
Machine Language Assembler for 2200

Machine Language Assembler for Wang 2200

Index

Introduction Page 1

1.0 Loading ASSEMBLE Page 2

2.0 Processing Syntax and Format of Input Lines Page 3
2.1 Mathametical Operators Page 4
2.2 Math Operator Precedence Page 5
2.3 Accuracy Page 5
2.4 Symbology Page 5
2.5 Syntax of Command Line Page 6
2.5.1 Syntax for JMP,JSR Page 7
2.5.2 Syntax for RTS Page 7
2.5.3 Syntax for TPA ,XPA and TPS Page 8
2.5.4 Syntax for Masked Branch Page 8
2.5.5 Syntax for Register Branch Page 9
2.5.6 Syntax for TAP,TSP Page 9
2.5.7 Syntax for Immediate Register Page 9
2.5.8 Syntax for Register Instructions Page 10
2.5.9 Syntax for SI:C,MUL Page 10
2.5.10 Syntax for IHUL Page 10
2.5.11 Syntax for LPI Page 11
2.5.12 Syntax for CIO page 11

3.0 Control Memory Pseudo Opcodes Page 12
3.1 ORG (Address) page 12
3.2 LST Page 13
3.3 NLST Page 13
3.4 COpy (Filename) Page 13
3.5 FCB (Data) Page 14
3.6 EPAR Page 14
3.7 WPAR Page 14
3.8 NPAR Page 14
3.9 END Page 14
3.10 EQU (Value) Page 15
3.11 STIT (Text String) Page 15
3.12 PAGE (Text String) Page 15
3.13 FCW (Data) Page 16
3.14 RCW (Data) Page 16
3.15 LOAD (Filename) Page 16
3.16 BLK Page 17
3.17 DISP (Text String) Page 17
3.18 TAB (Data), (Data) , •••. page 17

4.0 Data Memory Pseudo 0 pcodes Page 18
4.1 IXJRG (Address) page 18
4.2 FSB (Data) Page 18
4.3 FDB (Data) page 19
4.4 FST ' (Text String) , Page 19
4.5 RMB (Data) Page 19

Machine Language Assembler for Wang 2200

Index - Continued

5.0 Conditional Assembly Control Page 20
5.1 IFDF (Symbol) Page 20
5.2 IFND (Symbol) Page 21
5.3 ELSE Page 22
5.4 FIN Page 22
5.5 IF (Value) (Condition) (Value) Page 22

6.0 Symbolic Dumps Page 23

Machine Language Assembler for Wang 2200

Introduction

The Machine Language Assembler for the Wang 2200 system was written to
facilitate the generation of code required to run the 2200 computer.
The Assembler takes Mnemonic code from either a disk file created by
the Editor program, or code manually entered on the keyboard. In turn,
the input code is evaluated and turned into machine compatable form.

The Machine Language Assembler, referred to as ASSEMBLE, is a two pass
assembler. The first pass evaluates Control and Data memory addresses
and assigns locations to the symbology. The second pass of ASSEMBLE
results in the production of both an Object (Binary load) file, as
well as a printable Assembled listings.

ASSEMBLE supports a substantial error checking capability as well as
well as many control pseudo-ops for flexibility in programming. Macro
assembly is permitted by utilizing the disk as a library of 'Macro'
routines that may be invoked during the assembly stages.

Prior to proceeding with this manual, it may behoove the user to have
read the 'Wang 2200 Instruction Set' document by Computer Concepts
Corporation.

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

1

Machine Language Assembler for Wang 2200

Loading ASSEMBLE

The ASSEMBLE program is loaded from the host disk by entering the
following line:

LOAD RUN -ASSEMBLE- (ret urn key)

When loaded, the following messages will appear on the screen:

Wang Machine Language Assembler Version 3.0	 ##############
Computer ##
Concepts ##
##############

Enter input file please: ?

The user must enter the name of the source text file. If that file
does not exist, the system will display an error message and request
the input file again. Only if ASSEMBLE finds the source file will the
next question be asked.

Alternatively, the user may elect no input file. That is to say that
the input will be from the keyboard. This is useful when testing
small programs without having to run through the editor. This feature
is invoked by simply entering a RETURN key to the file name prompt.

If a file was entered, and the system did find the program, the
following is requested:

Output list device 005

The ASSEMBLE is preset to display the assembled listing during Pass 2
to the CRT console. If the user wishes to have a listing made to the
printer, simply type 204 or 215 to the response.

Enter output file: ?

The Object (Binary) can be sent to a file on the disk for processing
by the PATCHER programmer by entering the name of the file to the
prompt. If no object file is to be generated, press a RETURN key
here.

ASSEMBLE verifies that no program already exists by that name and
proceeds with the assembly. Errors in the source will result in
diagnostic messages appearing on the listing device during Pass 2. An
assembly listing example, of the Bootstrap Proms, is included in the
Appendix of this manual for reference.

