
Data Memory Usage in Basic 2.4

Copyright @ 1983 by Canputer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Canputer Concepts Corporation

Data Memory Usage in Wang Basic 2.4

1.0 Introduction

The dual memory (Control and Data) of the Wang 2200 series of
computers enhances the speed capabilities of the system. The
architecture of the 2200 system precludes the usage of Control
memory for storage of temporary data. The Control memory is too
awkward to fetch data for use in atomization, character
comparisons and math constants.

Control memory is used primarily for instructions, and for some
limited message storage. Data memory contains all the pointers
and tables required for word comparisons, both for atomization
and normal atom enhancers, as well as containing the math
constants required to produce LOGS, conversions and Trigonometric
functions.

2.0 Basic Overview

In previous documents, we established that Data memory can range
in size from 4096 bytes to 512k bytes. Since any address over
65536 requires us to use bank selection techniques, wang has
formed a hardware solution that allows us to access the first
8192 bytes of memory from any bank. Any address below hex 2000
will automatically revert to Bank O. It is in this area that
three most important areas lay, Constant storage, Partition
Status/Control and the Universal Global Partition.

In general, the following breakdown may be established:

1: Constant Storage 0000 - 08FF
2: Partition Status 0900 - OBFF
3: Universal Partition OCOO - 1FFF

Partition status and Control is described in depth in 'Common
Partition Control', and therefore will jot be discussed here.

3.0 Constant Storage

The appendix of this document contains the listing of Data Memory
for Basic 2.4. However, since all previous Data Memory areas are
similar, the reader should have no problem reverting back to
other versions.

3.1 Checksums

There are two 1 eve1s of checksums in the Wang 2200 computer. The
first is in Control memory, at each 4k word boundary, while the
second one is for data memory. This checksum, in theory, is to
catch any double bi t errors that may have occurred. Remember that
single bit errors would have caused a hardware vector (PEDM).
Double bit errors are not detected in this manner. However, when
either a load operation is performed, or the RESET key is
depressed, a checksum is performed in Data Memory.

Copyright , 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

1

Data Memory Usage in Wang Basic 2.4

Since this checksum is loaded at the same time as the file, we
cannot dynamically recalculate a checksum if Data Memory has been
modified. In essence, once this Constant storage area has been
loaded, no modification of Data Memory covered by the checksum
can occur.

The location of the checksum is not the same for all versions of
Basic. The first two bytes of Data Memory, at location 0000,
point to the location of the actual checksum. But the checksum
used by Wang is actually thirty-two (32) bits wide, where one 16
bit word signifies the exclusive oring of all bits, while the
other is a shifted resu1 t. Subtracting two from the contents of
location 0000 points us to the actual checksum location.

This location is the last location in data memory that Wang
considers 'sacred', and any modification by us prior to this
pointed to val ue will resu1 t in an VEDM error. When changing
Data memory, we will use the program PATCHER to recalculate the
new Data Memory Checksums.

When first experimenting with data memory through the use of our
utilities, DEBUG, etc, we can prevent the checking of Checksums
in Data memory by clearing the pointer to the checksums. Setting
location 0000 to 0000 causes Wang to ignore what we are doing,
allowing us to manipulate bytes without fear of aborting out.

The current version of Basic 2.4 locates has location 0000
pointing to 08E2. The actual checksum locations are therefore
08EO, 08E1, 08E2 and 08E3.

The calculation of the checksum is not difficult. Remember that
location 0000, the pointer to the checksum, is also included in
the checksum. Initially, two 16 bit registers are cleared, called
Cksum1 and Cksum2, then the fOI1Ru1a is:

For N = 0 to (Contents of 0000 - 2) step 2

Cksum1 =	 Cksum1 XOR (16 bits location N)
Cksum2 =	 (Cksum2 ADDC Cksum2 ADDC Overflow) ADDC

(16 bits location N)

Next N

This fonns the correct XORed data, to be placed at the
location pointed to by 0000 - 2. Now we must include this
result in the final 16 bit checksum.

