(WANG) wusorsrontes.ie.

MVP PROGRAMMING GUIDE
May 31, 1978

The following document is intended to give the reader an overall view of the MVP
Operating System with emphasis on programming considerations for the multi-user
system. It assumes the reader is familiar with Wang BASIC. Compatibility with
other 2200 systems (2200T and 2200VP) is described as well as techniques for
converting existing software for the 2200MVP. The program and data sharing
features, unique to the multi-programming environment are introduced.

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851 » TEL. (617) 851-4111 » TWX 710-343-6760 « TELEX 94-7421

Philosophy of the MVP

Hopefully, programmers and users of past Wang 2200 systems will find the
MVP to be a logical variation on the familiar 2200 theme. The MVP
hardware is surprisingly similar to the 2200VP. The BASIC-2 language
supported on the MVP is essentially the same as the language of 2200VP,
with extentions. Users will find the machine almost as responsive as the
VP, and every bit as easy to operate. Programmers will find a high degree
of software compatibility with both the 2200VP and 2200T.

In addition to the microcode necessary to implement the BASIC-2 language,
the 2200 MVP's control memory contains a multi-programming operating
system. The primary goal of a multi-programming operating system is to
allow several users to share a single computer efficiently. To accomplish
this, the operating system divides the resources of the computer - memory,
peripherals, and CPU time - among the users. Once each user has been
allocated a share of the computer resources, the operating system acts as
the traffic policeman, allowing each user to use the system in turn while
preventing users from interfering with each other's computations.

On the Wang 2200MVP, the wuser memory is divided into fixed size memory
partitions by executing the Wang supplied utility program, G@GENPART,
immediately following system power up (see MVP Intro Manual). Each memory
partition behaves much 1ike a single user 2200VP. From the user's point
of view, each partition functions independently from the other partitions
in the system. Each user may LOAD and RUN BASIC software, compose a
program, or perform immediate mode operations. As in a single user
environment, the user has complete control over his partition. Ne other
operator or other partition may halt execution or change the program text
of his partition.

Each terminal may control several partitions executing independent jobs.
At any given time, only one of these partitions is in control of the
screen and thus capable of interacting with the operator. The partition
in control of the screen is said to be attached to the terminal or running
in the foreground. Other partitions assigned to the terminal may continue
to execute in the background, until such time as operator intervention
becomes necessary. If a background job attempts to print to the CRT or
get input from the keyboard, its execution is suspended until the terminal
becomes available to it.

The terminal becomes available to the waiting background job when the
foreground partition explicitly gives up control of the terminal. Sharing
the terminal in this way means that a partition maintains control of the
terminal for as long as it desires. Messages from other partitions cannot
appear and mess up the CRT display at wundesirable times.
Foreground/background processing is discussed further in Section VI.

In addition to partitions operating independently, the MVP allows
partitions to co-operate. Co-operating partitions may share program text
(global subroutines) and/or data (global variables). These features allow
considerable memory savings over a situation where each partition has its
own copy of the same code or data table. The integrity and independence
of a partition is maintained by requiring the partition to explicitly
declare itself to be global (sharable). (Sharing program text will be
discussed in detail in sections IV and V).

The analogy of completely independent single user machines is clouded
somewhat by contention for shared peripheral devices. The situation is
familiar to programmers used to working with Wang 2200 systems that share
one or more disk drives via disk multiplexers. It is sometimes necessary
to request exclusive control of a disk while an update is made. Likewise
on the MVP it 1is necessary for a partition to exclusively control a
printer for the duration of the printing of a report, lest one partition's
print lines become unreadably intermixed with another's. The concept of
disk hog mode has been -extended on the MVP. The $OPEN and $CLOSE
statements allow a partition to request exclusive control of any device on
the system. -

The programmer who wishes to take the macroscopic view of the MVP system
as a whole is quite correct in thinking of all partitions as executing
simultaneously. It doesn't take 1long to realize, however, that the
2200MVP has only one CPU. The operating system creates the illusion of
concurrent execution of several programs by rapidly switching from one to
the other in turn.

What follows is a simplified description of the MVP operating system, and
‘as such is neither precise nor complete. The programmer need not
generally be concerned with these details of how the operating system does
its job, but this presentation may be helpful in giving users an overall
feel for how a multi-programmed system attempts to maximize system
utilization while maintaining good user response time. The programmer who
is aware of some of the operating system duties can actually help the
system to perform better with 1little dinconvenience to his own coding
techniques.

