(WANG) 2200 Plotter

Utilities Manual

2200 Plotter

Utilities Manual

AAAAAAAAAAAAAAAAA

Disclaimer of Warranties
and Limitation of Liabilities

L
The staff of Wang Laboratories, Inc., has taken due care in preparing
this manual; however, nothing contained herein modifies or alters in any

way the

standard terms and conditions of the Wang purchase, lease, or

license agreement by which this software package was acquired, nor
increases in any way Wang's liability to the customer. In no event shall
Wang Laboratories, Inc., or its subsidiaries be liable for incidental or con-
sequential damages in connection with or arising from the use of the soft-
ware package, the accompanying manual, or any related materials.

NOTICE:

All Wang Program Products are licensed to customers in accordance

with the

terms and conditions of the Wang Laboratories, Inc. Standard

Program Products License; no ownership of Wang Software is trans-
ferred and any use beyond the terms of the aforesaid License, without the
written authorization of Wang Laboratories, Inc., is prohibited.

(WANG)

LABORATORIES, INC.

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 459-5000, TWX 710 343-6769, TELEX 94-7421

ii

HOW TO USE THIS MANUAL

The 2200 Plotter Utilities Manual provides operating instructions and
program descriptions for each of the Plotter Utility subroutines. The manual
does not, however, undertake to explain or discuss the operation of individual
plotters; general information on plotter operation and control can be found in
the appropriate plotter reference manual. It is recommended that the
programmer be familiar with the operation of his plotter before attempting to
use the Plotter Utilities.

The Plotter Utility Package currently is available in two versions, a
disk version and a tape version*. The disk version may be obtained on a Model
2270-type diskette or a minidiskette. Package numbers for all three media are
listed below. Be sure the version you have received is the proper one for
your installation. ’

Tape cassette - 195-0021-1
Model 2270-type diskette - 195-0021-3
Minidiskette - 195-0021-8

A particularly noteworthy feature of the Plotter Utility Package is the
versatile alphanumeric labelling capability provided. A1l figures in the body
of this manual were plotted and labelled with the Plotter Utilities on a Model
2232B Digital Flatbed Plotter.

* The tape version of the Plotter Utilities does not contain the Enhanced
Character Set or the provisions described in Chapter 11.

. -
Pl

TABLE OF CONTENTS!

CHAPTER 1 INTRODUCTION e e e e e e e e e e e e
1.1 Introduction to the Plotter Utilities. e
Memory Requirements and Minimum System Configuration
Summaries of the Plotter Utility Routines.
1.2 System Philosophy and Design e e e
1.3 User Responsibilities. ¢ v v v v v v v v v v v v
1.4 The "Active Plotting Area" e e e e e e
(00 1 T
1.5 Character Generat1on e e e e e e e e e e e e e e e e s
1.6 Reserved Variables e e e e e e e e e aee
CHAPTER 2 SYSTEM START-UP. & & v ¢ v v v v 6 e e e e o o o o o s o o s
2.1 Loading the "START" Module . . . « v ¢ ¢« ¢ ¢ « « . . e
Loading the START Module Directly. . . « ¢« ¢ ¢« ¢« ¢ ¢ ¢ o « &
Loading the START Module via ISS o o e e
The START Module Menu. e e e e e e
2.2 Initializing the Character Generation Array « s o .
2.3 Loading the Plotter Utilities. e e e e e e e e
2.4 Altering Line 30 of the Utility Routines
2.5 Accessing the Plotter Utilities from the Keyboard via
Special Function Keys. « « v ¢« ¢ ¢ ¢« v v ¢ o o & > s o o o o
2.6 Clearing the START Module. e o = o 8 o s s s s
CHAPTER 3 SET PLOTTER BOUNDARIES (DEFFN'19). . . &« v v ¢« ¢ v v ¢ o o
3.1 Program Description. . « « « ¢« ¢« ¢ ¢ ¢ ¢ 4 o . o« e e e e e
3.2 Subroutine Argument List o« o 4 e
3.3 Restrictions and Exceptions. o o« e e e
3.4 Examples of Valid GOSUB' Syntax. . « ¢« ¢« ¢« ¢« ¢ ¢ ¢ o « o« o &
CHAPTER 4 PLOT CHARACTER STRING (STRAIGHT LINE) (DEFFN'20)
4.1 Program Description. . . . « ¢« v ¢ v v o v et e e e e .
4.2 Subroutine Argument List e e e e e e e e e e .
4.3 Restrictions and Exceptions. e e e e
4.4 Examples of Valid GOSUB' Syntax. e e e e e
CHAPTER 5 PLOT CHARACTER STRING (CIRCLE) (DEFFN'21). « + . . .
5.1 Program Description. . . . ¢« ¢ ¢ ¢« ¢ ¢ ¢ ¢« 4 o o . e e
5.2 Subroutine Argument List ¢ o o 0000
5.3 Restrictions and Exceptions. e e e e e e e e
5.4 Examples of Valid GOSUB' Syntax. c s s 4 s s o

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

6

A OO
e o o o
LW

~

NN
L] L] L] L]
HWMN =

W=

PWnN

LOAD CHARACTER GENERATION ARRAY (DEFFN'22) « « « . . 37
Program Description. . « « ¢ ¢ ¢ o o ¢ v o o 0 00 e e e 37
Subroutine Argument List . . . « . . ¢« ¢ o o 0o o0 o 38
Restrictions and Exceptions. . . « ¢« ¢« ¢« ¢ ¢ ¢ ¢ o o o o o 38
Examples of Valid GOSUB' Syntax. . . « « « « ¢ ¢ v o ¢ ¢ ¢ & 38
PLOT LINE BETWEEN TWO POINTS (DEFFN'25). . . . « « ¢« « « « . 39
Program Description. . . « ¢« ¢« ¢ ¢« ¢ ¢ ¢ 0 o 0 e e 0o 0. 39
Subroutine Argument List ¢« ¢« ¢« ¢« ¢ ¢ o 0 0 0 e .. 39
Restrictions and Exceptions. . . . « ¢« « ¢ ¢ ¢ ¢ ¢ ¢« ¢« o & & 41
Examples of Valid GOSUB' Syntax. « « ¢« ¢ ¢ o ¢ + & 41
PLOT COORDINATE GRID (DEFFN'26). « « ¢« v v ¢ ¢ o o o o o o 42
Program Description. « ¢ ¢ o . o o . . e e e e e 42
Subroutine Argument List ¢ ¢ ¢« o 0 0 00000 . 42
Restrictions and Exceptions. . . ¢« « v ¢ ¢« ¢ ¢ ¢ ¢ &« ¢ o o & 44
Examples of Valid GOSUB' Syntax. . . « ¢« ¢« ¢« ¢« ¢ ¢ ¢ ¢ ¢« o & 44
PLOT CIRCLE (DEFFN'27) . v & o ¢ ¢ o« o o o o o o o o o o o & 45
Program Description. ¢« v ¢« ¢ o o o000 e 45
Subroutine Argument List ¢ . o o000 45
Restrictions and Exceptions. « « « ¢« « ¢« o« . e o .. 47
Examples of Valid GOSUB' Syntax.« . . . A48
PLOT BORDER AROUND ACTIVE PLOTTING AREA (DEFFN'28) 49
Program Description. e e e e e e e e e e e 49
Subroutine Argument List ¢ . ¢ 0 0000 .. 49
Restrictions and Exceptions. . . . « v ¢« ¢ ¢ v ¢ ¢« ¢ o o o & 50
Examples of Valid GOSUB' Syntax. . . .« « « ¢« ¢« ¢ ¢ ¢ ¢ & « & 50
CLEAR SURFACE/PEN SELECT (DEFFN'24). . . . « ¢ v ¢ ¢« « ¢ o . 51
Program Description. « ¢ ¢ ¢ ¢ ¢ v 0 v 0 e e e e . 51
Subroutine Argument List (for Model 2282 Graphic CRT). . . . 51
Subroutine Argument List (for 1 Pen Plotter) 52
Subroutine Argument List (for 3 Pen Plotter) 54
Restrictions and Exceptions. « ¢« ¢ v ¢ ¢« ¢ v v o & . 55
Examples of Valid GOSUB' Syntax . . . « v ¢ v ¢ ¢ ¢ ¢ « « . 55
PLOT INSTRUCTION EMULATOR (DEFFN'29) ¢« v ¢« v « . . 56
Program Description. . . . ¢ ¢ ¢ ¢ ¢ ¢ i i et e e e e e e 56
Subroutine Argument List « ¢« ¢ o ¢ o 0 o 0o . 57
Restrictions and Exceptions. . . .« « ¢ ¢« ¢« ¢« v ¢ ¢ ¢ ¢« o o 59
Examples of Valid GOSUB' Syntax. « o o ¢« v o 59

CHAPTER 13 PLOTTER CONTROL ROUTINE (DEFFN'30) . . & v v v v v v o « . . 60
13.1 Program Description. v v v v v v i e e e e . 60
13.2 Subroutine Argument List v v v v v v v v v ... 60
13.3 Restrictions and Exceptions. . . « v v v v v v 4 v v v . . . 60
APPENDIX A GENERAL FORMS OF THE PLOTTER UTILITY ROUTINES. 61
APPENDIX B CHARACTER SETS e e e e e e e e e e e « + .. 65
APPENDIX C CUSTOMIZING THE PLOTTER CHARACTER SET.+ .. 67
APPENDIX D RESERVED VARIABLE LIST . & & v v v v v v ¢ v ¢ o e v e e 19

APPENDIX E LOADING PROGRAM OVERLAYS WITH THE PLOTTER UTILITIES. 80

APPENDIX F USING THE HARDWARE CHARACTER SET IN CONJUNCTION
WITH THE PLOTTER UTILITIES ¢ ¢ v v v v v v v v v v 81

APPENDIX G GIN MODE ROUTINE FOR TEKTRONIX GRAPHIC TERMINAL (DEFFN'23) . 83
APPENDIX H KEYBOARD/CHARACTER SET CROSS-REFERENCE « e+ .. 85

List of Figures

1-1 Hierarchy of Plotter Control ¢ ¢ v ¢ v v o o 5
1-2 Modified Hierarchy of Plotter Contro] 6
1-3 Active Plotting Area . . . v v ¢ ¢ ¢ v v v 4 e s 0 e 000 7
1-4 Clipping Boundaries e e e e e e e e e e e e e e 8
1-5 Clipping ITlustration ¢ ¢« ¢ ¢ ¢ ¢ ¢ v v ¢ v ¢ o o & 9
1-6 Characters Defined By a Matrix of Vertices 9
3-1 Defining Active Plotting Area . . . « « ¢ ¢« ¢ ¢« ¢ ¢ ¢ ¢ v o & 16
3-2 Defining Plotter Origin ¢« ¢« ¢« ¢ ¢ ¢ ¢ ¢ v ¢ v o v o 19
4-1 Plotted Character String e e e e 23
4-2 9 x 11 Matrix of Vertices for Defining Character 24
4-3 Defining Matrices for Characters of Different Sizes 25
4-4 Spacing Between Consecutive Characters 25
4-5 Position of Character String ¢ ¢ oo o oo o 26
4-6 Positive and Negative Character Size 27
4-7 Character Slant Produced by Displacement 27
4-8 Positive and Negative Character Slant e e e e e 28
4-9 Angleof Slant . . . « « ¢« ¢ ¢« ¢ ¢ ¢« ¢ ¢ o & e A 28
4-10 Rotation of Character Base L1ne e e e e e e e e e e e e e 30
4-11 Character String Having Both Slant and Rotation 30
5-1 Characters Plotted on a Circle e e e e e e 34
5-2 Positive and Negative Character Size e e e e e . 35
5-3 Degrees on Circumference of a Circle« ¢« ¢ ¢ ¢ o .. 35
5-4 Character String Starting, Ending & Centered at 90 36

Y

)

"

\3

A3

]
—

SN PLPWN NN

4-1

PAGE

List of Figures (Cont.)

Dashed, Dotted, and Dashed/Dotted Lines 40
Starting Points of Initial Horizontal & Vertical

Grid Lines « &« v v v v v 4 4 4 e e e e e e e e e e e e 43
Intervals Between Consecutive Grid Lines 43
Use of Line Segments to Approximate a Circle 46
Regular Polygons Plotted with "Plot Circle" 47
Customizing the Character Generation Array 67
Partial Listing of PLOTOO1A « ¢ ¢« ¢« ¢ v v ¢« v o & 68
Code Sequence for Plotting Exclamation Point 69
7 x 9 Matrix of Vertices to Define a Character 70
Decoded Plotting Sequence for Character '#' 71
"#" Character Sketched on 7 x 9 Matrix of Vertices 72

List of Tables

Correlations Between Slant Reference Angles
and Resultant Angles of Slant 29

Vi

CHAPTER 1
INTRODUGTION ,

1.1 INTRODUCTION TO THE PLOTTER UTILITIES

The Wang Plotter Utilities Package consists of a group of utility
subroutines designed to perform a variety of commonly used plotting operations
and to simplify general plotter control for the application programmer. The
utility routines are written not as stand-alone programs (although they can be
accessed directly from the keyboard via the Special Function Keys), but as
subroutines which can be called from a user-supplied application program.

The subroutines perform a variety of functions. One routine permits the
user to define a portion of the plotting surface within which all plotting
will take place (the "active plotting area"). Other routines perform such
commonly used operations as plotting a straight 1line, plotting a circle,
plotting a coordinate grid, and plotting an alphanumeric character string. A
generalized routine called the "Plot Instruction Emulator" simulates nine
primitive plotting instructions; it is a powerful and versatile tool for
writing customized plotter routines.

Memory Requirements and Minimum System Configuration

The plotter utilities require the following minimum system configuration:

Memory - 12K minimum; 16K recommended.

CPU Options - Sort Statements, Plot Statements, and Disk Statements

Peripherals - Disk drive and/or tape cassette drive, any plotter. (With
the addition of a special interface, a Tektronix graphic
display also is supported.)

Total memory requirement for the plotter utilities, dincluding all
utility programs and all variables, is approximately 6K. Since the programmer
has the option to load any combination of selected utilities at any time, and
since occasions when all utilities must be loaded simultaneously are rare, the
6K figure 1is somewhat Tlarger than the actual requirement for most
applications. The procedure for determining the amount of memory required for
a particular combination of utilities is described in Chapter 2.

_ Wang manufactures several different types of plotters, each with its own
unique characteristics and idiosyncrasies. The plotter wutilities are
compatible with all Wang plotters. The utilities have been designed to
obviate, to the extent possible, all dependence on individual plotter
hardware. Only two utility routines, the Plotter Control and the Clear
Surface/Pen Select routines, directly access the plotter, and are directly
hardware dependent. The remaining routines are totally independent of the
hardware and in general function identically for all plotters as well as the
graphic display. Several versions of the Plotter Control Routine are included
in the utility package: one version supports the Model 2202 plotting output
writer, a second version supports the Model 2212 and Model 2232B digital
flatbed plotters, a third version supports the Model 2272-2 drum plotter, and
the Model 2282 Graphic CRT, a fourth version supports the Tektronix graphic
display terminal, and a fifth version supports the Model 2281P.

Summaries of the Plotter Utility Routines

Each of the plotter utility programs is briefly summarized below:
1. SET PLOTTER BOUNDARIES (DEFFN'19)

The Set Plotter Boundaries routine is used to define the boundaries
of the "active plotting area." The "active plotting area" is that
portion of the physical plotting surface available for plotting.
Once defined, this area is recognized by all subsequent plotter
utilities, and no plotting is permitted beyond its boundaries. (The
boundaries can, however, be altered at any time under program
control.)

2. LOAD CHARACTER GENERATION ARRAY (DEFFN'22)

This routine loads a previously created character generation array
from disk into memory. The character generation array is created
initially by the START module during system startup and is stored
out on disk or tape at that time. Two character generation arrays
are available with disk versions the Plotter Utilities System. One
array contains coded plotting sequences for 63 English alphanumeric
characters and symbols. The other array contains coded plotting
sequences for Greek characters and special electronic symbols. Each
array must be Tloaded into memory prior to plotting a character
string.

The tape version of the Plotter Utilities System contains only the
array for the 63 English alphanumeric characters and symbols.

3. PLOT CHARACTER STRING (STRAIGHT LINE) (DEFFN'20)

The Plot Character String (Straight Line) routine plots a string of
alphanumeric characters on a straight 1line called the "character
base 1ine." The characters are defined in the character generation
array, which must be resident in memory to run this routine. The
character size is specified by the user, as are the character slant
and rotation. The base line coordinates also are specified by the
programmer. ‘

(s

10.

PLOT CHARACTER STRING (ON A CIRCLE) (DEFFN'21)

This routine plots a string of alphanumeric characters on the
circumference of a circle. The center point and radius of the
circle are determined by the user, as are the character size and
slant. The character string is plotted relative to a reference
point on the circle.

PLOT LINE BETWEEN TWO POINTS (DEFFN'25)

The Plot Line routine plots a straight line between two points whose
coordinates are specified by the user. The 1line may be solid,
dashed, dotted, or dashed/dotted.

PLOT COORDINATE GRID (DEFFN'26)

The Plot Coordinate Grid routine plots a coordinate grid of
horizontal and vertical grid lines in the active plotting area. The
origin point of the grid, along with the increments between
successive horizontal grid 1lines and between successive vertical
grid lines, are specified by the programmer.

PLOT CIRCLE (DEFFN'27)

The Plot Circle routine plots a circle whose center point and radius
length are defined by the user. The size of the straight-line
segments used in approximating the circle also must be specified by
the user.