If no errors in the source file are detected, the object file, if
created, may then be either loaded or merged with another file.

Copyright ~ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

2

Machine Language Assembler for Wang 2200

2.0 Proceesing Syntax and Format of Input lines

In general, the structure of the Assembler follows the generally
accepted style of machine language assemblers for Minicomputers.
Certain licenses were taken to acheive a balance of speed and
versatility within the limitations of Wangs' BASIC operating system.

The object of this section is to familiarize the reader with the
various mathematical processes available, as well as develop the
syntax required for the machine mnemonics.

A rather loose discipline as regards to format of the input line has
been programmed in. ASSEMBLE is quite forgiving if one uses to many
spaces to seperate datums.

For sake of readability of the code, profuse comment fields are
recommended. Unlike BASIC, comments only take up room on the source
file, not the final product.

The ASSEMBLER requires as input a BA type format file. Each line is
terminated by an SOD character. Multiple spaces may be compressed
into a TAB character,$7E, for further reduction in file space, as well
as making a readable listing file.

This section will describe the basic math operators permitted, as well
as rules for symbology and syntax of command lines.

The mnemonics themselves are described in the -Wang 2200 Instruction
Set- document produced by Computer Concepts Corporation. The reader
should be at least familiar with the basic machine level set prior to
proceeding with this section.

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

3

Machine Language Assembler for Wang 2200

2.1 Mathematical Operators

All expressions associated with Pseudo Op codes, as well as normal
machine opcodes, may contain mathematical expressions. The expression
is evaluated with logic similar to Reverse Polish Notation (RPN).
Operators recognized by the assembler are the following:

Equivelent to +

++ Same as +

+	 Addition

Subtraction

/	 Division

Multiplication
*
Raise to power n
Logical OR data

& Logical ANDing of data

() Nesting levels

Furthermore, the following are of special meaning:

*	 Current location Counter of Data or Control memory.
V~4jd only in first position of Numeric evaluation.

Current location of Data or Control memory

Valid at any place in the Numeric evaluation sequence.

% Binary Data
$ Hexidecimal Data

Data following is Ascii Text. Must terminate with '.

Symbology cannot contain any mathametical operator. The RPN processor
will split the symbol into more than one symbol at the operator,
causing invalid references. Symbology should not have their first
characters equal to any of the special characters either. Some
examples of invalid symbols are:

'LOCATION EOU $5000

The Assembler will evaluate this correctly. However, attempts to use
the symbol 'LOCATION will resul t in an error, because the Symbol
processor will believe that this is supposed to be text, rather than a
symbol.

LOCATION' EOU $5000

The above is legal, as long as symbol does not start with '

LOC+500! EOU $6000

Illegal symbol because of mathametical operators.

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

4

Machine Language Assembler for Wang 2200

2.2 Math Operator precedence

The lexical scanner employed within the RPN processor will sub group
all expressions by the following order:

(Invokes precedence

) Ends precedence

'1'
I,'"
-,+
! ,&

As an example, the expression 8012"'5 will result in the value 200. By
using the parenthesis to change precedence, the expression 80/(2"'5)
will result in the value 8.

All parenthesis, if used, must be balanced, else an error message will
be displayed, and the resultant value passed to the assembler will be
zero.

2.3 Accuracy

All expressions are evaluated to the accuracy of the BASIC language,
that is, 13 significant digits. However, the result returned back to
the Assembler, must always be a number between 0 to 65535.
Expressions evaluated outside this range, at completion of the RPN
process, will result in an error message to be displayed. Positi~

numbers within this range are always truncated to an integer value.

81(2"'5) = 0 (Integer values on return)

8-10 = Error (Negative number)

8"'.25 = 2 (Fractions permitted within expression)

TARGET EQU 8"'.25 (TARGET now assumes the value 2)
SENSE EQU TARGET"'TARGET (SENSE is set to the value 4)

2.4 Symbology

The Assembler is quite flexible in the handling of symbols. A symbol
may start with any non-numeric character, other than the ones defined
in sections 2.2, and be up to 16 characters in length. A symbol may
be equated to a value in one of two ways, Inferred or Set.

Copyri ght ~ 1983 by Canputer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Canputer Concepts Corporation

5

Machine Language Assembler for Wang 2200

The inferred method occurs automatically through processing a command
line.

ORG $4000

START JSR SELECTCRT

JMP H.SG: 1

STOP SET RO <: 10

The symbol START would be assigned the ·address· $4000. Note thatin
this case, we do not use the reference 'value', because the symbol
START actually refers to an address in Control Memory. The symbol
STOP would now be referenced as $4002.

The set method is performed by executing the pseudo opcode EOU, or
equate.

SELECTCRT EOU $802B

MSG:l EOU 1024

The symbol SELECTCRT is assigned the Y~UE $802B, while the symbol
MSG:l is assigned the ~ 1024, or $0400. The assembler, when
referencing the symbols, will use their set values.