Cksum2 = (Cksum2 ADDC Cksum2 ADDC Overflow) ADDC
Cksum1

Cksum2 is now inserted in the memory location pointed to by
1ocati on 0000.

Copyright , 1983 by Camputer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

2

Data Memory Usage in Wang Basic 2.4

3.2 Atomization

Starting at location 0002 in Data Memory, (DM) , are two byte
pointers to atomization lists used during Pass 0 of Basic 2.x. In
general, I have broken down the lists as follows:

0002 ALIST1 Left hand side ATOM list
0004 ALIST2 Immediate Mode only ATOM list
0006 ALIST3 Complex Math Atoms
0008 0000 End of first list

OOOA ALIST4 Trig function chain
OOOC ALIST5 Right hand side Numerics
OOOE 0000 End of second list

When a potential word is attempted to be atomized, These lists
are used to point to lists containing the verbage for the
potential atom, along with the atom itself. As an example, take
list' ALIST3. Currently pointing to 07BD in Data memory, we find
the following:

07BD OD
07BE 04
07BF 41425328
07C3 C1
07C4 04

ALIST3
ABS(

COS (

FSB
FSB
FST
FSB
FSB

SOD
COS(-2-.
'ABS(,
$C1
EXP(-2-.

The first byte in the chain list always tells us
there are in this list. ALIST3 is therefore SOD,

how many entries
or 13 entries in

length. The process continues now, atom by atom attempting to
make a match. The first atom to be tested is ABS(. The first
byte of each atom entry describes the length of the atom, in the
case of ABS(, that length is 4. Wang will attempt to match the
word in Data memory wi th ABS (•

If not successful, Wang decrements the count of atoms in that
list, and if non-zero, proceeds with the next atom in the list.
If successful, the next byte, in the case of ABS(, C1, is used as
an atom. Note that if this value is 00, no atom is present, and
this may be just a 'reser~d word'.

No fancy hashing techniques are employed here. It is just plain
brute force comparisons that resolve a word to an atom. However,
since this process of converting words to atom is only done once
during resolution phase, we dramatically reduce the required
memory requirements for storage.

Note that is quite easy to change an word to an atom if we reduce
the size of the word, but difficult if we try to increase the
size. However, we can balance out by decreasing one while
increasing another.

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

3

Data Memory Usage in Wang Basic 2.4

3.3 ATOM processing

After the verb is processed to a token or atom, the process of
reverse expansion is needed to print out the verbage during list
sequences. Furthermore, if we have a left hand side atom, we
must somehow vector to a routine in Control Memory to process
that atom.

Location 0100 of memory is the start of the vector table for
atoms, and significant data is stored there. For purposes of
discussion, the first four entries are reproduced below:

0100 071F FDB LIST

0102 44C7

0104 24B7 FDB TYFE21CLEAR

0106 lCOO

0108 24B2 FDB TYFE21RUN

OlOA lC1D

OlOC 24BE FDB TYFE21RENUHBER

OlOE 480F

Let us suppose that while processing, the atom 80 is encountered
on the left hand side. The program in control memory performs the
following calculations:

((Atom - 80)*4)+0100

This gives us the Base address in the vector table. In this case,
we arrive at 0100 as our result. The four bytes at this location
are pertinent to the atom LIST, therefore, atom 80 is the LIST
atom. The first two bytes, 071F, point to a location in Data
memory that contains the length and verbage LIST. The next two
bytes, 44C7, is the vector in Control Memory to goto. Location
44C7 is thus the start of the routine to analyze the LIST atom.

It is the function of that routine to further analyze any more
atoms on the line, or find whatever arguements it requires.

