
Wang 2200 Instruction Set

Computer Concepts Corporation

8001 W. 63rd Street

Shawnee Mission, Ks. 66202

Revised 4/26/1983

1.0 1

Wang 2200 Instruction Set - Index

Overall Description of the Wang 2200

Internal Register Structure - Description 1
Status Register SL description 4
Hardware Status Register (SH) description 5

2.0 General Instruction Breakdowns 6

2.1 Parity Bits 6
2.2 Classes of Instructions 7

2.2.1 Branch Instructions 7
2.2.2 Masked Branch Instructions 8
2.2.3 Valued Branch Instructions 9
2.2.4 Register Comparison Instructions 10
2.2.5 Register ALU Instructions 11
2.2.6 Immediate Data ALU instructions 14
2.2.7 Peripheral Control 16
2.2.8 Load Data Memory Pointer 16
2.2.9 Stack and Auxiliary register manipulations 17

Auxiliary Register Manipulation 17
Stack Manipulation Instructions 19

3.0 Data Memory Read/Write operations 20

Specific Instruction Mnemonics 24-79

Appendix i General Bit Control Tab1 es

Table 1 A Register Bus gating 80
Table 2 B Register BUS gating 80
Table 3 C (Destination) Bus gating 80
Table 4 Data Memory Control Bi ts 80
Table 5 Control Memory Bits 80

Appendix ii Conditional Branch Instruction examples 81

Appendix iii Alphabetical listing of Mnemonics 82

Appendix iv Numerical Listing of Mnemonics 84

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

Wang 2200 Machine Instruction Set

1.0 Overall Description of the Wang 2200

The Wang 2200 seri es computers are fast and powerful minicompu
ters specializing in the Basic language. The structure of the
machine is geared around the language, and as such, can
outperform almost all mainframes on the market today.

A common Input/Output bus is utilized, transferring at rates of
about 200K bytes per second. Two separate memori es, one for
Data, and the other for Control are implemented. This permits
the separation of Control Memory (Where the Basic, Cobol or Diag
nostics are stored) from the User memory.

The actual processing section utilizes a 24 bit wide control word
and numerous internal registers to perform the operations re
quired to execute Basic code.

1.1 Internal Register structure - General Description

The Wang 2200 system contains eight (8) general purpose registers
labeled RO thru R7. Each of the general registers are eight (8)
bits wide. These registers are used to hold temporary data,
statuses of searches, math operands, etc ..

Two registers are normally combined to form a pointer for Data
memory operations. These registers are the PH and PL registers.
The PH and PL registers are each eight (8) bits wide, but can be
accessed as a 16 bit register by some instructions. 65536 memory
locations can be accessed by these registers.

Another set of registers is available for storing data read from
Data memory. These registers are call ed CH and CL. Data read
from Data memory is 16 bits in width. The upper byte is stored in
CH while the lower byte goes to CL.

To write to Data memory, another register, called the DUM is
employed. The DUM register is only eight bits wide. Therefore,
only one byte can be written at a time. Control bits are avail
able to write to either the High or Low bytes.

All input and output of Data to the IO bus is performed through
the K register. This register is 8 bits in width. The Wang 2200
does not have a hardware interrupt structure, nor can data trans
fers occur without the direct participation of the host. The
2200 classifies as a Polled Interrupt machine.

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

1

Wang 2200 Machine Instruction Set

The AB register, eight bits wide, forms the address of the
peripheral that is to be accessed. The AB register is a special
case register. It cannot be directly addressed by the Wang. To
store data into the AB, data must pass through the K register.

Two status registers, each 8 bits wide are available. The SH
register connotes to the Wang hardware status information. The
SL register is used for software status as well as Data Memory
bank selection. A more detailed breakdown of the functions of
the SH and SL registers is available in section 1.2

32 Auxiliary registers (AR) of 16 bits each are available for
general storage of pointers, counts and TS data. These 32
registers are what helps the Wang be so fast. Data can be trans
ferred into and out of these AR registers only through the PH-PL
register pair.

The system also contains a ·stack- which is primarily used to
hold the return address of routines using the Jump to Subroutine
instructions. 192 eight bit words are available for the stack.
This permi ts a nesting 1evel of 96 items (16 bi ts wi de) that can
be placed into the stack.

Copyri ght @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

2

Wan9 2200 Machine Instruction Set

!----! !----! !----! !----!
! R(1 ! ! Rl ! ! R2 ! ! R3 ! General Registers
! ! ! ! ! ! !

!----! !----! !----! !----!

! R4 ! ! R5 ! ! R6 ! ! R7 !

! ! ! ! ! ! ! !

!----! !----! !----! 1----1

! SH ! ! SL ! ! CH ! ! CL ! spec i al purl?ose

! ! ! ! ! ! ! !

!----!----!

! PH ! PL ! Data Memory pointer

! ! !

Auxiliary R~Jisters

!------!------!------!------!------!------!------!------I
! AH C~I !\j{ ;l11 AR :12! /\R 03! l\R 01! AR 0S! AR 06! .A.R 07!
! 1 ! ! ! ! ! ! !
!------!------!------!------!------!------!------!------I

!------!------!------!------I------!------!------!------I
! AR 08! A~ ~9! AR OA! AR 0R! AR 3C! AR OD! AR 0E! ~R ~F!

! ! ! ! ! ! ! ! !
I------!------!------!------!------!------!------!------I

! ------! ------! ------! ------! --'~--., , ------! ------! ------!
! fiR 11~! AR 111 AR 121 AR 13! AH 14! AR 15! AR Hi! AR 17!
! ! !! !!!!
!------!------!------!------!------!------l------!------I

!------!------!------!------!------!------!------!------I
! .7I,.R 1'3! An 191 AH lA! AR IS! AR lC! AR ID! AR lEl AR IF!
! ! ! ! ! ! ! ! !
!------!------!------!------!------!------!------!------I

!----! !----! !----!
! 1< ! ! DUM ! Special purpose ! AB !

! ! 1 !

programming Model for wang 2200 Series

Wang 2200 Machine Instruction Set

1.2 Status register SL description

The SL register is an eight bit register used to select banks of
Data memory, as well as provide software status to the program.

Register layout:

7 6 5 4 3 2 1 0

0 0 0 x x x x x Select First 64K Bank
0 1 0 x x x x x Select Second 64k Bank
1 0 0 x x x x x Select Third 64k Bank
1 1 0 x x x x x Select Fourth 64k Bank
0 0 1 x x x x x Select Fifth 64k Bank
0 1 1 x x x x x Select Sixth 64k Bank
1 0 1 x x x x x Select Seventh 64k Bank
1 1 1 x x x x x Select Ei ght 64k Bank

x x x x x x o 0 Atomize Pass
x x x x x x o 1 Assign Variables Pass
x x x x x x 1 0 Execution Phase Pass

Partitions cannot overlap banks because there is no direct con
nection between the PHPL register pair and the SL register Bank
selection bits. Software solutions to this problem become quite
unwie1d1y. Therefore, unless Wang announces a new 2200 computer,
the 65K limitation holds.

Global memory is done by accessing any location below $2000 to
Bank O. Therefore, no matter what bank you are in, accessing be
low $2000 switches you to Bank 0 for that cycle.

Because they actually remove that memory (Logically, not
Physically) from every memory bank, larger Global memory would
mean smaller partition memory!

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

4

Wang 2200 Machine Instruction Set

1.3 Hardware Status register (SH)

The primary hardware status register is the SH register.
Consisting of eight bits, it can be read or written to.

7 6 5 4 321 0

!---------) Carry Bit for ALU operations

!-----------) CPb On output. IES on input

! !-------------) SF key depressed (IB9-)

! !---------------) READY-/BUSY from peripheral

!------------------) Partition Timeout Ons Shot
! !--------------------) HALT/STEP key

!----------------------) PEDM. A parity error has occurred
in Data Memory

!------------------------) DMPI-. Inhibit PEDM.

The computer makes the bus not available for input data from the
IO devices by clearing bit 1, CPb-. When the computer wants
data, it sets CPb- to a 1. The external device seeing this,
places data on the Computers IB (Input Bus) and asserts IBS-,
which in turn, resets the CPb- line, removing the request from
the line.

Those of you familiar with the structure of the $GIO statements
will remember that ENDI is a special termination for some
commands. IB9- is the hardware deri vati ve of ENDI- and sets bit
2 of the status register.

The READY-/BUSY line is the result of reading the RDY- or RB
line from the Wang IO bus. Remember that the 2200 is a polled IO
machine, and has no hardware interrupt structure.

The DMPI- bit prevents the 2200 hardware from taking an automat
ic vector if an Parity Error Data Memory signal is received. In
general, this bit is used by the diagnostics, for obvious
reasons, and by initialization routines to size memory.

Copyright @ 1982,1983 by Computer Concepts Corporation

Shawnee Mission, KS

No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

5

Wang 2200 Machine Instruction Set

2.0 General Instruction breakdowns

Almost all minicomputers execute one complete instruction by
fetching from memory and executing in timing cycles the functions
necessary to perform the requested function.

In most minicomputers, the instruction word fetched is a multiple
byte word, and is referred to as an instruction word. The size
of the instruction word for the Wang 2200 VP/MVP system is 24
bits, or three bytes wide. However, not all of that word has
functional meaning.

2.1 Parity Bit

The most significant bit of the instruction, 2/23, takes on the
meaning of Parity. That is, any instruction that is fetched from
Control Memory must contain the parity bit set or reset such that
the summation of all one bits results in ODD parity. If the in
struction is fetched with EVEN parity, the system will vector to
an hardware address as an error, and report that to the system
console.

However, if Control memory is used as a data area, Parity is nev
er checked when read. Therefore the whole three bytes of the in
struction word may be used for data.

Parity must be formed by the user when the instruction is written
initially into Control memory. The Wang 2200 does not generate
the Parity when it writes, so it is possible for the user to
write incorrect parity without noticing it. When that incorrect
parity word is executed, an PECM error will occur.

When writing code using the Computer Concepts Corporation
Assembler, the Assembler will automatically calculate and insert
correct parity into the instruction word. We cannot stress the
importance of remembering that parity is generated by the user,
not by Wang.

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

6

Wang 2200 Machine Instruction Set

2.2 Classes of Instructions

In general, the following classes of instructions are available:

1: Branch
2: Masked Branch
3: Val ued Branch
4: Register Comparison Branch
5: Register ALU
6: Immediate Data ALU
7: Peripheral Control
8: Load Data Memory Pointer
9: Stack Manipulation

The mnencmics that were assigned to the instruction was done only
after research showed that the mnemonic would conform to Wang
code. However, we must state that the mnemonics assigned are in
part arbitrarily named due in part to the authors past
experience, and in general, fit the role or function of other
similar computers.

To a lesser extent, bits 2/22 and bits 2/21 of the instruction
are used to define family classes. This is true, but we took the
liberty of breaking down the instructions within even these
limits to facilitate our understanding of them.

2.2.1 Branch Instructions

The unconditional branching of program flow is performed by this
series of instruction words. A Jump, (JMP) and Jump to Subrout
ine (JSR) instruction allows the computer to ~ £0 anyone of
65536 locations in Control memory. As a general background note,
the system will execute all instruction words in cycles of 600
nanoseconds while in RAM control memory, while executing the same
instructions in PROM control memory at 1.2 microseconds. This
mode is called half-speed and is used only for the convenience of
older Proms' with slower access times.

A general format of the literal branch instructions is:

2 2 2 2 1 1 1 1 1 1 1 1 1 100 o 0 0 0 o 000
3 2 1 0 9 8 7 6 5 4 3 2 1 098 7 6 5 4 3 210

P 1 0 1 v 1 x x x x x x x x x x y y y y y y 0 0

Where P
x
y
v

= Parity Bit (Odd Parity)
= LSD of Address
= MSD of Address
= Type of Branch

o = Jump to Subroutine 1 = Jump

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

7

Wang 2200 Machine Instruction Set

2.2.2 Masked Branch Instructions

Branching based upon the condition of individual bit structures
in the registers, these instructions can selectively branch or
not branch. Since a good part of the instruction is used up to
decide whether or not to branch, the range that they can branch
is limited to 1024 word pages or ·maps·. The words ·pages· or
·maps· are interchangeable, and both have the same meaning in the
minicomputer world.

A general format for the masked branch instructi ons are:

222 2 111 1 1 1 1 1 1 100 000 0 000 0
321 0 9 8 7 6 543 2 1 098 7 6 5 4 321 0

P 1 1 0 f f x x x x x x x x x x c c c c B B B B

Where:	 p = parity Bit (Odd parity)
x = Location in current Page to branch to
c = Bits to Mask for test
B = Register to test (See Table 2 in Appendix)

ff = Type of Function

Note that in general, the rightmost four bits of this instruction
will specify a code that determines which register, called the B
register selection, will be used for the test. If the value of
the bits are below 8, they refer directly to the General
registers, RO thru R7. If the number is greater than 7, the
charts at Appendix i, Table 2 must be used. The contents of
these registers are always ·gated" to the ALU.

The following instructions belong to this family:

00 BTL Branch if Masked Bits True, Low Nibble

01 BTH Branch if Masked Bits True, High Nibble

10 BFL Branch if Masked Bits False, Low Nibble

11 BFH Branch if Masked Bits False, High Nibble

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

8

Wang 2200 Machine Instruction Set

2.2.3 Valued Branch Instructions

Conditional branching based upon the comparison of a constant
against a selected registers are performed by these
instructions. Since a good part of the instruction is used up to
decide whether or not to branch, the range that they can branch
is limited to 1024 word pages or ·maps·. The words ·pages· or
·maps· are interchangeable, and both have the same meaning in the
minicomputer world.

A general format for the Valued Branch instructions are:

222 2 1 1 1 1 111 1 1 100 000 0 o 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 098 7 6 5 4 3 2 1 0

plll ffxx xxxx xxxx cccc BBBB

Where: p = Parity Bit (Odd Parity)
x = Location in current Page to branch to
c = Constant to test against
B = Register to test (See Table 2 in Appendix)

ff = Type of Function

Note that in general, the right most four bits of this instruc
tion will specify a code that determines which register, called
the B register selection, will be used for the test. If the val
ue of the bits are below 8, they refer directly to the General
registers, RO thru R7. If the number is greater than 7, the
charts at Appendix i, Table 2 must be used. The contents of
these registers are always ·gated· to the ALU.

The following instructions belong to this family:

00 BEL Branch if low nibble equals Constant

01 BEH Branch if high nibble equals Constant

10 BNL Branch if low nibble not equal to Constant

11 BNH Branch if high nibble not equal to Constant

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

9

Wang 2200 Machine Instruction Set

2.2.4 Register Comparison Branch Instructions

Conditional branching based upon the comparison of two General
registers with each other is performed by these instructions.
Since a good part of the instruction is used up to decide whether
or not to branch, the range that they can branch is limited to
1024 word pages or -maps·. The words ·pages· or BmapsB are
interchangeable, and both have the same meaning in the
minicomputer world.

A general format for the Register Comparison Branch instructions
are:

222 2 1 1 1 1 1 1 1 1 1 100 o 0 0 0 o 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 109 8 7 6 5 4 321 0

p 1 0 f f f x x x x x x x x x x A A A A B B B B

Where:	 p = Parity Bit (Odd parity)
x = Location in current Page (map) to branch to
A = Register A Select (See Table 1 in Appendix)
B = Register B Select (See Table 2 in Appendix)

ff = Type of Function

Note that in general, the right most four bits of this instruc
tion will specify a code that determines which register, called
the B register selection, will be used for the test. If the val
ue of the bits are below 8, they refer directly to the General
registers, RO thru R7. If the number is greater than 7, the
charts at Appendix i, Table 2 must be used. The contents of
these registers are always Bgated B to the ALU.

