2200/VS LCO
PROGRAMMER 'S REFERENCE GUIDE

First Edition -- September 1986
Copyright® Wang Laboratories, Inc., 1986
715-0562

goee P oxe®

T ¥ xxx O

' fpee b xee7
e |1

3o 41T, | -
~ ‘ _eAhey
9cc 1 MY _ v‘N.ﬁ

Jyee g (A C
(e? © RERC

Draft Copy Confidential

PREFACE

The Wang 2200/VS Local Communications Option (LCO) (Version 1.0)
enables’ Wang 2200 users to emulate up to four VS Workstations and
store and access files on a connected VS system. This document
provides information on programming requirements for accessing the
Wang 2200/VS LCO filing services. The primary audience for this
document is the Wang 2200 programmer. Experience with programming on
a Wang 2200 system is recommended for the-all users.

Chapter 1 provides background information on the Wang 2200/VS LCO and
provides an introduction to the rest of the guide. Chapter 2 explains
programming requirements for accessing VDISK files (2200 disk image
files) stored on a VS system. Chapter 3 explains programming
requirements for accessing native DMS files stored on a VS.

Additional information on the Wang 2200/VS LCO is available in the
following Wang publications:

2200/VS Local Communications Options User's Guide (715-0564)
2200 BASIC-2 Disk Reference Manual (700-4081)

2200 BASIC-2 Error Codes Booklet (700-7170)

2200 BASIC-2 Lanquage Reference Manual (700-4080)

2200 Introductory Guide (700-4613)

VS Data Mangement System Reference (800-1124-01)

iii

Draft Copy Confidential

CONTENTS

CHAPTER 1 PROGRAMMER"S INTRODUCTION TO THE 2200 LCO
1.1 OVEIVIeW cceveascsscssscccccsanssnssncsosne Ceeeeseccesssesass 1-1
1.2 2200/VS LCO Filing ServiCesceecececessosncacsocssssaess 1=l
CHAPTER 2 2200 VDISK ACCESS
2.1 Introduction A |
2.2 USingVDISKS e e 0000000000000 00000000000 @60 e 0000000000000 2-1

Using VDISK With Existing 2200 Programscceceeeeees 2=2
How to Submit Programs that Access VDISKcceceeeeeee 2=3

2.3 VDISK Performance Considerations ceessenese ceecsssecss 23
2.4 Improving VDISK PerfOrManCeccoceceeeesssssccossccccns . 2-4
2.5 Moving Existing 2200 Files to VDISK cecessssscccnaes 2=5
CHAPTER 3 INTRODUCTION TO NATIVE DMS ACCESS

3.1 Introduction ceeens tecesecsessssesesascsessesenn ceeeeee . 3-1
3.2 Brief Description of the DMS Access Subroutlnes teeesasccees 32
3.3 How to Use the DMS Access Subroutines I L]
3.4 DMS Access Programming Requirements and

Performance Considerationsveeee cecccsssssesscsssss 3=5

How to Submit Programs that Access Native DMS Files 3-6
3.5 General Notes on the DMS Access Subroutinesce00eeee.. 3=6
Variables Reserved by the DMS Access Subroutines 3-6

Using Variables or Literals for Input Paragmeters 3-8

3.6 Moving Files From the 2200 to the VS ceeccecssssees 379

3.6 Moving Files From the VS to the 2200cciieeeeeneencnns 3-10
iii

Draft Copy Confidential

CONTENTS (continued)

CHAPTER 4 DETAILED DESCRIPTION OF THE DMS ACCESS SUBROUTINES

4.1 IntroQUCLION ..vveeeeeeeeecoeecceeceecoacoesooancanossnanes
4,2 Notes on the General Form Section ceeesescsesenen

GENERAL OPEN ettt
GENERAL CLOSE +.veveuvenenennenseneneanenseaseasonnennss
CONSECUTIVE READ . rvuenenenenennencncenenensencnnensenes
CONSECUTIVE WRITE . vevevvnenenrenenenncnensnnennns e
CONSECUTIVE REWRITE +.vvevenvnnens e,
CONSECUTIVE SKIP ..reuenenennnnenenenseneneanenns

CONSECUT IVE wa ® @ 0 0 0 0.0 0 0 0 0000000000000 0o e 0 0 0 0 00
CONSECUTIVE UNLOCK ...ccceveeenee Ceececsecesesnnas ceveces
INDMD READ ® 0 0 0 0000 0 000 0 000 ® © 0 0.0 0.0 0 00 00 0 00 00 000000000

INDEXED READ NEXT ...cccceeecccacccccnccncanns ceecscccaana
INDEXED WRITE O ceceecsesane
INDmD RMITE ® 0 0 0.0 0.0 0.0 00 0 00 00 00 00000000000 0o

INDEXED DELETE ..ccccceeeecceccccssssosssoocsssanasnnsacss

INDEXED FIND .cccceeccecccccccccoasacasosssscssssasanasanas
INDEXED LOCK ..civeveeeceecnooncccccoconnnnas cecsessssans
INDEXED UNLOCK «cceceeecccccccacanns cesececcnce cesceccasa
RELATIVE READ cetececsseesasesssennnnn caesecscans

RELATIVE WRITE ...c.cccceevcennncnne N oo

RELATIVE REWRITE Cececsccceressasccasscanse cectetecens

RELATIVE DELETEcicc0ecececescccccas cececcccscsanaas
BLOCK READcoecocecocncssssssoscsccsssanssocscscaos oo

BLOCK WRITEcecececcecosccsscccscscsssssscassssococcs

CREATE FILE ...ceceecceocococosososccccccssaasosasscssanons .
DELETE FILE ceeeveccseretccsarstcsanan ceeeeeeaan
mmFILE © 0 0 0 0 0 0 00 00 0000 00 0000000000000 L 000000 0o

GET FILE ATTRIBUTESciceeecoccccscocascsassscssscnssos

iv

Draft Copy Confidential

APPENDIX A

INDEX ..

Table
Table
Table
Table
Table
Table
Table
Table
Table
‘Table
Table

> »
W=

A4
a.5

3-1
3-2
3-3
4-1
4-2
a-1
A-2
A-3
A-4
A-5
A-6

F
F

CONTENTS (continued)

ADDITIONAL INFORMATION

Introductionccceceeececnans ceseecsessssserecaanns A
Return.COdeS €006 0060000006000 0000000000000000000000000c0 e e e e e A-l
Extended File Sharing (EFS) Header cevescccnee A-2

Error ClasSesS .ccceececccscccccccs

Error CodesS ..cc.cceccocosccsscacssssccassccss ceccscsssccces A4

ile Attribute Information
ile Create Informationcececeee

@ e e 000 00000000000 0000000000000 0000000000c0

TABLES

DMS Access Subroutinescecees
DMS Catalog Functions

DR R R R A I cessccen A-lo

e eeeeec0c000 0000000 Index-l

ee e e eosscc e eceecco e 3-2

eeeoeo0o0s s eecececoccsnce 3-4

Variables Used by the DMS Access Subroutinesc.c... 3-7
CONSECUTIVE READ Status Informationcccceceeeeeceees. 4-8

RELATIVE READ Status Information ..
Return Codesceveeescccsnccnes
EFS Informationccceeeccaces .o
Error Classes ...c.cececeee ceessecans

Error Codescveeeecens cecececnas
. File Attribute Data cececacae

Alternate Key File Attribute Data .

v

Draft Copy Confidential

........... ceeeccecee. 4-34
e 00000000000 00 eececccoe A-l

e e e e e 000 e A-z

ceeesrecsens ceeerecans . A-3
R . A-4
ceeececesssasnen ceeeess A-8
ceveen e A-10

CHAPTER 1
PROGRAMMER'S INTRODUCTION TO THE 2200 LCO

1.1

1.2

OVERVIEW

The 2200/VS Local Communications Option (LCO) is a data communications
hardware (the 2258 controller) and software. option that enables a Wang
2200MVP, -LVP, or Micro-VP system to communicate with a Wang VS

computer system. The 2200/VS LCO enables you to perform the following

functions:

® Log on to the VS and run VS application programs that do not require
the downloading of microcode to a VS workstation.

® Run 2200 application programs that store data to and retrieve data
from 2200 disk-image files (VDISKs) stored on the VS system.

® Run 2200 application programs that store data to and retrieve data
from native VS DMS files, using subroutines provided with the
.2200/VS LCO package.

This programmer's reference guide explains the programming
requirements for accessing VDISKs and native DMS files stored on the
VS system with new and existing programs. For more information on
using VS workstation emulation and file services utilities, refer to
the 2200/VS Local Communications Option User's Guide.

2200/VS LCO FILING SERVICES

The Filing Services component of the 2200/VS LCO package enables you
(a 2200 user) to access (create, read, and write) VS Data Management
System (DMS) files through existing and new 2200 BASIC-2 application
programs. The VS DMS files are stored on an attached VS system. The
VS Data Management System manages all disk file space and services all
file I/0 requests on the VS system.

Introduction 1-1
Draft Copy Confidential

The 2200 LCO enables you to store and access information on a VS
system in the following forms:

e VDISK
e Native VS DMS files

VDISKs are 2200 disk-image files that are stored on a VS system
connected to a 2200 system through the 2200/VS LCO. A VDISK acts like
a disk platter to the attached 2200 and enables you to access
information stored at the VDISK address as records, files, or sectors.

You create VDISKs on the VS using utilities provided with the 2200/VS
software. VDISKs can be shared with other 2200 systems equipped with
the 2200/VS LCO package. VDISKs can also be accessed by the VS
system. However, you would have to alter the VS application programs
in order to use the files stored on VDISK. How you access VDISKs from
an attached 2200 is explained in Chapter 2 of this guide.

Native VS DMS files are files that are formatted by the VS DMS (Data
Management System). DMS files services supports several different
file types., including: consecutive, relative, and indexed files.
Native DMS files can be accessed both by VS application programs and
by other 2200 systems that are attached to the VS and equipped with
the 2200/VS LCO package. " ’

To access Native DMS files you must use the DMS Access Subroutines
included with the 2200/VS LCO package. Chapter 3 of this guide
explains how you access Native DMS files.

Introduction 1-2
Draft Copy Confidential

CHAPTER 2
2200 VDISK ACCESS

2.1

2.2

INTRODUCTION

Using the 2200 LCO to access information stored on an attached VS
system through a VDISK is just like using any other 2200 disk facility.

First you must create the VDISKs and assign them disk addresses using
the File Services utilities that come with the 2200/VS LCO software.
For more information on the VDISK File Services Utilities, refer to
the 2200/VS Local Communications Options User's Guide.

Once you create a 2200 VDISK on the VS, you can use it like any other
formatted disk with existing or new 2200 BASIC-2 application programs
to write data to and read data from the VDISK.

VDISKs can be shared with other 2200 systems that are equipped with
the 2200/VS LCO package. VDISKS can also be accessed by VS
application programs, however it is not recommended.

When the VDISKs are opened, any user on an attached 2200 can run an
application program and access the disks. The 2258 controller
responds to the disk address it receives from the application program
and passes filing requests to the VS Filing Services program. When
the application program is finished processing, you can then run
another 2200 application program.