MVP partitions are serviced in a round robin fashion, with some additional
priorities given for certain I/0 operations. Each partition in turn is
given a 30 ms. timeslice, during which it has exclusive control of the
CPU. The CPU has within it a 30 ms. timer which is set at the beginning
of the timeslice. At the completion of each BASIC statement and at
various points in the middle of long MATRIX and I/0 operations, the clock
is checked to see whether the 30 ms. timeslice has been exhausted.

When the timeslice is over, the MVP operating system carefully saves the
status of the partition so that it may be restored later when that
partition's turn comes around again. The ' status of the next partition in
line is then loaded and 1its 30 ms. timeslice begins. The process of
swapping out a partition at the end of its timeslice is called a
breakpoint. The programmer cannot predict in advance when a breakpoint
will occur. Except for a few cases involving global variables within
matrix and I/0 statements, the occurrence of breakpoints is of no concern
of the programmer.

Timeslices do not always Tlast exactly 30 ms. Unlike many operating
systems, the MVP switches users (breakpoints) when it is convenient,
rather than strictly by the clock. This reduces the amount of status
information that must be saved, giving the MVP comparatively low
"operating system overhead".

More dimportantly, breakpoints may occur in the middle of BASIC 1I/0
statements. If, for instance, the disk is hogged by another partition,
this condition is quickly detected and a breakpoint occurs. 1I/0
breakpoints differ from program breakpoints din that the partition is
specifically marked as "waiting for I/0". When the partition's turn comes
around again, it takes only a few microseconds to decide whether
processing may proceed or whether the partition is still waiting for the
I/0 device and thus may be bypassed. Thus if a printer runs out of paper
or a partition that does not currently control the CRT attempts CRT
output, processing is suspended in that partition almost as effectively as
if j% g?re removed entirely from the system, until the I/0 device becomes
available.

The CPU is much faster than any of its peripherals. Breakpointing during
I/0 operations allows the MVP to keep many I/0 devices busy concurrently
with program processing. To accomplish this I/0 overlap requires
buffering and quite often microprocessors to control the peripherals. The
most sophisticated of these intelligent peripherals is the 2236MXD
terminal controller. The MVP CPU does not perform INPUT or LINPUT
statements. Instead it asks the microprocessor in the 2236MXD to perform
the operation. Just as in the case of the printer out of paper, a
partition executing an INPUT or LINPUT statement is marked as waiting for
I/0 and receives no CPU timeslices until the INPUT or LINPUT statement is
terminated with carriage return or a special function key. The MXD also
performs the 1ine editing functions to move the cursor, and insert and
delete characters.

Lastly, the MVP operating system performs some address translation. After
all, every partition refers to the terminal keyboard as address /001, the
CRT as address /005, and the terminal printer as address /204. The
operating system makes sure that all output gets to the proper terminal
and all input comes from the proper keyboard.

II.

How Indepéndent Programs can Share the CPU and Peripherals

When configured as < n> partitions and <n > terminals, the 2200MVP can

be treated as if it were < n > separate 2200VP computers. The 2200MVP is

generally compatible with the 2200VP BASIC-2 1language. Users with

existing software are encouraged to try their software on the MVP as is.

ghe fewII%ompatib111ty problems that may be discovered are discussed in
ection .

As a first approximation for the required MVP partition size, use the size
of the single user system the software is designed for. This may be a few
hundred bytes small for programs designed for the 2200T and slightly large
for 2200VP programs. Once the program 1is Tloaded and resolved, the
immediate mode command PRINT SPACEK-SPACE/1024 will reveal the exact
partition size necessary in K bytes.

Once the partition size necessary for each application is determined, the
user will become interested in the total amount of MVP memory necessary to
run several programs concurrently. The total memory requirement for an
MVP system is the sum of the partition sizes plus 3K for operating system
tables. The amount of user memory taken by the system on the various 2200
systems is compared below.

User Memory Taken for System Use

2200T 2200VP 2200MVP
700 bytes 3K 3K + 1K/partition

Notice that the total MVP memory overhead with 2 or more partitions is
less than the memory overhead if separate VP's were used.

Note: The discussion above about determining partition size takes into
account the need to reserve 1K for partition overhead.

MVP programming and operating considerations are identical with those of a
system of T, VP, and workstation processors multiplexed to a disk, with
the added complication that the printer can be accessed directly by any
user at any time, without pushing a button on a manual multiplexer.

An operator wishing to use the printer on a manually multiplexed system
must (1) determine if anyone else is about to print, (2) press the button
on the multiplexer for his own station, and (3) run his program. If he
runs his program when the printer 1is being used by someone else, his
program just hangs up. In contrast, an operator wishing to use the
printer on a 2200MVP must (1) determine if anyone else is about to print,
and (2) run his program. However, if he runs his program when the printer
is being used by someone else, the print l1ines from both jobs will be
intermixed on the paper.