Once a symbol has been evaluated, either through inference or by the
EOU method, it cannot be redefined. Duplicate Symbol error messages
will be displayed at the first attempt to redefine the symbol.
Furthermore, usage of the symbol by any opcode will create the error
message:

Attempt to use a Duplicate Symbol

Symbols, to be tested as symbols, must start in column one of the
source line.

2.5 Syntax of Command line

All lines entered through the Assembler for processing are scanned in
the following method:

(SYMBOL) OPCODE (Arguements) (* comment field)

Copyright @1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

6

Machine Language Assembler for Wang 2200

The scanning of the line first evaluates whether the whole line is a
comment field. If the first character of the line is a It symbol, the
entire line is treated as a comment field, and the line is printed,
but not processed.

If the first character is not an It symbol, the computer determines if
the character is a non-space code. If it is not a space code, all
characters from position one in the line, to the first space code are
treated as a symbol. The symbol is set into the Symbol table for
processing later. A check for duplicate symbols only occurs during
pass 1 of the assembler.

A scan is made for a trailing comment field, that is, text starting
with the symbol' It '. The space code prior to and after the It insures
that the mathametical symbol times (It) is not taken as a comment. If
a comment field is found, this is stripped from the line and placed
into the comment buffer.

The command processor scans the line and tries to find an opcode. If
an opcode is not found, the pseudo opcode processor attempts to find a
match for the command. If it still fails, an error message is
displayed.

2.5.1 Syntax of JMP,JSR commands

The JMP,JSR and BRA commands have the simplest structure:

E1(Address)

Where the Address field may be a Symbol, or numerical expression.

JMP $5000 It Jmp to location $5000
JSR TARGET It JSR to location defined by TARGET
BRA 1t-5 It Branches backwards to current location

-5
BRA TS+.+10 It JMP to value of TS symbol plus

current location plus 10

2.5.2 Syntax of RTS instruction

The RTS instruction has a complicated structure, or a very simple
structure.

(,RC) (,RD)

RTS (,WC) (,Wl,BREG)

(,W2 ,BREG)

Copyright ~ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

7

Machine Language Assembler for Wang 2200

Where ,RC Read Control Memory
,WC Write Control Memory
,RD Read Data Memory

,W1,BREG Write one byte a current PHPL
,W2,BREG Write one byte at (PHPL XOR 1)

Where BREG is RO,R1,R2,R3,R4,R5,R6,R7,PH,PL,CH,CL,SL,SH,K OR
o

RTS
RTS
RTS
RTS

,RC
,WC
,RD

* Simple return
* Read Control Memory, Return
* Write Control Memory Return
* Return, Read Data Memory

RTS ,W1,RO
RTS ,W2,K
RTS ,RC ,W1,PL

2.5.3 Syntax of TPA,TPS,XPA instructions

This group allows the transfer of the PHPL pair to either the stack or
an Auxi11ary register.

~ 11,1 .·1(1' ~,. Cf) .. i ,,,i ;.",

TPA AR XX (,RD) (,+1) (,+2) (,+3) (,-1) (,-2) (,-3)
XPA (,W1 ,BREG)

(,W2,BREG)

TPS	 (,+1) (,+2) (,+3) (,-1) (,-2) (,-3)
(,RD)
(,W1,BREG)
(,W2 ,BREG)

XPA AR 00 ,RD
TPA AR 1D ,Wi ,R5
TPA AR OE ,+3 ,RD

TPS ,+1
TPS ,-3 ,RD

2.5.4 Syntax of Branch instructions BTL,BTH,BFH,BFL,BEL,BEH,BNL,BNH

OPCODE (Value) ,BREG (Address)

Where Value is in the range of 0 to 15, and the Address equates
to a value within the current map segment.

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

8

Machine Language Assembler for Wang 2200

2.5.5 Syntax of Branch Instructions BNR,BER,BLR,BLER,BLRX,BLEX

OPCODE (AREG) , (BREG) (Address)

Where	 AREG is one of the valid A register gating options:

RO - R7,CL-,CH-,CL,CH,CL+,CH+,00+,00­

Where	 BREG is one of the valid B register gating options:

RO-R7,PL,PH,CL,CH,SL,SH,K,0

Where	 Address is a value within the current map.

