARK SENSE CARDS

The BASIC mark sense cards can be used to record either programs or data.
Observe the following procedure when marking. the cards:.

(a) Zone 1 (Line Number) - Digits in the program line number are indicated

by marking the appropriate boxes with a #2 pencil or equivalent. Only

marked columns are read and decoded; unmarked columns are
Only one box may be marked in each column.

78

ignored.

The mark should be a heavy
verticai line through the center of the box (see Figure 10-3).

(b)

(c)

STATEMENT
NUMBER

0| (0|0

&)

wWi[nN] =
N -
N
N
g

al[al 11

Figure 10-3.
Enlarged Portion of Zone 1 (STATEMENT NUM-
BER Zone) on a BASIC Mark Sense Card,
Showing Line Number ‘100’ Marked.

Zone 2 (BASIC Verbs) - A BASIC verb is indicated by marking the
appropriate box in Zone 2 with a vertical line through the center of
the box. A #2 pencil should be used. In general, only one verb on
each card can be marked from the 1list of BASIC verbs in Zone 2.
Additional verbs on the same card must be spelled out in Zone 3.
There is a single exception to this rule. On the Wang BASIC card, a
SELECT INPUT Statement can be indicated by marking the SELECT box in
column 5 and the INPUT box in column 6.

Zone 3 (Formula Zone - Letters, Numbers, and Special Symbols) - Zone 3
comprises columns 7-36 on the standard format card, and columns 8-36
on the Wang Format card. Zone 3 is divided longitudinally by a heavy
dark line into two sub-zones. In the three rows above the 1line, each
box contains a single character. In the rows below the line, each box
contains four characters. The characters and symbols in Zone 3 are
marked as follows:

To mark one of the characters in the upper three rows, mark only
the box containing the desired character.

79

Each box in the bottom nine rows contains a single digit printed

in the Tlower left-hand corner. To mark one of the digits 1-9 in
the bottom nine rows, mark only the box containing the specified
digit.

To mark one of the three letters or special symbols which run
diagonally from the upper left-hand corner to the lower right-hand
corner of each box in the bottom nine rows, mark the appropriate
box plus a corresponding box in the top three rows of the same
column. For the upper left character, mark the box in the top
row; for the middle character, mark the second row from the top;
for the Tlower right character, mark the third row from the top.
(See Figure 10-4.) For example, to mark the character 'A', mark a
box containing "A" in the Tower nine rows, and the top box in the
same column (the box containing '='). Similarly, for "B", mark
the "B" box and the second box from the top in that column (the
‘s' box). (See Figure 10-5.)

- Mark this box plus
box in top row.
- Mark this box plus
box in 2nd row from top.

Mark only this box. > '« Mark this box plus
box in 3rd row from top.

Figure 10-4.
Enlarged view of Box in Row 1 of
FORMULA Zone, showing which boxes
must be marked to indicate specified
characters.

80

i1

>
I
oo
——
N
+
(]

F .\
L
/
ORE E
<
§
J « J ° “ r:b
: K : K : K : K
4KL as|l laL| |4 |aL] |a8] |aYy |48] |aL] |2
TR IMIPR M R
AN % N
Figure 10-5.

Enlarged Portion of Zone 3 (FORMULA Zone) on a BASIC Mark Sense Card,
Showing the Statement A =B 1 2+ C” Marked.

NOTE:

The letters 'SP' in the lower right-hand corner of boxes
in row 6 indicate an ASCII space character (HEX(20)).
Since unmarked columns are ignored, spaces must be
indicated by marking 'SP' and '0' in the desired column.

(d) NOTES SECTION - written comments may be placed in the NOTES section to
identify the card for the programmer's convenience. Written material
in this section of the card is ignored by the card reader.

81

CHAPTER 11
LOADING MARK SENSE BASIC PROGRAMS AND PROGRAM OVERLAYS
(LOAD, ADDRESS 62C)

11.1 INTRODUCTION

In Mode #7, BASIC programs can be lToaded from both types of BASIC mark
Sense program cards with the LOAD instruction and a specified or selected device
address of 62C. The same device address, 62C, is used with both Wang and
standard BASIC mark sense cards. As each card is read, the Model 2244A
automatically determines which type of card is being read, and utilizes the
appropriate code conversion routine. (Wang BASIC cards have a special black box

printed in column 1 to identify them.) The user is not therefore required to
differentiate between the two types of cards; in fact, the two card formats may

11.2 LOADING MARK SENSE BASIC PROGRAMS

A "program deck" is a deck of BASIC program cards which conform to the
format conventions given in Section 11.4, and containing a series of program
lines which collectively constitute a complete BASIC program. A "program
overlay deck" is identical to a program deck, except that it typically
constitutes only a segment or portion of a complete BASIC program, and is loaded
in or "overlayed" under program control with a LOAD statement. The last card in
a_program or overlay deck must always be an END card, as described in Section
11.6, "End of Program".

BASIC mark sense program and program overlay decks are loaded into memory
from cards with the LOAD instruction. The LOAD instruction has two forms, the
LOAD command and the LOAD statement, distinguished by their mode of execution.
When LOAD is executed in immediate mode (no line number), it is always
interpreted as the LOAD command. When LOAD is executed in a program (on a
numbered statement line), it is always interpreted as the LOAD statement.
Typically, the LOAD command is used to load program decks, while the LOAD
statement is used to load program overlay decks. The LOAD command is described
in this section, the LOAD statement in the following section.

82

e

General Form: LOAD [QGZC]
n

Where:
]62C

The device address which designates the card reader as the
device from which programs are to be loaded, and also
determines the type of code conversion which 1is to be
performed. Address 62C causes program text to be converted
from the BASIC mark sense card code to ASCII.

A file number to which the device address 62C has been
aisigned in a SELECT statement ('n' is an integer from 1 to
6).

#n

If neither a device address nor a file number is specified,
the address of the Console Tape device (normally, the
address of the console tape cassette drive, 10A) 1is used.
However, address 62C can, if it is convenient, be designated
as the Console Tape address with a SELECT TAPE 62C
statement. Following execution of this statement, any card
reader statement with no specified device address or file
number automatically uses address 62C.

Purpose:

The LOAD command with a device address of 62C initiates the reading of
BASIC program cards, and automatically converts each character to ASCII.
Newly-loaded program text is appended to the current program in memory, with new
program lines which have the same line numbers as existing lines replacing the
old lines in memory. Otherwise, existing program text in memory is unaffected
by the LOAD operation. For example, if the old program in memory has line
numbers 10,20,30, etc., and the newly loaded program has 1ine numbers 15,25,35,
etc., the resultant program in memory following the LOAD is numbered
10,15,20,25,30, etc. Lines which contain syntax errors are loaded and displayed
with an appropriate error code. The LOAD operation is not terminated, but the
program cannot be run until all syntax errors are corrected. The last card in
the program deck must be an END card; otherwise, the system continues attempting
to load program lines.

To avoid the problem of including statement lines from the old program in
the newly loaded program, the old program should be cleared from memory prior to
the LOAD. After the new program has been loaded from cards, the operator must
enter RUN, EXECUTE to run the program.

Example 11-1: Loading a BASIC Program Deck from Mark Sense Cards (LOAD Command,
Address 62C)

CLEAR
LOAD/62C

In this example, old program text and variables are cleared from memory,
and a new program is loaded from either type of BASIC mark sense program
cards. After the new program is loaded, the operator must enter RUN, EXEC
to run the program. The program must be terminated by an END card as the
last card in the deck.

83

11.3 LOADING BASIC PROGRAM OVERLAY DECKS

General Form: LOAD [/GZC{] [L1, L2]
#n,

Where:

/62C = The device address which designates the card reader as the
device from which programs are to be loaded, and also
determines the type of code conversion which is to be
performed. Address 62C causes program text to be converted

from the BASIC mark sense card code to ASCII.
#n

A file number to which the device address 62C has been
assigned in a SELECT statement ('n' is an integer from 1 to
6).

If neither a device address nor a file number is specified,
the address of the device currently selected as Console Tape
device (normally, the console tape cassette drive, address
10A) is used. If convenient, however, address 62C can be
designated as the Console Tape address with a SELECT TAPE
62C statement. Following execution of this statement, any
card reader statement which does not specify a device
address or file number automatically uses address 62C.

L1

The line number of the first line of resident program text
to be cleared from memory prior to 7loading in the new
program. When program loading is complete, the new program
is automatically run from this line.

L2

The Tine number of the last line of resident program text to
be cleared from memory prior to loading in the new program.

Purpose:

The LOAD statement with address 62C initiates the reading and conversion
of BASIC programs from BASIC mark sense cards. The LOAD statement must be
executed on a numbered statement line (otherwise, it is interpreted as a LOAD
command). When the LOAD statement is executed, it produces an automatic
combination of the following operations:

STOP - Stop current program execution.

CLEAR P - Clear all resident program text, or that portion specified
by lines L1 and L2. If one line number is specified (L1),
all resident program text beginning with that 1line is
cleared. If two line numbers are specified (L1, L2), all
lines between and including those lines are cleared. If
no Tine number is specified, all resident program text is
cleared.

84

»r

CLEAR N - Clear all non-common variables. Common variables are

unaffected.

LOAD '~ Load BASIC program from cards, convert each character to
ASCII. Stop loading when an END card is read.

RUN - Run the program, beginning at line L1, if specified, or at
the lowest line number in memory, if L1 and L2 are not
specified.

The LOAD statement is useful in loading program overlays because of its
ability to automatically clear a specified portion of resident program text
prior to loading, and to automatically execute the newly loaded program segment
after loading. Non-common variables are cleared along with the resident program
text, but common variables, which may be needed by successive overlays, are
unaffected. The LOAD statement also may be used to load complete programs. In
that case, no line numbers are included in the LOAD statement, so that all
program text in memory is cleared before the new program is loaded.

Example 11-2: Loading a BASIC Program from BASIC Mark Sense
Cards (LOAD Statement, Address 62C)

100 LOAD/62C

Statement 100 automatically clears all program text and non-common
variables from memory, and loads in a new program from cards. Program
text 1is automatically converted from the BASIC mark sense card code to
ASCII. Loading stops when an END card is read. After 1loading, the new
program is automatically run from the Towest statement Tine.

Example 11-3: Loading a BASIC Program Overlay from BASIC Mark
Sense Cards (LOAD Statement, Address 62C)

500 LOAD/62C, 100, 500

When it is executed, statement 500 clears statement lines 100 through 500
inclusive from the resident program, along with all non-common variables.
The new program is then read from cards, converted to ASCII, and stored.
Loading stops when an END card is read. After loading, the new program is
automatically run starting at line 100. (If there is no line 100 in the
new program, an error is signalled.)

Note that if the LOAD statement includes one or two line numbers (L1, L2),
the program to be overlayed must have a line number identical to the first 1line
number specified in the LOAD statement (L1). Otherwise, an error is signalled
when the system attempts to run the program from that line. Note, too, that the
overlay deck must be terminated with an END card. Otherwise, the system
continues reading cards until it encounters an END card, or hangs up with no
more cards to read.

85

11.4 BASIC MARK SENSE PROGRAM CARD FORMAT

In general, program text entered from mark sense cards must conform to the
conventions governing program entry from the keyboard. Additionally, the BASIC
mark sense card formats impose certain restrictions on the marking of program
text. The applicable conventions are listed below:

1.

2‘

A11 blank (unmarked) columns are ignored; spaces must be indicated by
a space character ('SP' and '0').

Columns 1-4 (Zone 1) are reserved for the line number. Since only
marked columns are decoded (unmarked columns are ignored), the only
requirement is that at least one column in Zone 1 be marked with a
digit. The Tline number need not begin in column #1 (as it must on
punched cards). Line number 5, for example, may be marked in any one
of the four columns in Zone 1. 1In general, cards without 1ine numbers
produce unpredictable results, and should be avoided in this reading
mode. There are, however, two exceptions to this rule:

(a) Immediate mode SELECT statements may be marked on a card without
line numbers. The SELECT statements are executed immediately upon
being read, thus permitting dynamic selection of device addresses
during program loading.

(b) The END statement may be marked on a card without an accompanying
line number. The END card is always the last card in the program
deck, and brings program Toading to a halt immediately upon being
read. It is generally good policy, however, to give the END
statement a line number, so that it forms a part of the program
stored 1in memory. Note that the END card must have the END box
marked in Zone 2. It is not permissable to spell out the word
"END" in the Formula Zone.

Columns 5-6 on the standard BASIC card, and 5-7 on the Wang BASIC card
(Zone 2), are the BASIC verb columns. Only one box in each column may
be marked. Unmarked columns are ignored. In general, only one BASIC
verb in Zone 2 can be marked on each card. Additional verbs on the

same card must be spelled out in the FORMULA columns (Zone 3). There

is a single exception to this rule. On the Wang BASIC card, it is
possible to mark a SELECT statement by marking the 'SELECT' box in
column 5 and the 'INPUT' box in column 6. The selected device address
must, of course, be spelled out in Zone 3.

Alphanumeric data, special symbols, etc., as well as additional BASIC
verbs, are marked in the FORMULA section (Zone 3). Unmarked columns
are ignored. '

Multi-statement lines on a card are legal, provided the individual
statements are separated by colons (:). However, only one 1line number
may appear on each card. A single numbered line may consist of
several statements (appropriately separated by colons), but an attempt
to record more than one 1line number on the same card results in a
reading error.

86

™

o

Right 10 A =SQR(BxC12): PRINT A,B,C
Wrong 10 A = SQR(BxC12): 20 PRINT A,B,C
Figure 11-1.

Right and Wrong Methods of Marking Multiple Statement Lines on a
Single Card. (Multiple statements are legal if separated by colons; multiple
line numbers are not. The second card produces an ERROR 31 [lllegal Line
Number] when read. Note that BASIC verbs ‘PRINT’ and ‘NEXT' must be
spelled out in the alphanumeric field of Zone 3.)

6. The last (37th) column contains the 'CONTINUE' box. This box is
marked to indicate continuation of a program line onto a second card.
Refer to Section 11.5, “"Continuation of a Program Line".

7. Each program or program overlay must be ended with an END card. The
END card must have the "END" box marked. It may also have a line
number, but all other columns should be left blank.

8. Blank (unmarked) cards are ignored in Mode #7.

11.5 CONTINUATION OF A PROGRAM LINE

In the normal case, each program 1line occupies a single card. An
unusually long 1line may, however, be continued onto one or more additional
cards. In order to indicate that a 1ine is to be continued onto a subsequent
card, the CONTINUE box on the first card (column 37) must be marked. If the
program line occupies more than two cards, the CONTINUE box must be marked on
every card except the last. The CONTINUE must not be marked on the last card.
Nothing may be marked in the line number rows (Zone 1) of any card except the
first. BASIC verbs (Zone 2) may, however, be marked on any continued card. The
maximum legal length of a single program line is 192 characters (about 6 cards).

87

11.6 END OF PROGRAM

The last card in a program deck must be the END card. On this card, the
BASIC verb END must be marked, along with a line number, if desired; any marked
columns in the FORMULA Zone are ignored. An END card must be included as the
last card in each program deck, since it is the only legal way to terminate the
program loading operation. If the END card is omitted, the system continues
loading program text beyond the 1last valid program card, with results which
cannot be foreseen.

"~ If a program and several program overlays and data decks are to be read
from cards, the main program deck should be loaded in the input hopper first
(and followed by an END card?. Program overlay and data decks should then be
loaded into the hopper in the order in which they will be read or called in by
the main program. Each overlay deck also should have an END card as the last
card in the deck.

Note that in Wang BASIC, it is possible to place an END statement anywhere
in a program prior to the actual end of the program. When the END statement is
encountered during program execution, it stops program execution and causes the
END PROGRAM and FREE SPACE messages to he printed or displayed. END can be
inserted at any point in a BASIC program Tloaded from cards; it will not
terminate the LOAD operation if it is assigned a line number and is spelled out
in the FORMULA zone rather than marked in Zone 2. However, whenever the the
reader encounters a card on which the END box has been marked in Zone 2, it
automatically terminates program loading (whether or not the END card has a line
number). In general, it is recommended that only a single END statement be
employed at the end of the program deck.

88

s

SELECT PRINT 005 (64)

SELECT CO 005 (64)

Return Console
Output and PRINT
operations to CRT.

END card with only < 100 END
‘END’ box marked

30

20

10 DIM A$ 26, BS 24

Program Deck

SELECT PRINT 215 (80)

SELECT CO 215 (80)

Optional cards with
immediate mode
SELECT statements.

Figure 11-2.

Typical Card Deck Arrangement for Single
Mark Sense Program Deck Read with LOAD.

89

|/ SELECT PRINT 005 (64)

Return Console
Output and SELECT CO 005 (64)
PRINT operations

to CRT.

Special RESET card, used]
if data is read with i RESET . -

DATALOAD or INPUT.

“JONES, JOHN‘’, 8 OAK DRIVE
Optional Data Deck
Special End-of-Program card rd END
with only ‘END’ box marked.
10 DIM AS 26, BS 24 %
Program Deck
ﬁ
SELECT PRINT 215 (132)
SELECT CO 215 (132)
Optional cards with
immediate mode SELECT B
statements, :
B
Figure 11-3.

Typical Card Deck Arrangement for Single Mark
Sense Program Deck, with Associated Data
Deck, for Reading with LOAD.

90

END card, with only the
‘END’ box marked (line
number is optional).

Main program deck.

Optional cards with
Immediate Mode
SELECT statements.

SELECT PRINT 005(64)

Immediate Mode SELECT CO 005 (64)

SELECT Statements
to Return Console
Output and PRINT
operations to CRT.

END card with only the
'END’ box marked. 150 END

100 FOR1=1TO 20
Program overlay
deck.

Special RESET card, used
if data is read with < RESET
DATALOAD
or INPUT.

JOHN JONES, 8 OAK DRIVE

QOptional data
deck for main
program.

5 160 END

10 DIM A$(5,5) 10

(SELECT CO 215 (80)

SELECT PRINT 215 (80)

Figure 11-4.
Typical Card Deck Arrangement for Mark Sense
- Program Deck with Program Overlay Deck and
Associated Data Decks for Reading with LOAD.

91

CHAPTER 12
READING DATA VALUES FROM BASIC MARK SENSE CARDS
(DATALOAD, ADDRESS 62D)

12.1 INTRODUCTION

Two statements are available for reading data values from BASIC mark sense
cards: DATALOAD and INPUT. The required data card format is identical for both
statements; thus, the same data decks may be read with either statement.
DATALOAD 1is the preferred statement in most cases, however, because it is
somewhat more predictable than INPUT in its handling of erroneous data values.
DATALOAD immediately halts program execution and displays an error message when
it encounters an illegal data format. (Note that in systems with the ON ERROR
GOTO statement, it is possible to program a response to such error conditions
without terminating program execution.) INPUT displays an error message, then
ignores the erroneous value and proceeds to read the next card. There are,
however, certain applications in which INPUT may be quite useful. INPUT is
discussed in the following chapter, Chapter 13. The present chapter is devoted
to an examination of the DATALOAD statement.

NOTE:

Two types of BASIC mark sense cards, standard format cards
and Wang format cards, can be read with DATALOAD. An
identifying black box printed in the upper left-hand corner
of each Wang BASIC mark sense card enables the card reader
to distinguish between a Wang card and a standard BASIC mark
sense card as the card is read, and to automatically
initiate the appropriate code conversion routine. For -this
reason, the user need not differentiate the two types of

cards; he may, in fact, intermix both types of cards in the
same deck.

92

2s

g““

12.2 READING DATA VALUES FROM BASIC MARK SENSE CARDS

General Form: DATALOAD [/620,] argument list
#n,

Where:

/62D

The device address which designates the card reader as
the device from which data is to be read, and also
determines the type of code conversion routine which is
to be performed. Address 62D causes a conversion from
the BASIC mark sense card code into ASCII.

#n A file number to which the device address 62D has been
assigned in a SELECT statement ('n' is an integer from 1

n

to 6).
If neither a device address nor a file number is
specified, the address of the default tape device
(normally the console cassette drive, address 10A) is
used. If convenient, it is possible to designate
address 62D as the Console Tape address with a SELECT
TAPE 62D statement. Following execution of such a
statement, a DATALOAD statement which specifies neither
a device address nor a file number automatically uses
address 62D.

argument list = The list of receiving variables, array elements, and/or
array designators, separated by commas. (Array
designators are arra names followed by closed
parentheses, e.g., A$(), N().)

Purpose:

The DATALOAD statement with a device address of 62D initiates the reading
of discrete data values from one or more BASIC mark sense data cards, converts
each character to ASCII, and assigns the values read sequentially to receivin
variables in the DATALOAD argument 1list. (Arrays are filled row by row.
Numeric values must be in free-format (see below). Multiple values on a single
card must be separated by commas. If the argument 1ist is not filled by a
single card, additional cards are read until all receiving variables are filled.
Unread data on the last card is lost. Both alphanumeric and numeric values may
be stored in alphanumeric variables, but only legitimate BASIC numbers can be

stored in numeric variables (otherwise, an error results and program execution
is terminated).

93

Example 12-1: Reading Data Values from BASIC Mark Sense Cards
(DATALOAD, Address 62D)

10 DATALOAD/62D, A, B$, C$

Statement 10 reads data values from BASIC mark sense cards and assigns the
values read sequentially to receiving variables in the argument Tlist.
Since the argument 1list specifies three variables, a numeric (A) and two
alphanumerics (B$ and N$), the reader attempts to read one numeric and two
alphanumeric values from one or more cards. The values may be on three
separate cards, or on a single card (separated by commas). Note that an
alphanumeric value cannot be read into a numeric variable; any attempt to
do so results in an Error 43 (Wrong Variable Type). A numeric value may,
however, be assigned to an alphanumeric variable.

It is possible to designate entire arrays as arguments in a DATALOAD
argument 1list. In that case, each element of the array receives a separate
value from the card. Arrays are filled row by row.

Example 12-2: Reading Data Values from BASIC Mark Sense Cards into
Arrays (DATALOAD, Address 62D)

100 DIM A$(4,4)10, B(5)

200 SELECT #3 62D
210 DATALOAD #3, N$, A$(), B()

In this example, a single alphanumeric value is first read into alpha
variable N$. Next, 16 alphanumeric values (each 10 characters or less in
length) are read into alpha array A$(). Finally, five numeric values are
read into array B(). As many cards as are necessary to satisfy the
argument list are read. Note that the device address 62D, which indicates
that data values are to be read from BASIC mark sense cards, is selected
to file number #3 at line 200, and #3 subsequently is referenced in the
DATALOAD statement at line 210.

12.3 BASIC MARK SENSE DATA CARD FORMAT

Data values read from BASIC mark sense cards in Mode #8 must be marked in
the alphanumeric data columns (the FORMULA section, Zone 3) of each card, in a
free format identical to the format in which data is entered from the keyboard.
The following rules apply to the preparation of data on mark sense cards:

1. On BASIC mark sense cards used to store data values, the 1line number
columns (Zone 1, columns 1-4) should be left blank (unmarked).

2. On cards used for data, the BASIC verb section (Zone 2) also should

generally be 1left blank. If, however, a number of program and data

decks are combined in a single job stream, the REM box on each data

94

2z

card can .be marked. This is a safety precaution which will prevent
the occurrence of unforeseen errors if the data cards are
inadvertently read as program cards under LOAD control. REM
statemerits without line numbers are ignored by LOAD. The REM box does
not affect legitimate data reading, since it is also dignored by
DATALOAD.

Blank (unmarked) columns are always ignored by the reader and are
never interpreted as space characters in Mode #8. Space characters
must be specified by marking the 'SP' box in row 6, and the
corresponding '0' box in the same column.

A varying number of data values can be marked on a single card. To
separate individual values, a comma (',') character is marked on the
card following each value; the comma separator must not be marked
following the last value on a card, however.

Each DATALOAD statement can read one or more cards. If one card does
not contain enough data values to fill all receiving variables and
arrays in the DATALOAD argument list, the next card is automatically
read. When, however, the last receiving variable in the DATALOAD
argument 1ist has received a value from a card, any additional data
values on that card are ignored. A new DATALOAD statement begins by
reading in the next card, even if there are remaining unread values on
the previous card.

A combination of numeric and alphanumeric values can be marked on the
same card (but individual values must be separated by commas) .
Alphanumeric values on a card must correspond in type to the receiving
variables or arrays in the DATALOAD argument 1ist. Although numeric
values can be read into alphanumeric as well as numeric variables,
alphanumeric values cannot be stored in numeric variables or arrays.
Any attempt to do so results in an Error 43 (Wrong Variable Type), and
program execution is halted. Note that this condition can be handled
under program control in systems which provide an ON ERROR GOTO
statement. Note, too, that the problem of illegal numeric format can
be avoided by reading all values into alphanumeric variables, and
subsequently testing and converting the numeric values. See Section
12.7 below for a discussion of this procedure.

Alphanumeric values may be recorded on cards with or without enclosing
quotation marks:

a) Without Quotes - If the first character of an alphanumeric value
is not a quote (") character, all marked columns are read starting
at the first character, up to a comma separator or the end of
card. A1l unmarked columns are dgnored. Leading and trailing
space characters (so marked) also are ignored, but appropriately
marked space characters embedded within the value are read. If a
receiving variable or array element in the DATALOAD argument list
contains insufficient bytes to store all characters of a value,
the remaining unread characters of that value on the card are
ignored. If the receiving argument contains more bytes than there
are characters in the value read, the unfilled bytes in the
variable are filled with space characters (HEX(20)).