USING VDISKS

You can use VDISKs with both new and existing BASIC-2 application
programs. To access VDISK through new or existing programs you must
know which VDISKs are available. You can use the View VDISK function
(included in the 2200/VS File Services Utilities) to view a list of
available VDISKs. Once you know which VDISKs are available, you can
alter existing programs (if necessary) or create new ones to access
the VDISKs.

2200 VDISK Access 2-1
Draft Copy Confidential

2.2.1 Using VDISK With Existing 2200 Programs

Using VDISKs with existing 2200 BASIC-2 programs should requirg little
or no change to the application programs, except in the following
cases:

e If the disk address is hard-coded in the BASIC-2 application program.

e If the BASIC-2 application program and its data file share the same
disk address.

e If the program contains a disk address verification program that
does not recognize the VDISK addressing scheme.

What To Do When the Disk Address is Hard-coded

If the disk address is hard-coded in the application program you can
go through the program and change all references to the disk address
to the new VDISK address.

For example, if the disk address was hard-coded in the program as
follows:

10 SELECT #5 320

You could go through the program and change every occurrence of 320 to
an existing VDISK address. For example, the example above could be
written as follows:

10 SELECT #5 D31

In this example, 320 has been changed to D31 specifying a valid VDISK
address.

You can also substitute a variable for the disk address and have the

program request the address from the user at run-time. You could
then assign the value received from the user to the variable.

What To Do When the Program and Data Files Share the Same Disk

When the program and data files are stored on the same disk it might
not be advisable to use VDISK for performance reasons (see the section
on VDISK Performance Considerations in this chapter).

However, if the data file is sufficiently large to warrant the use of
VDISK, you could follow the suggestions in the previous section and
hard-code the changes or request the user to input the disk address.
In this case, it would be advisable to separate the application
program from the data file and only store the data files on the VDISK.

2200VDISK Access 2-2
Draft Copy Confidential

2.2.2

2.3

For more information refer to the appropriate BASIC-2 reference and
disk manuals.

What To Do When Verification Procedures Do Not Recognize the Address

If a program contains a disk verification routine that does not
recognize the disk addressing scheme used for VDISK, the verification
routine should be updated to allow valid VDISK addresses. The valid
ranges of addresses for VDISK are as follows:

e DX0 through DXF
e DY0 through DYF

The possible values for X are 1, 2, or 3. You set the value for X in
the 2258 controller itself. The value of Y is dependent on the value
you assigned to X as follows:

e If X is 1 then Y must be 5
e If X is 2 then Y must be 6
e If X is 3 then Y must be 7

For more information on how to set the address, refer to the 2200/VS
Local Communications Options User's Guide.

How to Submit Programs that Access VDISK

Before you can access a file stored on VDISK, you must make certain '
that the following procedures have been implemented:

e That the VDISK has been created using the VDISK utilities.

e That the 2200 is actively connected to the VS (that the attach
procedure has been run).

e That the program you submit has or requests a valid VDISK address as
explained in this chapter.

For more information on how to create VDISKs and how to attach to run
the attach progam, refer to the 2200/VS Local Communications Options
User's Guide. Once you have implemented these procedures, you can
submit programs tO access VDISK.

VDISK PERFORMANCE CONSIDERATIONS

VDISK performance is strongly affected by the following components of
the 2200 LCO software package:

e The 2258 firmware]
e The VS serial I/0 processor

: 2200 VDISK Access 2-3
Draft Copy Confidential

The 2258 firmware can handle up to four separate tasks, however, only
one of these tasks can be assigned to VS Filing Services. You attach
to VS Filing Services as described in the 2200/VS Local Communications
Options User's Guide. Once the VS Filing Services task is active, all
2200 partitions (up to 16) can invoke VS Filing Services through the
task.

It is important to remember that the 2258 controller can receive
requests from any of the 16 possible 2200 partitions and that these
requests are handled similarly to 2200 disk requests. As a result,
the more requests that are channeled to the VS through a single 2238
controller, the slower the response time experienced by each
individual partition.

The VS serial I/0 processor (SIOP) handles requests in a serial
manner, one request at a time. Each file request requires both a
transmission to the SIOP and a response from the SIOP. Since the SIOP
handles these requests in a serial manner and since the 2258 must
handle requests for all partitions, VDISK performance can be adversely
affected by the number of requests being processed at any given time.

VDISK performance can also be adversely affected by opening VDISKs in
shared mode. Since VDISKs are actually VS files, response time can be
reduced by the additional overhead in the VS system associated with
shared files.

When you open VDISKs in exclusive mode, the disks are open to all
partitions on the same 2200. You should only open VDISKs in shared
mode when the VDISK must be shared with another 2200, or when it must
be accessed through another 2258 controller on the same 2200.

Disk commands execute more slowly as the number of VDISKs opened in
shared mode increases. When a disk command is executed, the 2258
firmware uses VS DMS commands to lock each VDISK opened in shared
mode. The VDISKs are locked to prevent other 2258 controllers from
accessing the VDISK. '

If there are many VDISKs open in shared mode, the locking procedure
can add significantly to the processing time required to execute each
disk command.

2.4 IMPROVING VDISK PERFORMANCE

You can implement the following recommendations as required to improve
VDISK performance:

® Use VDISK only to store large data files for data intensive programs
and for backup storage of program files.

2200VDISK Access 2-4
Draft Copy Confidential

2.5

® Do not load programs off VDISK, particularly programs that use
program overlays.

® Do not use VDISK to store files required by programs such as screen
or message files.

® Avoid opening VDISKs in shared mode. However, if you must use
VDISKs in shared mode, performance might be improved by bracketing
each string of disk commands with a $OPEN and a $CLOSE. Bracketing
a string of disk commands with a $OPEN and a $CLOSE reduces
processing by the 2258 controller for files opened in shared mode.

e In large systems or where heavy use of the 2258 data link is
expected, using multiple 2258 controllers for VDISK access might
increase throughput proportionally. By adding additional 2258
controllers to a single system you can off-load some of the traffic
to the additional controllers.

Note that because of the 2200 disk addressing scheme you are limited
to a maximum of three 2258 controllers on a single system for VDISK
purposes. You can, however, add additional 2258 controllers for
either native DMS access or to add more terminals for VS Workstation
Emulation. Adding additional 2258 controllers for these purposes
might also improve VDISK performance in large systems.

e The 2258 support utilities enables you to define multiple VDISK maps
that assign 2200 platter addresses to an equivalent number of 2200
disk image files. 1In certain cases you might be able to improve
performance by picking a specific VDISK map for a particular
application. Once the application is run, you can then return the
VDISK map to your normal processing configuration. However, it is
recommended that you maintain one VDISK map throughout each session
whenever possible.

MOVING EXISTING 2200 FILES TO VDISK

To move existing 2200 files to VDISK, use the Move Files Utility. You
access the Move Files Utility from the System Utilities Menu. For
more information on how to use the Move Files Utility, refer to the
2200 Introductory Guide.

2200 VDISK Access 2-5
Draft Copy Confidential -

CHAPTER 3
INTRODUCTION TO NATIVE DMS ACCESS

3.1

INTRODUCTION

The 2200/VS LCO package enables you to create and access files on the
attached VS system directly from your BASIC-2 application programs.
To create and access Native DMS files using the 2200/VS LCO, you must
use the DMS Access Subroutines that come with the 2200 LCO software.
Files created in this manner are referred to as native DMS files
because they are managed by the VS DMS.

Native DMS files can be accessed by BASIC-2 application programs on
any 2200 system attached to the VS and equipped with the 2200/VS LCO
package. Native DMS files can also be accessed by VS application
programs.,

The 2200 LCO software supports the following DMS file types:
Consecutive

Allows you to access records sequentially, and read records on disk
directly by record sequence number. Records can only be added at the
end of the file, and cannot be deleted. This structure is appropriate
for most data entry and batch update applications. Consecutive files
are supported for all types of I/O devices and are used for
specialized puposes, such as printer files and system-maintained
journals.

Indexed

Allows you to access records through a key field that contains unique
data values. Indexed files can only be created and stored on disk
storage devices. This structure supports sequential record retrieval,
and rapid non-sequential retrieval of single records from disk files
by key value. You can add, update, or delete records by specifying
the primary key value of the desired record.

DMS supports both primary key and alternate key indexed files.

Native DMS Access 3-1
Draft Copy Confidential

3.2

Relative

Relative files contain sequential, fixed length record slots.

RElative files can only be created and accessed on disk storage
devices. Relative files allow you to access records either
sequentially or directly by record sequence number. You can add,
update, or delete records within a relative file. However, you must
preallocate space for adding records; deleting records does not reduce
the size of the file. You should choose a relative file structure if
speed of access and ability to modify and delete existing records is a
major consideration. Relative files are not supported on the VS-50 or
VS-80 computers.

NOTE

Relative files cannot be opened in shared mode.

For more information about DMS file sfructures, refer to the VS Data
Mangement System Reference guide.

BRIEF DESCRIPTION OF THE DMS ACCESS SUBROUTINES

Table 3-1 lists the DMS Access Subroutines available, provides a
description of each subroutine and lists the subroutine's
corresponding function number.

Table 3-1. DMS Access Subroutines

Function
Function Description Number
GENERAL OPEN Opens any DMS file. '101
GENERAL CLOSE Closes any DMS‘file. '102
CONSECUTIVE READ Reads a consecutive record. '103
CONSECUTIVE WRITE Writes a consecutive record. '104
CONSECUTIVE REWRITE Rewrites a consecutive record. '105
CONSECUTIVE SKIP Skips a specified number of '106
consecutive records.

CONSECUTIVE LOCK Locks a consecutive file. . '107

(continued)

Native DMS Access 3-2

Draft Copy Confidential

Table 3-1. DMS Access Subroutines (

continued)

Function
Function Description Number

CONSECUTIVE UNLOCK Unlocks a consecutive file. '108

INDEXED READ Reads an indexed file. '109

INDEXED READ NEXT Reads the next record in an '110
indexed file.

INDEXED WRITE Writes to an indexed file. '111

INDEXED REWRITE Rewrites an indexed record '112
to a file.

INDEXED DELETE Deletes an indexed record '113
from a file.

INDEXED FIND Finds a specified indexed '114
record in and indexed file.

INDEXED LOCK Locks an indexed file. '115

INDEXED UNLOCK Unlocks an indexed file. '116

RELATIVE READ Reads a record form a '117
relative file.

RELATIVE WRITE Writes a record to a '118
relative file.

RELATIVE REWRITE Rewrites a record to a '119
relative file.

RELATIVE DELETE Deletes a relative record '120
from a relative file.

BLOCK READ Reads a block of data '121
from a block file.

BLOCK WRITE Writes a block of data '122

to a block file.

Native DMS Access

Draft Copy Confidential

3-3

The DMS Access Subroutines also provide functions for creating,
deleting and renaming file and for getting file attributes. These
subroutines are called the DMS Catalog Functions. Table 3-2 provides a
brief description of these functions.

Table 3-2. DMS Catalog Functions

Function
Function Description Number
FILE CREATE Creates a DMS file. '200
FILE DELETE Deletes a DMS file. '201
FILE RENAME Renames a DMS file. : 1202
GET FILE ATTRIBUTES Retrieves the value of one '203

or more attributes groups
associated with the opened
file

Chapter 4 of this guide provides a detailed description of the DMS
Access Subroutines and DMS Catalog functions listed above.