The following instructions belong to this family:

000 BLR Branch if Register A less than Register B <A (' B)
001 BLRX Branch if Register A+l,A less than

Register B+l,B (16 bit comparison)
010 BLER Branch if Register A less than or equal

to Register B (A (= B)
011 BLEX Branch if Register A+l,A less than or equal

Register B+l,B (16 bit comparison)
100 BER Branch if Register A equals Register B (A = B)
110 BNR Branch if Register A not equal to Register B (A () B)

100 BEZ Branch if Register A equals Zero (Modification of BER)
110 BNZ Branch if Register A not equal to Zero.

Copyri ght @ 1982,1983 by Computer Concepts Corporation

Shawnee Mission, KS

No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

10

Wang 2200 Machine Instruction Set

2.2.5 Register ALU

The ~rithmetic ~ogic Qnit of the computer is usually the -brains·
of the system. All mathametical data to be added, subtracted,
anded, inclusi~ ored or any of the 16 possible Boolean functions
must be processed by this ALU.

The Register ALU series of instructions permits two selected
registers to be manipulated, and the result of this manipulation
to be sent to another, called the destination register.

In general, we can select a Source A register, acted upon by a
Source B register, and the result sent to a Destination register.
The operation to be performed can be Decimal ADDS, Subtracts, bi
nary Multiplies, ANDS, Exclusi~ ORs and several other functions
to be outlined later.

222 2 111 1 1 111 1 100 000 0 000 0
3 2 1 0 9 8 7 6 543 2 1 098 7 6 5 4 3 2 1 0

p 0 0 a a a v 0 x x m m d d d d A A A A B B B B

Where P = Parity Bit (Odd Parity)
m = Data Memory Control (See table 4)

aaa = ALU Operation
A = Source Register A (see table 1)
B = Source Register B (See table 2)
d = Destination register (See table 3)
v = Extended Math Flag (16 bit) if = 1

xx = Carry flag controls

15 14 Carry Control

0 0 Normal No effect
0 1 Shift Decimal Character (SIX - In place of first 4 ALU

instructions)
1 0 Clear Carry First (Not on ALU =7) CC
1 1 Set Carry first (Not on ALU = 7) CS

The following table outlines the functions available for the reg
ister instructions ALU:

ALU Codes Function

0 0 0 OR OR the contents of B with A
0 0 1 XOR Exclusive OR the contents of B with A
0 1 0 AND Logical AND of B with A
0 1 1 SBC Binary Subtract with Carry, A - B
1 0 0 DAC Decimal Add with Carry
1 0 1 DSC Decimal Subract with Carry, A - B
1 1 0 ADC Binary Add with Carry
1 1 1 MUL Multiply two 4 bit values

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

11

Wang 2200 Machine Instruction Set

Multiply is similar to the Immediate register multiply. Bits 14
and 15 of the instructi on determine which two nibbles will be
mul tiplied:

15 14 Function

0 0 Multiply Lower B by Lower A ALBL
0 1 Multiply Lower B by Upper A AHBL
1 0 Multiply Upper B by Lower A ALBH
1 1 Multiply Upper B by Upper A AHBH

The Shift Decimal Character (SDC) instruction permits the
manipulation of nibbles between Register A and Register B, as
well as permitting a nibble shift. Bits 18 and 19 determine the
shift status:

18 19 Function

0 0 BLower 4 ORED A lower 4 (B nibble is always the
MSN)

0 1 Blower 4 ORED A upper 4
1 0 B upper 4 ORED A lower 4
1 1 B upper 4 ORED A upper 4

Copyri ght @ 1982,1983 by Canputer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Canputer Concepts Corporation

12

Wang 2200 Machine Instruction Set

Most of the instructions are self explanatory, but the DSC and
the SEC should be outlined in more detail. The below examples
goes through enough iterations of the instructions to be
understood by most:

Original R2 = 00, R3 = 33

94C22F DSC R2 < R2,00 ,CS R2 = 99, Carry = 1

94C22F DSC R2 < R2,00 ,CS R2 = 98, Carry = °

94C223 DSC R2 < R2,R3 ,CS R2 = 64, Carry = °

148223 DSC R2 < R2,R3 ,CC R2 = 31, Carry =°

148223 DSC R2 < R2,R3 ,CC R2 = 98, Carry = 1

Note that the Carry flag is actually a value to be subtracted
from the registers. In the next examples, the Carry bits
complemented value is used.

Ori ginal R2 = 00, R3 = 33

8CC22F SEC R2 < R2,00 ,CS R2 = 00, Carry = 1

OC822F SEC R2 < R2,00 ,CC R2 = FF, Carry = ° (See!)

8CC223 SEC R2 \ R2,R3 ,CS R2 = CC, Carry = 1

OCB223 SEC R2 < R2,R3 ,CC R2 = 98, Carry = 1

BCC223 SEC R2 <R2,R3 ,CS R2 = 65, Carry = 1

The above examples show us that we must be careful of what the
carry is set too. Different instructions utilize it in a differ
ent manner than one would suspect.

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

13

Wang 2200 Machine Instruction Set

2.2.6 Immediate Data ALU

This is very similar to the Register ALU instructions. The
Source A register however is not present, and immediate data is
supplied instead. Since changing of Control Memory once program
execution is started is frowned upon, the immediate data is re
ferred to as a constant, and allows us to subtract, add or per
for.m boolean arithmetic on the Source B register and send the re
sult to the Destination register.

This grouping of instructions allows the system to perfor.m eight
(8) different mathematical operations using a constant and a se
lected register. The result of this operation may be then stored
into the same or a different register.

Data memory may be either read or written to at the same time
that ALU operations are taking place. That is, the result of the
operation is made available to be written to memory immediately.
If data is being read from memory, it is transparent to this
instruction.

222 2 111 1 1 1 1 1 1 100 000 0 000 0
321 0 9 8 7 6 543 2 1 098 765 4 3 210

pOl a a a iii i m m d d d d I I I I B B B B

Where P = Parity Bit (Odd Parity)
aaa = ALU operation to perfor.m (See following Page)
iii = High Nibble of Constant
III = Low Nibble of Constant

m = Data Memory Control (See table 4)
B = Source Register B gating (See Table 2)
d = Destination Register C (See Table 3)

Data can be written to memory by enabling the m bits, Data memory
control. The data that is to be written is the result of the
mathematical operation. The register referred to as DUM is in ef
fect a null register. Any output of the ALU's will be stored
here. Only from this register may memory be written to.

Copyright @1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written per.mission of Computer Concepts Corporation

14

Wang 2200 Machine Instruction Set

The following table outlines the functions available for the Im
mediate instructions:

ALU Codes (aaa) Function

0 0 0	 IOR OR the Contents of B wi th a Constant
SET If Constant = 00

0 0 1	 IXOR Exc1 usi ve OR the contents of B with
a constant

0 1 0 IAND Logical AND the contents of B
0 1 1 IADD ADD without carry, Binary
1 0 0 IDAC Decimal Add with Carry
1 0 1 IDSC Decimal Subtract with Carry
1 1 0 IAIX Binary Add with Carry
1 1 1 IMUL Multiply two 4 bit nibbles

Throughout the Wang assembly code, the IOR instruction with $00
immediate data is used to load a register. Because of this, the
following may be viewed as two different mnemonics:

I.E.	 214E2F IOR K < $52,$00
. .. or SET K < $52

The latter looks better, and requires no operation to understand
Further note that all Immediate instructions are prefaced with an
I code to identify themse1 ves apart from the Register
instructions

I.E. 2BC2FO IAND R2 <: $FO,RO

Loads the Register #2 with the contents of Register #0 logically
-andedw by the constant $FO.

A Multiply instruction deserves further clarification. Bit 15
of the instruction determine which nibble, high or low, of the
byte are going to be multiplied.

15	 Function

o Multiply Blower 4 by Constant lower 4 ALBL
1 ALBH- - upper W - - lower

Copyright ~ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

15

Wang 2200 Machine Instruction Set

Peripheral Control

The Wang 2200 has only one real Peripheral control instruction.
This instruction is called the CIO and is used to send strobes to
the peripheral IO bus. Refer to the CIO instruction sheet for
more detailed operation.

Other than the diagnostics, we have found that this is probably
the least used of all instructions.

Load Data Memory Pointer

Called the LPI instruction, the system allows the programmer to
directly access the PH-PL registers as one 16 bit value. The
PH-PL pair, as previously brought out, points to the address to
be written to or read from Data memory. Facilities are enabled
in the instruction to clear memory locations without using any of
the general registers. Refer to data sheet for the LPI for more
detailed information.

Copyright ~ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

16

Wang 2200 Machine Instruction Set

2.2.9 Stack and Auxiliary Register Manipulations

The Wang 2200 computer contains 256 bytes of fast random access
memory that is used for storage of stack data and for the 32 Aux
iliary registers (AR) of 16 bits each. The AR registers form
handy pointers to contain temporary data for usage during in
struction execution without taking up roam in data or control
memory. The stack area serves as both a nesting place for sub
routine calls, as well as holding temporary data. The author
believes that the AR registers are vestiga1 artifacts from the
structure of the 'T' machine series.

Imbedded among these instructions is the subroutine return
instruction. It is of special note that it is located among this
group. The Return instruction has the special characteristic of
being the only instruction that can read or write to Control
Memory. Because of the amount of time required to execute this
instruction, Control Memory is rarely used for storage of vari
able data during program execution.

Auxiliary Register Manipulation

222 2 1 1 1 1 111 1 1 1 0 0 000 0 o 0 0 0
321 0 9 8 7 6 543 2 1 098 76 5 4 3 2 1 0

p 0 0 0 f f f 1 1 c m m X c c r r r r r B B B B

Where P = parity Bit (Odd Parity)
c = P register Control (See Table this section)
f = Function
m = Data Memory Control (See Table 4)
r = AR register (00 to 1F)
B = B Register Selection
X = Don't Care

Where f is as follows:

000 TPA Transfer PH-PL to selected AR
001 XPA Exchange current PH-PL with selected AR
101 TAP -Transfer selected AR to PH-PL

Copyright @1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

17

Wang 2200 Machine Instruction Set

The PH-PL register pair is used as an index register through data
memory. By means of bits 14, 10 and 9 of the instruction, the
PH-PL pair may be incremented or decremented prior to storage in
a selected AR or pushed to the stack.

Bit 14 10 9

0 0 0 No Effect
0 0 1 +1 to (PHPLj then store - PH-PL not affected
0 1 0 +2 • •
0 1 1 +3 • •

1 0 0 No Effect
1 0 1 -1 to (PHPLj then store - PH-PL not affected
1 1 0 -2 to (PHPLj then store - PH-PL not affected
1 1 1 -3 to (PHPLj then store - PH-PL not affected

In all the above cases, the PHPL pair are first transferred to an
intermediate register where the actual increment or decrement
takes place. The real contents of the PHPL pair are never af
fected except in the XPA instruction.

I.E. 03AOOF XPA AR 00

Transfers the contents of the PHPL pair to register AR 00, and at
the same time, transfers the contents of AR 00 to PHPL.

Data memory may be read or written to by this instruction as
well. The B register gating is only effecti ve for the write
operation.

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

18

Wang 2200 Machine Instruction Set

Stack	 Manipulation Instructions

The stack manipulation instructions allows the data to be placed
(Pushed) onto the stack, and taken (Popped) from the stack. The
address counters of the stack are transparent to both the user
and the machine language. These counters are automatically
incremented and decremented for every Push or Pop operation.

222 2 1 1 1 1 1 1 1 1 1 1 0 0 000 0 o 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 098 7 6 5 4 3 2 1 0

p	 0 0 0 f f f 1 lcmm x c c 0 o 000 B B B B
000 o 1 0 1 1 x m m X x x 0 o 0 0 0 B B B B

Where	 P = Parity Bit (Odd parity)
x = P register control (TPS only Refer to previous section
m = Data memory Control (See Table 4)
c = Control Memory Functions (Only during the RTS

instruction - See Table 5)
B = B Register Selection (See Table 2)
X = Don't Care

Functions

o 1 0 TPS Transfer PHPL registers to stack
110 TSP Transfer contents of stack to PHPL registers
011 RTS Return from Subroutine

The RTS instruction is the only instruction that is not as
straight forward as it would appear to be. This instruction is
the only one that may Read or Write to Control Memory. When an
RCM (Read Control Memory) or WCM (Write Control Memory) operation
is requested, the system executes what is called a LOP, or Long
OPeration. A LOP causes the stack to be popped twice, and the
resultant data sent to the Control Memory Address Register. The
Read or Write operation is performed, and in the case of a Read
operation the data goes to the K, PH and PL register. The MSB is
in K, while the LSB is in PL. If the operation has been a Write
operation, the K register, PH and PL registers would be sent to
the CM module and written. Note that the design of the hardware
requires that the K register must be l's complemented prior to
writing.

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

19

Wang 2200 Machine Instruction Set

3.0 Data Memory Read and Write features

Remember that the Wang computer is a semi-pipelined machine. As
such, some of the features may seem strange to those not accus
taned to this type of computer. However, the advantages of the
pipeline machine are such that data may be pre-fetched from memo
ry for use by an instruction further down the flow.

Under no circumstance may the contents of Data memory be read for
use by the current instruction. This would require ·wait
states, that would be against the concept set by Wang. However,
we can read data memory during the course of an instruction, and
use the results later on.

Other than the Jump, Branch and Subroutine calls, all
instructions have two bits that determine what Data memory
functions are to be performed. These bits, bit 13 and 12, are
decoded as follows:

13 12

o o No Data Memory Operation is to be perfromed
o 1 ,RD Read Contents of Data Memory
1 o ,Wl Write byte at current PHPL
1 1 ,W2 Write byte at current PHPL XOR 1

Except for the LPI instruction, whenever a Data memory operation
is encountered, the ~URRENT position of the PHPL pair is used to
form the address to READ or to WRITE to.

Essentially, the contents of the PHPL pair is sent to the memory
and latched there prior to the math operation. Therefore, if the
contents of the PHPL pair were 0900, and the following instruc
tion was issued:

SET PL < $50 ,RD

The data at location 0900 would be read, not the data at 0950 as
one may assume. As stated before, the only exception to this is
the LPI instruction, which acts on the PHPL prior to the memory
read. Therefore, if the PHPL pair was set to 0900, and the fol
lowing instruction was issued:

LPI $0950 ,RD

The data at location 0950 would be read.

Copyright @ 1982,1983 by Canputer Concepts Corporation

Shawnee Mission, KS

No part of this document may be reproduced without the expressed

written permission of Canputer Concepts Corporation

20

Wang 2200 Machine Instruction Set

Now where does this data go? When read, the data will be avail
able on the next instruction cycle in the CH CL pair. These two
registers form the 16 bits of the Data memory location accessed.
If the PHPL pair was an Qven number, the read command would re
sult in the -high- byte to be placed in the CH register, while
the -low· byte would be placed in the CL register.

If the PHPL were odd, then the -High- byte gets placed into the
CL register, while the -low- byte gets placed into the CH
register. If not confused by now, let me further muddle your
mind by stating simply that the BYTE pointed to by the PHPL pair
will be placed into the CH register, while the opposite byte gets
placed into the CL register. The reason for this is that the
PHPL pair addresses 16 bit words, and cannot do two reads from
Data memory.

Assume that the following data is in location 0542 and the fol
lowing instructions are issued:

PHPL = 0542 Data at 0542 = 1234

SET RO < 0 ,RD

CH would contain 12, CL would contain 34

PHPL = 0543 Data at 0542 = 1234

SET RO < 0 ,RD

CH would contain 34, CL would contain 12

The ability to perform these types of reads may seem dubious at
first, but it sure does simplify operations such as shifts of
data.

Copyright ~ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

21

Wang 2200 Machine Instruction Set

Writing to Data memory follows the same basic rules. However,
note that a READ operation is performed, even though a write op
eration will be requested. This type of operation is called a
READ-MODIFY-WRITE operation.