95

b) With Quotes - If the first character of an alphanumeric value is a

quote (") character, all marked columns are read beginning with
the first character following the quote character, up to a second
quote character. If the value is begun with a quote character, it
must be ended with a quote character; otherwise, an Error 07
(Missing Quotation Marks) 1is indicated. A1l unmarked columns
inside or outside the quotes are ignored. Commas enclosed within
_quotes are interpreted as data rather than separators. Legitimate
space characters within the quotes, whether leading, trailing, or
embedded, are read. Leading and trailing space characters outside
the quotes are ignored, however. The quotes themselves are not
read as part of the data. As with alphanumeric values marked
without quotes, values in quotes which exceed the size of the
receiving variable are truncated, and values which are smaller
than the receiving variable are padded with trailing spaces up to

“the full length of the receiving variable. :

@ 0O(0 00| “JONES, JOHN Q.”, 026380063, 4 OAK DRIVE a

Figure 12-1.
Alphanumeric Values on a Wang Mark Sense Card With and Without Quotes.
(Because the first value is enclosed in quotes, the embedded comma does
not act as a data separator.)

Numeric values can be recorded in free format, in any numeric
representation legal 1in a Wang system (e.qg., 2.5, -973, 21.2 E-97,
etc.) The conventions governing numeric free format are as follows:

a)

b)

Optional plus (+) or minus (-) sign of number. If no sign s
specified, the number is assumed positive. For negative values, a
minus (-) sign must be specified.

From one to 13 digits to represent the value of a number (e.g.,
400125, -500), or the significant digits of a floating point
number, with or without a decimal point (e.g., 1.45796E07,
24006E-11).

96

c) Optional two-digit exponent of floating point number, and optional
sign of exponent (E + XX). If no sign is specified, the
§§“ exponent is assumed positive.

A11 unmarked columns and space characters (whether leading, trailing,
or embedded) are ignored.

9. Each valid data character is read and automatically converted into
ASCII. Codes which cannot be converted into legal ASCII characters
are decoded as ASCII exclamation ('!') characters (HEX(21)). An
exclamation character does not produce an error if read into an
alphanumeric variable; it will, however, result in an error if an
attempt is made to read it into a numeric variable.

10. The last (37th) column on the card is reserved exclusively for the
special 'CONTINUE' box. The 'CONTINUE' box is used to indicate
continuation of a numeric or alphanumeric value onto a subsequent
card.

11. Blank cards are ignored by the system in Mode #8.

12.4 CONTINUATION OF A DATA VALUE

In most cases, a single mark sense card contains one or more whole data
values, appropriately separated by commas. Occasionally, however, it may be
necessary to extend a single value from one card onto a second card. In such
cases, the special CONTINUE box in column 37 should be marked to indicate that

6““ the last value on the card will overlap onto a second card. The following
conventions apply:

1. Numeric values - To continue a numeric value from one card to another,
simply mark the CONTINUE box in column 37 of the first card, and
continue the value in the FORMULA section (Zone 3) on the second card.
For example, the numeric value '80001624E07' is continued from one
card to a second in the following way: '

Col. 37 ‘CONTINUE’

box marked.
Dooogoloog|o 8001 11}
Card No. 1
Value continues in first
column of Zone 3 on second card.
12 34|56 7|8
0000{000d|e24E07 o
Card No. 2
@ Figure 12-2.
: Continuing the Numeric Value ‘8001624E07’ onto a Second Mark Sense

" Card.

97

2. Alphanumeric values - To continue an alphanumeric value from one card
to_another, mark the CONTINUE box (column 37) on the first card. The
following rules should be observed when continuing an alpha value:

a) The‘character string being continued should be enclosed in quotes.
b) The first column in the FORMULA section (Zone 3) of the second card
should contain a quote (") character. This is to ensure that

spaces and commas embedded within the character string are
preserved when the second card is read.

For example, the alphanumeric value "Jones, John" s continued in the
following way:

Col. 37 ‘'CONTINUE’

box marked.
oooooooio “JONES,
Card No. 1
Col. 8 (first column in Zone 3) on second
card contains a quote (*) character.
|
Y
1234|586 7|8
DDDD DDD IIJOHNII
Card No. 2

~ Figure 12-3.
Continuing an Alphanumeric Value from One Mark Sense Card
to a Second Card.

12.5 TESTING FOR THE END-OF-FILE

Typically, all data cards in a data deck have the same format - that s,
the same number of data fields, in the same order. Each card (or a fixed number
of sequential cards) is read with a DATALOAD statement (address 62D), the data
is processed, and the program loops back to read the next card or sequence of
cards. It 1is convenient in this case to be able to test for the end-of-file
(i.e., no more cards to be read), since it is not always possible to know
beforehand exactly how many cards are to be read. For this purpose, the user
may design his own end-of-file card containing in the first field a special data
value which would never appear as normal data. This special value is tested for
in the program following each DATALOAD operation. Note that all other fields on
the end-of-file card must be filled with dummy data values to satisfy the
DATALOAD argument list. (See Figure 12-4.)

98

ﬂ

9z

Dummy Data Fields

#1 #2 #3 #4
A A A ——
-,

22z, 22z, 999, 222

Last card is —
special EOF card

Data Deck

Data Field #1 Data Field #2 Data Field #3 Data Field #4
—— —N— —N— —N—
R

d John Jones, 4 Oak Drive, 026380063, A-1

Data Card # 1=

Figure 12-4.
Typical Data Deck with EOF Card Containing Dummy Data in All Fields.

Note that the dummy data fields must correspond in number and type (alpha
or numeric) to the Tlegitimate data fields. As each card 1is read, the
controlling program checks for the presence of the first dummy data value. If
the dummy value is not found, the card contains legitimate data, and normal
processing resumes. If the dummy value is detected, the DATALOAD operation is
terminated, and the program branches to another routine.

Example 12-3: Reading BASIC Mark Sense Values and Testing for the End-of-File
(DATALOAD, Address 62D)
50 DATALOAD/628, A$, B$, N, F$
60 IF A$ = "ZZZ" THEN 160

(Process data)

150 GOTO 50
160 STOP

99

This example might be used to read the data deck in Figure 12-4, and test
for an end-of-file condition. Each data card holds four data fields:
data fields #1 and #2 are alphanumeric, and are read into alpha variables
A$ and B$, respectively; data field #3, a numeric field, is read into
numeric variable N; the fourth and last field, an alpha field, 1is read
into F$. As each card is read, the system tests for end-of-file by
checking for the dummy field "Zzz" in A$. If the dummy EOF card is not
detected, the data just read is processed until, at statement 150, the
program is instructed to loop back and read in a new card. If the EOF
card is read, the four dummy data fields are read into variables A$, BS,

N, and F$, respectively, and the program skips down to statement 160 and
stops.

12.6 THE SPECIAL "RESET" CARD

In programs which utilize a DATALOAD routine to read data cards, there is
always the possibility that a 1logical error in the DATALOAD routine or a
miscount of the number of data cards in the data deck may cause the system to
continue attempting to read data cards after the data deck has been exhausted.
If other cards follow the data deck, the program attempts to read these cards,
an attempt which in most cases produces an error. If the data deck is the last
or only deck in the input hopper, the system hangs up awaiting additional cards.
Both of these situations can be avoided by inclusion of a special RESET card as
the last card in the data deck.

The special RESET card is created by marking digits 2,3, and 4 in the
first column of the STATEMENT NUMBER zone (Zone 1). A1l remaining columns on
the card are then ignored by the reader. When the RESET card is read, it
generates a system RESET condition (that is, it has the same effect as touching
the RESET key on the keyboard). The RESET condition returns control to the
currently designated Console Input device. If the card reader is currently
selected for Console Input (with a SELECT CI 02D statement), it resumes
processing cards under CI control. In this way, the system is prevented from
either hanging up or reading into a subsequent program deck in the event of a
card miscount or logical error in the DATALOAD routine. Note that if no such
error exists, the RESET card does not interfere with normal processing.

100

(q
¢ e .D\I\E][HEI[DE]@EIE)DDBEID@B@B@B@B@D@B
mEEEEEENEEEEBEEEEEEEEEEEEEEEE
tntegors : HEEEEEEE@EEEEEEEEEEEEEEEEEE@E
Voo n T @E@@@
Firse ot @E\@@E\@@@@@@@@@@@E@@@@

e T NENEENE e e e RO [SOEHIE(E]

IPRRRRREREARRERERERRERA A
SEREEEEEEAEEYENENERENEEERBEBLEL
FERENEDENENEREREREEEEE RN B R EEEEE
== bR RRRERRRRRER RN
~ERINIEEEEEEEEEEEEEE BN EEREHEEEE
5 Bl ApRpRRERERERRR R RE R R e 2 2 -

RIS TRIE

K [il213141 sl o 7Ial9|10lnIullsluI15|16|V|t8|!9I20I21I22I23Iz4|25l26I27l28I29l30I31I32l33l3435I36I37IJ

Figure 12-5. Special RESET Card for BASIC Mark Sense Data Decks Read with DATALOAD

12.7 SPECIAL TECHNIQUES FOR PROCESSING NUMERIC DATA WITH 'DATALOAD'

The use of DATALOAD to read numeric data from cards presents special
problems, because the presence of an invalid numeric value automatically causes
the system to display an error message and hang up. In systems equipped with
the ON ERROR GOTO statement, this problem can be handled under program control
without terminating program execution. Where the ON ERROR GOTO statement is not
available, however, it 1is recommended that numeric data be read into
alphanumeric receiving variables, and tested for validity under software control
with the NUM function. In this way, an jnvalid numeric will not automatically
terminate program execution, and the programmer is free to respond to erroneous

values in a manner most appropriate for his application. The general technique

for testing numeric data stored in an alphanumeric variable, and converting it

to numeric format, applies equally to data read via INPUT, and is described in
detail in Section 13.4 of the INPUT chapter.

101

134222550 128831

CHAPTER 13
READING DATA VALUES FROM BASIC MARK SENSE CARDS
(INPUT, ADDRESS 62C)

13.1 INTRODUCTION

. Data values on BASIC mark sense cards can be read with an INPUT statement,
if INPUT operations have been selected to the appropriate card reader address.
Once INPUT operations have been selected to the card reader with a SELECT INPUT
statement, data can no longer be entered from the keyboard 1in response to an
INPUT request. For reading data values from BASIC Mark Sense cards, INPUT
operations must be selected to address 62C with the following statement:

SELECT INPUT 62C

Like DATALOAD, INPUT is not recommended for serious data processing operations,
principally because it does not provide the capability for adequate data control
and verification. In particular, the use of INPUT poses potential problems in
the handling of erroneous numeric data, since INPUT merely ignores an invalid
numeric, and processes the next sequential data card. There are, however,
several legitimate uses for INPUT:

1. On the System 2200A and on a System 2200S or WCS/10 System without
Option-22, or -23, since these systems do not provide any other modes
of entering data from cards. For a System 2200S or WCS/10 in which
INPUT is the only available means of reading data from cards, it is
recommended that all data, numeric as well as alphanumeric, be read
initially into alphanumeric variables. Numeric data can be converted
and stored into numeric variables after it has been checked for
validity. (This technique is not practical on a 2200A, which does not
provide the necessary statements for data verification and
conversion.) See Section 13.4 below for an example of how this can be
done. :

2. For testing and debugging a program which normally requires a great
deal of data entry from the keyboard. Programs designed to accept
input from the keyboard can be altered with the addition of a SELECT
INPUT 62C statement to read data from cards instead. A single data
deck can be used repeatedly to check out the program, possibly saving
considerable time in keyboard entry.

3. For educational purposes, as an introduction to card reader
operations. Because of its similarity to keyboard entry operations,
INPUT can serve as a relatively simple and familiar introductory
method of entering data from cards.

102

-3

13.2 DATA CARD FORMAT FOR 'INPUT'

The required format of data values read from mark sense cards with INPUT
is identical to the required format of data values entered from the keyboard in
response to an INPUT request. The INPUT format is also identical to the format
required for cards read with the DATALOAD statement, discussed in Chapter 12.
See Section 12.3 for a detailed 1list of format requirements. In brief, the
format requirements are:

1. Multiple values on the same card must be separated by commas.

2. Alphanumeric values may or may not be enclosed in quotation marks.
Embedded commas in alpha values which are enclosed in quotes are
interpreted as data rather than as data separators.

3. Numeric values may be marked in any free-format legal in a Wang System.

4. Numeric values can be read into alphanumeric receiving variables, but

alphanumeric values cannot be stored in numeric variables.

5. Numeric and alphanumeric values can be continued from one card to
another if the 'CONTINUE' box is marked on the first card.

6. Carriage Return and X-OFF characters are illegal. (A11 illega

legal
characters are automatically converted to exclamation (')
characters.) Blank cards are ignored.

13.3 READING DATA VALUES FROM CARDS WITH 'INPUT'

GENERAL FORM: INPUT [“character string",] variable [,variable...]

PURPOSE :

Once the card reader has been selected for INPUT operations with a SELECT
INPUT 62C statement, the reader functions like a keyboard, reading one or more
data cards in response to each INPUT request from the controlling program. Data
values are read and sequentially assigned to the receiving variables in the
INPUT argument list. Each value may be marked on a separate card, or multiple
values may be marked on a single card, provided the values are separated by
commas. Note, however, that each time the INPUT statement is executed, it
automatically begins reading with the next card in the input hopper, even if
there are remaining unread data values on the previous card. It is not
therefore possible to use two or more INPUT statements to read several data
values from a single card.

103

The INPUT statement operates in a manner substantially similar to that of
DATALOAD, with one important difference. The DATALOAD statement displays an
error message and terminates program execution when it encounters a format error
in a numeric data value. With INPUT, however, a numeric format error generates
an_ error code but does not terminate program execution. Instead, the erroneous
value is ignored (along with all remaining values on the same card), and the
INPUT request is repeated. The next data card is automatically read, and values
from that card are sequentially assigned to the remaining unfilled variables in
the INPUT argument Tist. INPUT 1is therefore somewhat unpredictable in its
handling of erroneous data values.

There is one additional difference between INPUT and DATALOAD. Values
entered via INPUT are automatically printed or displayed on the currently
selected Console Output device (usually, the CRT) as they are read. This "echo"
does not occur when values are read with DATALOAD; in that case, the value is
printed or displayed only as the result of a PRINT statement in the program.

Note that a program which utilizes INPUT to read data from the card reader
can be readily altered to accept data from the keyboard instead, simply by
omitting the initial SELECT INPUT 62C statement (i.e., by not selecting the card
reader for INPUT operations).

Example 13-1: Reading BASIC Mark Sense Data Values with INPUT (Address 62C)

50 SELECT INPUT 62C
60 INPUT A$
70 IF A$ = "999" THEN 200

(Process data read at line 60)

190 GOTO 60
200 SELECT INPUT 001
210 STOP

In this example, the card reader is first selected for INPUT operations
with the BASIC mark sense data card address for INPUT (62C). A single
value is then read into alpha variable AS$. Immediately following the
read, A$ is checked for the value "999". The dummy value "999" is used in
this case to signal the end-of-file (that is, no more cards in the deck).
A card containing "999" must be included as the last card in the data deck
read by this routine. If a value other than "999" is. read, the program
drops through to process the data, and, at line 190, Toops back to read in
the next value. If "999" is read, the program branches to line 200, where
INPUT is selected back to address 001 (the keyboard), and the program
stops.

104

ﬂﬁ%

2z

R

13.4 SPECIAL TECHNIQUES FOR USING 'INPUT' TO PROCESS NUMERIC DATA

Although the INPUT statement is not recommended for serious data
processing work, it is the only statement available on a System 2200A, and on a
2200S or WCS/10 system which does not have Option-22 or -23. In cases where
INPUT must be used for data processing on a System 2200S or WCS/]O, it is
strongly suggested that alphanumeric variables be utilized to receive bo@h
numeric and alphanumeric values. In the normal case, when a format error 1s
detected in a numeric value read into a numeric variable with INPUT, the system
displays an error message, ignores the erroneous value and all subsequent values
on the same card, and reads in the next card to satisfy the remaining variables
in the INPUT argument list. If the cards contain a mixture of numeric and
alphanumeric data, the values read no longer correspond to the appropriate
receiving variables in the argument list, and the entire data deck may be read
with errors generated for every card. A RESET card at the end of the data deck
will prevent the program from reading into the next deck in the hopper, but the
output of the current program will obviously be affected. If, however, all
values on each card are read into alphanumeric variables, no format errors can
arise. The program itself can be designed to check numeric values for validity
before they are processed. If a format error is uncovered, appropriate action
can be taken under program control. Note that this technique is not practical
on a System 2200A, which does not provide the necessary language features for
testing and converting numeric data.

Once the numeric value has been stored in an alpha variable, it can be
tested for validity under program control using the NUM function. If it is
found to be valid, it may be converted to numeric format with the CONVERT
function, and processed in the usual way. If it is found to be invalid, the
system can be instructed to print out an error message to the operator. In this
way, the operator always knows which value is erroneous, and he is assured that
any remaining data values in the data deck will not be affected by the detection
of an erroneous value.

A numeric value punched or marked in Hollerith code in free-format may
consist of a maximum of 19 characters, arranged in the following order:

Optional sign of number.

Maximum 13 digits in number.

Optional decimal point in number.

Optional 'E' character identifying exponent.
Optional sign of exponent.

Optional two-digit exponent.

For example, the following number consists of the maximum 19 characters:

-123456789.1234E-07

105

When this number is read into a numeric variable, it is automatically converted
to Wang numeric format, and occupies only eight bytes. When it is read into an
alphanumeric variable, however, each character occupies a single byte; a 19-byte
alpha variable is therefore required. Once the numeric value is stored in an
alpha variable, it is verified with a NUM function. NUM determines the number
of legitimate numeric characters in the alpha variable. The plus (+) and minus
(-) signs, decimal point, digits, the 'E' character, and spaces all are
considered legitimate numeric characters, If the numeric value read consists of
fewer than 19 characters (as it would in most cases), INPUT automatically pads
the remaining bytes of the alpha variable with trailing spaces, which are
accepted as numeric characters by NUM. Thus, the number of numeric characters
returned by NUM should be 19 in every case; if fewer than 19 numerics are
detected, at least one character is non-numeric, and the value should be
rejected. Example 13-2 below illustrates a routine to test and convert numeric
data entered with INPUT.

Example 13-2: Testing and Converting Numeric Data Entered Via INPUT
(A11 Systems Except 2200A)

10 DIM A$19, B$24, C$9

20 SELECT INPUT 62C

30 INPUT A$, BS$, C$

40 IF'NUM(A$)<19 THEN 150
50 CONVERT A$ TO N

. (Normal Processing)

140 GOTO 30
150 STOP "ERRONEOUS VALUE"

In this example, three values are read from cards with each INPUT
statement. The first value read is numeric, the second and third are
alphanumeric. A11 three, however, are read into alphanumeric variables.
Alpha variable A$ 1is dimensioned to 19 bytes in length so that it can
contain the maximum possible number of characters 1in a single numeric
value. Following the INPUT request, NUM is used to determine the number
of valid numeric characters in A$. If there are fewer than 19 numeric
characters (leading, trailing and embedded spaces are counted as numeric
characters), the program branches down to line 150 and displays an error
message. If A$ contains 19 valid numeric characters, its value is
converted to numeric format and stored in numeric variable N, and normal
processing continues.

106

™

13.5 CONTINUING DATA VALUES AND TESTING FOR THE END-OF-FILE

Continuation of a Data Value

A single data value may be continued onto one or more cards for reading
with INPUT. In this case, the CONTINUE box is marked in the 37th
column of each intermediate card containing the value (but not on the last card
containing the value). For a more complete discussion of the continuation
feature, refer to Chapter 12, Section 12.4, "Continuation of a Data Value."

Testing for the End-of-File

In cases where a series of data cards are read with an INPUT loop, it is
generally desirable to test for a special end-of-file card indicating that all
data cards in the deck have been read. Such a card is designed by the user to
contain dummy data values in all fields. As each data card is read, the program
checks to see whether one of the dummy data values was received. When the
designated dummy value is read, the system knows that all data cards have been
processed, and terminates the INPUT loop. The logic involved in creating and
testing for an end-of-file card is the same for DATALOAD operations as for INPUT
operations, and is described in detail in Chapter 12, Section 12.5, "Testing for
the End-of-File."

13.6 THE SPECIAL 'RESET' CARD

In programs which utilize an INPUT routine to read data cards, there is
always the possibility that a logical error in the INPUT routine or a miscount
of the number of data cards in the data deck may cause the system to continue
attempting to read data cards after the data deck has been exhausted. This
problem can be avoided by inclusion of a special reset card as the last card in
the data deck.

The special RESET card is created by marking digits 1,2, and 3 in column
#1 of the STATEMENT NUMBER zone (Zone 1). A1l remaining columns on the card are
ignored by the reader. When the RESET card is read, it generates a system RESET
condition (that is, it has the same effect as touching the RESET key on the
keyboard). The RESET condition returns control to the currently selected
Console Input device, thus preventing the system from either hanging up or
reading into a subsequent deck in the event of a card miscount or logical error
in the INPUT routine. Note that if no such error exists, the RESET card does
not interfere with normal processing. '

The RESET card is illustrated at the end of Chapter 12.

107

CHAPTER 14
BATCH PROCESSING BASIC MARK SENSE PROGRAMS

14.1 _INTRODUCTION TO "BATCH PROCESSING" ON THE MODEL 2244A

The . term "batch processing” denotes an operation in which a series of
discrete program decks and associated data decks are automatically loaded and
run in sequence without normal user intervention. A ‘“batch" of individual
program and data decks are loaded into the input hopper, separated by system
command cards such as CLEAR, LOAD, LIST, and RUN. The card reader is then
selected for Console Input operations, and automatically begins loading in the
first program deck. If the Program requires data to be entered from cards, an
accompanying data deck is automatically read. Thus, in effect, the card reader
assumes the role normally taken by the keyboard. At any point where the system
would normally expect a program Tine or system command to be entered from the
keyboard, the card reader is accessed instead to automatically read the next
card. Program lines are therefore loaded from cards just as if they had been
keyed in from the keyboard, and system commands and immediate mode statements
(such as LIST, LOAD, RUN, CLEAR, SELECT, etc.) are executed immediately upon
being read from cards. When the first program has completed execution, the
system command cards are read and executed, and the next sequential program is
automatically loaded and run. Hardcopy output and listings for each program can
be generated on a line printer or output writer by dynamically changing the
LIST, PRINT and CO parameters with immediate mode SELECT cards. The process
continues until all cards have been read and processed, at which point Console
Input operations are reselected to the keyboard.

14.2 LOADING BASIC MARK SENSE PROGRAMS WITH CONSOLE INPUT

The principal value of Console Input mode derives from its usefulness in
batch processing operations. On a System 2200A, however, and on a System 2200S
or WCS/10 without Option-22 or -23, Console Input provides the only method of
loading BASIC programs from cards. BASIC mark sense cards are read under
Console Input control by selecting the card reader for Console Input operations
with a device address of 02C: : :

SELECT CI 02C

Immediately after this statement is keyed in and executed, the card reader
assumes all program entry operations normally associated with the keyboard. The
following sequence of events then takes place:

1. If the card reader is in a ready condition, cards are read and
automatically converted from the special mark sense card code to
ASCII.

2. Numbered program lines are read from cards, displayed on the currently
selected Console Output device (normally, the CRT), and entered into
memory, just as if they had been entered from the keyboard.

108

3. Numbered program lines which contain syntax errors are printed or
displayed with an appropriate error code, and entered in memory.
Erroneous program lines do not terminate the program loading
operation, but the program cannot be run until all errors have been
corrected.

4, System commands (such as CLEAR, LOAD, LIST, RUN, etc.) are read from
cards, printed on the currently selected Console Output device, and
automatically executed, just as if they had been entered from the
keyboard.

5. Immediate mode statements without Tine numbers (such as SELECT, PRINT,
etc.) are read from cards, printed on the currently selected Console
Output device, and automatically executed, just as if they had been
entered from the keyboard.

The SELECT CI 02C statement is, of course, entered from the keyboard.
Once it is executed, the keyboard is locked out, and all subsequent commands and
statements must be entered from cards. Thus each program deck must be preceded
and followed by control cards which perform operations normally initiated
manually from the keyboard. A CLEAR command card and optional immediate mode
SELECT statements generally are placed at the beginning of the program deck to
clear memory, and to select specified output operations (such as PRINT, LIST,
and/or Console Output)to a printer before loading in the program. (Note that if
a CLEAR card follows a SELECT CO card, all PRINT and LIST operations, as well as
Console Output operations, are defaulted to the printer whose address is
specified in the SELECT CO statement. If, however, CLEAR precedes the SELECT CO
card, the PRINT and LIST addresses are not altered.) If Console Output is
selected to a printer, each card is automatically printed out as it is read,
thus providing a hardcopy listing of the entire program deck. Program lines
containing syntax errors are printed along with an identifying error code,
thereby producing a useful "audit trail" for debugging purposes.

