4

(WANG) LABORATORIES, INC.

MVP PROGRAMMING GUIDE
May 31, 1978

The following document is intended to give the reader an overall view of the MVP
Operating System with emphasis on programming considerations for the multi-user
system. It assumes the reader is familiar with Wang BASIC. Compatibility with
other 2200 systems (2200T and 2200VP) is described as well as techniques for
converting existing software for the 2200MVP. The program and data sharing
features, unique to the multi-programming environment are introduced.

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851 « TEL. (617) 851-4111 « TWX 710-343-6769 + TELEX 94-7421

_‘

Philosophy of the MVP

Hopefully, programmers and users of past Wang 2200 systems will find the
MVP to be a logical variation on the familiar 2200 theme. The MVP
hardware is surprisingly similar to the 2200VP. The BASIC-2 language
supported on the MVP is essentially the same as the language of 2200VP,
with extentions. Users will find the machine almost as responsive as the
VP, and every bit as easy to operate. Programmers will find a high degree
of software compatibility with both the 2200VP and 2200T.

In addition to the microcode necessary to implement the BASIC-2 language,

the 2200 MVP's control memory contains a multi-programming operating
system. The primary goal of a multi-programming operating system is to
allow several users to share a single computer efficiently. To accomplish
this, the operating system divides the resources of the computer - memory,
peripherals, and CPU time - among the users. Once each user has been
allocated a share of the computer resources, the operating system acts as
the traffic policeman, allowing each user to use the system in turn while
preventing users from interfering with each other's computations.

On the Wang 2200MVP, the user memory is divided into fixed size memory
partitions by executing the Wang supplied utility program, @GENPART,
immediately following system power up (see MVP Intro Manual). Each memory
partition behaves much 1ike a single user 2200VP. From the user's point
of view, each partition functions independently from the other partitions
in the system. Each user may LOAD and RUN BASIC software, compose a
program, or perform immediate mode operations. As in a single user
environment, the user has complete control over his partition. No other
operator or other partition may halt execution or change the program text
of his partition.

Each terminal may control several partitions executing independent jobs.
At any given time, only one of these partitions is in control of the
screen and thus capable of interacting with the operator. The partition
in control of the screen is said to be attached to the terminal or running
in the foreground. Other partitions assigned to the terminal may continue
to execute in the background, until such time as operator intervention
becomes necessary. If a background job attempts to print to the CRT or
get input from the keyboard, its execution is suspended until the terminal
becomes available to it.

The terminal becomes available to the waiting background job when the
foreground partition explicitly gives up control of the terminal. Sharing
the terminal in this way means that a partition maintains control of the
terminal for as long as it desires. Messages from other partitions cannot
appear and mess wup the CRT display at undesirable times.
Foreground/background processing is discussed further in Section VI.

T Tt s A e, e o e e TeTA a7

In addition to partitions operating independently, the MVP allows
partitions to co-operate. Co-operating partitions may share program text
(global subroutinesg and/or data (global variables). These features allow
considerable memory savings over a situation where each partition has its
own copy of the same code or data table. The integrity and independence
of a partition is maintained by requiring the partition to explicitly
declare itself to be global (sharable). (Sharing program text will be
discussed in detail in sections IV and V).

The analogy of completely independent single user machines is clouded
somewhat by contention for shared peripheral devices. The situation is
familiar to programmers used to working with Wang 2200 systems that share
one or more disk drives via disk multiplexers. It is sometimes necessary
to request exclusive control of a disk while an update is made. Likewise
on the MVP it 1is necessary for a partition to exclusively control a
printer for the duration of the printing of a report, lest one partition's
print lines become unreadably intermixed with another's. The concept of
disk hog mode has been extended on the MVP. The $OPEN and $CLOSE
statements allow a partition to request exclusive control of any device on
the system.

The programmer who wishes to take the macroscopic view of the MVP system
as a whole is quite correct in thinking of all partitions as executing
simultaneously. It doesn't take 1long to realize, however, that the
2200MVP has only one CPU. The operating system creates the illusion of
concurrent execution of several programs by rapidly switching from one to
the other in turn.

What follows is a simplified description of the MVP operating system, and
as such is neither precise nor complete. The programmer need not
gerierally be concerned with these details of how the operating system does
its job, but this presentation may be helpful in giving users an overall
feel for how a multi-programmed system attempts to maximize system
utilization while maintaining good user response time. The programmer who
is aware of some of the operating system duties can actually help the
system to perform better with 1little inconvenience to his own coding
techniques. A

MVP partitions are serviced in a round robin fashion, with some additional
priorities given for certain I/0 operations. Each partition in turn is
given a 30 ms. timeslice, during which it has exclusive control of the
CPU. The CPU has within it a 30 ms. timer which is set at the beginning
of the timeslice. At the completion of each BASIC statement and at
various points in the middle of long MATRIX and I/0 operations, the clock
is checked to see whether the 30 ms. timeslice has been exhausted.

B

‘When the time§11ce ijs over, the MVP operating system carefully saves the

status of the partition so that it may be restored Tlater when that
partition's turn comes around again. The status of the next partition in
1ine is then 1loaded and its 30 ms. timeslice begins. The process of
swapping out a partition at the end of its timeslice is called a
breakpoint. The programmer cannot predict in advance when a breakpoint
will occur. Except for a few cases involving global variables within
matrix and I/0 statements, the occurrence of breakpoints is of no concern
of the programmer.