A very simple modification to the programs will eliminate the possibility
of intermixing lines. The MVP allows an executing program to "hog", or
reserve, a peripheral device for as long as it wants. The program must be
modified to execute a "$OPEN /215" statement before using the printer, and
to execute a "$CLOSE /215" statement when finished with it. A program
which prints several reports might execute a "$OPEN /215" before and a
"$CLOSE /215" after each separate report. This would guarantee that an
entire report would be contiguous on the paper, but would possibly let
some other program's output appear between the seweral reports.

Of course, the above discussion also applies to plotters, typewriters, or
any other peripheral device which is plugged into the MVP CPU box. Note
that it is not NECESSARY to include the "$OPEN" and "$CLOSE" statements in
MVP programs -- this is merely a mechanism to guarantee that a program has
exclusive use of a peripheral, and to allow operators to run various jobs
without the possibility of spoiling someone else's output.

Another simple method to guarantee that a Jjob has exclusive use of a
printer, plotter, typewriter, etc. is to plug the device directly into the
output connector on the assigned terminal. The disadvantages of this
method are, (1) that it must either be considered permanent or else
involve a lot of plugging and unplugging, and (2) references to the device
must be modified to address /X04 (e.g., /204, /404) since this is the
fixed address of the terminal output device connector. Use of a 2221M
printer multiplexer on the MVP should not be completely discounted, for it
is a good way for a cluster of terminals, located at some distance from
the CPU, to share a common printer.

It is possible to reserve a peripheral permanently at partition generation
time. This is often done with TC boards, since it 1is rarely logical for
two programs to share a TC board.

III.

Compatibility with earlier Wang 2200 Systems

This section deals with the few software imcompatibilities that exist in
the 2200MVP. They are listed in the order of frequency with which they
are usually encountered. While it is desirable to get existing software
up and running quickly, the MVP offers several means of dimproving
performance and reducing memory requirements. Quite often it is possible
to reduce the memory requirements of 2200T programs by recoding them using
the more powerful BASIC-2 statements. The greatest memory savings are to
be realized when program text is shared as discussed in Sections IV and V.

Programs may choose to ignore the potential existence of other programs in
the system, but a small amount of "good citizenship" can go a long way in
improving overall system performance. Use of the INPUT and LINPUT
statements better utilizes the 2236MXD and thus frees a lot of CPU time
for other partitions to use in comparison with doing input with the KEYIN
statement. If a program must use KEYIN, it is better to use the "VP form"
of the statement: KEYIN A$ rather than KEYIN A$, 10, 20.

If a program must test a condition over and over in a tight polling loop,
it should perform. the test once and then give up the remainer of its
timeslice with the $BREAK statement. For programmer convenience, this
feature has been built into the polling form of KEYIN. The KEYIN
statement is treated as if it actually were KEYIN A$, 10, 20 : $BREAK.

Time delays should be created using SELECT P rather than with FOR/NEXT
loops. SELECT P delays are ‘timed by the 2236D terminal, while FOR/NEXT
delay loops waste CPU time that could be more productively used by other
partitions.

Features of earlier 2200 systems not supported.

1) Users converting 2200T programs for use on the MVP should refer to
Appendix C of the BASIC-2 Language Reference Manual for a list of
differences between Wang BASIC and BASIC-2.

2) The MVP does not permit $GI0 to a disk. This will affect programs
that send a CBS strobe to the disk to activate hog mode. The MVP
uses the $OPEN and $CLOSE Statements to activate disk hog mode, as
well as to request exclusive control of any other peripheral. The
address form of disk hog, SELECT DISK 390, is supported on the MVP.

3) Some programs use KEYIN to input atom codes from the text atom keys.
This works properly on the MVP, but the 2236D terminal does not have
all of the atom keys found on a 2226 console. The absence of a
PRINT key seems to create the most software transportability
problems.

4)

5)

Many programs test for the existence of printers and disks before
attempting to access them. This 1is a problem on the MVP because
$GIO0 is not permitted to disks and because several 1ines worth of
buffering separate the terminal printer from the I/0 bus. A partial
solution is to use the $OPEN and ON ERROR GOTO statements to see if
the device address was declared in the master device table when the
system was configured using the @GENPART program.

Some programs use $GIO with timeout to the keyboard to insist that
an operator respond in a fixed period of time. $GIO with timeout is
not supported at address /001 on the MVP.

Character insert mode is not supported on the MVP. Characters must
be inserted into text lines using the insert edit key.