A program deck read under Console Input control must be followed by a RUN
command card. After the last program card has been loaded, the RUN card is
read, and automatically initiates program execution. The deck typically is
followed by additional immediate mode SELECT cards which return output
operations to the CRT. Finally, the last card in the Jjob stream must be a
SELECT CI 001 card which returns Console Input operations to the keyboard. Once
this card is read, any remaining cards in the input hopper are ignored.

109

Return Console Input —— . SELECT CI 001
operations to
keyboard.

SELECT CO 005 (64)

SELECT PRINT 005 (64)

Return Console
and PRINT operations
to CRT.

Run program: —n0How—

RUN _ '

100 END

10 DIM AS$ 26, B$ 24 =

Program Deck.

_Option?l cards with , SELECT PRINT 215 (100)
immediate mode
SELECT CO and
SELECT PRINT SELECT CO 215 (80)
statements.
Clear Memory g CLEAR
Figure 14-1,

Typical Card Deck Arrangement for Single Mark
Sense Program Deck Read Via Console Input.

14.3 BASIC MARK SENSE PROGRAM CARD FORMAT FOR CONSOLE INPUT

The format of program 1lines read from cards with Console Input is
identical to that of programs entered from the keyboard, and is also quite
similar to the required format of programs read from cards with LOAD. Chapter
11, Section 11.4 ("BASIC Mark Sense Program Card Format") lists the applicable
format conventions in some detail. In brief, they are:

1. The line number must be marked in Zone 1. Unmarked columns are
ignored.

2. Multiple-statement lines are allowed, provided the statements are
separated by colons. Multiple Tine numbers on the same card are not
allowed, however.

3. A Carriage Return is not required to terminate a 1ine on a card.

4. Codes which do not convert to legal ASCII codes are automatically
converted to ASCII exclamation ('!') characters.

5. The last (37th) card column contains the CONTINUE box, used to
continue a single statement line onto two or more cards.

6. Program lines containing syntax errors are read into memory, and the
erroneous line is printed or displayed with an appropriate error code.
Syntax errors do not terminate the program loading operation, but the
program cannot be run until all errors are corrected.

7. Blank cards are ignored by the card reader.

14.4 DIFFERENCES BETWEEN 'CONSOLE INPUT' AND 'LOAD'

Although program cards read with both LOAD and Console Input must conform
to the same format conventions (and therefore programs read with LOAD can in
general be read with Console Input, and vice-versa), there are certain important
differences between the two modes:

1. Each card read via Console Input is automatically "echoed" onto the
currently selected Console Output device (typically the CRT display)
as it is entered. This does not occur with cards read by LOAD. Thus
the process of program loading is somewhat faster with LOAD than with
Console Input.

2. Console Input will read and execute system command cards and immediate
mode statement cards (i.e., cards which do not contain 1line numbers)
such as CLEAR, RUN, LIST, SELECT, etc. In program decks read with
LOAD, only the END card and immediate mode SELECT statements can be
read and executed in immediate mode. Any other card which lacks a
pgogram line number may produce unpredictable results when read with
LOAD.

3. Programs read with LOAD must be ended with an END card. Programs

loaded via Console Input do not require an END card (although an END
card is recommended as a general rule).

14.5 BATCH PROCESSING WITH CONSOLE INPUT

Because of its ability to read and execute system commands and immediate
mode statements, Console Input is an extremely valuable reading mode for batch
processing operations. A batched job stream consisting of several programs and
associated data decks separated by appropriate system command cards can be
loaded and run under Console Input control. Because commands such as CLEAR,
LOAD, and RUN for each program are read from cards rather than entered from the
keyboard, the entire job stream can be processed without user intervention
(provided the programs are free of syntax errors). Each program is
automatically loaded and run; when it has completed execution, it is cleared
from memory, and the next program is loaded. This process continues until a
card is read which reselects Console Input back to the keyboard. Figure 14-2
below illustrates a typical batched job stream with control cards.

111

Clear memory. (PRINT ————»
and LIST default back

Return Console Input
to Keyboard, ————p=

SELECT Cl 001

CLEAR

to CRT.)
SELECT CO 005 (64)]
Return Console Output ————m
to CRT. _J
8
Run program.——a= RUN

2nd Program
Deck.

150 END

10FORI=1TO20

Optional page eject. —=

PRINT HEX(0C)

Clear memory. ——

CLEAR

Run program. ——gm RUN

100 END

10 DIM A$ 26, B$ 24

1st Program
Deck.

Clear memory (LIST and
PRINT operations auto-
matically default to

Line Printer.) ———— 3|

_CLEAR

SELECT CO 215 (80)
Select Console —»=

Output to Line
Printer (optional).

112

Figure 14-2,
Typical Batch Job Stream With Two Program Decks

and Appropriate Control Cards for Entry Via Con-
sole Input.

14.6 THE USE OF 'LOAD' IN CONJUNCTION WITH 'CONSOLE INPUT' FOR MORE EFFICIENT
BATCH PROCESSING

Although overall control of a batched job stream must Tlie with Console
Input, it is possible to speed up batch processing time by loading individual
programs with the LOAD command. This can be done by adding a LOAD command card
at' the beginning of each program deck (the LOAD card must not have a line
number). - When the LOAD card is read and executed, it causes the succeeding
program to be loaded in under LOAD control. In this case, program lines are not
automatically echoed to the Console Output device as the cards are read; the
program therefore loads in more rapidly than would be the case under direct
Console Input control. Program loading continues until an END card is read, at
which point control reverts to Console Input. If a listing is desired, an
jmmediate mode LIST card must be inserted immediately after the END card at the
end of the program deck (but before the RUN card).

The appropriate BASIC Mark Sense program address, 62C, must be specified
for the LOAD operation. The address may be included directly in the LOAD
command (e.g., LOAD/62C); alternatively, all tape-class operations (of which
card reading is one) can be selected to the card reader with a SELECT TAPE 62C
command. If this statement is executed prior to the LOAD command card, no
address is needed in the LOAD command, since all tape-class operations.
automatically default to address 62C. The normal default address for tape-class
operations is the console tape cassette drive in the CRT unit (address 10A). It
is generally good practice to reselect Console Tape operations to the tape
cassette drive upon completion of the batch processing operation. A typical
batch job stream illustrating the use of LOAD command cards for batch processing
is shown in Figures 14-4 and 14-5.

14.7 PRINTING BATCHED PROGRAM OUTPUT

In batch mode operation, it is generally good policy to maintain hardcopy
listings of the programs loaded from cards, along with the printed output of
each program. This is most conveniently done by selecting Console Output
operations to a line printer or output writer. With Console Output continuously
selected to a printer-type device, each card is automatically printed as it is
read and processed, along with all other types of Console Output (including
error codes). The hardcopy record thereby produced can be a useful debugging
tool, since the type and location of all syntax errors are clearly shown.
Console Output 1is selected to the line printer by including a card containing
one of the following immediate mode statements at the beginning of the first
program deck:

SELECT €0 215 (131) - 2221
SELECT CO 215 (80) - 2231
SELECT CO 211 - 2201

Note that the SELECT CO card should not have a program line number.

Console Output does not include the printed output of the PRINT and
PRINTUSING statements. In order to produce hardcopy output from these
statements, a SELECT PRINT 215 or 211 card should follow the SELECT CO card.
Alternatively, a CLEAR card may be used following the SELECT CO card. CLEAR
automatically resets the PRINT and LIST default addresses to the address
currently selected for Console Output.

113

In order to cleanly separate individual program listings from one another,
a PRINT HEX (0C) card should be used to eject the printer to the top of the next
page for each new job if a line printer is used for output. If an output writer
is used, a PRINT HEX (0AOAOA) card should be substituted. In this case, each
'OA' causes the typewriter to skip one line. An immediate mode PRINT HEX (0OC)
or PRINT HEX (OAOAOA...) card should be inserted at the beginning of each
program deck to ensure that the program 1listing begins on a new page.
Similarly, a programmed PRINT HEX (0C) or PRINT HEX (OAOAOA...) may be included
in the program prior to each PRINT or PRINTUSING statement, to ensure that all
printed program output begins on a new page.

14.8 READING DATA CARDS IN BATCH PROCESSING MODE

A program processed in batch mode may contain one or more INPUT, DATALOAD,
or DATALOAD BT statements used to read in and process data cards from a
subsequent data deck. The data deck accompanying each program should
immediately follow the program (and the RUN command) in the input hopper (see
Figure 14-4). When the program deck has been loaded into memory and the RUN
card is read, control reverts from the card reader to the CPU, where program
execution begins. If an INPUT, DATALOAD, or DATALOAD BT statement referencing
an appropriate card reader device address 1is encountered in the course of
program execution, the card reader is accessed and the data deck is read. When
the specified number of data cards or an end-of-file card have been read, the
data entry operation is terminated. Upon completion of program execution,
control reverts once again to the currently selected Console Input device (the
card reader), which proceeds to read the next card in the input hopper.

Batch Deck Protection

In programs which read data cards within a batched job stream, there is
always the possibility that a Togical error in the program, a miscount of the
number of data cards in the deck, or a missing EOF card will cause the program
to read beyond the data cards and into the control cards which follow. Such an
oversight would destroy the first program (which bombs out with invalid data
values) and the second program (which loses its initial control cards). To
protect against such an error, a special RESET control card should be inserted
as the last card in each data deck. The special RESET card is produced by
marking the digits 1,2, and 3 in the first column of the STATEMENT NUMBER Zone
(Zone 1). A11 other columns on the card are ignored by the reader.

When a special RESET card is read with INPUT or DATALOAD, it generates a
System RESET condition (that is, it has the same effect as touching the RESET
button on the keyboard). Thus a program which has erroneously attempted to read
data beyond the last valid data card is automatically terminated when the
special RESET card is read, and control reverts to Console Input, which proceeds
to read in the next card. If the RESET control card is read following normal
processing of the data deck, the RESET operation does not affect the batch
processing operation. It is recommended that a RESET control card be inserted
at the end of all data decks read with INPUT or DATALOAD in batch processing
mode. (Note that the RESET card has no special meaning when read with DATALOAD
BT, and should not be included in data decks read with that statement.)

114

Return Console Input

to Keyboard.

Return Console Out,

and PRINT operations

to Line Printer.

Run program.

SELECT CI 001

SELECT CO 005 (64)

SELECT PRINT 005 (64)

2nd program deck

Optional Line Printer
page eject.

Clear . CLEAR

Special RESET card (used for

data read with DATALOAD orT"Ev

INPUT). s
E
T

Optional data deck
for 1st program.

JOHN JONES, 8 OAK DRIVE

Run program. ZRUN

1st program deck.

Select PRINT operations to

100 END

10 DIM AS 26, BS 24

AL SELECT PRINT 215 (80)

Line Printer (optional)

Select Console Output operations

to Line Printer (optional)

Clear ry.

SELECT CO 215 (80)

2 CLEAR

115

Figure 14-3.

Typical Batch Job Stream With Two Program Decks,
Data Deck, and System Control Cards for Entry Via

Console Input.

Load ——
program.

Clear memory. (PRINT
and LIST automat- =

ically default to
Line Printer.)

Select Console —=
Output to Line
Printer.

Return Console Input

to keyboard, ——nw—

SELECT CI 001

Clear memory. (PRINT
and LIST automatically —s= CLEAR
default back to CRT.)
Return Console
Output operations —p SELECT CO 005 (64)
to CRT.
*
.0
'0
*
'0
*
Clear memory, ——— CLEAR
Run program———= RUN
Optional Line Printer ——zm
page ejact. PRINT HEX (0OC) J
Optional List program —— LIST
card.
-
END card. ————— 120 END

10 DIM A$ 10, B$ 20

1st Program Deck.

LOAD /62C

CLEAR

SELECT CO 215 (132)

116

Figure 14-4.
Typical Batch Job Stream with Program
Deck Read in Under LOAD Control.

Optional Line Printer »
page eject.

Optional LIST card, ——————p=

END card ———————

1st Program deck.

Load program. ——————

Optional SELECT cards
for Console Output, LIST,
PRINT.

Clear memory. ————pu-

Returq Console Input
operations to keyboard.

SELECT CI 001

ELECT LIST 005 (64)

ELECT PRINT 005 (64)

SELECT CO 005 (64)

Return Console Output,
PRINT, and LIST
operations to CRT
following last program
in batch.

Run program, ———— ~—an RUN
List. —_—_————

END card - 160 END

2nd program deck.
10 FORI1=1T0 20

Load ——
0ad program LOAD/62C

Optional line printer ——————m
page eject.

PRINT HEX(OC)

Clear memory., —— g CLEAR

Special RESET card (used if
data is read with DATALOAD or INPUT).

-“mymxn

Optional data deck

for 1st program. JOHN JONES, 8 OAK DRIVE

Run program. —— g RUN

PRINT HEX (OC)

LIST

END

10 DIM AS 26, BS 24

LOAD/62C

SELECT LIST 215 (80)
SELECT PRINT 215 (80)
SELECT CO 215 (80)

Figure 14-5,
Typical Batch Job Stream With Program and Data
Decks, and System Control Cards. Programs Are
Read Under LOAD Control.

CLEAR

117

PART IV
NON-STANDARD PUNCH AND MARK SENSE CARDS
CHAPTER 15
READING.BINARY CARD IMAGES (DATALOAD BT, ADDRESS 62A)

15.1 INTRODUCTION

Data which is punched (or marked) in a code other than Hollerith can be
read as straight binary data in Mode #4, and subsequently converted to a
meaningful form in the system under Program control. Binary data is read with a
DATALOAD BT statement, and a specified or selected device address of 62A. With
the Model 2234A, binary data can be read only from standard 80-column punched
cards. With the Model 2244A, binary data can be read from punched or mark sense
cards of 80 columns without timing marks, or of fewer than 80 columns with
timing marks. Mode #4 reading operations are particularly valuable for reading
custom-designed mark sense cards via the Model 2244A, since the special codes
used on custom cards can be read as binary information, and converted to
meaningful form with the system data manipulation features.

15.2 BINARY DATA FORMAT

In order to understand the format in which binary data is received from a
card in Mode #4, it is helpful to consider the manner in which data is stored in
memory. The smallest meaningful unit of storage in memory is a byte, which
always consists of eight bits. The relative position of each bit is identified
by the Hexadecimal value which the byte would have if only that bit were turned
on (i.e., if only that bit equals "1", and all other bits equal "0"):

Bit Position |8 7 6 5 4 3 2 1

Hex Value 80 40 20 10 08 04 02 01

Binary Value |1 1 1 1 1 1 1 1

Figure 15-1.

Bit Positions and Hexadecimal Values

For example, if only the first (rightmost) bit is equal to "1", and the
remaining seven bits equal "0" (00000001) the Hexadecimal value of the byte is
HEX(01). If, on the other hand, only the fifth bit is turned on, and all others
equal "0" (00010000), the byte's value is HEX(10), etc.

Because each card column consists of twelve rows, the card reader always
reads twelve bits for each column. When the twelve bits are stored directly
(without attempting to convert them into an equivalent 8-bit ASCII code), they
must be divided up and stored in two separate bytes. The system therefore
automatically divides the 12 bits received for each column into two groups of
six bits, and stores each group of six bits into a separate byte. The two
high-order bits of each byte (40 and 80) are set to zero. The format is
illustrated in Figure 15-2:

118

BYTE 1 . BYTE 2
80 40 20 10

08 04 02 01 80 40 20 10 08 04 02 01
N, —r N " \
ROWS always 0 1 A {‘ always 0 f T 4 T ? {‘
(12
1 s
0
into
Byte 1 j 1
2
3
4
5
into 6
Byte 2 ﬁ 7
L 8
9
Figure 15-2.

Format of 12-Bit Binary Data Read from Cards in Mode No. 4. Bits from
Row 12 Through Row 3 Are Read into Byte No. 1, Bits from Row 4
Through Row 9 Are Read into Byte No. 2.

Note that the two high-order bits (80 and 40) of Bytes #1 and #2 are set
to zero. These bits function merely as "padding", to make up the needed eight
bits for each byte. Consider, for example, the way in which the following card
column is received in binary format:

BYTE 1 BYTE 2

o0 1 011 0 O 00 0 10 O 10

COLUMN No. 1 1 A {‘ AAAL A ﬂt ﬂk
1
|
|
2
Punches in Rows 3

12,0,1,5,8
4
| |
6
7
9
Figure 15-3.

Twelve Bits of Binary Data Read from a Single Card Column in Mode
No. 4. The Top Six Rows Are Read into Byte No. 1, the Bottom Six
Rows into Byte No. 2.

119

Since each column is converted into two binary bytes when a card is read
in Mode #4, a total of 160 data characters are read for each card. In addition
to the 160 data characters, the card reader itself automatically generates two
special control characters, a LENGTH code character and an ERROR code character.
The 161st character transmitted is the LENGTH code, which contains a binary
count of the number of data characters read from the card. The 162nd character
transmitted 1is the ERROR code, each bit of which signifies a unique card reader
error condition. The LENGTH and ERROR codes should be checked following each
read in Mode #4. If unexpected results are obtained, the program should alert
the operator before reading another card.

15.3 READING BINARY CARD IMAGES

General Form: DATALOAD BT (N=]62)[?62A{] alpha array designator
#n,

Where:

(N=162) = The number of characters to be received for
- each card read. For binary card images, a
total of 162 characters are received for each
card (160 data characters for the card image
(two per column) and two control characters).
The number of characters to be read is always
162, irrespective of the number of actual data
columns on the card (cards which contain index
marks may have fewer than 80 columns). If
fewer than 80 columns (i.e., fewer than 160
data characters) are read, the card reader
automatically pads the remaining unread
characters up to 160 with HEX(FF) characters.

/62A

The device address which designates the card
reader as the device from which data is to be
read, and also indicates the type of code
conversion to be performed. Address 62A causes
data to be read in binary format.

#n A file number to which the device address 62A
has been assigned in a SELECT statement ('n' is

an integer from 1 to 6).

If neither a device address nor a file number
is specified, the address of the Console Tape
device 1is used. Ordinarily, this is the
console tape cassette drive, address 10A.
However, address 62A can be designated as the
Console Tape device with a SELECT TAPE 62A
statement. Following execution of this
statement, a DATALOAD BT statement which
specifies neither a device address nor a file
number automatically uses address 62A.

alpha array designator = An alphanumeric array name followed by closed
parentheses (e.g., A$(), F$()).

120

Purpose:

The DATALOAD BT statement with address 62A initiates the reading of an
80-column binary card image, and stores the data sequentially into the receiving
alphanumeric array (the array is filled row by row). Each column is stored as a
pair of binary bytes. A total of 162 bytes are received for each card. The
first 160 bytes constitute the binary card image (two bytes per column); the
161st byte 1is the LENGTH code (a binary count of the number of data characters
read), and the 162nd byte is the ERROR code. The receiving alphanumeric array
must, therefore be dimensioned to hold at least 162 bytes. If a card contains
fewer than 80 columns (i.e., if fewer than 160 data characters are read from the
card), the card reader automatically pads the remaining unread characters with
HEX(FF) characters, and the LENGTH code indicates the number of data characters
actually read from the card. In cases where a card reader error condition
prevents a card from being read, 160 HEX(FF) characters are transmitted, and the
LENGTH code is binary zero (indicating no data characters read). An appropriate
ERROR code is also indicated.

Example 15-1: Reading a Binary Card Image (DATALOAD BT, Address 62A)
50 DIM A$(5)40

500 DATALOAD BT (N=162)/62A, A$()

In this example, the receiving array A$() is dimensioned to consist of
five elements, each 40 bytes in length. This arrangement is convenient
because it effectively segregates the two control characters in the 1last
element, A$(5), while the 160 characters of data are stored in the first
four elements, A$(1) through A$(4). The first two characters of A$(5)
are, therefore, the 161st and 162nd characters received; the remaining 38
bytes of A$(5) are unaffected by the DATALOAD BT operation. Note that
DATALOAD BT continues reading only until the specified number of
characters to be received (N=]62g are read, regardless of whether the
receiving array has been completely filled.

15.4 BINARY IMAGE CONVENTIONS

In summary, the following conventions apply to Mode #4 reading operations:

1. The '62A' address specifies that 80 columns be read for each card, and
that each column be converted into two binary bytes.

2. For each card read with a '62A' address (Mode #4), 162 characters are
transmitted to the system. Of these, 160 are data characters (two
characters per column for each of the 80 columns), and the last two
are control characters (the LENGTH and ERROR codes).

121

10.

The receiving alphanumeric array in the DATALOAD BT statement should
be dimensioned to contain at least 162 bytes.

The 161st byte received for each card is the LENGTH code, a binary
count of the number of characters read (always twice the number of
columns read).

~ With the Model 2234A, only standard 80-column punched cards are legal.

A successful read, therefore, always results in 160 data characters
being received (LENGTH code = HEX(AO); decimal equivalent, 160).

With the Model 2244A, cards having fewer than 80 columns may be read
if the cards contain index marks. A valid read in this case may
result in fewer than 160 data characters being read. The remaining
unread characters up to 160 are received as HEX(FF) characters, and
the LENGTH code indicates the number of characters (i.e., twice the
number of columns) actually read. In addition, the ERROR code
indicates that fewer than the expected number of columns were read.

The 162nd character received for each card is the ERROR code. Each
bit of the error code represents a unique card reader error condition.
(The ERROR code is discussed in Section 15.6, "Card Image ERROR
Codes"). '

If, because of a reader error condition, the next card cannot be read,
160 HEX(FF) data characters are returned, along with a LENGTH code of
HEX{00) and an appropriate ERROR code. For this reason, it is
important that the card reader be in a RESET condition when the
DATALOAD BT statement is executed. It is, however, possible to set up
a read Toop which regularly attempts to read a card, and checks for a
"Machine Not Ready" error code following each attempt. If the error
code 1is detected (indicating that the card was not read, and 160
HEX(FF) characters were received in lieu of valid data), the program
can take appropriate action (such as alerting the operator). This is
a typical example of the manner in which error conditions can be
handled under program control in binary image reading mode. For a
more extensive discussion of programming techniques associated with
checking error codes under program control, refer to Chapter 17.

Blank (unpunched, unmarked) cards read in Mode #4 are not ignored, but
are read in as 160 HEX(00) characters.

Unlike Modes #1 (loading Hollerith programs) and #2 (reading Hollerith
data values), Mode #4 attaches no special significance to the 80th
card column. Data may, therefore, be vrecorded in the entire 80
columns of cards read in Mode #4.

122

15.5 THE LENGTH CODE

The 161st character transmitted for each card is the LENGTH code, a binary
count of the number of data characters read from the card. In Mode #4, the
LENGTH code always equals twice the number of card columns read. Typically,
80-column cards are read; the LENGTH code in this case is HEX(AQ), whose decimal
equivalent is 160. In special cases, fewer than 80 columns may be read. The
special cases include:

1. Fewer than 80 columns on the card. This situation cannot occur in
normal reading on cards read by the Model 2234A, since only standard
80-column cards can be read by the 2234A. Cards read by the Model
2244A, may, however, have fewer than 80 columns if the cards also
contain index marks. In such cases, the LENGTH code indicates the
number of characters (twice the number of columns) actually read from
the card.

2. Short card. The data card may be physically shorter than a standard
80-column card. The deck should be examined for mutilated or
non-standard cards. Non-standard cards cannot be processed through
the card reader.

3. Reader Failure. ‘In rare cases, the reading sensors may experience a
failure while reading a card, or a card may become jammed in the
reading station as it is being read. Check the card track and reading
station for jammed cards. If the problem appears to be a sensor
failure, contact your Wang Service Representative.

NOTE:

In all cases, the number of characters to be received
(specified by the 'N' parameter) must be 162 (N=162).

When cards are read in Mode #4, the LENGTH code should be checked after
each card is read to ensure that all expected data was received. In all cases,
if fewer than 160 data characters are read in Mode #4, the remaining unread
characters are padded with HEX(FF) characters, and a bit in the ERROR code is
set ind;cating that fewer than the expected number of data characters were
received.

15.6 THE ERROR CODE

The 162nd character received for each card is the ERROR code. The ERROR
code is an 8-bit code, each individual bit of which represents a unique card
reader error condition. The table below lists the eight bit-positions and the
error condition associated with each:

123

Table 15-1. Card Image Error Codes

BIT VALUE MEANING

80 1 Machine Not Ready

40 1 Hopper Empty

20 | 1 Stacker Full

10 1 Pick Check (A motion check: the picker failed to engage

the card after six consecutive attempts.)

08 1 Read Alert (Generally, a card has a tear or marking on
the leading edge, a photoelectric sensor has failed, or
the read head is dirty.)

04 1 Less than expected data received (Short card, jam, read
alert, or special card with fewer than 80 columns.)

02 1 Invalid ASCII conversion converted to ASCII exclamation
('!') character.

01 1 Invalid Look-Ahead operation (Attempted to perform
Hollerith card read following Binary Look-Ahead, or
Binary card read following Hollerith Look-Ahead.)

Note that the presence of a particular error bit may be anticipated under
certain conditions. Custom-designed mark sense cards having fewer than 80
columns can be read in Mode #4 (Binary Card image), for example; in such cases,
the 04-bit ('Less than Expected Data') is set in the ERROR code for each card.
Because the card is known to contain fewer than 80 columns in this case,
however, no corrective action is required. The LENGTH code should be checked to
ensure that the expected number of columns actually were read.