Timeslices do not always 1last exactly 30 ms. Unlike many operating
systems, the MVP switches users (breakpoints) when it is convenient,
rather than strictly by the clock. This reduces the amount of status
information that must be saved, giving the MVP comparatively low
"operating system overhead".

More importantly, breakpoints may occur in the middle of BASIC 1I/0
statements. If, for instance, the disk- is hogged by another partition,
this condition is quickly detected and a breakpoint occurs. I/0
breakpoints differ from program breakpoints in that the partition is
specifically marked as "waiting for I/0". When the partition's turn comes
around again, it takes only a few microseconds to decide whether
processing may proceed or whether the partition is still waiting for the
1/0 device and thus may be bypassed. Thus if a printer runs out of paper
or a partition that does not currently control the CRT attempts CRT
output, processing is suspended in that partition almost as effectively as
if i% were removed entirely from the system, until the I/0 device becomes

available.

The CPU is much faster than any of its peripherals. Breakpointing during
I/0 operations allows the MVP to keep many I/0 devices busy concurrently
with program processing. To accomplish this I/0 overlap requires
buffering and quite often microprocessors to control the peripherals. The
most sophisticated of these intelligent peripherals is the 2236MXD
terminal controller. The MVP CPU does not perform INPUT or LINPUT
statements. Instead it asks the microprocessor in the 2236MXD to perform
the operation. Just as in the case of the printer out of paper, a
partition executing an INPUT or LINPUT statement is marked as waiting for
I/0 and receives no CPU timeslices until the INPUT or LINPUT statement is
terminated with carriage return or a special function key. The MXD also
performs the line editing functions to move the cursor, and insert and
delete characters. A

Lastly, the MVP operating system performs some address translation. After
all, every partition refers to the terminal keyboard as address /001, the
CRT as address /005, and the terminal printer as address /204. The
operating system makes sure that all output gets to the proper terminal
and all input comes from the proper keyboard.

IT.

How Independent Programs can Share the CPU and Peripherals

When configured as < n> partitions and <n > terminals, the 2200MVP can
be treated as if it were < n > separate 2200VP computers. The 2200MVP is
generally compatible with the 2200VP BASIC-2 1language. Users with
existing software are encouraged to try their software on the MVP as is.

ghe 1fewnclzompatibﬂity problems that may be discovered are discussed 1in
ection . .

As a first approximation for the required MVP partition size, use the size
of the single user system the software is designed for. This may be a few
hundred bytes small for programs designed for the 2200T and slightly large
for 2200VP programs. Once the program is 1loaded and resolved, the
immediate mode command PRINT SPACEK-SPACE/1024 will reveal the exact
partition size necessary in K bytes.

Once the partition size necessary for each application is determined, the
user will become interested in the total amount of MVP memory necessary to
run several programs concurrently. The total memory requirement for an

MVP system is the sum of the partition sizes plus 3K for operating system

tables. The amount of user memory taken by the system on the various 2200
systems is compared below.

User Memory Taken for System Use

2200T 2200VP 2200MVP
700 bytes 3K 3K + 1K/partition

" Notice that the total MVP memory overhead with 2 or more partitions is

less than the memory overhead if separate VP's were used.

Note: The discussion above about determining partition size takes into
account the need to reserve 1K for partition overhead.

MVP programming and operating considerations are identical with those of a
system of T, VP, and workstation processors multiplexed to a disk, with
the added complication that the printer can be accessed directly by any
user at any time, without pushing a button on a manual multiplexer.

An operator wishing to use the printer on a manually multiplexed system
must (1) determine if anyone else is about to print, (2) press the button
on the multiplexer for his own station, and (3) run his program. If he
runs his program when the printer 1is being used by someone else, his
program just hangs up. In contrast, an operator wishing to use the
printer on a 2200MVP must (1) determine if anyone else is about to print,
and (2) run his program. However, if he runs his program when the printer
is being used by someone else, the print lines from both jobs will be
intermixed on the paper.

A very simple modification to the programs will eliminate the possibility
of intermixing lines. The MVP allows an executing program to "hog", or
reserve, a peripheral device for as long as it wants. The program must be
modified to execute a "$OPEN /215" statement before using the printer, and
to execute a "$CLOSE /215" statement when finished with it. A program
which prints several reports might execute a "$OPEN /215" before and a
"$CLOSE /215" after each separate report. This would guarantee that an
entire report would be contiguous on the paper, but would possibly let
some other program's output appear between the several reports.

Of course, the above discussion also applies to plotters, typewriters, or
any other peripheral device which is plugged into the MVP CPU box. Note
that it is not NECESSARY to include the "$OPEN" and "$CLOSE" statements in
MVP programs -- this is merely a mechanism to guarantee that a program has
exclusive use of a peripheral, and to allow operators to run various jobs
without the possibility of spoiling someone else's output.

Another simple method to guarantee that a Jjob has exclusive use of a
printer, plotter, typewriter, etc. is to plug the device directly into the
output connector on the assigned terminal. The disadvantages of this
method are, (1) that it must either be considered permanent or else
involve a lot of plugging and unplugging, and (2) references to the device
must be modified to address /X04 (e.g., /204, /404) since this is the
fixed address of the terminal output device connector. Use of a 2221M
printer multiplexer on the MVP should not be completely discounted, for it
is a good way for a cluster of terminals, located at some distance from
the CPU, to share a common printer.