The MVP does not permit CI, CO, or INPUT to be selected to any
device other than the 2236D terminal. The only exception is that
the output of TRACE may be selected to a printer with SELECT CO.
The width of the Console Output device may not be redefined to be
other than 80 bytes for the purpose of INPUT or LINPUT.

MVP Differences

1)

4)

The most obvious difference is that CRT output is somewhat slower on
the MVP, depending on the data rate set for the serial 1line
connecting the 2236D terminal to the 2236MXD. This may alter
programming strategies that frequently update the entire screen.

The 2236MXD allows a maximum of 480 bytes to be entered into a
single line request. This places some restriction on the maximum
length field that may be entered with a single INPUT or LINPUT
statement. This restriction also limits the 1length of a multiple
statement program line that may be entered or edited on the MVP.

There are several differences in the LINPUT statement.

a) The most obvious difference is that the cursor blinks to
indicate edit mode. The .2200VP displays an asterisk to the
left of the field being edited.

b) - The second difference is that the non-edit mode form of LINPUT
places the cursor at the first position of the field instead
of following the last non-blank prefill character as on the
2200VP.

c) The maximum length field is limited to 480 bytes.
When an MVP is master initialized, the default disk (SELECT DISK or
#0) is the platter the system microcode is 1loaded from. This

differs from the 2200T and 2200VP, which always set the default disk
to /310 when master initialized.

-7 -

5)

6)

Time delays using FOR/NEXT loops or $GI0O (75xx) not only waste CPU
time, but vary in duration as a function of CPU loading. Every 30
ms. a program breakpoint occurs. When the partition's turn comes
around again, it is allowed to waste another 30 ms. Time delay
loops thus become minimum delay Toops on the MVP. It is recommended
that SELECT P be used for delays.

SELECT P delays are implemented by the 2236D terminal. Special
characters are sent to the terminal to cause the terminal to delay.
Since the terminal is buffered, the program does not wait at the
PRINT statement causing the delay. It is not unusual for a program
to be several PRINT statements ahead of the CRT display while using
SELECT P. '

The 2236 MXD buffers up to 36 ‘keystrokes ‘that have not yet been
requested by a program. This helps smooth out peaks in operator
typing speed in data entry applications, but it also allows the
operator to anticipate program prompts. Sometimes it is necessary
to flush this keystroke buffer, for instance, to minimize the effect
of an operator beating on the return key while a program overlay
loags from floppy disk. It is easy to flush the keyboard buffer
with:

10 KEYIN A$, 10, 10

Iv.

How to Share Program Text (with No Overlays)

Consider the situation where < n> operators are to sit at <n»>
terminals attached to < n> partitions, and all run the same job. If the
partitions are treated as separate computers, then each partition will
have a complete copy of the program, including text and variables. A
considerable savings in memory could be realized if only one copy of the
program was kept in the MVP, and all the users could share it. This can
be done. The text of the program, which does not change as the program
runs, can be shared; while the variables, which must change as the program
runs, cannot be shared (each user must still have his own copy of all the
variables).

In order to share program text, it must reside in a partition which has
declared itself to be "global", that is, accessable to other partitions.
The simplest way to do this is to create a separate partition, that will
not interact directly with an operator, to contain the text of the program
(but not the variables), and to let each operator's partition contain only
(1) a complete set of variables for the program and (2) a call upon the
global partition.

Any partition in an MVP may declare itself to be global and give itself a
name by executing a "DEFFN @PART name " statement. Any partition may
access a marked subroutine ("DEFFN ' number ") in a global partition by
first executing a "SELECT @PART name " statement, and then executing
a standard call to the marked subroutine ("GOSUB ' number "). If the

name s match and the marked subroutine does not exist in the calling
partition, the correct marked subroutine in the global partition will be
entered. (See the 2200VP BASIC-2 manual, chapter 16 "The 2200MVP", for a
complete description of global and calling partitions). Arguments may be
passed to global subroutines in the same manner as if the marked
subroutines resided in the calling partition.

Since the calling partition is resolved separately from the global
partition, it is the responsibility of the calling partition to contain
the necessary DIM or COM statements to define all variables that will be
referenced during the execution of the global text. Failure to do so will
result in execution time errors.

In order to change a VP program into a shared MVP program, the program
must first be modified, and then be properly 1loaded and run. The
following instructions pertain to the modifications.

1. Only marked subroutines can be shared. Change all desired entry
points to global text to marked (DEFFN') subroutines. Quite often
it is possible to share an entire program, in which case a DEFFN'

statement is added to provide a marked subroutine entry to the main
line routine. '

2. Separate the program into two program files: one, which we will
call MAIN, containing all the existing DIM and COM statements and
any non-sharable code; and the other, which we will call SUBS,
containing all the marked subroutines to be shared.