PLOT BORDER AROUND ACTIVE PLOTTING AREA (DEFFN'28)

This routine plots a border around the active plotting area defined
in the Set Plotter Boundaries routine. The border may be plotted as
a solid, dashed, dotted, or dashed/dotted line.

CLEAR SURFACE/PEN SELECT (DEFFN'24)

When used with the Model 2282 Graphic CRT, this routine enables the
programmer to automatically clear the screen and select PLOT or
Erase modes of operation. On the Model 2272-2 plotter this routine
automatically selects the desired pen. On all plotters this routine
prompts the operator when a new plotting surface is needed and on

all pen plotters it alerts the operator that a different pen must be
mounted.

GIN Mode Routine (DEFFN'23)

This routine enables the 2200 to receive graphic input in the form
of screen coordinates from certain models of the Tektronix graphic
display terminal. (The GIN Mode Routine is used only with a
Tektronix graphic display, and is covered in Appendix G.)

11. PLOT INSTRUCTION EMULATOR (DEFFN'29)

This utility is a generalized routine which simulates nine basic
plot instructions. The user is required to specify only three
parameters: an X and a Y value, and an instruction code. The X and
Y values may be interpreted as X and Y coordinates, or as X and Y
deltas, depending upon the instruction code specified. The nine
available instructions are listed below:

Send Plotter Home

Move Delta X, Delta Y (Tacit Move)
Move to X,Y (Tacit Move)

Move Delta X, Delta Y (Actual Move)
Move to X,Y (Actual Move)

Move Delta X, Delta Y Plot Point
Move to X,Y (Plot Point)

Plot Line Delta X, Delta Y

Plot Line to X,Y

OCOoONOOTPHEWN =

12. PLOTTER CONTROL ROUTINE (DEFFN'30)

The Plotter Control Routine is the only routine which addresses the
plotter directly, and is the single device-dependent routine. It is
called by the Plot Instruction Emulator to execute the plotter
operations simulated by the instructions in the Emulator. Five
versions of the Plotter Control Routine are provided: one version
controls the Model 2212 and Model 2232B plotters, a second version
controls the Model 2202 plotter, a third version controls the Model
2272-2 drum plotter and the Model 2282 Graphic CRT. A fourth
version controls the Tektronix graphic display and a fifth version
controls the Model 2281P. The Plotter Control Routine 1is not
designed to be directly accessed by the user.

1.2 SYSTEM PHILOSOPHY AND DESIGN

The plotter utility package is intended to provide a powerful and
versatile plotter control capability which also simplifies plotter control for
the application programmer. A major design consideration was the isolation of
the plotting routines from the idiosyncrasies of individual plotters. This
intent to "universalize" the routines with respect to different plotters gave
rise to a hierarchical structure in which routines at each level call routines
on the next lower level to control the plotter, and only the Plotter Control
Routine itself, on the lowest level, directly addresses the plotter. Figure
1-1 illustrates the hierarchy, showing four levels of control.

()

! APPLICATION

PROGRAM

SET PLOT CHAR. PLOT CHAR. PLOT PLOT PLOT COORD. PLOT
PLOTTER STRING STRING LINE CIRCLE GRID BORDER
BOUNDARIES (LINE) (CIRCLE)

\ Y

PLOT INSTRUCTION CLEAR SURFACE
EMULATOR PEN SELECT
Y

PLOTTER CONTROL
ROUTINE

PLOTTER [

Figure 1-1. The Hierarchy of Plotter Control

As the figure illustrates, each of the special utilities calls the Plot
Instruction Emulator to execute a specific plot. The Plot Instruction
Emulator, in turn, calls the Plotter Control Routine, which translates each
plot instruction into a sequence of PLOT statements and directly controls
plotter movement. Because all direct plotter control originates in this
routine, the Plotter Control Routine is the only device-dependent module in
the utility package. Al1 significant differences between the various plotters
are compensated for in the Plotter Control Routine.

If the application programmer requires a plotter routine not provided by
any of the special plot routines, he can bypass those routines and call the
Plot Instruction Emulator directly from his mainline program. The nine
plotter instructions simulated by the Plot Instruction Emulator provide a
powerful tool for controlling plotter operation, with minimal "housekeeping"
required by the application program.

APPLICATION
PROGRAM

Y
PLOT INSTRUCTION

. EMULATOR
Y Y
PLOTTER CONTROL CLEAR SURFACE
ROUTINE PEN SELECT
\
PLOTTER (=

Figure 1-2. Modified Hierarchy of Plotter Control (Plot Instruction
Emulator Called Directly by Application Program)

1.3 USER RESPONSIBILITIES

While the plotter utilities relieve the programmer of many of the
tedious and often complex "housekeeping” functions 1involved in plotter
control, they should not be regarded as independent, self-contained programs.
There are several important functions associated with plotter control which
must be carried out by the programmer in his application program. These
user-performed functions include the following:

1. Scaling. The plotter utilities operate exclusively with plotter
units. The use of absolute units enables the utilities to avoid the
problem of compensating for differences between plotter models. The
user must scale for his application, and compensate for his
particular plotter, in his program; coordinates and distances passed
to the subroutines must be in plotter units.

2. Error Checking. In general, the plotter subroutines do not check
parameters passed from the application program for errors such as
range errors, invalid values, etc. Such error checks must be
performed by the user's program before a subroutine is called.
Suggestions for specific errors which should be checked for each
subroutine are provided in the "Restrictions and Exceptions" section
of the chapter devoted to the subroutine.

13-

(3

3. Designing Special Symbols. The START module of the plotter utility
package initializes either one or both of two character generation
arrays. One array is called the Standard Array and contains 63
English alphanumeric characters and symbols. The second array is
the Enhanced Array and contains an additional 26 special characters
including Greek 1letters and electronic symbols. Each array is
stored on the user's disk with the START module. Subsequently, the
user can plot any of the characters by recalling the array and using
one of the Plot Character String subroutines. If the user wishes to
plot special characters not included in the standard or enhanced
array, he must design his own characters according to the procedure
explained in Appendix C.

4, Radian-to-degree conversion. The subroutines operate exclusively
with degrees. If the programmer works in radians, he must convert
from radians to degrees in the application program prior to passing
angles to a subroutine. Note also that the subroutines which work
with angles (the two plot character routines and the plot circle
routine) automatically select degrees for their own computations.
If the programmer is working in radians, he must reselect radians in
his application program following execution of the subroutine.

1.4 THE "ACTIVE PLOTTING AREA"

Before a plot can be executed with the plotter utilities, the programmer
must define an "active plotting area." The "active plotting area" is a
rectangular region on the plotting surface within which all plotting will take
place, and its 1limits are defined by the Set Plotter Boundaries Routine
(DEFFN'19).

The active plotting area may occupy the entire physical plotting surface
or any portion of it (Figure 1-3). Once defined, the boundaries of this area
mark the limits beyond which no plotting is carried out.

PHYSICAL PLOTTING AREA PHYSICAL PLOTTING AREA
Foesssssssssss- |
] [}
| |
] I
1]
....... ACTIVE ! I acTive
" 1 | PLOTTING : W— PLOTTING
' :/ AREA ’ 1 i| AREA
) 1 1 |
l . : '
!]] :
] 1] |
| I 4] 1
L =]
PLOTTER ORIGIN (X.Y=@) PLOTTER ORIGIN (X.Y=@)
Figure 1-3a. Figure 1-3b.
Active Plotting Area Active Plotting Area
Occupies a Portion of Occupies A11 of Physical
Physical Plotting Area Plotting Area

Clipping
A11 plotter movement beyond the boundaries of the active plotting area ﬁ“%
is inhibited by the plotter utilities. The technique of terminating a plot at p—

a predefined boundary 1is known as "clipping." The plotter utilities perform
automatic clipping in all cases.

Active Plotting Area Active Plotting Area

r—--------
Lo 0 o0 0 0 0 a0 0 00 00 0 o

'
[}
)
)
)
)
)
[}
[}
)
)
)
)
[}
]
]
)
)
]
[}
[}
]
)
[}
]
[N

]
]
- e - oo oo onad

Figure 1-4a. Figure 1-4b.
Plotted Figure with Plotted Figure with
No Clipping (Figure Clipping. Clipped Portion
Fits Completely (Not Actually Plotted) is
With;'n Active Plotting Indicated by Dotted Line -
Area h

To avoid truncating a plot when such truncation is not desired, the
- programmer must see to it that the plot falls completely within the active
plotting area. This problem can be minimized by defining the boundaries of
the active plotting area to coincide with the physical 1imits of the plotting
area. For many applications, however, it may be desirable to restrict
plotting to a particular region of the physical plotting area, or to truncate
unwanted segments of a plot. By altering the size and location of the active
plotting area, the programmer can reproduce any specific portion of plot; by
modifying the scaling factor along with the plotter boundaries, a specific
segment of a plot can be enlarged or reduced. (See Figures 1-4, 1-5.)

(L3

B

rocecannmag

WANG | | (WANG (WANG) | | ((WANG)
s 1 sTep 2 STEP 3 GTEP 4

Figure 1-5. An Illustration of the Use of Clipping: Plotting the Wang Logo.
The Dashed Line Represents the Perimeter of the Active Plotting
Area at Each Step. The Curved Lines at Both Ends of the Logo
are Produced by Clipping Circles. The Circles are Plotted
with the Plot Circle Routine (DEFFN'27); by Dynamically Altering
the Boundaries of the Active Plotting Area at Steps 2 and 3, the
qugram Causes Only the Desired Segment of Each Circle to be

otted.

1.5 CHARACTER GENERATION

The plotter utilities provide for two sets of characters. The Standard
Character Set contains 64 alphanumeric characters, including all characters
found on the system keyboard, with the exception of lower case letters. The
Enhanced Character Set contains upper and lowercase Greek characters and nine
commonly used electronic symbols. (The characters in each set are illustrated
in Appendix B.) Each character is defined by means of a 9 x 11 matrix of
vertices (Figure 1-6). The vertices are numbered row by row, starting at the
lower Tleft-hand corner and concluding at the upper right-hand corner.
Individual characters are defined by specifying a unique sequence of vertices
between which 1lines are to be drawn. When the characters are plotted, the
relative values of the vertices are converted to plotter coordinates, and the
character is reproduced at a selected location.

Figure 1-6. Characters Defined By Means of a Matrix of Vertices

Characters in the standard character set and in the enhanced character
set are initially defined by the Initjalize Character Array routine, which is
accessed via the START module during system startup. The character array
created by this routine is stored on disk or tape following initialization,
and can be recalled into memory with the Load Character Generation Array
routine (see Chapter 6). The array must be resident in memory in order to
plot characters.

If the programmer wishes to plot one or more characters not provided in
the two character sets, he must modify the system-generated character arrays,
or else produce a completely new arrays. In either case, the process is
somewhat complex and is described in Appendix C.

1.6 RESERVED VARIABLES

In general, all variable names which contain the letters A, B, C, D, E
and F are reserved for use by the utility routines and should not be utilized
by the programmer in his application program. Although not every variable
within this range is currently used by the utilities, any additional variables
required for future updates will be drawn exclusively from this group.
Appendix D Tlists the specific variables employed by the most recent version of
the utilities routines.

10

(]

CHAPTER 2
SYSTEM START-UP,

2.1 LOADING THE "START" MODULE

The plotter utilities must be accessed initially through the START
module. The START module may be loaded directly from the Utilities disk, or
it may be loaded via the Integrated Support System (ISS).

Loading the START Module Directly

If the plotter utilities are not accessed through the ISS, the START
module must be loaded directly from the Plotter Utilities Disk or tape. In
this case, the disk or tape must be mounted in the drive having the default
address (normally 310 for disk, 10A for tape), since the START module
automatically attempts to load the utilities from the default address. To
load the START module itself, enter LOAD "START" (for tape) or LOAD DC F
"START" (for disk), and key RETURN(EXEC).

Loading the START Module Via ISS

If the Integrated Support System is used to access the plotter
utilities, the utilities disk may be mounted in any drive. The ISS
APPLICATION routine permits the operator to select the device address at which
the utilities disk is mounted, and the START module is automatically loaded
from that address.

The START Module Menu

When the START module is executed (via RUN(EXEC)), it displays an
abbreviated menu containing three items: INIT CHARACTER ARRAY, GENERATE
UTILITY SET, and RETURN TO 'START'. The last routine, accessed via Special
Function Key 31, is used only for ISS applications; it causes the ISS system
START module to be reloaded. INIT CHARACTER ARRAY and GENERATE UTILITY SET are
described in the following sections.

11

2.2 INITIALIZING THE CHARACTER GENERATION ARRAY

As the preceding chapter explained, the system itself will create two
character generation arrays containing coded plotting routines for a total of
89 alphanumeric characters and symbols. A character array is a prerequisite
for all character plotting with the Plotter Utilities. The array is
initialized and stored in a data file on disk or tape with the INIT CHARACTER
ARRAY routine, accessed via Special Function Key 0.

In disk versions, before the routine is loaded the operator must specify
either the Standard array or the Enhanced array. Also, the operator is
requested to indicate the device address of the output disk on which the
character array is to be stored, and to enter the file name assigned to the
character data file on disk.

In tape versions, the operator is requested to enter the device address
of the output tape. After a tape has been mounted at this address, the
operator must enter the number of files to be skipped prior to recording the
character data file. If the character data file is to become the first file
on the tape, the number of files to be skipped is zero. Otherwise, the number
of files to be skipped is equal to the number of files already recorded on the
output tape.

The system then opens a data file on the specified output disk or tape
and stores the contents of the character array in the file. Note that since
the character data file is a cataloged file, the output disk must contain a
catalog. '

NOTE:

The Wang BASIC Sort statements are employed by the INIT
CHARACTER ARRAY routine. If your system does not offer the
Sort statements, you cannot use the utilities character
set. You can, however, use the built-in hardware character
set provided by the plotter itself (all Wang plotters
excep% the Model 2232B). Refer to Appendix F for further
details.

2.3 LOADING THE PLOTTER UTILITIES

The GENERATE UTILITY SET routine (Special Function Key 1) permits the
user to load selected plotter utilities from the utilities disk into memory.

Before loading any routines, however, the operator must indicate which graphic
output device is to be used:

ENTER THE OUTPUT DEVICE.

- 2202

2212, 2232 (2272 or 2282)
2272 or 2282

Tektronix

2281P

W=
[R |

The response entered determines which version of the Plotter Coqtro1
Routine will be loaded. Note that the Model 2272 and Model 2282 are listed
next to Option 2 as well as Option 3. The control routine which supports the
2212 and 2232B (Option 2) also supports the 2272 and the 2282 and permits the
same programs to be used with all four plotters. The control routine
identified by Option 3 is designed exclusively for the 2272 and 2282 to
provide optimized performance. This routine should be -se1gcted whenever
compatibility with other plotters is not an jmportant consideration.

If Option 4 (Tektronix Graphic Display) is selected, the operator is
asked if he wants the Graphic Input (GIN) Mode Routine:

DO YOU WANT THE GIN MODE ROUTINE? (Y/N)

The GIN Mode Routine enables the System 2200 to receive graphic input in
the form of screen coordinates from a Tektronix Graphic Display Terminal.
Only selected terminals have the ability to transmit graphic input; however,
check your Tektronix documentation to determine whether your terminal offers
this feature. The GIN Mode Routine operating instructions are found in
Appendix G.

Once the system has determined which Plotter Control Routine to use, it
displays a menu listing nine of the eleven utility routines. (The Load
Character Generation Array and Plotter Control Routines are not listed in the
menu b%cause they are automatically loaded by other routines if they are
needed.

S.F. DESCRIPTION S.F. DESCRIPTION

1 - INSTRUCTION EMULATOR 6 - CIRCLE

2 - CHARACTERS (LINE) 7 - BORDER

3 - CHARACTERS (ON CIRCLE) 8 - SET PLOTTER BOUNDARIES

4 - LINE BETWEEN TWO POINTS 9 - CLEAR SURFACE/PEN SELECT
5 - GRID
13 - LOAD FLAGGED ROUTINES 15 - RETURN TO ‘'START'

One or more desired routines may be selected by keying the appropriate
Special Function Keys. As a Special Function Key is depressed, the system
flags other routines required by the selected routine by displaying an
asterisk immediately to the left of the special function number in the menu.
When all desired routines have been selected, Special Function Key 13 must be
depressed to load the flagged routines into memory. .

Each routine automatically loads in any other routines required for its =

operation. For example, the Plot Instruction Emulator Routine 1is used by
every special routine and is automatically loaded whenever any one of the
other routines is selected. It need not therefore be selected by the
operator. If, on the other hand, the Plot Instruction Emulator alone is
wanted, it must be selected explicitly. Note that a routine is never 1loaded

twice. If the operator selects one of the special routines (say, Set Plotter .

Boundaries) which automatically loads the Instruction Emulator, and also
selects the Plot Instruction Emulator Routine explicitly, the Emulator Routine
is loaded only once.

13

TN

.T\\

2.4 ALTERING LINE 30 OF THE UTILITY ROUTINES

NOTE:

Key in LISTS to perform the following alterations to 1line
30 of the plotter utility routine.

Line 30 contains a GOSUB'99 statement and is the same in all plotter
utility routines. The GOSUB'99 statement is used by the system when loading
the utilities from disk and must be altered by the programmer when all the
desired routines are loaded. The specific change to be made is determined by
the manner in which the subroutines will be accessed. The programmer has
three options:

1. The plotter utility subroutines normally occupy the Tlowest Tine
numbers in memory. If the routines are not renumbered, the GOSUB'99
statement should be changed to provide an access point to the user's
program. For example, if the user's program begins at 1line 3000,
the GOSUB'99 statement in Tine 30 should be changed to GOTO 3000.