It is possible to reserve a peripheral permanently at partition generation
time. This is often done with TC boards, since it is rarely logical for
two programs to share a TC board.

ITI.

Compatibility with earlier Wang 2200 Systems

This section deals with the few software imcompatibilities that exist in
the 2200MVP. They are listed in the order of frequency with which they
are usually encountered. While it is desirable to get existing software
up and running quickly, the MVP offers several means of improving
performance and reducing memory requirements. Quite often it is possible
to reduce the memory requirements of 2200T programs by recoding them using
the more powerful BASIC-2 statements. The greatest memory savings are to
be realized when program text is shared as discussed in Sections IV and V.

Programs may choose to ignore the potential existence of other programs in
the system, but a small amount of "good citizenship" can go a long way in
improving overall system performance. Use of the INPUT and LINPUT
statements better utilizes the 2236MXD and thus frees a lot of CPU time
for other partitions to use in comparison with doing input with the KEYIN
statement. If a program must use KEYIN, it is better to use the "VP form"
of the statement: KEYIN A$ rather than KEYIN A§, 10, 20.

If a program must test a condition over and over in a tight polling loop,
it should perform the test once and then give up the remainer of its
timeslice with the $BREAK statement. For programmer convenience, this
feature has been built into the polling form of KEYIN. The KEYIN
statement is treated as if it actually were KEYIN A$, 10, 20 : $BREAK.

Time delays should be created using SELECT P rather than with FOR/NEXT
loops. SELECT P delays are timed by the 2236D terminal, while FOR/NEXT
delay loops waste CPU time that could be more productively used by other
partitions. '

Features of earlier 2200 systems not supported.

1) Users converting 2200T programs for use on the MVP should refer to
Appendix C of the BASIC-2 Language Reference Manual for a list of
differences between Wang BASIC and BASIC-2.

2) The MVP does not permit $GI0 to a disk. This will affect programs
that send a CBS strobe to the disk to activate hog mode. The MVP
uses the $OPEN and $CLOSE statements to activate disk hog mode, as
well as to request exclusive control of any other peripheral. The
address form of disk hog, SELECT DISK 390, is supported on the MVP.

3) Some programs use KEYIN to input atom codes from the text atom keys.
This works properly on the MVP, but the 2236D terminal does not have
all of the atom keys found on a 2226 console. The absence of a
PRINT key seems to create the most software transportability
problems.

4)

5)

6)

7)

Many programs test for.the existence of printers and disks before
attempting to access them. This 1is a problem on the MVP because
$GIO is not permitted to disks and because several lines worth of
buffering separate the terminal printer from the I/0 bus. A partial
solution is to use the $OPEN and ON ERROR GOTO statements to see if
the device address was declared in the master device table when the
system was configured using the @GENPART program.

Some programs use $GIO with timeout to the keyboard to insist that
an operator respond in a fixed period of time. $GIO with timeout is
not supported at address /001 on the MVP.

Character insert mode is not supported on the MVP. Characters must
be inserted into text lines using the insert edit key.

The MVP does not permit CI, CO, or INPUT to be selected to any
device other than the 2236D terminal. The only exception is that
the output of TRACE may be selected to a printer with SELECT CO.
The width of the Console Output device may not be redefined to b
other than 80 bytes for the purpose of INPUT or LINPUT. .

MVP Differences

1)

2)

3)

4)

The most obvious difference is that CRT output is somewhat slower on
the MVP, depending on the data rate set for the serial line
connecting the 2236D terminal to the 2236MXD. This may alter
programming strategies that frequently update the entire screen.

The 2236MXD allows a maximum of 480 bytes to be entered into a
single 1ine request. This places some restriction on the maximum
length field that may be entered with a single INPUT or LINPUT
statement. This restriction also limits the 1length of a multiple
statement program 1ine that may be entered or edited on the MVP.

There are several differences in the LINPUT statement.

a) The most obvious difference is that the cursor blinks to
indicate edit mode. The 2200VP displays an asterisk to the
left of the field being edited.

b) The second difference is that the non-edit mode form of LINPUT
places the cursor at the first position of the field instead

of following the last non-blank prefill character as on the
2200VP.

c) The maximum length field is limited to 480 bytes.
When an MVP is master initialized, the default disk (SELECT DISK or
#0) 1is the platter the system microcode 1is loaded from. This

differs from the 2200T and 2200VP, which always set the default disk
to /310 when master initialized.

-7 -

5)

6)

Time delays using FOR/NEXT loops or $GI0 (75xx) not only waste CPU
time, but vary in duration as a function of CPU loading. Every 30
ms. a program breakpoint occurs. When the partition's turn comes
around again, it is allowed to waste another 30 ms. Time delay
loops thus become minimum delay loops on the MVP. It is recommended
that SELECT P be used for delays.

SELECT P delays are implemented by the 2236D terminal. Special
characters are sent to the terminal to cause the terminal to delay.
Since the terminal is buffered, the program does not wait at the
PRINT statement causing the delay. It is not unusual for a program
to be several PRINT statements ahead of the CRT display while using
SELECT P.

The 2236 MXD buffers up to 36 keystrokes that have not yet been
requested by a program. This helps smooth out peaks in operator
typing speed in data entry applications, but it also allows the
operator to anticipate program prompts. Sometimes it dis necessary
to flush this keystroke buffer, for instance, to minimize the effect
of an operator beating on the return key while a program overlay
IOags from floppy disk. It is easy to flush the keyboard buffer
with:

10 KEYIN A$, 10, 10

3

Iv.