BER OO+,K TARGET
BNR RO,Rl .+15
BLER R3,CH .-5
BLRX R4,R6 $4002

2.5.6 Syntax	 of TAP,TSP instructions

TAP AR xx	 (,RD)
(,Wl,BREG)
(,W2 ,BREG)

TSP	 (,RD)

(,Wl,BREG)
(,W2,BREG)

TAP AR lF
TSP ,RD
TAP AR 03 ,Wl,OO

2.5.7 Syntax of Immediate Instructions

Opcodes IOR, IADD, IXOR, IAND, IALC, IDSC, IDAC, SET

OPCODE (DREG) <:: (VALUE), (BREG) (,RD)

.:==> (,Wl)

(,W2)

Where DREG is RO-R7 ,PL ,PH, DUM ,SL ,SH or K
Where VALUE is between 0 and 255

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

9

Machine Language Assembler for Wang 2200

IXOR RO ($OF,R1
IADD R1 < $FF,R1 ,W1 .. R1 =R1-1, WRITE RESULT TO DM

SET RO < $33 .. Note special case
SET R4 < RETURN
IDAC K 4,PL ,RD.:\

2.5.8	 Syntax of Register Instructions

Opcodes	 OR, AND, XOR, SBC, AIX;, DAC, DSC and SDC
ORX, ANDX, XORX, SBCX, ADCX, DACX, DSCX SDCX

OPCODE (DREG) <: (AREG) , (BREG) (,CC) (,RD)

(,CS) (,W1)

(,W2)

ANDX R6 < OO+,PL
XORX PL <' RO,R2
ORK R5 ~~ K,OO ,W1
AX RO < RO,R1 ,CC
SBCX PL <: CL-,PL ,CS

2.5.9 Syntax of SDC,MCIL instructions

SDC (ALBL) (DREG;' (AREG) , (BREG) (,RD)
SDCX (ALBB) (,W1)
MUL (ARBL) (,W2)
HULX	 (ARBH)

SDCX RO < RO,R1 .. Note ALBL assumed
HUL R2 <CH- ,K
SOC ARBB PL "R5 ,CL
MUL ALBB SB ,," SB ,SL ,RD

2.5.10	 Syntax of IMUL instructions

IMUL	 (ALBL) (DREG) (VALUE), (BREG) (,RD)
(ALBB) (,W1)
(ABBL) (,W2)
(ABBB)

Where VALUE is between 0 and 15

IMUL ALBB R4 " 4,PL
IMUL ALBL PL < 7,K ,RD

NOTE: The operators ABBL and ABBB are really invalid in the
context of the IHUL. They will be treated as an invalid datum and
an error	 message will be reported.

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

10

Machine Language Assembler for Wang 2200

2.5.11 Syntax of LPI instruction

LPI (VALUE)	 (,RD)
(,WI)
(,W2)

LPI TARGET ,RD
LPI 100 ,WI
LPI $8000 ,W2
LPI 300

2.5.12	 Syntax of CIO instructions

CIO	 (OBS) (,RD)
(CBS) (,WI ,BREG)
(ABS) (,W2,BREG)
(CAB)
(TIM)

CIO CAB,ABS
CIO TIM
CIO OBS ,RD

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

11

Machine Language Assembler for Wang 2200

3.0 Control Memory Pseudo Op Codes

Several Pseudo Op Codes are available to the user to modify or alter
the assembly of the source document. The following is a list of
current codes:

GD r/ J-IS" D(ORG (Origin Control Memory)
i)iSHBL(:

" LST (Enable Listing Option)	 IVLS C
LeN t3/i 'CM~ L.

;I NLST (Disable Listing Option) V~ iLl',.: ti::s,
COpy (Invoke Macro File Processing)
LOAD (Chain to another Source file)

·-FCB (Fix Control Bytes) 6X-j {2f\}
EPAR (Enable Odd parity generation) ?L'nLIC
WPAR	 (Enable Even parity generation)
NPAR	 1'1)(f Ilit i.'i< jj' ; .

I (Disable Parity Generation)
)(END (Terminate processing of Source code) -!Y \ iii I~ (" /};j)ocf'tJA

EQU	 (Equate symbol to expression)
[) [)f\i II 1)((I/;/!(t~ nI'.

STIT	 (Enter Subtitle)
() {'\PAGE	 (Eject current page and insert new Title)

(Fix Control Words)
FCW ---.
···-RCW (Reserve Control Memory Locations)

BLK (Form exact 4096 load block)

DISP (Write CRT display Record for Object file)

TAB (Set TAB stops for listing)

3.1 ORG	 (Origin)

The Current location in Control memory to assemble code is modified by

this code. The expression to the right of the ORG statement is

evaluated, and the current location counter is set to the value.

Forward referenced symbols are not permitted, as the location of

instructions ahead of the ORG statement have not been processed as

yet.

ORG $1000 * Resets to 1000

1000 800000 FCB $0

ORG 256

0100 000001 FCB 1

ORG {.+1024)&$FCOO * Sets current location counter
* to next -map-.

0400 000002 FCB 2

Copyright ~ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

12

Machine Language Assembler for Wang 2200

3.2 LST (LiSTing Enable)

The LST Pseudo Op code is used to enable the listing option during

Pass 2 of the assembler. LST is the normal default for the
assembler. However, it may be used with the body of the text to
enable the listing option after the NLST (No List) command was
invoked.