-9 -

Create a list of all the variables used by all the marked subs. A
LIST V operation on the file SUBS is the most convenient method
here. :

Ensure that no DIM or COM statements remain 1in the file SUBS,
otherwise wunnecessary storage will be allocated 1in the global
partition.

Add to the beginning of the file SUBS the following code:

10 DEFFN @PART "jobsubs"

20 $RELEASE TERMINAL

30 PRINT "Partition"; #PART; "background job 'jobsubs'"
40 GOTO 20

Line 10 makes the text in the partition accessable to the other
partitions and gives it the name "jobsubs".

Line 20 makes it convenient to resolve this partition under operator
control, if that becomes necessary. Global partitions are most
conveniently loaded by the "automatic program 1load" feature of
system configuration.

Line 30 provides some information if a terminal ever gets attached
to this partition, which normally should not happen. Execution is
suspended when 1ine 30 is executed until such time as the terminal
becomes attached.

Line 40 is needed because it 1is not logical to execute the global
text directly, because the global text 1is all subroutines and
because no variable storage is allocated within the global partition
itself. After the branch back to line 20, which releases the
terminal, execution again becomes suspended in line 30.

Using the existing DIM and COM statements in the file MAIN and the
list of variables obtained in step 3, add to the file MAIN a DIM
statement containing all the variables used by the text in SUBS
which are not already mentioned in a DIM or COM. The purpose of
this is to ensure that all of the necessary variables are allocated
in the calling partition; any combination of DIM and COM statements
which accomplishes this is sufficient.

Add to the beginning of the file MAIN the following code:
5 SELECT @PART "jobsubs" : ERROR $BREAK : GOTO 5

- 10 -

The execution of this statement will allow all marked subroutine calls in
this partition to refer to marked subroutines in the global partition
* named "jobsubs".

The process of global partition definition and reference is accomplished
by the execution (not the resolution) of "DEFFN @PART" and "SELECT @PART"
statements. If 1ine 5 1in this calling partition is executed before line
10 in the global partition has been executed, the system will not know
that we intend to have a global partition "jobsubs", and a run-time error
will result. This is 1likely to happen even if MAIN and SUBS are both
started using the "automatic program load" feature of system
configuration. In order to cope with this possibility, the part of line
5, above, that follows the ":ERROR" will be executed if the global
partition is not yet ready, causing the calling partition to '"wait a
while, then try again". g

Once the program has been modified for sharing, it must be properly loaded
and run. The most convenient method to do this is to construct a
configuration to run the programs, and to use the automatic program Tload
feature to start them up. The following instructions pertain to
determining the size of each partition and setting up a memory
configuration:

1. Working in a comfortably large program-development partition, load
the file SUBS, but do not RUN it. (If you RUN it, you will be
attached to another partition by the "$RELEASE TEMINAL" statement.
However, nothing else dangerous will happen, and the program will be
resolved when you get back to it). Next, execute in immediate mode
"PRINT SPACEK-SPACE/1024". The number printed will be the required
size of the global partition.

2. Next, LOAD and RUN file MAIN. MAIN must be RUN in order to allocate
memory for the variables. (RUNning MAIN should result in an
infinitely long wait at statement 5, since "jobsubs" is not defined
if a CLEAR was executed after step 1. Use the HALT key). Determine

the memory requirements of MAIN with the same immediate mode PRINT
command used in step 1.

3. Power down and up again. When the system generation program,
@GENPART, 1is running, construct a configuration with a partition for
each terminal, sized with the number from step 2 above, with
"program to Tload" set to "MAIN". Add one partition (any terminal),
iizeguggth the number from step 1 above, with "program to load" set

0 1] Il.

- 11 -

The following is an example of what the G@GENPART program should display
when the configuration has been completely<specified, assuming (1) the
required size of the global partition is 28 KB, (2) the required size of
the cq]ling partition is 10 KB, and (3) three terminals are to run the
same job:

PARTITION SIZE(K) TERMINAL PROGRAMMABLE PROGRAM

1 10.00 1 Y MAIN
2 10.00 .2 Y MAIN
3 10.00 3 Y MAIN
4 28.00 1 Y SUBS

Partition #4 has been assigned to terminal #1. This assignment will

not be used, but each partition must be assigned to exactly one
terminal. ‘

Programming has been enabled for all partitions in this example, but
you may want to disable programming if the operators are to be
forced to run only the one program, in MAIN.