How to Share Program Text (with No Overlays)

Consider the situation where < n > operators are to sit at <n»>
terminals attached to < n> partitions, and all run the same job. If the
partitions are treated as separate computers, then each partition will
have a complete copy of the program, including text and variables. A
considerable savings in memory could be realized if only one copy of the
program was kept in the MVP, and all the users could share it. This can
be done. The text of the program, which does not change as the program
runs, can be shared; while the variables, which must change as the program
runs, cannot be shared (each user must still have his own copy of all the
variables).

In order to share program text, it must reside in a partition which has
declared itself to be "global", that is, accessable to other partitions.
The simplest way to do this is to create a separate partition, that will
not interact directly with an operator, to contain the text of the program
(but not the variables), and to let each operator's partition contain only
(1) a complete set of variables for the program and (2) a call upon the
global partition.

Any partition in an MVP may declare itself to be global and give itself a
name by executing a "DEFFN @PART name " statement. Any partition may
access a marked subroutine ("DEFFN ' number ") in a global partition by
first executing a "SELECT GPART name " statement, and then executing
a standard call to the marked subroutine ("GOSUB ' number "). If the

name s match and the marked subroutine does not exist 1in the calling
partition, the correct marked subroutine in the global partition will be
entered. (See the 2200VP BASIC-2 manual, chapter 16 "The 2200MVP", for a
complete description of global and calling partitions). Arguments may be
passed to global subroutines in the same manner as 1if the marked
subroutines resided in the calling partition.

Since the calling partition is resolved separately from the global
partition, it is the responsibility of the calling partition to contain
the necessary DIM or COM statements to define all variables that will be
referenced during the execution of the global text. Failure to do so will
result in execution time errors. ~

In order to change a VP program into a shared MVP program, the program
must first be modified, and then be properly 1loaded and run. The
following instructions pertain to the modifications.

1. Only marked subroutines can be shared. Change all desired entry
points to global text to marked (DEFFN') subroutines. Quite often
it 1is possible to share an entire program, in which case a DEFFN'
statement is added to provide a marked subroutine entry to the main
line routine.

2. Separate the program into two program files: one, which we will
call MAIN, containing all the existing DIM and COM statements and
any non-sharable code; and the other, which we will call SUBS,
containing all the marked subroutines to be shared.

-9 -

Create a 1ist of all the variables used by all the marked subs. A
LIST V operation on the file SUBS is the most convenient method
here. ,

Ensure that no DIM or COM statements remain in the file SUBS,
otherwise unnecessary storage will be allocated in the global
partition. .

Add to the beginning of the file SUBS the following code:

10 DEFFN @PART "jobsubs"

20 $RELEASE TERMINAL _

30 PRINT "Partition"; #PART; "background job 'jobsubs'"
40 GOTO 20

Line 10 makes the text in the partition accessable to the other
partitions and gives it the name "jobsubs".

Line 20 makes it convenient to resolve this partition under operator
control, if that becomes necessary. Global partitions are most
conveniently 1loaded by the "automatic program 1load" feature of
system configuration.

Line 30 provides some information if a terminal ever gets attached
to this partition, which normally should not happen. Execution is
suspended when 1line 30 is executed until such time as the terminal
becomes attached.

Line 40 is needed because it is not logical to execute the global
text directly, because the global text is all subroutines and
because no variable storage is allocated within the global partition
itself. After the branch back to 1ine 20, which releases the
terminal, execution again becomes suspended in Tline 30.

Using the existing DIM and COM statements in the file MAIN and the
list of variables obtained in step 3, add to the file MAIN a DIM
statement containing all the variables used by the text in SUBS
which are not already mentioned in a DIM or COM. The purpose of
this is to ensure that all of the necessary variables are allocated
in the calling partition; any combination of DIM and COM statements
which accomplishes this is sufficient.

Add to the beginning of the file MAIN the following code:
5 SELECT @PART "jobsubs" : ERROR $BREAK : GOTO 5

- 10 -

-~

The execution of this statement will allow all marked subroutine calls in
this partition to refer to marked subroutines in the global partition
named "jobsubs".

The process of global partition definition and reference is accomplished
by the execution (not the resolution) of "DEFFN @PART" and "SELECT @PART"
statements. If line 5 1in this calling partition is executed before line
10 in the global partition has been executed, the system will not know
that we intend to have a global partition "jobsubs", and a run-time error
will result. This is 1ikely to happen even if MAIN and SUBS are both
started using the '"automatic program load" feature of system
configuration. In order to cope with this possibility, the part of line
5, above, that follows the ":ERROR" will be executed if the global
partition is not yet ready, causing the calling partition to "wait a
while, then try again".

Once the program has been modified for sharing, it must be properly loaded
and run. The most convenient method to do this is to construct a
configuration to run the programs, and to use the automatic program load
feature to start them up. The following instructions pertain to
determining the size of each partition and setting up a memory
configuration:

1. Working in a comfortably large program-development partition, load
~ the file SUBS, but do not RUN it. (If you RUN it, you will be
attached to another partition by the "$RELEASE TEMINAL" statement.
However, nothing else dangerous will happen, and the program will be
resolved when you get back to it). Next, execute in immediate mode
"PRINT SPACEK-SPACE/1024". The number printed will be the required

size of the global partition.