3.3 HOW TO USE THE DMS ACCESS SUBROUTINES

The DMS Access Subroutines are stored in the following files that are
included with the 2200 LCO software:

e VSACESSO This file contains the GENERAL OPEN, and GENERAL CLOSE
subroutines. This file also includes the subroutine
used to communicate all requests to the 2200 LCO
controller.

VSACESS1 This file contains all the subroutines that deal with
consecutive DMS files.

[]

VSACESS2 This file contains all the subroutines that deal with
indexed DMS files.

]

VSACESS3 This file contains all the subroutines that deal with
relative DMS files.) :

]

VSACESS4 This file contains all the subroutines that enable you
to access DMS files in block mode.

VSACESS9 This file contains the DMS Catalog Functions.

Native DMS Access 3-4
: Draft Copy Confidential

3.4

To use the DMS Access Subroutines, perform the following steps:

1. Copy the files containing the required DMS Access Subroutines into
your BASIC-2 application program. Usually you will be required to
copy VSACESSO and one other file into your program to open and
close files and to handle all other file processing.

NOTE

When you copy the DMS Access Subroutines into your program, be
certain they do not overlay lines of code in your program.

2. Once you have copied the DMS Access Subroutines into your program,
you access the subroutines by writing a GOSUB ' to the specific
function you want to perform.

For example, if you were working with existing consecutive files, you
would copy VSACESS0 and VSACESS1 into your program. The subroutines
in VSACESSO allow you to open and close. The subroutines in VSACESS1
allow you to perform other functions such as reading and writing to
and from the file.

The following statement is an example of how you would code a GOSUB '
to perform a GENERAL OPEN:

0100 GOSUB '1l0l (N$, T$, M$)

The variables (N$, T$, and M$) pass the name and organization of the
file and the mode the file is to be opened in to the subroutine.

DMS ACCESS PROGRAMMING REQUIREMENTS AND PERFORMANCE CONSIDERATIONS

To use the DMS Access Subroutines, you must copy the required files
into your program.

To save space, only copy the files required by the program. For
example, if your program only uses existing indexed files, you only
need to copy in VSACESSO and VSACESS2. If your program uses more
than one file type, you will have to copy more modules into your
program.

If your program also creates, renames or deletes files, you will
also have to copy in the DMS Catalog functions VSACESS9.

Native DMS Access 3-5
Draft Copy Confidential

3.4.1

3.5

3.5.1

Once you have copied the DMS Access Subroutines into your program,
you can save the program with the SR parameter. Saving the program
with the SR parameter removes the REM statements from the program,
thus saving you partition space.

How to Submit Programs that Access Native DMS Files

Before you can access a native DMS file, you must make certain that
the following procedures have been implemented:

e That the 2200 is actively connected to the VS (that the attach
procedure has been run).

e That the program contains the required DMS Access Subroutines.

For more information on how to attach to run the attach progam,
refer to the 2200/VS Local Communications Options User's Guide.
Once you have implemented these procedures, you can submit programs
from the 220Q to access native DMS files stored on the VS.

GENERAL NOTES ON THE DMS ACCESS SUBROUTINES

This section provides background on and general information common
to all the DMS Access Subroutines.

Variables Reserved by the DMS Access Subroutines

All the variables used by the DMS Access Subroutines start with the
letter V. If you have any variables in your programs that begin
with the letter V, you can either change the variable in your
program or change the variable in the DMS Access Subroutine.

Table 3-3 lists the variables used by the DMS Access Subroutines and
gives a brief explanation of their purpose.

Native DMS Access 3-6

Draft Copy Confidential

Table 3-3. Variables Used by the DMS Access Subroutines
Variable Length
Name Description (in bytes)
vs$ Holds the file name. 32
vo Is a work variable for the - 8

CONSECUTIVE SKIP subroutine.
Holds the number of records
to be skipped.
vos$ Holds the return code. 2
Return codes are explained
in Appendix A.
Vi Is a work variable. - 8
V1i$ Holds the file organization 1
identifier.
V2 Is a work variable. 8
v2$ Holds the open mode identifier. 1
v3 Holds the key position 8
for indexed files.
v3s$ Holds the hold option 1
identifier.
V4 Holds the key path for indexed 8
vas$ Holds the alternate mask for 2
indexed files.
V5 Holds the key length for 8
indexed files.
V5$ Holds the search criteria for 2
the INDEXED FIND subroutine.
vées Holds the key value for indexed 6
files.
(continued)

Draft Copy Confidential

vNative DMS Access

3-7

Table 3-3. Variables Used by the DMS Access Subroutines (continued)

Variable Length
Name Description (in bytes)
v7 Holds the number of records to 8
read.
v7$ Holds the Extended File Sharing 32
(EFS) header.
vss$ Is a work scalar variable. 16
vas$() Is a work array. 256
ves | Holds the file identifier 2
number.
VI$() Is the data buffer array for 4096
reading in information form
the file.

3.5.2 Using Variables or Literals for Input Parameters

The DMS Access Subroutines enable you to pass input parameters in the
form of variables or literals. For example, a GOSUB ' to perform a
CONSECUTIVE WRITE can be write as follows:

3000 DIM H1$32,D$50,H$2

3005 H$=V9$: V93 is the file identifier received from the OPEN
3010 H1$ = V7$:REM V7$ is the EFS header received from the OPEN
3020 D$ = "This statement is written to the file as a record."
3030 GOSUB '104 (H$, H1$, D$)

This statement also could have been written with a literal for D$ as
follows:

3000 GOSUB '104 (H$, V78, "This is written to the file as one record.")

In this example a literal is used for the data buffer parameter.

Native DMS Access 3-8
Draft Copy Confidential

3.6

NOTE

In the example above, the DMS Access Subroutine variable (V7%),
which stores the External File Sharing (EFS) information is used
to specify this information in the GOSUB ' call to the CONSECUTIVE
WRITE subroutine. You can only use the DMS Access Subroutines
variables within your GOSUB ' statements if your program only has
one file open at a time. Otherwise, you must assign the values
stored in the DMS Access Subroutine variables to other variables
within your program, and pass the appropriate variables to the DMS
Access Subroutines.

MOVING EXISTING FILES FROM THE 2200 TO THE VS

The 2200/VS LCO software package provides you with the facility to
move files from the 2200 to the VS. To accomplish this task, you need
to write a utility program to perform the following tasks:

1. Open the 2200 file.

2. If the file does not exist on the VS, you must create the file on
the VS. To create a file on the VS, you can include the CREATE
FILE subroutine in your utility program, or you can use the CREATE
utility provided on the VS. For more information, refer to the
detailed description of the CREATE FILE subroutine in Chapter 4 of
this guide.

If the file already exists on the VS, you must use the GENERAL
OPEN (GOSUB '10l1) DMS Access Subroutine to open the file.

2. Read a record from the 2200 file using 2200 disk access statements.

4. Write a record to the VS using the appropriate DMS Access
Subroutine.

5. Repeat steps 3 and 4 until all the records are written to the VS
file. '

6. Close the VS file using the GENERAL CLOSE DMS Access Subroutine
(GOSUB '102).

7. Close the 2200 file.
Once you have written the utility program, you must follow the

procedures for submitting programs to access DMS files provided in
this chapter.

Native DMS Access 3-9
Draft Copy Confidential

3.7 MOVING FILES FROM THE VS TO THE 2200

The 2200/VS LCO software package provides you with the faacility -to
move files from the VS to the 2200. To accomplish this task, you need
o write a utility program to perform the following tasks:

1. Open the DMS file on the VS using the GENERAL OPEN (GOSUB '101)
DMS Access Subroutine.

2. Read the file using the appropriate DMS Access Subroutine (either
consecutive, indexed, relative, or block).

3. If the file does not exist on the 2200 system, you can use the
DATA SAVE DC OPEN statement. :

If the file exists on the 2200 system, you can use the DATA LOAD
DC OPEN statement.

4. Write the file to the 2200 using the familiar 2200 BASIC-2
statements.

Once you have written the utility program, you must follow the
procedures for submitting programs to access DMS files provided in
this chapter. .

Native DMS Access 3-10
Draft Copy Confidential

CHAPTER 4
DETAILED DESCRIPTION OF THE DMS ACCESS SUBROUTINES

4.1

INTRODUCTION

This section gives a detailed description of the DMS Access
Subroutines. The description of each subroutine includes the
following information:

A

General Form Section: This section shows the general format of the
GOSUB' statement used and includes a description of the required
input parameters.

Purpose Section: This section explains the function the subroutine
performs.

Returns Section: This section explains information returned by the
subroutine.

Example: This section provides'an example of how the subroutine is
used.

General Notes section is also included for certain subroutines to

provide additional information.

DMS Subroutines 4-1
Draft Copy Confidential

4.2 NOTES ON THE GENERAL FORM SECTION

In the General Form section, the following basic rules of syntax are
followed.

1. The following symbols must be included in your BASIC-2 statements
exactly as they appear in the General Form of the statement:

® Uppercase letters A through Z
¢ Comma ’

. ® Double Quotation Marks "

e Parentheses ()
e Pound Sign #
e Slash ./

2. Lower case letters and words in the General Form of a statement
represent items whose values must be assigned by the
programmer. For example, if the lowercase word "name" appears
in a General Form, the programmer must substitute a specific
file name (such as "PROGl1"), or an alphanumeric variable
containing the name, in the actual statement. Similarly, where
the lowercase letter n appears, the programmer must substitute
an actual file number (from 0 to 64) or a variable containing a
file number.

3. All information that appears between parentheses must be
included in the GOSUB' statements.

4. Blanks (spaces) are used to improve readability and are
meaningless.

5. The sequence the terms are listed in must be followed.

DMS Subroutines 4-2 .
Draft Copy Confidential

GENERAL OPEN

General Form:
GOSUB '101 (file-name , org , mode)
Where:

file-name is the name of the file. The file name can include
the //SYSTEM/VOLUME/LIBRARY/FILENAME. The file name
can also be written as ///VOLUME/LIBRARY/FILENAME.
The SYSTEM, LIBRARY, and FILENAME can each be up to 8
characters in length. The VOLUME can be up to 6
characters in length.

org is the organization of the file. The following lists
the valid file organization parameters and their.
meaning:

C indicates the file is a consecutive file.

I indicates the file is an indexed file.

R indicates the file is a relative file.

B indicates the file can be accessed in block mode.

o o 0 o0

mode is the mode the file is opened in. The following lists
the valid mode parameters and their meaning:

R indicates the file is opened for read only access.
S indicates the file is opened for shared access.

X indicates the file is opened for exclusive access.
E indicates the file is opened for extended access.

o o 0 O

PURPOSE:

The GENERAL OPEN ('101) subroutine enables you to open any DMS file.
The subroutine enables you to specify the file name, including the
system, the library, and actual name of the file. The library, volume
and file name are required; the system name is optional. The GENERAL
OPEN subroutine also enables you to specify the file type (Indexed,
Consecutive, or Relative) and the access mode (Read Only, Shared,
Exclusive, or Extended.)

NOTE

Relative files cannot be opened in shared mode

DMS Subroutines 4-3
Draft Copy Confidential

RETURNS:

The GENERAL OPEN subroutine returns the following information:

® VO$ is the return code. Refer to Appendix A for more information.
e V1 is the length of valid data in V9$() array (the file data field).

e V7$ is the EFS header information for the file indicated by V9$ (the
file identifier). Refer to Appendix A for more information.

e V9§ is the file identifier assigned to the file.

