)
iy
" N\
." Nanye
Ay \\ : ‘\lL[»} \t”;.\\’ fi W“’ o]H\,\ml]||["lm)]
,r. "'?'f nffd [j [fliLf' i“' ‘LU"s W,‘[',l;‘.,m 4 \JI‘ V\." ‘U'“f l'“lll " llil(‘ i !

Training Guide

A brief description of SDS-Extended BASIC-2 Release 4

EEIE southern data systems, inc.

5115 Holly Ridge Drive Raleigh, NC 27612 919.781.7603

SDS-Extended BASIC-2

Release 4.0

SOFTWARE DESCRIPTION

Multiuser Operating System
and
BASIC-2 Language Interpreter

developed by
Southern Data Systems, Inc.
for
Wang 2200 Series Processors

Copyright © 1985, 1986, 1987
by Southern Data Systems, Inc.
Raleigh, North Carolina

ALL RIGHTS RESERVED

Fifth Edition (4.0. March, 1987
Fourth Edition (4.0.0) -- December, 1986
Third Edition (2.8.2) -- January, 1986

Second Edition June, 1985
First Edition (2.8.0) -- February, 1985

=
S
1
1

—_—
\S]
co
=

S

]
]

Copyright © 1985, 1986, 1987
by Southern Data Systems, Inc.

Raleigh, North Carolina

ALL RIGHTS RESERVED

No part of this manual may be reproduced in any form or by any
electronic or mechanical means, including the use of
information storage and retrieval systems, without the written
permission of Southern Data Systems, Inc.

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

The staff of Southern Data Systems, Inc., has taken due care in
preparing this manual; however, nothing contained herein modifies or
alters in any way the standard terms and conditions of the Southern
Data Systems, Inc. license agreement by which this software was
acquired, nor increases in any way Southern Data System's liability
to the customer. In no event shall Southern Data Systems, Inc. be
liable for incidental or consequential damages in connection with or
arising from the use of this manual, the associated equipment, any
software programs contained herein, or any related materials.

NOTICE

All Southern Data Systems, Inc., program products are licensed
to customers in accordance with the terms and conditions of
the Southern Data Systems, Inc. Software License Agreement.

No ownership of Southern Data Systems, Inc. software is
transferred, and any use beyond the terms of the Software
License Agreement, without the written authorization of
Southern Data Systems, Inc. is prohibited.

ii

PREFACE

This Software bulletin describes SDS-Extended BASIC-2
Release 4.0, its installation procedures and the software
features of the Multi-user Operating System and BASIC-2 Language
Interpreter for Wang 2200 processors.

Chapter 1 describes SDS-Extended BASIC-2 and the
installation procedures for Release 4.0.

Chapter 2 describes the new features and the BASIC-2
language enhancements provided in Release 4.0:

new #HASH function

new #ID' function

new #LINE function

new #OPEN function

new $HELP statement

new $ID function

new $RELEASE statement

new =SELECT statement

new Multi-byte BIN function

new DATA LOAD BA enhancement

new DATA SAVE BA enhancement

new ERR$ command

new GOSUB "load-module" statement
new HEXPRINT+ statement

new HEXPRINT- statement

new IF -END statement

new 'selective' LIST DC command
new LIST DT output format

new LIST L statement

new LIST STACK statement

new LIST+V command

new LOAD "load-module" statement
new RENAME command

new RESAVE command

new SELECT STOP command

new TRACE V command

new Multi-byte VAL function

- Descriptive Error Messages

- Time and Date Stamp on program files
- UPPER/lower case commands

~ Using variables for line-numbers

- Redirecting PRINT output to disk (SPOOL)
- The SDS RAM/Disk feature

- Up to 16MB Data Memory support

]
DO OOODOOODDODOHDOODODODODOODDDODDDODOODE

This documentation is intended to be used in
conjunction with the following manuals:

- Wang BASIC-2 Language Reference Manual
Wang BASIC-2 Disk Reference Manual
Wang BASIC-2 Utilities Reference Manual
Wang Release 2.5 Software Bulletin

iii

CHAPTER 1

CHAPTER 2

CONTENTS

SDS-Extended BASIC-2

What is SDS-Extended BASIC-27 . .

What does SDS-Extended BASIC-2 run on? .

How to get your copy of SDS-Extended BASIC-2
Installing SDS-Extended BASIC-2 .
The Results of Running the INSTALL program .
Release 4.0 Installation Procedure
Initializing your system under Release 4. O .

Release 4.0 Enhancements

What new features and enhancements are included? .

#HASH function

#ID' function

#LINE function

#OPEN function . e e e e e e

SHELP statement

$ID function

SRELEASE statement
=SELECT statement . . e e s e e e e

Multi-byte BIN function . .

DATA LOAD BA enhancement

DATA SAVE BA enhancement

ERR$ command e e e .

GOSUB "load-module" statement e e e e

HEXPRINT+ statement

HEXPRINT- statement
IF -END statement e e e e
'selective' LIST DC command. .

LIST DT output format

LIST L statement

LIST STACK statement . e e e e
LIST+V command« e e e

LOAD "load-module" statement . . .
RENAME command « « « . .
RESAVE command « . « .

SELECT STOP coomand

TRACE V command . . . e e e e e e e e

Multi-byte VAL function e e e e e e e

Descriptive Error Messages

Time and Date Stamp on program files .

UPPER/lower case commands . .

Using variables for line-numbers . .

Redirecting PRINT output to disk (SPOOL)

The SDS RAM/Disk feature . . o e .

Up to 16MB Data Memory support .

iv

W NN =

CHAPTER 1

SDS-Extended BASIC-2

What is SDS-Extended BASIC-2?

SDS-Extended BASIC-2 is a multi-user operating system and
enhanced BASIC-2 language processor the purpose of which is to extend
the usefulness, the effectiveness, the efficiency and the user
friendliness of the Wang 2200 Computer- System.< .

SDS-Extended BASIC-2 Release 4.0 adds significant new
capabilities to the 2200 system. For example, you can now RENAME
files, RESAVE programs, LIST the system STACK, and SPOOL print
output, just to mention a few. Release 4.0 also adds the capability
to load and execute machine language subroutines directly from a
BASIC-2 program. The performance improvements possible via execution
of machine language subroutines could mean that your 2200 system
might run certain applications up to 40 times faster.

Release 4.0 is the first operating system which allows
utilization of up to 64K of control memory. However, 2200 users with
only 32K of control memory can still benefit from all the features of
Release 4.0, including the 'Load Module' feature, since Release 4.0
will operate with a minimum of 32K of control memory.

What does SDS-Extended BASIC-2 run on?

SDS-Extended BASIC-2 operates on all Wang 2200 series SVP, MVP,
LVP, MVPC, LVPC and MicroVP processors. One of these processors with
a minimum of 32K of Control Memory and your registered copy of
SDS-Extended BASIC-2 is all that is required.

How to get your copy of SDS-Extended BASIC-2

SDS-Extended BASIC-2 demonstration diskettes are distributed to
users which allow limited-use of the software for evaluation
purposes. Your demonstration copy may be converted to a full-use
copy and registered as a licensed and personalized installation by
telephone. A simple registration program which you run during this
phone call is included on the demonstration diskette.

During this registration process, an authorization number will
be provided and your licensed copy of SDS-Extended BASIC-2 will be
created with your unique registration number and your name encoded in
the machine code on your system. You then simply re-initialize your
system and start enjoying the benefits of SDS-Extended BASIC-2.

Installing SDS-Extended BASIC-2

Two steps are required to utilize SDS-Extended BASIC-2:

1- Install the limited-use demonstration software on
your system.

2- Convert your demonstration copy to a full-use,
licensed copy, personalized for your system.

To install the demonstration copy of SDS-Extended BASIC-2, you
run the 'INSTALL' program included on the distribution diskette. The
'INSTALL' program moves the operating-system/language-interpreter
module and an 'SDS-Preloader' module to your initialization disk.

If the installation process is interrupted for any reason... a
power fluctuation, for example... you may not be able to use the
partially installed version of the operating system to reinitialize
your system. You must restore your original operating system files
and begin the installation process again.