I f the ,Wl opti on was chosen, the RESULT of the mathameti cal op
eration is sent to the memory at the current position of the PHPL
pair.

If the ,W2 option was chosen, the RESULT of the operation is sent
to the memory location opposite to the PHPL pair. That is, if
the PHPL pair was Even, the Odd byte gets written. If the PHPL
pair was Odd, the Even byte location will be written to.

PHPL = 0542 Contents of 0542 = 1234

SET RO < $53 ,Wl

The new contents of 0542 would be 5334

IAND R2 <: $12,RO ,W2

The new contents of 0542 would be 5312

PHPL = 0543 Contents of 0542 = 5312

IADD RO <$20,RO ,Wl

The new contents of 0542 would be 5373

IOR R2 < $FO,RO ,W2

The new contents of 0542 would be F373

The AR and stack registers may also perform Read/Write
operations. However, since no math is performed by them, the
contents of the select B register is used as Data to be sent dur
ing a write operation:

TPA AR 00 ,Wl ,R5

Would result in the R5 register to be written at the current lo
cation pointed to by the PHPL register.

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
wri tten permission of Computer Concepts Corporation

22

Wang 2200 Machine Instruction Set

All write operations take place through the DUM register.

Actually, this register is used to hold the result of any math

operation as well. Therefore, we can write to memory, without
altering any registers, by specifying the DUM register as the
destination:

SET DUM < $55 ,Wl
XOR DUM < CH+,RO ,W2

The only exception this rule is again, the LPI instruction. As
specified in the data sheet for this instruction, the issuance of
any Write command results in the clearing of that byte:

LPI $0542 ,Wl Clears location 0542 to Zero
LPI $0542 ,W2 Clears location 0543 to Zero
LPI $0543 ,Wl Clears location 0543 to Zero
LPI $0543 ,W2 Clears location 0542 to Zero

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

23

Wang	 2200 Machine Instruction Set

ADC Q)
ADC (Binary Add with Carry)

Family Type: Register ALU

2 2 2 2 111 1 1 111 1 100 000 0 o 000
3 2 1 0 9 B 7 6 543 2 1 0 9 B 7 6 5 4 321 0

p 0 0 1 1 0 0 0 x x m m d d d d A A A A B B B B

Where	 P = Parity Bit (Odd Parity)

m = Data Memory Control (See table 4)

A = Source Register A (See table 1)

B = Source Register B (See table 2)

d = Destination register (See table 3)

xx = Carry flag controls

15 14	 Carry Control

0 0 NOZ1Tla1, Initial Carry State not affected
0 1 NOZ1Tla1, Initial Carry State not affected
1 0 Clear Carry First ,CC
1 1 Set Carry first ,CS

The following table outlines the results returned for various
constants using the ADC instruction

Result CC Result CS !
!	 RO R1 R2 Carry R2 Carry! 188201 ADC R2 <: RO,R1 ,CC

00 ! 00 ! 00 0 ! 01 ! 0 ! 98C201 ADC R2 < RO,R1 ,CS
00 ! 01 01 ! 0 ! 02 0 !
01 00 ! 01 0 02 0
55 ! 55 AA ! 0 AB 0
AA ! AA 54 1 ! 55 1
80 01 ! 81 0 ! 82 ! 0 !

-- !	 80 FF 7F ! 1 ! 80 ! 1
12 34 ! 46 ! 0 ! 47 0

! 56 ! 78 CE ! 0 CF ! 0 !

9A Be 56 ! 1 57 ! 1

FO ! DE ! CE 1 ! CF ! 1 !

! 02 ! FF 01 ! 1 ! 02 ! 1 !

! FF ! FF FE ! 1 ! FF 1

Copyright @1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written peZ1Tlission of Computer Concepts Corporation

24

Wang 2200 Machine Instruction Set

ADCX
ADCX (Binary Add wi th carry 16 bi t)

Family Type: Register ALU

222 2 111 1 1 111 1 1 0 0 o 000 o 000
321 0 9 8 7 6 543 2 109 8 7 6 5 4 321 0

p 0 0 1 1 0 lOx x mm d d d d A A A A B B B B

Where	 P = Parity Bit (Odd Parity)

m = Data Memory Control (See table 4)

A = Source Register A (See table 1)

B = Source Register B (See table 2)

d = Destination register (See table 3)

xx = Carry flag controls

15 14	 Carry Control

o 0 Normal, Initial Carry State not affected
o 1 Normal, Initial Carry State not affected

1 0 Clear Carry First ,CC

1 1 Set Carry first ,CS

The following table outlines the results returned for various
constants using the ADCX instruction

9A8402 ADCX R4 < RO ,R2 ,CC
lAC402 ADCX R4 < RO,R2 ,CS

! ! ! Result CC ! Result CS !
! R1 RO ! R3 R2 R5 R4 ! Carry R5 R4 ! Carry
! 00 00 00 00 ! 00 00 0 ! 00 01 0 !

00 00 00 01 00 01 0 ! 00 02 ! 0
! 00 01 00 00 00 01 ! 0 ! 00 02 0

55 AA ! AA 55 FF FF ! 0 00 00 1
! 11 22 ! 33 44 44 66 0 44 67 ! 0

44 55 66 77 ! AA CC 0 AA CD 0 !
80 00 ! 00 01 80 01 ! 0 80 02 ! 0

! 00 01 80 00 ! 80 01 ! 0 ! 80 02 ! 0 !
9A BC ! CD SF ! 68 AB 1 ! 68 AC ! 1

! AA AA 22 22 ! CC CC ! 0 CC CD 0
! 55 19 55 91 AA AA 0 ! AA AB 0 !

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

25

Wang 2200 Machine Instruction Set

AND
AND (Logical AND registers)

Family Type: Register ALU

2 2 2 2 1 III 1 III 1 100 o 000 o 000
321 0 9 8 7 6 543 2 1 098 7 6 5 4 321 0

p 0 0 0 1 000 x x m m d d d d A A A A B B B B

Where	 P = Parity Bit (Odd Parity)
m = Data Memory Control (See table 4)
A = Source Register A (See table 1)
B = Source Register B (See table 2)
d = Destination register (See table 3)

xx = Carry flag controls

15 14	 Carry Control

o 0 Normal, Initial Carry State not affected
o· 1 Not Permitted (See SDC, SDCX makeups)
1 0 Clear Carry First ,CC
1 1 Set Carry first ,CS

The following table outlines the results returned for various
constants using the AND instruction

Result
! RO Rl R2 Carry 888201 AND R2 < RO,Rl ,CC

00 00 00 0
00 01 00 0
01 00 00 0
55 55 55 0
AA AA ! AA 0
80 01 00 0 !
80 FF 80 0
12 34 10 0
56 78 50 0
9A BC 98 0
FO DE DO 0
02 FF 02 ! 0
FF FF FF 0

Copyright ~ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

26

Wang 2200 Machine Instruction Set

ANDX
ANDX (Logical AND registers 16 bit)

Family Type: Register ALU

2 2 2 2 111 1 1 1 1 1 1 100 0 0 0 0 000 0
321 0 9 8 7 6 543 2 1 098 7 6 5 4 321 0

p 0 0 0 101 0 x x m m d d d d A A A A B B B B

Where	 P = parity Bit (Odd Parity)

m = Data Memory Control (See table 4)

A = Source Register A (see table 1)

B = Source Register B (See table 2)

d = Destination register (See table 3)

xx = Carry flag controls

15 14	 Carry Control

o 0 Normal, Initial Carry State not affected
o 1 Not Permitted (See SDC, SDCX makeups)

1 0 Clear Carry First ,CC

1 1 Set Carry first ,CS

The following table outlines the results returned for various
constants using the ANDX instruction

! Result
R1 RO ! R3 R2 R5 R4 Carry ! OA8402 ANDX R4 < RO,R2 ,CC
00 00 00 00 00 00 ! 0 !

00 00 00 01 ! 00 00 0
!	 00 01 ! 00 00 00 00 0

55 AA AA 55 ! 00 00 0
11 22 33 44 11 00 ! 0 !
44 55 66 77 ! 44 55 ! 0
80 00 ! 00 01 ! 00 00 0
00 01 80 00 00 00 ! 0
9A BC ! CD EF 88 AC 0
AA AA 22 22 ! 22 22 0
55 19 55 91 55 11 0 !

Copyright @1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

27

Wang 2200 Machine Instruction Set

BEH
" .. }

BEH (Branch if Equal, High nibble)

Famil y Type: val ued Branch

222 2 1 111 1 1 1 1 1 100 000 0 000 0
3 2 1 0 9 8 7 6 543 2 109 8 7 6 5 4 3 2 1 0

P 1 1 1	 0 1 x x x x x x x x x x c c c c B B B B

Where:	 P = parity Bit (Odd Parity)
x = Map location to Branch to
f+-- Flt1'!stion t& ,pert'eJ!WI
c = Constant to compare Register against
B = B Register to test. (See Table 2 in the Appendix)

Direct mathematical comparisons of an immediate 4 bit nibble
with any of the 16 registers is performed by this
instruction. As with the previous Masked instructions, any
location within the 1024 map can be branched to.

I.E. Test program in memory:

$ORG $6000

6000 740332 BEH $03,R2 $6003
6001 AOO01F SET RO < $01 Not Taken
6002 DC0050 JMP $5000
6003 20000F SET RO < $00 Branch Taken
6004 DC0050 JMP $5000

Branch will be taken if nibble is equal to 3x

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

28

Wang 2200 Machine Instruction Set

BEL
BEL (Branch if Equal, Low nibble)

Family Type: Valued Branch

2 2 2 2 111 1 1 1 1 1 1 1 0 0 o 0 0 0 o 0 0 0
3 2 1 0 9 8 7 6 543 2 109 8 7 6 5 4 321 0

P 1 1 1 0 0 x x x x x x x x x x c c c eBB B B

Where: P = Parity Bit (Odd Parity)
x = Map location to Branch to
.u- F WitMon eo peri8L'Jfi
c = Constant to compare Register against
B = B Register to test. (See Table 2 in the Appendix)

Direct mathematical comparisons of an immediate 4 bit nibble
with any of the 16 registers is performed by this
instruction. As with the previous Masked instructions, any
location within the 1024 map can be branched to.

I.E. Test program in memory:

$ORG $6000

6000 F00352 BEL $05,R2 $6003
6001 AOO01F SET RO <: $01 Not Taken
6002 DC0050 JMP $5000
6003 20000F SET RO < $00 Branch Taken
6004 DC0050 JMP $5000

Branch wi 11 be taken if nibble is equal to x5

Copyri ght f} 1982,1983 by Ccrnputer Concepts Corporati on

Shawnee Mission, KS

No part of this document may be reproduced without the expressed

written permission of Ccrnputer Concepts Corporation

29

Wang 2200 Machine Instruction Set

BER
BER (Branch if A = B)

Family Type: Register Canparison Branch

222 2 1 1 1 1 1 1 1 1 1 1 0 0 000 0 o 0 0 0
3 2 1 0 9 8 7 6 543 2 1 098 7 6 5 4 3 2 1 0

plOl	 OOxx xxxx xxxx AAAA BBBB

Where:	 p = Parity Bit (Odd parity)
x = Address in map to branch to
A = Register Selection A (See table 1 in the Appendix)
B = Register Selection B (See table 2 in the Appendix)

Facilities are included, within the Wang CPU, to test the value
of all 8 bits, and sometimes 16 bits with another Register.

Examples of this instruction and whether or not the Branch will be
taken follows below:

R3 R6 Branch
Yes ! No D20D36 BER R3,R6 TEST

00 00 X

01 10 X

10 05 X

80 8F X
80 02 X
02 80 X
FF 83 X
DE DE X

Copyright @ 1982,1983 by Canputer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Canputer Concepts Corporation

30

Wang 2200 Machine Instruction Set

BEZ (Branch if A = Zero (0))

Family Type: Register Canparison Branch

BEZ

222 2 1 1 1 1 111 1 1 1 0 0 000 0 o 0 0 0
3 2 1 0 9 8 7 6 543 2 1 0 9 8 7 6 5 4 3 2 1 0

P 1 0 1 0 0 x x x x x x x x x x A A A All 1 1

Where: p = Parity Bit (Odd Parity)
x = Address in map to branch to
A = Register Selection A (See table 1 in the Appendix)

This Branch instruction is syntaca11y the same as the BER
instruction, with the B register gating bits set to the constant
zero. This format allows a clearer understanding of the flow of
a program.

Examples of this instruction and whether or not the Branch will
be taken follows below:

R3 Branch !
Yes ! No D20D3F BEZ R3 TEST

00 ! X ! !
! 01 ! X

10 ! X
! 80 ! ! X
! 80 ! X !
! 02 ! X !
! FF ! X
! DE X !

Copyright ~ 1982,1983 by Canputer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Canputer Concepts Corporation

31

Wang 2200 Machine Instruction Set

BFH (Branch if Bits False, High nibble)

Family Type: Masked Branch

BFH

2 2 2 2 111 1 111 1 1 100 000 0 o 000
3 2 1 0 9 8 7 6 5 4 3 2 109 8 765 4 3 2 1 0

P 1 1 0 1 1 x x x x x x x x.x x c c c c B B B B

Where: p = Parity Bit (Odd Parity)
x = Location in current Page to branch to
c = Bits to Mask for test
B = Register to test (See Table 2 in Appendix)

This instruction implies that a -mask- of the contents of the se
lected B register is performed. The original contents of the
register are not touched. Only those bits set to one in the 'c'
field of the instruction are evaluated.

The bits masked in the high nibble of the selected register are
evaluated. If all the masked bits are False, that is low, the
branch is taken. If any of the masked bits are True, or high, the
branch is not taken.

The branch, if taken, can only traverse a Range of 1024 decimal
locations from the Base Page or Map. The computer may not cross
a map or page boundary wi th a taken Branch.

I.E. Test program in memory:

$ORG $6000

6000 6C0352 BFH $05,R2 $6003
6001 AOO01F SET RO < $01 Not Taken
6002 OC0050 JMP $5000
6003 20000F SET RO <: $00 Branch Taken
6004 OC0050 JMP $5000

Branch will be taken if nibbles are Ox,2x,8x or Ax.

Copyri ght @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

32

Wang 2200 Machine Instruction Set

BFL
BFL (Branch if Bits False, Low nibble)

Family Type: Masked Branch

2 2 2 2 111 1 111 1 1 100 000 0 o 000
3 2 1 0 9 8 7 6 543 2 1 098 7 6 5 4 3 2 1 0

P 1 1 0 lOx x x x x x x x x x c c c c B B B B

Where: p = Parity Bit (Odd Parity)
x = Location in current Page to branch to
c = Bits to Mask for test
B = Register to test (See Table 2 in Appendix)

This instruction implies that a -mask- of the contents of the se
lected B register is performed. The original contents of the
register are not touched. Only those bits set to one in the rc,
field of the instruction are evaluated.

The bits masked in the low nibble of the selected register are
evaluated. If all the masked bits are False, that is low, the
branch is taken. If any of the masked bits are True, or high,
the branch is not taken.

The branch, if taken, can only traverse a Range of 1024 decimal
locations from the Base Page or Map. The computer may not cross
a map or page boundary wi th a taken Branch.

I.E. Test program in memory:

$ORG $6000

6000 E80332 BFL $03,R2 $6003
6001 AOO01F SET RO < $01 Not Taken
6002 DC0050 JMP $5000
6003 20000F SET RO <: $00 Branch Taken
6004 DC0050 JMP $5000

Branch will be taken if nibbles are xO,x4,x8 or xC.