2. If the plotter subroutines are renumbered to follow the user's
program in memory, the GOSUB'99 statement in Tline 30 should be
deleted.

3. If the plotter subroutines are to be accessed directly from the
keyboard via Special Function Keys (refer to Section 2.5), the
GOSUB'99 statement in 1ine 30 should be replaced with a STOP.

2.5 ACCESSING THE PLOTTER UTILITIES FROM
THE KEYBOARD VIA SPECIAL FUNCTION KEYS

The plotter utilities are written as marked subroutines (DEFFN'), and
are normally called from a user's program. However, the integers used to
identify the subroutines all fall within the range 0-31, and each subroutine
may therefore also be called directly from the keyboard with one of the
Special Function Keys 0-31.

14

[}

Once the desired routines have been loaded into memory, they must be RUN
in order to resolve the program and allocate variable space (the GOSUB'99 at
line 30 must be replaced with a STOP). At that point, any resident subroutine
can be accessed in immediate mode by keying the required parameters into the
display (individual parameters must be entered on one 1line and must be
separated by commas) and depressing the Special Function Key associated with
the desired routine. Note that the plotter utility routines all-have numbers

reater than 15, and therefore employ the uppercase Special Function Keys
%requiring that the SHIFT key be down when the Special Function Key is
depressed). The parameters are passed directly to the subroutine, which
immediately proceeds to execute a plotter operation after the last parameter
js accepted. A complete list of the parameters which must be passed to each
subroutine, and the order in which they must be specified, is included in the
chapter devoted to each routine and also in Appendix A.

2.6 CLEARING THE 'START' MODULE

Whether the group of selected routines loaded with the START module is
to be incorporated into the user's application program, or saved as a separate
program file which can be conveniently recalled as needed, the START routine
itself should first be cleared. ~ The START routine occupies lines 9800 through
9980 inclusive and is not wiped out when the utility routines are loaded into
memory. The START routine can be cleared by executing the following statement:

CLEAR P 9800

This statement causes all program lines from line 9800 on to be cleared
from memory.

NOTE:

It is recommended that the START routine be cleared
immediately after the selected plotter utilities are loaded.

15

CHAPTER 3
'SET PLOTTER BOUNDARIES
(DEFFN’ 19)

3.1 PROGRAM DESCRIPTION

The Set Plotter Boundaries Routine 1is used to .initialize, and
subsequently to reset, the limits of the active plotting area. The boundaries
of the active plotting area circumscribe the area in which all plotting will
take place; lines which extend beyond a boundary are clipped at the boundary.
The Set Plotter Boundaries routine requires the coordinates of two reference
points, one at the Tower left-hand corner of the active plotting area, and the
other at the upper right-hand corner. These points are used to construct a
rectangle which defines the active plotting area (Figure 3-1).

PHYSICAL PLOTTING AREA

L

. X\ ACTIVE PLOTTING
| AREA ,

E/

L-’-———’J

Xy sYy

PLOTTER ORIGIN (X, Y=@)

Figure 3-1. Two Points Used to Define the Active Plotting Area

16

gm“

3.2 SUBROUTINE ARGUMENT LIST
DEFFN'19 (A8,B8,A9,B9,D4)

Where:
A8 = X Coordinate, Lower Left Corner.
B8 = Y Coordinate, Lower Left Corner.
A9 = X Coordinate, Upper Right Corner.
B9 = Y Coordinate, Upper Right Corner.
D4 = Option Code.

0 - Reset Boundaries (No Plotter Movement).

1 - Initialize Plotter Boundaries(Move Plotter to Origin, then to
Lower Left).

2 - Reset Boundaries (Move Plotter to Lower Left).

NOTES:

1. The variables shown (A8, B8, A9, B9, D4) are reserved
for use by the subroutine and should not be used by the
programmer in a GOSUB' statement.

2. A1l coordinates must be specified in plotter units
relative to plotter origin.

X and Y Coordinates, Option Code

In addition to the X and Y coordinates of the two reference points, the
subroutine must be passed with an Option Code which identifies the operation
to be performed. There are three options available: initialize plotter
boundaries, reset boundaries and move plotter home, and reset boundaries with
no g]otter move. Each option is identified by one of the Option Codes O, 1,
or 2.

Option 1 is used to initialize the boundaries of the active plotting
area immediately after system startup. The boundaries must be initialized
with Option 1 before any other plotting subroutines are called. (Note: On a
Tektronix graphic display, Option 1 clears the display in addition to setting
the boundaries.)

Options 0 and 2 are used to reset existing plotter boundaries after the
boundaries have been initialized with Option 1. Option O causes the
boundaries to be reset without moving the plotter from its current position.
Option 2 causes the boundaries to be reset and moves the plotter from its
current position to the lower left-hand corner of the newly-defined plotting
area. (Note: On a Tektronix graphic display, Options 0 and 2 reset boundaries
without altering the display image.)

17

Note that although the boundaries of the active plotting area
circumscribe the area in which plotting will take place, the lower left-hand
corner of the active plotting area is not interpreted as the origin point with
respect to which coordinates are expressed. A1l coordinates are interpreted
as relative to the absolute plotter origin 0,0. If the lower left-hand corner
of the active plotting area does not coincide with the plotter origin, it must
be understood that points will be plotted with respect to the plotter origin.
For example, if the coordinates of the lower 1left are 100, 100, and the
plotter is subsequently instructed to plot a point at 50, 50, the point is not
plotted, because it does not fall within the active plotting area. .

SPECIAL NOTE CONCERNING
THE MODEL 2202

The Y axis of the Model 2202 Plotting Output Writer extends
infinitely in both the positive and negative directions.
For this reason, the Model 2202 has no "absolute" plotter
origin, since although X = 0 at the left-hand margin, Y may
arbitrarily be assigned a value of zero at any point on the
vertical axis. When an Option Code of 1 is issued on the
2202, therefore, it instructs the plotter to issue a
Carriage Return which moves the carriage from its current
position to the left-hand margin, without performing a line
feed. This point is then defined as the plotter origin
point (X,Y = 0) for subsequent plotting operations.

A11 subsequent plotter coordinates, including the
coordinates of the active plotting area as well as
coordinates subsequently passed to any plotter utility
routine, are interpreted as relative to the defined plotter
origin point.

18

PHYSICAL PLOTTING AREA

x
&

ACTIVE PLOTTING
AREA

L--

L----—-_

X; 5Ys

CARRIAGE RETURN

]
PLOTTER | ORIGIN PLOTTER CARRIAGE
(X gY = @)

Q.

Figure 3-2. Defining Plotter Origin and Initializing Active
Plotting Area on Model 2202

If the boundaries of the active plotting area are
subsequently altered with Option O or Option 2, the new
coordinates are relative to the plotter origin defined by
Option 1. When, however, a second Option 1 code is issued,
the system issues a carriage return and defines a new
plotter origin at that point. This situation is to be
avoided when plotting, since it has the effect of wiping
out the existing reference point and defining a new one.
Option Code 1 is therefore used only to set up the plotter
boundaries initially; any subsequent alteration of the
boundaries must be done with Option 0 or 2.

SPECIAL NOTE CONCERNING THE MODEL 2272

The Model 2272 plotter permits the operator to change the
orientation of the X and Y axes with the AXIS SELECTION
Switches. This is done independently of the Plotter
Utilities, and generally has no effect upon the operation
of the utility routines themselves. When rotating a
non-symmetrical plot, however, care must be taken to avoid
extending a part of the plot beyond the boundaries of the
plotting area.

19

The Model 2272 also permits the user to set the limits of
the physical plotting area with the SET LIMITS switch. A
line which extends beyond the defined 1limits is
automatically "clipped" by the plotter itself. The
clipping performed by the plotter is much more elementary
than the clipping performed by the Plotter Utilities,
however, since the plotter performs no interpolation.
Thus, a line which extends beyond the plotter 1imits is not
plotted at all by the plotter, while the Plotter Utilities,
in contrast, plot any portion of a 1line which falls within
the active plotting area. To ensure that the portion of a
1ine which falls within the active plotting area will be
plotted, therefore, always see to it that the active
plotting area defined with DEFFN'19 falls completely within
the physical plotting area defined with the plotter's SET
LIMITS switch.

In general, the lower left of the active plotting area will
be defined to coincide with the origin of the physical
plotting area. On the Model 2272, the origin (home)
position can be defined anywhere on the plotting surface,
either manually or under program control. A suggested
procedure for resetting the home position and initializing
the active plotting area so that the Tower left corresponds
to the origin point is described below:

1. Manually position plotter to desired home position with
SLEW switch.

2. Reset home position under program control with HEX(E4)
code, which defines home position at current plotter
location. For example:

PLOT ¢,,HEX(E4)>

This operation automatically sets the Tlimits of the
physical plotting area to the default limits. On the
X-axis, the default limits are the left and right
borders of the plotter. On the Y-axis, the default
limits are + 8191 plotter units from the home position.

3. Set 1limits of active plotting area with a GOSUB'19
subroutine call. For example:

GosuB'19 (0,0,X,Y,1)
where the 0,0 causes the lower left corner to be set at

the home position, and variables X and Y contain the
coordinates of the upper right corner.

20

e

@”“

3.3

3.4

RESTRICTIONS AND EXCEPTIONS

1.

The X coordinates of the lower left corner must be smaller than the
X coordinate of the upper right corner. Similarly, the Y coordinate
of the lower left must be smaller than the Y coordinate of the upper
right. If the Tlower left coordinates exceed those of the upper
right in either case, the coordinates will be accepted by the set
plotter boundaries routine, but no subsequent plotting is possible.

The boundaries of the active plotting area should not be located
outside the physical plotting area (i.e., the physical screen or
plotter bed). This error results from the specification of
coordinates which 1ie outside the limits of the physical plotting
area. The reasons for avoiding such an error may be obvious. The
plotter subroutines maintain internal pointers which identify the
plotter's position at all times. If the plotter is inadvertently
sent to a point outside the physical plotting area, the plotter
itself must stop at the edge of the plotter bed. The plotter
subroutine, however, recognizes only the boundaries of the active
plotting area as limits, and will update the plotter position to the
specified point outside the plotter bed, so long as this point is
within the active plotting area. The end result of such an
operation is that the subroutine's internal pointers no longer
accurately identify the physical position of the plotter. In
effect, the controlling subroutine loses track of where the plotter
is. This situation creates problems for all subsequent plotting.
Note that the whole problem is obviated if the active plotting area
is defined within the physical plotting area. In that case, all
plotter movement 1is terminated at the boundaries of the active
plotting area, and the disparity between physical plotter position
and assumed plotter position never arises.

EXAMPLES OF VALID GOSUB' SYNTAX

1.

2.
3.
4.

100 GosuB'19 (0,0,M*400, N*400,1)

50 GOSUB'19 (M,K,H+H*400, K+K*400,1)

200 GOSUB'19 (M,N,M1,M2,0)

150 GOSUB'19 (P-N*100,P1-N*100,P+N1*100,P1+N1*100,2)

21

;(3}11\FVTEHR 4 | | i
PLOT CHARACTER STRING (STRAIGHT LINE) -

(DEFFN’ 20)

4.1 PROGRAM DESCRIPTION

The Plot Character String (Straight Line) routine plots a specified
string of alphanumeric characters on a straight 1line. The characters plotted
by this routine are defined in a Character Generation Array, which must be
resident in memory when the routine is run (see Chapter 6, "Load Character
Generation Array"). '

The character string is plotted on a straight line called the "character
base 1ine." A single reference point whose coordinates are passed by the
programmer is used to define the base line. The line itself is not plotted,
however. Options permit the programmer to define the character size, and to
slant the characters and rotate the character string relative to the
horizontal axis.

4.2 SUBROUTINE ARGUMENT LIST
DEFFN'20 (C$, C, C6, C7, C1, C2, C3)

Start at reference point.
Center at reference point.
End at reference point.

Where:

C$ = Character string to be plotted.
C = Character size.
C6 = Slant reference angle (degrees).
C7 = Rotation angle (degrees).
Cl = X coordinate of reference point.
C2 = Y coordinate of reference point.
C3 = Option Code.

0

1

2

22

L1

™

NOTES:
1. The variables shown (C$, C, C6, C7, Cl, C2, C3) are
reserved for use by the subroutine, and should not be
used by the programmer in a GOSUB' statement.

2. A1l coordinates must be expressed in plotter units,
relative to the plotter origin.

3. Angles must be expressed in degrees.

4. The BASIC language delineators (,;) must be within
quotes to be plotted (e.g., "1,2").

Character String

The first argument passed is the character string to be plotted. It may
contain any keyboard character, may be a maximum of 64 characters in length,
and may be specified as a Tliteral string in quotes or as the value of an
alphanumeric variable. (The programmer also can elect to define his own
special characters; see Appendix C for a discussion of this procedure.)
Embedded spaces in the character string are treated as part of the string, but
trailing spaces (even when enclosed in quotes) are ignored.

Sl

Figure 4-1. A Plotted Character String, Showing the Character Base
Line (Note: Base Line is Not Actually Plotted)

Character Size

The character size is specified by the programmer with the second
argument passed to the subroutine. Any valid numeric expression may be used.
A 9 x 11 matrix of vertices is used to define each character, and the
character 1is plotted by connecting a specified sequence of vertices with
straight line segments (Figure 4-2). Note that the full 9 x 11 matrix is not
used in defining the character; instead, the character is defined with a 7 x 9
matrix embedded within the larger matrix. For this reason, each character is
surrounded on all four sides with a "buffer" equal in size to the distance
between two consecutive vertices. The buffer is used to maintain proper
spacing between consecutive characters in a character string.

23

Figure 4-2. The 9 x 11 Matrix of Vertices Used in Defining a Character

Character size 1is determined by the distance between neighboring
vertices in the defining matrix. In a character of unit size (size = 1), the
distance between neighboring vertices is one plotter increment. Thus a unit
character is six plotter increments in width, and eight plotter increments in
height, and is surrounded by a one-increment buffer on all four sides. Because
the length of a plotting increment differs among different plotter models, the
actual dimensions of a unit character also differ. On the Model 2212, which
has a plotting increment of .01 inch (at full scale), the unit character is
.05 inch x .07 inch in size. On the Model 2232B, with a plotting increment of
.0025 inch, the unit character is one-fourth as large, .0125 inch x .0175 inch.

Because the unit character 1is much too small for most purposes, the
routine permits selection of a larger character size. The "character size" is
defined as an integer multiple of the unit size. Thus, a character size of 2
produces a character twice the size of the unit character; a size of 10
produces a character ten times as large as the unit character, etc. It is
re?ommended that the expression used to specify character size be an integer
value.

For the subroutine's purposes, the character size is interpreted as the
number of plotter increments between neighboring vertices in the defining
matrix. Thus, in the matrix used to define a character of size 2, neighboring
vertices are two increments apart; in the matrix for a character of size 10,
the interval between neighboring vertices is ten increments, etc. (refer to
Figure 4-3). Characters of different sizes produced on each of the plotter
models are illustrated in Appendix B.

24

SIZE=15

Figure 4-3. Defining Matrices for Characters of Different Sizes
(Plotted on Model 2232B)

It must be emphasized that the distances between all neighboring
vertices in the defining matrix are enlarged as the character size increases.
The size of the buffer surrounding each character therefore increases
proportionately with the character size. This fact has several implications.
[t implies, firstly, that the distance separating consecutive characters will
increase as the character size increases. A character of size 2, for example,
is surrounded by a buffer of two plotter increments. Since the next
consecutive character also will have a two-increment buffer, the total
distance between two consecutive characters is four plotter increments (see
Figure 4-4). The buffer around each character therefore ensures that the
spacing between characters in a string always remains proportional to the
character size.

® © o o o & 0 0 0 ¢ o

.
[
*
[
L]
L]
.
[

Figure 4-4. Spacing Between Consecutive Characters Proportional to
Character Size.

25

A second implication of the proportional increase in buffer size is that
the distance between the base of a character and the character base 1line
increases as the character size increases. This is the case because the base
of the defining matrix, and not the base of the character itself, rests on the
base line; the buffer therefore intervenes between the base of the character
and the base line. Thus, the base of a character of size 2 is two increments
above the base 1line; the base of a size 10 character is ten increments above
the base line, etc. For the same reason, the first character in the string is
displaced to the right of the starting point a distance which is proportional
to the character size. This can be seen if a perpendicular is drawn to .the
base line at the starting point (Figure 4-5). The proportional displacement
of the character string above the base 1ine and to the right of the starting
point must be considered when accurate placement of the character string is
critical, since it is the position of the character base line, and not that of
the character string itself, which must be specified by the programmer.

=8

BASE Llﬁf

ORIGIN
POI

Figure 4-5. Position of Character String Relative to Starting Point
and Character Base Line.

The Plot Character String routine will accept a negative value for the
character size. A negative character size causes the defining matrix to be
inverted on both the horizontal and vertical axes. The plotted result is a
character of the specified size which is both upside down and backward (see
Figure 4-6). This feature has no obvious application when plotting characters
in a straight line; it can be useful, however, when plotting characters on a
circle. (Characters on the bottom half of the circle normally plot upside
down and backward; a negative size in this case therefore causes the
characters to plot correctly.) Refer to Chapter 5 for a discussion of
plotting characters on a circle.

26

S1ZE=40 S1ZE=—40

Figure 4-6. Positive and Negative Character Size

Character Slant

"Character Slant" is achieved by displacing the X coordinates of
vertices in the defining matrix to the right or left of a line perpendicular
to the base line, without changing the Y coordinates. (See Figure 4-7.) The
effect of such a displacement is to produce a character or string of
characters which slant relative to a line perpendicular to the character base
line. A positive displacement produces a slant to the right of the
perpendicular, while a negative displacement produces a slant to the 1left
(Figure 4-8).