® V9$() is an array of 64 or 75 bytes that contains file attribute
information. Refer to Appendix A for more information.

EXAMPLE: (GENERAL OPEN)

10 DIM N$32,T$1,M$1

20 N$="//SYSNAM/ANYVOL/ANYLIB/FILENAME": T$="I", M$="S"
30 GOSUB '101 (N$, T$, MS$)

40 IF VO$=HEX(FF) THEN 60

50 STOP "ERROR IN OPEN"

60 HP=V9$: REM V9$ is the file identifier

In this example variables are used to represent the name, org, and
mode parameters. This example could have been written as follows:

10 GOSUB '101 ("///ANYVOL/ANYLIB/FILENAME","I", "S")
20 IF VO$=HEX(FF) THEN 40

30 STOP "ERROR IN OPEN"

40 REM Good general open. Continue processing.

50 H$=V9$: REM V9$ is the file identifier

In the examples above, the specified files are opened. In the second
example, the system name is replaced with a slash (7).

DMS Subroutines 4-4
Draft Copy Confidential

GENERAL CLOSE

General Form:

GOSUB '102 (file-id , efs)
Where:
file-id is an alpha-numeric variable that represents the file

identifier assigned to the file.

efs is an alpha-numeric variable that represents the EFS
header information for the specified file.

PURPOSE:

The GENERAL CLOSE ('102) subroutine enables you to close any DMS file
that had been previously opened for I/0 functions. You must specify

the file identifier assigned to the file.

Attempting to close a file that was not previously opened by an OPEN

statement, causes a recoverable program error at run time.

RETURNS :

The GENERAL CLOSE subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

e V1 is the length of valid data in V9$() array (the file data field).

® V7$ is the EFS header information for the file indicated by V9% (the
file identifier). Refer to Appendix A for more information.

e V9$() is an array containing 3 bytes and should be HEX(00).

DMS Subroutines 4-5
Draft Copy Confidential

EXAMPLE: (GENERAL CLOSE)

10 H1$=V7$:REM V7$ is the EFS header. .
20 H$=V9$: REM V9% is the file identifier
30 GOSUB '102 (H$,H1$)

40 IF VO$=HEX(FF) THEN 60

50 STOP "ERROR IN CLOSE"

60 ...

In this example a variable (H$) is used to represent the file
identifier and the EFS information (H1S$).

DMS Subroutines 4-6
Draft Copy Confidential

CONSECUTIVE READ -

General Form:

GOSUB '103 (file-id , efs , hold , time)

Where:
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
information for the specified file.
hold indicates the hold option and can be either "H" or
" w_ “H" holds the record for exclusive processing.
" " allows other programs to access the record.
time is the amount of time in seconds the system will wait
if the record is being held by another user. the time
parameter must be zero, unless the file is opened in
shared mode. Specifying a value of zero indicates
that the system will wait indefinitly.
PURPOSE:

The CONSECUTIVE READ ('103) subroutine enables you to read the next
consecutive record in a specified file. The file must have previously
been opened.

RETURNS:

The CONSECUTIVE READ subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

e V7$ is the EFS header information for the file indicated by V9$ (the
file identifier). Refer to Appendix A for more information.

e V9$() contains eight bytes of status information and the data read
from the file. Refer to the CONSECUTIVE READ General Notes section
for more information.

DMS Subroutines 4-7
Draft Copy Confidential

GENERAL NOTES

In the CONSECUTIVE READ subroutine, the V9$() array is used to store
status information and the data read from the file. The first eight
bytes of the array are used to store the status information. Table
4-1 describes the status information.

Table 4-1. CONSECUTIVE READ Status Information

Byte(s) ‘ Description

01 Contains internal processing information.
This value should always be equal to 01.

02 and 03 Contain the number of records read.

04 and 05 Contain the number of bytes in the byte
block.

06 Contains the datablock ID. This value

should always be equal to Ol.

07 and 08 Contains the number of .bytes read. The
value o fthese two bytes can be up to 64K.

. The remaining bytes of the array (starting at the ninth byte) are
used to store the data read from the file. If you know the length
of the records read, you will know how many bytes of V9$() will be
used to store the data. If you do not know the length of the
records in the file, or the file contains variable length records
you can use the VAL function on the 7th and 8th bytes of V9$()
array to get the length of the data read. See the Example section
for more information.

The V9$() array is originally dimensioned to hold 4096 bytes of
information (including the status information). However, you can
decrease the size of the array depending on your needs.

DMS Subroutines 4-8
Draft Copy Confidential

EXAMPLE: (CONSECUTIVE READ)
The following is an example of the CONSECUTIVE READ subroutine:

10 DIM C1$5,N1$30,B1$3,Ws$8

20 H$=V9$:H1$=V7$:T=25

30 W$=HEX(A005A01EA0035205)

40 GOSUB '103 (H$, H1$, "H", T)

40 IF VO$=HEX(FF) THEN 60 ELSE 50

50 STOP "ERROR IN READ"

60 $UNPACK (F=W$) STR(VIS$(),9,VAL(STR(V9$(),7.,2),2)) TO C1$,N1§$,B1$,Al

In this ekample, the next consecutive record is read. If the record
is being held by another user, the system will wait 25 seconds before
an error OCCurrs.

In line 60 the VAL function is used on the seventh and eigthth bytes
of V9$() array to determine the number of bytes that were read.

DMS Subroutines 4-9
Draft Copy Confidential

CONSECUTIVE WRITE

General Form:

GOSUB '104 (file-id , efs , data)

Where:
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the file indicated by V9% (the
file identifier).
data can be either an alpha-numeric literal or an array
designator. If a literal string is.used the
information must be enclosed in double quotation marks.
PURPOSE:

The CONSECUTIVE WRITE ('l104) subroutine enables you to write the next
sequential record to a specified consecutive file.

To write the information contained in more than one variable to a file
at one time, you can use the $PACK statement (or some other
appropriate BASIC-2 statement) to pack the information into a single
variable.

RETURNS :

The CONSECUTIVE WRITE subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

e V7$ is the EFS header information for the file indicated by V9$ (the
file identifier). Refer to Appendix A for more information.

® V9$() contains the following five bytes of status information:

- Byte 0l contains internal status information. This value should
always be equal to Ol.

- Bytes 02 and 03 contain the number of bytes written.

— Bytes 04 and 05 contain the number of bytes in the byte block and
should be HEX(0000).

DMS Subroutines 4-10
Draft Copy Confidential

EXAMPLE: (CONSECUTIVE WRITE)

10 DIM C1$5, N1$30, B1$3, W$8, D$43, H$2, H1$32
20 H$=V9$:H1$=V7$

30 W$=HEX(A005A01EA0035205)

40 $PACK (F=W$) D$ FROM C1l$, N1$, Bl$, Al

50 GOSUB '104 (H$, H1$, D$)

60 IF VO$=HEX(FF) THEN 80

70 STOP "ERROR IN WRITE"

80 ...

In this example, the data held in the variable D$ is written to the
file specified by HS.

DMS Subroutines 4-11
Draft Copy Confidential

CONSECUTIVE REWRITE

General Form:

GOSUB '105 (file-id , efs , len , data)

Where:

file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.

efs is an alpha-numeric variable that represents the EFS
header information for the file indicated by V9$ (the
file identifier).

len indicates the length of the record to rewritten. The
value of the len parameter must matcha the record
length exactly, including trailing spaces.

data can be either an alpha-numeric literal, or an array.
designator. If a literal string is used the
information must be enclosed in.double quotation marks.

PURPOSE:

The CONSECUTIVE REWRITE ('l105) subroutine enables you to overwrite an
existing record in a consecutive file. The record must have heen
previously read with the HOLD option.

To write the information contained in more than one variable to a file
at one time using the REWRITE subroutine, you can use the $PACK
statement to pack the information 1nto a single variable or some other
appropriate BASIC-2 statement.

RETURNS:

The CONSECUTIVE REWRITE subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

e V7$ is the EFS header information for the file indicated by V9% (the
file identifier). Refer to Appendix A for more information.

DMS Subroutines 4-12
Draft Copy Confidential

e V9$() contains the following three bytes of status information:

- Byte 0l contains the number of words in the word block which
should be equal to HEX(00).

- Bytes 02 and 03 contain the number of bytes in the byte block
which should be equal to HEX(0000).

EXAMPLE: (CONSECUTIVE REWRITE)

The following is an example of how to use the CONSECUTIVE REWRITE
subroutine:

10 DIM C1$5, N1$30, B1$3, W$8, D$43, H$2, H1$32
20 W$=HEX(A005A01EA0035205)

30 $PACK (F=W$) D$ FROM Cl$, N1$, Bl$, Al$

40 GOSUB '105 (H$, H1$, 43, D$)

50 IF VO$ = HEX(FF) THEN 70

60 STOP "ERROR IN REWRITE"

70 ...

DMS Subroutines
Draft Copy Confidential

4-13

CONSECUTIVE SKIP

General Form:

GOSUB '106 (file-id , efs , nnnnnnnn)

Where:
file-id is an alpha-numeric variable that represents the file
' identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
nnnnnnnn is the number of records to skip; nnnnnnnn must be
between 2*3% and -2*32,
PURPOSE:

The CONSECUTIVE SKIP ('106) subroutine positions a consecutive file
forward or backward a given number of records in the file. For
example, if the first record of a file has been read, a SKIP value of
2 causes the next record read to be record 4. A SKIP value of -1
causes the same record to be reread by the next CONSECUTIVE READ
('103). A SKIP value of 0 is ignored.

DMS Subroutines 4-14
Draft Copy Confidential

RETURNS:
The CONSECUTIVE SKIP subroutine returns the following information:
e VO$ is the return code. Refer to Appendix A for more information.

e V7$ is the EFS header information for the file indicated by V9$ (the
file identifier). Refer to Appendix A for more information.

e V9$() contains the following three bytes of status information:

- Byte 01 contains the number of words in the word block which
should be equal to HEX(00).

- Bytes 02 and 03 contain the number of bytes in the byte block
which should be equal to HEX(0000).

EXAMPLE: (CONSECUTIVE SKIP)

10 GOSUB '106 (H$, 30)
20 IF VO$=HEX(FF) THEN 50:STOP "ERROR IN SKIP"

In this example, the next 30 records in the specified file are skipped.

DMS Subroutines 4-15
Draft Copy Confidential

CONSECUTIVE LOCK

General Form:

GOSUB '107 (file-id , efs , mode)

Where:
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS

header information for the specified file.

mode is the mode the file is opened in. The following lists the
valid mode parameters and their meaning:

R indicates the file is opened for read only access.
S indicates the file is opened for shared access.

X indicates the file is opened for exclusive access.
E indicates the file is opened for extended access.

o & 0 0

PURPOSE:

The CONSECUTIVE LOCK ('107) subroutine enables you to have exclusive
rights to a consecutive file. No other program can access the file
until you unlock the file.

RETURNS :

The CONSECUTIVE LOCK subroutine returns the following information:

e V0$ is the return code. Refer to Appendix A for more information.

e V7% is the EFS header information for the file indicated by V9$ (the
file identifier). Refer to Appendix A for more information.

e V9$() contains the following three bytes of status information:

- Byte 01 contains the number of words in the word block which
should be equal to HEX(00).