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

33

Wang 2200 Machine Instruction Set

BLER
BLER (Branch if A <= B)

Family Type: Register Comparison Branch

222 2 1 1 1 1 111 1 110 0 000 0 o 0 0 0
321 0 9 8 7 6 543 2 1 098 7 6 5 4 3 2 1 0

plOO	 10xx xxxx xxxx AAAA BBBB

Where:	 p = Parity Bit (Odd parity)
x = Address in map to branch to
A = Register Selection A (See table 1 in the Appendix)
B = Register Selection B (See table 2 in the Appendix)

Facilities are included, within the Wang CPU, to test the value
of all 8 bits, and sometimes 16 bits with another Register.

Examples of this instruction and whether or not the Branch will be
taken follows below:

R3 R6 Branch
! Yes ! No ! CAOD36 BLER R3,R6 TEST

! 00 00 ! X
01 ! 10 X !
10 05 X

! 80 ! 8F X
80 02 X
02 80 X
FF 83 ! X
DE DE X

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

34

Wang 2200 Machine Instruction Set

BLEX
BLEX (Branch if A <= B 16 bit test)

Family Type: Register Canparison Branch

222 2 1 1 1 1 III 1 1 1 0 0 000 0 o 0 0 0
3 2 1 0 9 8 7 6 543 2 1 0 9 8 7 6 5 4 3 2 1 0

plOO	 llxx xxxx xxxx AAAA BBBB

Where:	 p = Parity Bit (Odd Parity)
x = Address in map to branch to
A = Register Selection A (See table 1 in the Appendix)
B = Register Selection B (See table 2 in the Appendix)

Facilities are included, within the Wang CPU, to test the value
of all 8 bits, and sometimes 16 bits with another Register.

Examples of this instruction are listed below with the branch
condi ti ons :

Branch !
! R3 R2 R6 R5 ! Yes ! No ! CEl025 BLEX R2,R5 TEST

00 00 00 00 ! X ! !

00 01 00 10 X
! 01 00 ! 00 10 ! ! X !

00 10 00 05 X

10 00 05 00 ! X !
00 01 05 00 ! X !

80 8F 80 8F X

80 00 ! 8F 00 ! X !
! 80 00 ! 00 02 ! X

00 08 02 00 ! X ! !
02 00 80 00 ! X !
FF FF 83 00 ! X !

! DE DE ! DE DE ! X ! !

Copyright @1982,1983 by Computer Concepts Corporation

Shawnee Mission, KS

No part of this document may be reproduced without the expressed

wri tten permission of Canputer Concepts Corporation

35

Wang 2200 Machine Instruction Set

BLR
BLR (Branch if A < B)

Family Type: Register Comparison Branch

222 2 111 1 1 1 1 1 1 1 0 0 000 0 o 0 0 0
3 2 1 0 9 8 7 6 543 2 1 0 9 8 7 6 5 4 3 2 1 0

P 1 0 0	 0 0 x x x x x x x x x x A A A A B B B B

Where:	 p = Parity Bit (Odd Parity)
x = Address in map to branch to
A = Register Selection A (See table 1 in the Appendix)
B = Register Selection B (See table 2 in the Appendix)

Facilities are included, within the Wang CPU, to test the value
of all 8 bits, and sometimes 16 bits with another Register.

Examples of this instruction and whether or not the Branch will be
taken follows below:

R3 R6 ! Branch
! Yes ! No ! 420D36 BLR R3,R6 TEST

00 00 X
01 10 X !

! 10 05 X
80 ! 8F X

! 80 02 X
02 80 ! X
FF ! 83 X
DE DE ! X

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

36

Wang 2200 Machine Instruction Set

BLRX
BLRX (Branch if A < B 16 bit test)

Family Type: Register Comparison Branch

2 2 2 2 111 1 1 1 1 1 1 1 0 0 000 0 o 000
321 0 9 8 7 6 543 2 1 0 9 8 7 6 5 4 3 2 1 0

p100	 01xx xxxx xxxx AAAA BBBB

Where:	 p = Parity Bit (Odd parity)
x = Address in map to branch to
A = Register Selection A (See table 1 in the Appendix)
B = Register Selection B (See table 2 in the Appendix)

Facilities are included, within the Wang CPU, to test the value
of all 8 bits, and sometimes 16 bits with another Register.

Examples of this instruction are listed below with the branch
conditions:

Branch
R3 R2 R6 R5 Yes ! No 461025 BLRX R2,R5 TEST
00 00 00 00 X
00 01 00 10 X
01 00 00 10 X
00 10 00 05 X
10 00 05 00 X
00 01 05 00 X
80 8F 80 8F X
80 00 8F 00 X
80 00 00 02 X
00 08 02 00 X
02 00 80 00 X
FF FF 83 00 X
DE DE DE DE X

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

37

Wang 2200 Machine Instruction Set

BNH
BNH (Branch if Not Equal, High nibble)

Famil y Type: Val ued Branch

2 2 2 2 111 1 111 1 1 100 o 000 o 000
321 0 9 8 7 6 5 4 3 2 109 8 7 6 5 4 3 210

P 1 1 1 1 1 x x x x x x x x x x c c c c B B B B

Where:	 P = Parity Bit (Odd parity)
x = Map location to Branch to
ff = Function to perform
c = Constant to compare Register against
B = B Register to test. (See Table 2 in the Appendix)

Direct mathematical comparisons of an immediate 4 bit nibble
wi th any of the 16 registers is performed by this
instruction. Any location within the 1024 map can be
branched to.

I.E. Test program in memory:

$ORG $6000

6000 FC03C2 BNH $OC,R2 $6003

6001 AOO01F SET RO < $01 Not Taken

6002 DC0050 JMP $5000

6003 20000F SET RO < $00 Branch Taken

6004 DC0050 JMP $5000

Branch will be always be taken unless nibble is equal to Cx

Copyri ght @ 1982,1983 by Canputer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

38

Wang 2200 Machine Instruction Set

BNL
BNL (Branch if Not Equal, Low nibble)

Family Type: Valued Branch

222 2 1 111 111 1 1 1 0 0 000 0 o 000
3 2 1 0 9 8 7 6 5 4 3 2 109 8 765 4 321 0

P 1 1 1 lOx x x x x x x x x x c c c c B B B B

Where: P = Parity Bit (Odd Parity)
x = Map location to Branch to
ff = Function to perform
c = Constant to compare Register against
B = B Register to test. (See Table 2 in the Appendix)

Direct mathematical comparisons of an immediate 4 bit nibble
with any of the 16 registers is performed by this
instruction. As with the previous Masked instructions, any
location within the 1024 map can be branched to.

I.E. Test program in memory:

$ORG $6000

6000 7803A2 BNL $OA,R2 $6003
6001 AOO01F SET RO < $01 Not Taken
6002 DC0050 JMP $5000
6003 20000F SET RO <: $00 Branch Taken
6004 DC0050 JMP $5000

Branch will be always be taken unless nibble is equal to xA

Copyright ~ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

39

wang :l:lOO

BNR (Branch if A <> B)

Family Type: Register Comparison Branch

Macn~ne .Lnsr:rucr:~on ~er:

BNR

222 2 1 1 1 1 1 1 1 1 1 1 0 0 000 0 o 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

P 1 0 1	 lOx x x x x x x x x x A A A A B B B B

Where:	 p = Parity Bit (Odd parity)
x = Address in map to branch to
A = Register Selection A (See table 1 in the Appendix)
B = Register Selection B (See table 2 in the Appendix)

Facilities are included, within the Wang CPU, to test the value
of all 8 bits, and sometimes 16 bits with another Register.

Examples of this instruction and whether or not the Branch will be
taken follows below:

R3 R6 Branch
Yes ! No 5AOD36 BNR R3,R6 TEST

00 00 X

01 10 X !
10 05 X !

80 8F X !
80 ! 02 X
02 80 ! X
FF ! 83 X !
DE DE X

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

40

Wang 2200 Machine Instruction Set

BNZ
BNZ (Branch if A <>Zero (0))

Family Type: Register Canparison Branch

2 2 2 2 111 1 111 1 1 100 000 0 o 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 098 7 6 5 4 3 2 1 0

P 1 0 1 lOx x x x x x x x x x A A A All 1 1

Where: p = Parity Bit (Odd Parity)
x = Address in map to branch to
A = Register Selection A (See table 1 in the Appendix)

This instruction is an adaptation of the BNR instruction with the
B register gating bits set to the constant zero. It allows us to
better understand the flow of the program by having only to look
at one operand. This instruction will branch whenever a non-zero
operand is present in the A register gating bits.

Examples of this instruction and whether or not the Branch will
be taken follows below:

R3 Branch
Yes ! No 5AOD3F BNZ R3 TEST

00 X
01 ! X

10 X
80 X

80 X

02 X !
FF ! X
DE X

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

41

8TH

BTH (Branch if Bits True, High nibble)

Famil y Type: Masked Branch

2 2 2 2 1 1 1 1 111 1 1 1 0 0 o 0 0 0 o 000
3 2 1 0 9 8 7 6 5 4 3 2 109 8 765 4 3 2 1 0

P 1 1 0 0 1 x x x x x x x x x x c c c c B B B B

Where: p = Parity Bit (Odd Parity)
x = Location in current Page to branch to
c = Bits to Mask for test
B = Register to test (See Table 2 in Appendix)

This instruction implies that a -maskw of the contents of the se
lected B register is performed. The original contents of the
register are not touched. Only those bits set to one in the 'c'
field of the instruction are evaluated.

The bits masked in the high nibble of the selected register are
evaluated. If all the masked bits are True, that is high, the
branch is taken. If any of the masked bits are false, or low,
the branch is not taken.

The branch, if taken, can only traverse a Range of 1024 decimal
locations from the Base Page or Map. The computer may not cross
a map or page boundary wi th a taken Branch.

I.E. Test program in memory:

$ORG $6000

6000 E403A2 BTH $OA,R2 $6003
6001 AOO01F SET RO <$01 Not Taken
6002 DC0050 JMP $5000
6003 20000F SET RO -:: $00 Branch Taken
6004 DC0050 JMP $5000

Branch will be taken if nibbles are Ax,Bx,Ex or Fx.

Copyri ght @ 1982,1983 by Ccrnputer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Ccrnputer Concepts Corporation

42

Wang 2200 Machine Instruction Set

BTL
BTL (Branch if Bits True, Low Nibble)

Family Type: Masked Branch

2 2 2 2 1 111 111 1 1 100 o 000 o 000
3 2 1 0 9 8 7 6 S 4 3 2 1 098 7 6 S 4 3 2 1 0

P 1 1 0 0 0 x x x x x x x x x x c c c c B B B B

Where: p = Parity Bit (Odd Parity)
x = Location in current Page to branch to
c = Bits to Mask for test
B = Register to test (See Table 2 in Appendix)

This instruction implies that a "mask" of the contents of the se
lected B register is performed. The original contents of the
register are not touched. Only those bits set to one in the 'c'
field of the instruction are evaluated.

The bits masked in the low nibble of the selected register are
eval uated. If all the masked bits are True, that is high, the
branch is taken. If any of the masked bits are false, or low,
the branch is not taken.

The branch, if taken, can only traverse a Range of 1024 decimal
locations from the Base Page or Map. The computer may not cross
a map or page boundary with a taken Branch.

I.E. Test program in memory:

$ORG $6000

6000 600362 BTL $06,R2 $6003
6001 AOO01F SET RO < $01 Not Taken
6002 DCOOSO JMP $SOOO
6003 20000F SET RO -< $00 Branch Taken
6004 DCOOSO JMP $SOOO

If values of nibbles are x6,x7,xE or xF Branch will be
taken.

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

43

Mach~ne

CIO

Wang 2200 Instruction Set

CIO (Input Output Instruction)

Family: Peripheral Control

2 2 2 2 1 1 1 1 111 1 1 100 000 0 000 0
3 2 1 0 9 8 7 6 543 2 1 098 7 6 5 4 3 2 1 0

p 0 0 1 011 1 lOx x Y Y Y Y Y d d d z z d d

Where:	 p = Parity Bit (Odd parity)

xx = Data Memory Control (See table 4 of the Appendix)

y = Strobe Control
 ___ d = Immediate data field
zz = if equal to 11, fire the partition timer (MVP only)

ASM Syntax for timer is: CIO TIM

Strobe Control

x x x x 1 Fire internal IBS one shot (SRS). Sets CPb
Basically used for Status Requests from MUXD

x x x 1 x Fire CBS Strobe
x x 1 x x Fire OBS Strobe
x 1 x x x Fire ABS strobe
1 x x x x Clock the AB data register from register K

This is performed prior to any strobes.

The purpose of this group is to provide a means of communicating
with the peripherals, CRT, DISK or other devices on the IO bus.

The Input/Output instructions (I/O) allow the 2200 to fire one of
four one-shot strobes and allow limited peripheral data transfers
to take place.

All strobes above are about 5 microseconds in length. Data
transmission to the peripheral is always done through the K
register. Data present in K is always present on the OB bus.
Transfer of data to the AB bus must also occur through K
register, via an Clock AB strobe control. All oneshots can be
fired together, or through combinations, but all fire at the same
time.

The next page contains sample usages of the CIO series
instructions.

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

44

wang ~~uu ~acn~ne ~ns~ruc~~on ~ec

CIO (Input Output Instruction) - Cont'd

Selecting devices:

AOOE5F SET K < $05 Address of CRT out
l78COO CIO CLK AB,ABS Transfer K to AB. Address = 05

Issue ABS strobe.

If any device has the address $05, they will lock on.

Waiting for Input from Devices:

AB8DDD IAND SH < $ED,SH Mask out and clear CPb
ElOD2D BTL $02,SH $090D Branch if IBS
5D2008 JMP *-1 Loop Back

Waiting for Device Ready:

E36A8D BTL $08,SH $OB6A Test Ready bit
5D2008 JMP *-1 Loop Back

Check if Timeout, Refire Timer

3000 6C02lD BFH $Ol,SH FIRE See if expired
3001 87800F RTS Still on
3002 l7800C FIRE CIO TIM Fire Oneshot
3003 87800F RTS Return to caller

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

45

wang ~~uu l"Ja.cn~ne .Lnsl:ruct:~on ~et:

DAC
DAC (Decimal Add with Carry)

Family Type: Register ALU

222 2 III 1 1 III 1 100 o 0 0 0 o 000
321 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 321 0
--
p 0 0 1 o 0 0 0 xxmm d d d d A A A A B B B B

Where P = Parity Bit (Odd Parity)
m = Data Memory Control (See table 4)
A = Source Register A (See table 1)
B = Source Register B (See table 2)
d = Destination register (See table 3)

xx = Carry flag controls

15 14 Carry Control

0
0
1
1

0
1
0
1

Normal, Initial Carry State not affected
Normal, Initial Carry State not affected
Clear Carry First ,CC
Set Carry first ,CS

The following table outlines the
constants using the DAC instruction

results returned for various

!
!

!

!
!

!

!
!

RO
00
00
01
55
AA
80
80
12
56
9A
FO
02
FF

!

!

R1
00
01
00
55
AA
01
FF
34
78
Be
DE
FF
FF

!
!

!

!
!

!

Result CC

R2 ! Carry
00 ! 0
01 0
01 0
10 ! 1
BA 1
81 ! 0
E5 ! 1
46 ! 0
34 ! 1
BC ! 1
34 1
67 1
54 1

!

!

!

!
!
!

Result CS !
R2 ! Carry!
01 ! 0 !
02 ! 0
02 ! 0
11 1
BB 1 !
82 0 !
E6 1
47 0
35 ! 1
BD 1 !
35 1
68 ! 1 !
55 1 !