Figure 4-7. Character Slant Produced by Displacement on X-Axis of Vertices
in Defining Matrix

The displacement of vertices in row 0 of the matrix is always zero. 1In
each successive row, the displacement of the X coordinate is proportional to
the Y coordinate of that row. The degree of slant is therefore determined by
the amount of displacement in each row of the matrix, and this 1is computed on
the basis of a "slant reference angle" specified by the programmer. The slant
reference angle must be passed in degrees. It is used to compute a
displacement for each vertex in the matrix according to the formula:

D=Y * SIN (©)
where D is the displacement, Y is the Y coordinate of the vertex,and ® is the
slant reference angle specified by the programmer. The displacement computed
by this formula is added to the X coordinate of the vertex:

X=X+0D

27

C1ear]y, if js a positive angle, and thus D is a positive value, the new X
coordinate will be located to the right of the original; if D is negative, the
new coordinate will be to the left of the original.

This technique ensures that the character's displacement from the
perpendicular is proportional to its height at each vertex, producing a
uniform slant relative to the perpendicular (Figure 4-8).

NEG. SLANT POS. SLANT

™~ |}

-J /

BASE LINE 7

Figure 4-8. Positive and Negative Character Slant

In general, the primary consideration when plotting characters is one of
aesthetics, and the programmer must simply experiment with different reference
angles until he arrives at a slant which has the most pleasing effect. In
rare cases, however, it may be useful to generate characters with a specific
"angle of slant." The "angle of slant" may be defined as the angle formed
between the vertical columns of the defining matrix and the perpendicular.
When the angle of slant 1is zero, these columns are parallel to the
perpendicular. As the slant reference angle increases from 0, the angle of
slant also increases (Figure 4-9).

Figure 4-9. Angle of Slant

It should be evident that the angle of slant and the slant reference
angle (specified by the programmer) are not equivalent; Table 4-1 illustrates
the reference angles used to produce some common angles of slant. Note that,
because the sine of the reference angle is used in computing displacement, the
meaningful range of reference angles is restricted to between -90 and +90,
inclusive.

28

Table 4-1. Correlations Between Slant Reference
Angles and Resultant Angles of Slant

Reference Angle Angle of Slant Example of
(Passed to Routine) | (Actual Angle Between Plotted
Vertical Columns and Character
Perpendicular)
0 0 A
15 15
40 30 A
90 45 4
-90 -45 AN
-40 -30 (N
-15 -15 A

Character Rotation

Character rotation is the angular distance between the character base
line and the plotter X axis (horizontal axis). (See Figure 4-10.) If the
angle of rotation is zero, the character base 1line is parallel to the
horizontal axis. The angle of rotation is specified by the programmer as the
fourth argument passed to the plot character subroutine. An angle of rotation
between +1 and +180 inclusive causes the character base line to be rotated
above the horizontal; an angle between -1 and -180 inclusive results in
rotation below the horizontal. The angle of rotation must be expressed in
degrees.

29

%
/\/0

U4
/&f&\swx
(4
/
4
(4
(4

-— e e e e ew on ew o s off o e - GEED CENF M GNP GED P GEs P My S G

PLOTTER XF¢0€ISZ7‘

Figure 4-10. Rotation of the Character Base Line.

Note that character slant and character rotation are independent of one
another. Character slant is always relative to a perpendicular on the
character base 1line, while character rotation results in altering the
orientation of the base line itself. When non-zero values are specified for
both slant and rotation, the subroutine first computes the slant relative to
the base 1line, and then rotates the base line relative to the plotter X axis
(see Figure 4-11).

——— — — — v—— —— — — — — - vm— — - S— o me —— e Gme Gm— S = —

SLANT REF. ANGLE = 9@
ROTATION ANGLE = 45

Figure 4-11. Character String Having Both Slant and Rotation

30

Reference Point of Character Base Line

The location of the character base line is defined with the coordinates
of a single point on the line, called the "reference point."

The reference point must be either the starting point, the center point,
or the ending point of the character base line. An Option Code permits the
programmer to indicate to the subroutine which of the three points is
specified.

The X and Y coordinates of the base line reference point are the fifth
and sixth arguments passed to the subroutine, respectively. The coordinates
must be expressed in plotter increments, and they must be relative to the
plotter origin. (For example, the values 400, 500 define a point 400 plotter
increments from the plotter origin on the X axis, and 500 increments from the
origin on the Y axis.) Any legal numeric expression may be used to specify
the X and Y coordinates. If a non-integer value is used to specify a
coordinate, the decimal portion is automatically truncated.

In every case, the character string is plotted relative to the starting
point of the character base line. If the reference point coordinates
specified are designated as those of the center point or end point rather than
the starting point, the subroutine itself first computes the coordinates of
the starting point, and then plots the character string relative to this
point. Remember, however, that due to the presence of the surrounding buffer,
characters do not actually rest on the base 1line, nor does the character
string actually start at the starting point (refer to the d1scu551on of
"character size").

Option Code

An Option Code is the last argument passed to the subroutine. This code
instructs the subroutine to interpret the reference point coordinates as those
of the starting point, center point, or ending point of the character base
line. Three codes are therefore available:

- Start at reference point.

0
1 - Center at reference point.
2 - End at reference point.

4.3 RESTRICTIONS AND EXCEPTIONS

1. The Character Generation Array must be resident in memory when this
routine 1is run. If the array is not resident when DEFFN'20 is
called, all characters are plotted as spaces.

2. A character size of 0 1is accepted by the subroutine without an
error. The plotter will move to the starting point of the character
string and remain there without plotting while all internal
operations associated with plotting the string are carried out, at
which point control is returned from the DEFFN'20 subroutine to the
application program.

31

4.4

Characters, or portions of characters, which extend beyond the
boundaries of the active plotting area are clipped at the boundary.

Trailing spaces are not plotted by the subroutine, even when
enclosed in quotes. For example, the character string "ABCD " is
plotted as "ABCD". In rare cases, it may be convenient to plot one
or more trailing spaces. In these instances, a trailing space can
be forced by specifying a non-plottable character at the end of the
string. (A1l non-plottable characters plot as spaces.) Since all
keyboard characters except the lowercase letters are defined in the
character generation array, the only non-plottable keyboard
characters are the lowercase letters a-z. Any one of these letters
can be used to force a trailing space. For example, the string
"ABCDe" will plot as "ABCD ".

The subroutine automatically selects degrees. If the programmer is
working in radians, he must reselect radians in his application
program immediately following subroutine execution.

EXAMPLES OF VALID GOSUB' SYNTAX

1.
2.
3.

GosuB'20 ("x-Ax1is", 10,0,0,600,400,0)
GosuB'20 (F$,8,90,0,M*400, N*400, 1)
GOSUB'20 (G$, K, P1, P2, M*M1, N*N1, 2)

32

fy

\@

CHAPTER 5 o T }
PLOT CHARACTER STRING (CIRCLE)
(DEFFN’_21)_ _

5.1 PROGRAM DESCRIPTION

The Plot Character String (Circle) Routine plots an alphanumeric
character string on the circumference of a circle whose center coordinates and
radius length are specified by the programmer. The circle itself is not
plotted by this routine. The characters are defined in a character generation
array, which is created during system startup, and must be resident in memory
when the character string is plotted. (See Chapter 6, "Load Character
Generation Array".)

5.2 SUBROUTINE ARGUMENT LIST

DEFFN'21 (E$, E1, E2, E3, E4, E5, E6, E7)

Where:
E$ = Character string to be plotted.
El = Size.
E2 = Slant Reference Angle (degrees).
E3 = X coordinate of circle center.
E4 = Y coordinate of circle center.
E5 = Radius of circle.
E6 = Reference point on circle (degree).
E7 = Option Code.

Start at reference point.
Center at reference point.
End at reference point.

1
2

33

NOTES:
1. The variables shown (E$, E1, E2, E3, E4, ES, E6, E7)
are reserved for use by the subroutine and should not
be used by the programmer in a GOSUB' statement.

2. A1l coordinates must be expressed in plotter units
relative to plotter origin.

3. The radius length must be expressed in plotter units.

4. The slant reference angle and reference point must be
specified in degrees.

Character Size, Slant

The discussions of character size and slant in Chapter 4 apply to
characters plotted on a circle. If the character size is positive, the
characters are plotted in a clockwise direction on the outside of the circle.
If, however, a negative character size is specified, the characters are
plotted in a counterclockwise direction, on the inside of the circle. In
either case, the base of the character matrix rests on the circumference of
the circle (see Figure 5-2).

X-Y Coordinates of Circle Center, Length of Radius

The coordinates of the circle center point and length of the radius must
be specified in plotter units (any valid numeric expression may be used).
Characters are plotted so that the bottom of the character matrix (and not the
base of the character itself) rests on the circumference of the defined
circle. The characters may lie outside the circle (if the character size is
positive) or inside the circle (if the character size is negative).

Figure 5-1. Characters Plotted on a Circle -

34

S 6.0
SIZE = +12 SIZE = -1°2

Figure 5-2. Positive and Negative Character Size

Reference Point on Circumference of Circle

The character string is plotted with respect to a reference point on the
circumference of the defined circle. An Option Code permits the programmer to
indicate whether the reference point will be interpreted as the starting,
ending, or center point of the character string.

The reference point is specified as a degree between 0 and 360 on the
circumference of the circle. Figure 5-3 below illustrates the numbering

scheme for degrees on a circle.

180 @

2/

Figure 5-3. Degrees on Circumference of a Circle

35

point

5.3

5.4

Option Code

Three Option Codes permit the programmer to designate the reference
as the starting, ending, or center point of the character string:

0 - Start at reference point.

1 - Center at reference point.
2 - End at reference point.

£

5% ¢
14
A
1S>

O

Figure 5-4. Character String Starting, Ending and Centered at 90

4

4
'

o

RESTRICTIONS AND EXCEPTIONS

1. The character generation array must be resident in memory when this
routine is called. If the array is not resident when DEFFN'21 is
called, the plotter plots only spaces.

2. A character size of 0 is accepted without an error indication, and
causes the plotter to move to the starting point of the character
string and remain there without plotting until all internal
calculations required for plotting the string are completed.

3. The programmer must ensure that the total length of the character
string to be plotted does not exceed the circumference of the
circle. If it does, the string is "wrapped around," and the end of
the string is plotted over the beginning of the string.

4, The subroutine automatically selects degrees. If the programmer is

working in radians, he must reselect radians 1in his main program
immediately following subroutine execution.

EXAMPLES OF VALID GOSUB' SYNTAX

1. 500 GOSUB'21 ("POINT #1", 10, O, M, N, K, L, 1)
2. 200 GosuB'21 (F$,8,0, M3*400, M4*400, K*400, 180, 0)
3. 250 GOSuUB'21 ("Y-AXIS", L1, L2, P1*100, P2*100, P7*100, L,N)

36

fﬁ?

CHAPTER 6) e e
LOAD CHARACTER GENERATION ARRAY,
(DEFFN ’'22)

6.1 PROGRAM DESCRIPTION

The Load Character Generation Array routine loads a previously-
initialized character data file from a specified disk platter or tape into the
receiving character generation array in memory. The character generation
array (Standard or Enhanced) is initially created during system startup (see
Chapter 2), and stored on tape or disk; it must be resident in memory in order
to plot characters on a straight line (Chapter 4), or on a circle (Chapter
5). One file can be created for the Standard Character Generation Array, and
a second file for the Enhanced Character Generation Array. The choice of"
which file is to be called is specified in the parameter of DEFFN'22. The
procedure for loading a character array into memory is somewhat different for
disk and tape versions of the Utilities.

In tape versions, the character array (Standard Array only) is loaded by
executing a GOSUB'22 statement with no arguments. The data tape containing
the character array must be mounted at the default tape address. The Load
Character Array Routine automatically searches the tape for the character data
file and loads this file into array C$() in memory.

In disk versions, the file name assigned to the character data file
during system startup must be specified when the file is accessed with
DEFFN'22. In addition, the disk address at which the disk containing the data
file is mounted must be assigned to a file number, and this file number must
be specified. For example, if the disk containing the character data file is
mounted at address 310, a statement of the form SELECT #n 310 must be executed
to assign one of the available file numbers 0-6 to address 310 (e.g., SELECT
#1 310). The file number assigned to this address must be passed to the
subroutine along with the file name. The subroutine opens the named file, and
loads its contents into array C$() in memory.

37

6.2 SUBROUTINE ARGUMENT LIST

DEFFN'22 (C$,C)
Where:

c$

C

[]

File name of character data file (disk version only).

File number (0-6) assigned to address of platter containing
character data file (disk version only).

NOTES:

The variables shown (C$,C) are reserved for use by the
subroutine and should not be used by the programmer in a
GOSUB' Statement.

6.3 RESTRICTIONS AND EXCEPTIONS

None.

6.4 EXAMPLES OF VALID GOSUB' SYNTAX

Disk
1. 100 GOSUB'22 ("CHARFILE",1)
2. 100 A$ = "FILE 1"
110 SELECT #2 B10
120 GOSUB'22 (A$,2)
Tape

1. 200 GOSUB'22

PCHAPTER 7
"L OT LINE BETWEEN TWO POINTS«

NQEEFN ‘25)

7.1 PROGRAM DESCRIPTION

The Plot Line Between Two Points routine plots a straight line between
two defined points. The 1line may be solid, dashed, dotted, or dashed/dotted.
If the line is dashed or dotted, the 1length of the dash, or the distance
between consecutive dots, must be specified by the programmer.

7.2 SUBROUTINE ARGUMENT LIST

DEFFN'25 (F, FO, F1, F2, F3, F4) -

Where:
F = X coordinate of starting point.
FO = Y coordinate of starting point.
F1 = X coordinate of ending point.
F2 = Y coordinate of ending point.
F3 = Length of segment or interval.
F4 = Option Code.

0 = Dashed line.

1 = Dotted 1line.

2 = Dashed/Dotted line.

3 = Solid Line (argument F3 dignored).

NOTES:

1. The variables shown (F, FO, Fl1, F2, F3, F4) are
reserved for use by the subroutine, and should not be
used by the programmer in a GOSUB' statement.

2. A1l coordinates must be expressed in plotter units,
relative to the plotter origin.

3. The segment/interval Tength must be expressed in
plotter units.

39

Coordinates of Starting, Ending Points

The X and Y coordinates of the starting and ending points of the 1line
must be specified in plotter units. (Any valid numeric expressions may be
used to specify these coordinates.) If the coordinates of either point or
both points fall outside the boundaries of the active plotting area, only that
portion of the 1line which falls within the active plotting area will be
plotted.

Length of Segment or Interval (Dashed, Dotted, Dashed/Dotted Options)

The segment/interval length represents the 1length of 1line segments
(dashes) for dashed 1lines, and the length of intervals between consecutive
dots for dotted lines. This length must be expressed in plotter units (any
valid numeric expression may be used). For dashed lines, the length of the
interval between dashes is equal to the length of the dash. For dashed/dotted
lines, the length of the interval between dashes equals the length of the
dash, and the dot is centered in this interval. For solid lines, the 1length
parameter is ignored.

Figure 7-1. Dashed, Dotted, and Dashed/Dotted Lines

The segment length should divide into the 1line length an odd number of
times. If it does not, the subroutine performs a "best fit" routine which
automatically adjusts the segment length entered by the user to the next
greater length which is divisible into the T1ine 1length an odd number of
times. By thus ensuring that the 1line length is an odd multiple of the
segment length, the program always is able to begin and end the line with a
dash (for dashed and dashed/dotted lines) or a dot (for dotted lines).

Option Code

Four’ Option Codes permit the programmer to specify the type of 1line to
be plotted:

dashed 1line.
dotted 1line.
dashed/dotted 1line.
solid line.

wmMnhE O
won oo

If Option Code 3 (solid line) is specified, the segment length is ignored, and
may be set to zero.

40

7.3

7.4

RESTRICTIONS AND EXCEPTIONS

1.

If an Option Code other than 3 (solid line) is selected, a segment
length of zero causes a Math Error to be signalled at 1ine 1420.

If an Option Code other than 3 is selected, a negative value for the
segment length produces erratic results, and the desired 1ine is not
plotted.

If the starting and/or ending point of the line falls outside the
active plotting area, the 1line is clipped at the boundary. Segment
and interval lengths are adjusted on the basis of the actual
distance between starting and ending points, but only those dashes
aqd dg}s which fall within the active plotting area are actually
plotted.

EXAMPLES OF VALID GOSUB' SYNTAX

1.
2.
3.

500 DEFFN'25 (M1,M2,M3,M4,L,0)
150 DEFFN'25 (M1*400, N1*400, M1*400+L*400, N1*400,0,3)
250 DEFFN'25 (1200,400,2000,6000,20,2)

41

CHAPTER 8 ﬁ
PLOT COORDINATE GRID
(DEFFN’ 26)

8.1 PROGRAM DESCRIPTION

The Plot Coordinate Grid Routine plots a grid of horizontal and vertical
grid Tines within the active plotting area. Horizontal grid lines are plotted
from the left-hand boundary of the active plotting area to its right-hand
boundary; vertical grid lines are plotted from the lower boundary to the upper
boundary. In each case, therefore, the length of the grid lines is determined
by the current dimensions of the active plotting area. The intervals between
consecutive horizontal grid Tlines and between consecutive vertical grid lines

are specified by the operator, as are the starting points of the first grid
lines in each direction.