— Bytes 02 and 03 contain the number of bytes in the byte block
which should be equal to HEX(0000).

DMS Subroutines 4-16
Draft Copy Confidential

EXAMPLE: (CONSECUTIVE LOCK)

The following is an example of how to use the CONSECUTIVE LOCK
subroutine: .

10 H$=V9$

20 GOSUB '107 (H$, H1$, "X")

30 IF VO$=HEX(FF) THEN 50

40 STOP "ERROR IN LOCK" .

50 REM File was locked successfully. Continue processing.

In this example, the "X" indicates the specified file is held for
exclusive use. H1$ identifies the EFS header information.

DMS Subroutines
Draft Copy Confidential

4-17

" CONSECUTIVE UNLOCK

General Form:

GOSUB '108 (file-id , efs)

Where:
file-id is an alpha-ﬁumeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
PURPOSE:

The CONSECUTIVE UNLOCK ('108) subroutine enables you to release a file
- from exclusive use, so that other programs can access the file.

RETURNS:

The CONSECUTIVE UNLOCK subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

e V7$ is the EFS header information for the file indicated by V9$ (the
file identifier). Refer to Appendix A for more information.

e V9$() contains the following three bytes of status information:

— Byte 01 contains the number of words in the word block which
should be equal to HEX(00).

- Bytes 02 and 63 contain the number of bytes in the byte block
which should be equal to HEX(0000).

DMS Subroutines 4-18
Draft Copy Confidential

EXAMPLE: (CONSECUTIVE UNLOCK)

10 H$=V9$

20 GOSUB '108 (H$, H1$) °

30 IF VO$=HEX(FF) THEN 50

40 STOP "ERROR IN UNLOCK"

50 REM Unlock was successful. Continue processing.

In this example, specified file is released from exclusive use.

DMS Subroutines 4-19
Draft Copy Confidential

INDEXED READ

General Form:

GOSUB '109 (file-id , efs , hold , time , key , length , value)

Where: "’

file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.

efs is an alpha-numeric variable that represents the EFS
header information for the specified file.

hold indicates the hold option and can be either "H" or
" ". "H" holds the record for exclusive processing.

. " " allows other programs to access the record.

fime is the amount of time in seconds the system will wait
if the record is being held by another user.
Specifying a value of zero (0) indicates that the
system will wait indefinantly. Non-zero values should
only be used when the file is opened in shared mode.

key is the key path, either the primary (0) or alternate
key (1-16).

length is a numeric variable or expression that specifies the
length of the key.

value is an alpha-numeric variable or literal that indicates
the value of the key.

PURPOSE:

The INDEXED READ ('109) subroutine enables you to read an indexed
file. The file must have previously been opened. You can use either
a primary or alternate key:; for more information, see the General
Notes section.

DMS Subroutines 4-20
Draft Copy Confidential

RETURNS:

The INDEXED READ subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.
e V1 contains the length of data read (in bytes) in V9$() array.

~ e V4$ is the alternate key mask.

e V9$() the data read from the file.

GENERAL NOTES

DMS allows a primary key and up to 16 alternate keys. In the INDEXED
READ subroutine, the primary key is indicated by a 0, the alternate
keys are indicated by the numbers 1 through 16. An example of each is
provided in the Example section.

The V9$() array is originally dimensioned to hold 4096 bytes of
information (including the status information). However, you can
decrease the size of the array depending on your needs.

EXAMPLE: (INDEXED READ)

10 DIM C1$5, N1$30, B1l$3, W$8

20 W$=HEX(A005A01EA0035205)

30 C1$="00001"

40 GOSUB '109 (H$, H1$, "H", 0, 0, 5, C1$)

50 IF VO$=HEX(FF) THEN 70

60 STOP "ERROR IN INDEXED READ"

70 REM Successful indexed read. Continue processing
80 $UNPACK (F=W$) STR(V9$(),1,V1) to K$,6N1§,Bl$,Al

In this example, the path is identified as the primary key by the zero
(0) in the key parameter position. The key length is identified as 5
characters in length, and the value of the key is equal to the value
of Cl$. Note also that the hold option is used.

The following example shows how to indicate an alternate key.

10 DIM C1$5, N1$30, B1$3, W$8

20 W$=HEX(A00S5A01EA0035205)

30 Cl$="00001"

40 GOSUB '109 (H$, H1$, "H", 0, 4, 5, Cl3$)

50 IF VO$=HEX(FF) THEN 70

60 STOP "ERROR IN INDEXED READ"

70 REM Successful indexed read. Continue processing
80 $UNPACK (F=W$) STR(V9$(),1,V1) to K$,N1§$,Bl$,Al

DMS Subroutines 4-21
Draft Copy Confidential

In this example, the path is identified as the fourth alternate key by
the four (4) in the key parameter position. The other parameter
values remain the same.

DMS Subroutines 4-22
Draft Copy Confidential

INDEXED READ NEXT

General Form:

GOSUB '110 (file-id , efs , hold , time)

Where:
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
hold indicates the hold option and can be either "H" or
" v, "H" holds the record for exclusive processing.
" " allows other programs to access the record. .
time is the amount of time in seconds the system will wait
if the record is being held by another user. Non-zero
values should only be used when the file is opened in
shared mode.
PURPOSE:

The INDEXED READ NEXT ('l110) subroutine enables you to read an indexed
file sequentially. The file must have previously been opened.
RETURNS:

The INDEXED READ NEXT subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

e V1 contains the length of data read (in bytes) in V9$() array.

e V4$ is the alternate key mask.

e V9$8() the data read from the file.

DMS Subroutines 4-23
Draft Copy Confidential

EXAMPLE: (INDEXED READ NEXT)

10 DIM C1$5,N1$30,B1$3,W$8,K1$1,K2$5

20 W$=HEX(A005A01EA0035205)

30 GOSUB '110 (H$, H1$, "H", 25)

40 IF VO$=HEX(FF) THEN 60

50 STOP "ERROR IN READ NEXT"

60 REM Successful READ NEXT. Continue processing
70 ...

- In this example, the next record in the file indicated by H$ is read.
If the record is being held by another user, the program waits 25
seconds before generating an -error return code.

DMS Subroutines 4-24
Draft Copy Confidential

INDEXED WRITE

General Form:

GOSUB 'l1l1 (file-id , efs , alt , data)

Where:
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
alt represents the alternate key mask.
data can be either an alpha-numeric, an array designator, or
a literal. If a literal string is used the information
must be enclosed in double quotation marks.
PURPOSE:

The INDEXED WRITE ('lll) subroutine enables you to write a keyed
record to an indexed file.

To write the information contained in more than one variable to a file
at one time using the WRITE subroutine, you can use the $PACK
statement (or some other appropriate BASIC-2 statement) to pack the
information into a single variable.

RETURNS:
The INDEXED WRITE subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

EXAMPLE: (INDEXED WRITE)

10 DIM N1$30,B1$3,W$8,K1$1,K$5

20 W$=HEX(A005A01EA0035205)

30 PACK (F=W$) D$ FROM C1$, N1$, Bl$, Al$

40 GOSUB 'll1 (H$, H1$, H2$, D$)

40 IF VO$=HEX(FF) THEN 60

50 STOP "ERROR IN INDEXED READ"

60 REM Good indexed read. Continue processing.

DMS Subroutines 4-25
Draft Copy Confidential

INDEXED REWRITE

General Form:

GOSUB '112 (file-id , efs , alt , len , data)

Where:
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
alt represents the alternate key mask.

. len indicates the length of the record to rewritten. The
value of the len parameter must matcha the record
length exactly, including trailing spaces.

data can be either an alpha-numeric variable, an array
designator, or a literal. If a literal string is used
the information must be enclosed in double quotation
marks.

PURPOSE:

The INDEXED REWRITE ('l12) subroutine enables you to overwrite an
existing record in an indexed file. The rewritten record size is the
same as that of the existing record.

To write the information contained in more than one variable to a file
at one time using the REWRITE subroutine, you can use the $PACK
statement (or some other appropriate BASIC-2 statement) to pack the
information into a single variable.

'RETURNS:

The INDEXED REWRITE subroutine returns the following information:

e V0O$ is the return code. Refer to Appendix A for more information.

GENERAL NOTES:

A record can be rewritten only if the record is read with the hold
option equal "H".

DMS Subroutines 4-26
Draft Copy Confidential

EXAMPLE: (INDEXED REWRITE)

10 DIM C1$5,N1$30,B$3,W$8,D$43

20 W$=HEX(A00SA01EA0035205)

30 $PACK (F = W$) D$ FROM C1$, N1$, Bl$, Al
40 GOSUB 'l112 (H$, H1$, H2$, 43, D$)

50 IF VO$=HEX(FF) THEN 70

60 STOP "ERROR IN INDEXED REWRITE"

70 ...

DMS Subroutines 4-27
Draft Copy Confidential

INDEXED DELETE

General Form:

GOSUB 'l13 (file-id , efs)

Where:
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
PURPOSE:

The INDEXED DELETE ('l113) subroutine enables you to delete a specific
record from an indexed file.

RETURNS:
The INDEXED DELETE subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

GENERAL NOTES:

A record can be rewritten only if the record is read with the hold
option equal "H".

EXAMPLE: (INDEXED DELETE)

10 GOSUB '113 (H$, H1$)

20 IF VO$ = HEX(FF) THEN 40

30 STOP "ERROR IN INDEXED DELETE"

40 REM Indexed delete successful. Continue processing.

In this example, H$ indentifies the file that the INDEXED DELETE
subroutine will operate on.

DMS Subroutines 4-28
Draft Copy Confidential

INDEXED FIND

General Form:

GOSUB. '114 (file-id , efs , select , path , length , value)

Where:
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
select represents the selection critera. The following values
are valid entries for this parameter:
e "8000" indicates equal to
e "2000" represent greater than
e "6000" indicates greater than or equal to
path indicates either primary (0) or alternate key (1-16)
path number.
length is a variable or numeric expression that specifies the .
length of the key.
value is a variable or an alpha or numeric expression that
indicates the value of the key.
PURPOSE:

The INDEXED FIND ('ll4) subroutine enables you to read an indexed file
based on a comparison expressed in the select input parameter to the
primary or alternate key.

RETURNS :

The INDEXED FIND subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

e V1 contains the length of data read (in bytes) in V9$() array.

e VA$ is the alternate key mask.

e V9$() the data read from the file.

DMS Subroutines 4-29
Draft Copy Confidential

EXAMPLE: INDEXED FIND

10 DIM H$2,H1$32,H3$2,K$5

20 K$="00003":REM KEY VALUE

30 K1=0:REM KEY PATH

40 K2=5:REM KEY LENGTH

50 H3$=HEX(2000):REM FIND CRITERIA = GREATERN
60 REM FIND RECORD WITH A KEY VALUE GREATER THAN "00003"
70 GOSUB '114(H$, H1$, H3$, K1, K2, K$)

80 IF VO$=HEX(FF) THEN 90

90 STOP "ERROR IN INDEXED FIND" _
100 REM GOOD INDEXED FIND. CONTINUE PROCESSING."
110 ...

In this example, the selection criterion is set to greater than
(2000). This value indicates that the next record read will have a
primary key value greater than the value of Cl$.