908201
10C201

DAC
DAC

R2 < RO,R1
R2 < RO,R1

,CC
,CS

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

46

Wang 2200 Machine Instruction Set

DACX
DACX (Decimal Add with carry 16 bit)

Family Type: Register ALU

222 2 1 111 111 1 1 100 o 000 o 000
3 2 1 0 9 8 7 6 543 2 109 8 7 6 5 4 3 2 1 0

p 0 0 1 0 0 lOx x m m d d d d A A A A B B B B

Where	 P = Parity Bit (Odd Parity)

m = Data Memory Control (See table 4)

A = Source Register A (See table 1)

B = Source Register B (See table 2)

d = Destination register (See table 3)

xx = Carry flag controls

15 14	 Carry Control

o 0 Normal, Initial Carry State not affected
o 1 Normal, Initial Carry State not affected

1 0 Clear Carry First ,CC

1 1 Set Carry first ,CS

The following table outlines the results returned for various
constants using the DACX instruction

128402 DACX R4 <: RO ,R2 ,CC
92C402 DACX R4 <: RO ,R2 ,CS

Result CC Result CS
R1 RO R3 R2 R5 R4 Carry R5 R4 Carry
00 00 00 00 00 00 0 00 01 0
00 00 00 01 00 01 0 00 02 0
00 01 00 00 ! 00 01 0 00 02 0
55 AA AA 55 ! 66 55 ! 1 ! 66 66 1 !

! 11 22 33 44 44 66 0 44 67 ! 0
44 55 ! 66 77 11 32 1 ! 11 33 1
80 00 ! 00 01 80 01 ! 0 80 02 ! 0
00 01 ! 80 00 ! 80 01 0 80 02 0 !

! 9A BC CD EF CE 01 1 CE 02 1
AA AA 22 22 ! 33 32 1 33 33 1

! 55 19 ! 55 91 11 10 ! 1 ! 1111 ! 1

Copyright ~ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

47

Wang 2200 Machine Instruction Set

DSC
DSC (Decimal Subtract with Carry)

Family Type: Register ALU

2 2 2 2 1 111 1 111 1 100 o 000 o 0 0 0
3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 321 0

p 0 0 1 o 1 0 0 x x m m d d d d A A A A B B B B

Where P = Parity Bit (Odd Parity)
m = Data Memory Control (See table 4)
A = Source Register A (See table 1)
B =Source Register B (See table 2)
d =Destination register (See table 3)

xx =Carry flag controls

15 14 Carry Control

0
0
1
1

0
1
0
1

Normal, Initial Carry State not affected
Normal, Initial Carry State not affected
Clear Carry First ,CC
Set Carry first ,CS

The following table outlines the
constants using the DSC instruction

results returned for various

!

!

!

!
!

!
J

RO
00
00
01
55
AA
80
80
12
56
9A
FO
02
FF

!
!

!

!

R1
00
01
00
55
AA
01
FF
34
78
BC
DE
FF
FF

!

!

!
!
!

!
!

!
!
!

Result CC

R2 Carry
00 ! 0
99 1
01 ! 0
00 ! 0
00 0
79 ! 0
2B ! 1
78 1
78 1
78 1
lC ! 0
AD ! 1
00 0

!
!

!
!
!
!
!
!

!

!

Result CS !
R2 Carry!
99 1 !
98 ! 1 !
00 ! 0
99 ! 1 !
99 ! 1 !
78 0
2A ! 1 !
77 ! 1 !
77 1 !
77 ! 1 !
lB 0
AC ! 1
99 ! 1 !

148201
94C20l

DSC
DSC

R2 <:
R2

RO,R1
RO,Rl

,CC
,CS

Copyright @1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

48

Wang 2200 Machine Instruction Set

DSCX
DSCX (Decimal Subtract with carry 16 bit)

Family Type: Register ALU

2 2 2 2 111 1 111 1 1 100 000 0 o 000
321 0 9 8 7 6 5 4 3 2 109 8 7 6 5 4 321 0

p 001 0 1 lOx x m m d d d d A A A A B B B B

Where	 P = Parity Bit (Odd Parity)

m = Data Memory Control (See table 4)

A = Source Register A (See table 1)

B = Source Register B (See table 2)

d = Destination register (See table 3)

xx = Carry flag controls

15 14	 Carry Control

0 0 Normal, Initial Carry State not affected

0 1 Normal, Initial Carry State not affected

1 0 Clear Carry First ,CC

1 1 Set Carry first ,CS

The following table outlines the results returned for various
constants using the DSCX instruction

968402 DSCX R4 < RO ,R2 ,CC
16C402 DSCX R4 < RO,R2 ,CS

! ! Result CC ! Result CS !
! R1 RO ! R3 R2 R5 R4 Carry ! R5 R4 ! Carry
! 00 00 ! 00 00 00 00 0 99 99 1 !
! 00 00 ! 00 01 99 99 1 99 98 1
! 00 01 ! 00 00 ! 00 01 0 00 00 ! 0
! 55 AA ! AA 55 45 55 1 ! 45 54 1

11 22 33 44 77 78 1 ! 7777 ! 1 !
44 55 ! 66 77 ! 77 78 ! 1 7777 1

! 80 00 ! 00 01 ! 79 99 ! 0 ! 79 98 ! 0
! 00 01 ! 80 00 ! 20 01 ! 1 20 00 ! 1
! 9A BC ! CD EF ! 66 67 1 66 66 ! 1 !
! AA AA ! 22 22 ! 88 88 0 88 87 ! 0
! 55 19 ! 55 91 99 28 ! 1 ! 99 27 1

Copyright @1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

49

lADe

LADe (Immediate Binary Add with Carry registers)

Family Type: Immediate ALU

2 2 2 2 1 111 1 1 1 1 1 100 000 0 000 0
321 0 9 8 7 6 5 4 3 2 1 098 7 6 5 4 3 210

pOl 1 1 0 iii i m m d d d d I I I I B B B B

Where P = Parity Bit (Odd Parity)
m = Data Memory Control (See table 4)

iiii = High order Nibble of Immediate Data Constant
IIII = Low order Nibble of Immediate Data

B = Source Register B (See table 2)
d = Destination register (See table 3)

The following table outlines the results returned for various
constants using the IADC Instruction

IADC R2 < (Immediate Data) ,R1

! Imm! ! Result CC Result CS !
!Data! R1 ! R2 ! Carry ! R2 Carry!

00 ! 00 ! 00 ! 0 01 0 !
! 00 01 01 0 02 0

01 00 ! 01 0 02 0 !
55 55 AA 0 AB 0
AA AA 54 1 55 ! 1
80 01 81 0 82 0 !
80 FF 7F 1 80 1

! 12 34 46 ! 0 ! 47 0
56 78 ! CE 0 CF 0
9A BC 56 1 57 1
FO DE ! CE 1 CF 1 !
02 FF 01 1 02 1
FF FF FE 1 ! FF 1

Copyright @1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

50

Wang 2200 Machine Instruction Set

IADD
IADD (Immediate ADD registers)

Family Type: Immediate ALU

2 2 2 2 111 1 111 1 1 100 o 0 0 0 o 000
321 0 9 8 7 6 5 4 3 2 109 8 7 6 5 4 3 2 1 0

pOl 0 1 1 iii i m m d d d d I I I I B B B B

Where P = Parity Bit (Odd Parity)
m = Data Memory Control (See table 4)

iiii = High order Nibble of Immediate Data Constant
IIII = Low order Nibble of Immediate Data

B = Source Register B (See table 2)
d = Destination register (See table 3)

The following table outlines the results returned for various
constants using the LADD instruction

! Imm! Result !
!Data! Rl ! R2 Carry ! IADD R2 -< {Immediate Data),Rl

00 ! 00 00 0
00 ! 01 ! 01 0 !
01 ! 00 01 ! 0 !
55 55 ! AA 0 !
AA ! AA ! 54 0
80 01 ! 81 ! 0
80 ! FF ! 7F ! 0
12 34 46 0 !
56 78 ! CE 0
9A ! BC 56 ! 0

! FO DE CE ! 0
02 ! FF ! 01 0 !
FF ! FF ! FE ! 0

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

51

lAND

IAND (Immediate Logical AND registers)

Family Type: Immediate ALU

2 2 2 2 1 111 1 1 1 1 1 100 o 0 0 0 o 000
3 2 1 0 9 8 7 6 5 4 3 2 109 8 7 6 5 4 3 2 1 0

pOl 0 1 0 iii i m m d d d d I I I I B B B B

Where P = Parity Bit (Odd parity)
m = Data Memory Control (See table 4)

iiii = High order Nibble of Immediate Data Constant
IIII = Low order Nibble of Immediate Data

B = Source Register B (See table 2)
d = Destination register (See table 3)

The following table outlines the results returned for various
constants using the IAND instruction

! Imm! ! Result !
!Data! Rl ! R2 ! Carry ! IAND R2 < (Immediate Data),Rl

00 ! 00 ! 00 ! 0 !

00 ! 01 ! 00 ! 0 !
! 01 ! 00 00 ! 0 !

55 55 ! 55 ! 0 !
! AA ! AA ! AA 0
! 80 ! 01 00 ! 0
! 80 ! FF ! 80 ! 0 !

12 ! 34 ! 10 ! 0 !
56 78 ! 50 ! 0 !
9A ! BC 98 0 !
FO DE DO 0
02 ! FF 02 0
FF FF FF 0

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

52

Wang 2200 Machine Instruction Set

IDAC (Immediate Decimal Add with Carry registers)

Faroil y Type: Immediate ALU

IDAC

222 2 1 111 1 111 1 1 0 0 000 0 o 000
321 0 9 8 7 6 5 4 3 2 109 8 7 6 5 4 3 2 1 0

pOl 1 0 0 iii i m m d d d d I I I I B B B B

Where P = Parity Bit (Odd Parity)
m = Data Memory Control (See table 4)

iiii = High order Nibble of Immediate Data Constant
IIII = Low order Nibble of Immediate Data

B = Source Register B (See table 2)
d = Destination register (See table 3)

The following table outlines the results returned for various
constants using the IDAC Instruction

IDAC R2 <: (Immediate Data) ,R1

! I1TUTl! Result CC Result CS !
!Data! R1 R2 Carry R2 Carry!
! 00 ! 00 00 0 01 0 !

00 01 01 0 02 0
01 00 01 0 02 0

! 55 55 10 1 11 1
AA AA BA 1 BB 1
80 01 81 0 82 0
80 FF E5 1 E6 1
12 34 46 0 47 0
56 78 34 1 35 1
9A BC BC 1 BD 1
FO DE 34 1 35 1
02 FF 67 1 68 1
FF FF 54 1 55 1

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

53

wang ~~vv l"Ja.cn~ne ..I.nsr:rucr:~on .:>er:

IDSC (Immediate Decimal Subtract with Carry registers)

Family Type: Immediate ALU

2 2 2 2 1 111 1 1 1 1 1 100 o 0 0 0 o 000
321 0 9 8 7 6 543 2 1 098 765 4 3 210

lose

pOl 1 o 1 i i i i m m d d d d I I I I B B B B

Where P = Parity Bit (Odd parity)
m = Data Memory Control (See table 4)

iiii = High order Nibble of Immediate Data Constant
IIII = Low order Nibble of Immediate Data

B = Source Register B (See table 2)
d = Destination register (See table 3)

The following table outlines the results returned for various
constants using the IDSC Instruction

IDSC R2 < (Immediate Data),R1

! Imm! Result CC ! Result CS !
!Data! R1 R2 ! Carry R2 ! Carryl

00 00 00 0 99 1 !
00 01 ! 99 ! 1 98 1
01 00 ! 01 ! 0 00 0 !

! 55 ! 55 00 0 ! 99 1
! AA ! AA ! 00 0 99 1 !
! 80 ! 01 ! 79 0 78 ! 0

80 ! FF 2B 1 2A ! 1

12 34 ! 78 1 ! 77 1

56 78 ! 78 1 77 1

9A BC ! 78 1 ! 77 1

FO DE ! 1C 0 1B 0

02 ! FF ! AD 1 AC 1

FF ! FF 00 0 99 ! 1 !

Copyri ght @ 1982,1983 by Ccmputer Concepts Corporation

Shawnee Mission, KS

No part of this document may be reproduced without the expressed

written permission of Ccmputer Concepts Corporation

54

wang LLUU l"1.acn~ne .Lnst:ruct:~on .:;et:

IMUL
IMUL (Immediate Multiply Register with Constant)

Family Type: Immediate ALU

222 2 1 111 1 1 1 1 1 100 o 0 0 0 000 0
3 2 1 0 9 8 7 6 543 2 1 0 9 8 765 4 3 2 1 0

pOl 1 1 1 0 0 cOm m d d d d I I I I B B B B

Where	 P = Parity Bit (Odd parity)
m = Data Memory Control (See table 4)
c = High or Low B nibble select

IIII = Immediate data to multiply by (Range of 0 to F)
B = Source Register B (See table 2)
d = Destination register (See table 3)

15 Nibble Control

o Multiply Lower B by Lower A (ALBL)
1 Multiply Upper B by Lower A (ALBH)

The following table outlines the results returned for various
constants using the IMUL instruction.

IMUL (ALBL) R2 < (Immediate Data),Rl

[Imm[Result
[Data[Rl [R2 Carry
[0 [00 00 0

E 01 OE 0
1 00 00 0
5 55 19 0
A AA [64 [0
0 [01 00 0
0 FF 00 0
2 [34 [08 0
6 [78 30 [0 [

9 BC [6C [0
[F [ED [C3 0 [

2 FF lE 0
[F [FF El [0 (Largest possible answer)

Copyri ght @ 1982,1983 by Canputer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Canputer Concepts Corporation

55

wang 2200

IOR (Immediate OR registers)

Family Type: Immediate ALU

Macn~ne 1nstruCt~on set

lOR

2 2 2 2 1 1 1 1 111 1 1 100 o 000 o 0 0 0
321 0 9 8 7 6 5 4 3 2 109 8 7 6 5 4 3 2 1 0

pOl 0 0 0 iii i m m d d d d I I I I B B B B

Where P = Parity Bit (Odd Parity)
m = Data Memory Control (See table 4)

iiii = High order Nibble of Immediate Data Constant
IIII = Low order Nibble of Immediate Data

B = Source Register B (See table 2)
d = Destination register (See table 3)

The following table outlines the results returned for various
constants using the IOR instruction

! Imm! ! Result
!Data! R1 ! R2 Carry IOR R2 < (Immediate Data),R1

00 ! 00 00 0
00 01 01 0
01 00 01 0
55 55 ! 55 0

! AA ! AA AA 0
80 01 81 0 !
80 FF FF 0
12 34 ! 36 0
56 78 7E ! 0
9A BC BE 0
FO DE FE 0
02 FF FF 0 !

! FF FF FF ! 0 !

Copyright @1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written Permission of Computer Concepts Corporation

56

Wang 2200 Machine Instruction Set

IXOR
IXOR (Immediate Exclusive OR registers)

Family Type: Immediate ALU

222 2 111 1 111 1 1 100 o 0 0 0 o 0 0 0
3 2 1 0 9 8 7 6 543 2 109 8 7 6 5 4 321 0

pOl 0 0 1 iii i m m d d d d I I I I B B B B

Where P = Parity Bit (Odd Parity)
m = Data Memory Control (See table 4)

iiii = High order Nibble of Immediate Data Constant
IIII = Low order Nibble of Immediate Data

B = Source Register B (See table 2)
d = Destination register (See table 3)

The following table outlines the results returned for various
constants using the IXQR instruction

! Imm! Result
!Data! R1 R2 Carry ! IXOR R2 <. {Immediate Data),R1

00 ! 00 ! 00 ! 0
00 ! 01 01 ! 0 !

! 01 ! 00 01 ! 0
55 ! 55 00 ! 0 !
AA ! AA ! 00 0
80 1 01 ! 81 0 !

! 80 ! FF 7F 1 0 !
12 ! 34 ! 26 0 !
56 ! 78 ! 2E ! 0

! 9A ! Be ! 26 0 !
! FO DE ! 2E ! 0

02 FF FD 0
FF ! FF 00 0

Copyright @ 1982,1983 by Canputer Concepts Corporation

Shawnee Mission, KS

No part of this document may be reproduced without the expressed

written permission of Canputer Concepts Corporation.