The contents of the demonstration disk are:

INSTALL Installs limited-use Demonstration copy
@LICENSE Creates full-use, licensed, personalized copy

@sDs Operating System/Language Interpreter
eMvP SDS-Preloader Module
HELP HELP text file for $HELP verb

@GENPART Modified partition generation program which
supports 1MB and larger memory

The Results of Running the INSTALL Program

The INSTALL program renames your existing operating system
files and installs the new SDS-Extended BASIC-2 files. The following
new or renamed files are created on your initialization disk:

@MVPold Renamed copy of your old @MVP file
eMVP SDS-Preloader Module
@SDs Operating System/Language Interpreter

The INSTALL program does not move the '@LICENSE', 'HELP' or
'@GENPART' files. You may move these files to any disk in your
system.

Installation Procedure

1. Make a backup copy of your Store it in a safe place.
current operating system.

2. Type:

LOAD RUN T/Daa, “INSTALL" where "Daa" is the disk
address where the SDS-Extended
BASIC-2 demonstration software
is located.

Press - RETURN SDS-Extended BASIC-2
installation screen is
displayed.

Press any key An input prompt is given at

the bottom of the screen,
"Enter the Device Address of
the disk containing your
operating system"

3. Type in the Device Address
of your system disk.

Press RETURN A second input prompt is
given, "Enter the Device
Address of the disk containing
SDS-Extended BASIC-2.

6. Type in the Device Address
of the disk where the
SDS-Extended BASIC-2
demonstration software
is located.

Press RETURN A limited-use, demonstration
copy of SDS Extended BASIC-2
is installed on your disk.

When the INSTALL program is complete the display will read,

How to create and license your full-use, personalized copy

You (or your software consultant) may license SDS-Extended
BASIC-2 for your system by running the '@LICENSE' program included on
the demonstration copy disk and calling Southern Data Systems for a
registration and authorization number. The '@LICENSE' program will
create your personalized, full-use copy to run on your system.

Initializing your system under SDS-Extended BASIC-2

In order to utilize the features of SDS-Extended BASIC-2,
you must re-initialize your system using the new operating system
files installed by the 'INSTALL' program. SDS-Extended BASIC-2 is
designed so that the start-up procedures are the same as previous
releases of the operating system.

You should initialize (‘'boot') your system from Terminal-1
just as you usually do. The following procedure will initialize
your system for operation under SDS-Extended BASIC-2:

1. Mount the disk which contains
SDS-Extended BASIC-2 This disk may already be

mounted if you specified a

fixed disk in the INSTALL

program.

2. Master Initialize the system
from the disk which contains
SDS-Extended BASIC-2 This allows the system

startup menu program to

display a selection of

"DIAGNOSTICS" or “BASIC-2"

on your screen.

3. Select "BASIC-2"
Press RUN. The SDS-Preloader displays
the SDS-Extended BASIC-2
Registration Screen for
about 10 seconds while it
loads the operating system.

For licensed, full-use versions, the SDS-Extended BASIC-2
operating system loads and runs the partition generator program
'@GENPART'. This will either automatically configure the system
for you or the interactive system configuration screen will be
displayed, depending on the options set up on your system. You
should complete this operation as you usually do.

For limited-use demonstration copies, the SDS-Extended
BASIC-2 operating system will also load and run the '@GENPART'
program, however, it will limit configurations to a maximum memory
of 61K in bank 1 and up to 4 terminals. If your system is set up
for automatic configuration, you should create a partition
configuration meeting this restriction before initializing under a
demonstration version of SDS-Extended BASIC-2.

CHAPTER 2

FEATURES OF RELEASE 4.0

What new features and enhancements are included?

The following pages describe the new features and the BASIC-2
language enhancements in SDS-Extended BASIC-2 Release 4.0. The
format and style of the function descriptions is presented in the
familiar form used by the BASIC-2 Language Reference Manual.

The features and enhancements covered are:

new #HASH function

new #ID' function

new #LINE function

new #OPEN function

new $HELP statement

new $ID function

new $RELEASE statement

new =SELECT statement

new Multi-byte BIN function

new DATA LOAD BA enhancement
new DATA SAVE BA enhancement
new ERR$ command

new GOSUB "load-module" statement
new HEXPRINT+ statement

new HEXPRINT- statement

new IF -END statement

new 'selective' LIST DC command
new LIST DT output format

new LIST L statement

new LIST STACK statement

new LIST+V command

new LOAD "load-module" statement
new RENAME command

new RESAVE command

new SELECT STOP command

new TRACE V command

new Multi-byte VAL function

- Descriptive Error Messages

- Time and Date Stamp on program files
- UPPER/lower case commands

- Using variables for line-numbers

~ Redirecting PRINT output to disk (SPOOL)
- The SDS RAM/Disk feature

- 1IMB and larger memory support

]
P ODODODOODDODDODDDDODODDDODDD DL

#HASH function

General Form:

.. #HASH (alpha-exp, [end-char], [type-hash], modulus) [...]

Where: alpha-exp = a literal~string or alpha-variable
containing the expression to be

evaluated.

end-char = An optional literal-string or
alpha-variable the first byte of which
indicates that the hash calculation
should terminate at the first
occurance of this value in the
alpha-expression. If omitted, the
hash calculation will continue for the

entire length of the alpha-expression.

an optional numeric value or
numeric-expression indicating the hash
algorithm to be used. A value of 0
invokes the original disk index hash
algorithm, 1 invokes the new alternate
disk index (see SCRATCH') algorithim.
If omitted, 0 is assumed.

type-hash

modulus

A numeric value or numeric-expression
greater than zero and less than 65536
indicating the number of values into
which the alpha-expression must be
hashed. The maximum value is
dependent on the hash type specified.

Purpose:

A built-in function that returns the hash value of an
alpha-expression over a given modulus. Two hash algorithms are
available, the same ones used by the operating system to locate
entries for the disk index.

Examples: 100 X=#HASH ("SDSBASIC",,1,97)

200 Y=#HASH (V$,HEX(20),,255)

300 B=155: REM number of buckets
310 LINPUT"Enter Key",-K$: REM key value
320 K= #HASH (K$,,.B) REM calculate bucket

#ID' Function

General Form:

. #ID' [...]

Purpose:

The #ID' function returns the value of the SDS-Extended
BASIC-2 Operating System registration number. This value is a
number between 0 and 999999 and is the same number that appears in
<> brackets in the READY message. This value is unique for each
registered copy of SDS-Extended BASIC-2. This is not the same
value as the CPU identification number returned by the #ID
function. Both the #ID' function and the #ID function are useful
in licensing software to specific users for operation on specific
installations.

Examples:

PRINT #ID'
A=B+#ID'

10 IF #ID' <> 121617 THEN STOP

20 IF #ID' + #ID = 568821 THEN 30
: PRINT "SYSTEM NOT LICENSED FOR USE IN THIS CONFIGURATION"
: PRINT "PLEASE CALL SOUTHERN DATA SYSTEMS, INC."
: STOP
30 PRINT "Your CPU number is ";#ID
: PRINT "Your 0S Regristration number is ";#ID'

#LINE function

General Form: ... #LINE [...]

Purpose: A built-in function that returns the line number of the
current line in the program being executed. The value

returned is from 0 to 9999 corresponding to the number
of the current program line being executed.

Examples: 100 X=#LINE

PRINT #LINE

#0OPEN function

£# 1
General Form: ... #OPEN [[/]taa 1L[...]
[<alpha-variable>]
Where:
f# = A device-table-slot reference of the form #nn where
nn is a numeric-expression such that 0 <= nn <= 15.
If omitted, slot #0 is assumed.
taa = An explicit disk-address where t is the device-type
and aa is the unit-address.
Purpose: A built-in function that returns the partition number

of the partition currently hogging the specified
device. A value of 0 is returned if the device is not
currently hogged.

Examples: 100 X=#OPEN #7
110 PRINT "Device hogged by partition #":X
PRINT #OPEN /215

PRINT #OPEN <V$>

$HELP Function

General Form:

[file#,]
$HELP[S][platter][<filename>][keyword][;][TO alpha-receiver]
[T/daa,]
Where:
keyword = an optional alpha-expression, the subject of

the HELP request.

an optional expression which defines the
name of the help file to be searched.

filename

: allows continuous output of the help screens
in the specified <filename> starting with
the specified 'keyword' subject and
continuing in keyword order.

An optional string-variable to receive the
text message rather than having the message
displayed on the screen.

alpha-receiver

Purpose:

The $HELP function provides a convenient means of retrieving
information associated with a 'keyword' subject. The $HELP
function searches the specified <filename)> for the text associated
with the 'keyword' and then transfers the text to either the screen
(direct form) or to an alpha-variable receiver (indirect form).