3.3 NLST (No LiSTing)

NLST turns of the listing feature during pass 2 of the Assembler. It
is normally used to prevent listing routines which have been tried,
and would be extraneous to .the content of the listing. NLST
suppresses the incrementing of the line counter for listing control.
NLST does not stop the processing of code within the NLST area
though. Printing continues during NLST to device 000.

E.G.

2000 87800F RTS

NLST

(Listing is suppressed here)

LST

2100 DC0060 JMP $6000

3.4 COpy (Filename)

Macro calling of routines is enabled by the use of the COpy command.
When discovered by the Assembler, current text position and file data
are pushed onto an internal stack. The Filename specified in the
arguement is opened, and code evaluation begins with the first line of
the new file. When an END statement is encountered wi thin the ·COPY·
file, the internal stack is popped, and evaluation of code commences
at the correct position in the calling file.

The COpy file may itself call another COpy file. The stack is capable
of handling 6 nested COpy commands before displaying an Error
condition. The purpose of these so called Macro commands is to permit
the building of library modules that perform standard functions.
These modules can then be assembled with other modules/source code to
permit powerful processing capabilities.

The user must be reminded that they alone must ensure Map boundaries
are not overflowed for branches within the COpy file. It is advised
that once a routine has been written and tested, the first series of
instructions will origin the file at the next map location.

Furthermore, since a library routine, once written and tested,
generally will not change, except for where it resides in memory, that
the user should include NLST,LST commands to prevent re-listing these
on the listing pass.

Copyri ght t1 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this docwnent may be reproduced without the expressed

written permission of Computer Concepts Corporation

13

Machine Language Assembler tor wang ;auu

3.5 FCB (Fix Control Bytes)

FCB permits the user to enter in hex data to control memory locations
for use as data. When used, parity is maintained and inserted into
the high order bit if parity is enabled. Data values must be in the
range of 0 to 65535. Error messages will result if data is outside
this range.

ORG $4000

TARGET EQU $40

4000 001113 FCB $1113
4001 804001 FCB * SET CONSTANT
4002 000040 FCB TARGET * EQUATE

3.6 EPAR (Enable PARity)

Used in the Control Memory section of the assembly only and enables
the generation of the correct (ODD) parity bit for Control Memory
words. EPAR is the default option for the Assembler.

3.7 WPAR (Wrong PARity)

WPAR will generate the wrong (EVEN) parity for Control Memory words.
This is valid only when producing diagnostics in the Prom area, as the
bootstrap proms will not load any file containing words of wrong
parity. Furthermore, if used as an instruction, an automatic vector
to the proms would take place. However, this instruction was
implemented to permit the assembly of Prom code, which requires
location $800C to be wrong parity for Power up tests.

3.8 NPAR (No PARity)

A constant 0 is inserted into the parity bit of each instruction
following this pseudo-op. parity is not checked and may be either
right or wrong depending upon the bit pattern. NPAR is left here as a
diagnostic tool.

3.9 END

This pseudo-op code is required at the end of each source file and
will terminate processing of that file. It is imperative to state
that you must insert this code on any file that is used as a Macro
file under the COpy conunand. If using the EDITOR program supplied by
Computer Concepts Corporation, the END statement may be left out. The
Assembler will automatically detect the end of code and supply the
termination logic.

Copyright @1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

14

Machine Language Assembler for Wang 2200

3.10 EQU (EQUate)

Assignation of constant data to a symbol is the function of EQU.
Often, external references to subroutines, error handlers, or other
code must be supplied to the Assembler to process data. By using the
EQU command, this data forms a record of the external references or
provides more meaning than numbers would. It is not required to place
EQU commands in the front of files. They may be used and interspersed
anywhere wi thin the source document. However, 00 forward references
are a 11 owed.

TARGET EQU $40 ... Assigns the value $40
ZERO EQU o
ONE EQU 1
LOCATE EQU ... Sets LOCATE to current CM!DM location
ABC EQU LOCATE+TARGET
YES EQU YESTERDAY ... Illegal - YESTERDAY has not been

... Defined as yet

SET DUM < ZERO ... Much more meaning
LPI LOCATE ... Brings base address to PHPL
SET RO ONE

3.11 STIr (Ascii String)

STIT permits the user to insert Sub-titles into the listing. The
Ascii string following the pseudo-op is inserted into the Sub title
field. The next page eject will cause the Heading of the listing to
include the new Sub Title. Note that any PAGE command will clear out
the Sub Title field.

STIT Routine to handle the generation of PI

3.12 PAGE (Ascii String)

The PAGE command has several functions. First, the current listing
page is terminated and a Top of Form command is gi ven. Second, all
current PAGE and STIT fields are cleared. The new ASCII string, if
supplied, is inserted as the Main heading, and the new heading is
displayed.

PAGE commands, which only affect listings, serve to segment logical
areas of program code.