57

Wang 2200 Machine Instruction Set

JMP (Jump)

Family Type: Branch

JMP

2 2 2 2 111 1 111 1 1 100 o 000 o 000
321 0 9 8 7 6 543 2 1 098 7 6 5 4 3 2 1 0

P 1 0 1 1 1 x x x x x x x x x x y y y y y y 0 0

Where P = Parity Bit (Odd Parity)

x = LSD of Address

y = MSD of Address

This family of instructions allows the computer to alter the
course of instruction execution by changing the address of
micro-program store. Bit 22 of the Control word indicates that
the instruction belongs to this family.

The JMP instruction allows the Wang to ·jump· to anyone of the
65,536 locations in Control Memory. Addresses greater than hex
8000 are located in PROM memory. The exception to this is on the
new ·C· chassis, where Control memory extends past 83FF. PROM
Control Memory is executed at half-speed.

Address = yyyy yyxx xxxx xxxx

E.G. DE6A08 = JMP $OA6A

P 1 0 1 111 0 0 1 1 0 101 0 o 000 1 000

x = 10 0110 1010 = $26A
Y = 00 0010 = $02

Combined = 0000 1010 0110 1010 ($OA6A)

Control is transferred to the new location, and no other CPU
registers are altered in any way.

Copyright @1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

58

Wang 2200 Machine Instruction Set

JSR (Jump to SubRoutin:)

Family Type: Branch

JSR

2 2 2 2 1 111 111 1 1 1 0 0 o 000 o 000
3 2 1 0 9 8 7 6 5 4 3 2 1 098 7 6 5 4 3 2 1 0

P 1 0 1 0 1 x x x x x x x x x x y y y y y y 0 0

Where	 P = Parity Bit (Odd Parity)
x = LSD of Address
y = MSD of Address

Execution of a subroutine, similar to a GOSUB in BASIC, is
performed by this instruction. The contents of the current memo
ry address, plus 1, is stored on the internal system stack. A
jump is executed to the desired location, and program execution
commences. The format of the instruction is similar to the JMP
instruction. Returning from a Subroutine call is accomplished by
an RTS instruction.

E.G.	 0400 D50l08 JSR $0901

0401

0901	 2l4E2F SET K < $52
0902	 87800F RTS

Location 0401 would be placed on the stack, and the next in
struction to be executed would be at $0901 in Control Memory.

The address of the stack is incremented by one. The level of
nesting that is permitted for JSR instructions cannot exceed the
depth of the stack, which is 96 locations. However, the stack
is also used by BASIC to store temporary data, and in an MVP
situation, the depth should never exceed ten items.

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

59

Wang 2200 Machine Instruction Set

LPI (Load PH-PL Pair directly)

Family Type: Load

LPI

2 2 2 2 1 111 1 111 1 1 0 0 000 0 o 000
321 0 9 8 7 6 5 4 3 2 1 098 7 6 5 4 321 0

pOOl lffl ffmm xxxx xxxx xxxx

Where P = Parity Bit (Odd Parity)
m = Memory Control bits (See table 4)
x = Lower twelve (12) bits of the address
f = Upper four (4) bits of the address

Fetching infor.mation from Data Memory or writing data to Data
memory requires a pointer register in the Wang architecture. The
pointer register is the PH - PL register pair, and can be
directly loaded by this instruction.

The LPI instruction is an immediate load type and allows direct
addressing of up to 65536 locations. Note that because of this
limitation, bank boundaries must be observed, and no parti tion
can overlap banks.

I.E. 192103 LPI $0103

The executed LPI instruction will load the PH-PL pair with the
hex value $103 and write the low order byte to Data memory.

It is of special note here that any LPI instruction containing
the Wl or W2 bits will result in the destination location to be
cleared out. This is a function of the LPI only.

Memory when read consists of two bytes, a high and low byte. The
high byte is referred to as CH, while the low byte is referred to
as the CL byte. When writing to data memory, Wl refers to the
high byte, while W2 refers to the low byte. For clarity, remem
ber that reading occurs in 16 bit, (two byte) segments, while
writing occurs in 8 bit only segments.

The relationship of what is actually read or written when an LPI
instruction is executed was extremely confusing to me at first.
It becomes rather simple by showing examples. The following page
will try to do that.

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written per.mission of Computer Concepts Corporation

60

LPI (Load PH-PL Pair directly) - Cont'd

The PH PL register combination always points to a pair of memory
locations. Remember that memory is read in 16 bit words. When a
read command is executed, data at the actual location of PH-PL is
loaded into the CH register, while data in the opposite number is
read into the CL register.

As an example, if the following were in memory:

0102 22
0103 33

LPI $0102 ,RD were executed, then CH = 22, CL = 33

However, let's now execute ~ ••

LPI $0103 ,RD ••• now CH = 33 and CL =22.

Remember, even pair of bytes.

Now a similar function occurs wi th the wri te command, except we
can only write one byte at a time. The ,Wl option will always
write to the location pointed to by PHPL, while the ,W2 option
writes to the opposite number.

LPI $0103 ,Wl Clears location $0103

LPI $0103 ,W2 Clears location $0102

LPI $0102 ,W2 Clears location $0103

LPI $0102 ,Wl Clears location $0102

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

61

Wang 2200 Machine Instruction Set

NUL (Multiply Nibbles)

Family Type: Register ALU

MUL

2 2 2 2 1 111 111 1 1 1 0 0 o 0 0 0 o 000
321 0 9 8 7 6 543 2 1 0 9 8 765 4 321 0

p 0 0 1 1 1 0 0 x x m m d d d d A A A A B B B B

Where	 P = Parity Bit (Odd Parity)
m = Data Memory Control (see table 4)
A = Source Register A (See table 1)
B = Source Register B (See table 2)
d = Destination register (See table 3)

xx = Multiply controls

15 14 Multiply Control

0
0
1
1

0
1
0
1

Multiply Lower B by Lower A
Multiply Lower B by Upper A
Multiply Upper B by Lower A
Multiply Upper B by Upper A

(ALBL)
(ABBL)
(ALBH)
(ABBH)

The following table outlines the
constants using the NUL instruction

results returned for various

!

!
!
!
!
!

!

RO
00
00
01
55
AA
80
80
12
56
9A
FO
02
FF

!
!
!
!

!

!
!
!

!

R1
00
01
00
55
AA
01
FF
34
78
BC
DE
FF
FF

!
!

!

!

Result
R2 ! Carry
00 ! 0
00 0
00 ! 0
19 ! 0
64 ! 0
00 ! 0
00 0
08 ! 0
30 ! 0
78 0
00 0
1E ! 0
E1 0

!
!

!

!

!

1C0201 NUL (ALBL) R2 <. RO,R1

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

62

Wang 2200 Machine Instruction Set

MULX
MULX (Multiply Two four bit nibbles)

Family Type: Register ALU

222 2 1 1 1 1 1 111 1 100 o 0 0 0 o 000
321 0 9 8 7 6 5 4 3 2 1 098 7 6 5 4 321 0

p 0 0 1 1 1 lOx x m m d d d d A A A A B B B B

Where	 P = Parity Bit (Odd Parity)

m = Data Memory Control (See table 4)

A = Source Register A (See table 1)

B = Source Register B (See table 2)

d = Destination register (See table 3)

xx = Carry flag controls

15 14	 Multiply Control

0 0 Multiply Lower B by Lower A (ALBL)

0 1 Multiply Lower B by Upper A (ABBL)

1 0 Multiply Upper B by Lower A (ALBR)

1 1 MUltiply Upper B by Upper A (ABBR)

The following table outlines the results returned for various
constants using the MULX instruction

9E0402 MULX (ALBL) R4 < RO,R2

Result CC

Rl RO R3 R2 R5 R4 ! Carry

00 00 ! 00 00 00 00 0

00 00 00 01 00 00 0

! 00 01 00 00 00 00 0
55 AA AA 55 32 32 0 !

! 11 22 33 44 ! 03 08 0
! 44 55 ! 66 77 18 23 0 !
! 80 00 00 01 ! 00 00 0
! 00 01 80 00 ! 00 00 ! 0 !

9A BC CD EF ! 82 B4 0 !
! AA AA ! 22 22 ! 14 14 ! 0 !
! 55 19 55 91 ! 19 09 0

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

63

Wang 2200 Machine Instruction Set

OR
OR (Inclusive OR registers)

Family Type: Register ALU

2 222 1 III III 1 1 100 o 0 0 0 o 000
321 0 9 8 7 6 5 4 3 2 109 8 765 4 3 2 1 0

p 0 0 0 0 000 x x m m d d d d A A A A B B B B

Where	 P = Parity Bit (Odd parity)
m = Data Memory Control (See table 4)
A = Source Register A (See table 1)
B = Source Register B (See table 2)
d = Destination register (See table 3)

xx =Carry flag controls

15 14	 Carry Control
o 0 Normal, Initial Carry State not affected
o 1 Not Permitted (See SDC, SDCX makeups)

1 0 Clear Carry First ,CC

1 1 Set Carry first ,CS

The following table outlines the results returned for various

constants using the OR instruction

! ! Result !

! RO ! R2 ! 008201 OR R2 <RO ,Rl ,CC

00 ! 00 00 !

! 00 ! 01 01

! 01 ! 00 01 !

o
o
o

!
!

55 ! 55 55 ! o !
! AA AA ! AA o !
! 80 ! 01 81

80 ! FF ! FF !
o
o

!

12 ! 34 ! 36 ! o !
! 56 ! 78 7E ! o !
! 9A ! Be ! BE ! o !
! FO ! DE ! !FE o

o
!

! 02 FF ! FF
! FF ! FF ! FF ! o

Copyright @ 1982,1983 by Canputer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Canputer Concepts Corporation

64

Wang 2200 Machine Instruction Set

ORX
ORX (Inclusive OR registers 16 bit)

Family Type: Register ALU

222 2 1 1 1 1 III 1 1 100 000 0 o 0 0 0
321 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 210

p 0 0 0 0 0 lOx x m m d d d d A A A A B B B B

Where	 P = Parity Bit (Odd Parity)

m = Data Memory Control (See table 4)

A = Source Register A (See table 1)

B = Source Register B (See table 2)

d = Destination register (See table 3)

xx = Carry flag controls

15 14	 Carry Control

o 0 Normal, Initial Carry State not affected
o 1 Not Permitted (See SDC, SDCX makeups)

1 0 Clear Carry First ,CC

1 1 Set Carry first ,CS

The following table outlines the results returned for various
constants using the ORX instruction

Result
! R1 RO R3 R2 R5 R4 Carry ! 828402 ORX R4 < RO,R2 ,CC
! 00 00 ! 00 00 00 00 0

00 00 00 01 00 01 0

00 01 00 00 ! 00 01 ! 0

55 AA AA 55 FF FF 0

! 11 22 33 44 ! 33 66 0
44 55 66 77 66 77 0 !
80 00 00 01 80 01 0
00 01 ! 80 00 ! 80 01 ! 0
9A BC CD EF DF FF 0
AA AA 22 22 AA AA 0
55 19 55 91 55 99 0 !

Copyright ~ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

65

Wang 2200 Machine Instruction Set

RTS (Return from Sub-Routine)

Family: Stack Manipulation

RTS

2 2 2 2 111 1 111 1 1 1 0 0 000 0 o 0 0 0
3 2 1 0 9 8 7 6 543 2 1 0 9 8 7 6 5 4 321 0

p 0 0 0 011 1 10m m X c cOO 0 0 0 B B B B

Where P = Parity Bit (Odd Parity)
m = Data Memory Control (See Table 4)

cc = Control Memory Control (See table 5)
B = B Register Selection (Used only during DM writes)

Normally set to hex F, (1111) if not writing
X = Don' t Care

The RTS instruction is of the few Wang instructions that are not
as straight forward as it would appear to be. This instruction
is the only instruction that may Read or Write to Control
Memory. When an RCM (Read Control Memory) or WCM (Write Control
Memory) operation is requested, the system executes what is
called a LOP, or Long OPeration.

A WP causes the stack to be popped twice, and the resultant data
sent to the Control Memory Address Register. The Read or Write
operation is performed, and in the case of a Read operation the
data goes to the K, PH and PL register. Data is read or written
to Control Memory in 24 bit (3 byte) segments. The MSB is in K,
while the LSB is in PL. If the operation has been a Write
operation, the K register, PH and PL registers would be sent to
the CM module and written.

! Note !

Note that the design of the hardware requires that the K regis
ter must be l's complemented prior to writing.

Parity must be formed by the user. The Wang 2200 system checks
the parity of every byte Read from the Control Memory that is a
control instruction. That is, actually being executed. If a data
word was read from Control Memory, the system does not check for
parity.

Copyright @1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

66

Wang 2200 Machine Instruction Set

RTS (Return from Sub-Routine) - Cont' d

Normal Usage of RTS instruction

0400 D50l08 JSR $0901

0401

0901 2l4E2F SET K <: $52

0902 87800F RTS

Examples	 of Write to Control Memory:

A: Write	 544F82 to Control Memory location 0001.

2l4E4F IOR K <: $54,00 Load K with $54
9BOF82 LPI $4F82 Load PH-PL with $4F82
8l800F TPA AR 00 Transfer PH-PL to AR 00
990001 LPI $0001 Load PH-PL wi th Address
D73l0C JSR WRITECM Must be as a Sub-Routine

Normal Return

WRITECM 05800F TPS	 Push Address to Stack
8B800F TAP AR 00	 Bring Data Back to PHPL
A7CEFE IXOR K < $FF ,K l' s Canplement K

078400 RTS ,WC	 Return from Subroutine and
write K,PHPL to address 1.

Examples of Read from Control Memory

B: Read location $OFFE of Control Memory

u q '7) 990FFE LPI $OFFE Load PHPL wi th address
() 'j () I D73l3C JSR REAOCM Goto Subroutine

Data Now present in K PH PL

REAOCM	 05800F TPS Transfer Address to stack
878600 RTS ,RC Return and read data

Copyright @ 1982,1983 by Canputer Concepts Corporation

Shawnee Mission, KS

No part of this document may be reproduced without the expressed

written permission of Canputer Concepts Corporation

67

Wang 2200 Machine Instruction Set sse
SBC (Subtract Binary with Carry)

Family Type: Register ALU

2 222 1 111 111 1 1 1 0 0 000 0 o 0 0 0
321 0 9 8 7 6 5 4 3 2 109 8 7 6 5 4 321 0

p 000 1 1 0 0 x x m m d d d d A A A A B B B B

Where P = Parity Bit (Odd parity)
m = Data Memory Control (See table 4)
A = Source Register A (See table 1)
B = Source Register B (See table 2)
d = Destination register (See table 3)

xx = Carry flag controls

15 14 Carry Control

0
0
1
1

0
1
0
1

Normal, Initial Carry State not affected
Not Permi tted (See SDC, SDCX makeups)
Clear Carry First ,CC
Set Carry first ,CS

The following table outlines the
constants using the SBC instruction

results returned for various

!
!

!

!
!
!

!
!

RO
00
00
01
55
AA

80
80
12
56
9A
FO
02
FF

!
!

!

!
!

Rl
00
01
00
55
AA

01
FF
34
78
Be
DE
FF
FF

!

!
!
!
!
!
!

!
!
!

Result CC
R2 Carry
FF 0
FE 0
00 1
FF ! 0
FF ! 0
7E ! 1
80 0
DD 0
DD ! 0
DD ! 0
11 1
02 ! 0
FF 0

!
!
!
!
!

!
!
!

Result CS !
R2 Carry!
00 1 !
FF 0 !
01 1
00 ! 1
00 1
7F ! 1
81 0
DE 0 !
DE ! 0
DE 0 !
12 1
03 0
00 1 !