If the <filename> parameter is omitted, the file defaults to
the SDS-Extended BASIC~2 Language/2200 System "HELP" file.

If the 'keyword' subject parameter is omitted, a list of all
keyword entries in the specified <filename> is displayed. The
keywords are displayed in the same order that they exist in the
keyword section of the file {the list is not sorted prior to
display). If a 'keyword' subject is specified and continuous
viewing mode (';') is indicated, the text messages, beginning with
the selected keyword, are displayed in the same order as the
remaining keywords in the keyword section.

Examples: S$HELP $HELP S "MAT MERGE"
$help #7, "$BREAK"; $Help T/D11, "#PART"
$helps <"Payroll"> "FICA"; $HELP,TO A1$()

20 $HELP <"GL HELP"> "ACCOUNT-NUMBER" TO D$()

30 DEFFN'O (A$,B$): $HELP <B$> A$: RETURN

40 REM Display Payroll Screen:$HELP<"SCREENS">"PR Input Screen"
50 REM Display Operation Error Message:$HELP <"ERR-MSG"> E$(E)
60 REM Display Blank Order Entry Form:S$HELP<"SCREENS">"OE-Input"

- 10 -

The HELP File Structure

Help message files consist of a 'keyword' section and a
'text' section. Both are written as BA formatted sectors. The
keyword section may contain any number of entries which point to
message starting points within the text section. Multiple keywords
may point to the same message text.

The KEYWORD section consists of a one sector header record
followed by as many keyword sectors as required by the help file.
The header record sector and the keyword sectors are structured as
follows:

Sector 1 xFILENAMExtttttttttttttttttttttttt. .. ttttttt
Sector 2 LkkikkkkkkkPPPLkkkPPPLkkkkkkPPP. . .LkkkkkkPPPd
Sector 3 LkkkkkkkPPPLkkkPPPLkkkkkPPP. . .LkkkkkPPPd
Sector n LkkkkkPPPLklkkkkkkkklckkkkkPPP . . .LkkkkkPPPf
where:
x = Hex(20) control character
FILENAME = name of help file
tt..tt = optional string of 246 characters
L = Length of keyword (binary value)
L < HEX(80) for primary keyword,
L > HEX(80) for secondary keywords which are
skipped in continuous display mode unless it is the
first keyword accessed
kk..kk = ASCII encoded keyword
PPP = 3 byte binary pointer to start of text for keyword
(relative number of bytes from start of file)
d = Hex(FD) code used to end current keyword sector
f = Hex(FF) code used to mark end of keyword section

The TEXT section of a help-file may contain any data to be
transfered to either an alpha-variable receiver or displayed on the
CRT, including control codes. Each message consists of a two byte
binary count which defines the length of the message followed by
the message text. A single text message may span as many sectors
as required to complete the message, however the binary character
count for the message must not be split between two adjacent
sectors.

A special multi-byte control sequence of HEX(020Bxxabecd) is
defined to implement the PRINT BOX, TAB, and AT functions. The
BOX, AT, and Erase control sequences are ignored if the selected
list device is not a CRT. The following definitions explain the
options available:

Sequence Equivalent function Definitions

020BOlhhww BOX(heigth,width) hh = BIN(height), ww = BIN(width)
020BOShhww BOX(-heigth,-width) hh = BIN(height), ww = BIN(width)

020B02rrcc AT(row,column) rr = BIN(row), cc = BIN(column)
020BO4ccce Erase(count) ccee = BIN(count,2)
020B03ccce TAB(column) ccec = BIN(column,?2)

- 11 -

$ID Function

General Form:
alpha-variable = $ID
Where:

alpha-variable = any alphanumeric string variable receiver

Purpose:

The $ID function returns an alpha-numeric string equal to
the name of the registered licensee of the resident copy of the
SDS-Extended BASIC-2 Operating System. The $ID function can only
appear on the right-hand side of alpha assignment statments.
Programs can then use the string value whenever and however
convenient.

Examples:

Assume the registered licensee is "SDS Distributing Co., of
Raleigh, NC". Then the name line listed on the system Pre-loader
screen displayed during system initialization would read:

"SDS Distributing Co., -- Raleigh, NC"
The following statements would give the results indicated.

DIMA$80

A$=$1D

PRINT A$

SDS Distributing Co., =-- Raleigh, NC.

10 DIM A$80

20 A$=31D

30 PRINT "This software is licensed to ";A$;" under
operating system regristration number ";#ID';" for
operation on CPU number ";#ID

70 REM Get Client Name

: A$=31ID
: N$=STR(AS$,1,POS(A$="-")-1)

- 12 -~

$RELEASE statement

General Form: $RELEASE module-name
ALL

Where:

module-name = A literal-string or alpha-variable containing
the name of the load module to be removed from
control memory.

ALL = A parameter specifying that all currently
resident load modules are to be removed from
control memory.

Purpose: Allows clearing a portion or all of the section of
control memory allocated for user loading of machine
language 'Load Modules'. -

Examples: $RELEASE "TURBO-SP"
10 $RELEASE "DATECONV"

80 $RELEASE ALL

- 13 -

=SELECT Function

General Form:

alpha-variable =SELECT parameter

Where:
alpha-variable = a string variable which will
receive the value requested.
parameter = a keyword defined by the
following table.
length format
of value of data
parameter value returned returned returned
CI Console Input device address 2 Otaa
INPUT INPUT device address 2 Otaa
PLOT PLOT device address 2 Otaa
TAPE TAPE device address 2 Otaa
co Console Output device address 4 Otaaww00
PRINT PRINT device address 4 0tbbww00
LIST LIST device address 4 Otaaww00
#n 0<=n<=15 file-status parameters 8 ftaa ssss
ccce eeee
ALL Master Device Table for current 64 aaup ...

partitions device selections

The symbols used in the data format column are defined below:

t = one hex digit specifying the device-type

aa = two hex digits specifying the physical device address

bb = two hex digits specifying the physical device address or
Spool slot number

wW = two hex digits expressing the current maximum line width

f = file status (O=not open, 1/2=open on "F"/"R" drive)

ssss = four hex digits specifying the starting sector address

cccc = four hex digits specifying the current sector address

eeee = four hex digits specifying the ending sector address

u = one hex digit where the binary bits represent device status
bit 1 =1 - device is a disk device
bit 2 =1 - device is assigned to exclusive use of

partition (p)

bit 3 =1 - device is currently in use by partition (p)
bit 4 =1 - device is currently hogged by partition (p)

p = one hex digit specifying the number of the partition using

the device

- 14 -

Purpose:

Typically a program tracks device selection by setting up a
variable or array and maintaining a copy of the current SELECT
parameters for decisions on various program actions required by
certain devices. An example is in a program producing printed
output to either a printer or the the CRT screen. A variable would
be set to tell the program to stop every 24 lines if the CRT were
selected, or the skip to a new page every 60 or so lines if a
printer were selected.

The =SELECT statement provides a convenient means of reading
the values contained in the device table. This allows the program

to know any SELECTED device at any time without having to maintain
a seperate set of varaibles for this purpose. '

Example:
10 DIM A$4
20 SELECT PRINT 215(132)
30 A$=SELECT PRINT
40 HEXPRINT A$
the printed output is
102158400
[___.Width is Hex(84) = Dec(132)

Device is 215

- 15 -

Multi-byte BIN function

General Form:

alpha-variable = [...] BIN(numeric-expression [,n]) [...]

Where:
n = 1 >= length parameter <= 6

Purpose:

The BIN function converts the integer value of a
numeric-expression to an 'n' byte binary number. If 'n' is not
specified, a one byte binary number is created.

Examples:

D = 52607
D$ = BIN(D,3) (Sets D$ = HEX(OOCDTF)

10 z$(1) = D$ ADD BIN(Q+R*2)
20 STR(X$,4,5) = BIN(X,5)

- 16 -

DATA LOAD BA

[file#,] (sector [,next]) [alpha-array]
[/taa,] [alpha-var; [<offset>]]

Platter-designator (F, R or T).

A device-table-slot reference <= 15. If
omitted, slot #0 is assumed. The device table
data is not updated by DATALOAD BA.

A disk-address where t is (3, D, or E) and aa
is the unit-address.

A numeric-expression or alpha-variable
designating the address of the seeter to be
accessed.

A numeric-variable or an alpha-variable which
receives the sector address of the next sector
following the last sector read.

An alpha-array of at least 256 bytes in size.
If larger, only the first 256 bytes are loaded
with data from the specified sector.