8.2 SUBROUTINE ARGUMENT LIST
DEFFN'26 (E(1), E(2), E(3), E(4))

Where:
E(1) = Delta X from lower left to first vertical grid line.
E(2) = Delta Y from lower left to first horizontal grid line.
E(3) = Delta X (interval) between consecutive vertical grid lines.
E(4) = Delta Y (interval) between consecutive horizontal grid lines.

NOTES:

1. The variables shown (E(1), E(2), E(3), E(4)) are
reserved for use by the subroutine, and should not be
used by the programmer in a GOSUB' statement.

2. A1l distances must be expressed in plotter units.

42

@

Delta X, Y To Starting Points of Initial Grid Lines

The programmer must specify the distance along the horizontal axis from
the lower left-hand corner of the active plotting area to the starting point
of the first vertical grid line, as well as the distance along the vertical
axis to the starting point of the first horizontal grid 1line (see Figure
8-1). The distances are expressed in plotter units (any valid numeric
expression may be used).

| i I |

ACTIVE PLOTTING
FIRST AREA
HORIZONTAL
6RID LINE

- an G Gn G) G G G G) G Gy G a) an .
- an b (ob ap un I S GN N GIP G @S v En

>
<
f-A

--JI------—-----J

AX '\FIRST VERTICAL
6RID LINE
PLOTTER ORIGIN
(X.Y = @)

Figure 8-1. Starting Points of Initial Horizontal and Vertical Grid Lines

Delta X, Delta Y Intervals Between Grid Lines

The intervals between consecutive horizontal grid lines, and between
consecutive vertical grid lines, must be specified in plotter units (see
Figure 8-2).

ACTIVE PLOTTING
AREA :

HORIZONTAL, }
6RID LINES 1
*
AY{!
‘ L
]
LI
JICAL
6RID LINES
PLOTTER ORIGIN
(X.Y = @)

Figure 8-2. Intervals Between Consecutive Grid Lines

43

8.3 RESTRICTIONS AND EXCEPTIONS

A negative value for any one of the four parameters
routine is illegal, and results in an error.

8.4 EXAMPLES OF VALID GOSUB' SYNTAX

" 1. 100 GOSuB'26 (400, 400, 400, 400)
2. 200 GOSUB'26 (M,N,0,P)
3. 50 GOSUB'26 (M(1)*100,M(2)*100, M(3)*100, M(4)*100)

a4

passed‘to this

%

'CHAPTER 9
PLOT CIRCLE
(DEFFN’ 27)

9.1 PROGRAM DESCRIPTION

The Plot Circle routine plots a circle whose center point, radius
length, and "degree of smoothness" are specified by the programmer. Through
manipulation of the internal angle used to specify the degree of smoothness,
the programmer also can produce a variety of regular polygons with this
routine.

9.2 SUBROUTINE ARGUMENT LIST

DEFFN'27 (A5, B5, D5, D7)

Where:
A5 = X coordinate of circle center.
B5 = Y coordinate of circle center.
D5 = Radius of circle. :
D7 = Central angle enclosing chords used to approximate circle (degrees).

NOTES:
1. The variables shown (A5, B5, D5, D7) are reserved for
use by the subroutine and should not be used by the
programmer in a GOSUB' statement.

2. Coordinates and radius 1length must be expressed in
plotter units.

3. Central angle size must be expressed in degrees.

45

X,Y Coordinates of Center Point

The coordinates of the circle center point must be specified in plotter
units, relative to the plotter origin.

Radius of Circle

The radius length must be specified in plotter units.

Central Angle

Because the plotter cannot draw curved 1lines, it must approximate a
curved line with a series of straight line segments. A circle, therefore,
actually is plotted as a regular polygon with a large number of sides. The
po]y?on approaches a circle as the number of sides increases. (See Figure
9-1.

Each side may be regarded as a chord defined by a central angle of the
circle. The number of chords, or sides, is therefore a function of the size
of the central angle defining each side. This relationship may be expressed
as follows:

S = 360/L
where 'S' is the number of sides, and 'L' is the central angle (in degrees).

Thus a central angle of 10 degrees yields a polygon of 36 sides, an internal
angle of 36 degrees yields a polygon of 10 sides, etc.

' SIDE
CENTRAL ANBLE >

Figure 9-1. Use of Line Segments to Approximate a Circle.

46

The programmer can control the "smoothness" of the plotted circle by
increasing or decreasing the size of the central angle (thus decreasing or
increasing the number of sides of the polygon). "Smoothness" is, in this
context, a purely subjective characteristic; in general, a circle with a large
radius requires a greater number of sides (hence, smaller central angle) to
"appear" as smooth as a circle with a smaller radius. It will be necessary
for the programmer to experiment with different angles until he achieves the
desired effect. If plotting time is a critical factor, it should be noted
that the time required to plot a circle increases in proportion to the number
of sides.

It should be evident from the preceding discussion that the "Plot
Circle" routine is really misnamed. A more accurate name would be "Plot
Polygon,” since this routine actually permits the user to plot any regular
polygon, the number of sides of the polygon being determined by the size of
the central angle specified. A central angle of 1200, for example, yields

an equilateral triangle; a central angle of 90° yijelds a square; a central
angle of 600 yields a hexagon, etc. (See Figure 9-2.)

Figure 9-2. Regular Polygons Plotted with the "Plot Circle" Routine

9.3 RESTRICTIONS AND EXCEPTIONS

1. Circle radius must have a length greater than zero.
2. Central angle must have a value greater than zero.
3. The subroutine automatically selects degrees. If the programmer is

gsinq radians, he must reselect radians in his main program
immediately following subroutine execution.

47

9.4

EXAMPLES OF VALID GOSUB' SYNTAX

1. 500 GOSuB'27 (4000,2000,600,20)
2. 200 GOSUB'27 (ML*N,M2*N, L*N, P)
3. 100 GOSUB'27 (P(1)*400,P(2)*400; P(9)*400,P(6))

48

L3

%

"CHAPTER 10 ,. o)
PLOT BORDER AROUND ACTIVE PLOTTING AREA
- (DEFFN’ 28)

10.1 PROGRAM DESCRIPTION

This routine plots a border around the active plotting area (defined
with the Set Plotter Boundaries routine (see Chapter 3). The border may
consist of a solid line, dashed line, dotted 1ine, or dashed/dotted 1line.

10.2 SUBROUTINE ARGUMENT LIST
DEFFN'28 (C,Cl)

Where:
C = Length of segment/interval.
ClL = Option Code.
0 = Dashed.
1 = Dotted.
2 = Dashed/Dotted.
3 = Solid.

NOTES:

1. The variables shown (C,Cl) are reserved for use by the
subroutine and should not be used by the programmer in
a GOSUB' statement.

2. If Option Code 3 (Solid Line) is specified, the
segment length is ignored, and may be set to zero.

3. For Options Codes 0-2, the segment 1length must be
expressed in plotter units.

49

Lehgth of Segment/Interval

The length of the 1line segment (for dashed or dashed/dotted lines) or
the interval between dots (for dotted lines) must be specified in plotter
units. Refer to Chapter 7, Section 7.1, for a more detailed discussion.

Option Code

Refer to Chapter 7, Section 7.1 for a discussion of the dashed, dotted,
dashed/dotted, and solid Tine options.

10.3 RESTRICTIONS AND EXCEPTIONS

For any one of the Option Codes 0-2, a segment length equal to or less
than zero is illegal, and should not be used. With an Option Code of 3 (Solid
line), the 'segment length' parameter is ignored, and may be any value.

10.4 EXAMPLES OF VALID GOSUB' SYNTAX

1. 200 GosuB'28 (15,0)
2. 500 GosuB'28 (0,3)
3. 270 GOSUB'28 (M,1)

50

KY

"CHAPTER 11
CLEAR SURFACE/PEN SELECT
_(DEFFN’_24)

11.1 PROGRAM DESCRIPTION

This routine enables the programmer to automatically clear the screen,
select PLOT or ERASE modes on the Model 2282 Graphic CRT, and select pens 1,
2, and 3 on the Model 2272. The routine also provides an interrupt and a
message for changing surfaces and for changing pens when these operations need
to be done manually. Because its application depends on the type of plotter
involved, there are three versions of this routine:

Model 2282 Graphic CRT
1 pen plotters (Models 2212, 2232B)
3 pen plotter (Model 2272-2)

NOTE:

The version required is selected by the user during the
loading routine.

11.2 SUBROUTINE ARGUMENT LIST (FOR MODEL 2282 GRAPHIC CRT)
DEFFN'24

Where:

D8 = Option Code.
0 = Clear Screen.
Pen Select.

1
D9 ption Code.
= Erase.

=0
-1
X = Select Pen 1 (for all X # -1).

51

NOTES:

1. The variables shown (D8, D9) are reserved for use by
the subroutine and should not be used by the
programmer in a GOSUB' statement.

2. If the Option Code 0 (Clear Screen) 1is specified,
Option (D9) is ignored and may be set to zero.

Clear Screen

The Graphic CRT screen is cleared of all plotted vectors.
Pen Select

Indicates that the Select Pen routines will be used

Erase Mode

A11 illuminated dots on a specified vector will extinguish.

Pen 1 (P1ot Mode)

Dots corresponding to the specified 1ine or point will light up on the
Graphic CRT screen. (Note: This is the default mode and is automatically
used unless changed to Erase Mode.)

11.3 SUBROUTINE ARGUMENT LIST (FOR 1 PEN PLOTTER)

DEFFN'24 (D8, D9)

Where:

D8 = Option Code.
0 = New Surface.
1 = Pen Select.

D9 = Option Code.
0 = Initialize.
X = Select Pen 1 (X is an integer from 1 to 99).

52

NOTES:

1. The variables shown (D8, D9) are reserved for use by
the subroutine and should not be used by the
programmer in a GOSUB' statement.

2. The subroutine uses an internal table for recording
the status of the pen on the plotter (pen mounted or
unmounted).

New Surface

The routine will interrupt the program, display a prompt message to
change the surface, and wait until the operator keys RETURN(EXEC).

Pen Select
Indicates that the Select Pen routines will be used.
Initialize

This indicates on the internal table that pen 1 is mounted. It is the
responsibility of the operator to ensure that pen 1 is actually on the
plotter. After pen changes have been made, the internal table can be
reinitialized by selecting the second Option Code = 0. (Note: The table is
automatically initialized the first time GOSUB'24 is called. It is not
necessary to initialize it separately.)

Pen 1

The routine will examine the pen specified in the second Option Code
(D9) and if the pen is not recorded on the internal table as already being
mounted, it will interrupt the program, display a prompt message to mount the
pen, and wait until the operator keys RETURN(EXEC). Note: If the desired pen
is indicated by the internal table as being mounted, no pause will occur. It
is important that the operator ensure that the mounted pen is the same as the
pen indicated by the internal table. Both the pen indicated by the internal
table and the pen which is to be mounted are displayed by the prompt.

53

11.4 SUBROUTINE ARGUMENT LIST (FOR 3 PEN PLOTTER)

DEFFN'24 (D8, D9)
Where:
D8 = Option Code.

New Surface.
Pen Select.

O
nn

D9 = Option Code.

0 = Initialize.

1 = Select Pen 1 Position 1.

2 = Select Pen 2 Position 2.

3 = Select pen 3 Position 3.

X = Select Pen X Position 1 (X is an integer from 4 to 99).

NOTES:

1. The variables shown (D8, D9) are reserved for use by
the subroutines and should not be used by the
programmer in a GOSUB' statement.

2. The subroutine uses an internal table for recording
the status of each pen on the plotter (pen mounted or
unmounted.)

New Surface
Same as for 1 Pen Plotters.
Pen Select
Same as for 1 Pen Plotters.
Initialize

This indicates on the internal table that pen 1 is mounted in position
1, pen 2 is mounted in position 2, and pen 3 is mounted in position 3. It is
the responsibility of the operator to ensure that the correct pens are
actually mounted in the correct positions on the plotter. After pen changes
have been made, the internal table can be reinitialized by selecting the
second Option Code = 0. (Note: The table is automatically initialized the
first time GOSUB'24 is called. It is not necessary to initialize it
separately.)

54

Pen 2 and Pen 3

The routine will automatically select Pen 2 and Pen 3 as required by the
program with no pause.

Pen 1 and Pen X

The routine will examine the pen specified in the second Option Code,
and if it is not recorded on the internal table as already being mounted, it
will interrupt the program, display a prompt message to mount the pen and wait.
until the operator keys RETURN(EXEC). If the desired pen is indicated by the
internal table as already being mounted, no pause will occur. The operator
must ensure that the mounted pens are the same as the pen indicated by the
internal table. both the pens indicated as being mounted (and their
positions) by the internal table and the pen which is to be mounted are
displayed by the prompt. Pens are to be changed in position 1 only since the
internal table always indicates pen 2 and pen 3 in their respective positions.

11.5 RESTRICTIONS AND EXCEPTIONS

1. For the Graphic CRT, if the first Option Code #0, Pen SELECT will
result. If the second Option Code #-1, the Plot Mode will be
selected.

2. For the one and three pen plotters, if the first Option Code #0, PEN
SELECT will result. If negative or excessively large or
non-integral values are specified for the second Option Code, errors
will result or misleading values may be stored in the internal table.

11.6 EXAMPLES OF VALID GOSUB' SYNTAX

1. 100 GosuB'24 (0, 0)

2. 200 GosuB'24 (1, -1) For Graphic CRT.

3. 300 GOSuB'24 (1, 0) To initialize 1 and 3 pen plotters.

4. 400 GOSuB'24 (1, 1)

5. 500 GOSuUB'24 (1, 3) Requires pause on 1 pen plotter.

6. 600 GOSUB'24 (1, 6) Requires pause on 1 and 3 pen plotters.

55

CHAPTER 12)
PLOT INSTRUCTION EMULATOR
(DEFFN’ 29) .

12.1 PROGRAM DESCRIPTION

The Plot Instruction Emulator enables the programmer to perform a
variety of simple plotter operations with a single, uncomplex routine. (A1l
the special plotter routines described in Chapters 3-11 call the Instruction
Emulator to execute plotting operations.) Its versatility and
simplicity,combine to make the Plot Instruction Emulator a powerful
programming tool for general plotter control.

Three parameters are passed to the Plot Instruction Emulator routine:
an X value, a Y value, and an Instruction Code. The type of operation to be
carried out is determined by the specified Instruction Code (nine such codes
are available). The Instruction Codes permit three types of plotter
operations: plot point, plot 1line, and move plotter with pen up (no
plotting). In each of these three cases, the routine offers the programmer
the choice of working in absolute plotter coordinates (relative to the plotter
origin), or in delta values (relative to the current plotter position). Of
the nine Instruction Codes, all even-numbered instructions (2,4,6,8) operate
with absolute coordinates, and all odd-numbered instructions (1,3,5,7) operate
with delta values. Instruction Code 0O simply sends the plotter home.

In addition to the alternatives of absolute plotter coordinates or delta
values, the Instruction Emulator also permits two types of plotter movement:
"actual" moves and "tacit" moves. an actual move causes the plotter to
physically move to the specified coordinates (or the specified X and Y
distances from the current position), while a tacit move causes the routine to
adjust its internal pointers to the new specified plotter position, without
physically moving the plotter. Tacit moves can save a great deal of plotting
time in situations where a lot of plotter movement precedes the plotting of a
point. : ‘

56

gﬁ“

12.2 SUBROUTINE ARGUMENT LIST
DEFFN'29 (A,B,D)

Where:
A = X Value (X coordinate or delta X).
B =Y Value (Y coordinate or delta Y).
D = Instruction Code.

Send plotter home (parameters A and B are ignored).
Move delta X, delta Y (Tacit Move).

Move to X,Y (Tacit Move).

Move delta X, delta Y (Actual Move).

Move to X,Y (Actual Move).

Move delta X, delta Y, plot point.

Plot point at X,Y.

Plot line delta X, delta Y.

Plot line to X,Y.

ONOGTPRWNHFHO
nonwouw N nunnnn

NOTES:

1. The variables shown (A,B,D) are reserved for use by
the subroutine and should not be used by the
programmer in a GOSUB' statement.

2. Coordinates must be specified in plotter units,
relative to the plotter origin.

3. Delta values must be expressed in plotter units.

X,Y Coordinates vs. Delta X, Delta Y

Of the nine Instruction Codes provided by the Plot Instruction Emulator,
four utilize delta values (1,3,5,7) and four utilize plotter coordinates
(2,4,6,8). The Instruction Code selected determines whether the first two
parameters are to be interpreted as X,Y coordinates or as distances along the
X and Y axes from the current effective plotter position (i.e., as X,Y delta
values). In either case, the values must be expressed in plotter units. X
and Y coordinates always are relative to the plotter origin.

57

Instruction Code

The nine Instruction Codes are:

- Send plotter home (first two parameters ignored).
- Move delta X, delta Y (Tacit Move).

- Move to X,Y (Tacit Move).

- Move delta X, delta Y (Actual Move).

Move to X,Y (Actual Move).

- Move delta X, delta Y, plot point.

- Plot point at X,Y.

- Plot line delta X, delta Y.

- Plot 1line to X,Y.

ONOYOTR_RWNNFO
]

An Instruction Code of O causes the plotter to return to the home
position (plotter origin), and remain there with the pen up. In this case,
the first two arguments passed are ignored and may be set to zero.

Instruction Code 1 causes a tacit move with delta values. The X value
is interpreted as a delta X and is added to the current X coordinate; the Y
value is interpreted as a delta Y and is added to the current Y coordinate.
The updated coordinates represent the new effective plotter position, but the
plotter is not physically moved to this 1location. Any subsequent delta
instruction functions with reference to the effective plotter position, not
the physical plotter position.