In general, both the LENGTH and ERROR codes should be checked following
every card read operation in Mode #4. To perform such checks most efficiently,
and to ensure that the two control characters are never mistakenly interpreted

as data, it is good practice to isolate the LENGTH and ERROR codes in the last -

element of the receiving array.

124

g@“

Example 15-2: Checking the LENGTH and ERROR Codes (Binary Card Image)

60 DIM A$(5)40, N$1

100 DATALOAD BT (N=162)/62A, A$()
110 IF STR(A$(5),1,2) <> HEX (AO0O) THEN 350

: (Normal processing)

340 GOTO 100

350 N$ = STR(A$(5),2,1)

360 AND (N$,80):REM CHECK FOR 'MACHINE NOT READY'
370 IF N$ <> HEX(00) THEN 500

. (Test for other error conditions)
500 STOP "MACHINE NOT READY"

This example illustrates a typical processing routine which consists of
two sections, a normal processing routine (1ines 100-340) and an error
processing routine (lines 350-500). At line 100, the 162-character image
is read into array A$(). The 160 data characters are stored in the first
four array elements, A$(1) - A$(4), while the two control characters are
stored in the 1last element, A$(5). Line 110 checks both the LENGTH and
ERROR codes, which are the first and second characters in A$(5). If the
LENGTH code is A0(160) and the ERROR code is 00, all characters were read
and no errors were detected, and the program proceeds to normal
processing. If, however, the code is other than HEX(A000), then at least
one error bit must be on, and the program branches down to the error
routine beginning at line 350. At line 350, the ERROR code is stored into
N$, a one-byte working variable. In this example, only one possible error
condition, the 'Machine Not Ready' condition, is checked. The AND
function is used to check for the presence of an 80 bit (indicating
'Machine Not Ready'). If the 80 bit 1is on (line 370), the program
branches to line 400, stops, and prints the appropriate error message. If
the 80 bit is off, the routine drops through to line 380, where it may
test for other possible error conditions.

NOTE:

For a more extensive discussion of typical programming
techniques utilized in testing the LENGTH and ERROR codes,
see Chapter 17.

125

CHAPTER 16
BINARY LOOK-AHEAD MODE (DATASAVE BT, ADDRESS 42F)

16.1 INTRODUCTION

Binary Look-Ahead mode enables the card reader to feed a card through the
reading station, convert the data to binary format, and store it in the card
reader output buffer. During this entire procedure, the system's Central
Processing Unit (CPU) may be occupied with other processing (perhaps operating
on data read in from the previous card). By thus overlapping the card
reading/code conversion operations with internal CPU processing operations, the
total throughput time for processing binary data decks can be significantly
reduced in many data processing applications.

16.2 OPERATION OF THE LOOK-AHEAD MODE

Mode #6, the Binary Look-Ahead mode, utilizes the BASIC statement DATASAVE
BT with the special address '42F'. In Mode #6, the card reader reads a
160-character binary card image (two binary bytes for each card column) into the
card reader output buffer, where the data is held awaiting transfer into memory.
If fewer than 160 characters are read from a card, the output buffer is padded
with HEX(FF) characters up to 160. Following the read, two special characters,
a LENGTH code and an ERROR code, are generated by the card reader and stored as
the 161st and 162nd characters in the buffer.

Note that the Look-Ahead mode is used only to read a card and temporarily
hold the data in the card reader buffer. Look-Ahead mode cannot be used to
transmit the data into memory for processing. Data is transmitted from the card
-reader output buffer into memory only in the legitimate binary card image
reading mode, Mode #4 (DATALOAD BT with address 62A). Thus in every case the
binary Look-Ahead operation must be followed by a binary read operation
(DATALOAD BT, address 62A) which carries out the actual transfer of data from
the card reader into the receiving array in memory.

126

-

16.3 CARD READING WITH LOOK-AHEAD

GENERAL FORM: DATASAVE BT [?42F{l alpha variable
#n,

Where:

/42F

The special card reader device address which specifies
Binary Look-Ahead operations. Address '42F' causes the
card reader to feed in the next card from the input
hopper, convert the data into the 6/6 binary format, and
hold the converted data in the card reader output buffer
awaiting transmission to the system.

#n

A file number to which address 42F has been assigned in
a SELECT statement ('n' must be an integer from 1 to 6).

If neither a device address nor a file number is
specified, the address of the device currently
designated as Console Tape device 1is used. Normally,
the Console Tape device 1is the console tape cassette
drive in the CRT (address 10A).

alpha variable A “dummy" alphanumeric variable included to satisfy
general format requirements for the DATASAVE BT
statement, but not used in the Look-Ahead operation.
For optimum efficiency, this variable should be

dimensioned to the minimum length, one byte.

Purpose:

The DATASAVE BT statement with a device address of 42F initiates the
reading and conversion of an 80-column binary card image. Each column is
converted into a pair of binary bytes, and the 160-character card 1image 1is
stored in the card reader buffer, along with LENGTH and ERROR code characters.
Subsequently, the binary card image can be read from the card reader buffer into
a receiving alphnaumeric array in memory with a DATALOAD BT staement and a
device address of 62A (mode #&, binary image reading). The dummy alphanumeric
variable has no functional purpose, serving only to satisfy the format
requirements of the DATASAVE BT statement. For maximum efficiency of the
Look-Ahead operation, this variable should be dimensioned to the minimum
possible length of one byte.

127

Example 16-1: Processing Binary Card Images With Look-Ahead
(DATASAVE BT, Address 42F)

70 DIM B$(5)40, D1$1 (Dimension receiving array
. for DATALOAD BT and dumm
variable for DATASAVE BT

iQO'SELECT #2 62A, #3 42F (Assign read address, 62A, to
#2, and binary Look-Ahead
address, 42F, to #3)

200 DATALOAD BT (N=162) #2, B$() (Read a card)
210 IF STR(B$(1), 1, 4) = "ZZZZ" THEN 710 (Check for last card)
220 DATASAVE BT #3, D1$. (Feed in the next card)

(Process data read at line 200; at the same time, the next card is
being read and converted to binary format by the card reader.)

700 GOTO 200
710 STOP

In this example, the Binary Look-Ahead mode (address ‘'42F') 1is used to
speed up the processing of binary card images. At line 190, the binary
card reading address, 62A, is assigned to file number #2, and binary
Look-Ahead address 42F is assigned to #3. A binary card image (160 data
characters plus two control characters) is read at line 200. At line 210,
the card just read is tested for End-of-File. If the dummy value "ZZZZ"
is found in the first field, the end-of-file card has been read, and the
program halts. Otherwise, the program drops through to 1line 220, where
the card reader is instructed to feed in the next card, convert each
column to binary format (two binary bytes), and hold the data in the card
reader buffer. While this procedure takes place, the system continues
normal processing of the data read at 1ine 200. The card reading and
conversion is thus carried out simultaneously with CPU internal
processing. When processing is complete, the program loops back to 1line
200 to read in the next 162 characters, which are awaiting transmission in
the card reader output buffer. Note that D1$ in line 210 is a dummy
variable which has no functional use in the Look-Ahead operation.

128

CHAPTER 17
SUPPLEMENTAL PROGRAMMING TECHNIQUES FOR
PROCESSING DATA CARD IMAGES

17.1 INTRODUCTION

Most Wang systems provide the programmer with a high degree of control
over the validation of data read from cards, and the response to error
conditions which arise in the course of reading data cards. Many types of
errors which may arise in the reading process are detected by the card readers
themselves, and signalled to the controlling program in the ERROR code (if the
cards are read in one of the two image modes). Such situations as Jjammed or
damaged cards, illegal ASCII conversions, or an empty input hopper generate
unique ERROR codes which can be examined and acted upon under program control.
Additionally, it is possible in most systems to check the validity of data
values read from each card, and to take appropriate action in the event one or
more invalid values are detected. For this purpose, the General I/0 statements
(especially $UNPACK) provide an added degree of efficiency.

Given the format restrictions discussed in previous chapters, it is
possible to read data from cards with any one of the statements INPUT, DATALOAD,
or DATALOAD BT. The first two statements require that data cards adhere to
predetermined format conditions. Further, these statements provide minimal
control over error conditions. Indeed, they provide no control over card
reader-generated error conditions such as card jams, bad reads, etc. If a card
jam occurs during a DATALOAD loop, for example, the card reader stops and the
program simply hangs up. In image mode (DATALOAD BT), on the other hand, the
programmer obtains complete program control over card reader error conditions
and data validity. The DATALOAD BT statement provides a built-in means of
storing the error indicators sent by the card reader with a special ERROR code
character. And, because DATALOAD BT does not demand a predefined card format,
the programmer is able to design his own format and verify each value read under
program control. Its capability to provide extensive control over data
validation and error detection makes DATALOAD BT the statement of choice for
serious data processing applications.

This chapter discusses a number of program techniques for the validation
and conversion of numeric data from Hollerith card images, and for the analysis
and response to error conditions signalled by the card reader in image mode.

Section 17.2 deals with the detection of card reader errors, and presents
several techniques for responding to error conditions; Section 17.3 contains a
brief discussion of the effectiveness of Look-Ahead in speeding up card reader
throughput; and Sections 17.4 through 17.8 cover a variety of methods of
validating and converting numeric data values from Hollerith card images.

17.2 DETECTION OF CARD READER ERRORS

Each time a card is read in image mode with DATALOAD BT, two special
control characters are transmitted to the CPU following the data. The first
character is the LENGTH code, and the second is the ERROR code.

129

The LENGTH code is a byte of control information generated by the card
reader itself following each card read in image mode. The LENGTH code is a
binary count of the number of bytes of data actually read from a card. In the
event of a reading error, the LENGTH code can be helpful in determining the
source of the error by indicating the number of columns read before the error
occurred. In a Hollerith card image, the LENGTH code always is the 81st byte

transmitted by the reader; in a binary card image, the LENGTH code is the 161st
byte transmitted.

In addition to a LENGTH code, the card reader automatically generates an
ERROR code for each card image. The ERROR code is a byte of control information
in which each of the eight bits represents a unique card reader error condition.
In a Hollerith card image, the ERROR code is always the 82nd byte transmitted;
in a binary card image, it is always the 162nd byte. The error conditions
designated by each of the eight bits in the ERROR code are listed below:

TABLE 17-1
Card Reader ERROR Conditions

BIT VALUE ‘ MEANING

80 1 Machine Not Ready.

40 1 Hopper Empty.

20 1 Stacker Full.

10 1 Pick Check. (The picker has failed to
engage the card after six consecutive
tries.)

05 1 Read Alert. (Generally, a card has a

tear or mark on the leading edge, a
photoelectric sensor has failed, or
the read head is dirty.)

04 1 Less Than Expected Data Received.
(Short card, jam, read alert, or
special card with fewer than 80
columns.)

02 1 Invalid ASCII Conversion (I1legal
Hollerith code converted to ASCII
exclamation ('!') character.)

_01 1 Invalid Look-Ahead Operation.
(Attempted to perform Hollerith card
read following binary Look-Ahead, or
binary card read following Hollerith
Look-Ahead.)

130

NOTE:

On the Model 2244A, a LENGTH code of HEX(00) and an ERROR
gode of 04 may indicate that the card has been read upside
own.

Three of the ERROR codes do not in themselves shut down the card reader.
They are:

01 Invalid Look-Ahead Operation
02 Invalid ASCII Conversion
04 Less Than Expected Data

The remaining five codes always are accompanied by automatic shutdown of
the card reader:

08 Read Alert

10 Pick Check

20 Stacker Full

40 Hopper Empty

80 Machine Not Ready

Following the occurrence of any one of these codes, the card reader must
be manually restarted. It is not uncommon for more than one error condition to
occur at the same time. For example, each of the error conditions "Read Alert",
"Pick Check", "Stacker Full", and "Hopper Empty" is always accompanied by a
"Machine Not Ready" code. A "Hopper Empty" condition is thus indicated by the
presence of both an 80-bit and a 40-bit:

80 40 20 10 08 04 02 01
1 0 0 0 0 0 0

P]‘)\ ~ /

HEX C HEX 0

Figure 17-1.
ERROR Code for "Hopper Empty", showing Both 80 and 40 Bits On.

As Figure 17-1 illustrates, the expected ERROR code for "HOPPER EMPTY" is
HEX (CO) rather than HEX (40).

It is generally good practice to examine both the LENGTH code and the
ERROR code after each card image is read. The LENGTH code always indicates the
number of data characters read from a card. For an 80-column Hollerith card
image, a normal LENGTH code is HEX(50). For an 80-column binary image, a normal
LENGTH code 1is twice this value, or HEX (AO). Under certain conditions, the
card reader will read fewer than 80 columns on a card. These conditions include
a short card (physically shorter than a normal 80-column card), a card jam, or a
special card containing index marks with fewer than 80 columns.

131

Even in cases where specially designed cards having fewer than 80 columns
are to be read, the DATALOAD BT statement should always specify N=82 for
Hollerith card images, and N=162 for binary card images. If a card contains
fewer than 80 or 160 data characters, the reader automatically pads the
remaining unread characters up to 80 or 160 with HEX(FF) characters. The LENGTH
code then indicates the actual number of data characters read; the "dummy" HEX
(FF) characters are not included in the character count. For a 40-column card,
e.g., the LENGTH code equals HEX (28). Thus, the programmer can check the
LENGTH code following each read to ensure that the expected number of characters
have been read.

A normal ERROR code is HEX (00). In general, both the LENGTH and ERROR
codes should be checked following each card image read. If either code has an
unexpected value, the program can be directed to take appropriate action. There
are several options open to the programmer following discovery of an error. The
program can be directed to examine the LENGTH and ERROR Codes, print out a
description of the error conditions that have been set, and halt program
execution. Alternatively, it may be desirable to print a description of the
error conditions and continue reading cards (if the reader has not already been
halted). If an examination of the error conditions reveals that the card reader
is not ready, an appropriate message to the operator can be displayed, and the
audio signal on the printer or CRT can be sounded to indicate a condition that
requires operator intervention. The program can then enter a loop in which it
continually attempts to read a card, checking for a ready condition each time.
When the operator has corrected the situation and reset the card reader, program
execution continues as usual.

The examples below illustrate some techniques for reading data card images
and analyzing the LENGTH and ERROR Codes. Several possible responses to the
detection of error conditions under program control also are presented.

For Hollerith card images, the specified device address in a DATALOAD BT
statement is 629. For binary card images, the device address is 62A.

Example 17-1: Checking the LENGTH and ERROR Codes in a Hollerith Card Image

10 DIM A$(3)40
20 DATALOAD BT (N=82) /629,A$()
30 IF STR(A$(3),1,2) = HEX(5000) THEN 40: GOSUB'30

In this example, the LENGTH and ERROR codes are checked for their normal
values; the normal value of the LENGTH code in this case is HEX(50), and
the normal value of the ERROR code is HEX (00). Thus, if the 8Ist and
82nd bits received equal HEX (5000), both codes are normal, and processing
resumes at Tline 40. Otherwise, something dis amiss, and the program
branches to an error recovery routine (GOSUB '30 in this example).

132

Example 17-2: Checking the LENGTH and ERROR Codes in a Binary Card Image

10 DIM A$(5) 40
20 DATALOAD BT (N=162) /62A, A$()
30 IF STR(A$(5),1,2) = HEX (A00O) THEN 40: GOSUB '30

In this example, the LENGTH and ERROR codes are checked following a binary
image read. The normal value of the LENGTH code in this case is 160 (HEX
(AO?). At Tine 30, the 161st and 162nd characters are checked. If their
values equal HEX (A000), all is well, and processing resumes at line 40.
Otherwise, the program branches to an error routine (GOSUB '30).

Since it is not uncommon for more than one error bit to be set in the
ERROR code, it may be desirable to examine each of the meaningful bits, and list
the errors before taking further action. This can be done by using a series of
AND functions to mask out all but the one bit to be examined in each case.

Example 17-3: Use of the AND Function to Test for Individual Error Bits

100 DIM A$(3)40, T$1
110 DATALOAD BT (N=82) /629, A$()
120 IF STR(A$(3),1,2) = HEX(5000) THEN 40 : GOTO 500

500 T$ = STR(A$(3),2,1) : AND(T$,80)
510 IF T$ = HEX(00) THEN 530

520 PRINT "CARD READER NOT READY"
530 T$ = STR(A$(3),2,1) : AND(T$,40)
540 IF T$ = HEX(00) THEN .560

550 PRINT "HOPPER EMPTY"

In the input routine starting at line 110, a Hollerith card image is read
in and, at 1line 120, the LENGTH and ERROR codes are tested for their
normal values. If an unexpected value 1is found in either code, the
program branches to line 500, where it begins an examination of individual
bits in the ERROR code. At 1ine 500, the ERROR code is stored in T$, and
all bits except the 80 bit are masked out to zero. At 1line 510, T$ is
tested for the presence of an 80 bit. If the 80 bit is on, the card
reader is not ready to read a card, and the program prints an appropriate
error message. If not, the program skips to line 530, where the 40 bit is
checked. The process continues until all error bits have been checked,
and the appropriate error message(s) printed out.

The fact that certain error codes imply automatic card reader shutdown,
while others do not, may influence the program's response in each case. For the
three errors which do not halt card reader operation (04, Less Than Expected
Data; 02, Invalid ASCII Conversion; and 01, Invalid Look-Ahead Operation), it
may be preferable simply to print out the erroneous card image(s) along with an
error message, and continue regular processing.

133

Example 17-4: Response to Error Conditions Without Operator Intervention

500 T$ = STR(A$(3),2,1) : AND(T$, 04)

510 IF T$ = HEX (00) THEN 540

520 PRINT A$(1); A$(2) GOTO 110

530 PRINT "LESS THAN EXPECTED DATA ON ABOVE CARD"
540 T$ = STR(A$(3),2,1):AND(T$,02)

In this example, the AND function is used to test for Code 04 (Less than
Expected Data). If the 04 bit is on, the card which was the source of the
error is printed out, along with an appropriate error message, and the
program proceeds to line 540 to check the next error bit.

Errors which shut down the card reader, and which therefore require
operator intervention, cannot of course be treated in this way. In such cases,
the program may be directed to signal the operator (perhaps by printing a
HEX(07) to the printer or CRT if an audio signal option is availab]eg, after an
appropriate error message has been printed or displayed. Note that the 'Machine
Not Ready' bit (80) always accompanies a reader shutdown. It is only necessary,
therefore, to test for an 80-bit in order to determine if operator intervention
is required.

" Example 17-5: Response to Error Conditions With Operator Intervention

500 T$ = STR(A$(3),2,1) : AND(T$,80)

510 IF T$ = HEX(00) THEN 700

520 PRINT "CARD READER NOT READY"; HEX(07)
530 T$ = STR(A$(3),2,1) : AND (T$,40)

540 IF T$ = HEX(00) THEN 560

550 PRINT "HOPPER EMPTY"; HEX(07)

Lines 500 and 510 check for the presence of an 80 bit in the ERROR code.
If the 80 bit is found (indicating an error condition which has shut down
the card reader), an error message is printed, the audio signal on the CRT
or printer is activated, and the program proceeds to check for a
specific error condition (40, 20, 10, or 08) beginning at 1line
530. If the 80 bit is not on, the error condition is not terminal, and
the program branches to line 700 to check for codes 01, 02, and 04.

To avoid the necessity of having the operator rerun the program following
a card reader shutdown, the program may enter a loop in which it continuously
attempts to read a card, checking the ERROR code after each attempt. If the
card reader is not in a ready condition, the system receives 80 or 160 HEX(FF)
characters following each read, along with a LENGTH code of HEX(00) and an ERROR
code in which the 80 bit is set. (Other error bits may, of course, also be
set.) By checking for the 80 bit after each attempted read, the program can
determine whether the operator has corrected the problem and restarted the card
reader. Once the problem is corrected, normal program execution resumes
automatically.

134

@W“

Example 17-6: Testing for Card Reader 'Ready' Condition

300 DATALOAD BT (N=82) /629, A$()

310 T$ = STR(A$(3),2,1) : AND(T$, 80)
320 IF T$ = HEX(00) THEN 340

330 PRINT HEX(07) : GOTO 300

340 T$ = STR(A$(3),2,1) : AND (T$,04)

In this example, the program loops continuously, attempting to read a card
at Tine 300, and checking for an 80 bit at lines 310 and 320. If the 80
bit is on, the program drops through to line 330, where the audio signal
is sounded to indicate that the problem remains uncorrected, and the
system Tloops back to line 300 to attempt another read. If no 80 bit is
found at line 320, the program branches to line 340 to check for error
bits 04, 02, and 01 before processing the card image.

A more elaborate and systematic routine for checking error bits in the

ERROR code is illustrated in Example 17-7. This example performs the following
operations:

1.

3a.

3b.

3c.

3d.

?eads an)80 column Hollerith card image into an alphanumeric array, A$()
line 70).

Checks the LENGTH and ERROR Codes. If these codes are normal, the program
processes the card before returning to read another card (line 80). Since
the example's only concern is to show a method of dealing with card reader
errors, actual processing of data on the cards is ignored. If the LENGTH
and ERROR codes have unexpected values, the example proceeds to anlayze
the problem and take appropriate action (1ine 90).

The first bit checked in the ERROR code is the 80 bit (Machine Not Ready)
(lines 3000 - 3015). If this bit is ON, the routine proceeds to check
only bits 40, 20, 10 and 08 since these are the only conditions that can
generate a 'Not Ready' (lines 3020 - 3170).

Once the vreason for the 'Not Ready' condition is identified, an
appropriate error message is displayed for the operator, and the audio
signal is sounded.

The routine then returns to read another card, and check the 'Not Ready'
bit. As long as the reader remains not ready, the program remains in this
loop, continuously sounding the audio signal.

Once the reader becomes ready, and a good read is made, normal processing
continues (1ine 100).

135

4, If the 80 bit is OFF when the ERROR code is first checked at 1line 3010,
the only other bits checked are the 04 bit (Less than Expected Data), the
02 bit (Invalid ASCII Conversion), and the 01 bit (Invalid Lookahead
Operation). In these cases, an image of the erroneous card is printed out
along with an appropriate error message. Program execution then continues
with the next card (lines 3180 - 3260? ,

Example 17-7: Testing for Card Reader Error Conditions

70 DATALOAD BT (N=82)/629, A$()
80 IF STR (A$(30, 1, 2) = HEX(5000) THEN 100
90 GOSUB 3000 : GOTO 70

500 GOTO 70

3000 T$ = STR(A$(3),2,1) : AND(T$, 80)

3010 IF T$ <>HEX(80) THEN 3180

3015 PRINT HEX(03) " CARD READER NOT READY "

3020 T$ = STR(A$(3),2,1) : AND(T$, 40)

3030 IF T$ <>HEX(40) THEN 3060

3040 PRINT HEX(0707); " HOPPER EMPTY "

3050 GOTO 3270

3060 T$ = STR(A$(3),2,1) : AND(T$,20)

3070 IF T$ <> HEX(20) THEN 3100

3080 PRINT HEX(0707); " STACKER FULL "

3090 GOTO 3270

3100 T$ = STR (A$(3),2,1) : AND(T$, 10)

3110 IF T$ <> HEX(10) THEN 3140

3120 PRINT HEX(0707); " PICK CHECK, CAN NOT READ CARD "
3130 GOTO 3270

3140 T = STR (A$(3),2,1) : AND(T$, 08)

3150 IF T$ <> HEX(08) THEN 3180

3160 PRINT HEX(0707); " READ ALERT-- DAMAGED CARD !
3170 GOTO 3270

3180 T$ = STR(A$(3),2,1) : AND(T$, 04)

3190 IF T$ = HEX(04) THEN 3200 : GOTO 3225

3200 SELECT PRINT 215 (131)

3210 PRINT "LESS THAN EXPECTED DATA ON THE FOLLOWING CARD..."
3220 GOTO 3250

3225 T$ = STR(A$(3),2,1) : AND(T$, 02)

3226 IF T$ = HEX(02) THEN 3230 : GOTO 3246

3230 SELECT PRINT 215(131)

3240 PRINT “INVALID ASCII CONVERSION ON THE FOLLOWING CARD..."
3245 GOTO 3250

3246 SELECT PRINT 215 (131)

3247 PRINT "INVALID LOOKAHEAD ON THE FOLLOWING CARD..."
3250 PRINT A$(1); A$(2) : PRINT

3260 SELECT PRINT 005(64)

3270 RETURN

0
)

136

17.3 EFFICIENT USE OF THE LOOK-AHEAD MODE

The binary and Hollerith Look-Ahead modes can be used to reduce the total
throughput time for processing data cards. Approximately 200 milliseconds are
required to read a card, translate the codes to ASCII or binary format, and
store the data 1in a receiving array in memory. In the normal case, no other
processing can be carried out while this procedure takes place. With the
Look-Ahead mode, however, it is possible to execute the card reading and code
conversion operations concurrently with other processing in the CPU.