The next atom in our example is the CLEAR atom. Note that the
verbage TYFE2 has been ored into the verbage identifier for
CLEAR. The upper nibble of the first 16 bits always tells Basic
what exact type of atom this is. We mask this data out to find
where in Data memory the actual verbage CLEAR is located.
CLEAR's verbage is located at:

Location for verbage = Bex(OFFF) AND 24B7,
Or 04B7

Therefore, we would expect to find at location 04B7, the length
of the verbage CLEAR,S, followed by the word CLEAR. The vector
for CLEAR is lCOO.

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this docwnent may be reproduced without the expressed

written permission of Computer Concepts Corporation

4

Data Memory Usage in Wang Basic 2.4

The functions defined by the high order nibble are as follows:

TYPE 0 Stand alone, functions processed by routine
TYPE 2 If in first position, must be Immediate Mode only
TYPE 4 Right hand side, require numeric argument and).
TYPE 6 Peripheral Modifiers, ie, DISK,P,G TEMP
TYPE 8 Functions of another function, ARC
TYPE A Numeric Functions
TYPE F Cannot be stand alone, modifiers to another atom.

The vectors in the second 16 bit word may on occasion be zero.
This signifies that it cannot be an executable atom. (TEMP)

If an atom has a vector on the left hand side, we can easily
intercept that vector to add a functi on. All we have to do is
change the initial vector to one that we wish to go to. We then
can test our function, and if not present, return to the original
function. If it is our function, we would process the atom
according to our whims.

As an example of this, we modified the routine lID to search for
the atom CLOCK, which we implemented. We had modified BACKSPACE
atom, be ing one of the two spares, to be CLOCK.

The normal vector for I was 1684. We could change this to our
routine, and check for the atom CLOCK. This would allow us to
have ICLOCK as a function. However, we let it process to the
point where it found the ID verb, and changed the vector at that
point to point to our routine. We then checked for CLOCK, and
either process our atom, or goto the correct lID routine.

3.4 List Processing

Not all of the functions within Wang Basic can be compressed into
the Atom format. For this reason, Wang will vector to a routine
when it processes the main token, which in turn, will attempt to
find the next verbs that match. These verbs mayor may not be
atoms. Examples of this type of search is $GIO, lID, HATSEARCH,
etc.

The routine in main Control memory would look something like
this:

1000 LPI PARESE$LIST
1001 JSR SEARCHLIST
1002 JHP IF
1003 JHP GIO
1004 JHP TRAN

1010 JHP BADLIST

Copyri ght , 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

5

Data Memory Usage in Wang Basic 2.4

Note that the address of the list is placed in the PBPL
registers, and a call to the SEARCHLIST routine is perfor.med.
SBARCBLIST will then use the PBPL pair as a POINTER to a list of
POINTERS, which in turn point to the length and Verb age of the
following datum.

If the verbage in Data memory does not match the program, the
stack, which contained the return address from the JSR, is
popped, and incremented, then restored onto the stack. If a
match is found, a return is executed, which return control back
to the argument list, resulting in a vector to the correct
routine.

In our example, location 1001 is the JSR, so 1002 gets pushed to
the stack. If we had the word GIO following the $ symbol, the
routine at first attempts to match it with IF. Since IF does not
match, the stack is popped, incremented to 1003, and pushed back
to the stack. The next attempt matches with GIO, so a Return is
executed, returning us back to the location pointed to by the top
of the stack, 1003. 1003 is a JHP to the GIO routine .••••••

If no match has been found, the system would run through the list
and find a ter.minating pointer word of 0000. This would cause a
~eturn, noxma11y to a JMP BADLIST, to produce an error message.

Again, we can intercept this JHP to one of our locations, and
possibly process our own atoms. It is very difficult, without
reassembling the entire @@ file to eXPand this chain list. It is
easier to modify the JHP, and process somewhere else.