Instruction Code 2 also produces a tacit move, this time with absolute
coordinates. The X and Y values are interpreted as absolute X and Y
coordinates (relative to the plotter origin), and these coordinates are
substituted for the current X and Y coordinates to identify the new effective
plotter position. The plotter is not physically moved to the new location,
however. Any subsequent delta instruction functions with reference to the
current effective plotter position, not the current physical plotter position.

Instruction Code 3 produces an actual move with delta values. The X and
Y values are interpreted as delta values and are added respectively to the
current X and Y coordinates. The plotter is then physically moved to the new
position with the pen up (no plotting).

Instruction Code 4 produces an actual move with absolute coordinates.
The X and Y values are interpreted as X and Y coordinates, and the plotter is
physically moved to the new position with the pen up (no plotting).

Instruction Code 5 causes the plotter to move a specified distance from
the current effective plotter position and plot a point. The X and Y values
are interpreted as delta values and are added to the X and Y coordinates of
the current effective plotter position to yield the coordinates at which the
point will be plotted. The plotter moves to this position with the pen up,
plots a point, and remains with pen up. '

Instruction Code 6 causes the plotter to move to a specified position
and plot a point. The X and Y values are interpreted as absolute plotter
coordinates defining the location at which the point will be plotted. The
plotter moves to this point with pen up, plots a point, and remains with the
pen up.

58

Instruction Code 7 causes the plotter to plot a line beginning at the
current effective plotter position, and ending at a point which is a specified
distance from the current plotter position. The X and Y values are
interpreted as delta values, and are added to the X and Y coordinates of the
current plotter position to yield the coordinates of the end point. The
plotter then draws a line from the current effective plotter position to the
end point, and remains at the end point with pen down.

Instruction Code 8 causes the plotter to plot a line beginning at the
current effective plotter position, and ending at a specified point. The X.
and Y values are interpreted as absolute plotter coordinates of the ending
point of the line. The plotter draws a line from the current effective
plotter position to the end point, and remains at the end point with pen down.

12.3 RESTRICTIONS AND EXCEPTIONS

1. Absolute coordinates must be positive values (delta values may
either be positive or negative).

2. The plotter should not be instructed to move or plot outside the
physical plotter boundaries.

12.4 EXAMPLES OF VALID GOSUB' SYNTAX

1. 50 GOSUB'29 (0,0,0)
2. 500 GOSUB'29 (ML,M2,M3)
3. 100 GOSUB'29 (M*100, N*100, P)

59

A

CHAPTER13 ~
PPLOTTER CONTROL. ROUTINE
IDEFFN"300 :° 1

13.1 PROGRAM DESCRIPTION

The Plotter Control Routine is the subroutine which directly controls
plotter movement. It is called by the Plot Instruction Emulator in order to
execute plotting instructions. Because it interacts directly with the plotter
hardware, the Plotter Control Routine is the only device-dependent routine in
the Plotter Utilities Package. Five versions of the routine are supplied:
one version controls the Model 2202, a second version controls the Models 2212
and 2232B, a third version controls the Model 2272 and the Model 2282, a
fourth version controls the Tektronix Graphic Display Terminal, and a fifth
version controls the Model 2281P.

The Plotter Control Routine is designed to be called from
the Plot Instruction Emulator and should never be accessed
directly by the programmer.

13.2 SUBROUTINE ARGUMENT LIST

DEFFN'30 (A,B,D)

Where:
A = X coordinate.
B = Y coordinate.
D = Option Code.
0 = Pen down.
1 = Pen up.
2 = Point.
3 = Home.

13.3 RESTRICTIONS AND EXCEPTIONS

None. This routine should not be called directly from the main line
program. It is designed to be accessed only via the Plot Instruction Emulator
routine. v

60

ﬂﬁ%

'APPENDIX A: o q
.GENERAL FORMS OF THE PL01TER UTILITY ROUTINES |

NOTE:

A1l variables shown in the subroutine general forms are
those actually used by the subroutine and should not be
used by the programmer in a GOSUB' statement which calls
the subroutine. (In general, reserved variables should not
be used at all in the user's application program; refer to
Appendix D for a complete list of reserved variables.)

A.1 SET PLOTTER BOUNDARIES
DEFFN'19 (A8,B8,A9,B9,D4)

Where:
A8 = X coordinate of lower left corner.
88 = Y coordinate of lower left corner.
A9 = X coordinate of upper right corner.
B9 = Y coordinate of upper right corner.

: D4 = Option Code.

@”“ 0 - Reset boundaries (no plotter movement).

1 - Initialize boundaries (move to lower left).
2 - Reset boundaries (move to lower left).

A.2 PLOT CHARACTER STRING (STRAIGHT LINE)
DEFFN'20 (C$,C,C6,C7,C1,C2,C3)

Where:
C$ = Character String.
C = Character size.
C6 = Character slant reference angle (degrees).
C7 = Character rotation (degrees).
Cl = X coordinate of reference point.
C2 = Y coordinate of reference point.
C3 = Option Code.

0 - Start at X,Y.
1 - Center at X,Y.
2 - End at X,Y.

61

A.3

A.4

A.5

A.6

PLOT CHARACTER STRING (ON A CIRCLE)

DEFFN'21 (E$,E1,E2,E3,E4,E5,E6,E7)

Where:

m
w
o nu w

Character String.

Character size.

Character slant reference angle (degrees).
X coordinate of circle center.

Y coordinate of circle center.
Radius length.

Reference point on circle (degrees).
Option Code.

0 - Start at reference point.

1 - Center at reference point.

2 - End at reference point.

LOAD CHARACTER GENERATION ARRAY

DEFFN'22 (CS$,C)

Where:

Cc$
C

GIN MODE

Name of character data file.
File number assigned to disk address.

ROUTINE

DEFFN'23

The GIN Mode Routine is used to receive graphic input from models of the
Tektronix graphic terminal which support a GIN mode capability. The
subroutine has no arguments.

PLOT LINE BETWEEN TWO POINTS

DEFFN'25 (F,FO,F1,F2,F3,F4)

Where:
F
FO
F1
F2
F3
Fa

X coordinate of starting point.

Y coordinate of starting point.

X coordinate of ending point.

Y coordinate of ending point.

Length of segment or interval.

Option Code.

0 - Dashed Tine.

1 - Dotted Tline.

2 - Dashed/dotted line.

3 - Solid line (segment length ignored).

62

®

({3

A.7 PLOT COORDINATE GRID
DEFFN'26 (E(1), E(2), E(3), E(4))

Where:
E(1) = Delta X from lower left to first vertical grid line.
E(2) = Delta Y from lower left to first horizontal grid line.
E(3) = Delta X between vertical grid lines.
E(4) = Delta Y between horizontal grid lines.

A.8 PLOT CIRCLE
DEFFN'27 (A5,B5,D5,D7)

Where:
A5 = X coordinate of circle center.
B5 = Y coordinate of circle center.
D5 = Length of radius.
D7 = Central angle (defines length of line segments used in

approximating circle).

A.9 PLOT BORDER AROUND ACTIVE PLOTTING AREA

DEFFN'28 (C,Cl)

Where:

C = Length of segment or interval.
Cl = Option Code.

0 - Dashed line.

1 - Dotted line.

2 -~ Dashed/dotted 1line.

3 - Solid line (segment length ignored).

A.10 CLEAR SURFACE/PEN SELECT

DEFFN'24 (D8,D9)
Where:

D8 = Option Code
0 - New Surface/Clear Screen
1 - Pen Select

D9 = Option Code.
-1 - Erase (Model 2282 only).

- Initialize (Models 2212, 2232B, 2272).

- Select Pen 1, Position 1 (Model 2272).

- Select Pen 2, Position 2 (Model 2272).

Select Pen 3, Position 3 (Model 2272).

- Select Pen 1 (Plot Mode, Model 2282).

- Select Pen 1 (Models 2212, 2232B).

- Select Pen X (Model 2272)

63

X XKXXKXWN O =
|

A.11 PLOT INSTRUCTION EMULATOR

DEFFN'29 (A,B,D)

Where:
A=
B =
D =

0 -

1 -

2 -

3 -

4 -

5 -

6 -

7 -

8 -

Send
Move
Move
Move
Move
Plot
Plot
Plot
Plot

X coordinate or delta X.
Y coordinate or delta Y.
Instruction Code.

plotter home (first two parameters ignored).

delta X, delta Y (Tacit Move).
to X,Y (Tacit Move).

delta X, delta Y (Actual Move).
to X,Y (Actual Move).

point delta X, delta Y.

point at X,Y.

1ine delta X, delta Y.

line to X,Y.

A.12 PLOTTER CONTROL ROUTINE

DEFFN'30 (A,B,D)

Where:

A
B
D

X coordinate.
Y coordinate.
Option Code.

0 - Pen up.

1 - Pen down.

2 - Plot point.

3 - Send plotter home.

NOTE:

(DEFFN'29).

The Plotter Control Routine is designed to be accessed via
the Plot Instruction Emulator
should not be accessed directly from the user's software.

This routine

64

"®

'APPENDIX B:

CHARAGTER SEWH

Tv—*r_""—

[Eo R.ALL RLOTTERS|

ASLL

L

&

NU

PLURS

(@

BRI

L JKLM
UVWXYZ

1234206 /83¢

$LTe* () —+=

/7

N

ENHANCED CHARACTER SET] -~

ABCDEFGCHTITKLMNO
PAORSTUVWXYZ |

1234567890 ! @#$%
PRk () —+=>< " 7/

6[\] 9 | 9
xpNoed] TLLANULTQ
TWpoO) m=RRA

~

APPENDIX C: '
CUSTOMIZING THE PLOTTER CHARACTER SET

SCDEF G

Figure C-1. Some Special Characters Created by Customizing the Character
Generation Array.

C.1 INTRODUCTION

If the programmer has labelling applications which require special
characters not included in either the Standard Character Set, or the Enhanced
Character Set, he must define these characters himself. Each character is
defined with a sequence of coded plotting instructions, which must be stored
in the character generation array. The remainder of this appendix describes
the procedure for creating and storing such code sequences.

C.2 THE CHARACTER GENERATION ARRAY

The character generation array is actually created in two steps:
initially, the coded plotting sequences for all characters are stored in array
A$(); subsequently, the contents of A$() are packed into a second array,
C$(). It is the packed array, C$(), which is stored on disk, and is recalled
into memory with the Load Character Array Routine. The packing operation
permits more efficient use of memory and faster search time within the array.
The packing operation is carried out automatically by the PLOTOO1A (or
PLOTO02A) subrout1ne, once the programmer has stored the necessary code

sequeng?§ in A$(), the subroutine will take care of packing this information
into C

NOTE:

The PLOTOOlA subroutine is used with the Standard Character

Set; the PLOTO02A subroutine is used with the Enhanced
Character Set.

67

Figure C-2 is a Tlisting of 1lines-10-260 of the PLOTOO1A program, which
is called by the START module to initialize the character generation array
when such initialization is requested by the operator (refer to Chapter 2).
From line 20 of this 1listing, it can be seen that A$() is a one-dimensional
array containing 63 elements, each 17 bytes in length. Each element contains
the coded plotting sequence for one of the characters in the standard
character set. (Note that the 64th character in the standard character set is

the space, which is not defined with a unique plotting sequence, and therefore
need not be stored in the character array.)

10 REM PLOTOO1A,02-00(12/12/77),3 23 2 00 - COPYRIGHT WANG LABS. INC., 1977

20 DIM A$(63)24,C8(5)61,C%1

30 REM SET UPPER LIMIT OF A%()

40 A= &3 :
50 REM ~~~cmmcmmee o e o e e e
&0 REM DEFINE CHARACTER SET

70 REM !

20 AE(1) = HEX(B17C1234B04)

20 REM

100 A%(2) = HEX(B27B2D7DIF)

110 REM #

120 A$(3) = HEX(B37B03453DeA24561C)

130 REM %

140 A%(4) = HEX(847C04430C141B211F252C3437)
150 REM %

160 A$(5) = HEX(B57B2D2B333B7F014513150705)
170 REM &

180 A%(6) = HEX(BE4728323A342D1D0B02041C)
130 REM ~/

200 AB(T7) = HEX{(BT77CZE)

210 REM (

220 A$(8) = HEX(8B7D2D1105)

230 REM) .

240 A%(3) = HEX{(B37BaF1303)

250 REM *

260 A%$(10) = HEX(BABD2370104B356C14)

Figure C-2. Partial Listing of PLOTOO1A, Showing Assignments of Coded

PIOtEZ?g Sequences for Individual Characters to Elements
of A%().

The coded plotting instructions for each character are represented as a
unique sequence of hexadecimal codes stored in an element of A$(). In the
PLOTOOLA 1isting (Figure C-2), observe that a REM statement immediately above
the assignment statement for each element of A$() shows the character plotted
by the code sequence stored in that element. A$(1l), for example, contains the
coded sequence for plotting an exclamation point (!).

NOTE:

The 1line numbers for PLOTOOlA shown in Figure C-2 are those
of the most recent version of the program available at the
printing of this manual. Since subsequent updates may
alter the line numbers, you should not assume that the line
numbers shown in Figure C-2 are identical to those in your
version of the PLOTOOlA routine.

68

@

W

@

/%3

Every coded sequence is composed of the following elements:

1. A character I.D. code, which always occupies the first byte (i.e.,
the first pair of hexadecimal digits) in the sequence.

2. A series of coded plot instructions, which occupy a varying number
of bytes following the control code, up to a maximum of 23. (Each
plot instruction consists of a pair of hexadecimal digits, and
occupies one byte.)

For example, the code sequence for plotting an exclamation point is
divided into two components as shown in Figure C-3:

817C194B04
N

Character Coded Plotting
I.D. Code Instructions

Figure C-3. Code Sequence for Plotting Exclamation Point

The character I.D. code, which is used to identify each plotting.
sequence, is discussed in Section C.4. The following section (C.3) explains
the procedure for coding plot instructions.

C.3 CODING PLOT INSTRUCTIONS FOR CHARACTER PLOTTING

It should be recalled from Chapter 4 that every character is defined
within a 9 x 11 matrix of vertices. This 9 x 11 matrix includes a surrounding
buffer which is not part of the character itself; -however, the character is
actually defined in a 7 x 9 matrix embedded within the larger matrix. Because
the buffer is created automatically by the subroutine, it is not of concern to
the programmer, who needs to direct his attention exclusively to the 7 x 9
matrix used for character definition.

Each 7 x 9 matrix consists of .a total of 63 discrete "vertices," or
defined points. The plotter can be instructed to move to any one of the 63

vertices with pen up, or to plot a line between any pair of vertices. Figure
C-4 shows the 7 x 9 matrix of vertices.

69

39/79 3A/7A 3B/7B 3C/7C 3D/7D 3E/7E 3F/7F
* * * * * * *
32/72 33/73 34/74 35/75 36/76 37/77 38/78
* * * * * * *
2B/6B 2C/6C 2D/6D 2E/6E 2F/6F 30/70 31/71
* * * * * * *
24/64 25/65 26/66 27/67 28/68 29/69 2A/6A
* * * * * * *
1D/50 1E/5E 1F/5F 20/60 21/61 22/62 23/63
* * * * * * *
16/56 17/57 18/58 19/59 1A/5A 1B/5B 1C/5C
* * * * * * *
OF/4F 10/50 11/51 12/52 13/53 14/54 15/55
* * * * * * *
08/48 09/49 OA/4A 0B/4B 0C/4C 0D/4D OE/4E
* * * * * * *

01/41 02/42 03/43 04/44 05/45 06/46 07/47
* * * *

* * *

Figure C-4. The 7 x 9 Matrix of Vertices Used to Define a Character
(Vertices are Represented by Asterisks, *)

Note that each vertex is identified by a pair of 2-digit hexadecimal
numbers. The numbers on the left-hand side of the slashes run sequentially
from 01 (lower left corner) to 3F (upper right corner). You should recognize
that 3F s the hexadecimal equivalent of decimal 63. The vertices are
therefore numbered sequentially in hexadecimal from 1 to 63.

The hexadecimal numbers on the right-hand side of the slashes run
sequentially from 41 (lower left) to 7F (upper right). Careful examination of
each pair of hex numbers will disclose that the right-hand number in each pair
is always HEX(40) greater than the left-hand number. For example, HEX(41l) is
greater by HEX(40) than HEX(01), and HEX(7F) 1is greater by HEX(40) than
HEX(3F). It should be further noted that in the left-hand set of numbers
01-3F, the 4-bit in the high-order hex digit is always set to O.
Correspondingly, in the right-hand set of numbers 41-7F, the 4-bit is always
set to 1. The significance of this distinction is as follows:

70

ﬁﬁ%

1. If the high-order 4-bit is OFF (i.e. = 0), the plotter is instructed
to plot a line to the specified vertex.

2. If the high-order 4-bit is ON (i.e., = 1), the plotter is instructed
to move to the specified vertex with pen up (i.e., no plotting).

It should be clear, then, that the Tleft-hand set of hex numbers
represent coded "plot" instructions, while the right-hand set of hex numbers
represent coded "move" instructions. For example, the code 41 says, in
effect, "move to vertex 41," while the code 3F says "plot a 1ine from current
position to vertex 3F." The sequence of codes 413F therefore has the effect
of plotting a line diagonally from the lower left corner of the matrix to the
upper right corner.