4. This configuration may be stored on disk. Whenever the system is
loaded using this configuration, the calling and global programs
will automatically be loaded and started up, and the operators need
only to sit down and begin to operate.

-12 -

How to Share Program Text When Overlays are Involved

Many software packages use program overlays to some extent. Since it is
generally not appropriate to overlay in global areas this means that it is
not as simple a matter to share program text as the last section implies.
Several possible strategies for sharing portions of applications " that
involve overlays are discussed in this section.

First, look for subroutines that are used in several overlays. Disk
" access methods, such as KFAM, and screen formatting subroutines come to
mind. It is easy to apply the methods of the last section to extract a
set of subroutines and put them 1in a global partition. The two basic
rules of text sharing still apply: 1) Only marked subroutines can be
shared, 2) The calling partition must define all variables that will be
encountered during execution of global text.

Many packages are structured with several frequently used overlays. and a
number of infrequently used overlays. For example, in a data entry
package such as Easyform, a number of overlays support forms generation,
listing, etc. while one or two support real time data entry activities.
It may be efficient to divide such a package into:

(a) The frequently used real time overlays which might be restructured
into global programs and made available to a number of operations
simultaneously with small calling partitions large enough only to
contain the variables.

(b) The infrequently used overlays which might be retained as a single
user job, possibly requiring quite a bit more memory than the above,
with the intention that only 1 operator will perform these
functions.

Some jobs have a number of sequential overlays with 1ittle common text,
(similar to job steps in a batch run and/or operator prompt and
initialization jobs executed prior to a main job). Often these type of
jobs cannot benefit significantly from global text storage.

Some things to consider when sharing text from a program which uses
overlays:

The LOAD statement clears (resets) the global pointer. That is, when a
program, which has established a 1ink with a global partition, loads an
overlay, the 1link with the global partition 1is broken and must be
reestablished. Usually the simplest way to do this is to have the overlay
contain a SELECT @PART statement near its beginning. Note, however, that
the MVP allows transfer to a specific 1ine number after executing a LOAD,
which could be a 1line 1in the resident part of the program containing the
SELECT @PART and a GOTO to the beginning of the overlay.

If a LOAD statement is encountered while executing global text, the
overlay is performed in the calling partition. The usual rules of program
overlays apply: 1) The subroutine stack is flushed and 2) execution of
the overlay begins in the calling partition. In effect; the system

pretends the LOAD statement was encountered within the text of the calling
partition.

- 13 -

The steps pertaining to modification of a program using overlays are
almost identical to those described for non-overlay programs. The only
differences are:

1.

The variables used in the extracted global subroutines are inserted
via COM or DIM statements in each valid overlay configuration. This
is in each overlay, if the entire program is overlayed each time, or
it may be once, if idinserted in a main section which is never
overlayed.

The variables should keep the same context as in the original
program. That is, common variables if not to be initialized at each
overlay, non-common if to be reinitialized at each overlay.

It is possible that not all the overlays will reference every marked
subroutine in the shared text, and therefore not all the variables
mentioned in SUBS will be referenced. Those not referenced need not
be defined in the calling partition. The 1loading of an overlay
provides an opportunity to redefine the variables in the calling
partition.

-14 -

VI.

How Programs Can Share an Operator (Foreground/Background Processing)

Many CPU bound or disk bound jobs run for a relatively long time without
operator intervention (relatively long, meaning long enough for the
operator to do something useful elsewhere). In such a case, it would be
beneficial if the operator could be running another, perhaps interactive,
job in the meantime. Of course, any operator can do this, merely by
getting up and sitting down at another terminal.

On the 2200 MVP, it is possible for one terminal to control more than one
partition, and therefore more than one Jjob. The $RELEASE TERMINAL
statement causes the terminal to be detached from the current partition
and attached to another partition (to which it has been assigned at system
configuration time).

A single operator can control any number of "background" jobs, plus one
"foreground" job. A background job is defined as one which can be
expected to run to completion, or at Tleast for a usefully long time,
before requiring any attention from the operator. In the commercial
environment, there are many programs, usually with the term "update" as
part of their title, which operate on a data file or files according to
what they find in a command or transaction file. Such programs are ideal
candidates for operation as background jobs. On the other hand, there are
many programs, often with the term "entry" in their title, which are
designed to accept data from an operator (this is where the command or
transaction files come from). These obviously must be run as foreground
jobs.