OC8201
8CC201

SBC
SBC

R2 < RO,Rl
R2 <: RO,Rl

,CC
,CS

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

68

Wang 2200 Machine Instruction Set

SBCX (Subtract Binary with carry 16 bit)

Family Type: Register ALU

SBCX

2 222 1 111 111 1 1 100 000 0 o 0 0 0

32109876 543 2 1 098 765 4 321 0

p 0 0 0 1 1 lOx x m m d d d d A A A A B B B B

Where	 P = Parity Bit (Odd Parity)

m = Data Memory Control (See table 4)

A = Source Register A (See table 1)

B = Source Register B (See table 2)

d = Destination register (See table 3)

xx = Carry flag controls

15 14	 Carry Control

o 0 Normal, Initial Carry State not affected
o 1 Not Permi t ted (See SDC, srx;x makeups)

1 0 Clear Carry First ,CC

1 1 Set Carry first ,CS

The following table outlines the results returned for various
constants using the SBCX instruction

8E8402 SBCX R4 < RO,R2 ,CC
OEC402 SBCX R4 < RO,R2 ,CS

Result CC Result CS
R1 RO R3 R2 R5 R4 Carry R5 R4 ! Carry
00 00 ! 00 00 ! FF FF 0 00 00 1
00 00 00 01 FF FE ! 0 FF FF 0
00 01 00 00 00 00 1 00 01 1

! 55 AA ! AA 55 AB 54 0 ! AB 55 0
! 11 22 ! 33 44 DD DD ! 0 DD DE 0
! 44 55 ! 66 77 ! DD DD ! 0 DD DE ! 0
! 80 00 ! 00 01 ! 7F FE ! 1 7F FF 1

00 01 ! 80 00 ! 80 00 ! 0 80 00 1 !
9A BC ! CD EF ! CC CC 0 ! CC CD ! 0 !
AA AA ! 22 22 88 87 1 ! 88 88 ! 1 !
55 19 ! 55 91 ! FF 87 ! 0 FF 88 0

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

69

Wang 2200 Machine Instruction Set soc
SDC (Shift Decimal Characters)

Family Type: Register ALU

2 2 2 2 111 1 111 1 1 1 0 0 000 0 o 000
3 2 1 0 9 8 7 6 543 2 1 098 7 6 5 4 321 0

p 0 0 0 x x 0 0 0 1 m m d d d d A A A A B B B B

Where	 P = parity Bit (Odd parity)
m = Data Memory Control (See table 4)
A = Source Register A (See table 1)
B = Source Register B (See table 2)
d = Destination register (See table 3)

xx = Shift flag controls

19 18	 Shift Control

0 0 Shift Lower B and Lower A (ALBL)

0 1 Shift Lower B and Upper A (ABBL)

1 0 Shift Upper B and Lower A (ALBH)

1 1 Shift Upper B and Upper A (ABBH)

When a SDC instruction occurs, the nibble pointed to by the B
register and shift control combination will be transferred to the
high order nibble of the destination register. The A register
nibble selected by the Shift Control will be transferred to the
low order of the destination register.

An example of the SDC instruction follows:

844402 SDC ABBL R2 <: RO,R1

! ! ! Result
RO ! R1 ! R2 ! Carry
00 00 ! 00 0

! 00 ! 01 ! 10 0
! 01 ! 00 ! 00 0 !
! 55 ! 55 ! 55 ! 0 !

AA AA ! AA ! 0 !

80 ! 01 ! 18 0

80 ! FF ! F8 ! 0 !

12 ! 34 ! 41 ! 0 !

! 56 ! 78 ! 85 ! 0 !
! 9A BC ! C9 0
! FO ! DE ! SF ! 0

02 ! FF ! FO ! 0
! FF ! FF ! FF 0 !

Copyright @1982,1983 by Computer Concepts Corporation

Shawnee Mission, KS

No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

70

Wang 2200 Machine Instruction Set

SDCX (Shift Decimal Characters - Extended)

Family Type: Register ALU

SDCX

2 222 111 1 1 111 1 100 000 0 o 000
32109876 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

pOD 0 x x 1 0 0 1 m m d d d d A A A A B B B B

Where P = parity Bit (Odd parity)
m = Data Memory Control (See table 4)
A = Source Register A (See table 1)
B = Source Register B (See table 2)
d = Destination register (See table 3)

xx = Shift flag controls

19 18 Shift Control

__ .._~ Ii gl~ m~~ t;:; =:; ~=; ~ iE:;
.. Shift Upper B and Upper A (ABBH)

Whet! a SDCX instruction OCC16S, the nibble pointed to by the B
register and Shift Control combination will be transferred to the
high order nibble of the destination register. The A register
nibble selected by the Shift Control will be transferred to the
low order of the destination register.

An example of the extended SDCX instruction follows:

064402 SDCX ABBL R4 <RO,R~

!

!
!
!
!
!
!

Rl RO
00 00
00 00
00 01
55 AA
11 22
44 55
80 00
00 01
9A BC
AA AA
55 19

!
!
!

!
!

!
!

R3 R2
00 00
00 01
00 00
AA 55
33 44
66 77
00 01
80 00
CD EF
22 22
55 91

!

!
!
!

!

!

Result
R5 R4
00 00
00 10 !
00 00
AS SA
31 42 !
64 75 !

08 10 !
00 00 !
D9 FB !
2A 2A !
55 11

Carry
0
0
0
0
0
0
0
0
0
0
0

!

!
!

!
!
!

Copyright @ 1982,1983 by Computer Concepts Corporation

Shawnee Mission, KS

No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

71

Wang 2200 Machine Instruction Set

SET (Load Register with Constant)

Family Type: Immediate ALU

SET

2 222 1 1 1 1 111 1 1 100 000 0 000 0
321 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

pOl 0 0 0 iii i m m d d d d I I I III 1 1

Where P = Parity Bit (Odd parity)
m = Data Memory Control (See table 4)

iiii = High order Nibble of Immediate Data Constant
IIII = Low order Nibble of Immediate Data

d = Destination register (See table 3)

The following table outlines the results returned for various
constants using the SET instruction

The SET instruction is nothing more than an IOR instruction with
the B register gating set to all O's. In this fashion, we are
gating 00 with the Immediate Constant and setting the
destination. Using this instruction is easier than to understand
than its equi val ent : IOR DD < $VV, 00

! Irrun! Result !
!Data! R2 ! Carry SET R2 < (Immediate Data)

00 ! 00 ! 0 !
33 33 ! 0 !

! 01 ! 01 0 !
! 55 ! 55 ! 0

AA AA ! 0 !
80 80 ! 0
80 FF ! 0 !
12 12 ! 0
56 ! 56 ! 0 !
9A 9A ! 0

! FO ! FO ! 0 !
! 02 ! 02 0 !
! FF ! FF ! 0

Copyright ~ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this docwnent may be reproduced without the expressed
written permission of Computer Concepts Corporation

72

Wang 2200 Machine Instruction Set

TAP (Transfer Auxiliary Register to PH-PL)

Family: Stack Manipulation

TAP

2 2 2 2 1 1 1 1 111 1 1 100 000 0 o 000
321 0 9 8 7 6 543 2 109 8 7 6 5 4 321 0

p 0 0 0 101 1 10m m X 0 0 r r r r r B B B B

Where P = Parity Bit (Odd Parity)
m = Data Memory Control (See Table 4)
r = Source AR register (00 to 1F)
B = B Register Selection (Used only during DM writes)

Normally set to hex F, (1111) if not writing
X = Don't Care

The current contents of the selected AR register are trans
ferred to the PH-PL pair. Note that the memory control bits
function first. That is, the original PH-PL pair will be the
address of Data Memory for any read or writes, not the new
contents being read from the selected AR.

Copyright @1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

73

Wang 2200 Machine Instruction Set

TPA
TPA (Transfer PH-PL to Auxiliary Register)

Family: Stack Manipulation

2 2 2 2 1 111 1 1 1 1 1 100 o 0 0 0 o 0 0 0
321 0 9 8 7 6 543 2 1 098 765 4 3 2 1 0

pOOO 0001 1cmm Xccr rrrr BBBB

Where P = Parity Bit (Odd parity)
c = P register Control (See Table this section)
m = Data Memory Control (See Table 4)
r = Destination AR register (00 to 1F)
B = B Register Selection (Used only during DM writes)

Normally set to hex F, (1111) if not writing
X = Don't Care

P register control bits

When the PH-PL pair is transferred to the associated AR
register, the system programmer may elect to increment or
decrement the contents of PH-PL. The P register control
bits gives the programmer a range of -3 to +3 for decrement
or increment. The PH-PL pair is adjusted after transfer
from the PH-PL register but prior to the entry into the Ar
register. Thus, the original contents remains intact, and
any Data memory Reads or Writes will always occur at the lo
cation originally pointed to by PH-PL.

Bit 14 10 9

0 0 0 No Effect
0 0 1 +1 to (PHPL) then store - PH-PL not affected
0 1 0 +2 " "
0 1 1 +3 ""

1 0 0 No Effect
1 0 1 -1 to (PHPL) then store - PH-PL not affected
1 1 0 -2 to (PHPL) then store - PH-PL not affected
1 1 1 -3 to (PHPL) then store - PH-PL not affected

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

74

wang 2200 Instruction Set

TPS (Transfer PH-PL to System Stack)

Family: Stack Manipulation

MaCh~ne

TPS

2 2 2 2 1 111 1 1 1 1 1 100 o 0 0 0 o 000
3 2 1 0 9 8 7 6 5 4 3 2 109 8 7 6 5 4 321 0

p 0 0 0 0 1 0 1 1 c m m X c cOO 0 0 0 B B B B

Where P = parity Bit (Odd Parity)
c = P register Control (See Table this section)
m = Data Memory Control (See Table 4)
B = B Register Selection (Used only during DM writes)

Normally set to hex F, (1111) if not writing
X = Don't Care

P register control bits

When the PH-PL pair is transferred to the system stack, the
system programmer may elect to increment or decrement the
contents of PH-PL. The P register control bits gives the
programmer a range of -3 to +3 for decrement or increment.
The PH-PL pair is adjusted after transfer from the PH-PL
register but prior to the entry into the system stack. Thus,
the original contents remains intact, and any Data memory
Reads or Writes will always occur at the location originally
pointed to by PH-PL.

Bit 14 10 9

0
0
0
0

0
0
1
1

0
1
0
1

No Effect
+1 to (PHPL)
+2 "
+3 "

then store - PH-PL not
"
"

affected

1
1
1
1

0
0
1
1

0
1
0
1

No Effect
-1 to (PHPL)
-2 to (PHPL)
-3 to (PHPL)

then
then
then

store - PH-PL not affected
store - PH-PL not affected
store - PH-PL not affected

The user has no control over the stack address register. The
user must be warned to remove data placed on the stack during ex
ecution of the routine. The stack will have been incremented
twice (Two bytes) upon execution of this instruction.

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written Permission of Computer Concepts Corporation

75

Wang 2200 Machine Instruction Set

TSP
TSP (Transfer System Stack to PH-PL)

Family: Stack Manipulation

2 2 2 2 1 1 1 1 111 1 1 100 o 000 o 000
3 2 1 0 9 8 7 6 5 4 3 2 1 098 7 6 5 4 3 210

p 0 0 0 1 1 0 1 10m m X 0 0 0 0 0 0 0 B B B B

Where P = parity Bit (Odd Parity)
m = Data Memory Control (See Table 4)
B = B Register Selection (Used only during DM writes)

Normally set to hex F, (1111) if not writing
X = Don't Care

The user has no control over the stack address register. The
user must be warned to place data onto the stack prior to return
ing from a subroutine. The stack will have been decremented twice
(Two bytes) upon execution of this instruction.

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

76

Wang 2200 Machine Instruction Set

XOR
XOR (Exclusive OR registers)

Family Type: Register ALU

222 2 1 III 1 III 1 100 o 0 0 0 o 000
3 2 1 0 9 8 7 6 5 4 3 2 1 098 7 6 5 4 3 210

p 0 0 0 0 1 0 0 x x m m d d d d A A A A B B B B

Where	 P = Parity Bit (Odd Parity)
m = Data Memory Control (See table 4)
A = Source Register A (See table 1)
B = Source Register B (See table 2)
d = Destination register (See table 3)

xx = Carry flag controls

15 14	 Carry Control

o 0 Normal, Initial Carry State not affected
o 1 Not Permitted (See SDC, SDCX makeups)
1 0 Clear Carry First ,CC
1 1 Set Carry first ,CS

The following table outlines the results returned for various
constants using the XOR instruction

Resul t !
RO ! Rl ! R2 ! Carry ! 848201 XOR R2 < RO,Rl ,CC
00 ! 00 ! 00 0
00 ! 01 01 ! 0
01 00 ! 01 ! 0 !
55 55 00 ! 0
AA AA ! 00 ! 0
80 ! 01 81 0 !
80 FF ! 7F 0
12 ! 34 ! 26 0 !
56 78 ! 2E ! 0 !
9A ! BC ! 26 ! 0

! FO ! DE ! 2E ! 0 !
02 ! FF ! FD ! 0 !
FF FF ! 00 ! 0 !

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

77

Wang 2200 Machine Instruction Set

XORX (Exclusive OR registers 16 bit)

Family Type: Register ALU

XORX

222 2 1 111 111 1 1 1 0 0 000 0 o 000
3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 765 4 3 2 1 0

p 0 0 0 0 1 lOx x m m d d d d A A A A B B B B

Where P = Parity Bit (Odd Parity)
m = Data Memory Control (See table 4)
A = Source Register A (See table 1)
B = Source Register B (See table 2)
d = Destination register (See table 3)

xx = Carry flag controls

15 14 Carry Control

o 0
o 1
1 0
1 1

Normal, Initial Carry State not affected
Not Permitted (See SDC, SDCX makeups)
Clear Carry First ,CC
Set Carry first ,CS

The following table outlines the
constants using the XORX instruction

results returned for various

!
!
!

!
!

!
!

Rl RO
00 00
00 00
00 01
55 AA
11 22
44 55
80 00
00 01
9A BC
AA AA
55 19

!
!

!

!
!
!
!
!

!

R3 R2
00 00
00 01
00 00
AA 55
33 44
66 77
00 01
80 00
CD EF
22 22
55 91

!

!
!
!

!
!

!
!

Result
R5 R4 !
00 00 !
00 01
00 01
FF FF
22 66
22 22 !
80 01 !
80 01
57 53 !
88 88
00 88

Carry
0
0
0
0
0
0
0
0
0
0
0

!
!
!
!

!

!
!
!

!

068402 XORX R4 < RO,R2 ,CC

Copyright @ 1982,1983 by Computer Concepts Corporation

Shawnee Mission, KS

No part of this document may be reproduced without the expressed

written permission of Computer Concepts Corporation

78

Wang 2200 Machine Instruction Set

XPA
XPA (Exchange PH-PL with Auxiliary Register)

Family: Stack Manipulation

2 2 2 2 111 1 1 111 1 100 o 000 o 000
3 2 1 0 9 8 7 6 543 2 1 098 765 4 321 0

p 0 0 0 001 1 1 c m m X c err r r r B B B B

Where P = Parity Bit (Odd Parity)
c = P register Control (See Table this section)
m = Data Memory Control (See Table 4)
r = Destination AR register (00 to 1F)
B = B Register Selection (Used only during DM writes)

Normally set to hex F, (1111) if not writing
X = Don't Care

P register control bits

When the PH-PL pair is transferred to the associated AR
register, the system programmer may elect to increment or
decrement the contents of PH-PL. The P register control
bits gives the programmer a range of -3 to +3 for decrement
or increment. The PH-PL pair is adjusted after transfer
from the PH-PL register but prior to the entry into the Ar
register. Thus, the original contents remains intact, and
any Data memory Reads or Writes will always occur at the lo
cation originally pointed to by PH-PL.