DMS Subroutines 4-30
Draft Copy Confidential

INDEXED LOCK

General Form:

GOSUB '115 (file-id , efs , post , key , length , value)

Where:
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
post represents the position in the record that the key
starts.
key is the key path, either the primary (0)-or alternate
key (1-16).
length is a numeric variable or literal that specifies the
length of the key.
value is alpha-numeric variable or an alpha-numeric literal
that indicates the value of the key.
PURPOSE:

The INDEXED LOCK ('115) subroutine enables you to to have exclusive
rights to an indexed file. No other program can access the file until
you unlock the file.

You can use either the primary or alternate key. See the General
Notes section for more information.

RETURNS:

The INDEXED LOCK subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

DMS Subroutines 4-31
Draft Copy Confidential

GENERAL NOTES

DMS allows a primary key and up to 16 alternate keys. In the INDEXED
READ subroutine, the primary key is indicated by a 0, the alternate
keys are indicated by the numbers 1 through 16..

EXAMPLE: (INDEXED LOCK)

10 H§ = V9$ ' 4

20 GOSUB '115 (H$, H1$, P, K, L, K1$)

30 IF VO$=HEX(FF) THEN 50

40 STOP "ERROR IN LOCK"

50 REM Indexed file lock successful. Continue processing.
60 ...

DMS Subroutines 4-32
Draft Copy Confidential

INDEXED UNLOCK

General Form:

GOSUB '116 (file-id , efs)

Where:
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
PURPOSE:

- The INDEXED UNLOCK ('l115) subroutine enables you to release an indexed
file so that other programs can access the file.

RETURNS :

The INDEXED UNLOCK subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

EXAMPLE: (INDEXED UNLOCK)

10 H$ = V9$

20 GOSUB '116 (H$, H1$)
30 IF VO$=HEX(FF) THEN 50
40 STOP "ERROR IN UNLOCK"

50 REM Indexed file unlock successful. Continue processing.
60 ...

DMS Subroutines 4-33
Draft Copy Confidential

RELATIVE READ

General Form:

GOSUB '117 (file-id., efs , hold , rec-num , number)

Where:
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
information for the specified file.
hold indicates the hold option and can be either "H" or
" v "H" holds the record for exclusive processing.
" " allows other programs to access the record.
rec-num is the relative number of the record to be read.
number is a numeric variable or expression indicating the
number of relative records to be read.
PURPOSE:

The RELATIVE READ ('l17) subroutine enables you to read a specified
record in a relative file. The file must have previously been opened.
RETURNS :

The RELATIVE READ subroutine returns the following information:

‘@ VO$ is the return code. Refer to Appendix A for more information.

e V7$ is the EFS header information for the file indicated by V9% (the
file identifier). Refer to Appendix A for more information.

e V9$() contains eight bytes of status information and the data read
from the file. Refer to the RELATIVE READ General Notes section for
more information.

DMS Subroutines 4-34
Draft Copy Confidential

GENERAL NOTES

In the RELATIVE READ subroutine, the V9$() array is used to store
status information and the data read from the file. The first eight
bytes of the array are used to store the status information. Table
4-2 describes the status information.

Table 4-2. RELATIVE READ Status Information

Byte(s) Description

01 Contains the number of words in the word
block. This value should always be equal
to HEX(01).

02 and 03 Contain the number of records read.

04 and 05 Contain the number of bytes in the byte
block.

06 Contains the datablock ID. This value

should always be equal to 01l.

07 and 08 Contains the number of bytes read. The
value of these two bytes can be up to 64K.

The remaining bytes of the array (starting at the ninth byte) are
used to store the data read from the file.If you know the length
of the records read, you will know how many bytes of V9% will be
used to store the data. If you do not know the length of the
records in the file, or the file contains variable length records
you can use the VAL function on the 7th and 8th bytes of V9$()
array to get the length of the data read. See the Example section
for more information.

The V9$() array is originally dimensioned to hold 4096 bytes of
information (including the status information). However, you can
decrease the size of the array depending on your needs.

DMS Subroutines 4-35
Draft Copy Confidential

EXAMPLE: (RELATIVE READ)
The following is an example of how to use the RELATIVE READ subroutine:

10 DIM C1$5,N1$30,B1$3,W$8,H$2 ,H1$32

15 H$=V9$

20 W$=HEX(A005A01EA0035205)

30 GOSUB 'l17 (H$, H1$, "H", 100, 125, 1)

40 IF VO$=HEX(FF) THEN 60

50 STOP "ERROR IN RELATIVE READ"

60 REM Good relative read. Continue processing.
70 $UNPACK (F=W$) Q$() to Cl1$,N1$,B1$,Al

In this example, the 125th record of the specified file is read. If
the record is being held by another user, the system will wait for up
to 100 seconds to read the record before an error occurrs.

DMS Subroutines 4-36
Draft Copy Confidential

RELATIVE WRITE

General Form:

GOSUB '118 (file-id , efs , number , data)

Where:
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
information for the specified file.
number is a numeric variable or expression indicating the
number of relative records to be read.
data can be either an alpha-numeric variable, an Srray
designator, or a literal. If a literal string is used
the information must be enclosed in double quotation
marks.
PURPOSE:

The RELATIVE WRITE ('118) subroutine enables you to write the next
record to a specified relative file.

To write the information contained in more than one variable *to a file
at one time, you can use the $PACK statement (or some other '
appropriate BASIC-2 statement) to pack the information into a single
variable.

DMS Subroutines 4-37
Draft Copy Confidential

- RETURNS:
The RELATIVE WRITE subroutine returns the following information:
® VO$ is the return code. Refer to Appendix A for more information.

® V7$ is the EFS header information for the file indicated by V9$ (the
file identifier). Refer to Appendix A for more information.

® V9$() contains the following five bytes of status information:

- Byte 01 contains the number of words in the word block. This
value should always be equal to HEX(01).

— Bytes 02 and 03 contain the number of bytes written.

— Bytes 04 and 05 contain the number of bytes in the byte block and
should be HEX(0000).

EXAMPLE: (RELATIVE WRITE)

The following is an example of how to use the RELATIVE WRITE
subroutine: .

10 DIM C1$5,N1$30,B1$3,W$8,D$41,H$2 ,H1$32

20 W$=HEX(A005A01EA0035205)

30$PACK (F=W$) D$ FROM C1$,N1$,Bl$,Al

40 GOSUB '118 (H$, H1$, 1, D$)

50 IF VO$=HEX(FF) THEN 70

60 STOP "ERROR IN RELATIVE WRITE"

70 REM Good relative write. Continue processing.
80 ...

In this example, the value of D§ is written to the file as one record.

DMS Subroutines 4-38
Draft Copy Confidential

RELATIVE REWRITE

General Form:

GOSUB '119 (file-id , efs , number , len , data)

Where:
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
number represents the number of the relative record to be
rewritten.
len indicates the length of the record to fewritten. The
value of the len parameter must matcha the record
length exactly, including trailing spaces.
data can be either an alpha-numeric variable, an array
designator, or a literal. If a literal string is used
the information must be enclosed in double quotation
marks.
PURPOSE:

The RELATIVE REWRITE ('119) subroutine enables you to overwrite an
existing record in a relative file. The record must have been
previously read with the HOLD option.

To write the information contained in more than one variable to a file
at one time using the REWRITE subroutine, you can use the $PACK
statement to pack the information into a single variable or some other
appropriate BASIC-2 statement.

DMS Subroutines 4-39
Draft Copy Confidential

RETURNS:
The RELATIVE REWRITE subroutine returns the following information:
® VO$ is the return code. Refer to Appendix A for more information.

e V7$ is the EFS header information for the file indicated by V9§ (the
file identifier). Refer to Appendix A for more information.

® V9$() contains the following three bytes of status information:

- Byte 0l contains the number of words in the word block and should
be equal to HEX(00).

- Bytes 02 and 03 contain the number of bytes written and should be
equal to HEX(0000).

EXAMPLE: (RELATIVE REWRITE)

The following is an example of how to use the RELATIVE REWRITE
subroutine:

10 DIM C1$5,N1$30,B1$3,W$8,D$43,H$2 ,H1$32

20 W$=HEX(A005A01EA0035205)

30 $PACK (F=W$) D$ FROM Cl$,N1$,Bl1$,Al

40 GOSUB '104 (H$, H1$, 5, 43, D§)

50 IF VO$=HEX(FF) THEN 70

60 STOP "ERROR IN REWRITE"

70 REM Good relative rewrite. Continue processing.
80 ...

In this example, the 5th relative record of the specified file is
rewritten to the file.

DMS Subroutines 4-40
Draft Copy Confidential

RELATIVE DELETE

General Form:

GOSUB '120 (file-id , efs , number)

Where:
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
number represents the number of the relative record to be
deleted.
PURPOSE:

The RELATIVE DELETE ('120) subroutine enables you to delete a specific
record from an relative file.

RETURNS :

The RELATIVE DELETE subroutine returns the following information:

e V0$ is the return code. Refer to Appendix A for more information.

e V7$ is the EFS header information for the file indicated by V9$ (the
file identifier). Refer to Appendix A for more information.

e V9$() contains the following three bytes of status information:

- Byte 01 contains the number of words in the word block and should
be equal to HEX(00).

- Bytes 02 and 03 contain the number of bytes written and should be
equal to HEX(0000). '

DMS Subroutines 4-41
Draft Copy Confidential

EXAMPLE: (RELATIVE DELETE)

10 H$ = V9$:H1$ = V7§

20 GOSUB '120 (H$, H1s$, 5) -

30 IF VO$=HEX(FF) THEN 50

40 STOP "ERROR IN DELETE"

50 REM Good relative record delete. Continue processing.
60 ...

In this example, H$ indicates the file that the fifth relative record
is deleted from. :

DMS Subroutines 4-42
Draft Copy Confidential

BLOCK READ

General Form:

GOSUB '121 (file-id , efs , block-num)

Where:
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
block-num represents the block number of the the block to be
read.
PURPOSE:

The BLOCK READ ('121) subroutine enables you to_read a 2K block of
information from a consecutive, indexed, or relative file.

RETURNS:

The BLOCK READ subroutine returns the following information:

e V0$ is the return code. Refer to Appendix A for more information.
e V9$() contains the data read from the file. This array is 2048

bytes long.

GENERAL NOTES:

Each block that is read contains 2048 bytes of data.

EXAMPLE: (BLOCK READ)

10 H$ = V9$:H1$ = V7$:B1=5

20 GOSUB '121 (H$, H1$, Bl):REM Read block number 5.
30 IF VO$=HEX(FF) THEN 50

40 STOP "ERROR IN BLOCK READ"

50 REM Good block read. Continue processing.

60 ... ’

In this example, block number five of the specified file is read.

DMS Subroutines 4-43
Draft Copy Confidential

BLOCK WRITE

General Form:

GOSUB '120 (file-id , efs , block-num , data)

Where:
file-id is an alpha-numeric variable that represents the file
identifier assigned to the file.
efs is an alpha-numeric variable that represents the EFS
header information for the specified file.
block-num represents the block number of the the block to be
written.
data can be either an alpha-numeric literal or an array
designator. If a literal string is used the
information must be enclosed in double quotation
marks.
PURPOSE:

The BLOCK WRITE ('l22) subroutine enables you to write a 2K block of
information to a consecutive, indexed, or relative file.