2. Next, LOAD and RUN file MAIN. MAIN must be RUN in order to allocate
memory for the variables. (RUNning MAIN should result in an
infinitely long wait at statement 5, since "jobsubs" is not defined
if a CLEAR was executed after step 1. Use the HALT key). Determine
the memory requirements of MAIN with the same immediate mode PRINT
command used in step 1.

3. Power down and up again. When the system generation program,
@GENPART, 1is running, construct a configuration with a partition for
each terminal, sized with the number from step 2 above, with
“program to load" set to "MAIN". Add one partition (any terminal),
sizeguggth the number from step 1 above, with "program to load" set
to L1 n . .

-1 -

The following is an example of what the @GENPART program should display
when the configuration has been completely specified, assuming (1) the
required size of the global partition is 28 KB, (2) the required size of
the cq]ging partition is 10 KB, and (3) three terminals are to run the
same job:

PARTITION SIZE(K) - TERMINAL PROGRAMMABLE PROGRAM

1 10.00 1 Y MAIN
2 10.00 2 Y MAIN
3 10.00 3 Y MAIN
4 28.00 1 Y SUBS

Partition #4 has been assigned to terminal #1. This assignment will

not be used, but each partition must be assigned to exactly one
terminal.

Programming has been enabled for all partitions in this example, but
you may want to disable programming if the operators are to . be
forced to run only the one program, in MAIN.

4, This configuration may be stored on disk. Whenever the system is
loaded using this configuration, the calling and global programs
will automatically be loaded and started up, and the operators need
only to sit down and begin to operate.

-12 -

ﬁﬁ%

How to Share Program Text When Overlays are Involved

Many software packages use program overlays to some extent. Since it is
generally not appropriate to overlay in global areas this means that it is
not as simple a matter to share program text as the last section implies.
Several possible strategies for sharing portions of applications that
involve overlays are discussed in this section.

First, look for subroutines that are used in several overlays. Disk
access methods, such as KFAM, and screen formatting subroutines come to
mind. It is easy to apply the methods of the last section to extract a
set of subroutines and put them in a global partition. The two basic
rules of text sharing still apply: 1) Only marked subroutines can be
shared, 2) The calling partition must define all variables that will be
encountered during execution of global text.

Many packages are structured with several frequently used overlays and a
number of infrequently used overlays. For example, in a data entry
package such as Easyform, a number of overlays support forms generation,
1isting, etc. while one or two support real time data entry activities.
It may be efficient to divide such a package into:

(a) The frequently used real time overlays which might be restructured
into global programs and made available to a number of operations
simultaneously with small calling partitions 1large enough only to
contain the variables.

(b) The infrequently used overlays which might be retained as a single
user job, possibly requiring quite a bit more memory than the above,
with the intention that only 1 operator will perform these
functions.

Some jobs have a number of sequential overlays with 1ittle common text,
(similar to Jjob steps 1in a batch run and/or operator prompt and
initialization jobs executed prior to a main job). Often these type of
jobs cannot benefit significantly from global text storage.

Some things to consider when sharing text from a program which uses
overlays:

The LOAD statement clears (resets) the global pointer. That is, when a
program, which has established a 1ink with a global partition, loads an
overlay, the 1link with the global partition 1is broken and must be
reestablished. Usually the simplest way to do this is to have the overlay
contain a SELECT @PART statement near its beginning. Note, however, that
the MVP allows transfer to a specific line number after executing a LOAD,
which could be a line in the resident part of the program containing the
SELECT @GPART and a GOTO to the beginning of the overlay.

If a LOAD statement is encountered while executing global text, the
overlay is performed in the calling partition. The usual rules of program
overlays apply: 1) The subroutine stack is flushed and 2) execution of
the overlay begins in the calling partition. In effect; the system
pretggqs the LOAD statement was encountered within the text of the calling
partition.

-13 -

The steps pertaining to modification of a program using overlays are
almost identical to those described for non-overlay programs. The only
differences are:

1.

The variables used in the extracted global subroutines are inserted
via COM or DIM statements in each valid overlay configuration. This
is in each overlay, if the entire program is overlayed each time, or
it may be once, if inserted in a main section which 1is never
overlayed.

The variables should keep the same context as in the original
program. That is, common variables if not to be initialized at each
overlay, non-common if to be reinitialized at each overlay.

It is possible that not all the overlays will reference every marked
subroutine in the shared text, and therefore not all the variables
mentioned in SUBS will be referenced. Those not referenced need not
be defined in the calling partition. The 1loading of an overlay
provides an opportunity to redefine the variables in the calling
partition.

-14 -

VI.

How Programs Can Share an Operator (Foreground/Background Processing)

Many CPU bound or disk bound jobs run for a relatively long time without
operator intervention (relatively long, meaning long enough for the
operator to do something useful elsewhere). In such a case, it would be
beneficial if the operator could be running another, perhaps interactive,
job in the meantime. Of course, any operator can do this, merely by
getting up and sitting down at another terminal.

On the 2200 MVP, it is possible for one terminal to control more than one
partition, and therefore more than one job. The $RELEASE TERMINAL
statement causes the terminal to be detached from the current partition
and attached to another partition (to which it has been assigned at system

- configuration time).