An alpha-variable of any size. As many bytes
of data as required will be loaded to fill the
variable starting at the specified 'sector'’
plus the 'offset' in bytes.

A numeric-expression which specifies the number
of bytes to skip before starting to load data
into the alpha-variable. The offset must be a
positive value which will not cause the access
to exceed the maximum sector on the disk.

General Form:
DATALOAD BA pd
Where:
pd
file#
/ taa
sector
next
alpha-array
alpha-var
offset
Purpose:
1_
2_

Load one 256-byte disk sector into an
alpha-array variable.

Load any amount of data from a disk into an
alpha variable.

The single sector load version of the command is not
changed. The following are examples of the variable length load
version of the command.

Examples: 10 DATALOAD BA T /D50, (0) X$;
20 DATALOAD BA T (A,B) STR(D$,25,87);<25>
30 DIM Z$(32000)1
40 DATALOAD BA T /D13, (S$.R) Z$();<Q>

._17_.

DATASAVE BA statement

General Form:

Where: pd =
$ =

& =

da =

sector =
nextvar =

alpha-array =

alpha-var =

offset =

DATASAVE BA pd [$][f#.] (sector[,nextvar]) [alpha-array |

[da,] [alpha-var; [<offset>]]

Platter-designator (F, R or T).

A parameter specifying that a read-after-write
verification is to be performed. An I99 error
results if the read-after-write fails.

A device-table-slot reference of the form #nn where
nn is a numeric-expression such that 0 <= nn <= 15.
If omitted, slot #0 is assumed.

An explicit disk-address of the form /taa where t is
the device-type and aa is the unit-address.

A numeric-expression or alpha-variable designating
the address of the sector to be accessed. If an
alpha-variable, the first two bytes are treated as a
16-bit, unsigned binary value.

A numeric-variable or an alpha-variable which
receives the sector address of the next sector
following the last sector saved.

An alpha~array of any size. If the alpha-array is
shorter than 256 bytes, the remainder of the sector
is filled with undefined data. If larger, only the
first 256 bytes are written.

An alpha-variable of any size. The contents of the
alpha-variable will be saved to the disk starting at
the specified 'sector' plus the 'offset' in bytes.
If the save does not start or end on a sector
boundary, the bytes before or after the
alpha-variable are unchanged.

A numeric-expression which specifies the number of
bytes to skip from the beginning of the sector
specified before starting to save data to the disk.

PURPOSE:

1- SAVE one 256-byte disk sector from an alpha-array variable.
2- SAVE any amount of data to a disk from an alpha variable.

EXAMPLES :

10 DATASAVE BA T (S) X$()
20 DATASAVE BA T /D11, (S$,S$) YS$()
30 DATASAVE BA T #X(4), (N+3*M) STR(Z$(),100)
40 DATASAVE BA T (A,B) STR(D$,25,87);<25>
50 DIM Z$(32000)1
: DATASAVE BA T /D13, (S$,R) Z$();<Q>

- 18 -

ERR$ Command

General Form:

alpha-variable = ERR$ (error-code)

Where: error-code = the 2-digit numeric portion of the

error code.

Purpose:

The ERR$ statement provides a convenient means of providing
you with an English description of an error. The ERR$ statement
places the description of the error code requested in the
alpha-variable specified.

When used in conjunction with the ERR function, a program can
describe the most recent error to the operator with an appropriate
recovery instruction.

Example:
100

200

DIM E$80

DATASAVE DC #1, A$(),.B$

: ERROR GOSUB '100
210 .

700

780

DEFFN '100
E$=ERR$ (ERR)

PRINT AT(24,0,80);E$
ON ERR-80 GOTO 780,781
RETURN

REM Error Handler Routines

If an error occurs following execution of the DATASAVE DC
statement on line 200 a branch occurs to Subroutine DEFFN '100 at
line 700 which displays the description of the error on line 24 and
branches to an error handler routine starting at line 780.

._19_

GOSUB statement

General Form:
Form 1: GOSUB line-#

Form 2: GOSUB name-sub [([*]num-arg [,[*]num-arg] ...)]
argument argument

Where: line-#

A numeric constant, scaler-variable,
array-element or numeric expression whose
integer value represents the program
line-number beginning the subroutine.

name-sub = A literal-string or alpha-variable which
identifies the machine language subroutine.

* = An optional parameter which, when used with
numeric scalar-variables or numeric
array-variables, indicates that the address of
the variable is to be passed to the subroutine.

num-arg = A numeric scaler-variable, or numeric
array-variable.

argument = A numeric constant or numeric expression.
An alpha literal, scaler-variable,
array-element, or array designator.

Purpose:

Form 1 of GOSUB causes execution to be transferred to the
specified line number. Upon encountering a RETURN statement, the
system transfers execution to the statement immediately following
the GOSUB. Form 1 subroutines may call other subroutines.

Form 2 of GOSUB causes execution to be transferred to the
machine language subroutine identified as ‘name-sub' in a currently
active load module in control memory. If the cannot be located a
P31 error is reported. Upon completion of the subroutine,
execution transfers to the next statement following the GOSUB.

GOSUB can optionally transfer values and/or pointers of the
argument list to the machine language subroutine. The type of
argument (value or pointer, numeric or alpha numeric) must be the
same as the type defined for the load module.

Examples: Form-1 10 GOSUB 4000
20 GOSUB V
30 GOSUB 4000+X

Form-2 40 GOSUB "TEST-SYS"

50 GOSUB "DATECONVERT" (3, "022685",%*X1,D1$)
60 GOSUB Al$ (*C,C4$,STR(GS,3,17))

- 20 -

HEXPRINT- and HEXPRINT+

General Form: Form 1: HEXPRINT- (alpha-variable)
(literal-string)

Form 2: HEXPRINT+ (alpha-variable)
(literal-string)

Purpose:

The regular HEXPRINT statement is used to print the value of
an alpha-variable or literal-string in hexadecimal notation. The
format of the printed value is a continuous string of hexadecimal
characters and frequently difficult to read.

The HEXPRINT- statement also prints the value of an
alpha-variable or literal- string in hexadecimal notation, however,
the format is changed to show pairs of hexadecimal digits seperated
by spaces.

The HEXPRINT+ statement prints the value of an alpha-variable
or literal-string in both hexadecimal and ASCII format. The
printed output is arranged in typical dump format with up to 16
hexadecimal characters seperated by spaces followed by their
equavalent ASCII characters for each line. Values which do not
convert to printable ASCII characters are displayed as periods.

Examples:
Assume: DIM A$32

A$="SOUTHERN DATA SYSTEMS, INC."
then: HEXPRINT A$ prints:

534F55544845524E20444154412053505354454D532C20494E4 32E2020202020

HEXPRINT- A$ prints

53 4F 55 54 48 45 52 4E 20 44 41 54 41 20 53 59 53 54 45 4D 53 2C
20 49 4E 43 2E 20 20 20 20 20

HEXPRINT+ A$ prints

53 4F 55 54 48 45 52 4E 20 44 41 s4 41 20 53 59 SOUTHERN DATA
53 54 45 4D 53 2C 20 49 4E 43 2E 20 20 20 20 20 SYSTEMS, INC.

- 21 -

IF -END THEN Statement

General Form:

IF -END THEN (line-number)[ELSE statement]
{statement)

Purpose:

The IF END THEN statement is used to test for the presence
of an end-of-file record when reading records from a disk.

The 1IF -END THEN statement is used to test for the ABSENCE
of an end-of-file record.

Examples:
Using IF END Using IF -END
100 DATALOAD DC A,B,C$ 100 DATALOAD DC A,B,C$
110 IF END THEN 130 110 IF -END THEN PRINT A,B,C$
120 PRINT A,B,C$.
130 . . . 130 . . .

- 22 -

LIST DCT "mask" Command

[<D>]
General Form: [<p>] ["mask"]
LIST [S] DC platter [<S>][-][alpha-variable]
[<SD>] [(sector)]

[<SP>]

Where:

<D> selects only data files for the list

<pP> selects only program files for the list

<S> selects only scratched files for the list

<SD> selects only scratched data files for the list
<SP> selects only scratched program files for the list

a minus sign ('-') reverses or negates the selection
logic

mask a literal-string or an alpha-variable to define the
files to be selected. The mask can contain exact
match characters or by using a leading asterik "*",
the search will look for any occurance of - the
mask-string in the file name. Don't-care character
positiens are defined by the "?" character.

sector a starting sector (or ending sector if a minus is
used) will cause the list to begin (or end) at this
sector number. :

Purpose:

The LIST BC command now allow you to search a disk for
selected groups of files. Files may be grouped by name (mask),
type (program, data), status (scratched, active) or location
(before/after a specified sector).