Using the most direct method of running two jobs, the operator merely
starts a job in one partition, and when it is going well and needs no more
intervention from him, he detaches from that partition 1in order to go
start a job in another partition. Unfortunately, if the detached job gets
into trouble, there is no terminal available for it to use to call for
help. Furthermore, many programs periodically report their current status
via the CRT in order to reassure the operator that the job is still alive
and running. If a terminal is not available, the job will be suspended at
its first status report. A few simple software modifications make the
running of multiple jobs much safer and more productive.

The background program should be modified so that after the 1initial
dialog, the program releases the terminal to the foreground partition.
Thereafter, whenever the program has something to report which does not
require a response from the operator, it must test to determine if the
terminal is attached to the partition with $IF ON /005. If it 1is, the
report may be made; if it is not, the report may be discarded. When the
program requires a response from the operator, it can simply communicate
to the terminal without testing, and the operating system will
automatically suspend the partition until the terminal becomes attached.
In addition, the background job should provide a means for allowing the
terminal to be released back to the foreground job when the operator has
read the status report and is satisfied.

-15 -

4

The foreground job should be modified so that it periodically releases the
terminal to the background job, or at least provides the operator with an
option of checking on the background job. Since the method of checking
the background job involves releasing control of the CRT, checking the
background job must be done when the foreground job is willing to allow
the screen display to be cleared or at least is in a position to
reconstruct the display when it regains control of the screen.

The distinction between two of the forms of the $RELEASE TERMINAL
statement is important here. $RELEASE TERMINAL polls the background job
for distress messages or operator requests. The background job will
respond only if its execution has become suspended due to an attempt to
print to a CRT it did not control. $RELEASE TERMINAL TO partition
number or partition name attaches the terminal to the background job
whether it has asked for it or not. When the background job tests to see
if it controls the terminal, it will find that it does and thus may
proceed to print its status information.

The method of testing the status of a background job suggested in this
section requires the background job to be constantly testing to see if it
controls the CRT. Another method of producing background Jjob status
reports using global variables is discussed in the next section.

The following examples assume that an analyst has selected a suitable
program to be run as a background job, and that the current structure of
that program is: first, it conducts an initial dialog with the operator
(to find out what files to use, etc.), then begins to execute a loop,
which contains some code that reports the results of each trip through the
loop, using the CRT. It is further assumed that the analyst has selected
a program to be run as a foreground Jjob, and that this program executes a
loop containing a section (probably beginning the loop) which updates the
entire CRT screen. Your programs may not have this exact structure, but
the elementary principles in this example can be adapted or extended to
fit many circumstances.

- 16 -

MODIFICATION OF A PROGRAM FOR FOREGROUND OPERATIONS

ORIGINAL PROGRAM

START

INITIAL
DIALOG

E——

FILL
SCREEN

l
ACCEPT
DATA
FROM
OPERATOR

[

PROCESS

L

- 17 -

MODIFIED PROGRAM

START

INITIAL
DIALOG

CLEAR
SCREEN

FILL
SCREEN

ACCEPT
DATA
FROM

OPERATOR

PROCESS

RELEASE
TERMINAL

Test for
bgckground

i Eedusstsifo

L

(Brmasteblls)

Mﬁﬁ , TO
;Eg{ status

rom back-
ground job

RETURN

MODIFICATION OF A PROGRAM FOR BACKGROUND OPERATIONS

ORIGINAL PROGRAM

START

INITIAL
OPERATOR
DIALOG

T

PROCESS

MODIFIED PROGRAM

START

INITIAL
OPERATOR
DIALOG

——

PROCESS

UPERATOR

OPERATOR
INPUT

OPERATOR
INPUT

DISPLAY
STATUS

DISPLAY
STATUS

$RELEASE
TERMINAL

- 18 -

VII.

How Programs Can Share Data

In addition to the sharing of program text discussed in sections IV and V,
the MVP allows data to be shared between partitions. Perhaps the most
common use for these global variables is to exchange timing and status
signals between cooperating programs. It is also possible for jobs to be
logically divided into concurrent tasks. For instance, one partition may
handle all disk I/0 and pass the data to another partition via global
variables for computations to be performed. In all cases mentioned so far
the advantage of global variables is the speed advantage of communication
within user memory instead of the alternative approach of sharing disk
files. Use of global variables may also result in memory savings. Table
driven systems need have only one copy of the tables contained within the
same partition as the shared program text.

Global variables are 1identified by the character @. Global variables are

.completely distinct from non-global or local variables. (i.e., A$ and @A$

are separate variables). Both A} and @A$ may be used in the same program
with no ambiguity. Global variables may be defined as numeric or
alphanumeric, scalars or arrays according to the same rules as Tlocal
variables. The difference in defining global variables is that they may
not be implicitly defined, but must be defined in DIM or COM statements.
Since the purpose of global variables is to allow other partitions to look
at or modify their contents it makes sense that global variables should be
defined within a global partition.