A single operator can control any number of "background" jobs, plus one
"foreground" job. A background job is defined as one which can be
expected to run to completion, or at Tleast for a usefully long time,
before requiring any attention from the operator. In the commercial
environment, there are many programs, usually with the term "update" as
part of their title, which operate on a data file or files according to
what they find in a command or transaction file. Such programs are ideal
candidates for operation as background jobs. On the other hand, there are
many programs, often with the term "entry" in their title, which are
designed to accept data from an operator (this is where the command or
transaction files come from). These obviously must be run as foreground
Jjobs.

Using the most direct method of running two jobs, the operator merely
starts a job in one partition, and when it is going well and needs no more
intervention from him, he detaches from that partition 1in order to go
start a job in another partition. Unfortunately, if the detached job gets
into trouble, there is no terminal available for it to use to call for
help. Furthermore, many programs periodically report their current status
via the CRT in order to reassure the operator that the job is still alive
and running. If a terminal is not available, the job will be suspended at
its first status report. A few simple software modifications make the
running of multiple jobs much safer and more productive.

The background program should be modified so that after the initial
dialog, the program releases the terminal to the foreground partition.
Thereafter, whenever the program has something to report which does not
require a response from the operator, it must test to determine if the
terminal is attached to the partition with $IF ON /005. If it dis, the
report may be made; if it is not, the report may be discarded. When the
program requires a response from the operator, it can simply communicate
to the terminal without testing, and the operating system will
automatically suspend the partition until the terminal becomes attached.
In addition, the background job should provide a means for allowing the
terminal to be released back to the foreground job when the operator has
read the status report and is satisfied.

-15 -

The foreground job should be modified so that it periodically releases the
terminal to the background job, or at least provides the operator with an
option of checking on the background job. Since the method of checking
the background job involves releasing control of the CRT, checking the
background job must be done when the foreground job is willing to allow
the screen display to be cleared or at least is in a position to
reconstruct the display when it regains control of the screen.

The distinction between two of the forms of the $RELEASE TERMINAL
statement is important here. $RELEASE TERMINAL polls the background job
for distress messages or operator requests. The background job will
respond only if its execution has become suspended due to an attempt to
print to a CRT it did not control. $RELEASE TERMINAL TO partition
number or partition name attaches the terminal to the background job
whether it has asked for it or not. When the background job tests to see
if it controls the terminal, it will find that it does and thus may
proceed to print its status information.

The method of testing the status of a background job suggested in this
section requires the background job to be constantly testing to see if it
controls the CRT. Another method of producing background job status
reports using global variables is discussed in the next section.

The following examples assume that an analyst has selected a suitable
program to be run as a background job, and that the current structure of
that program is: first, it conducts an initial dialog with the operator
(to find out what files to use, etc.), then begins to execute a loop,
which contains some code that reports the results of each trip through the
loop, using the CRT. It is further assumed that the analyst has selected
a program to be run as a foreground job, and that this program executes a
loop containing a section (probably beginning the loop) which updates the
entire CRT screen. Your programs may not have this exact structure, but
the elementary principles in this example can be adapted or extended to
fit many circumstances. :

-16 -

e

MODIFICATION OF A PROGRAM FOR FOREGROUND OPERATIONS

ORIGINAL PROGRAM

START

INITIAL
DIALOG

=

FILL
SCREEN

T

ACCEPT
DATA
FROM

OPERATOR

l

PROCESS

)

MODIFIED. PROGRAM

' START

INITIAL
DIALOG

CLEAR
SCREEN

|

FILL
SCREEN

ACCEPT
DATA
FROM

OPERATOR

l

PROCESS

RELEASE
TERMINAL

(Test for
back ground

iRedRvEsei &

L

Gy

ground j ob

RETURN

- 17 -

MODIFICATION OF A PROGRAM FOR BACKGROUND OPERATIONS

ORIGINAL PROGRAM

‘ START

INITIAL
OPERATOR
DIALOG

 a—

PROCESS

OPERATOR
INPUT

DISPLAY -
STATUS

YES

GET
OPERATOR

MODIFIED PROGRAM

START

INITIAL
OPERATOR
DIALOG

——

PROCESS

INTERVENTIO
REQ'D? ERR?

- 18 -

DISPLAY
STATUS

$RELEASE
TERMINAL

VII.

How Programs Can Share Data

In addition to the sharing of program text discussed in sections IV and V,
the MVP allows data to be shared between partitions. Perhaps the most
common use for these global variables is to exchange timing and status
signals between cooperating programs. It is also possible for jobs to be
logically divided into concurrent tasks. For instance, one partition may
handle all disk I/0 and pass the data to another partition via global
variables for computations to be performed. In all cases mentioned so far
the advantage of global variables is the speed advantage of communication
within user memory instead of the alternative approach of sharing disk
files. Use of global variables may also result in memory savings. Table
driven systems need have only one copy of the tables contained within the
same partition as the shared program text.

Global variables are identified by the character @. Global variables are
completely distinct from non-global or local variables. (i.e., A$ and @A$
are separate variables). Both A$ and GA$ may be used in the same program
with no ambiguity. Global variables may be defined as numeric or
alphanumeric, scalars or arrays according to the same rules as local
variables. The difference 1in defining global variables is that they may
not be implicitly defined, but must be defined in DIM or COM statements.
Since the purpose of global variables is to allow other partitions to look.
at or modify their contents it makes sense that global variables should be
defined within a global partition.

An 1intriguing use for global variables is to report the status of a
background job. If a background job declares itself global, the contents
of its global variables become accessable to other partitions. The
background job may now post its status to its global variables.
Foreground jobs, and even partitions assigned to other terminals, may
learn the status of background Jjob by examining background job's global
variables. The flow of the background Jjob is never interrupted with
status requests.