Copyri ght @ 1983 by Ccmputer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Ccmputer Concepts Corporation

15

Machine Language Assembler for Wang 2200

3.13 FCW (Fix Control Words)

FCW differs from FCB by not limiting the user to values between 0 to
65535. FCW permits the assigning of values to the full 23 bits of
available Control Memory. Furthermore, Text strings may be entered
into Control Memory packed three bytes to one CM word.

If a text string is greater than three bytes in length, multiple CM
words will be generated to handle the overflow. Furthermore, if an
even multiple of three bytes is not adhered to, the remaining bytes
will be zeroes. This feature may allow the user to flag the end of a
text string by reading a zero byte.

If a text string is an even multiple of three bytes in length, and
extra Control Memory word of all zeroes will be appended to the
string.

6300 123456 FCW $123456
6301 800000 FCW $7654321 * An error, exceeds three bytes
6302 C14200 FCW 'AB ' * Note the zero fill
6303 414243 FCW 'ABC'
6304 800000 * Added because multiple 3
6305 414243 FCW 'ABCDE'
6306 C54600 * Multiple lines handled

3.14 RCW (Reserve Control Words)

RCW allows the user to insert, or reserve, n number of zeroes into
control memory.

ORG $4200

4200 800000 RCW 512
4400 000001 FCB 1

Though not displayed, all locations between 4200 and 43FF will contain
the value $800000.

3.15 LOAD (Chain (LOAD) source code file)

Assembly of the current Source file is terminated, and the file
defined by the LOAD command is opened and assembly commences at line
one of this file.

LOAD SEGH.Ol

Copyright ~ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

16

Machine Language Assembler for Wang 2200

3.16 BLK (Form modulus 4096 load block)

The BLK instruction should be little used. The purpose is to form a
trailing record(s) of zeroes in a control memory load object file.
When seen by the assembler, a flag is set. At the end of the Pass 2
assembly, if the flag is set, and an output object file is enabled,
the program will output $800000 codes till the next modulo address of
4096 occurs. This allows us to load the object file, replete with
checksums locations to the PATCHER program for processing.

However, if the user has elected to do scatter loading, the BLK
command would cause only excess code to be appended to the end of the
object module.

3.17 DISP (Display Record)

The DISP record dumps text follCMing the DISP command to the disk in a
format that allows the bootstrap proms to display to the CRT. This is
similar to the message you see when the @@ file is loaded in. This is
enabled only at the beginning of the file. The first time you process
and code, either Data Memory or Control Memory, the execution of this
opcode will create an error.

DISP Loading User Diagnostic for Widgets

3.18 TAB (Set Tab stops for listing)

The TAB command allCMs the user to set new TAB stops for the listing.
A series of arguements is given, and new TAB stops are entered.

The default Tab stops are as fo11CMs:

10,20,30,40,50,60,70,80,90,100,120,130,140,150,160

If the Tab stop given was greater than the following Tab stops, the
following Tab stops are incremented by 1. If Two commas are
encountered in a row, that Tab stop is not altered.

TAB 10,25,30,,55

Modifies 1st tab to 10, 2nd to 25, 3rd to 30, does not touch the
40 tab stop, but changes the 5th stop to 55. The remaining tab
stops are not altered unless the last tab stop is greater than
the next higher one.

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

17

Machine Language Assembler for Wang 2200

4.0 Data Memory Pseudo - Op Codes

Assembler allows certain Pseudo Op codes for use in the Data Memory
area. These codes are as follows:

OORG (Origin in Data Memory)

FSB (Fix Single Byte)

FDB (Fix Double Byte)

RMB (Reserve Bytes)

FST (Fix String)

4.1 OORG (Data Memory Origin)

OORG permits the user to set a new or~g~n in Data Memory for assembly
of code. OORG sets flags which will create an error if any Non Data
memory op code, or pseudo op code is executed.

OORG $1000	 ~ Sets location counter to $1000

OORG COMPUTER	 ~ The symbol COMPUTER is used to
~ set the location counter in DM.
~ COMPUTER may not be a forward
~ reference.

OORG (. ~ 20)+3	 ~ Math is permitted

4.2 FSB (Fix Single Byte)

FSB will set the current Data Memory location to the value of the
expression to the right. The expression must evaluate to a value
between 0 to 255. Values outside this range will cause an error
message to be printed.

OORG $COOO

COOO 32 FSB '2 ' ~ Text character definition
COOl QD FSB $D
C002 OF FSB 15
C003 CO FSB .1256

C004 41 FSB SYMBOL	 ~ Where SYMBOL was equated as
~ being 41 hex.