Examples: LIST SDCT/310, "GL" lists all files with "GL"
characters in positions 1 and 2

LIST S DCT "#*ASK" lists all files which have the
"ASK" character string in any
position of their name

LIST S DCT "??AB?7?" lists all files which have "AB"
as the third & forth
characters.

LIST S DCT <SD>(2300) lists all scratched data files
residing above sector 2300.

LIST S DCT <D>-"#*@" lists all data files except

ones with an "@" character
anywhere in their name.

23

LIST DT output format

Where:

General Form:

LIST [S] [title] DT

title = any literal-string or alpha-variable
(not displayed if List device is CRT)

Purpose:

The LIST DT command displays the current contents of the
device table in both decimal and hexidecimal notation. The
table is displayed in the following format:

Console Input Plot Tape Console Output Print Output List Output

Where:
taa
11 www
SSSS SSSSS
ccee cccce
eeee eeeee
y

pp
X

(t) device-type, (aa) unit device address

line width (ll=hexidecimal, www=decimal)

starting sector address (hex and decimal)

current sector address (hex and decimal)

ending sector address (hex and decimal)

file open status (0=not open, l=open on F, 2=open on R)
number of partition using device

X if device is opened for exclusive use of partition pp
0 if device is opened by partition pp

- 24 -

LIST L statement

General Form: LIST [S] [title] L

Specifies that the listing is to be output a set
number of lines at a time as determined by SELECT
LINE. Press RETURN to continue the listing.

Where: S

title = An alpha-variable or literal-string. If
included, title causes the system to send a
top-of-form prior to printing the highlighted
title and program text.

Purpose:

To produce a listing of all 'load-modules' and the machine
language subroutines which are currently available in control

memory. The subroutines listed may be called using the GOSUB
statement.

Individual 'load-modules' may be removed from control memory
by the $RELEASE 'load-module' statement. All currently active
'load-modules' are removed by the $RELEASE ALL statement.

_25-

LIST STACK statement

General Form: LIST [S] [title] STACK
Where: S = Specifies that the listing is to be output a set
‘ number of lines at a time as determined by SELECT
LINE. Press RETURN to continue the listing.

title

An alpha-variable or literal-string. If
included, title causes the system to send a
top-of-form prior to printing the highlighted
title and program text.

Purpose:

To produce a listing of all currently active FOR/NEXT loops
and GOSUBs in the interpreter program stack. The actual program
lines which created the stack entries are displayed. The most
recent stack entry is displayed first.

In the case of FOR/NEXT loops, the current value of the index

variable, the end value and the STEP value are displayed
immediately following the FOR/NEXT statement.

- 26 -

LIST +V command

General Form:

LIST [S] [title] +V [variable-name] [,[variable-name]

Where:
any valid BASIC-2 variable name

variable-name

title = alpha-variable or literal-string

Purpose:

The LIST +V command generates a listing of the currently
defined variables, an indicator of variable type (N=non-common,
C=common), their current dimensions and their current value(s).
The list may include one varaible, a range of variables, or all
variables. For array variables, as many element values as will
fit on the screen width are displayed.

Examples:
Assume the following program is currently loaded:

5 COM Z$(14,2)10
10 DIM A(2,3),A$(4),B$28,C(4)
20 A(1,1)=9
30 B$="Southern Data Systems, Inc."
4o X=A(1,1)+Q
50 A$(1)=STR(B$,1,13)
60 C(3)=X*3

Produces cross-reference list

A(- 0010 0020 0040
AS(- 0010 0050

B3$ - 0010 0030 0050
C(- 0010 0060

Q - 0040

X - 0040 0060

Z$(- 0005

LIST +V Produces dimension/value list

Al - N (2,3) 900000

A$(- N (4)16 Southern Data

B$ - N 28 Southern Data Systems, Inc.
C(- N (#4) 00270

Q - N 0

X - N

Z$(- C (14,2)10

27

LOAD "load-module'" statement

General Form: LOAD [DC] pd [file#,] file-name
[address,]
Where: pd = Platter-designator (F, R or T)
file# = A device-table-slot reference of the form #nn
where nn is a numeric-expression such that 0 <=
nn <= 15. If omitted, slot #0 is assumed.
address = An explicit disk-address of the form /taa where

t is the device-type and aa is the
unit-address.

file-name = A catalogued, machine language, control memory
load-module name.

Purpose:

To load a machine language 'load-module' into control memory
from disk using disk catalogue mode. This LOAD statement is
identical in format to normal BASIC-2 program loads except the
operating system detects that the load is a 'load-module' by the
file type byte in the program header sector and directs the load
into control memory.

The 'load-module' subroutine entry names are located and made
available to the user via Form-2 of the GOSUB statement. Each
'load-module' may support up to 15 named machine language
subroutines..

Examples: LOAD T "subsset"
LOAD DC T /D12, "DATECONV"
10 LOAD T "ISAM"
20 LOAD T#1, "ideas++" -
30 LOAD DC T/D21, "kfamsubs"
4o LOAD T "turbosub"

- 28 -

RENAME Command

General Form:

Where: DC

f#

da

oldname

newname

RENAME [DC] pd [f#,] (oldname) newname

[da,]

An optional parameter indicating disk
catalogue mode. If omitted, DC mode is
assumed.

Platter-designator (F, R or T).

A device-table-slot reference of the form
#nn where nn is a numeric-expression such
that 0 <= nn <= 15. If omitted, slot #0 is
assumed.

An explicit disk-address of the form /taa
where t is the device-type and aa is the
unit-address.

A literal-string or alpha-variable
containing the name of the existing file.

A literal-string or alpha-variable
containing the new name to be assigned to
the existing file.

Purpose: The RENAME command provides a convenient means of
changing an existing file name in a disk catalogue.

If the "oldname" does not exist on the specified disk
a D82 error is reported. If the "newname" already
exists on the specified disk a D83 error is reported.

Examples: RENAME T ("PROGRAM1")"PROGRAM2"

10 RENAME T/D13, ("GL-Acctl")"GL-Reorg"
20 RENAME T/D13, (A$)B$

- 29 -

RESAVE Command

General Form:

RESAVE [DC][<S >] pd [$1[£f#.]1 [!] filename [start][.,end][/com]

[<SR>]

Where: DC

<S>

<SR>

f#

da

filename

start

end

com

[da,] [P]

An optional parameter indicating disk
catalogue mode. If omitted, DC mode is
assumed.

A parameter indicating that all unnecessary
spaces will be removed.

A parameter indicating that all unnecessary
spaces and REM statements will be removed.

Platter-designator (F, R or T).

A device-table-slot reference of the form
#nn where nn is a numeric-expression such
that 0 <= nn <= 15. If omitted, slot #0 is
assumed.

An explicit disk-address of the form /taa
where t is the device-type and aa is the
unit-address.

A parameter specifying that a
read-after-write verification is to be
performed.

A literal-string or alpha-variable
containing the name of the file.

A parameter indicating that the program
text is to be scrambled.

A parameter indicating that the protect bit
is to be set in the program file.

The starting line-number of text to be
saved. If omitted, the lowest line-number
is assumed.

The last text line-~number to be saved. If
omitted, the highest line-number is
assumed.

An alpha-variable or literal-string
containing up to 234 characters of
information to be stored in the program
header sector, immediately following the
time and date stamp.

30

Purpose:

Examples:

The RESAVE command provides a convenient means of updating
a currently existing program on disk with the program in
memory. The RESAVE command performs the same functions
the SCRATCH and SAVE commands.

If the "filename" does not exist on the specified disk a
D82 error is reported. If the program in memory is larger
than the "filename" file on the disk a D81 error is
reported.

10 RESAVE T "PROGRAM"

20 RESAVE DCF$ Q%

30 RESAVE <SR> T/D12, "FILENAME"/"New version"
4o RESAVE <S> T$#4, ! Y$ 1000,9000

31

SELECT STOP statement

General Form:
SELECT [... ,] STOP [[start-line],{end-linel] [...]

Where:

start-line The lowest line number of the range of lines
where HALT/STEP mode is to be automatically
invoked. If omitted, the lowest line-number is

assumed.

end-line The highest line number of the range of lines
where HALT/STEP mode is to be automatically
invoked. If omitted, the highest line-number is

assumed.