When the background job declares itself global to allow other partitions
access to its global variables, its marked subroutines become available to
other partitions as well. A marked subroutine may thus be included in the
text of the background job for the purpose of neatly formatting the status
information on the CRT when a foreground job calls it.

-19 -

The following is an example of global variables and global subroutines
used to display the status of a background job.

10 DIM @I,@N
60 REM INITIAL DIALOG

90 GOSUB 9000

100 $RELEASE TERMINAL
200 REM PROCESS LOOP
210 FOR @I = 1 TO @N

500 NEXT @I
600 END

1000 REM STATUS SUBROUTINE

1010 DEFFN '16 -

1020 PRINT “"NOW PROCESSING RECORD"; @I; "OF"; @N
1030 RETURN -

9000 DEFFN @PART "BACKGND" : RETURN

To Tearn the status of the sample program, a foreground partition executes
the following two statements:

100 SELECT @PART "BACKGND"
110 GOSUB '16

It 1s possible to call the status subroutine in immediate mode by entering
the SELECT @PART statement and pressing special function key '16.

Note that the DEFFN @PART statement is at the end of the sample program.
This 1s because implicitly defined variables are not allocated storage if
they are encountered after a DEFFN @PART statement. Rather than include
DIM or COM statements for all variables, it is easier to put the DEFFN
OPART statement at the end of the program and call it as a subroutine.
Remember that a partition does not become global until the DEFFN @PART
statement 1s executed. The sample program chooses to wait until it has
finished 1ts dialog with the operator before declaring itself global and
making 1ts status available to other partitions.

- 20 -

The discerning reader can probably see that global variables can
potentially suffer from the same problem as shared disk files or shared
printers if two partitions access the same global variable simultaneously.
To some extent, the MVP operating system automatically resolves such
conflicts. Sometimes, however, it 1is necessary for a program to gain
exclusive access to a critical region of code that performs updates on
global variables.

Most BASIC statements are non-interruptable; that is, the MVP will
complete the statement before allowing a breakpoint to occur. The
exceptions are I/0 and most MAT statements. Chapter 16 of the BASIC-2
Reference Manual contains the complete 1list of non-interruptable
statements. Programmers may be tempted to identify the potential
breakpoints 1in a program by the occurrence of colons and line numbers in
the program text, but there are two exceptions to this rule. In the
statement

100 @A = @A/N:ERROR @A = 9E99:GOTO 500

if an error occurs during the division, the first statement of the :ERROR
recovery routine will be executed before the 30ms clock is checked. In
other words, @A = GA/N:ERROR @A = 9E99 is treated as if it were a single
statement.

The other exception is the IF-THEN-ELSE statement. Because IF-THEN-ELSE
is non-interruptable, it may be used as a semaphore to prevent other
partitions from entering a section of code while a critical update is in
progress.

50 $BREAK:IF @S = O THEN @S = #PART:ELSE GOTO 50
70 MAT SORT @A$() TO W$(), L$()

100 @S = 0

If, in the example, a partition executing line 50 finds global variable @S
= 0, it sets @S equal to a non-zero value and proceeds into the critical
section of code. When another partition comes along, it will find that @S
is not zero and will branch back to try again. The $BREAK statement is
included so that waiting partitions only test the semaphore once per
timeslice. The fastest way for a waiting partition gain access to the
critical region is to yield its time to the partition inside the critical
region’ When the partition using the critical region is finished, it sets
@S = 0 to allow waiting partitions to enter.

Several variations on the IF-THEN-ELSE semaphore are possible. The
semaphore variable @S was set to #PART in the example mainly as a debug
aid. If the program hangs up, printing out the value of @S will reveal
which partition entered but never left the critical region.

-21 -

GA)-—~~ ARKETING RELEASE

° DISTRIBUTION FUBLICATION =
FROM JOHN THIBAULT DATE
MARKET PLANNING & DEVELOPMENT MARCH 1980
SUBJECT REORDER FROM:
EXPANSION OF MVP TERMINAL SUPPORT
THIS RELEASE SUPERSEDES: DESTROY SUPERSEDED INFORMATION
O YES O No

Wang Laboratories is pleased to announce expansion of workstation
capability for the 2200 MVP Series. The 2200 MVP computing system can now
support an additional four (4) terminals, bringing the total number of
terminals supported now to twelve (12). This is accomplished by allowing a
third 2236MXD Terminal Processor Controller. This announcement further
demonstrates Wang's ability to respond to the expanding needs of the 2200
Series marketplace and our existing MVP customers whose needs for
expandability are ever increasing.

Expansion to 12 terminals for the 2200 MVP allows the product to address
the needs of the rapidly expanding small business computer marketplace during
the 80's. This new expansion feature enables the MVP to become even more
competitive in areas such as larger data entry applications or order
processing applications where more than seven or eight terminals are
required. With the small business community becoming more and more informed
on state-of-the-art small business computers, the MVP has a distinct edge over
the competition. This is largely due to the MVP's excellent price/performance
and its true multiprogramming/multiuser ability. Coincident to this release,
Wang Laboratories is pleased to announce an updated version of the 2200 MVP
Operating System Revision 'l.9. This new operating system is required to
operate up to 12 terminals on the MVP system. Even with the increased number
of workstations supported, the performance of each terminal still meets the
high standard of performance the MVP has set since its introduction almost two
years ago.