Bit 14 10 9

CJ 0 0 0 No Effect
0 0 1 +1 to (PHPL) then store - PH-PL not affected
0 1 0 +2 " "

II0 1 1 +3 "

1 0 0 No Effect
1 0 1 -1 to (PHPL) then store - PH-PL not affected
1 1 0 -2 to (PHPL) then store - PH-PL not affected
1 1 1 -3 to (PHPL) then store - PH-PL not affected

Copyright @1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

79

Wang 2200 Machine Instruction Set

Appendix i-General Bit Control Tables

Table 1 A Bus Table 2 B Bus Table 3 C Bus (Destination)

7 6 5 4 321 0 11 10 09 08

o 0 0 0 RO o 0 0 0 RO o 0 0 0 RO
o 0 0 1 R1 000 1 R1 o 0 0 1 R1
o 0 1 0 R2 001 0 R2 o 0 1 0 R2
o 0 1 1 R3 001 1 R3 o 0 1 1 R3
o 1 0 0 R4 o 1 0 0 R4 o 1 0 0 R4
o 1 0 1 R5 o 1 0 1 R5 o 1 0 1 R5
o 1 1 0 R6 011 0 R6 o 1 1 0 R6
o 1 1 1 R7 o 1 1 1 R7 011 1 R7

1 0 0 0 CL1 000 PL 100 0 PL
1 0 0 1 CH1 001 PH 1 001 PH
1 0 1 0 CL 101 0 CL 101 0 ILLEGAL
1 0 1 1 CH 101 1 CH 1 0 1 1 ILLEGAL
1 1 0 0 CL+ 1 1 0 0 SL 1 1 0 0 SL
1 1 0 1 CH+ 1 1 0 1 SH 1 1 0 1 SH
1 1 1 0 00+ 1 1 1 0 K 111 0 K
1 1 1 1 00- 1 1 1 1 o 1 1 1 1 DUM

All A register sources with a + after the mnemonics cause the PH-PL
pair to be incremented by +1 after the operation. All A register
sources with a after the mnemonics causes the PH-PL pair to be
decremented by 1 after the operation.

Table 4 Memory control Data Table 5 Control memory

13 12	 10 09

o 0 No Op	 o 0 No Op
o 1 ,RD Read o 1 No Op
1 0 ,W1 Write Byte at 1 0 ,WC Write CM

current PHPL
1	 1 ,W2 Write Byte at 1 1 ,RC Read CM

opposite PHPL
pointed to pair

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

80

Wang 2200 Machine Instruction Set

Appendix ii - Conditional Branch Examples

A reg B reg Instruction
R3 R2 I R5 R4 lBNR lBER lBLER1BLR I BLRX I BLEX I

I I I I I I I
00 00 I 00 00 I n I y I I n I n I y IY

I I I I
80 00 I 00 00 I I n I n ! n I n I n I

I I I I
00 00 80 00 I Y I n I y I Y Y I Y I

I I I I I I
FF 00 I 00 00 I n I n I n I n I n !

Y

Y
I I I !

00 00 I FF 00 I n ! y ! IY Y Y Y
! ! I I !

33 00 ! 55 00 I Y ! n I y ! Y I Y Y !
! I I ! ! I !

55 00 33 00 I Y n ! n I n ! n I n I
I I !

80 00 I 85 00 y I n I y ! Y I Y I Y
! ! I I !

85 00 80 00 ! I n ! n ! n I n I n !Y

In all the example above , the eight bit comparisons are defined
as being the form:

Bxxx R3,R5

Whereas the 16 bit comparisons are:

Bxxx R2,R4

Note that the above examples are not signed numbers. The magni
tude is treated as an unsi gned posi ti ve numbe r in the range of 0
to 255 for eight bit comparisons, and 0 to 65535 for 16 bit
comparisons.

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

81

Wang 2200 Machine Instruction Set

Appendix iii Alphabetical Listing of Mnemonics

2 2 2 2 1 111 111 1 1 100 o 0 0 0 o 000
32109876 54321098 7 6 5 4 3 2 1 0

ADC p 0 0 1 1 0 0 0 xxmm d d d d A A A A B B B B
ADCX P 0 0 1 1 0 1 0 xxmm dddd AAAA BBBB
AND P 0 0 0 1 0 0 0 xxmm d d d d A A A A B B B B
ANDX p 0 0 0 1 0 1 0 xxmm d d d d A A A A B B B B

BEH P 1 1 1 o 1 x x x x x x x x x x c c c c B B B B
BEL P 1 1 1 o 0 x x x x x x x x x x c c c c B B B B
BER P 1 0 1 o 0 x x x x x x xxxx AAAA B B B B
BEZ P 1 0 1 o 0 x x x x x x xxxx AAAA 1 1 1 1
BFH P 1 1 0 1 1 x x x x x x xxxx cccc B B B B
BFL P 1 1 0 lOx x x x x x xxxx cccc B B B B
BLER P 1 0 0 lOx x x x x x xxxx AAAA B B B B
BLEX P 1 0 0 1 1 x x x x x x xxxx AAAA B B B B
BLR P 1 0 0 o 0 x x x x x x xxxx AAAA B B B B
BLRX P 1 0 0 o 1 x x x x x x xxxx AAAA B B B B
BNH P 1 1 1 1 1 x x x x x x x x x x c c c c B B B B
BNL P 1 1 1 lOx x x x x x xxxx cccc B B B B
BNR P 1 0 1 lOx x x x x x xxxx AAAA B B B B
BNZ P 1 0 1 lOx x x x x x xxxx AAAA 1 1 1 1
BTH P 1 1 0 o 1 x x x x x x x x x x c c c c B B B B
BTL P 1 1 0 o 0 x x x x x x x x x x c c c c B B B B

CIO P 0 0 1 0 1 1 1 10m m y y y y Y d d d z z d d

DAC p 0 0 1 o 000 xxmm d d d d A A A A B B B B
DACX P 0 0 1 o 0 1 0 xxmm d d d d A A A A B B B B
DSC P 0 0 1 o 1 0 0 xxmm d d d d A A A A B B B B
DSCX P 0 0 1 o 1 1 0 xxmm d d d d A A A A B B B B

IAOC pOl 1 1 0 i i i i m m d d d d I I I I B B B B
IADD pOl 0 1 1 i i i i m m d d d d I I I I B B B B
IAND pOlO 1 0 i i i i m m d d d d I I I I B B B B
IDAC pOll o 0 i i i i m m d d d d I I I I B B B B
IDSC pOl 1 o 1 i i i i m m d d d d I I I I B B B B
IMUL pOl 1 1 1 0 0 cOm m d d d d I I I I B B B B
IOR pOl 0 o 0 i i i i m m d d d d I I I I B B B B
IXOR pOl 0 o 1 i i i i m m d d d d I I I I B B B B

Copyright @ 1982,1983 by Ccrnputer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Ccrnputer Concepts Corporation

82

Wang 2200 Machine Instruction Set

Appendix iii Alphabetical Listing of Mnemonics - Cont'd

2 2 2 2 111 1 1 1 1 1 1 100 o 000 o 000
3 2 1 0 9 8 7 6 5 4 3 2 1 098 7 6 5 4 3 210

JMP P 1 0 1 1 1 x x x x x x x x x x y y y y y y 0 0
JSR P 1 0 1 o 1 x x x x x x x x x x y y y y y y 0 0

LPI p 0 0 1 1 f f 1 f f m m x x x x x x x x x x x x

MUL p 0 0 1 1 100 xxmm d d d d A A A A B B B B
MULX P 0 0 1 1 1 1 0 xxmm d d d d A A A A B B B B

OR p 0 0 0 000 0 x x m m d d d d A A A A B B B B
ORX p 0 0 0 o 0 1 0 xxmm d d d d A A A A B B B B

RTS P 0 0 0 0 1 1 1 10m m X c cOO 0 0 0 B B B B

SBC p 0 0 0 1 1 0 0 xxmm dddd AAAA B B B B
SBCX p 0 0 0 1 110 xxmm dddd AAAA B B B B
SDC p 0 0 0 x x 0 0 o 1 m m dddd AAAA B B B B
SDCX p 0 0 0 x x 1 0 o 1 m m dddd AAAA B B B B
SET pOl 0 o 0 i i i i m m d d d d I I I I 1 111

TAP p 0 0 0 1 0 1 1 10m m X 0 0 r r r r r B B B B
TPA p 0 0 0 000 1 1 c m m X c c r r r r r B B B B
TPS p 0 0 0 o 1 0 1 1 c m m X c cOO 000 B B B B
TSP p 0 0 0 1 1 0 1 10m m X 0 0 0 0 0 0 0 B B B B

XOR p 0 0 0 o 1 0 0 xxmm d d d d A A A A B B B B
XORX p 0 0 0 o 1 1 0 xxmm d d d d A A A A B B B B
XPA p 0 0 0 001 1 1 c m m X c c r r r r r B B B B

Copyright @1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

83

Wang 2200 Machine Instruction Set

Appendix iv - Numerical Listing of Mnemonics

2 2 2 2 1 111 1 1 1 1 1 100 o 0 0 0 o 000
321 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

ORi.--
: SOC..]

P 0 0 0
P 0 0 0

o 0 0 0
x x 0 0

xxmm
JLl. m m

d d d d
d d d d

A A A A
A A A A

B B B B
B B B B

TPA P 0 0 0 o 0 0 1 1 c m m X c c r r r r r B B B B
ORX P 0 0 0 001 0 xxmm d d d d A A A A B B B B
SOCX P 0 0 0 x x 1 0 o 1 m m d d d d A A A A B B B B
XPA P 0 0 0 001 1 1 c m m X c c r r r r r B B B B
XOR P 0 0 0 o 1 0 0 xxmm d d d d A A A A B B B B
TPS P 0 0 0 o 1 0 1 1 c m m X c c 0 o 0 0 0 B B B B
XORX P 0 0 0 o 1 1 0 xxmm d d d d A A A A B B B B
RTS P 0 0 0 011 1 10m m X c c 0 000 0 B B B B
AND P 0 0 0 1 0 0 0 xxmm d d d d A A A A B B B B
ANDX P 0 0 0 101 0 xxmm d d d d A A A A B B B B
TAP P 0 0 0 101 1 10m m X 0 0 r r r r r B B B B
SBC P 0 0 0 1 100 xxmm d d d d A A A A B B B B
TSP P 0 0 0 1 1 0 1 10m m X 0 0 0 o 0 0 0 B B B B
SBCX P 0 0 0 1 110 xxmm d d d d A A A A B B B B

DAC P 0 0 1 0 0 o 0 xxmm d d d d A A A A B B B B
DACX P 0 0 1 o 0 1 0 xxmm d d d d A A A A B B B B
DSC P 0 0 1 010 0 xxmm d d d d A A A A B B B B
DSCX P 0 0 1 011 0 xxmm d d d d A A A A B B B B
CIO P 0 0 1 011 1 10m m y y y y Y d d d z z d d
ALe P 0 0 1 1 0 0 0 xxmm d d d d A A A A B B B B
ALeX P 0 0 1 1 0 1 0 xxmm d d d d A A A A B B B B
NUL P 0 0 1 1 100 xxmm d d d d A A A A B B B B
MULX P 0 0 1 1 1 1 0 xxmm d d d d A A A A B B B B
LPI P 0 0 1 1 f f 1 ffmm x x x x x x x x x x x x

IOR pOl 0 o 0 i i i i mm d d d d IIII B B B B
SET pOl 0 o 0 i i i i mm d d d d I I I I 1 1 1 1
IXOR pOl 0 o 1 i i i i mm d d d d I I I I B B B B
IAND pOl 0 1 0 i i i i mm d d d d I I I I B B B B
IADD pOl 0 1 1 i i i i mm d d d d I I I I B B B B

IDAC pOl 1 0 Q. i i i i mm d d d d I I I I B B B B
IDSC pOl 1 0 1 i i i i mm d d d d I I I I B B B B
IAOC pOl 1 1 0 i i i i m m d d d d I I I I B B B B
INUL pOl 1 1 100 c o m m d d d d I I I I B B B B

Copyright @ 1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

84

Wang 2200 Machine Instruction Set

Appendix iv - Numerical Listing of Mnemonics - Cont'd

2 2 2 2 1 111 111 1 1 100 o 0 0 0 o 000
3 2 1 0 9 8 7 6 5 4 3 2 1 098 7 6 5 4 321 0

.c:. BLR P 1 0 0 o 0 x x xxxx xxxx AAAA B B B B
.,<.. :aI.RX__~ P 1 0 0 o 1 x x xxxx xxxx AAAA B B B B
<= BLER P 1 0 0 lOx x xxxx xxxx AAAA B B B B
<= BLEX P 1 0 0 1 1 x x xxxx xxxx AAAA B B B B

BER .J 1;_ ~

P 1 0 1 o 0 x x xxxx xxxx AAAA B B B B
~EZ _2_ 101 o 0 x x xxxx xxxx AAAA 1 1 1 1
JSR P 1 0 1 o 1 x x x x x x x x x x y y y y Y Y 0 0

~ _-:::: BNR P 1 0 1 lOx x xxx x xxxx AAAA B B B B
BNZ P 1 0 1 lOx x xxx x xxxx AAAA 1 1 1 1
JMP P 1 0 1 1 1 x x x x x x x x x x y y y y Y Y 0 0

BTL P 1 1 0 o 0 x x x x x x x x x x c c c c B B B B
BTH P 1 1 0 o 1 x x x x x x x x x x c c c c B B B B
BFL P 1 1 0 lOx x x x x x x x x x c c c c B B B B
BFH P 1 1 0 1 1 x x x x x x x x x x c c c c B B B B

BEL P 1 1 1 o 0 x x x x x x x x x x cccc BBBB
EBH P 1 1 1 o 1 x x x x x x x x x x cccc BBBB

<> BNL
, BNH

P 1
P 1

1
1

1
1

lOx x
1 1 x x

x x x x
x x x x

x x
x x

x x
x x

c
c

c
c

c
c

c
c

B B B B
B B B B

Copyright @1982,1983 by Computer Concepts Corporation
Shawnee Mission, KS

No part of this document may be reproduced without the expressed
written permission of Computer Concepts Corporation

85

	Cover
	Index
	1.0 Overall Description of the Wang 2200
	1.1 Internal Register Structure -- General Description
	1.2 Status Register SL Description
	1.3 Hardware Status Register (SH)

	2.0 General Instruction Breakdowns
	2.1 Parity Bit
	2.2 Classes of Instructions
	2.2.1 Branch Instructions
	2.2.2 Masked Branch Instructions
	2.2.3 Valued Branch Instructions
	2.2.4 Register Comparison Branch Instructions
	2.2.5 Register ALU
	2.2.6 Immediate Data ALU
	2.2.7 Peripheral Control
	2.2.8 Load Data Memory Pointer
	2.2.9 Stack and Auxiliary Register Manipulations
	2.2.9.1 Auxiliary Register Manipulation
	2.2.9.2 Stack Manipulation Instructions

	3.0 Data Memory Read and Write Features
	Specific Instruction Mnemonics
	ADC
	ADCX
	AND
	ANDX
	BEH
	BEL
	BER
	BEZ
	BFH
	BFL
	BLER
	BLEX
	BLR
	BLRX
	BNH
	BNL
	BNR
	BNZ
	BTH
	BTL
	CIO
	DAC
	DACX
	DSC
	DSCX
	IADC
	IADD
	IAND
	IDAC
	IDSC
	IMUL
	IOR
	IXOR
	JMP
	JSR
	LPI
	MUL
	MULX
	OR
	ORX
	RTS
	SBC
	SBCX
	SDC
	SDCX
	SET
	TAP
	TPA
	TPS
	TSP
	XOR
	XORX
	XPA

	Appendix i - General Bit Control Tables
	Appendix ii - Conditional Branch Examples
	Appendix iii - Alphabetical Listing of Mnemonics
	Appendix iv - Numerical Listing of Mnemonics