A Look-Ahead operation is indicated with the DATASAVE BT statement and a
device address of 42E (Hollerith) or 42F (binary). When a DATASAVE BT statement
with a Look-Ahead device address is executed, the card reader is signalled to
read in the next card from the input hopper. At this point, the card reader is,
in effect, "cut loose" from the system, and proceeds to read the card, convert
the data to ASCII or binary format, and store the converted data in a buffer,
independently of the CPU. Immediately after the Look-Ahead operation is
initiated, program execution continues at the next line in the program; the
system does not wait for the card reader to complete its read operation.
Program execution therefore proceeds while the card is read and stored in the
card reader buffer. Typically, the program processes data read from the
previous card at this point. When the processing is complete, the program
executes a DATALOAD BT statement to store the preprocessed data from the card
reader buffer into a receiving array in memory.

Example 17-8: Processing Hollerith Card Images with Look-Ahead
10 DIM A$(3)40, F$1

100 DATALOAD BT (N=82)/629, A$()

110 DATASAVE BT/42E, F$

120 IF STR (A$(3), 1, 2) = HEX(5000) THEN 140
130 GOSUB 2500: GOTO 100

140 IF STR (A$(1), 1, 3) = "ZZZ" THEN 510

510 STOP

In this example, the DATALOAD BT statement initially causes a card to be
read and the data stored into receiving array A$(). Immediately
afterwards, the Look-Ahead command at line 110 signals the card reader to
read the next card into its buffer, and convert each character to ASCII.
While the card is being read, processing continues on the data already
stored in A$() at Tline 120. When processing is complete, the program
returns to line 100 to read in data from the next card. In most cases,
this data 1is already waiting in the card reader buffer, and can be
transferred very quickly into array A$().

137

Note that after the last data card is read in Example 17-8, the Look-Ahead
operation attempts to read a card from an empty hopper. This attempt causes the
buffer to be filled with 80 HEX(FF) characters, a LENGTH code of HEX(00) to be
generated, and the 40 bit (“Hopper Empty") to be set in the ERROR code. None of
this 1is meaningful to the program, which will never attempt to transfer this
data from the buffer into memory, since it exits from the input Toop after
detecting the the dummy end-of-file value "ZZZ" at line 140. The data therefore
remains ~in the card reader buffer, and is cleared only by Master Initializing
the system or keying RESET from the keyboard.

In general, the amount of processing required for each card image is
sufficient to produce an overall gain in throughput time with Look-Ahead. Only
in cases where little or no processing takes place between reads is it Tlikely
that Look-Ahead will fail to speed up throughput time.

17.4 DATA VALIDATION AND CONVERSION PROCEDURES

Once a Hollerith card image has been read into a receiving alphanumeric
array with DATALOAD BT, the first step in processing the data should normally be
to check the LENGTH and ERROR codes. Techniques for checking these codes are
described in preceding sections. When it has been established that no card
reader errors have occurred, the program must proceed to isolate and extract
individual data values from the card image, since typically several values are
stored on each card. In the process of converting and processing data
(particularly numeric data) from a card image, a variety of system errors may
arise. Normally, such errors cause an error code to be displayed, and halt
program execution. The programming techniques described in the following
sections offer some suggestions on how to convert numeric values from a card
image, and respond to any errors which may arise in this process under program
control, without terminating program execution.

In order to extract an individual value from a card image, the programmer
must be able to locate the value within the continuous image. Since DATALOAD BT,
unlike INPUT and DATALOAD, does not recognize any special character as a data
separator (but regards the entire card instead as one continuous 80-character
value), the programmer is free to define individual data fields in any
convenient way. Probably the simplest and most common technique for defining
data fields 1is merely to alot a specific number of columns for each field.
Because each column transfers as a single character when a Hollerith card image
is read, it is an easy task to extract individual values from the receiving
array with a sequence of STR functions.

On the card illustrated in Figure 17-2 below, for example, the first field
consists of columns 1-24. When this card is read into an array, the first value
is easily obtained by using the STR function to extract the first 24 characters
from the first array element. For example, from a receiving array A$() the name
"John Jones" can be extracted with a statement of the form:

B$ = STR (A$(1), 1, 24)

138

gﬂh

-

U

Following this operation, the first 24 characters of A$(1) (i.e., the
first 24 card columns) are stored in BS$.
Field # 1 Field = 2 Field = 3 Field = 4 Field ¥ 5
24 bytes 15 bytes 9 bytes 5 bytes 7 bytes
’ A - r A — A AN —A—
JOHH JOHE: 3 [ak Oe e DAREENmRE {00 SOnsEar
(, 1 1 1 111 |

mnmii | I I |

oooooooooBooooooo0o0000000000000000BocoscBcooolBooocMBooooBBocBoocccocoonoecctson
123456709100 1213K 1516178192022 2223243528 37282930 73522538 153520 257040 € 42 4242 45 46 47 224959 & (IS S8 TE ST S8 5EET EIRNBISLESEI BN BN T N T I T i g
LI Rl R R RN R RN R RNy FR R R R RN R R R R ARl AR R R R R RN R R R R R RN RN R
222222222022222222222222222220222222222220222222222222220222222232222222222°2222
33303333833323333333333233333133333332233
A 4440008a04444480044al0400aIMm804900484404409448808446444444444042334438244444
555M555MM5555555555555555555555555MM55555555555555555555555QMM5555555585555555555
‘MocccMocooc666666666666666Mc6666666666666Mc666M56666M66666666666666656665666¢ s
nmmnmmnnnnInnnnnnnnInnnnnn b1 31119
88M88888888888888888888868868888888388853888M0088¢86020885E88280205R008588888888

99999999999999999999999 999999'99.'99‘!9999993953999999399939359993? 796869922935699
R T T P L R

/

Figure 17-2.
Hollerith Card with Four Data Fields.

So long as alphanumeric fields only are treated,
quite straightforward and essentially unproblematic. With the introduction of
numeric values, however, the process assumes an added degree of complexity.
Alphanumeric values are regarded by the system merely as strings of characters;
the system assumes no predefined relationship between separate characters, and
therefore demands no special format. The only requirement is that every
character be a legal ASCII character; since the card reader automatically
converts all 1illegal characters into ASCII exclamation ('!') characters, this
requirement is always met. With numeric values, however, the situation is
vastly different. When a numeric value is read from a card into an alphanumeric
variable or array, it is regarded as an alphanumeric value - that is, as nothing
more than a string of characters having no special significance from the
system's point of view. When an attempt is made to transfer a numeric value
into a numeric variable, however, the system must convert the value into the
Wang internal numeric format. In this case, the value must conform to the
system's format requirements for legal BASIC numbers. The presence of an illegal
numeric character or an improper format generates an error message, and program
execution is automatically halted.

this procedure remains

Two major problems present themselves, then, in dealing with numeric data.
First, numeric values must be converted from the alphanumeric array into which
they are read to numeric format for storage in numeric variables. Second,
adequate safeguards must be established to prevent program execution from
halting with an error if an illegal numeric value is encountered. Section 17.5
discusses the use of the CONVERT statement to convert numeric data from a card
image into internal numeric format. Section 17.6 covers the use of the NUM
function in validating numeric data prior to converting it, and Section 17.7
explains how the ON ERROR GOTO statement can be used to recover from errors

139

which may be generated by a CONVERT operation. Section 17.8, finally, discusses
the General I/0 statement $UNPACK in connection with data conversion and
validation.

17.5 NUMERIC DATA CONVERSION WITH THE 'CONVERT' STATEMENT

Numeric values can be converted from the alphanumeric array argument of
the DATALOAD BT statement to internal numeric format for storage in a numeric
variable with the CONVERT statement. The CONVERT statement converts a number
stored in a specified alphanumeric variable or array to numeric format, and
stores it in a specified numeric variable. Consider, for example, the following
pair of statements:

10 A$ = "1234"
20 CONVERT A$ TO N

The number "1234" is stored in A$ as a string of ASCII characters.
CONVERT translates the character string into internal numeric format, and stores
the converted numeric value in numeric variable N. Following execution of the
CONVERT statement, therefore, the variable N contains the number 1234.

CONVERT also can be used in conjunction with the STR function to convert
only a specified number of characters from an alpha variable or array element.
For example, the statement

CONVERT STR (A$, 1, 3) TO N

converts only the first three characters of A$ ("123") to numeric format. In
this case, therefore, N is set equal to 123.

Numeric data can be converted from the card 1image in the receiving
alphanumeric array to numeric variables if the starting position and field
length of each numeric field is known. For example, the three numeric fields on
the card illustrated in Figure 17-2 could be processed with the following
routine:

Example 17-9: Processing Numeric Data from a Card Image

10 DIM A$(3) 40
20 DATALOAD BT (N=82) /629, A$()

150 CONVERT STR (A$$)s 9) TO N
160 CONVERT STR (A$(2), 11, 5) TO
170 CONVERT STR (A$(2), 18, 5) TO

140

A card image from the card illustrated in Figure 17-2 is read into array
A$() at line 20. Since A$() is dimensioned to consist of three 40-byte
elements, the card columns 41-80 are read into the second array element,
A$(2). Thus column 41 (which contains the first character of the first
numeric field) is read into byte #1 of A$(2). At 1line 150, a CONVERT
statement utilizes the STR function to convert bytes 1-9 of A$(2) into
numeric format, and store the resultant number in numeric variable N. A
‘blank column separates the first and second numeric fields on the card,
and this space character occupies byte #10 in A$(2). The second CONVERT
statement therefore begins operating on the 11th byte of A$(2), and
converts the five bytes 11-16 into numeric format for storage 1in numeric
variable 0. This process is repeated for the third and last numeric field
at line 170.

Note that the character string operated upon by CONVERT must be a
representation of a 1legal BASIC number. If the character string contains
illegal numeric characters, or contains numeric characters in an illegal format,
the CONVERT statement produces an error message, and program execution is
terminated.

17.6 VALIDATING NUMERIC DATA WITH THE 'NUM' FUNCTION PRIOR TO CONVERSION

One way to ensure that a CONVERT statement will not encounter an illegal
numeric and halt program execution is to validate each numeric value with the
NUM function prior to converting it dinto numeric format. (If your system
supports the ON ERROR GOTO statement, that statement may provide a more
efficient technique for handling erroneous numeric data; see Section 17.7.)

The NUM function examines a specified string of ASCII characters in an
alphanumeric variable or array element, and computes the number of sequential
characters in the string which are 1legal numeric characters. Legal numeric
characters inciude:

Digits 0 - 9

Plus (+) and Minus (-) signs
Decimal Point (.)

Letter 'E' (designating exponent)
Space

Any other character is illegal in a BASIC number, and will produce an
error if encountered by CONVERT. NUM counts sequential numeric characters
starting with the first character of the specified variable or STR function.
The character count is ended either by the detection of a non-numeric character,
or when the sequence of numeric characters fails to conform to standard BASIC
number format. Leading and trailing spaces are included in the count. Thus,
NUM can be wused to verify that an alphanumeric character string is a legal
representation of a BASIC number, or to determine the Tlength of a numeric
portion of an alphanumeric value.

141

If a numeric field in a Hollerith card image is 1in correct format, the
character count produced by NUM will equal the field length. Consider, for
example, the following short routine:

10 DIM A$ 11
20 A$ = "+12.3E6"
30 N = NUM (A$)

In this case, A$ contains a seven-character numeric value, " + 12.3E6." Since A$
is dimensioned to 11 bytes, the remaining four bytes are filled with space
characters, which also count as numerics. Thus, the value of N at 1line 30 is
11.

If, however, a non-numeric character appears in the field, the NUM
character count will be less than the field length:

10 DIM A$ 11
20 A$ = "12.6P7"
30 N = NUM(A$)

In this case, N = 4, since the fifth character of A$ is the letter 'P', a
non-legal numeric character.

The numeric fields read from the card in Figure 17-2 could be tested for

va]1d1ty prior to conversion by mod1fy1ng the conversion routine in Example 17-9
in the following manner:

Example 17-10: Validating Numeric Data With NUM Prior to Conversion

10 DIM A$(3)40
20 DATALOAD BT (N=82) /629, A$()

150 X THEN 160: GOTO 1000

= NUM(STR(A$(2), 1, 9)): IF X =9
160 Y = NUM (STR(A$(2), 11, 5)): IF Y = 5 THEN 170 : GOTO 1000
170 Z = NUM(STR(A$(2), 18, 5)) : IF Z = 5 THEN 180 : GOTO 1000

180 CONVERT STR (A$(2), 1, 9) TO N
190 CONVERT STR (A$$2), 11, 5) to 0
200 CONVERT STR (A$(2), 18, 5) TO P

i000 PRINT "ERRONEQUS VALUE ON THIS CARD"
1010 PRINT A$(1); A$(2)
1020 GOTO 20

142

Line 150 utilizes the NUM function to compute the number of sequential
numeric characters in the first numeric field. This field occupies bytes 1-9 in
A$(2); thus, the character count stored in X should be 9. If X = 9, the program
drops through to validate the second numeric field at line 160. If X does not
equal 9, the field contains at least one illegal character, and a branch is made
to the error routine at line 1000, where the card image 1is printed out along
with an error message. The program then loops back to read the next card. If
all three fields prove to contain valid data, the program proceeds to convert
each field to numeric format at lines 180, 190, and 200.

17.7 ERROR RECOVERY WITH THE 'ON ERROR GOTO' STATEMENT

In systems which support it, the ON ERROR GOTO statement offers a most
efficient means of handling error conditions under program control. If an error
occurs during program execution, ON ERROR GOTO automatically directs execution
to a specified 1ine number, where the error can be analyzed and an appropriate
response initiated under program control. Program execution is not
automatically terminated by discovery of the error, as would be the case without
ON ERROR GCTO.

Note that certain types of errors are not processed by ON ERROR GOTO.
Errors which occur during program resolution (the phase immediately after a
program is run, during which the system scans the program, checking the validity
of Tine number references and allocating space for variables prior to beginning
actual program execution) are not handled by ON ERROR GOTO. Such errors cause a
normal error message to be displayed, and halt further program execution. All
errors occurring in the course of program execution can, however, be processed
by ON ERROR GOTO without terminating program execution or causing an error code
to be displayed. Specifically, ON ERROR GOTO is useful for responding to errors
which arise from the detection of an invalid number by CONVERT.

The ON ERROR GOTO statement must include two alphanumeric variables and a
program 1line number. Upon detection of an error during program execution, the
appropriate error code is stored in the first specified variable, while the line
number of the line at which the error occurred is stored in the second variable.
Program execution then branches to the specified 1line number. Consider, for
example, the following statements:

10 DIM F$2, G$4
20 ON ERROR F$, G$ GOTO 1000

Upon detection of an error condition, variable F$§ 1is set equal to the
appropriate error code (two bytes), while G§ is set equal to the 1ine number at
which the error appeared (four bytes). Immediately upon detection of the error,
Erogram exegution branches to 1ine 1000, where an error analysis routine might

e initiated. ‘

It is mandatory that only one ON ERROR GOTO statement be included in a
program. The statement should be placed near the beginning of the program.

143

In general, the error routine to which the program is directed by ON ERROR
GOTO should analyze the error code to determine the cause of the error. Further
action would be determined by the particular error discovered. Note that since
only one ON ERROR GOTO can appear in a program, the error routine should cover
all error possibilities in the entire program, and not just the numeric field
verification discussed in this section.

Example 17-11: Recovering from Numeric Format Errors with ON ERROR GOTO

10 DIM F$2, G$4
20 ON ERROR F$, G$ GOTO 1000

90 DIM A$(3)40
100 DATALOAD BT (N=82)/629, A$()

(Check LENGTH and ERROR Codes)
150 CONVERT STR(A$(2),1,9) TO N

1000 IF E$ = "20" THEN 1010: GOTO 1040
1010 PRINT "ILLEGAL NUMBER FORMAT ON FOLLOWING CARD
AT LINE #" ; G$
1020 PRINT A$(1); A$(2)
1030 GOTO 100
1040 IF E$ = "47" THEN 1050: GOTO 1080

etc.

In the above example, a Hollerith card image (perhaps the one in Figure
17-2) is read at 1line 100. At line 150, the program begins converting
numeric fields to internal numeric format with CONVERT. If an illegal
number 1is encountered, the system generates a CODE 20 (I11egal Number
Format). In this event, the ON ERROR GOTO statement sets F$ equal to the
error code (20), and G$ equal to the Tline number of the line at which the
error occurred (line #150). Program execution is then directed to 1line
1000, where the error analysis routine begins checking the error code in
F$. If error code 20 is indeed found in F$, the program displays an
appropriate error message at line 1010, along with the line number from G$
and the contents of the erroneous card. In this way, identification and
correction of the card are simplified. The program then Tloops back to
read the next card. If code 20 is not found in F$§, the routine continues
to test for other possible error codes.

144

In most cases, ON ERROR GOTO simplifies the task of error detection and
data verification, since it enables the programmer to test for a wide range of
error conditions with a single statement. Without it, the programmer must adopt
special procedures for identifying different types of errors and validating data
values before attempting to convert the card image to a more useful form. (The
NUM function, discussed in the preceding section, is one example of a special
technique used to validate numeric data.)

17.8 DATA CONVERSION WITH '$UNPACK' (GENERAL I/0 STATEMENT)

The $UNPACK statement is available as part of the General I/0 instruction
set. General I/0 is optional on some Wang systems and standard on others; refer
to the literature accompanying your system for further details.

For serious data processing applications, in which data is read in image
mode from Hollerith cards, and subsequently distributed to individual variables
and/or arrays, $UNPACK is an enormously useful tool. With a single $UNPACK
statement, it is possible to "unpack" an entire card image (that is, to separate
all data values from the image, and transfer each value to a specified receiving
variable or array). $UNPACK automatically converts numeric values into internal
numeric format prior to storing them in numeric variables. Thus, $UNPACK can
perform in a single statement the work of many string functions and CONVERT
operations.

$UNPACK offers the programmer two forms, a field form and a delimiter
form. The particular form chosen is dictated by the data format of the cards to
be read. In the field form of $UNPACK, the lengths and types of all fields in
the card image can be specified. In the delimiter form, a special delimiter
character separating data values in the image is specified. Whatever the card
format, therefore, $UNPACK is, where available, the recommended method of
converting data from a Hollerith card image.

General Form:

$UNPACK F = alpha variable alpha array designator TO argument
D = alpha variable o list
where:
F = field format parameter
D = delimiter format parameter

alpha array name of array containing card image, followed by
designator closed parentheses (e.g., A$(), F$()). This is
the "buffer" from which the data is unpacked.

numeric variable
numeric array designator
argument alphanumeric variable
Tist = alphanumeric array designator
STR function

145

NOTE:

In the interest of simplicity, the general form of $UNPACK
above includes only those parameters with a specific
application for unpacking a data card image. Of course, the
$UNPACK statement has a broad range of applications beyond
those under consideration in this section. A comprehensive

" general form for $UNPACK, and a more general discussion of
its capabilities, <can be found in the General 1/0
Instruction Set Reference Manual.

Purpose:

$UNPACK causes values to be taken sequentially from the specified buffer
(in this case, the buffer is the receiving alphanumeric array from the DATALOAD
BT statement which contains the card image) and stored sequentially in the
variables and arrays 1in the argument 1list following the word "TO". Arrays in
the argument 1list are filled element by element, row by row; each array element
receives a single data value.

$UNPACK (F = F$) A$() TO X, A$, Y(), B$()

Specifies field Buffer containing Variables and arrays in
format data (i.e., alpha . argument 1ist to receive
array containing data values from card
- card image) image

Figure 17-3.
Typical $UNPACK Statement in Field Format Showing Typical Components

Note that $UNPACK has two formats, field format and delimiter
format, specified by the letters "F" and "D" respectively. In general,
the field format is used in cases where the programmer knows the
length (number of bytes) of each data field. The delimiter parameter is
used in cases where a predefined delimiter character (a space, comma,
slash, etc.) is used to separate data fields on the card.

FIELD FORM OF $UNPACK

A "field" is a definite number of columns on a card (and, correspondingly,
of bytes in the receiving alphanumeric array) occupied by a single value. It
was pointed out in previous sections that a common method of defining values on
a card is to assign each value a specific number of card columns (i.e., a
specific field 1length). If this technique is employed, the field format for
$UNPACK can be used to "Unpack" values from the fields in a card image.

146

 Field format is specified with the Tletter 'F'. The alpha variable
. following 'F =' is called the "field specification variable", and contains the
g@k field specification codes for data fields in the buffer.

For example:

$UNPACK (F = F$) B$() TO X, Y, Z

\

. Specifies Field specification
field Variable
format

Figure 17-4.
Field Specification Variable in a $UNPACK Statement

The field specification variable (F$ in Figure 17-4 above) contains one or
more field specification codes. Field specification codes are two-byte
hexadecimal codes, the first byte of which specifies the field type (alpha or
numeric), and the second byte of which specifies the field length (the number of
consecutive bytes in the field).

F$§ = HEX (A008)

Field specification Field specification
variable code (two-byte code
g”“ specified in hexadecimal

notation.)

Figure 17-5
Field Specification Code Stored in the Field Specification Variable

$UNPACK sequentially transfers each field from the specified buffer (i.e.,
the alphanumeric array containing the 82-byte card image) to the corresponding
variables and arrays in the $UNPACK argument 1list. Numeric fields (so
identified by an appropriate field specification code) are automatically
converted to numeric format prior to being transferred to the specified numeric
variables or arrays. For this reason, numeric values can be stored only in
numeric variables, and alphanumeric values can be stored only in alpha
variables; otherwise, an error is signalled.

Each byte of the field specification code is expressed as a pair of
hexadecimal characters. The first byte of the code (i.e., the first pair of
hexadecimal digits) indicates the field type (alpha or numeric). For an
alphanumeric field, the first byte must be HEX(AO). For a standard numeric
fie}? ;n free-format, the first byte of the field specification code must be
HEX(10).

147

In addition to the standard alphanumeric and numeric codes, two special
codes are provided for skipping a field and indicating a special numeric format.
A specified field can be skipped (i.e., not transferred from the buffer to a
variable or array in the argument 1ist) by specifying HEX(00) as the first byte
of the corresponding field specification code.

For numeric values which are punched in integer format with an implied
decimal point, a second special code is used. Although the implied decimal
point format is less versatile than standard free-format, it is used in some
applications. In this case, the number is punched on a card without a decimal
point or exponent. When it is unpacked, the position of the implied decimal
point must be specified so that the decimal point can be inserted at the proper
location. For this purpose, the two hexadecimal digits which comprise the first
byte of the field specification code have discrete meanings. The first hex
digit must be '2', indicating a numeric field in implied decimal format. The
second hex digit specifies the position of the implied decimal point, measured
from the right end of the field. In different terms, the second hex digit
specifies the number of decimal digits (i.e., digits to the right of the decimal
point) in the numeric field. For example, if the first byte of the field
specification code is HEX(22), the system assumes that the corresponding data
field is a numeric value in implied decimal format, and that the position of the
implied decimal point is two digits from the right side of the field. If the
number in this field is +12345, therefore, it is converted to +123.45.

Table 17-2
Valid Field Specification Codes (in Hexadecimal Notation)

00 XX Skip this field

10 XX Numeric field in free-format
2d XX Numeric field in integer format
A0 XX Alphanumeric field

where: XX = second byte of field specification code, indicating

field Tength in binary

d = implied position of decimal point for integer
format numbers

The second byte of the field specification code defines the field Tlength
(i.e., the number of sequential bytes in the field).

Field ’//;(Specifies Indicates Field length
specification alphanumeric is 8 bytes
variable field

F$ = HEX (A008)

Figure 17-6.
Field Specification Code for Eight-Byte Alphanumeric Field

148

F$ = HEX (100A)

Field / Specifie{‘ \'Indicates Field len?th is

specification numeric 10 bytes (since HEX(OA) =
Variable field in ~ decimal 10)
free-format

Figure 17-7.

Field Specification Code for 10-Byte Numeric Field in
BASIC Free-Format

F$ = HEX (0010)

Field Tells “Indicates that number of
specification system bytes to be skipped is 16
Variable to skip (since HEX(10) = decimal 16)

this field.

Figure 17-8.
Field Specification Code for Skipping a 16-Byte Field

F$ = HEX (2207)
* “R\\\~Indicates Field length

Indicates is 7 bytes
that implied

decimal

position is 2

places from the

right

Field specification
Variable

Specifies
numeric field
in integer
format

Figure 17-9.

Field Specification Code for Seven-Byte Numeric Field in Integer
Format (Implied Decimal Position is Two Places to Right of First Digit)

A separate field specification code must be supplied for every variable or
array in the $UNPACK argument list. For example, the following statement:
$UNPACK (F = F$) B$() TO A$, B(), C$
requires three field specification codes. If
F$ = HEX (A0081006A010)
N N s e’
A$ B() C$

149

then

. HEX(A008) is the field specification code for the field to be
transferred to A$. An alphanumeric field of eight bytes is specified.

. HEX(1006) is the field specification code for the fields to be
transferred to B(). Assuming B() is dimensioned to 10 consecutive
numeric fields in free format, each field is six bytes in length. Each
element of B() receives the value from a single field. B() is filled
row by row. C

. HEX(A010) is the field specification code for C$. An alphanumeric
field of 16 bytes (since HEX(10) = decimal 16) is specified.