The Parse lists are conveniently located in Data Memory. The
following Parse List locations contain the POINTER to the LIST of
POINTERS, and though the actual addresses of the LIST of POINTERS
may change from version to version, these addresses always have
remained constant:

OOFO PARSE$LIST $ atom list
00F2 PARSEHATLIST HAT atom list
00F4 PARSEHAT1LIST HAT (Matrix Math) parse list
00F6 PARSESELBCT SELECT atom list
00F8 PARSEPRINT PRINT sub1ist (PRINT AT)
OOFA PARSEHATB Boolean math AND,OR
OOFC PARSEVELD File type modifiers (BA,BT,DC)
DOPE PARSENLIST N atom lists

The program ATOHLIST will display the contents of these lists
when run.

Copyri ght @1983 by Canputer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Canputer Concepts Corporation

6

Data Memory Usage in Wang Basic 2.4

3.5 Message Storage

Various often used messages are used throughout Basic 2.x are
stored in Data memory. Below is a list of messages:

0012 BNDHSG Displays 'BND PROGRAM'
001E FRBBHSG Displays 'FREE SPACE ='
002A TXFRHSG Trace mode, displays 'TRANSFBR TO'
0036 BRRHSG Dual function. Displays ERR when used

by the error routine, such as ERR 34.

SECTOR is used during VERIFY error

0042 HUXBHSG	 Displays 'Brror xx loading Terminal
Controller' if no @HXEO file exists.

08C4 RSTMSG	 Displays this on line one when the
RESET key is depressed.

08B4 PASS:1 Password used for verification of $INIT
statement. Note that this is just outside
of the checksummed area.

Bar1ier versions of Basic contained the Catalogue messages in the
front of Data Memory. Basic 2.4 added a significant amount of
verbage for SCREEN, PASSWORD, DATE, TIME and DISCONNECT, forcing
Wang to move the catalogue messages to Control Memory.

3.6 Constants

Quite a few math constants are located in Data memory. The area
between 0300 and 04A5 is referred to as the Constant storage
area. I have not studied the area enough to be absolutely sure
as to the contents. However, the following small areas are
defined:

0300 Constant for	 PI 3.141592653590

0308 Natural Log 10 2.30258509299404

031C Radians to Grads R x 63.66197723675

0326 Radians to Degrees R x 57.29577951308 ••

0330 Degrees to Grads D x 1.111111111111 ••

0344 Grads to Grads G x 1.000000000000 ••

034E Grads to Radians G x .0157079632679489

The other numbers have not been studied, but are, I suppose, part
of the equations for Trig functions, as well as Square roots.

Copyright, 1983 by Canputer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Canputer Concepts Corporation

7

Data Memory Usage in Hang Basic 2.4

3.7 Default Values

Several default values are retained in Data memory. I cannot
fathom why they wasted the space here, but Console, Tape and some
other defaults are listed here:

04A6 0001 Default Console Input device
04A8 0413 Default PLOT device
04AA 0000 Default TAPE device
04AC 0310 Defau1 t Disk Device
04AE 0005 Default Console Output Device
04BO 50 Default console width (80 characters)

0010 9602 Constant used during Disk wait for Ready delays.

08DE 4D24 System type, 4D = M for HVP, while 24 is revision
2.4

3.8 Random Numbers

The random number generator used by Hang is used in two places.
One is internal to the partition control area, the other is a
'global' register.

If executing the RND(O) statement, the Random number generators'
seed is stored in your partition control block. If a RND(O) has
never been issued follCT;JIing a RESET condition, the systems random
number seed is used. This seed is stored at four locations
immediately after the password. These locations are 08EC through
08EF.

Hhen Control Memory is first loaded, the seed is initialized to
the same exact constant, 00002001, as when you execute a RND(O)
function within your own partition. This seed is manipulated
during partition switching time. since this seed is always
changing, it is more of a 'Random' number that that of an
internal partition Random number.

Copyri ght @ 1983 by CClIlIputer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of CClIlIputer Concepts Corporation

8

	Cover
	1.0 Introduction
	2.0 Basic Overview
	3.0 Constant Storage
	3.1 Checksums
	3.2 Atomization
	3.3 ATOM Processing
	3.4 List Processing
	3.5 Message Storage
	3.6 Constants
	3.7 Default Values
	3.8 Random Numbers