RETURNS:
The BLOCK WRITE subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.

GENERAL NOTES:

Each block contains 2048 bytes of data. When you use the BLOCK WRITE
subroutine, you want to write approximately 2048 bytes of data to the
file.

DMS Subroutines 4-44
Draft Copy Confidential

EXAMPLE: (BLOCK WRITE)

10 H$ = V9$:H1$ = V7$:Bl=5

20 GOSUB '122 (H$, H1$, Bl, D$):REM Write block number 5.
30 IF VO$=HEX(FF) THEN 50

40 STOP "ERROR IN BLOCK WRITE"

50 REM Good block write. Continue processing.

60 ...

In this example, block number five is written to the specified file.

DMS Subroutines 4-45
Draft Copy Confidential

FILE CREATE

General Form:

GOSUB '100 (file-name . org , mode , op-flag , create , alt-key)

Where:

file-name

org

mode

opt-flag

create

alt-key

represents the name of the file. The file name can
include the //SYSTEM/VOLUME/LIBRARY/FILENAME. The
file name can also be written as
///VOLUME/LIBRARY/FILENAME. The SYSTEM, LIBRARY, and
FILENAME can be up to 8 characters in length. The
VOLUME can be up to 6 characters in length.

is the organization of the file. The following lists
the valid file organization parameters and their
meaning:

C indicates the file is a consecutive file.
I indicates the file is an indexed file.

R indicates the file is a relative file.

B indicates the file is a block file.

o o 0 O

is the mode the file is opened in. The following lists
the valid mode parameters and their meaning:

e R indicates the file is opened for read only access.
® S indicates the file is opened for shared access.

e X indicates the file is opened for exclusive access.
® E indicates the file is opened for extended access.

indicates whether the file is created or created and
opened. "T" indicates the file is created. " "
indicates the file is created and opened.

specifies the attribute data for the file. See the
General Notes section for more information.

specifies the alternate key information, if required.
See the General Notes section for more information.

DMS Subroutines 4-46

Draft Copy Confidential

PURPOSE:

The FILE CREATE ('100) subroutine enables you to create a DMS file.
The subroutine enables you to specify the file name, including the
system, the library, and actual name of the file. The library, volume
and file name are required; the system name is optional. The FILE
CREATE subroutine also enables you to specify the file type (Indexed,

Consecutive, or Relative,) and the access mode (Read Only, Shared,
Exclusive, or Extended).

RETURNS :
The FILE CREATE subroutine returns the following information:

e V0$ is the return code. Refer to Appendix A for more information.

e V7$ is the EFS header information for the file indicated by V9% (the
file identifier). Refer to Appendix A for more information.

e V9$() contains the following three bytes of status information:

- Byte 01 contains the number of words in the word block which
should be equal to HEX(00).

- Bytes 02 and 03 contain the number of bytes in the byte block
which should be equal to HEX(0000).

GENERAL NOTES

You can use the VS CREATE utility to create and maintain data files.
Through CREATE you can add, delete, modify or examine data in the data
files created using the utility. For more information on the CREATE
utility, refer to the VS File Management Utilities Reference.

The create input parameter requires 40 bytes of information for
consecutive, indexed, and relative files. This parameter requires an
additional 8 bytes of information if the file being created is an
indexed file with more than one key. Appendix A explains the content
of the information required for the create parameter.

DMS Subroutines 4-47
Draft Copy Confidential

EXAMPLE: FILE CREATE)

10 DIM N$32, T$1l, M$1l, A$62, Al$S

20 N$="//SYSTEM/ANYVOL/ANYLIB/FILENAME"

30 T$="I"

40 mznsn

50 GOSUB '200 (N$, T$, M$, " ", A$, Al$)

60 IF VO$=HEX(FF) THEN 80

70 STOP "ERROR IN CREATE"

80 REM Good file create. Continue processing.
90 ...

In this example variables are used to represent the name,
organization, mode, file atributes and alternate key attribute data
parameters. The opt-flag parameter value of " " indicates that the
file is created and opened. ' '

DMS Subroutines 4-48
Draft Copy Confidential

FILE DELETE

General Form:

GOSUB '201 (file-name)

Where:
file-name represents the name of the file. The file name can

include the SYSTEM/VOLUME/LIBRARY/FILENAME. The file
name can also be written as
///VOLUME/LIBRARY/FILENAME. The SYSTEM, LIBRARY, and
FILENAME can be up to 8 characters in length. The
VOLUME can be up to 6 characters in length.

PURPOSE:

The FILE DELETE ('20l1) subroutine enables you to delete any DMS file.

RETURNS:

The FILE DELETE subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.
e V1 is the length of valid data in V9$() array. What data ???

e V7$ is the EFS header information for the file indicated by V9$ (the
file identifier). Refer to Appendix A for more information.

® V9$() contains three bytes of'internal status information.

EXAMPLE: (FILE DELETE)

10 DIM N$32

20 N$="///ANYVOL/ANYLIB/FILENAME"

30 GOSUB '201 (N$)

40 IF VO$=HEX(FF) THEN 60

50 STOP "ERROR IN FILE DELETE"

60 REM File successfully deleted. Continue processing.
70 ...

In this example, the file specified by N$ (///ANYVOL/ANYLIB/FILENAME)
is deleted from the system.

DMS Subroutines 4-49
Draft Copy Confidential

FILE RENAME

General Form:

GOSUB '202 (old-name , new-name)
Where:

old-name represents the name of the file as it currently exists
on the system. The file name can include the
SYSTEM/VOLUME/LIBRARY/FILENAME. The file name can
also be written as ///VOLUME/LIBRARY/FILENAME. The
SYSTEM, LIBRARY, and FILENAME can be up to 8
characters in length. The VOLUME can be up to 6
characters in length.

new-name represents the name of the file as it will be known to
the system after the subroutine executes. The file
name can include the SYSTEM/VOLUME/LIBRARY/FILENAME.
The file name can also be written as
///VOLUME/LIBRARY/FILENAME. The SYSTEM, LIBRARY, and
FILENAME can be up to 8 characters in length. The
VOLUME can be up to 6 characters in length.

PURPOSE:

The FILE RENAME ('202) subroutine enables you to rename any DMS file.

RETURNS:

The FILE RENAME subroutine returns the following information:

e VO$ is the return code. Refer to Appendix A for more information.
e V1 is the length of valid data in V9$() array. What data ???

e V7$ is the EFS header information for the file indicated by V9$ (the
file identifier). Refer to Appendix A for more information.

e V9$() contains three bytes of internal status information.

DMS Subroutines 4-50
Draft Copy Confidential

EXAMPLE: (FILE RENAME)

10 DIM O#32, N$32

20 0O$="///OLDVOL/OLDLIB/OLDNAME"

30 N$="///NEWVOL/NEWLIB/NEWNAME"

40 GOSUB '202 (O$, N$)

50 IF VO$=HEX(FF) THEN 70

60 STOP "ERROR IN FILE RENAME"

80 REM File successfully renamed. Continue processing.
70 ...

In this example, the file specified by N$ (///ANYVOL/ANYLIB/FILENAME)
is deleted from the system.

: DMS Subroutines 4-51
Draft Copy Confidential

GET FILE ATTRIBUTES

General Form:

GOSUB '203 (file-name)

Where:
file-name represents the name of the file. The file name can

include the SYSTEM/VOLUME/LIBRARY/FILENAME. The file
name can also be written as
///VOLUME/LIBRARY/FILENAME. The SYSTEM, LIBRARY, and
FILENAME can be up to 8 characters in length. The
VOLUME can be up to 6 characters in length.

PURPOSE:

The GET FILE ATTRIBUTES ('203) subroutine enables you to retrieve the
value of one or more attributes associated with the specified file.
The file must be opened first.

RETURNS:

The GET FILE ATTRIBUTE subroutine returns the following information:
e VO$ is the return code. Refer to Appendix A for more information.

e V1 is the length of valid data in V9$() array. What data ???

e V7$ is the EFS header information for the file indicated by V9% (the
file identifier). Refer to Appendix A for more information.

e V9$() contains three bytes of internal status information. See
Appendix A for an explanation of the attributes returned.

DMS Subroutines 4-52
Draft Copy Confidential

EXAMPLE: (GET FILE ATTRIBUTES)

10 DIM N$32

20 N$="///ANYVOL/ANYLIB/FILENAME"

30 GOSUB '203

40 IF VO$=HEX(FF) THEN 60

50 STOP "ERROR IN GET FILE ATTRIBUTES"

60 REM Good read on file attributes. Continue processing."
70 ...

In this example, the file attributes for the file
///ANYVOL/ANYLIB/FILENAME are returned and held in V9$() array.

DMS Subroutines 4-53
Draft Copy Confidential

APPENDIX-A
ADDITIONAL INFORMATION

A.l INTRODUCTION

This appendix contains additional information on the following:

® Return codes
e The Extended File Sharing (EFS) information contained in variable V7$
e The file attribute information contained in variable V9$

A.2 RETURN CODES

The return codes generated by the DMS Access Subroutines are
represented in HEX format. Table A-1 lists the return codes generated
by the DMS Access Subroutines with their corresponding explanation.

Table A-1. Return Codes

Return Code
Value Explanation Recovery Action
00 Indicates an error Check your code for possible
: in the subroutine programming or syntax errors.
call. Check the EFS header for more
‘ information.
5A Indicates an error Make sure the 2200/VS LCO task
in the 2258 is operational and that the
firmware. DMS task has been assigned.
Check the EFS header for more
information.
FF No errors detected. If an error is present, check
the EFS header for more
information.

Additional Information A-1
Draft Copy Confidential

A.3 EXTENDED FILE SHARING (EFS) HEADER

The DMS Access Subroutines uses the Extended File Sharing (EFS)

protocol for controlling file information.
The DMS Access Subroutines store the EFS header

bytes long.
information in variable V7$.

The EFS information is 32

Table A-2 describes the information contained in the EFS header.

Table A-2. EFS Information

Byte(s) Explanation Initial Value
(in HEX)

01 through 4 Contain identification FF534D42
information.

05 Is required. If it is other FF
HEX(FF), an error has occurred.

06 Contains the error class.) 00
See the Error Classes section
in this appendix for more
information.

07 Contains the extended command (Initialized
code. This value is initialized by subroutine
depending on the subroutine invoked.)
used.

08 and 09 Contain a two byte error code. 0000
See the Error Codes section in
this appendix for more
information.

10 Is reserved for future use. 00

11 through 22 Are reserved for future use. All zeros.

23 and 24 Are required. FFFF

25 and 26 Reserved for future use. 0000

27 and 28 Reserved for future use. 0000

(continued)

Additional Information

A-2
Draft Copy Confidential

Table A-2. EFS Information (continued)

Byte(s) Explanation Initial Value
(in HEX)
29 and 30 Contain the User Id number. 0000

This value is updated when the
GENERAL OPEN subroutine is used.

31 and 32 Reserved for future use. 0000

A.3.1 Error Classes

The error class indicates which task was invoked when the error
occurred. Table A-3 explains the values returned for the error

classes.
Table A-3. Error Classes
Value Explanation
07 Is reserved for OMT.
08 Indicates the CATALOG server.
09 Indicates the FILE server.
10 Indicates the WITA server.
11 Indicates the PRINT server.
12 indicates the QLI server.
13 - Indicates the QLI:FORMATEE server.
14 | Indicates the QUEUE:JOB server.
15 Indicates the DMPACK server.