An example may be helpful in illustrating the use of these coded
jnstructions. A$(3) contains the coded instruction sequence for the character
"#". The assignment statement on line 120 of the INITALPH program shows that
"#" is defined with the following sequence:

120 A$(3) = HEX (837B03453D6A24561C)
The first code, 83, is disregarded (since it is the character I.D. code,

and not part of the plotting sequence). The plotting sequence can then be
decoded in the following way:

7B = Move to 7B
03 = Plot to 03
45 = Move to 45
3D = Plot to 3D
6A = Move to 6A
24 = Plot to 24
56 = Move to 56
1C = Plot to 1C

Figure C-5. Decoded Plotting Sequence for Character '#'
If the plotting sequence in Figure C-5 is compared with the '#'

character sketched onto the 9 x 7 matrix in Figure C-6, it will be seen that
the plot defined by these instructions produces the special character '#'.

71

39/79 3A/7A 3B/7B 3C/7C 3D/7D 3E/7E 3F/7F
* * * * *
32/72 33/73 34474 35/75 36/76 37/77 38/78
* * * * *

2B/6B 2C/6C 2Df6D 2E/6E 2Ff6F 30/70 31/71
* * * * *

24/64 25/65 26466 27/67 28(68 29/69 2A/6A
20/60 21f61 22/62 23/63
* * *

19/59 1Af5A 1B/5B 1C/5C

OF/4F 10/50 11/51 12/52 13453 14/54 15/55
* * * * *
08/48 09/49 OA{4A 0B/4B 0OCf4C 0D/4D OE/4E
* * * * *

01/41 02/42 03/43 04/44 05/45 06/46 07/47
* * * *

*

Figure C-6. "#" Character Sketched on 7 x 9 Matrix of Vertices

The procedure for defining a character thus turns out to be
astonishingly simple. First, sketch the character on a 7 x 9 matrix identical
to the one in Figure C-4. Experiment until a character with the most pleasing
appearance is produced. (The recommended procedure is to place a clear
plastic sheet over the matrix in Figure C-4, and draw the character on the
plastic with a grease pencil or similar implement. The plastic can be wiped
clean, and the character redrawn, several times, until the right character is
produced.) Next, translate the track followed by your pencil when tracing the
character into a sequence of coded instructions which direct the plotter to
follow the same path. The plotted result will (if you are careful) be
identical to your sketch.

72

C.4 THE CHARACTER I.D. CODE

Once a plotting sequence for a particular character has been defined, it
must be identified in some way. Suppose, for example, that the following
subroutine call were executed:

200 GOSUB'20 ("#", 10, 0, 0, M, N, 0)

This GOSUB' statement calls the Plot Character String (Straight Line) Routine
to plot a '#' character. In the preceding section, you saw how this special
character is defined with a coded plotting sequence stored in A$(3). The
question now arises: how does the subroutine connect a '#' character entered
from the keyboard with the plotting sequence stored in A$(3)? The answer is:
by means of the character I.D. code.

The System 2200 utilizes the ASCII coding scheme, an industry standard
coding technique, for representing alphanumeric characters internally. Each
character in the ASCII character set is assigned a unique two-digit
hexadecimal number as its code. The ASCII code for the special character '#°',
for example, is HEX(23). (A complete 1list of ASCII codes for alphanumeric
characters can be found in Appendix A of your Wang BASIC Language Reference
Manual.) Whenever a key representing an alphanumeric character is depressed,
the ASCII code for that character automatically is transmitted to the system.
Thus, depressing the '#' key automatically sends a HEX(23) code to the CPU.
It may be seen, then, that the following pair of GOSUB' statements have
identical results: '

100 GOosuB'20 ("#", 10, 0, O, M, N, 0)
or

90 A$ = HEX(23)

100 GosuB'20 (A$, 10, O, O, M, N, 0)

It would be convenient if the ASCII code for each character could be
used directly as its character I.D. code in the Character Generation Array.
Unfortunately, this is not possible, because many of the hexadecimal codes
used as ASCII character codes are utilized in the Character Array as coded
plotting instructions. (For example, HEX(23) is a coded instruction which
means "plot to vertex 23".) The subroutine would therefore have no way of
distinguishing between a hex code which represents a character I.D. code and a
hex code which represents a plot instruction.

This ambiguity is avoided by 1logically ADDing HEX(60) to each ASCII
code. When performed on ASCII codes greater than HEX(19), the ADD operation
always has the effect of setting the high-order 8-bit to 1. (For example, if
HEX(60) is ADDed to HEX(23), the result, HEX(83), has a 1 in the 8-bit
position of the high-order (left-hand) digit.) Since the high-order 8-bit is
always set to O in the coded plot instructions, the presence of a 1 in the
high-order 8-bit position enables the subroutine to distinguish unambiguously
between a hexadecimal code which is used as a character I.D. code and a
hexadecimal code which is to be interpreted as a coded plotting instruction.
Recall, for example, the coded sequence for the special character '#':

73

A$(3) = HEX(837B03453D6A24561C)
Charétter I.D. Code

Note that the character I.D. code, HEX(83), is the result of ADDing HEX(60) to
HEX(23), the ASCII code of the '#' character.

When a character string is passed to one of the plot character
subroutines, the subroutine ADDs HEX(60) to the ASCII code of each character,
and searches for the resultant character I.D. code in the character generation
array. The coded plotting instructions which follow the character I.D. code
are then read and executed.

When a new character is defined, the programmer must identify it with a
unique character I.D. code. If the newly-defined character is a keyboard
character, its ASCII code can be used to create the character I.D. code. In
the event the new characters are special mathematical symbols, or other
characters not found on the keyboard, there are several ways of creating new
character I.D. codes for them.

NOTE:

The uppercase characters, numbers and symbols of the
keyboard are used to define most of the Standard Character
Array. The Greek letters and electronic Tlogic symbols of
the Enhanced Character Array are defined by the lowercase
letters a through z of the keyboard. (See Appendix H).

If the new character or characters are to replace existing characters in
the system-generated character array, the I.D. codes of the existing
characters can be used for the new characters. If, for example, the
exclamation point is not wanted, its location (A$(1l)) could be used to store
the coded plotting sequence for a new character, and its character I.D. code
(81) assigned to the new character. In this case, the exclamation point key
(1) 1identifies the new character, and the new character will be plotted
whenever the exclamation point is passed to a plot character subroutine.

Alternatively, the programmer may prefer to utilize the codes of those
keyboard characters which are not defined in the character generation array.

74

Finally, the programmer may elect to use hexadecimal codes other than
those used in the ASCII character set. In this case, no keyboard character
can be used to generate the initial code; it must be specified in a HEX
function. The HEX function is stored in an alphanumeric variable, and the
variable is specified in the subroutine argument 1list. For example:

90 A$ = HEX(5F)
100 GOSuB'20 (A$, 10, O, O, M, N, 0)

Note that there are restrictions on the range of hexadecimal codes which
can be used in the creation of a character I1.D. code (see the 1list of
restrictions in the final section of this appendix). Remember, finally, that
the hex code passed to the subroutine is not the character I.D. code; the
subroutine will automatically ADD a HEX(60) to the ASCII code it receives in
order to produce the character I.D. code.

C.5 INSERTING NEW CHARACTERS IN THE CHARACTER GENERATION ARRAY

In the normal case, one or more characters in the system-generated
character array will not be needed, and the elements of A$() occupied by the
unwanted characters can be used for new characters. In this instance, it
generally is not necessary to alter the dimensioned sizes of A$() or C$(). To
store the new code sequence for each new character, one of the assignment
statements in PLOTOOl1A must be changed to specify the new codes. The
procedure is as follows:

1. Load and run the Start Module.

2. Depress Special Function Key O, instructing the system to initialize
a Character Generation Array. Select either the Standard Character
array or the Enhanced Character array. The Start Module will
automatically call in either the PLOTOO1A or PLOTO02A Routine to
create _the array.

3. When the prompt "ENTER THE NUMBER OF THE DESIRED OUTPUT ADDRESS"
appears, key RESET.

4, Enter LIST S to list the first 15 lines of PLOTOO1A. Go through the
assignment statements for A$() in PLOTOOlA, substituting new code
sequences for exisitng code sequences where desired. Remember that
characters defined by the deleted code sequences can no longer be
plotted from this array. Remember, too, that a maximum of 23 plot
instructions (each represented by a two-digit hex code) can be
stored in each element of A$().

5. When all new code sequences have been inserted, key RESET, RUN,
(EXEC). The prompt "ENTER THE NUMBER OF THE DESIRED OUTPUT ADDRESS"
is displayed once again. Respond to this prompt, and to the
subsequent prompt requesting a file name, in the normal fashion.
The modified character array will be saved on disk, and may be

recalled (with the Load Character Generation Array Routine) whenever
needed.

75

NOTE:

Character I.D. codes must be stored in ascending sequence
in A$(). The codes do not need to be consecutive, but they
must be in ascending order.

C.6 INCREASING THE SIZE OF THE CHARACTER GENERATION ARRAY

Although it 1is not generally necessary to alter the size of the
character array, there are special circumstances in which alteration of the
array size is necessary:

1. If the new characters are so elaborate or complex as to require more
than 23 plotter movements. In this case, the element length of A$()
must be increased to allow for the additional plot codes. (The
maximum length is 64 bytes; each byte stores one plot instruction,
represented as a two-digit hex code.)

2. If more than 63 (or 89) characters are to be stored in the character
array. In this case, the number of elements in A$() must be
increased, since each element contains the code sequence for one
character. (The maximum number of elements in a one-dimensional
array is 255. As a practical matter, however, the size of the array
is limited by the maximum number of unique character I.D. codes
which are available, since each character stored in the array must
be identified with a unique I.D. code. The legal range of hex codes
which can be used to create I.D. codes is from HEX(21) to HEX(9F)
inclusive. This range contains a total of 127 unique codes.
Therefore, the maximum number of characters which can be defined is
127. When the space, which is not defined in the character array,
is included, the maximum size of the character set in one array is
128.

Data is packed from A$() element by element into C$(). This procedure
utilizes a loop with a counter which specifies the number of elements to be
processed from A$(). Numeric variable 'A' serves as the counter. Its value
is assigned at 1line 40 of PLOTO01A (or PLOTO02A). In the standard version,

=63, since A$() contains 63 elements. If the number of elements in A$() is

increased, the value of the counter must be increased correspondingly;
otherwise, only the first 63 elements of A$() will be packed into C$(). For
example, if A$() is dimensioned to 72 elements, line 40 must be changed to
A=72.

Both the creator array, A$(), and the packed array, C$(), are
dimensioned at 1line 20 of the PLOTO0O1A and PLOTO0O2A routines. C$() is a
packing array which when filled, saves the array on disk, retaining excess
bytes and is ready for further packing. Hence there is no need to alter C$()
however much A$() is altered.

76

In disk versions of the Utilities, the PLOTOO1A and PLOTOO2A routines
record the packed array C$() in a cataloged data file on disk (the file name
and location re specified by the operator). Prior to packing the required
size is determined by the routine and the opened file is automatically
proportioned accordingly.

The character generation array must be recalled from disk into memory by
the Load Character Generation Array Routine prior to plotting any characters.
Array C$() is used to store thé characters when they are loaded from disk and
must be large enough to accommodate all the array. Line 20 of the dimension
routine contains a DIM statement which dimensions C$(), among other
variables. The DIM statement can be changed to increase the size of Cg(). If
C$() is not redimensioned in the utility set, only part of the character data
file on disk will be loaded into memory for plotting. During normal
operation, the user is required to select the dimension routines which contain
the appropriately sized C$() and may change the size accordingly.

C.7 RESTRICTIONS

The programmer should read and familiarize himself with the following
list of restrictions before attempting to create new characters:

1. The total number of vertices used to define a character may not
exceed 23 in the standard or enhanced character array. Elements in
A$() are dimensioned to 24 bytes in length, with the first byte
reserved for the character I.D. code, and the remaining 23 bytes
available for plotting codes. If more than 23 vertices are required
to define a character, the element length of A$() can be increased
up to a maximum of 64 bytes. Such an increase entails increasing
the size of the packed array C$() correspondingly.

2. The lowest legal value for a Character I.D. code is HEX(81). 1I.D.
codes Tlower than HEX(81) are not allowed. Therefore, the lowest hex

code which can be used to create a character I.D. code is HEX(21),
since HEX(21) ADDED to HEX(60) yields HEX(81).

3. The highest legal value for a character I.D. code is HEX(FF). 1I.D.
codes higher than HEX(FF) are not allowed. Therefore, the highest
hex code which can be used to create a character I.D. code is
HEX(9F), since HEX(9F) ADDed to HEX(60) yields HEX(FF).

4., The total number of characters defined in the standard character
array is 63 ;89 for the enhanced array. If more characters must be
stored in the array, the number of elements in A$() can be increased
from 63 (or 89) to a maximum of 255. (Note, however, that since the
valid range of character I.D. codes is from 81 to FF, a total of 127
unique codes is available. Thus a total of 127 characters can be
defined in one array, limiting the practical maximum array size to
127 elements.) An increase in the size of A$() is automatically
taken care of by C$() and require no adjustments. The numeric
variable 'A' contains the counter, which is set at 63 in line 40 of
PLOTOO1A (set of 89 in 1line 40 of PLOTO02A). If A$() is given
additional elements, the counter must be changed to reflect the
number of elements in A$().

77

A$() may not be changed to a two-dimensional array.

NOTE:

The character I.D. codes must be stored in ascending sequence in the
character array. Character I.D. codes need not be consecutive, but
they must be sequential.

The last coded plot instruction in a plot instruction sequence may
not be a 20 ("plot to 20"). The 20 code is legal anywhere within a
sequence of instructions, but its presence as the last code in the
sequence has- a special significance to the subroutine, and is not
permitted.

The space reserved for C$() must contain at least one more byte than
will be occupied by the elements of C$(). The characters are set
apart by I.D. codes in C$ and when selecting a string of
instructions for a character, the routine looks for the beginning
and ending I.D. codes. To accomplish this for the final letter,
C$() is initialized with FF. Thus when searching for the final I.D.
codes, the routine will encounter FF and establish the final string
of instruction. If C$() 1is completely filled by instructions
however, ther is no final I.D. code and an error will be indicated.

In disk versions of the Plotter Utilities, the size of the cataloged

data file in which the character array is stored is automatically
increased if the character array size is increased.

78

o

(]

M

APPENDIX D:

.RESERVED VARIABLE LIST

PAGE_L oF_L

Wang BASIC Variable Check-off List

PROGRAM NAME _PLOTTER SUBROUTINE S 3 /10 /78
VERSION PROGRAMMER
SYSTEM PLOTTER UTILITIES
Nl\l1 ABCDEFGHIJKLMNOPQRSTUVWXYZ)
=~ ololo|plolo T I 17 NUMERIC SCALARS
1 lolo|ololo|e FORMAT = MN
2 [olo|o]ololo
3 olololo .
a ololoo
5 0lolo 1 |
6 0|00 !
7 @lolole|o ! |
s .0lolo] [0 : |
9 |0|ojo| |0 . L L l
o [o[olo 1 11 i |
NM ABCDEFGHIJKLMNOPQRSTUVWXYZ
A Talol T 1o TTT 17 1 NUMERIC ARRAYS
1 T FORMAT = MN(
2 —
3
4
5
6 1
7 ; - -
8 ..+_.A:. ; i
9 Dol T :
o I i I] |] |
NM ABCDEFGHIJKLMNOPORSTUVW Y 2
slololel ol TTITTTT1. 'ﬂ; Il) ALPHA NUMERIC SCALARS
' o] o ! b T g FORMAT = MN$
; _ . . ,
a [. ..{. ﬁl -t " + :
bt - 4 —
2 : _-4 J__.T Lok et
| RN S B
8 11 e ‘JJ-’:]_ e o
9 | Ll
0 l o J | ‘; 1 kli_t_: i] J _J

M
N\ ABCDEF

GHIJKLMNOPQRSTUVWXYZ

LABORATORIES, INC.

5
A olo 1 i .
1 0 !
2 1 L
3 l |
4 j
s ‘

1 I
6 | :

T T
? h -t R ._,%,,_ —
8 B A S B
9 ! | P

NG T E

0 O L ,I,,-,Ji.i..,.l_ﬂ._

ALPHA NUMERIC ARRAYS
FORMAT = MN$(

NOTE:

0=NON COMMON

1=COMMON DEFINED BY THIS
MODULE

2=COMMON DEFINED BY PRE-
VIOUS MODULE

836 NORTH STREET, TEWKSBURY, MASSACHUSETTS 01876 . TEL (617) 851-4111,TWX 710 3436769, TELEX 947421

79

Printed in U.S.A.
700-3175B
6-75-1C

Price $1.50

APPENDIX E: S I
LOADING PROGRAM OVERLAYS WITH THE PLOTTER UTILITIES;

If the plotter utilities are to be used in an application program which
calls in program overlays from disk or tape, it will be necessary to COM all
variables used by the utilities. Non-common variables are automatically
cleared by the LOAD statement when a program overlay is called into memory.

A11 dimensioned variables can be changed from non-common to common by
replacing the DIM at 1line 20 of the dimension routines with a COM. In
addition, the following scalar numeric variables must be defined as common
variables. These variables are not defined in the DIM statement on line 20,
but they are used by the subroutines to store critical internal pointers, and
must be defined as common when overlays are used:

80

"d

]

APPENDIX F:
USING THE HARDWARE CHARACTER SET
IN CONJUNCTION WITH THE PLOTTER UTILITIES

The Models 2202, 2212, 2272, 2281P, and 2282 provide their own built-in
hardware character sets which are independent of the Plotter Utilities
character set. The hardware character set in each case is generated by the
plotter microprocessor, and does not require any supporting software in the
System 2200. (Only the Model 2232B Flatbed Plotter does not provide a
built-in hardware character set; on that plotter, all character generation
must be accomplished with supporting software.) In general, it is easier and
more convenient to use the Plotter Utilities character set when plotting with
the utility subroutines. In rare cases, however, the hardware character set
may be the preferred choice. (One such case is that of a configuration built
around a System 2200S without Option 23 or 24. Since a 2200S with neither of
those options does not have the Sort statements, it cannot support the
character generation routine in the Plotter Utilities, which requires a Sort
capability. In this case, therefore, the programmer must rely on the hardware
character set.)