COOS 00 FSB $301	 ~ Illegal, Value)- 255

Copyri ght ~ 1983 by Ccxnputer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Ccmputer Concepts Corporation

18

Machine Language Assembler for Wang 2200

4.3 FDB (Fix Double Byte)

Similar to FSB, FDB permits
significance of FDB allows full 16
Data memory as pointers, or data.

two
bit

bytes
binary

to
num

be
bers

assi gned.
to be stor

The
ed in

OORG $DOOO

DOOO ODOA MSG:1 FDB $ODOA
D002 4142 FDB 'AB '
D004 6364 FDB 'cd'
D006 FFFF FDB 65535
D008 DOOO FDB MSG:1

4.4 FST (Fix String)

A string of text may be entered into Data memory by using the FST
pseudo op code. The string must start and end with the ' symbol. When
displayed, only three bytes of the text string will be displayed.

OORG $3100

3100 414243 FST 'ABCDEFGHIJK'
310B 00 FSB o

4.5 RMB (Reserve Bytes)

Often, it is required to reserve an area of data memory for use as an
array, buffer area, or temporary storage area. RNB allows any number
of Data memory locations to be allocated for this purpose.

OORG $4350

4350 0100 BUFFER RMB 256
4450 AA FSB $AA

No data is actually inserted in the reserved area.

Copyright @1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

19

Machine Language Assembler for Wang 2200

5.0 Conditional Assembly Codes

Assembler supports several conditional assembly directives, enabling
the programmer to minimize source file segmentation. The following is
a list of the Conditional Assembly Codes:

IFDF (IF Symbol has been previously defined)

IFND (IF Symbol has not been previously defined)

IF (IF (Value) (Condition) (Value)

ELSE (Opposite Condition)

FIN (End conditional Assembly)

Conditional assembly codes may not be -nested-. That is, once invoked,
another' IFDF, IFND or IF statement may not resi de wi thin the
conditional block.

5.1 IFDF (SYMBOL)
~

Conditional Assembly of code following thet IFDF (Symbol) code will
take place ONLY if the symbol foll owing the IFDF code has been
previously defined.

This allows the programmer to construct BASIC equivalent statements
such as IF THEN ELSE. If the symbol following the IFDF
statement has not been defined PREVIOUS to this encounter, no code is
assembled till the Conditional code FIN is encountered. The only
exception to this is the ELSE statement.

A symbol defined AFTER the occurance of the IFDF statement has no
effect on the conditional logic. However, if after the IFDF statement
has failed, and the symbol has been defined, through inference or by
Equating, AND another Conditional test statement of any kind
(IFDF,IFND or IF) uses that symbol, then invalid object code will be
produced. The Conditional codes are meant to test a symbol once, and
once tested, generally are not tested again.

The symbol does not have to be defined by the current segment. A prior
segment may have defined the symbol. IFDF, and also IFND, do not care
what the val ue of the symbol is, only that the symbol has been
defined.

As an example, the following page has a program that will assemble
code depending upon whether the system is meant for an LVP or SVP
system. The Main module will call the correct routine.

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

20

Machine Language Assembler for Wang 2200

Example of IFDF condition coding:

(Main Routine)

COpy LVP

COpy TARGET

END

(LVP Routine)

0001 LVP EQU 1 * Define LVP

END

(TARGET Routine)

IFDF LVP

0002 DISK EQU 2

ELSE

*S DISK EQU 1

FIN * END CONDITIONAL ASSEMBLY

Note that if the symbol LVP had not been defined, the symbol DISK
would have been evaluated to 1, not 2. The *S symbol implies that
the code is being Skipped o~r.

5.2 IFND (SYMBOL)

IFND reacts much like the IFDF statement, except it has the opposit
meaning. That is, the symbol must not have been defined prior to us' .
this Conditional Code. If the symbol had been defined, no assemL
would take place till the Code ELSE or FIN were encountered.

The IFND code is especially useful when creating default symbols in a
segment. If the symbols were not defined in previous sections, the
IFND would create them.

IFND LINEPRINTER

0204 LINEPRINTER EQU $204

FIN

Copyright ~ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

21

Machine Language Assembler for Wang 2200

5.3 ELSE statement

ELSE switches the conditional logic to the opposite state when
encountered. That is, if assembly was turned off due to a previous
conditional statement, the assembly is turned on. If the assembly was
on, ELSE turns it off. ELSE must be executed within a Conditional
assembly, prior to encountering FIN.

It should be noted that it is not REQUIRED to insert a ELSE statement
in every conditional. Examples in section 5.1 and 5.2 show usage of
conditional statements with and without the ELSE statement. ELSE may
be used with the IFDF,IFND and IF statements.

5.4 FIN (End Conditional Assembly)

FIN terminates the current block of Conditional Coding. The occurance
of another FIN or ELSE statement will result in an error statement.
ALL conditional assembly must terminate with the FIN statement.