Note that all fields which are to be stored in an array are identified
with a single field specification code. This is possible because the type and
length of each field stored in an array must be the same as the type and Tlength
of all other fields stored in the same array. The system continues to unpack
fields of the specified type and length from the buffer into the array until one
of the following conditions is met: (a) the receiving array is full; or (b) an
invalid numeric value is encountered; or (c) the data in the buffer is
exhausted.

Suppose, for example, that a Hollerith card image is read into array A$().
The card has the following format:

Field # 2
Col 21
Field # 1 Field # 3 Field # 4 Field # 5 Field # 6
Cols 1-20 Cols 22-28 Cols 29-47 Cols 48-59 Cols 60-71
A — - — P A - A <
/R IF - - TERH O T B O LS 0 IR L YER oAl HLaET +11524. 50 09
1 n [| i1 1 | 110
n n 1 11
uollonnnlnnnonnnluoonllunllllunlonlouoloounloouuonooonnnuounoonunnlnlonnoouucnoo
12345678910N121BKISIENIBIB0N nzm:nsnmsm:nznumsunnmm:u«qsuuuuwsn 52'5 54 55 56 57 58 5960 61 62 63 64 6555 6768 63 70 11 17 73 MU I8I9E0
IlllllllllllllllllllllllllIIIIIIIllllIIIIllIIIIIIIIIIIIllllllllllllllllllllllllI

22222222022222222222022222222222220222222222222222222222222220022222222222222222
lsxsaszsa33333333333333333:333333333!333333l3333333333333333s:zzlzzasa:aszzsazaz
G444404l400000000444444040400004440404400004044040444484044244408404a04444444444
995555555555555555555555@5555M5MB555555555M5555555555555555555555050555555555555
slsssssssslsslssslssssssssssssssessssslssssssssssssssssseelsssssssssssssssssssss
7777l117117771117711777777777717777777177l11777777717711777777777777777777717117
laaaasaassasssllssaassssasassaassaaaasasaaaasesassassasaaalsaaaalsaaaassaaassass

93?9998999999‘)99999 9999998999.99.59999'99999999999599999999999999999 99999999439
? 456 7891CaY ML

9 9
kl BRI 220 l’:?”‘?‘\!-‘;J'J?ii.'-"xilﬁ':73&]943"47‘]“('.1'5”i!lQSl)'Jl51!144'4‘5'45HM59(05\51!3(!"4“5“:\89:‘0ll 131341526 1 181980
M DD- 208!

Figure 17-10.
Hollerith Card with Six Data Fields.

Columns 1 - 20 - an alphanumeric value

Column 21 - an alphanumeric value

Columns 22-28 - a numeric value in free-format
Columns 29-48 - an alphanumeric value

Columns 60-71 - a numeric value in free-format

150

Example 17-12 below might be used to read this card, separate the data
fields, and store them in variables B$, C$, X, D$, and Y. '

-

Example 17-12: Using Field Form of $UNPACK to Separate Data Values
in a Hollerith Card Image

50 DIM A$(3)40, B$20, C$1, D$19
60 DATALOAD BT (N=82) /629, A$()

100 F$ = HEX(A014A0011007A013000C100C)
110 $UNPACK (F=F$) A$() TO B$, C$, X, D$, Y

In this example, the card from Figure 17-7 is read at line 60. At Tline
100, the field specification variable 1is assigned field specification
codes for each variable in the argument list, according to the following

scheme:
Field Specification Receiving Field Type & Length
Code Variable
1 A014 B$ Alpha field of 20 bytes
@@m 2 A001 c$ Alpha field of one byte
. 3 1007 X Numeric field of seven
bytes (free format)
4 A013 D$ Alpha field of 19 bytes
5 000C - Skip this field (12 bytes)
6 100C Y Numeric field of 12 bytes

(free-format)

Notice that because the last alpha field ends at column 48, and the Tlast
numeric field begins at column 60, there is a range of 12 unused columns
between the fields which are read as a blank field. In order to skip this
field when transferring data from the buffer, the code 000C 1is inserted,
instructing the system to skip the 12-byte field between the fourth and
sixth fields. Following execution of 1line 110, the data values are
separated and stored in the specified variables. Numeric values are
converted automatically to internal numeric format.

A situation may arise in which the numeric fields on a card do not
correspond to the numeric (or integer) field specifications in the $UNPACK
statement. This might occur, for example, if an incorrect field length is
specified 1in one of the field specification codes. Similarly, a numeric field
may be in improper format or contain an 1illegal character. ITlegal numeric
characters might be produced, for example, if a card were punched on a keypunch
other than the standard IBM 029 keypunch unit. (On keypunches which do not use
the expanded version of Hollerith, such as the IBM 026 keypunch, Hollerith codes

@““ for certain numeric characters may decode into non-numeric ASCII characters.) In

151

each of these cases, the system would normally signal an error and terminate
program execution when the $UNPACK statement attempts to convert the illegal
number into interng] numeric format.

Errors such as these can be handled under program control with the ON
ERROR GOTO statement discussed in Section 17.7. Alternatively, the occurrence
of such errors can be prevented simply by unpacking all numeric fields into
alphanumeric variables, and decoding the invalid numeric codes to valid ASCII
equivalents prior to converting the values to numeric format.

DELIMITER FORM OF $UNPACK

In cases where a varying number of values of varying 1lengths are to be
placed on cards, it may be inconvenient to assign each value a specified field
length. A more convenient and efficient means of defining individual values in
this case is to separate consecutive values with a specified delimiter
character. The delimiter form of $UNPACK, specified with the 'D' parameter, is
used to unpack data which are separated by a specified delimiter character. The
data values are transferred from the buffer sequentially into the receiving
variables and/or arrays in the argument 1ist following the word 'TO' in the
$UNPACK statement. A delimiter-form unpacking operation terminates when either
the buffer is emptied or the argument 1list is filled .

The variable following "D=" in a $UNPACK statement 1is known as the
delimiter specification variable. The. first two bytes of this variable
constitute the delimiter specification code, a two-byte code in hexadecimal
notation which controls the unpacking operation. (The remaining bytes of the
delimiter specification variable are ignored.)

$ UNPACK (D = D$) B$() TO X, VY, Z
Specifies 'Delimiter specification
delimiter variable
format
Figure 17-11.
Delimiter Specification Variable in a $UNPACK Statement.

The first byte of the delimiter specification code defines the particular
unpacking procedure to be used, while the second byte is the ASCII code for the
specified delimiter character.

Table 17-3 shows that the first byte of the delimiter specification code
may assume one of four possible values: HEX(00),HEX(01), HEX(02), or HEX(03).
These values dictate specific system responses to two special situations:

a) Insufficient data in the buffer to satisfy all variables in the
argument Tist; and

b) More than one delimiter character between successive data values.

152

With regard to (a) above, if $UNPACK exhausts the data in the buffer be-
fore it has filled all variables in the argument 1ist, the delimiter specifica-
tion code offers two possible responses:

1. An error code (ERROR 97) can be generated and program execution
terminated; or

2. The remaining unfilled variables in the argument 1ist can be ignored
(that is, 1left with their current values), and program execution
allowed to continue with the next statement.

If the first response is selected, the error condition can be handled
under program control with an ON ERROR GOTO statement. Note that the response
selected will be determined by the format of the cards to be read. If all cards
are expected to contain the same number of values, an insufficiency of data
indicates an incorrect card or a bad read, and should signal an error. If, on
the other hand, some cards contain fewer values than others, an insufficiency of
data in some cases may be anticipated as normal procedure, and should not affect
normal processing.

With respect to the presence of successive delimiter characters between
data values, the delimiter specification code also offers two possible
responses: :

1. The successive delimiters can simply be ignored; or

2. Each successive delimiter character can be interpreted as an
instruction to skip one argument (one variable or array) in the
$UNPACK argument Tist. Skipped arguments retain their current values.

The capability to skip arguments in the argument 1ist can be important if
the card formats are not uniform. Assume, for example, that a deck of inventory
cards contains some cards with a part number, model number, and assembly code,
while other cards contain only the part number and assembly code. It is always
assumed that the part number is stored in A$, the model number in B$, and the
assembly code in C$. For cards which lack a model number, it is necessary to
skip variable B$ when unpacking the card image, so that the assembly code can be
stored in C$. In this case, the use of an additional delimiter character
between the model number and assembly code can be used to cause the system to
skip the intervening variable.

153

Table 17-3
Valid Delimiter Specification Codes in Hexadecimal Notation

Specification Code Meaning

00 XX 1. Signal error if data is exhausted before
: all arguments filled;
2. Skip one argument in argument list for
each successive delimiter between
values.

01 XX 1. Ignore remaining arguments when data is
exhausted before all arguments filled
(no error);

2. Skip one argument in argument 1ist for
each successive delimiter between values.

02 XX 1. Signal error if data is exhausted before
all arguments are filled;

2. Ignore successive delimiters between
values.

03 XX 1. Ignore remaining arguments when data
is exhausted before all arguments are
filled (no error);

2. Ignore successive delimiters between
values.

Where: XX = ASCII code in hex notation for specified delimiter
character.

NOTE:

Insufficient data in the buffer is signalled with an ERROR 97.

D$ = HEX (0320
A O20)

Delimiter Tells System.‘\\\\\'Specifies space character
Specification to ignore un- as delimiter character (since
Variable filled variables HEX(20) is ASCII code for space)
' if no more data,
and ignore
successive
delimiters

Figure 17-12
Typical Delimiter Specification Code

154

" Assume, for example, that a Hollerith card image is read which consists of
@“h four values, an alphanumeric and three numerics (see Figure 17-13 below). The
values are separated from each other with a slash ("/") character, HEX(2F).

Field # 1 Field # 2 Field # 3 Field # 4
_AL
~
. C /ONTVERTAL WIDGE [50 v L G s —nf
i1 1
1 11 1
* BooRooNcooMooooMBoNBoNooBocoMoMoooMBo0o0900000000000260000000000030000000066+000
12345878 310NNBMUISIENIBIB2021222324252627282930 21223334 353637383940 4424334454547 48495051 5252354575657 58 5260 C162 RIEAGSRE67 LB EITO 1 77 i3 144525 1 10020
IRERRRRI EREEEREEI ERRR1 | ERRERRR] IRRRRRRRRRRRRRRR R R R AR R RN AR RRRRRRRRRRERRRRREREE!

222222022222222222220222202222222222222222222322222222222222222222222222222222222
33333333033333303333333033333232333333333333333332333333333333333333333333333333
Baa4aaa0aaaalaaadasaaaaa0aaaadiadsaqadsdsnitdsdasadarsaedasdaddatsdatadasasandsdsadsy
sEsMls555555555055M55555555 M5 M5555555555555555555555555555555555555558555565555555
6666666666M666666666666666666666MM66666666666C66666G66666C66656666666666666685%55
1111111131171 1171111179 117717171377117171110117811711111717117117
88888888858688838838383380883850088388383888888853232888333888883650350383588RR257528

99M99M99999H99999939995925999999969099999993593993999999996999733°99999925989°539
23 2. 5235545 20

\ 1 4567891011213 15161718192021222324725222728293031 3230134 3528373829 .0414283 1 4348474243500 5255 556 87 L0 L0000 GBS AIIIEIBIET MG N a2 T A9 T 1A 19 60 /
DD- 5081
@“ Figure 17-13.
. Hollerith Card with Slash (*’/"") Characters

Serving as Delimiters Between Data Fields.

The values from this card image can be separated and stored in variables
N$, S, A, and T, with the routine illustrated in Example 17-13 below.

Example 17-13: Using Delimiter Form of $UNPACK to Separate Data Values
in a Hollerith Card Image

: 10 ON ERROR E$, L$, GOTO 1000
20 DIM A$(3)40, N$25
30 DATALOAD BT (N=82) /629, A$()

320 D$ = HEX (002F)
330 $UNPACK (D=D$) A$() TO N$, S, A, T

1000 (Error recovery routine)

155

The card image from Figure 17-13 is read into array A$() at line 30. At
line 320, the delimiter specification code is stored in D$. The first
" byte of the code, HEX(00), specifies that an error 97 is to be generated
if the data in the buffer is exhausted before all three variables in the
argument 1list have been filled. HEX(00) also specifies that each
successive delimiter between successive values on the card will be
interpreted as a command to skip one variable in the argument 1list. The
second byte of the specification code is the ASCII code for the designated
delimiter character. In this case, HEX(2F) is the code 1in ASCII for a
slash ("/") character. At 1line 3207 four values (separated by the
specified delimiter character) are unpacked sequentially from A$() into
NS, S, A and T, in that order. The first value in A$() must be
alphanumeric, and the next three values must be numeric; otherwise, an
error is signalled. Note that if an error is produced by the $UNPACK
statement, it is handled under program control by the ON ERROR GOTO
statement, which directs program execution to line 1000 in this event.

156

CHAPTER 18
DESIGNING CUSTOMIZED CARDS (MODEL 2244A ONLY)

18.1 READING CUSTOMIZED CARDS WITH THE MODEL 2244A

With its ability to read both punched and mark sense cards, and to utilize
printed index marks on a card to define data columns, the Model 2244A provides
the flexibility to handle a wide range of custom-designed data cards. Punched
and mark sense cards can be intermixed in the same deck, and, indeed, punches
and marks may be combined on a single card. In many applications, specially
designed data cards are prepunched with control information in certain columns,
while the remaining columns are available to the user for marking data.

NOTE:

When punches are combined with marks on a single card, or
punch cards are intermixed with mark sense cards in the same
deck, all cards must be read with the DATA MODE switch set
to OPT MARK. In that case, the ink used for printed
material on punch cards must conform to the reflectance
specifications for ink used on mark sense cards (see Section
18.3). Additionally, it is not in general possible to
combine cards containing index marks with cards which do not
have index marks in the same deck. Cards with index marks
are read with the INDEX MARKS switch in the CLOCK position.
Cards without index marks are read with INDEX MARKS set to
NON-CLOCK.

Custom-designed cards which are marked and/or punched in Hollerith code
can be read in Mode #3 (DATALOAD BT, Address 629); in this mode, the Hollerith
is converted automatically to ASCII. Custom-designed cards which utilize any
code other than Hollerith may be read in binary with Mode #4 (DATALOAD BT,
Address 62A). In the latter case, the special code must be converted from
binary into a meaningful form under software control. The bit and byte
manipulation language features available on the Systems 2200B and 2200C, the
WCS/20 and WCS/30, and in Option 22 for the System 2200S and WCS/10, are
powerful tools for the manipulation and interpretation of binary data. To these
statements, the General I/0 statements (available in Option-2 for the 2200B &
2200C, in Option -23 for the 2200S and WCS/10, and as standard features on the
WCS/20 and WCS/30) contribute an additional measure of power and versatility in
certain code conversion applications.

Standard punched cards are divided into 80 vertical data columns. The
data columns are, in turn, divided horizontally into 12 rows (see Figure 8-1).
The number and width of data columns on specially designed cards are defined by
the spacing of 1index marks along the card's bottom edge. The rows, however,
must be uniformly spaced according to the specifications listed below, and are
not subject to alteration.

157

IR nm
TR
DR
g [NEEEIRRRRE R R R
ENTLEE R
III Hill
III IIII:
I

T
TN

WMZ22532 222333

uJ!IIJ!IIJIII:

Figure 18-1. Standard 80-column, 12-Row Card with Index Marks for
Marking or Punching (Wang Part No. 700-1222)
In general, punched cards need not contain index marks, since the spacing

of punched data columns is set automat1ca]1y by the keypunch, and conforms to
punched card standards (as spelled out in ANSI specifications X3.21-1967,

"Rectangular Holes in Twelve-Row Punched Cards"). If the punched card does have
index marks, the index marks must be spaced according to the standards listed in
Section 18. 4 "Punch/Mark Sense Cards with Index Marks."

Custom-designed mark sense cards typically contain fewer than 80 columns,
since the data columns on 80-column cards are too narrow for convenient labeling
and marking of data. (The two special format mark sense BASIC program cards,
for example, each have 37 columns.) In this case, index marks are used to
delimit data columns. Punches and #2 pencil marks lying in the data field
between consecutive index marks are read as data.

18.2 GENERAL CARD SPECIFICATIONS (MARK SENSE AND PUNCH CARDS)

Cards read by the Model 2234A or Model 2244A must conform to the
specifications in "American National Standard Specifications for General Purpose
Cards for Information Processing" (ANSI x3.11 - 1969). Card dimensions, paper
requirements, and other detail requirements are set out concisely in the ANSI
specifications. The major specifications are summarized below:

1. Card Dimensions. A1l cards must conform to the following dimensions:

a) Height
Min - 3.247 inches
Max - 3.257 inches.
b) Length
Min - 7.370 inches
Max - 7.380 inches
c) Angles

90 degrees + 5 minutes

158

A1l edges must be straight, and opposite edges must be parallel within
0.003 inch.

A diagonal corner cut may be made in the upper left corner
(preferred), or in the upper right corner of the card. The corner cut
should remove 0.250 inch + 0.016 inch from the long edge, and 0.433
+ 0.016 inch from the short edge of the card (at a reference angle

- of 60 degrees to the long edge of the card).

Paper Quality. The following standards apply to the paper stock used
for cards.

a) Paper Composition
The paper should be composed of 100% chemical wood fibre.

b) Grain
The grain of the paper must be in the direction of the card
length.

c) MWeight
The paper must weigh 99 1bs + 5% per ream of 500 sheets, 24
inches x 36 inches.

d) Thickness
The paper thickness must be 0.0070 inch + 0.00040 inch.

e) Bursting Strength
The minimum bursting strength of the paper must be 55 1bs per
square inch.

Reflectance.* The reflectance of the card stock, and of printed
material on the card which 1is not meant to be read as data, must
conform to the following standards:

(a) Average Reflectance
The average reflectance of the card must not fall below 80%.
(Reflectance measurements taken using a Macbeth Standard
Reflectance plaque as calibration standard.)

(b) Printed Material
Printed material and/or blemishes in the marking field of the card
which are not to be read as data in OPT MARK mode must reflect at
least 85% of the average reflectance of the card. (Thus, for
example, a card whose average reflectance is 90% may not have a
blemish or printed material whose reflectance is less than 0.85 x
0.90, or 76.5%.)

*Reflectance standards apply to all cards read in OPT MARK mode. This
includes all mark sense cards, as well as punch cards which are to be
intermixed with mark sense cards in the same deck and read in OPT MARK
mode. The reflectance requirements do not apply to punch cards read
in PUNCH mode only.

159

NOTE:

White and natural cards manufactured to card industry
standards are, in general, satisfactory for the Model 2244A.

18.3 CUSTOM-DESIGNED MARK SENSE_CARDS

kS

The design specifications for mark sense cards with index marks allow for
a great deal of flexibility in the design of customized cards. The relevant
specifications are discussed in this section.

Definitions of Key Terms

Before embarking upon a discussion of custom card design, it may be
helpful to define certain important terms.

a) Index Mark - One of the heavy black lines sequenced along the bottom
edge of a card, and used to define data columns. Index marks are also
commonly referred to as "timing marks" and "clock marks".

b) Index Column - An imaginary column created by extending an index mark
vertically to the upper edge of the card (see Figure 18-2). No data
marks can be placed in an index column.

c) Data Column - A vertical column bounded by two consecutive index
columns (see Figure 18-2). The data column begins at the trailing
edge of the first index mark, and ends at the 1leading edge of the
second index mark. Data marks must be made within a data column. The

width of a data column is determined by the spacing of index marks on
the card.

data columns

N\
/{ \

Index
columns ™

]

/

1
|
[
|
|
|
|
|
]
]
|
]
|
[
|
|
]
]
!
|
|
|
1
|

[}
i
I
I
I
I
|
|
I
|
|
I
I
I
I
|
|
|
I
|
|
I
|
|

o e . — ——————— — ————— — —

N N

Index marks
(must be printed
in non-reflective ink)

Figure 18-2.
Index Marks, Index Columns, and Data Columns.

160

d)

data rows

f)

Data Row - One of the twelve imaginary rows which run the 1length of
the card horizontally, intersecting all data columns. The size and
spacing of data rows is a constant which is determined by the
alignment and sensitivity of the phototransistors in the reading head
of the card reader. (See Figure 18-3.)

N\
- -
- N

©W O N O G AW N =O

[B E E N B B E BN B8N

Figure 18-3.
Data Rows.

Marking Area - The area defined by the intersection of a data row with
a data column (see Figure 18-4). Since there are 12 data rows, each
column contains 12 marking areas. The marking areas in each column
are the only areas on a card fully scanned by the 12 reading sensors
as the card is read. In order to ensure accurate and consistent
reading, therefore, each data mark must fall completely within the
marking area.

Marking Constraint - A printed figure (such as a box, a circle, or a
pair of parallel lines closed by dots at both ends) which locates and
confines the data mark within a particular marking area. Often,
marking constraints have identifying 1labels for marking data or
program statements (see Figure 18-4).

1A1

Marking
areas

\

R

Typical marking Index marks
constraint
Figure 18-4.
Marking Areas and Typical Marking Constraints. (Marking areas
are formed by overlap of rows and columns, and are indicated
by heavily shaded areas. Marking constraints are used to confine
the mark within a marking area.)

Detail Specifications for Mark Sense Cards

The specifications required to design a customized mark sense card include
the dimensions and spacing of index marks (which define the vertical data
columns), the width and spacing of horizontal data rows (which define the
marking areas in each column), and the placement of data marks within a marking
area.

162

Index Marks. The limiting dimensions and spacing restrictions for
index marks are defined in the following specifications.

leading
edge of
card

I .020 inch
.125 inch .01 inch ' : minimum width
minimum height | .025 inch
* ! I recommended

B :

|
: . Index marks must be
!

printed in non-
~=—— 182 inch % .005 inch minimum reflective ink.

Figure 18-5.
Minimum Dimensions of Index Marks, and Minimum Distance Between
First Index Mark and Leading Edge of Card.

a) Reflectance.
The index marks must be printed in a non-reflective ink which has
an average reflectance less than or equal to 28% of the

reflectance of that portion of the card immediately adjacent to
the index marks.

b) Minimum distance from leading edge of card.
The minimum distance from the leading edge of the card to the

leading edge of the first index mark is .182 inch + .005 inch
(see Figure 18-5).

c) Minimum width.
The minimum width of an index mark is .020 inch. The recommended

width is .025 inch + .005 inch. There is no maximum width.
(See Figure 18-5.)

d) Minimum length.

The minimum length of an index mark is .125 inch + .01 inch.
This is also the recommended length. (See Figure 18-5.)

163

leading
edge
of card

N

e)

f)

q)

Minimum spacing between index marks.

The minimum distance between the trailing edge of a first and the
leading edge of a second consecutive index mark (i.e., the minimum
width of a data column) is .052 inch. (See Figure 18-6.)

Leading ~=— 052 minimum

Edge of

Card \ l

~<= 182 +.005 minimum

J

Figure 18-6.
Minimum Distance Between Consecutive Index
Marks for Mark Sense Data Columns.

Maximum spacing between index marks.

The maximum distance between two consecutive index marks (i.e.,
the maximum width of a data column) is 2.175 inches. It is
recommended, however, that the data columns not exceed .50 inch in
width. (See Figure 18-7.)

Minimum distance from last index mark to trailing edge of card.
The minimum distance between the trailing edge of the last index
mark and the trailing edge of the card is .190 inch. There is no
maximum. (See Figure 18-7.)

N

f____.__________._______

trailing
edge
of card
| : .025 inch recom-
t H mended
] — ——— |
i~e— 182 in. * .005 minimum | | —! | <e——2.175 inch bl ﬂf:imum
! [= maximum U
| : (.50 inch *
_»: | 052 inch maximum
ol minimum recommended)
Figure 18-7.

" Alignment of Index Marks on Card.

164

Data Rows and Marking Areas. The 12 marking areas in each column are
defined by the intersection of the column with the 12 data rows. Data
marks made in a data column outside a marking area may not be picked
up by the card reader. Note that the spacing and size of the data
rows are not defined by index marks or other printed material on a
card, but are determined by the arrangement of the 12 photoelectric
‘sensors in the card reader's reading head, and cannot be altered by
the user.

a) Distance from top edge of card to 12th row. The center 1line of
the 12th data row ‘is .250 inch from the top edge of the card.
(See Figure 18-8.)

b) Vertical spacing between data row centerlines. Data row
centerlines are spaced .250 inch apart. (See Figure 188.)

c) Width of data rows. Each data row has a maximum width of .240
inch (i.e., the marking area in a data row extends a maximum of
.120 inch on each side of the centerline; see Figure 18-8).

.250 inch from
top edge to
data row center line

.250 inch
from center
line to
center line

O00wo0OoO0o

240 inch
max. width

1 of data row
Figure 18-8.
Maximum Width and Spacing of Data Rows.

Data Marks. A data mark must be a single-stroke vertical 1line made
with a #2 pencil or equivalent.

a) Minimum Width.
The minimum width of a data mark is .015 inch. The maximum width
is limited only by the width of the data column.

b) Minimum Tength.
The minimum length of a data mark is .125 inch, centered within
the marking area. (See Figure 18-9.) .

16K

c) Maximum length.
The maximum length is .240 inch centered within the marking area.
Data marks Tonger than .240 inch may extend into a neighboring

data row, and cause a mark to be read in that row. (See Figure 18-9.)