20 Indicates the User server.

Additional Information A-3
Draft Copy Confidential

A.3.2 Error Codes

The error code indicates why the error occurred. Table A-4 explains
the values returned for the error codes.

Table A-4. Error Codes

Value Explanation
0 Indicates no error was detected.
1 Indicates that an invalid function

was specified to the server
indicated by the error class.

2 Indicates that the file was not
found. ‘

3 Indicates that the library indicated
was not found.

4 Indicates that too many files were
opened.

5 Indicates that the user has

insufficient access rights.

6 Indicates that an invalid file
identifier was specified.

7 Indicates that there was a server
processing error.

8 Indicates that there was
insufficient space allocated to
perform the required function.

9 Indicates that there was a VIOC
error.
10 Indicates that invalid parameters

were found for the function required.

11 Indicates an invalid file format was
found.

(continued)

Additional Information A-4
Draft Copy Confidential

Table A-4. Error Codes (continued)

Value Explanation

12 Indicates that an invalid open
access mode was found.

13 Indicates that there was a disk
space or a disk space extents error.

14 Indicates that an invalid function
was found for the IO mode.

15 Indicates that the volume requested
is not mounted.

16 Indicates that delete errors where
found.

17 Indicates that an invalid device was
found.

18 Indicates that a NODATA Read was
attempted on a file opened in shared
mode.

19 Indicates that an invalid function
was found during a relative read.

20 Indicates that the file already
exists.

21 Indicates a file possession conflict.

22 Indicates an invalid key size.

23 Indicates an invalid key value.

24 Indicates a Boundary violation
occurred.

25 Indicates that the end of file has
been found.

26 Indicates an invalid attempt to

REWRITE a compressed record.

(continued)

Additional Information
Draft Copy Confidential

A-5

Table A-4. Error Codes (continued)

Value

Explanation

28

29

30

31

32
33-
34
36

37

38
39
40
41,

42

Indicates an invalid alternate key
was found.

Indicates that an invalid function
was specified for an alternate
indexed file.

Indicates a permanent I/0 error was
found.

Indicates that an undefined position
was specified for the READ NEXT
function.

Indicates disk problems were
encountered.

Indicates that recovery problems
were encountered.

Indicates that the file organization
needs to be specified.

Indicates that an invalid WRITE was
issued to a relative file.

Indicates an invalid function was
specified for a file opened in
shared mode.

Indicates an invalid START function
for a file opened in no-shared mode.

Indicates an invalid START for PAM
access method.

Indicates the requested device is in
use.

Indicates the requested device is
not attached.

Indicates that access was denied.

(continued)

Additional Information

A-6

Draft Copy Confidential

Table A-4. Error Codes (continued)

Value Explanation

43 Indicates an invalid sequence for
~ delete, BAM access method, or for a
REWRITE to a consecutive file was
encountered.

44 Indicates that a START WAIT was
igsued but that no I/0 was pending.

45 Indicates that no wait was issued
for the previous I/0.

46 Indicates that there was a timeout
on a shared mode resource wait.

47 Indicates that an indexed file was
requested but that FDR indicates the
file is not an indexed file.

48 Indicates an attempt to compfess
data in a relative file.

96 Indicates that severe DMS errors
were encountered.

98 Indicates that task problems were
encountered an that the task
indicated by the error class should
be restarted.

99 Indicates that a non-specific file
system error was encountered.

FILE ATTRIBUTE INFORMATION

This section explains the file attribute information returned when you
use the GENERAL OPEN ('10l1) or GET FILE ATTRIBUTE ('203) subroutines.

The file attribute data contains 62 bytes of information for
consecutive, indexed, and relative files. This data contains an
additional 8 bytes of information if you are working with an indexed
file with more than one key. Table A-5 explains the initial 62 bytes
of file attribute information.

Additional Information A-7
Draft Copy Confidential

Table A-5. File Attribute Data

Byte(s) Description

01 Indicates the file organization: C for

' consecutive, I for indexed, R for relative,
or B for block.

02 Indicates the record format: F for fixed
length records or V for variable length
records.

03 Indicate the compression flag: Y indicates
compression is used, N indicates
compression is not used.

04 Indicates the file class: A-Z or #, $, or @.

05 through 08 Indicate the approximate number of records
the file contains.

09 through 12 Indicate the number of bytes in each record.

12 through 16 Indicate the number of extents of disk
space allocated.

17 through 20 Indicate the number of blocks in the file.

21 through 24 Indicate the number of blocks allocated for
the file.

25 through 32 Indicate the name of the person who created
the file.

33 through 38 Indicate the date the creation date of the
file. Format is YYMMDD.

39 through 44 Indicate the last date the file was
modified. This date is the same as the
creation date when creating the file.
Format is YYMMDD.

45 through 50 Indicate the expiration date of the file.
Format is YYMMDD.

51 Indicates if the file has a WP prologue and

must be N for no.

{continued)

Additional Information

Draft Copy Confidential

Table A-5.

File Attribute Data (continued)

Byte(s)

Description

52 and 53

Indicate the primary key position for
indexed files. For non-indexed files this
value is HEX(0000).

54 and 55

Indicate the primary key length for indexed
files. For non-indexed files this value is
HEX(0000).

56 and 57

Indicate the number of alternate keys for
indexed files. Indexed files can have
between 1 and 16 alternate keys. For
non-indexed files this value is HEX(0000).

58 and 59

Indicate the alternate key mask for indexed
files. For non-indexed files this value is
0000

60 through 62

Indicate the file access. 7?7 for write,
?7? for read, or ?2?? for execute.

Table A-6 explains the file attribute information returned or
required for indexed files with alternate keys.

Additional Informatio A-9

Draft Copy Confidential i :

Table A-6. Alternate Key File Attribute Data

Byte(s) Description

01 Indicates whether records with duplicate
alternate keys are allowed. Y indicates
that duplicates are allowed. N indicates
duplicates are not allowed.

02 Indicates whether the alternate key is to
be compressed. Y indicates the key is
compressed. N indicates the key is not

compressed.
03 and 04 Indicate the ordinal number.

05 and 06 Indicate the start position of the
alternate key. .

07 and 8 Indicate the length in bytes of the
alternate key.

A.5 FILE CREATE INFORMATION

This section explains the information required for the create
input parameter for the FILE CREATE ('100) subroutine.

The create paramete requuires 40 bytes of information for
consecutive, indexed, and relative files. This parameter requires
an additional 8 bytes of information if you are creating an
indexed file with more than one key. Table A-7 explains the
initial 40 bytes of information.

Additional Information A-10
Draft Copy Confidential.

Table A-7. Create Parameter Data

Byte(s) Description

01 Indicates the file organization: C for
consecutive, I for indexed, R for relative,
or B for block.

02 Indicates the record format: F for fixed
length records or V for variable length
records.

03 Indicates the file class: A-Z or #, $, or @.

04 Indicate the compression flag: Y indicates

compression is used, N indicates
compression is not used.

05 through 08 Indicate the approximate number of records
the file contains.

09 through 12 Indicate the number of bytes in each record.

13 through 16 Indicate the number of blocks allocated for
the file.

17 through 20 Indicate the size of blocks in the file.

21 through 26 Indicate the expiration date of the file.

Format is YYMMDD.

27 Indicates if the file has a WP prologue and
must be N for no.

28 and 29 Indicate the primary key position for
indexed files. For non-indexed files this
value is HEX(0000).

30 and 31 Indicate the primary key length for indexed
files. For non-indexed files this value is
HEX(0000).

32 and 33 Indicate the number of alternate keys for

indexed files. Indexed files can have
between 1 and 16 alternate keys. For
non-indexed files this wvalue is HEX(0000).

34 Indicates whether to take the created space
and must be N for no.

(continued)

Additional Information A-1l1l
Draft Copy Confidential

Table A-7. Create Parameter Data (continued)

Byte(s) Description

35 For print files only; otherwise HEX(00).
Indicates the print form number. Print
form numbers are established by your site
operations.

36 For print files only:; otherwise HEX(00).
Indicates the print class. Print classes
are established by your site operations.

37 For print files only:; otherwise HEX(00).
Indicates the printer device number.
Printer device numbers are established by
your site operations.

38 For prinf files only; otherwise HEX(00).
Indicates the number of copies to be
printed.

39 For print files only; otherwise HEX(00).

Indicates the status; either R for release
or H for hold.

40 For print files only; otherwise HEX(00).
Indicates the disposition; either R for
release or H for hold.

Table A-8 explains the create data required for indexed files with
alternate keys.

Additional Information A-12
Draft Copy Confidential

Table A-6.

Create Data for Files With Alternate Keys

Byte(s)

Description

0l

Indicates whether records with duplicate
alternate keys are allowed. Y indicates
that duplicates are allowed. N indicates
duplicates are not allowed.

02

Indicates whether the alternate key is to
be compressed. Y indicates the key is
compressed. N indicates the key is not
compressed.

03 and 04

Indicate the ordinal number, 0 through 185.

05 and 06

Indicate the start position of the
alternate key. The start position is zeo
based.

07 and 8

Indicate the length in bytes of the
alternate key. '

Additional Information

Draft Copy Confidential

A-13

	Cover
	Preface
	Table of Contents
	Chapter 1: Programmer's Introduction to the 2200 LCO
	1.1: Overview
	1.2: 2200/VS LCO Filing Services

	Chapter 2: 2200 VDISK Access
	2.1: Introduction
	2.2: Using VDISKs
	2.2.1: Using VDISK with Existing 2200 Programs
	2.2.2: How to Submit Programs that Access VDISK

	2.3: VDISK Performance Considerations
	2.4: Improving VDISK Performance
	2.5: Moving Existing 2200 Files to VDISK

	Chapter 3: Introduction to Native DMS Access
	3.1: Introduction
	3.2: Brief Description of the DMS Access Subroutines
	3.3: How to Use the DMS Access Subroutines
	3.4: DMS Access Programming Requirements and Performance Considerations
	3.4.1: How to Submit Programs that Access Native DMS Files

	3.5: General Notes on the DMS Access Subroutines
	3.5.1: Variables Reserved by the DMS Access Subroutines
	3.5.2: Using Variables or LIterals for Input Parameters

	3.6: Moving Existing Files from the 2200 to the VS
	3.7: Moving Files from the VS to the 2200

	Chapter 4: Detailed Description of the DMS Access Subroutines
	4.1: Introduction
	4.2: Notes on the General Form Selection
	General Open
	General Close
	Consecutive Read
	Consecutive Write
	Consecutive Rewrite
	Consecutive Skip
	Consecutive Lock
	Consecutive Unlock
	Indexed Read
	Indexed Read Next
	Indexed Write
	Indexed Rewrite
	Indexed Delete
	Indexed Find
	Indexed Lock
	Indexed Unlock
	Relative Read
	Relative Write
	Relative Rewrite
	Relative Delete
	Block Read
	Block Write
	File Create
	File Delete
	File Rename
	Get File Attributes

	Appendix A: Additional Information
	A.1: Introduction
	A.2: Return Codes
	A.3: Extended File Sharing (EFS) Header
	A.3.1: Error Classes
	A.3.2: Error Codes

	A.4: File Attribute Information
	A.5: File Create Information