5.5 IF (Value) (Condition) (Value)

The IF statement is a most powerful conditional code statement. The
basis of assembling the code following the statement is dependant upon
the mathametica1 evaluation of the two values following the IF
statement. Each value may be a singular or group of PREVIOUSLY DEFINED
Symbology, Numeric, Current Location pointers, Literal or Hex data.
The first value expression must preceed the Condition arguements by at
least one space. Failure to do so will result in an invalid arguement
error code. The evaluations permitted are:

= Equality
> Greater than

Less than
Greater than or Equal to

<. = Less than or Equal to
,/ "
... ' Not Equal

Example IF LINEPRINTER = $204

The Symbol LINEPRINTER, whi ch was previ ous1 y defined, will be
looked up. The value of the symbol is then compared with the Hex
value $0204. If the values are equal, the code following will be
assembled. If the values are not equal, no code is assembled
until the operators FIN or ELSE are encountered.

Again, the usage of symbology in an IF statement implies that a
PREVIOUSLY defined Symbol will be used.

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced wi thout the expressed

written permission of Computer Concepts Corporation

22

l'facn~ne 1.Janguage /i:S::iem.lJ.J.e~ 1.. U1..' rfdIJy ",,,,VV

6.0 Symbolic Dumps

At the end of any assembly, successful or not, that is printed on
console or Lineprinter devices, a complete symbol dump, both in
Alphabetical order, then in Numerical order will be printed.

This symbol dump is a handy reference tool for use in debugging code
generated. The format for symbol dumps is as follows:

$1234 START :ADDRESS

! Symbol Name
1 /------------- ­

1 1-------------------- Error Code

!------------------------ Address or Value Assigned to Symbol

The error codes assigned at present are:

• • (Space) Normal Assi gnement

(Asterisk) Valid but not used by current Program

1/ (Pound) Duplicate Symbol

As noted, the first two are not in error. The * code simply means
that no references to that symbol were made during the course of an
assembly. The pound (If) symbol does imply an error condition. Two
seperate equates, by inference or Equating, or combinations therein
were made to that symbol. The assembler will only display the first
value assigned.

Symbols are stored outside of the catalogued area on the disk, using a
hash algorithm. There is no practical limit to the number of symbols
that may be stored. (Limited only to the size of the area after the
catalogue, and your patience.) However, more than 2000 symbols will
slow the compilation significantly.

"'"7
I"

t:., ,...7(- I.?N 1\ (. c.. 'I h (- Fi J\.,(~Q

?L'h 11(' c:;.-t f'v'o he L D(-:-r II" ~ fJ

UIV i) E t I A)C: f) ; '" CV JULe IV' I {}5.'s. E- f'oA 13 L:1

Copyright @ 1983 by Computer Concepts Corporation, Shawnee Mission, Ks
No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

23

	Cover
	Index
	Introduction
	1.0 Loading ASSEMBLE
	2.0 Processing Syntax and Format of Input Lines
	2.1 Mathematical Operators
	2.2 Math Operator Precedence
	2.3 Accuracy
	2.4 Symbology
	2.5 Syntax of Command Line
	2.5.1 Syntax of JMP, JSR Commands
	2.5.2 Syntax of RTS Instruction
	2.5.3 Syntax of TPA, TPS, XPA Instructions
	2.5.4 Syntax of Branch Instructions BTL, BTH, BFH, BFL, BEL, BEH, BNL, BNH
	2.5.5 Syntax of Branch Instructions BNR, BER, BLR, BLER, BLRX, BLEX
	2.5.6 Syntax of TAP, TSP
	2.5.7 Syntax of Immediate Instructions
	2.5.8 Syntax of Register Instructions
	2.5.9 Syntax of SDC, MUL Instructions
	2.5.10 Syntax of IMUL Instructions
	2.5.11 Syntax of LPI Instruction
	2.5.12 Syntax of CIO Instruction

	3.0 Control Memory Pseudo Op Codes
	3.1 ORG (Origin)
	3.2 LST (LiSTing Enable)
	3.3 NLST (No LiSTing)
	3.4 COPY (Filename)
	3.5 FCB (Fix Control Byte)
	3.6 EPAR (Enable PARity)
	3.7 WPAR (Wrong PARity)
	3.8 NPAR (No PARity)
	3.9 END
	3.10 EQU (EQUate)
	3.1 STIT (Ascii String)
	3.12 PAGE (Ascii String)
	3.13 FCB (Fix Control Words)
	3.14 RCW (Reserve Control Words)
	3.15 LOAD (Chain (LOAD) source code file)
	3.16 BLK (Form modulus 4096 load block)
	3.17 DISP (Display Record)
	3.18 TAB (Set Tab stops for listing)

	4.0 Data Memory Pseudo - Op Codes
	4.1 DORG (Data Memory Origin)
	4.2 FSB (Fix SingleByte)
	4.3 FDB (Fix Double Byte)
	4.4 FST (Fix String)
	4.5 RMB (Reserve Bytes)

	5.0 Conditional Assembly Codes
	5.1 IFDF (SYMBOL)
	5.2 IFND (SYMBOL)
	5.3 ELSE statement
	5.4 FIN (End Conditional Assembly)
	5.5 IF (Value) (Condition) (Value)

	6.0 Symbolic Dumps