Marking Constraints. Typically, marking constraints are used to
locate and confine data marks within the marking areas. The minimum
and maximum dimensions of a marking constraint must, therefore,
conform to the dimensions of a- valid data mark, as listed in

paragraph 3 above. Recommended dimensions for marking constraints are
listed below.

a) Reflectance.
Marking constraints and identifying labels must be printed in a
reflective ink whose reflectance does not fall below 85% of the
average background reflectance.

b) Vertical spacing of marking constraints. The centerline of the
top (12th) row of marking constraints must be parallel to the top
edge of the card, at a distance of .250 inch. Subsequent rows
must be on .250 inch centers. (See Figure 18-9.)

Top Edge of Card .250 Top Edge of -250

| A Card\ |
___._______l.‘,..‘ - —_f“ __________ _[:} _____ r-

WRONG RIGHT
Figure 18-9.

Vertical Spacing of Data Marks and Data

Constraints. Data Marks and Constraints Must

Be Centered in Marking Areas. (Centerlines at

.250 inch increments from top edge of card.)

c) Distance from index marks. :
Marking constraints must be a minimum distance of .005 inch from
the leading and trailing index columns. (See Figure 18-10.)

Typical marking
constraint.

]
|
]
—

Figure 18-10.
Minimum Distance Between Marking Con-
straint and Index Marks, '

-«— .005 inch minimum

166

d) Minimum recommended length.
The recommended minimum length of a marking constraint is .150
inch + .010.

e) Minimum recommended width.

The recommended minimum width of a marking constraint is .030 inch
+ .005.

18.4 STANDARD PUNCHED CARDS WITHOUT INDEX MARKS

Standard 80-column punched cards without index marks must conform to the
specifications described 1in the USA Standard publication "Rectangular Holes in
Twelve-Row Punched Cards" (ANSI x3.21-1967). Column spacing and punch
registration on punched cards is determined automatically by the keypunch unit;
in general, all keypunch units (including the IBM Models 26 and 29) are designed
to conform to the ANSI x3.21-1967 standards.

18.5 PUNCH/MARK SENSE CARDS WITH INDEX MARKS

Combining Punches and Marks on Custom-Designed Cards

With the DATA MODE switch set to OPT MARK, the Model 2244A is capable of
reading a combination of punched and mark sense cards in the same deck, as well
as a mixture of punches and marks on the same card. In such cases, the width
and spacing of data columns in the punch field must conform to the requirements
of the keypunch unit. Wang Laboratories offers an 80-column card which can be
used interchangeably as a mark sense or punch card (see Figure 18-1). This card
(Wang Part No. 700-1222) .contains index marks, and therefore can be read with
the INDEX MARKS switch in CLOCK mode, the standard setting for mark sense cards.
In addition, all data constraints on the card are printed in a reflective ink
which 'is not picked up as data when the card is read in OPT MARK mode. Card
#700-1222 provides the capability to intermix punch and mark sense cards in a
single deck, or to intersperse punched and marked columns on the same card.

Card #700-1222 is a standard 80-column card which, though it can be
marked, is designed primarily for use as a punch card. The narrowness of the
data columns makes them somewhat inconvenient for marking, and there is no
provision for the placement of identifying labels under specific boxes. As it
stands, the card could be meaningfully interpreted only if it is marked in
Hollerith code - a restriction which also may be inconvenient for certain
applications. If the user wishes to custom-design his own card, he may utilize
a number of columns for punch fields, while the remainder of the card is
designed for marking. In this case, the placement of punch columns must conform
to the exacting requirements of the keypunch unit, but the mark sense fields can
be expanded to a size convenient for marking (subject to the very flexible
restrictions spelled out in Section 18.3). Within the mark sense data columns,
individual marking constraints can be tagged with identifying labels to clarify
and simplify the marking process.

167

Detail Specifications for Punch Data Fields

The general specifications for mark sense data columns are covered in
Section 18.3. The more rigorous specifications applying to punch data columns
are listed below. '

NOTE:

If punch fields and mark fields are to be combined on the
same card, it is recommended that all punch columns be
sequenced from the leading edge of the card, followed by the
mark sense columns. The alternation of punch and mark sense
data columns, or the placement of punch columns starting in
the middle of a card, involves exceedingly complex design
considerations (except in the case of a standard 80-column
card 1in which all punch and mark sense columns are the same
width), and is not recommended.

1. Card Stock and Dimensions. Cards used for punching only, or for both
punching and marking, must conform to the specifications for card
stock and card dimensions listed in Section 18.2, paragraphs 1 and 2.

2. Reflectance of Card Stock and Printed Material. The average
reflectance of the card stock, and of the ink used in printed material
on a card not meant to be read as data, must conform to the
specifications in Section 18.2, paragraph 3.

3. Dimensions of Data Constraints. The recommended dimensions of data
constraints for punch/mark cards are:

Width - .030 + .005 inch
Height - .150 + .010 inch

The average size of a standard rectangular punch hole is 0.055 x
0.125. The recommended data constraint is therefore somewhat longer
and narrower than the standard punch hole. In this way, it 1is less
likely that a mark will accidentally be made wide enough to expand
intohadneighboring column if the data constraint is marked rather than -
punched.

4. Distance from Leading Edge of Card to First Punch Column. The
distance from the leading edge of the card to the centerline of the
first punch data column is .251 + .0051inch. (See Figures 18-11,18-13.)

5. Distance from First Index Mark to First Punch Column. The location of
the leading index mark is determined with reference back from the
first punch data column rather than to the leading edge of the card.
The centerline of the first index mark must be .050 inch + .005 from
the]center11n§ of the first punch data column. (Refer to Figures
18-11, 18-13.)

168

10.

Dimensions of Index Marks.

a) Height
The recommended height of index marks is .125 inch + .010.

b) Width
The recommended width is .025 inch + .005.

Color and Reflectance of Index Marks. Index marks should be printed
in a black, non-reflective ink which has an average reflectance less
than or equal to 28% of the reflectance of that portion of the card
immediately adjacent to the index marks.

Width of Punch Data Columns. The distance between the centerlines of
consecutive index marks (i.e., the width of data columns) must be .087
inch + .005 (refer to Figures 18-11,18-13))

]
1 #—_ L — First Punch Column
] ! |
Card —! ! 1~— (087 +.005
Leading ! t :
Edge \ o
. |
l : .
]
—i |=— 050 +.005
] |
— == .251£.005
1 1
Figure 18-11.

Detail Specifications for First Punch Data
Column and Spacing of First and Subsequent
Index Marks. ’

Vertical Spacing of Data Constraints. The centerline of the top
(12th) row of data constraints must run parallel to the top edge of
the card at a distance of .250 inch + .005, Successive rows of data
constraints are on .250 inch centers. (See Figure 18-13.)

Punch Overlap into Index Column. Punch holes may overlap marginally
from the data ‘column into the leading or trailing index column. In
such cases, the leading edge of a punch hole which overlaps the
leading index mark must be a minimum of .015 inch from the leading
edge of the index column (i.e., the punch hole may overlap a maximum
of .010 inch into the index column). Similarly, the trailing edge of
a punch mark must be a minimum distance of .015 inch from the trailing
edge of the index mark. (See Figure 18-12.)

169

Index Mark.

:<—— 015 inch

Figure 18-12.
Minimum Distance Between Leading Edge
of Punch Hole and Leading Edge of

tolarances

h
a]
h
h
h
]
1)
h
ﬂo"ﬂicum‘ §
R)

7.375 + .005 >
e -
) . T T . -§———
11 equal)
spacas, ﬁ/
each g
.250 +.005
+.007 Total =
3.250 _ go3 2.750 +.005
t
]

Total 6.960 + .005
Tolerances Non-Accum.

80 Equal Spaces
aach .087 + .005

Figure 18-13.

Card Specifications for 80-Column Punch/Mark Sense Card.
(Note: Data constraints and other printed matter must be printed in

reflective ink [see paragraph #2, Section 18.5.]

Data Constraints
Width — 030 * .005
Height — .150 +.010

Index Marks Specifications:
Width — 025 + .005
Height — .125 +.010
Color — Black

79 Equal Spaces
each .087 +.005
Total = 6.873 + .005
Tol. Non-Accum.

Index marks must be printed in non-reflective ink [see paragraph 7,

Section 18.5.]

170

@ ' APPENDIX A

' GENERAL FORMS OF THE

CARD READER STATEMENTS
AND COMMANDS

All of the BASIC statements used with the card reader have applications for a number of other input and
input/output devices. General discussions of these statements are found in the system Reference Manual.
The general form and discussion of each statement and command in this Appendix focuses specifically
upon the statement’s applicability to the card reader and to card reading operations.

s

HOLLERITH STATEMENTS/COMMANDS

HOLLERITH DATA VALUES (DATALOAD)

DATALOAD [q/f;?nzs] argument list

Examples:
10 DATALOAD /628, A, B, C

10 SELECT #3 628
@ 20 DATALOAD #3, N(), B$()

10 SELECT TAPE 628
20 DATALOAD AS$,BS, N, O

Reference:
Chapter 4

HOLLERITH DATA VALUES (INPUT)

SELECT INPUT 62B
INPUT ““character string’’, argument list

Examples:
10 SELECT INPUT 62B
20 INPUT A, B, N$

10 SELECT INPUT 62B
20 INPUT “READING DATA CARDS”, A$, B$, N

Reference:
Chapter 5

171

HOLLERITH STATEMENTS/COMMANDS

HOLLERITH CARD IMAGE (DATALOAD BT)

DATALOAD BT (N=82) [;6“29] alpha array designator

Examples: '
5 DIM A$(3)40 : ?
10 DATALOAD BT (N=82) /629, AS() o

5 DIM A$(3)40
10 SELECT #3 629
20 DATALOAD BT (N=82) #3, A$()

5 DIM B1$ (3)40
10 SELECT TAPE 629
20 DATALOAD BT (N=82) B1$()

Reference:
Chapter 6

HOLLERITH LOOK-AHEAD (DATASAVE BT)

DATASAVE BT [/42E
N E-)

] alpha variable

’

Examples:
10 DIM F$1
100 DATASAVE BT /42E, F$

90 DIM A$(3)40, F$1
100 DATASAVE BT /42E, F$

200 DATALOAD BT (N=82)/629, A$()

Reference:
Chapter 7

HOLLERITH PROGRAM LOADING (LOAD COMMAND)

/62B,
LOAD [#n]

Examples:
CLEAR
LOAD /62B

SELECT #5 62B
LOAD #5

Reference:
Chapter 8

172

HOLLERITH PROGRAM LOADING (LOAD STATEMENT)

LOAD [QIZB] L1l L2l

Examples: -
100 LOAD /628, 100, 300

100 SELECT #3 62B
110 LOAD #3, 100

100 LOAD /62B

Reference:
Chapter 8

HOLLERITH PROGRAM LOADING (CONSOLE INPUT)

SELECT CI 02B (All program text and system
. commands entered from cards.)

f ' (After all cards are read, last card
@ SELECT C1 001 should return CI to keyboard.)
Reference:
Chapter 9

173

BASIC MARK SENSE STATEMENTS/COMMANDS

BASIC MARK SENSE PROGRAM LOADING (LOAD COMMAND)

/62C
o0 [

Examples:
CLEAR
LOAD /62C -

SELECT #4 62C
CLEAR
LOAD #4

Reference:
Chapter 11

BASIC MARK SENSE PROGRAM LOADING (LOAD STATEMENT)

/62C,
LOAD [#n,] (L1] [L2]

Examples:
100 LOAD /62C, 100, 300

90 SELECT #2 62C
100 LOAD #2, 100

90 SELECT TAPE 62C
100 LOAD

Reference:
Chapter 11

BASIC MARK SENSE DATA VALUES (DATALOAD)

DATALOAD [/ 62D

#n,] argument list

Examples:
10 DATALOAD /62D, A$, B, S$

10 SELECT #1 62D
20 DATALOAD #1, A$(), B()

10 SELECT TAPE 62D
20 DATALOAD N(), B$(), A$, N

Reference:
Chapter 12

174

Reference:
Chapter 13

BASIC MARK SENSE PROGRAM LOADING (CONSOLE INPUT)

SELECT CI 02C (All program text and system commands
. entered from cards.)
@ SELECT CI 001 (After all cards are read, last card should
return Cl to keyboard.)
Reference:
Chapter 14

175

BINARY CARD IMAGE (.DATALOAD BT)

BINARY STATEMENTS

/62A

DATALOAD BT (N=162) [#n ’] alpha array designator

Examples:
10 DIM A$(5)40

20 DATALOAD BT (N=162) /62A, A$()

10 DIM B$(5)40
20 SELECT #3 62A

30 DATALOAD BT (N=162) #3, B$()

10 DIM A$(5)40
20 SELECT TAPE 62A
30 DATALOAD BT (N=162) A$()

Reference:
Chapter 15

BINARY LOOK-AHEAD (DATASAVE BT)

DATASAVE BT [’42F

#n :I alpha variable

Examples:
100 DIM F$1

110 DATASAVE BT /42F, F$

100 DIM A$(5)40, F$ 1
110 DATASAVE BT /42F, F$

200 DATALOAD BT (N=82)/62A, A$()

Reference:
Chapter 16

APPENDIX B
CARD PURCHASING INFORMATION

Wang Laboratories stocks and sells three types of cards for use on the
Models 2234A and 2244A card readers. A1l three types of cards are printed in
non-reflective ink, and contain index marks; all three are therefore suitable
for reading in either PUNCH or OPT MARK mode. This fact is not significant for
Model 2234A owners, since the Model 2234A reads only 80-column punch cards in
any case. For Model 2244A owners who wish to intermix punch and mark sense
cards in a single deck, however, it is important that the printed matter on
punch cards meet the reflectance criteria imposed by the OPT MARK reading mode.

The three types of cards available are illustrated below. For detailed
pricing information on these cards, write or call the Software Sales Department:

Wang laboratories, Inc.

Software Sales Department

836 North Street

Tewksbury, MA 01876

Tel. (617) 851-4111, extension 2617

When ordering or inquiring about cards, be sure to specify the correct
part number: :

80-Column Hollerith Punch/Mark Sense Card - #701-1222
40-Column Hollerith Punch/Mark Sense Card - #701-1223
Wang BASIC Mark Sense Card - #701-1224

/IIIIIlIIIlIIIIIIlII|lllIIIIIIIIIIIIIIIIIIIIII||IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
i ——
HHIREn
| gIIIIIIIIIIIIIII‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIIII
B
ERREELERERR R R
RHETTR e e
) IRREEERRR R R R e
—

Figure B-1.
80-Column Hollerith Punch/Mark Sense Card
(Wang Part #701-1222)

Dx222882 222883

-
-
-

rrpprpnrrrvvﬁrrrnﬁnnnnnﬁnrnrrvnrvpprnrpp\
G B BN BB RE R EE KL
o, off o off of off o} off o} offof ff o} off of offoff ol ff o off of ff o} o ff o ff o} off o} off A} ff A} ok} o ok} o o
LR AR R R R AR R R R R R R R R R R R R R R R R R R
gﬁﬁﬁ%%%%ﬁ%ﬁ%ﬁﬁﬁﬁﬁﬁ%%%%%%ﬁﬁﬁﬁ%ﬁﬂﬁ%ﬁﬁﬁi%%%ﬁ
E%%%%%%%%%ﬂ%ﬁ%ﬁ%%%%%%%%%ﬁ%ﬁ%ﬁﬁ%ﬁ%%ﬁ%%%%%%
8 0 8 0 o o 0o o o8 B O o 5 o o o 8
O o f 0 o 1 f o o 1 of o o 1 o 8 o o o 8 050 o 5 A o o o o o o o o o o 45 o
G ol o8 o o o o o o oo of o o ol o oo ol o oo of o oo o o o o o o
0 AR AR AR AL A I A AR A A A AR A AR AR A O R R R
of§ off off o o o off ol o o oF oFf o o o o o oF oF o o o o o o o off of o o o o o o o o o o o o
o oF B o o o ol o ol ol ol off b o o0 ol o ol B ol Bk of ol o8 o o B B B ol o o o o o of ol o o
IlllllllllllIIIIllllllllllllllllllllllJ/
Figure B-2.
40-Column Hollerith Punch/Mark Sense Card
(Wang Part #701-1223)

182 222954 222538

STATEMENT
NUMBER

(@]
[©]
=]
(@]
[£][E]
El
v [
EE
Y ET
e
EIE
&7 &
B
=71 6
E1ET

i o |

& &5 7 B

5 &8 B B=°) B9
E1ET
E9 &7
1T
& 59
R
&9 B
RARS
7 &9
RIS
=9 B
B
EAET
EIE]
=9 &7
&=
E T

alplllibRERERRR R R ERERRRRRE

\ Frl203040 516l Zhsiohiofuhizhizfulis Lo |7 s o jzo) 21 220230240250 26) 270 280 290300 31 D3A33kaddaslashez]l

Figure B-3.
Wang BASIC Mark Sense Program/Data Card
(Wang Part #701-1224)

179

APPENDIX C
CARD READER MAINTENANCE INFORMATION

PREVENTIVE MAINTENANCE INFORMATION

It is recommended that your card reader be serviced semi-annually. A Wang
Maintenance Agreement is available to assure this servicing automatically. If
you do not purchase a Maintenance Agreement, all servicing must be arranged for

by you. A Maintenance Agreement protects your investment and offers the
following benefits:

Preventive Maintenance

Your equipment is inspected semi-annually for worn parts, lubricated,
cleaned and updated with any engineering changes. Preventive

maintenance minimizes "downtime" by anticipating repairs before they
are necessary.

Fixed Annual Cost:

When. you buy a Maintenance Agreement, you issue only one purchase
order for service for an entire year and receive one annual billing.
More frequent billing can be arranged, if desired.

Further information regarding Maintenance Agreements can be obtained from
your local Sales-Service office.

NOTE:

Wang Laboratories, Inc. neither honors Maintenance
Agreements for nor guarantees equipment modified by the
user. Damage to equipment incurred as a result of such
modification is the financial responsibility of the user.

179

OPERATOR MAINTENANCE

Although most preventive maintenance procedures for the card reader must
be carried out by qualified service personnel, there are several elementary
cleaning procedures which can be performed by the operator.

Exterior Cleaning

In a typical environment, the exterior of the card reader should be
cleaned following each 40 hours of operation. If persistent dirt buildup is
present, the exterior should be cleaned as frequently as possible. Simply wipe
the housing thoroughly with a clean, lint-free cloth saturated with a mild
solvent (such as denatured alcohol or household ammonia). Regular cleaning will
keep the card reader's anodized finish bright and attractive, and will reduce
the 1ikelihood of operational problems resulting from excess dirt buildup.

Read Station Cleaning

The following procedure should be observed to clean the card reader's LED
light source and reading sensors. In a typical environment, it is recommended
that the read station be cleaned following each 40 hours of operation. In a
particularly dusty environment, or in an application involving extensive
processing of mark sense cards, the read station may require more frequent
attention.

NOTE:

Frequent and recurrent reading errors may be indicative of
excess dirt accumulation in the read station. If you
encounter this problem, clean the reading station (use the
method described below), and check for recurrence of the
problem (allow three or four minutes for the solvent to
evaporate). If the problem 1is not corrected, call your
field service representative.

1. Saturate several unused (unmarked, unpunched) cards with alcohol. For
the Model 2234A, use four or five cards; for the Model 2244A, use two
or three cards. The gap between the 1ight station and reading head
varies marginally from unit to unit; experiment with your wunit to
determine the number of cards to be used.

2. Pass the cards in a stack (not individually) into the read station.
Push the picker sector forward to start the cards through the rollers.
(The picker sector is a perforated rubber insert on the bottom of the
input hopper in front of the entrance to the read station; it moves on
a pivot.) Push the cards through the rollers into the read station.

3. When enough of the stack emerges into the stacker to grip, pull the

cards through and out of the read station. Repeat this procedure
three or four times to ensure that everything is thoroughly cleaned.

10N

APPENDIX D
HOLLERITH CODES AND
ASCII EQUIVALENTS

- TABLE | — Hollerith Codes

TABLE Il — HEX, ASCII, and Hollerith
Codes for BASIC Characters
and Text Atoms

101

TABLE I, HOLLERITH CODES

12 |12 | 12 |12 12 |12 |12 |12)

n | n n|in n|n n | n Blank

0 0 - lo 0 0 0 0 0

9 |9 |9 |9 |9 |9 |9 |9

N | r | i |I |z | R |z |9 |TA J & |y |- |o |sP
Blank | £1 | 72 | 69 |49 | 7A | 52 |5A |39 |BA | 7c |7B |26 | 7D |20 |30 | 20

1 TA | TA | TA [NP | TA | NP |TA |TA | NP | j a A - | J / 1
BB | A9 | A0 {01 [9F | 11 |81 |91 | D9 | 6A |61 |41 | 7E | 4A | 2F | 31

2 TA TA TA | NP TA NP |TA |NP TA k b B S K S 2
BC AA A1 | 02 B2 12 |82 |16 DA 6B 62 42 73 4B 53 32

3 TA TA TA | NP TA NP |TA |TA NP 1 c C t L T 3
BD AB | A2 | 03 B3 13 (83 |93 DB 6C 63 43 74 ac 54 33

4 TA TA TA | TA TA TA |TA |TA TA m d D u M U 4
BE AC A3 1 9C B4 9 |84 (9% DC 6D 64 44 75 4D 55 34

5 TA | TA |*TA | NP TA TA |LF |TA TA n e E v | N v 5
BF AD A4 | 09 B5 | 85 |0A |95 DD 6E 65 45 76 4E 56 35

6 TA TA TA | TA NP NP |NP [TA. | TA 0 f F W 0 W 6
co AE A5 | 86 B6 08 17 {96 DE 6F 66 46 77 4r 57 36

7 TA TA TA | NP NP NP |NP |NP TA p g G X P X 7
C1 AF A6 | 7F B7 87 |1B |04 DF 70 67 47 78 50 58 37

8 TA TA TA | TA TA NP |{TA [TA NP q h H y Q Y 8
C2 BO A7 |97 B8 18 |88 |98 EO 71 68 48 79 51 59 38

o1 |TA | [we fTa fTa e |t [T [we [Ta T [T [w [TA | |
9 |10 |00 |8 |8 |19 |8 |99 |D8 |[CA |C3 |A8 | DI |Bl |BY | 60

gp NP [NP | NP [TA | NP | NP |TA |TA | NP | TA |TA I |TA |1 N |
FA | EE | E8 |8E |F4 | 92 |8A |9A |E2 | CB |C4 [5B |D2 |5D |5C | 3A|

g3 |NP [NP | NP | NP [NP | TA |TA |TA | NP [TA |TA |. |TA |§ |, |¢#
FB | EF | E9 (0B |F5 | 8F |88 |98 |E3 |CC [C5 |26 |D3 |24 |2C | 23}

g-q4 | NP NP NP | NP NP NP |TA |NP NP | TA | TA | < TA | * | % @
FC | FO EA | OC Fé 1C (8C |14 E4 | CD Cé6 3C D4 2h | 25 40

g-5 | NP NP NP | CR NP NP INP NP NP TA TA (TA) — '
FD F1 EB | 0D F7 1D |05 15 E5 CE C7 28 D5 - | 29 5F 27

g-¢ | NP NP NP | NP NP NP NP [TA NP NP TA + TA H > =
FE F2 EC | OE F8 1E |06 |[9E E6 CF c8 2B D6 3B 3E 3D

g7 |NP [NP | NP INP [NP | NP NP NP |NP | NP |TA |! N AN |2 -'Aq%
FF | F3 | ED |OF |F9 | 1F |07 1A |E7 | DO |C9 |21 |D7 |56 |3F |2 ;
NP = non-printable character

TA = Text atom (refer to Table II for text atom associated with 1isted HEX code).