Purpose:

A new SELECT parameter to instruct the operating system to
automatically place the partition in HALT/STEP mode when
program execution is transferred to a line number within a
specified range of lines. Upon program transfer to a line
within the range, a 'TRANSFER TO xxxx' message is displayed
and program execution is stopped.

Examples:
SELECT STOP (4000,9000) Stop within 4000-9000 range
SELECT STOP (,2000) Stop below 2000
SELECT STOP (8000,) Stop above 8000
SELECT STOP Clear stop function

- 32 -

TRACE Variable option

General Form:

TRACE [-T] [V variable-name]

Where:
variable-name = any currently defined variable

Purpose:

The TRACE V statement produces a trace of all operations
which change the value of the specified variable.

In normal TRACE mode operation all program branches
(FOR/NEXT, GOTO, GOSUB, RETURN) are identified as TRANSFER TO
entries. The "-T" option inhibits the output of these
transfer entries.

Trace output can be directed to either the CRT screen or

to a printer by selecting the desired LIST device for output
using the SELECT statement.

Examples:
TRACE V Q2 Traces variable Q2 only
TRACE V Z4$(Traces array variable Z4$(only
TRACE -T Traces all variables but suppresses

the "TRANSFER TO XXX" entries in
trace output

TRACE -T V X7 Traces variable X7 and suppresses the
"TRANSFER TO XXX" entries in the
trace output

TRACE OFF Turns TRACE off and removes the V and
-T options

33

Multi—byte‘VAL function

General Form:

VAL ([alpha-variable] [,n])
[literal-string]

Where:
n = 1 >= length parameter <= 6

Purpose:
The VAL function converts the binary value of the first

'n' bytes of an alpha-string to a numeric value. If 'n' is not
specified only the first byte is converted.

Examples:
PRINT VAL(AS$.5)
X=VAL(D$, 6)
D=VAL("010185",3)

10 IF VAL(X$,3) >262144 THEN 100
20 Y=VAL(STR(A$,14),4)

Descriptive Error Messages

Displays descriptive error messages on the screen

Purpose:
To provide on-screen display of error messages.

Example: 10 STR(A$(2,17,20)=STR(B$(J),2,20)

ERROR S11
Missing Right Parenthesis

emory

2 Memor§ Overflow (Text <--> Value Stack
3 Memory Overflow (LISTDC, MOVE or COPY)
L Stack Overflow (Operator Stack)
5 Program Line too long
6 Program Protected
7 Illegal Immediate mode statement
8 Statement not legal here
9 Program not Resolved
10 Missing Left Parenthesis
11 Missing Right Parenthesis
12 Missing Equal Sign
13 Missing Comma or mis-spelled atom
14 Missing Asterisk
15 Missing ">" character
16 Missing letter
17 Missing Hex Digit
18 Missing Relational Operator
19 Missing Required Word
20 Expected End of Statement
21 Missing Line Number
22 Illegal PLOT arguement
23 Invalid Literal String
24 Illegal Expression or Missing Variable
25 Missing Numeric-Scalar variable
26 Missing Array-Variable
27 Missing Numeric Array
28 Missing Alpha-Array
29 Missing Alpha-Variable
30 Not Currently Defined
31 Not Currently Defined
32 Start > End
33 Line-Number Conflict
34 Illegal Value
35 No Program in Memory
36 Undefined Line-Number or CONTINUE illegal
37 Undefined Marked Subroutine
38 Undefined FN Function
39 FNs Nested too Deep
4o No corresponding FOR for NEXT statement
41 RETURN with GOSUB
42 Illegal Image

35

escription
Illegal Matrix Operand
Matrix not square
Operand dimesions not compatable

Illegal Microcommand

Missing Buffer Variable

Illegal Device Specification (Not in table)
Interrupt table full

Illegal Array Dimensions or Variable Length
Variable or Value too short

Variable or Value too long

Noncommon Variables Already defined

Common Variable required

Undefined Variable (Program not Resolved)
Illegal Subscript

Illegal STR Arguements

Illegal Field-Delimiter Specification
Illegal Redimension

Underflow

Overflow

Division by Zero

Zero divided by Zero or Zero Zero

Zero raised to a negative power

Negative number raised to Noninteger Power
Square root of a Negative Value

LOG. of Zero

LOG of a Negative value

Arguement too large

Insufficient Data

Value exceeds Format

Singular Matrix

Illegal INPUT data

Wrong Variable type

Illegal number

Buffer exceeded

Invalid Partition Reference

Not currently defined

Not currently defined

File not OPEN

File is Full

Requested File is not in Selected Disk Catalog
File already exists in Catalog

File is not Scratched

Index is Full

Catalog END error

No End of File

Wrong Record Type

Sector Address beyond End of File
Incorrect or no response during Selection seq
Disk may not be mounted

Timeout Error

Disk Header Format problem

Format key engaged

Device fault

Disk Data error

Longitudinal Redundancy Check error

Illegal Sector Address or Platter not Mounted
Read after Write Error

- 36 -

TIME & DATE STAMP on Program Files

General Form:

SAVE [~---standard parameters ---] [/text-string]

Where:
text-string = an optional literal-string or
variable of up to 234 characters in
length which is written in the
program header sector on the disk.
Purpose:

If the system has an MXE terminal controller or is an SVP
with an Option-W, the save statement will automatically write the
DATE and TIME in the program header. If the DATE and TIME are not
available in the system, zeros are written in the record.

Additionally, an optional text-string of up to 234 characters
can be written in the program header record each time a program
file is saved. This will allow the programmer to track program
revisions and descriptions of programs as required.

The program header can be read using a DATA LOAD BA
statement. The format of the program header is as follows:

Record KNNNNNNNNxddmmyyhhmmsstttttttttttttttt . . . tttty
i T1 T T T
Byte 2 9 11 17 23 256
N = Program name
x = control character
ddmmyy = date (day/month/year)
hhmmss = time (hour/minute/second)
ttt . . . ttt = text string of 234 characters

Examples:
SAVE DC T/310, "PROGRAM1"/"Revision 1.7 JRE add range check"
A$ = "Revision 1.8 by Jim Smith, Modified customer history

data fields per Change Order number 123-J17"
SAVE T "PROGRAM2"/A$

LIMITS T "PROGRAM1",A,B,C,D
DATA LOAD BA T (A), A$()

PRINT STR(A$(),22,234) Prints comment saved with program

_37...

UPPER/lower case commands

General Form:

Commands and statements can be entered using
either UPPER or lower case characters.

Purpose:

This feature allows commands and statements to be entered
using either UPPER or lower case characters. All lower case
commands are automatically - -converted to UPPER case by the operating

system. Literal strings enclosed in quotes (" ... ") are not
modified.
Examples:
lower case Converted to
list sd LIST SD
Print a$ PRINT A$
$release part $RELEASE PART
convert X$ to X CONVERT X$ TO X
select list 215 SELECT LIST 215
100 rem Start Search 100 REM Start Search
110 str(a$,1,4)="Sort" 110 STR(A$,1,4)="Sort"

- 38 -

Using variables for line-numbers

General Form:

for example: GOSUB variable
GOTO variable

IF ... THEN variable

KEYIN X$ (variablel,variable2)
ON ... GOTO variable ...

ON ... GOSUB variable ...

PRINTUSING variable.
RESTORE LINE variable

Purpose:

The destination (target) line number of many statements
may be expressed as a numeric-variable or a numeric-variable
expression. In the case of program flow control statements such
as GOTQ, GOSUB, IF-THEN and KEYIN, this allows a programs
execution sequence to be modified by calculated values. In the
case of line reference statements such as PRINTUSING and RESTORE
LINE, this allows the referenced lines to be specified by
calculated values.

Examples:
: 10 X=MOD(LEN(A$).4)

20 GOTO X

100 GOSUB Y+Z-2%Q+3000 ‘

200 RESTORE 300+LEN(Q$)*3

300 KEYIN K$ (X,Q)

400 PRINTUSING I, M$,D$,Y$

39

Redirecting PRINT output to disk (SPOOL)

General Form:

1- SELECT [... ,] SPOOL ['] #n, buffer-variable [...]
2~ SELECT [... ,] PRINT SPOOL #n [...]
Where: ' = An optional parameter indicating that print

data is to be compressed.

#n = A device table slot where 0 <= n <=15. If
omitted, slot#0 is assumed.
buffer-variable = An alpha-array-variable >= 260 bytes to be

used as a buffer for spooled print output.