The principal problem involved in labeling with the hardware character
set when plotting with the plotter utilities is that the characters must be
plotted "outside" the utilities. That is, the hardware characters are created
with a PLOT statement independent of the plotter utility routines, and the
plotter movement which results is not monitored by the subroutines. Thus, the
physical position of the plotter at the conclusion of the labeling operation
no longer corresponds to the position indicated by the internal pointers of
the plotter subroutines. If the application program is written so that all
plotting is completed before any labeling begins, this disparity does not
present a problem. If, however, the application program requires some
additional plotting after 1labeling, a serious problem arises. In this case,
the programmer must see to it that the physical plotter position coincides
with the plotter position assumed by the utility subroutines before proceeding
with any additional plotting.

81

To guarantee that the physical plotter position will correspond to the
utilities' assumed plotter position, the plotter must be returned to its
original position (the Tlast position recognized by the utility subroutines)
following completion of the labeling operation. For all plotters except the
Model 2272, the following PLOT statement can be used to return the plotter to
the start of a plotted character string:

PLOT <-X*LEN(AS$),-Y*LEN(A$),>

X and Y are the horizontal and vertical spaces, respectively, and A$ contains
the plotted character string.

For the Model 2272, the algorithm must be modified as follows:
PLOT <2*(-X)*LEN(AS$),2*(-Y)*LEN(AS),>

In this case, again, X and Y contain the horizontal and vertical spacing, and
A$ holds the plotted character string.

If the application involves 1labeling several different points before
plotting is resumed, the recommended procedure is to back up to the starting
point of each string after it is plotted, and moved to the next labeling point
with the plotter utilities.

82

fow

1}

/-

APPENDIX G:
GIN MODE ROUTINE FOR TEKTRONIX

GRAPHIC TERMINAL (PEFFN’i23) ,

G.1 PROGRAM DESCRIPTION

Certain graphic display terminals in the Tektronix 4000 series offer a
special feature called Graphic Input (GIN) Mode. In GIN Mode, the X and Y
coordinates of the terminal display crosshairs can be transmitted to a
receiving system--in this case, the System 2200. (Note that only selected.
graphic terminal models offer the GIN Mode feature; consult the Tektronix
reference literature provided with your terminal to determine whether this
feature is supported.)

The GIN Mode feature permits an operator to obtain the coordinates of
any point on the graphic display by manually positioning the crosshairs at the
desired point; in effect, GIN Mode enables the display to function as a
digitizer. A special GIN Mode Routine (DEFFN' 23) provided in the Plotter
Utilities Package enables the 2200 to accept, interpret, and display the
coordinates transmitted by the graphic terminal.

G.2 SUBROUTINE ARGUMENT LIST

GOSUB' 23

The GIN Mode Routine has no arguments. Execution of the GOSUB' 23
statement automatically places the display terminal in GIN Mode, and readies
the 2200 to accept coordinates transmitted by the terminal.

Once GOSUB' 23 has been executed, graphic input is controlled from the
terminal keyboard according to the following procedure:

1. Manually position the crosshairs to a desired point on the screen.

2. Touch any key on the terminal keyboard. The character entered is
referred to as the "flag character;" it may be used to signal
special conditions to the controlling BASIC program. (Do not- use
the BREAK or ESC keys for this purpose.) T

3. Touch the RETURN key on the terminal keyboard. When RETURN is
keyed, the X and Y coordinates of the current crosshair position are
sent to the 2200, along with the flag character, and the terminal is
taken out of GIN Mode. The information received by the 2200 is
stored in the following variables:

A7 = X coordinate of crosshairs.
B7 =Y coordinate of crosshairs.
C0$ = Flag character.

Coordinates are expressed in Tektronix Graphic Display Units (GDU's).
Note that the flag character has no functional purpose; it is simply a

convenient means of signalling special conditions (such as first point, last
point, etc.) to the controlling 2200 program.

83

Because the GIN Mode is terminated when RETURN is keyed, the GOSUB' 23
statement must be re-executed each time a new set of screen coordinates is to
be transmitted. Like the other Plotter Utility Routines, GOSUB' 23 can be
executed under program control, or directly from the keyboard with Special
Function Key 23.

84

L]

B

S_+ REFERENEC

-— - -

KEYBOARD/CHARACTER SET,CRDS

-

NDIX H: |

~ APPE

KEYBOARD CHARACTER SET KEYBOARD CHARACTER SET

KEYBOARD CHARACTER SET

gﬁ“

4 < < 3G E2xa b O H » & ¢ G

@!@#$%¢&*().+?<>:;u/?..erL\fJ& n <] © 0 o+

85

O=—@IEPAWESIK ——~ 1 + I/ eeoaz N o o | 1 [} 1 © 0 (8] © (] Y- o o

OO AWLOI DY JIZTZ000xNFIOD>X>NeENMSTWOWONOO -

*Jse HEX Code

COOAWLOIT DY IZTZ2000xNFOD>EX>NENMSTONOO -

S ¢

active plotting area.
clipping with
definition of . . .

initializing boundar1es of e e e e e

plotting boarder of .
resetting boundaries of . .
setting boundaries on Model
setting boundaries on Model
"actual" move

...... e o o o

border of active plotting area. e e e o . . 2,3,7,8,16,49" 2
defined e . . . See 'active plotting
area’
plotting line around. 49
central angle of circle 46
circle, plotting. ¢« ¢ ¢ v ¢ ¢ v v o« . . 3,45-47
characters
base Tine . « « ¢« ¢« ¢ ¢ ¢« ¢ o e e e o o e o . 23,24,26,28,30
how defined « « +. « ¢« ¢« ¢«« . 9,23-24
rotation. ¢ . 0 0 0 e e 0 e e . 29-30
STZBe ¢ v ¢ ¢ 4 ettt e e e e e e e e e e 23,24,35
slant e o e e e e e s e e e . 27-28
special characters o o s o s o s s s 8 s e . Appendix C
character base 1ine . . . « « « « « « . e o o o o 23,24,26,28,30 “
reference point . . « « ¢« ¢« ¢ ¢ e e e e 31 ;q%
rotation. 0 L 0 0 il e e e e e e e 0 29 -
character generation array. « « « « ¢« « o ¢« « « « o . 2,12,22,32,36,37
defined e e e e e e e e e e e e . 2,10,12
jnitializing. B 4
modifying e s e e e e e e e e Appendix C
recalling from d1sk/tape. e e e e e e e oo 37
characters, hardware-generated. Appendix F
characters, plotting. e o e 2,9,23-32
Appendix C, Appendix F
circle. « « ¢« ¢« « . . e e e e e e e e e e . . 2,33-34
straight Tine 2,23-32
coordinate grid, plotting e ... 2,42-44
degrees, use by plot routines« o o 71,29 "
enhanced character array. e ¢ o o« o 37,66
error checking. « ¢« ¢ ¢ o ¢« ¢ o ¢ o ¢ 0 o 0 0 0 a0 e . 6 .
GRAPHIC CRT €rasure « « « « « « o o « o o o o & . « o 3,51

GIN Mode (Graphic Input) Routine. . .

hierarchy of plotter control.

e o o o

86

. Appendix G

5,6

ISS . . L] L] . . L] . . L] 11

matrix of vertices, used to define characters 9,24,25
memory requirements . . . + ¢ 4 ¢ ¢ s 4 0 e 0 0 e e o1

overlays, use with plot subroutines Appendix E

pen selections. e e e e e e e« « o 3,52,53,54
physical plottingarea.« . ¢ oo .. 7,17
PLOTOO1A routine . . v v ¢ ¢ ¢ ¢ ¢ o o o o & . . Appendix C
Plotter Control Routine 4,59

Plot Instruction Emulator 4,56-59
polygons, plotting. « . ¢« ¢ ¢ v v o o .. . 47

radian-to-degree conversion . . . ¢« ¢« ¢« ¢ o 0 o 0 0 o 7
reselecting radians . . . « + ¢ ¢ o 0 o 0 0. o 7

radius of circle. « « ¢« ¢ ¢« ¢« ¢ ¢ ¢ ¢ « & e e e e e e 34,45
rotation. 4 EX
scaling © s o e s s e o 5 0 o e A
segment 4 4 4 e e 4 e e e e e e e e 80,50
STZBu v v 4 4 4 et e e e e e e e e e e e e . o . 23,24,32
negative size . . « ¢« ¢ ¢ ¢ ¢ 4t e e e e e . . . 26,34
positive size « e e e . . 26,34
Slant & ¢ ¢ i e e e e e e e e e e e e e e e e e e . . 27,28
slant, angleof ¢« ¢« ¢« ¢ ¢« ¢« ¢ ¢« o« .« . 27,29
slant reference angle e e e e .. 27,29

Special Function Keys,
used to run plot routines from keyboard 14

standard array. ¢ . 0 0 0 ... e o o o o o« o 37,65

START module. T b A 1)
loading B |
clearing. « v ¢ ¢ ¢ ¢ ¢ ¢« o o ¢ o 0 0 o o o . o 15

straight line, pletting e o oo . 2,3,9

Tektronix display « « & ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢« ¢« ¢ o o« « « 2,3,13, Appendix G
"tacit" move. 0 0 0 0 0. e e s e s . o 56
trailing spaces, techn1que for plotting 32

unit character. e e s e e e e e e e . 24
user respons1b111t1es)

variables, reserved ¢ ¢ ¢ ¢ s o« . . . 10, Appendix D

87

s

To help us to provide you with the best manuals possible, please make your comments and suggestions
concerning this publication on the form below. Then detach,. fold, tape closed and mail to us. All
comments and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to
include your name and address. Your cooperation is appreciated. '

* 700-3838D

TITLE OF MANUAL 2200 PLOTTER UTILITIES MANUAL
COMMENTS:

Fold

Fold
Name Title
Company Tel. #
City State Zip Code

(Please tape, Postal regulations prohibit the use of staples.)

(WANG)

Fold

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 16 LOWELL, MA

POSTAGE WILL BE PAID BY ADDRESSEE

WANG LABORATORIES, INC.
ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851

Attention: Corporate Publications Department

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Cut along dotted line.

Fold

Printed in US.A.
13-1019A

!
|
1
I
|
I
1
!
1
|
|
|
|
|
|
1
|
|
|
1
1
|
!
1
|
|
|
|
|
1
|
I
|
|
|
|
|
I
I
)
1
1
1
|
!
!
|
|
|
[}
[}
I
I

(L%

International =
Representatives | UNited States
Argentina Alabama Florida lowa Southfield Syossett South Carolina
ga“a’f‘as Birmingham Coral Gables Ankeny Minnesota Syracuse Charleston
B"’:T”.’;" Mobile Hialeah Kansas Eden Prairie Tonawanda Columbia
Bgt:\:vana :Iaska T:{!:':;iﬁ%e \?\;e:atnd Park Minneapolis North Carolina gz:;‘;:z? :
1 - " » A
Brazil herey Miami o il CRanofty Knoxle
Canary Islands Juneau Kentucky Jackson Greensboro 5
: Arizona Orlando Louisville Raleiah Memphis
Chile . e Missouri aleig Nashvil
. Phoenix Sarasota Louisiana 3 ashville 7
Colombia 5 Tampa Creve Coeur Ohio Texas
Costa Rica {fUcSOR : Batoronge St. Louis Akron Austin ’
Cypius Califol_'nia gtlaorgla Met.anrle Nebiaska Cincinnati Dallas i
Dt Anaheim tlanta Maine Omicha Cleveland El Paso
Dominican Republic Burlingame Savannah Portland Independence Lblston -
Ecuador Culver City Hawaii Maryland Nevada Toledo Sah ARG ’
Egypt Emeryville Honolulu Baltimore Las Vegas Worthington Otahs 4
El Salvador Fountain Valley Maui Bethesda New Hampshire Qklahoma :
Finland Fresno ldaho Gaithersburg Manchester Oklahoma City E:llt Lake City
Ghana Los Angeles Biide Rockville New Jersey Tulsa Ngz::{;i Nawis
Greece gacrgmento i Massachusetts Bloomfield Oregon Norfolk
an Diego inoi ; 2
Guam Sa Frlar?c's & 4 'I‘."°'5 e Eloslmn Cll_fton Eugene Richmbnd
Guatemala N 3=5G rlington Heights Burlington Edison Portland Rosslyn
Haiti santa Clara Chicago Chelmsford Mountainside Salem Springfield
b e I\Oﬂoll:-tt)on K Ly Toms River Pennsylvania Washington
Icelland Colorado akbroo Littleton New Mexico Allentown Richland
India Englewood Park Ridge Lowell Albuguerque Erie Seattle
Indonesia Connecticut Rock Island Methuen Santa Fe Harrisburg Spokane
Ireland New Haven Rosemont Tewksbury New York Philadelphia Wisconsin 3
Israel Stamford Springfield Worcester Albany Pittsburgh Appleton
:taly & Wethersfield Indiana Michigan Jericho State Gollege Brookfield
vory Loast District of Fort Wayne Grand Rapids Lake Success Wayne Green Bay
Japan Columbia Indianapolis Kalamazoo New York City Rhode Island Madison
;J(ordan Washington South Bend Lansing Rochester Providence Wauwatosa
enya ; .
Korea
Kuwait
Lebanon] .
Liberia International Offices] : . :
Malaysia
Malta Australia Victoria, B.C. Japan Malmao
Mexico Wang Computer Pty., Ltd. Winnipeg, Manitoba Wang Computer Ltd. Switzerland
Adelaide, S.A. Tok .G.
nNn:\LO(csi?nea E”i:'i:::":- Qid. &‘;na industiial Co.lixd Noetioerlands ;T:::?m i
Nicaragua Canberra, A.C.T. Taiplln':i; e =" Wang Nederland B.V. Basel
Nigeria Perth, W.A, IJsselstein Bern
Norway South Melbourne, Vic 3 Wang Laboratories, Ltd. Groningen Geneva
Paraguay Sydney, NSW Taipei e S ania Lausanne -
Peru Austria France W coman St. Gallen
Philippines Wang Gesellschaft, m.b.H By CompureriLut :
5 tpp I e 9 . m.b.H. wWang France S.A.R.L. Auckland Wang Trading A.G.
ert:f; , |enr_1a Earrs Christchurch Zug
Saudi Arabia geigiam i Wellington West Germany
Wang Europe, S.A. Lille Wana Deutschland
Scotland Brussels Lyon Panama ; Gmb?'l !
Senegal Erpe-Mere Marseilles Weng dePanama Frankfurt }
South Africa G Nantes (CPEC) S.A. Berlin
Spin \I'\?::g iézmada Ltd Nice ganama/City Cologne “
Sri Lank 4 s ¥
S[:daar? v Burlington, Ontario g?:;irl;ourg Puerto Rico Disseldorf) =
Tasmania Burnaby, B.C. g b Wang Computadoras, Inc. Essen
rhiand Calgary, Alberta reat Britain Hato Rey Freiburg
Don Mills, Ontario Wang (U.K.) Ltd. . Hamburg : E
Turkey £d : L Alban Rithtoad Singapore H
United Arab Emirates H ?';on :‘n, Se ?_ Birmingham Wang Computer (Pte) Ltd. Kannolvar
Hrguay H:rlnie::cr:n ()(.‘)’:tar?: > London S Mzs::heim
:?mnzzazil Montreal, Quebec Manchester Sweden Munich >
Ottawa, Ontario Hong Kong Wang Skandinaviska AB Nirnberg
Quebec City, Quebec Wang Pacific Ltd. Stockholm Saarbriicken
Toronto, Ontario Hong Kong Gothenburg Stuttgart

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01861, TEL. (617) 469-6000, TWX 710 343-6769, TELEX 94.7421

Printed in U.S.A.

. (waNG

! 3-82-5C -

o A Rt g Ll

	Cover
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: System Start-up
	Chapter 3: Set Plotter Boundaries (DEFFN' 19)
	Chapter 4: Plot Character String (Straight Line) (DEFFN' 20)
	Chapter 5: Plot Character String (Circle) (DEFFN' 21)
	Chapter 6: Load Character Generation Array (DEFFN '22)
	Chapter 7: Plot Line Between Two Points (DEFFN '25)
	Chapter 8: Plot Coordinate Grid (DEFFN' 26)
	Chapter 9: Plot Circle (DEFFN' 27)
	Chapter 10: Plot Border Around Active Plotting Area (DEFFN' 28)
	Chapter 11: Clear Surface/Pen Select (DEFFN' 24)
	Chapter 12: Plot Instruction Emulator (DEFFN' 29)
	Chapter 13: Plotter Control Routine (DEFFN' 30)
	Appendix A: General Forms of the Plotter Utility Routines
	Appendix B: Character Sets
	Appendix C: Customizing the Plotter Character Set
	Appendix D: Reserved Variable List
	Appendix E: Loading Program Overlays with the Plotter Utilities
	Appendix F: Using the Hardware Character Set in Conjunction with the Plotter Utilities
	Appendix G: GIN Mode Routine for Tektronix Graphic Terminal (DEFFN '23)
	Appendix H: Keyboard/Character Set Cross References
	Index