LN aYa)

TABLE II. HEX, ASCII, and HOLLERITH Codes for BASIC Characters and Text Atoms
HEX CODE

BASIC SYMBOL
(TEXT ATOM)

LINE FEED (LF)
CARRIAGE RETURN (CR)

X-ON

X-OFF

SPACE

DOUBLE QUQTE

#
$
%
&

SING.QUOTE

(
)

*

(comma)

(decimal point)

(slash)

0A
0D
1
13
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32

183

ASCII CODE

00001010
00001101
00010001
00010011
00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000

00101001

oo101010
001017011
00101100
00101101
00101110
00101111
00110000
00110001
00110010

HOLLERITH CODE
(Rows Punched)

0-9-5
12-9-8-5
11-9-1
11-9-3
BLANK
12-8-7
8-7
8-3
11-8-3
0-8-4
12

BASIC SYMBOL HEX CODE ASCIT CODE HOLLERITH CODE

(TEXT ATOM) (Rows Punched)
3 33 00110011 3
4 34 00110100 4
5 35 00110101 5
6 36 00110110 6
7 37 00110111 7
8 38 00111000 8
9 39 00111001 9
3A 00111010 8-2
; 38 00111011 11-8-6
< 3C 00111100 12-8-4
-) 00111101 8-6
> 3E ~ 00111110 0-8-6
? 3F 00111111 0-8-7
@ 40 01000000 8-4
A M 01000007 12-1
B 42 01000010 12-2
c 43 01000011 12-3
D 44 01000100 12-4
E 45 01000101 12-5
F 46 01000110 12-6
G 47 01000111 12-7
H 48 01001000 12-8
I 49 01001001 12-9
J aA 01001010 11-1
K 4B 01001011 11-2
L ac 01001100 11-3

184

BASIC SYMBOL HEX CODE ASCII CODE HOLLERITH CODE

= =< [enss - w o0 v . O =

(TEXT ATOM) (Rows Punched)
M . 4D 01001101 11-4
4E 01001110 11-5
4F 01001111 11-6
50 01010000 11-7
51 01010001 11-8
52 01010010 11-9
53 01010011 0-2
54 01010100 0-3
55 01010101 0-4
-56 01010110 0-5
57 01010111 0-6
X 58 - 01011000 0-7
Y 59 01011001 0-8
yA 5A 01011010 0-9
I 5B 01011011 12-8-2
] 5D 01011101 11-8-2
4+ (Up Arrow) 5E 01011110 11-8-7
_ (Underline) 5F 01011111 0-8-5
a 61 01100001 12-0-1
b 62 01100010 12-0-2
c 63 01100011 12-0-3
d 64 01100100 12-0-4
e 65 01100101 12-0-5
f 66 01100110 12-0-6
g 67 01100111 12-0-7
h 68 01101000 12-0-8
i 69 01101001 12-0-9
J 6A 01101010 12-11-1

185

BASIC SYMBOL
(TEXT ATOM)

k
1

m

y

Z
#P1
ABS (
AND
ARC
ATN(
BA
BACKSPACE
BEG
BIN(
BT

HEX CODE

6B
6C
6D
6E
6F
70
71
72

73

74
75
76
77
78
79
7A
cc
C1
8A

B

D4
BE
AB.
B3
DE
DA

186

ASCII CODE

01101011
01101100
01101101

-.01101110

01101111
01110000
01110001
01110010
01110011
01110100
01110101
01110110
01110111
01111000
01111001

01111010

11001100
11000001
10001010
11001011
11010100
10111110
10101011
10110011
11011110
11011010

HOLLERITH CODE
(Rows Punched)

12-11-2
12-11-3
12-11-4
12-11-5
12-11-6
12-11-7
12-11-8
12-11-9
11-0-2
11-0-3
11-0-4
11-0-5
11-0-6
11-0-7
11-0-8
11-0-9
12-11-8-3
12-11-0-9-7
0-9-8-2
12-11-8-2
11-0-8-4
12-11-0-9-4
12-11-9-3
11-0-9-3
12-11-0-6
12-11-0-2

BASIC SYMBOL

(TEXT ATOM)
Cl '
CLEAR

co

COM
CONTINUE
CONVERT
COS (

DA

DATA
DBACKSPACE
DC

DEFFN

DIM

DISK
DSKIP

END

EXP(

FN

FOR

GOSUB
GOTO

HEX (

IF

INPUT

INT(

HEX CODE

B5
81
BS
A6
84
AE
c3
BD
97
BB
BF
CE
93
8E
89
96
ca
co
9E
9A
9C
D2
9F
99
c5

187

ASCII CODE

10110101
10000001
10111000
10100110
10000100
10101110
11000011
10111101
10010111
10111011
1011111
11001110
10010011
10001110
10001001
10010110
11000100
11000000
10011110
10011010
10011100
11010010
10011111
10011001
11000101

HOLLERITH CODE
(Rows Punched)

11-0-9-5
0-9-1
11-0-9-8
12-0-9-7
0-9-4
12-11-9-6
12-0-8-1
12-11-0-9-3
12-9-8
12-11-0-9-1
12-11-0-9-5
12-11-8-5
9-3
12-9-8-2
0-9-8-1

9-6
12-0-8-2
12-11-0-9-6
9-8-6

9-8-2
12-9-4
11-0-8-2
11-0-9-1

- 9-8-1

12-0-8-3

BASIC SYMBOL

(TEXT ATOM)
KEYIN

LEN(

LET

LIMITS
LIST

LOAD

LOG(

MAT

MOVE

NEXT

NUM(

OFF

ON

OPEN

OR

PLOT

PLOT (SEL)
POS

PRINT
PRINTUSING
RE

READ

REM
RENUMBER
RESTORE

HEX CODE

88
D5
91
86
80
Al
c6
A8
AD
9D
DD
BA
94
B4
88
A4
AF
DF
AO
A7
D6
98
A2
83
A3

188

ASCIT CODE

10001000
11010101
10010001

-10000110

10000000
10100001
11000110
10101000
10101101
10011101
11011101
10111010
10010100
10110100
10001011
10100100
10101111
11011111
1010000

10100111
11010110
10011000
10100010
10000011
10100011

HOLLERITH CODE
(Rows Punched)

0-9-8
11-0-8-5
9-1
12-9-6
11-0-9-8-1
12-0-9-2
12-0-8-4
12-8-1
12-11-9-5
11-9-4
12-11-0-5
12-11-0
9-4
11-0-9-4
0-9-8-3
12-0-9-5
12-11-9-7
12-11-0-7
12-0-9-1
12-0-9-8
11-0-8-6
9-8
12-0-9-3
0-9-3
12-0-9-4

BASIC SYMBOL
- (TEXT ATOM)

RETURN
REWIND
RND(
RUN
SAVE
SCRATCH
SELECT
SGN(
SIN(
SKIP
SQR(
STEP
STOP
STR(
TAB(
TAN(
TAPE
TEMP
THEN
T0
TRACE
VAL (
VERIFY
MOR

HEX CODE

9B
A9
c9
82
85
AC
A5
c8
c7
AA
c2
BO
95
D3
cD
CA
8F
8D
B1
B2
90
DC
BC
8C

189

ASCII CODE

10011011
10101001
11001001
10000010
10000101
10101100

-10100101

11001000
11000111
10101010
11000010
10110000
10010101
11010011
11001101
11001010
10001111
10001101
10110001
10110010
10010000
11011100
10111100
10001100

HOLLERITH CODE
(Rows Punched)

9-8-3
12-11-9-1
12-0-8-7
0-9-2
11-9-5
12-11-9-4
12-0-9-6
12-0-8-6
12-0-8-5
12-11-9-2
12-11-0-9-8
12-11-9-8
9-5
11-0-8-3
12-11-8-4
12-11-8-1
11-9-8-3
12-9-8-1
11-0-1
11-0-9-2
12-11-0-9-8~1
12-11-0-4
12-11-0-9-2
0-9-8-4

CODE 01
CODE 02
CODE 03
CODE 04
CODE 05
CODE 06
CODE 07
CODE 08
CODE 09
CODE 10
CODE 11

CODE 12
CODE 13
CODE 14
CODE 15
CODE 16
CODE 17
CODE 18
CODE 19
CODE 20
CODE 21
CODE 22
CODE 23
CODE 24
CODE 25
CODE 26
CODE 27
CODE 28
CODE 29
CODE 30
CODE 31
CODE 33
CODE 34
CODE 35
CODE 36
CODE 37
CODE 38
CODE 39
CODE 40
CODE 41
CODE 42
CODE 43
CODE 44
CODE 45
CODE 46

CODE 47
CODE 48

CODE 49
CODE 50

APPENDIX E
SYSTEM 2200 ERROR MESSAGES

TEXT OVERFLOW

TABLE OVERFLOW

MATH ERROR

MISSING LEFT PARENTHESIS

MISSING RIGHT PARENTHESIS

MISSING EQUALS SIGN

MISSING QUOTATION MARKS

UNDEFINED FN FUNCTION

ILLEGAL FN USAGE

INCOMPLETE STATEMENT

MISSING LINE NUMBER OR CONTINUE
ILLEGAL

MISSING STATEMENT TEXT

MISSING OR ILLEGAL INTEGER

MISSING RELATION OPERATOR

MISSING EXPRESSION

MISSING SCALAR

MISSING ARRAY

ILLEGAL VALUE

MISSING NUMBER

ILLEGAL NUMBER FORMAT

MISSING LETTER OR DIGIT

UNDEFINED ARRAY VARIABLE

NO PROGRAM STATEMENTS

ILLEGAL IMMEDIATE MODE STATEMENT

ILLEGAL GOSUB/RETURN USAGE

ILLEGAL FOR/NEXT USAGE

INSUFFICIENT DATA

DATA REFERENCE BEYOND LIMITS

ILLEGAL DATA FORMAT

ILLEGAL COMMON ASSIGNMENT

ILLEGAL LINE NUMBER

MISSING HEX DIGIT

TAPE READ ERROR

MISSING COMMA OR SEMICOLON

ILLEGAL IMAGE STATEMENT

STATEMENT NOT IMAGE STATEMENT

ILLEGAL FLOATING POINT FORMAT

MISSING LITERAL STRING

MISSING ALPHANUMERIC VARIABLE

ILLEGAL STR{ ARGUMENTS

FILE NAME TOO LONG

WRONG VARIABLE TYPE

PROGRAM PROTECTED

STATEMENT LINE TOO LONG

NEW STARTING STATEMENT NUMBER
TOO LOW

ILLEGAL OR UNDEFINED DEVICE
SPECIFICATION

UNDEFINED KEYBOARD FUNCTION

END OF TAPE

PROTECTED TAPE

CODE 51
CODE 52
CODE 53
CODE 54
CODE 55
CODE 56
CODE 57
CODE 58
CODE 59

CODE 60
CODE 61
CODE 62
CODE 63
CODE 64
CODE 65
CODE 66
CODE 67
CODE 68
CODE 71
CODE 72
CODE 73
CODE 74
CODE 75
CODE 76
CODE 77
CODE 78
CODE 79
CODE 80
CODE 81
CODE 82
CODE 83
CODE 84

CODE 85
CODE 86

- CODE 87

190

CODE 88
CODE 89
CODE 90
CODE 91
CODE 92
CODE 93
CODE 94
CODE 95

CODE 96
CODE 97

CODE 98

ILLEGAL STATEMENT

EXPECTED DATA (NONHEADER) RECORD

ILLEGAL USE OF HEX FUNCTION

ILLEGAL PLOT ARGUMENT

ILLEGAL BT ARGUMENT

NUMBER EXCEEDS IMAGE FORMAT

ILLEGAL SECTOR ADDRESS

EXPECTED DATA RECORD

ILLEGAL ALPHA VARIABLE FOR SECTOR
ADDRESS

ARRAY TOO SMALL

DISK HARDWARE ERROR

FILE FULL

MISSING ALPHA ARRAY DESIGNATOR

SECTOR NOT ON DISK

DISK HARDWARE MALFUNCTION

FORMAT KEY ENGAGED

DISK FORMAT ERROR

LRC ERROR

CANNOT FIND SECTOR

CYCLIC READ ERROR

ILLEGAL ALTERING OF A FILE

CATALOG END ERROR

COMMAND ONLY (NOT PROGRAMMABLE)

MISSING < OR > (PLOT ENCLOSURES)

STARTING SECTOR > ENDING SECTOR

FILE NOT SCRATCHED

FILE ALREADY CATALOGED

FILE NOT IN CATALOG

/XXX DEVICE SPECIFICATION ILLEGAL

NO END OF FILE

DISK HARDWARE FAILURE

NOT ENOUGH MEMORY FOR MOVE
OR COPY

READ AFTER WRITE ERROR

FILE NOT OPEN

COMMON VARIABLE REQUIRED

LIBRARY INDEX FULL

MATRIX NOT SQUARE

MATRIX OPERANDS NOT COMPATIBLE

ILLEGAL MATRIX OPERAND

ILLEGAL REDIMENSIONING OF ARRAY

SINGULAR MATRIX

MISSING ASTERISK

ILLEGAL MICROCOMMAND OR FIELD/
DELIMITER SPECIFICATION

MISSING BUFFER

VARIABLE OR ARRAY TOO SMALL, OR
INSUFFICIENT DATA IN BUFFER

ILLEGAL ARRAY MODIFIER ARGUMENTS

INDEX
ASCII Code, Used jn Wang Systems 3
ANSI Card Specifications 5,6,9,158,167

BASIC Mark Sense Card
Marking Programs & Data On 78-81
Standard Format Card 2,6,7,77
Wang Format Card 2,6,7,78,177-178
Used for Data (See Mark Sense Data Card)
Used for Programs (See Mark Sense Program Card)

Batch Processing 3,66-75,111-117
With Console Input 66,69,108,111
With Console Input & LOAD 69,113

Binary Card Image 118-125
Conventions for 121-123
Definition of 20
Reading of 120-121

Binary Data Format 118-120
Buffer, Used in $UNPACK Statement 146,147,152,153,154
Buffer, Card Reader Output 51,52,126,127,137

Card Image
Conventions for (Binary) (See Binary Card Image)
Conventions for (Hollerith) (See Hollerith Card Image)
Definition of 20-21

Card Specifications
General 5-9, 158-159
Mark Sense 162-166
Punch 166-170

Console Input 22,25,66-71,108-117
Relation to LOAD 68,111
Used in Batch Processing 69-71,111-114
Used to Load Hollerith Program Cards 66-68
Used to Load Mark Sense Program Cards 108-111

Continuation of a Data Value
Hollerith 33-34,42 '
Mark Sense 97,107

Continuation of a Program Line
Hollerith 63,65
Mark Sense 87

CONTROL MODE Switch 13

191

CONVERT Statement 41-42,44,105-106,139,140-141,142,144

Data Card :
Difference Between Data Values & Card Image 20-21
Format gHollerith) (See Hollerith Data Card)
Format (Mark Sense) (See Mark Sense Data Card)

Data Column 160,169
Data Constraint (See Marking Constraint)

DATALOAD 20,21,22,24,25,28-37,92-101
Hollerith 28-37
General Form 29
Examples 30,36,53
Mark Sense 92-101
General Form 93
Examples 94,99

DATALOAD BT 20,22,24,44-50,118-125
Binary 118-125
General Form 120 :
Examples 121,125,128
Hollerith 44-50
General Form 45
Examples 46,50,54,137
DATA MODE Switch 13,14,15,16
Data Mark 165,166
Data Read in Batch Mode 70,114
Data Reading With DATALOAD (See DATALOAD)
Data Reading With INPUT (See INPUT)
Data Row 161,165
DATASAVE BT 20,23,24,25,51-54,126-128
Binary 126-128
General Form 127
Examples 128
Hollerith 51-54
General Form 52
Examples 53,54,137
Delimiter Character 152,153,156
Delimiter Specification Code 152,153,154,156

Delimiter Specification Variable 152,154

192

Device Address, Importance in Card Reader Operation 20
Device Addresses
Tables of 22-23,24-26

END Card

Hollerith 63,64,65

Mark Sense 87,88
End-of-File

Hollerith 35-36,42

Mark Sense 98-99,107
End-of-Program

Hollerith 63,64

Mark Sense 88
ERROR Code 44,47,48,122,123
ERROR Codes, Table of 49,124,130

Error Conditions, Testing for 130-137

Field 138,139,142,145,146,168

Field Specification Code 147,148,149,150,151
Field Specification Variable 147,148,149
File Numbers 26

Hollerith Card Image
Conventions for 46-47
Definition of 20-21,44
ERROR Codes for 48-50,129-136
Processing of 129-156
Reading of 45-46

Hollerith Data Card
Format of 30-33,38-39
Reading of 29-30,39-40
Hollerith Program Card
Format of 62-64,68
Reading of 55-59,66-67

HOPPER CHECK Indicator Lamp 5,10

IBM Model 026 Keypunch 2,151

193

IBM Model 029 Keypunch 2,151

Index Column 160,169

Index Marks 5,6,9,14,15,16,160,163,164,167,168,169
INDEX MARKS Switch 14,15,16

INPUT 20,21,22,23,26,38-43,102-107
Hollerith 38-43
General Form 39
Examples 40,42
Mark Sense 102-107
General Form 103
Examples 104,106

Input Hopper 3,4
Input Hopper, Loading Procedure for 19

Installation Procedure 17

LAMP TEST Switch 11,13
LENGTH Code 44,47,48,50,122,123,130,131,132
Light-Emitting Diode (LED) 4

LOAD 20,22,24,25,55-65,68,69,82-92,111,113
Hollerith 55-65
General Form
Examples
Relation to Console Input 68
Use in Batch Processing 69
Mark Sense 82-92
General Form 83,84
Examples 83,85
Relation to Console Input 111
Use in Batch Processing 113

Look-Ahead 3,23,24-25
Binary 126-128
Hollerith 51-54

Mark Sense Data Card
Format of 94-97,103
Reading of 93-94,103-104

Mark Sense Program Card
Format of 86-87,110-111
Reading of 82-110,108-110

Marking Area 161,165

194

Marking Constraint 161,166,167,168,169
MODE Switch 12

NUM Function 41-42,44,105-106,141-143
Numeric Déta, Conversion of 41-42,105-106,139-156
Numeric Data, Verification of 41-42,105-106,141-156

Output Stacker 3,4

Output Stacker, Unloading Procedure for 19

PICK CHECK Indicator Lamp 10
Picking Mechanism 3,4
POWER Indicator Lamp 10
Power-on Procedures 19
POWER Switch 11,13
Program Card
Hollerith (See Hollerith Program Card)

Mark Sense (See Mark Sense Program Card)

Program Loading (See LOAD & Console Input)

READ CHECK Indicator Lamp 10
Reading Modes, Explanation of 20
Reading Modes, Tables of 22-23,24-26
Reading Station 3.4
Reading Station, Cleaning Procedure for 180
RESET Card

Hollerith 36-37,43,70-71

Mark Sense 100,101,107

RESET Indicator Lamp 4,10

SELECT TAPE Statement 26
SHUTDOWN Switch 12,13
STACK CHECK 10
195

STOP 5,10
System Configuration 18

$UNPACK 145-156
Delimiter Format 152-156
Field Format 146-152
General Form 145
Examples 151,155

196

=To help us to provide you with the best manuals possible, please make your comments and suggestions
I concerning this publication on the form below. Then detach, fold, tape closed and mail to us. All comments
=and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to include your
1 name and address. Your cooperation is appreciated.

|
I
{
't 700-3330C
i
i TITLE OF MANUAL: 2234A/2244A HOPPER FEED CARD READERS
[]
! COMMENTS:
|
[]
]
(]
1
] Fold
]
]
[]
[]
[]
]
Fold

(Please tape. Postal regulations prohibit the use of staples.)

(WANG)

Fold

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
]
BUSINESS REPLY CARD —_—
.]
FIRST CLASS PERMIT NO. 16 LOWELL, MA |
;]
POSTAGE WILL BE PAID BY ADDRESSEE A —
-]
]
]
WANG LABORATORIES, INC. _—
ONE INDUSTRIAL AVENUE e ————
LOWELL, MASSACHUSETTS 01851 ———
.]
]
]
Attention: Technical Writing Department
Fold
Printed in U.S.A.

13-1019

Cut along dotted line.

International United States
Rep’fes’m’t.wes Alabama Georgia Massachusetts Fairport South Carolina
Amenqan Samoa Birmingham Atlanta Boston Liverpool Charleston
g'fgeny'na Mobile Savannah Burlington New York City Columbia
Bo:::?;n Alaska Hawaii &Chelmsford ?yosset - Tennessee
Bo Anchorage Honolulu awrence onawanda Chattanooga
tswana Littleton North Carolina Knoxville
Brazil Arizona Idaho Lowell Charlotte Memphi
Canary Islands Phoenix Boise Tewksbury G a obo N:shp."':
Chile Tucson Iitinoi Worcester reensboro v
Columbia inois Raleigh Texas
c - California Chicago Michigan . .
osta Rica . Ohio Austin
Culver City Morton Kalamazoo
Cyprus - Akron Dallas
Denmark Emeryville Oak Brook Kentwood Cincinnati Houst
Dominicai . Fountain Valley Park Ridge Okemos incinnati ouston
ominican Republic Fresno Rock Island Southfield Cleveland San Antonio
E;:g?or Inglewood Rosemont Minnesota ITn;:zgndence Utah
El Salvador gaf‘rgni'nezto Springfield Minneapolis Worthington Salt Lake City
Finland an ego Indiana L Vermont
San Francisco Missouri Oklahoma .
Ghana Carmel . Montpelier
Santa Clara . . Creve Coeur Oklahoma City
Greece Indianapolis ? NN
Ventura St. Louis Tulsa Virginia
Guam South Bend Newport News
Guatemala Colorado Nebraska Oregon
" lowa Norfolk
Haiti Englewood Omaha Eugene .
Ankeny Richmond
Honduras Connecticut Nevada Portland
Iceland New H. Kansas Las V. P Ivani Washington
India Stamforg Overland Park ~ -2% Vegas Allamey vania Richland
Indonesia W“’;’r" o el Wichita New Hampshire (. °“'°m:‘ Seattle
Ireland etherstie Kentucky Manchester E:;“p ' Spokane
Israel District of Louisville New Jersey Philadelphia Wisconsin
italy Columbia - Bloomfield Pittsburgh Appleton
vory Coast Washington Louisiana Toms River State College Brookfield
Jamaica . Baton Rouge
Florida - : Wayne Green Bay
Japan Hisleah Metairie New Mexico Madison
Jordan Jacksonville Maryland Albuquerque Fl:hodo Island Wauwatosa
Kenya Orlando Rockville New York rovidence
Korea Tampa Towson Albany
Kuwait
Lebanon
Liberia . .
Malaysia International Offices
Mexico Australia Ottawa, Ontario Auckland Taiwan
Morocco Wang Computer Pty., Ltd. Toronto, Ontario Wellington Wang Industrial Co.
Nigeria Adelaide Victoria, B.C. Panama Taipei
. Norway Brisbane Winnipeg, Manitoba Kaohsiong
Paraguay Canbe Wang de Panama
Peru M*.’l" "aP int (Svdney) France (CPEC) S.A. United Kingdom
Phillippi 1sons POt 15YANeY! Wang France, SARL. Panama City Wang (UK) Ltd.
hillippines South Melbourne . bk,
Portugal Bagnolet, (Paris) " Birmingham
rtug West Perth Agnox Puerto Rico
Qatar Discheim (Strassbourg) Wang Computadoras London
Saudi Arabia Austria Ecully {Lyon) San Juan Manchester
Senegal Wang Gesellschaft, m.b.h. Nantes . Richmond
h Afri Vienna Toulouse Cedex Singapore
§°”? ‘ca . Wang Computer (Pte) Ltd. West G’"“'"y.
pain Belgium Hong Kong Singapore Wang Laboratories, GmbH
Sri Lanka Wang Europe, S.A. Wang Pacific Ltd. n9 Frankfurt
Sudpn Brussels Hong Kong Sweden Berlin
Syn_a Erpe-Mere J Wang Skandinaviska AB Dusseldorf
Thailand Canad w""" c torLtg, Malmo Essen
Turkey W Itaboratories T 1"9 omputerLtd. gyockholm (Soina) Freiburg
UnEotefl Arab ?ggnada) o Okyo Groteborg Hamburg
mirates Burlington, Ontario Netherlands Switzerland Hannover
ldmgutxl Burnaby, B.C Wang Nederiand B.V. Wang S.A/AG Kassel
enezuela e IJsselstein - Koln
. A Zurich
Yugoslavia gzlr?:l\rzisAg:t:?io Gronigen B:::f Munchen
Edmonton, Alberta New Zealand Geneva g:;nrgreggken
. L
Montreal, Quebec Wang Computer Ltd ausanne Stuttgart
LABORATORIES, INC.

_J

(WANG)

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01881, TEL. (617) 469-5000, TWX 710 343-6769, TELEX 94-7421

Printed in U.S.A.
700-3330C
11-80-3C

Price: see current list

	Cover
	Table of Contents
	Chapter 1: Introduction to Card Reader Operation
	Chapter 2: Installing and Operating the Card Reader
	Chapter 3: The Modes of Card Reader Operation
	Chapter 4: Reading Hollerith Data Values (DATALOAD, Address 628)
	Chapter 5: Reading Hollerith Data Values (INPUT, Address 62B)
	Chapter 6: Reading Hollerith Data Card Images (DATALOAD BT, Address 629)
	Chapter 7: Hollerith Look-Ahead Mode (DATASAVE BT, Address 42E)
	Chapter 8: Loading Hollerith BASIC Programs and Program Overlays (LOAD, Address 62B)
	Chapter 9: Batch Processing Hollerith BASIC Programs
	Chapter 10: Marking the BASIC Mark Sense Cards
	Chapter 11: Loading Mark Sense BASIC Programs and Program Overlays (LOAD, Address 62C)
	Chapter 12: Reading Data Values from BASIC Mark Sense Cards (DATALOAD, Address 62D)
	Chapter 13: Reading Data Values from BASIC Mark Sense Cards (INPUT, Address 62C)
	Chapter 14: Batch Processing BASIC Mark Sense Programs
	Chapter 15: Reading Binary Card Images (DATALOAD BT, Address 62A)
	Chapter 16: Binary Look-Ahead Mode (DATASAVE BT, Address 42F)
	Chapter 17: Supplemental Programming Techniques for Processing Data Card Images
	Chapter 18: Designing Customized Cards (Model 2244A Only)
	Appendix A: General Forms of the Card Reader Statements and Commands
	Appendix B: Card Purchasing Information
	Appendix C: Card Reader Maintenance Information
	Appendix D: Hollerith Codes and ASCII Equivalents
	Appendix E: System 2200 Error Messages
	Index