Purpose:

To allow PRINT output to be placed in a disk file. The
print output data (disk file) may be manipulated if required and
printed later. It also facilitates development of print spooler
functions and translater capabilities to support many different
printers.

Operation Description:

Select statement 1 identifies a print output data buffer
and assigns it to the previously opened device table slot #n.
The spool mode may be specified as compressed or non-compressed
by the ['] parameter. If compressed mode is specified, four or
more consecutive occurences of the same character are compressed
into three bytes in the form HEX(FBccxx) where 'FB' is the
compression flag, 'cc' is the binary count and 'xx' is the HEX()
value of the character. An exception is made for the occurence
of the character HEX(FB) which is always expanded and saved as
HEX(FBFB). Multiple occurences of HEX(FB) are never compressed.

Select statement 2 redirects print output data to the
buffer associated with device table slot #n. The operating
system will place print output data in the selected spool buffer
until the buffer is filled at which time the contents of the
buffer will be written to the disk in multiples of 255 bytes
until the buffer contains less than 255 bytes. Disk
interference can be controlled by the selection of buffer
length.

Sectors will be written in BA mode with the device table
parameters for slot #n being updated after each sector is
written. Sectors contain one byte of data count and up to 255
bytes of print data. Buffer bytes 1-4 are used for system
control. Bytes 1-2 are current data count. Bytes 3-4 are
length of buffer. If compressed mode is selected, the value of
HEX(80) is ORed into buffer byte 3.

- 4o -

In systems where document control information is saved in
a header record, the initial contents of the buffer array may be
preloaded and the current data count in bytes 1-2 may be
adjusted prior to the spooling operation. Such document control
information can then be used by a spool utility to manage the
print documents stored on disk.

DSKIP and DBACKSPACE may be used to reposition the current
file pointer to any position within the file. Attempts to write
beyond the end of the file will result in a Dxx error and print
output to the disk will be discontinued until the file is
repositioned or a new file is opened.

A DATASAVE DC #n, END statement will cause any remaining
buffer data and an END record to be written to the disk. A
CLOSE operation on the file is optional.

Examples: 10 DIM B$(516)1
20 SELECT PRINT 215,#7 D13
30 DATALOAD DC OPEN T#7,"SPOOL-01"
4o SELECT SPOOL #7,B$()
50 SELECT PRINT SPOOL #7
.. print statements

Any print statements following line 50 will be written to
the buffer B$() and then to the "SPOOL-01" data file.

80 DATASAVE DC #7, END
Any remaining print data in the buffer, B$(), are saved to

the disk, and an END record is written to the file
associated with slot #7.

- 1 -

SDS RAM/Disk

General Form:

in any disk reference ... T/EDO, [...]

Purpose:

The RAM/Disk feature, available with 1MB or larger memory
boards from Southern Data Systems, provides a separately
addressable logical disk device that is actually resident in the
unused portion of the system's data memory. The RAM/Disk will
respond to all of the standard BASIC-2 disk commands similar to any
other disk. Access times for data saved in RAM/Disk can be many
times faster than for data stored on conventional disk drives.

The portion of memory not assigned to partitions during
system initialization is automatically configured as RAM/Disk. The
RAM/Disk responds to device code 'EDO' which can be SELECTed just
as any other disk device. The presence of RAM/Disk and its size
(in sectors) are available to the program through the 'SPACE DISK'
function (similar to the 'SPACE' and 'SPACEK' fumctions).

Examples:

10 IF SPACE DISK >0 THEN
SCRATCH DISK T/EDO,LS=5,END=SPACE DISK-1
20 DATA LOAD BA T/EDO, (A,X)A$()
30 MOVE T/D10, "PROGRAM" TO T/EDO,
4o copy T/320,(0,1000) TO T/EDO, (0)
50 DATA SAVE DC T/EDO,A$(),B$()
60 $FORMAT DISK T/EDO,
70 SAVE T/EDO, (10)"NEWCODE"
80 SELECT #14EDO

- L2 -

Up to 16MB Data Memory Support

Release 4.0 includes modifications which allow 1MB or larger
memory boards from Southern Data Systems to be utilized in 2200
systems. The operating system now provides the capability to
address up to 16MB of Data Memory. With current memory technology,
up to 4MB of memory is practical, however, as memory technology
advances, larger memory configurations can be utilized without
further changes to the 0S.

The memory above 1MB provides a separately addressable
logical disk device, called RAM/Disk, which responds to all of the
standard BASIC-2 disk commands similar to any other disk. Access
times for data saved in RAM/Disk can be many times faster than for
data stored on conventional disk drives.

- 43 -

APPENDIX

- 4 -

Appendix A

The EZ-HELP Utility

A separate 'EZ-HELP' utility is available to assist users in
creating 'help' message files. This utility consists programs
which provide the functions of text entry, keyword entry and
help-file creation.

Text messages can be designed on screen using word processing
type operations, then keywords and/or key-phrases within the text
can be identified and extracted to form the keyword section for the
file. The sequence of keywords, which controls the order of
presentation of the text messages when displayed in continuous

mode, can be rearranged as desired before the file-builder creates
the help-file.

Operating instructions for the EZ-HELP utility are provided
by the $HELP function itself, through a special help-file,
'EZHELPIN". The 'EZ-HELP' utility can be ordered for operation on
any system running SDS-Extended BASIC-2, Release 2.8.

Appendix B

The SDS-Extended BASIC-2 Language & 2200 System "HELP" file

The 'HELP' file supplied with SDS-Extended BASIC-2, Release
2.8 covers approximately 276 subjects associated with the 2200
language and system operation. Each screen (or page) consists of

up to six sections.
appropriate.

TITLE and REFERENCE

(number)
(Disk number)

(Wang SB 2.x)
(SDS SB 2.x)

PURPOSE

SYNTAX

Upper-case
Lower-case

"= (hyphen)

[] (brackets)

{ellipsis)

Sections are abbreviated or omitted where not

1) Title and Reference

2) Purpose

3) Syntax

L) Comments and general usage rules
5) Examples

6) Other references

The Title, the primary key used to access the
page, is centered on the top line. The main
Reference (a manual page number or description
where further information on the keyword can
be obtained) is right-justified within
parenthese on the same line and take the
following forms:

Page number, 1979 Wang BASIC-2 Language
Reference Manual

Page number, 1981 Wang BASIC-2 Disk Reference
Manual

Wang BASIC-2 Software Bulletin Release 2.x
SDS-Extended BASIC-2 Software Bulletin

This is a brief description of the main
purpose(s) of the keyword.

General syntax is specified showing correct
command structure(s). Alternate and optional
parameters and data are indicated. The
following rules apply:

Must be used exactly as shown
Designate programmer-supplied information

Considered to be part of the programmer
supplied information when imbedded in
lower-case letters.

Indicate that the enclosed syntax is optional.

The ellipsis has a dual meaning. When
following an item enclosed in brackets, it
indicates that the item may occur more than
once. OQOtherwise, it indicates that other
program text must (...) or may ... preceed or
follow the specified syntax.

- 46 -

Appendix B {continued)

Syntax segments that are stacked vertically indicate that a
choice is required. If the stacked segments are enclosed in
brackets, the programmer may choose to eliminate the options
entirely.

Example 1: GOSUB line-number

The "GOSUB" is required exactly as shown; a
"]ine-number" must be supplied by the
programmer.

Example 2: GOSUB' integer (argument, argument ...)

The "GOSUB" is required; the programmer must
supply an "integer"; arguments are optional,
but if included, they must be enclosed in
parentheses; if arguments are used, at least
one argument is required and additional
arguments may be added, separated by commas.

Example 3: ... HEXOF (alpha-variable) ...
(Literal-string)

In this case, program text must preceed the
HEXOF function (the PRINT verb plus,
optionally, other PRINT functions and
separators); either an alpha-variable or
literal-string is required, enclosed in
paratheses; and additional text may optionally
be added on.

Example 4: LOAD RUN pd file#, file-name
address,

Only LOAD RUN is required as all other
parameters are optional. However, file# and.
address are mutually exclusive, and if used,
must include the trailing comma.

COMMENTS The section includes an explanation of all
non-standard abbreviations used in the syntax,
plus variable dimensioning requirements,
parameter tables, restrictions, and
information on the statement.

EXAMPLES Most pages include one or more examples.

OTHER REFERENCES Where appropriate, mention is made of other
$HELP titles or manuals that contain more
information, or which use the keyword in a
different manner.