An dintriguing use for global variables is to report the status of a
background job. If a background job declares itself global, the contents
of 1its global variables become accessable to other partitions. The
background job may now post its status to its global variables.
Foreground jobs, and even partitions assigned to other terminals, may
learn the status of background job by examining background job's global
variables. The flow of the background job 1is never interrupted with
status requests.

When the background job declares itself global to allow other partitions
access to its global variables, its marked subroutines become available to
other partitions as well. A marked subroutine may thus be included in the
text of the background job for the purpose of neatly formatting the status
information on the CRT when a foreground job calls it.

-19 -

The following is an example of global .variables and global subroutines
used to display the status of a background job.

10 DIM @I,@eN

60 REM INITIAL DIALOG

90 GOSUB 9000

100 $RELEASE TERMINAL
200 REM PROCESS LOOP
210 FOR @I = 1 TO @N

500 NEXT @I
600 END

1000 REM STATUS SUBROUTINE

1010 DEFFN '16 !

1020 PRINT "NOW PROCESSING RECORD"; @I; "OF"; GN
1030 RETURN

9000 DEFFN @PART "BACKGND":RETURN

To learn the status of the sample program, a foreground partition executes
the following two statements:

100 SELECT @PART "BACKGND"
110 GOSUB '16

It is possible to call the status subroutine in immediate mode by entering
the SELECT @PART statement and pressing special function key '16.

Note that the DEFFN @PART statement is at the end of the sample program.
This is because implicitly defined variables are not allocated storage if
they are encountered after a DEFFN OPART statement. Rather than include
DIM or COM statements for all variables, it is easier to put the DEFFN
@PART statement at the end of the program and call it as a subroutine.
Remember that a partition does not become global until the DEFFN @PART
statement is executed. The sample program chooses to wait until it has
finished its dialog with the operator before declaring itself global and
making its status available to other partitions.

- 20 -

The discerning reader can probably see that global variables can
potentially suffer from the same problem as shared disk files or shared
printers if two partitions access the same global variable simultaneously.
To some extent, the MVP operating system automatically resolves such
conflicts. Sometimes, however, it 1is necessary for a program to gain
exclusive access to a critical region of code that performs updates on
global variables.

Most BASIC statements are non-interruptable; that is, the MVP will
complete the statement before allowing a breakpoint to occur. The
exceptions are I/0 and most MAT statements. Chapter 16 of the BASIC-2
Reference Manual contains the complete 1ist of non-interruptable
statements. Programmers may be tempted to identify the potential
breakpoints 1in a program by the occurrence of colons and line numbers in
the program text, but there are two exceptions to this rule. In the
statement

100 @A = @A/N:ERROR @A = 9E99:GOTO 500

if an error occurs during the division, the first statement of the :ERROR
recovery routine will be executed before the 30ms clock is checked. In
other words, @A = @A/N:ERROR @A = 9E99 is treated as if it were a single
statement.

The other exception is the IF-THEN-ELSE statement. Because IF-THEN-ELSE
is non-interruptable, it may be used as a semaphore to prevent other
partitions from entering a section of code while a critical update is in
progress.

50 $BREAK:IF @S = O THEN @S = #PART:ELSE GOTO 50

70 MAT SORT @A$() TO W$(), L$()

\

100 @S = 0

If, in the example, a partition executing 1ine 50 finds global variable @S
= 0, it sets @S equal to a non-zero value and proceeds into the critical
section of code. When another partition comes along, it will find that @S
is not zero and will branch back to try again. The $BREAK statement is
included so that waiting partitions only test the semaphore once per
timeslice. The fastest way for a waiting partition gain access to the
critical region is to yield its time to the partition inside the critical
regiond; When the partition using the critical region is finished, it sets
@S = 0 to allow waiting partitions to enter.

Several variations on the IF-THEN-ELSE semaphore are possible. The
semaphore variable @S was set to #PART in the example mainly as a debug

aiq. If thg program hangs up, printing out the value of @S will reveal
which partition entered but never left the critical region.

-21 -

	Introduction
	I. Philosophy of the MVP
	II. How Independent Programs can Share the CPU and Peripherals
	III. Compatibility with earlier Wang 2200 Systems
	Features of earlier 2200 systems not supported
	MVP Differences

	IV. How to Share Program Text (with no Overlays)
	V. How to Share Program Text When Overlays are Involved
	VI. How Programs Can Share an Operator (Foreground/Background Processing)
	VII. How Programs Can Share Data