47

SDS-Extended BASIC-2 Software is distributed as fully functional Demo-software that contains a mechanism
to 1imit the use of the software to demonstration and evaluation purposes. The Demo-software may be
converted to Licensed-software on your system by telephone. To create and register a Licensed copy for
your system you must complete this order form, read the license agreement on the reverse, sign below and
return this form with full payment to SDS prior to receiving your authorization code.

SDS-Extended BASIC-2 Release 4.0 (Pirst CPU) $249.00
Upgrade Release 2.8 to Release 4.0 (First CPU) 99.00
Upgrade Release 2.7 to Release 4.0 (First CPU) . 149.00

Additional Authorized CPU(s)

Software update and support service for one year

DSDD 5.25" Diskette (2275 drives) -~ no charge_
SSSD 8" Diskette {2270A drives) no charge
DSDD 8" Diskette (SVP/LVP drives) ‘ no charge
Phoenix Pack (2280 drives) 175.00
3ima DATAPACK (5DS 2290-120 drives) 225.00

Amount Due §

Name
Address
Address
City State Zip
Contact Title
- ‘ e
Phone (4) PO No. For SDS use only
Who
—————— #CPUs
Phone (AJ Reg No. AUth. NO. — = — = — = — = — = — —

USER acknowledges to have read this Software License Agreement, understands it, and agrees to be bound by
its terms. USER further agrees that this agreement is the complete and exclusive statement of the
agreement between the USER and Southern Data Systems, Inc. This Order and Software License Agreement is
subject to acceptance by Southern Data Systems, Inc. which will be evidenced by return of a signed copy
of this Order and Software License Agreement to USER, SDS being under no obligation to accept same.

Printe& Name Printed Name
Signature signature
Title Date Title Date

southern data systems, inc. 5115 Holly Ridge Drive Raleigh, NC 27612 919-781-7603

10.

11.

This agreement is between Southern Data Systems, Inc., hereinafter referred to as 'SDS', and the
USER identified on the reverse side and is entered into on the date herein written.

This agreement is for the purpose of granting use of certain proprietary computer programs and
related materials which includes the SDS-Extended BASIC-2 software, the installation and
authorization routines, other related software utilities and the associated documentation. Special
versions of this software, hereinafter referred to as ‘DEMO SOFTWARE', are intended for
demonstration and evaluation purposes only and contain mechanisms to limit the use of the software.
Customized versions of this software which do not contain any use limitations are hereinafter
referred to as 'LICENSED SOFTWARE'. The term °'SOFTWARE' used herein shall mean both the DEMO
SOFTWARE and the LICENSED SOPTWARE. A mechanism 1s provided to convert the DEMO SOFTWARE to
LICENSED SOFTWARE at the USER site which requires an authorization code from SDS to de-activate the
use limitations of the demonstration version. 8SDS provides the authorization code reguired to
create the LICENSED SOFTWARE on the condition that the USER agrees to this license.

8DS agrees to grant and the USER agrees to accept a non-exclusive and non-transferable license to
use the LICENSED SOFTWARE, including any subsequent updates, only on the designated computer
system{s) identified at the time the LICENSED SOFTWARE is installed on the USER’'s computer system.

The USER agrees that no copies of the LICENSED SOPTWARE shall be made, except copies made for backup
purposes. The USER agrees to place SDS proprietary notices on all copies of the LICENSED SOFTWARE.
The USER may make additional copies of the BEMO SOFTWARE for distribution to third parties for
demonstration and evaluation purposes only, provided that copies of this order form and license
agreement are also provided to such third parties.

The SOPTWARE contains proprietary, confidential and trade secret information which is the property
of 8D8 and §D8 retains ownership rights to the SOFTWARE. The USER agrees not to modify any portion
of the software. The USER agrees to notify SDS immediately. of any unauthorized use or possession of
the SOFTWARE.

In recognition of $DS proprietary rights and copyright protection of the SOFTWARE, the USER warrants
and agrees that it will not inspect, disassemble, decompile, translate any portion of the licensed
'ottyire into any other programming language, attempt to determine the internal methods of the
SOFTWAREor attempt to create source programs for the SOFTWARE by reverse engineering of the
SOFTWARE. The USER agrees that while this license is in effect, it will not directly or indirectly

.lease, license, sell, offer or negotiate to lease, license or sell, or contract for any software

similar to that supplied under this license.

The USER agrees to pay to SDS, as full consideration for the LICENSED SOPFTWARE, the. license fees in
effect at the time the LICENSED SOFTWARE is created plus any media and shipping charges and all
applicable federal, state, or local taxes. If the support and update option is selected, USER
agrees to pay, in addition to the license fee, the support fee in effect at the time and SDS agrees
to provide any and all updates of the LICENSED SOFTWARE to USER during the support period.

The USER agrees that this Software License Agreement and the license granted hereunder may not be
assigned or otherwise transferred by USER to any third party. In no event shall the SOFTWARE be

subject to any levy, execution, attachment, garnishment, or seizure of any kind by any creditor,

receiver, trustee in bdankruptcy, or any other person, party, executor, successor or assign.

8DS warrants, for a period of six months after the date of the USER's .creation of the LICENSED
S8OFTWARE for operation on the USER's system(s). that the LICENSED SOFTWARE will perform as described
in the SDS manuals so long as it is operated in accordance with the written instructions of SDS.
SDS' sole obligation and liadbility under this warranty shall be to provide corrections to the
LICENSED SOFTWARE to perforam as described and in no event shall SDS be liable for any special,
incidental or consequential damage with regard to this warranty. In the event of a LICENSED
SOFTWARE failure, SDS will supply the USER with the changes necessary to correct the errors. This
warranty coverage does not jinclude the cost of media, documentation or installation of corrections.
After expiration of the six month warranty period, SDS makes no warranty of any kind.

CAUTION: EXCEPT AS SPECIFICALLY SET FORTH HEREIN, SDS MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER
EXPRESS OR IMPLIED, ARISING BY LAW OR OTHERWISE, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SDS HAVE ANY OBLIGATION
OR LIABILITY ARISING FROM TORT, OR FOR LOSS OF REVENUE OR PROFIT, OR FOR SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES.

SDS shall have the riggg to terminate the license if the USER fails to pay the license fee, or if
the USER fails to comply with the license terms and conditions. The USER agrees, upon notice of
such termination, to immediately return the LICENSED SOFTWARE provided by this license and all
portions and copies thereof to SDS.

This agreement shall be governed by and interpreted pursuant fo the laws of the State of North
Carolina, USA. USER hereby consents to the jurisdiction of the courts of the State of North
Carolina and of the United States District Court for the Eastern District of North Carolina.

ﬁﬁl D R R

E ds southern data systems, inc.

5115 Holly Ridge Drive Raleigh, NC 27612 919-781-7603

P

	Cover
	Preface
	Table of Contents
	Chapter 1: SDS-Extended BASIC-2
	What is SDS-Extended BASIC-2?
	What does SDS-Extended BASIC-2 run on?
	How to get your copy of SDS-EXtended BASIC-2
	Installing SDS-Extended BASIC-2
	The Results of Running the INSTALL program
	Release 4.0 Installation Procedure
	Initializing your system under Release 4.0

	Chapter 2: Release 4.0 Enhancements
	What new features and enhancements are included?
	#HASH function
	#ID' function
	#LINE function
	#OPEN function
	$HELP statement
	$ID function
	$RELEASE statement
	=SELECT statement
	Multi-byte BIN function
	DATA LOAD BA enhancement
	DATA SAVE BA enhancement
	$ERR command
	GOSUB "load-module" statement
	HEXPRINT+ statement
	HEXPRINT- statement
	IF -END statement
	'selective' LIST DC command
	LIST DT output format
	LIST L statement
	LIST STACK statement
	LIST+V command
	LOAD "load-module" statement
	RENAME command
	RESAVE command
	SELECT STOP command
	TRACE V command
	Multi-byte VAL function
	Descriptive Error Messages
	Time and Date Stamp on program files
	UPPER/lower case commands
	Using variables for line-numbers
	Redirecting PRINT output to disk (SPOOL)
	The SDS RAM/Disk feature
	Up to 16MB Data Memory support

	Appendix A: The EZ-HELP Utility
	Appendix B: The SDS-Extended BASIC-2 Language & 2200 System "HELP" file
	SDS-Extended BASIC-2 Order form and Software LIcense Agreement