Current users upgrading to 12 terminals will require the recently released
version of the MVP Operating System - 1.9. . Current MVP users adding the third
2236MXD Controller will also be required to purchase the A-option CPU chassis
extension option (if not already purchased). It should be noted all MVP's
ordered since January 15, 1980 include this option.

Before proposing multiterminal configurations to either a new or existing
customer, there are several issues that must be addressed. Your analyst
should review the application to determine overall I/0 requirements. Listed
below are areas that must be reviewed.

. Memory requirements per partition.
. Number of partitions required.
. Operator response for heavy I/0 jobs.
. Heavy use of KEYIN is not recommended with systems with more than 8
terminals.
13427
— 878-1M

()=~ | ARKETING RELEASE

~

) , PUBLICATION #
DISTRIBUTION
‘FROM JOAN THIBAULT DATE
MARKET PLANNING & DEVELOPMENT MARCH 1980
SUBJECT

REORDER FROM:
EXPANSION OF MVP TERMINAL SUPPORT

THIS RELEASE SUPERSEDES: DESTROY SUPERSEDED INFORMATION

O YES O No
. The use of LINPUT in heavy data entry operations should be encouraged.
. The user should be aware of multiple use of a single peripheral with
slow throughput as the number of users increases.

. Customers using KFAM-7 as their only means of
limited to 11 terminals.

file access will be
The growth to 12 terminals will allow the MVP to compete with systems

supporting more than 10 terminals, and offer processing capabilities unmatched
by other small business computers.

13427
A.72.10

ANNOUNCTNG THE NEW FAMILY OF 2200 SALL BUSINESS COMPUTER SYSTEMS

Wang Laboratories is pleased to announce a new series of 2200 system packages
including the latest in 5 1/4" disk storage technology. Combined with
aggressive pricing and increased flexibility in hardware configurations, the
2200 family sets a tough, new standard in price/performance.

This announcement fulfills the promise made by John Cunningham in his.November
15, 1982 statement on 2200 product line direction, to offer a complete 2200
system for under $12,000 U.S. 1ist.

The family of 2200 products now includes three new MVP packaged configurations
as well as a standalone 5 1/4" disk storage peripheral.

New 2200 System Confiqurations

These packaged configurations are aimed at new customers, existing users as
add-on equipment and large corporations buying multiple units. Because of
their low entry price and expandability, they are viable as a competitor
against a wide range of low-end minicomputers, personal computers and other
high-end micros.

MVP-P1 . MVP Processor with 8 Available I/0 Slots
. 64KB Memory ‘ 7 Aote
22C32 Triple Controller
-5 1/4" Disk Storage Device with 10MB Fixed Storage and
320KB Removable Floppy Drive

MVP-P2 . MVP Processor with 8 Available I/0 Slots
. 128KB Memory }
22C32 Triple Controller
5 1/4" Disk Storage Device with 10MB Fixed Storage and
320KB Removable Floppy Drive

MVP-P3 . MVP Processor with 8 Available I/0 Slots
. 256KB Memory
22C32 Triple Controller
5 1/4" Disk Storage Device with 10MB Fixed Storage and
320KB Removable Floppy Drive

New 5 1/4" Disk Storage Technology

This 5 1/4" unit is a new 2200 peripheral aimed at existing users as add-on
equipment as well as a component of the three new MVP packages outlined
above. The unit can be used as an add-on to VP, LVP, LVPC, MVP and MVPC
systems. When configured as an add-on, a 22C03, 22C11, or a 22C32 Controller
may be used.

2275-10 . 10MB 5 1/4" Winchester drive
. 320KB Floppy Drive

2275-20 . Dual 1OMB 5 1/4" Ninchestgr drives

HIGHLIGHTS
PRODUCT QVERVIEW

The Wang 2200MVP-P1, P2 and P3 systems represent three exciting new small
business computer solutions. These configurations provide a powerful,
competitive tool to use at the low-end when competing against personal
computers, low-end minicomputers and other high-end micros. The pricing,
including a workstation and printer, breaks the psychological barrier of
$12,000 while still delivering a system that offers maximum expansion
potential. The P1, P2 and P3 configurations fill the need for larger storage
systems at entry level pricing.

The 2275-10 and -20 provide for low cost add-on storage for existing users.
Its compact design will be most attractive to the space conscious buyer.
Measuring approximately 14.9" x 6.5" x 16", the unit will utilize an enclosure
similar in design to the Wang PC electronics unit and house the disk drives,
one printed circuit logic board, one Regulator board, a 60 watt linear power
supply and one 50 cfm fan. Because sector size and sectors per track are
compatible, the 2275 can represent the media bridge for users who wish to
migrate software and data files to the Hang PC. A conversion procedure may be
necessary, however. The units can be used with any 2200VP, LVP, LVPC, MVP or
MVPC system. When combined with a low cost MVP it makes a very price
competitive entry level system. Since this device incorporates the latest in
5 1/4" micro-Winchester technology, it will be helpful in selling new
accounts. HWith the addition of the 2275 unit, the price/performance ratio of
our low to middle range 2200 systems has been significantly improved.

SOLUTIONS

The new offerings provide a highly expandable entry level system at the lowest
entry level price possible to compete in the small business systems market.
The 5 1/4" package price will take greatest advantage of the new storage
peripheral for the 2200. The pricing of the 5 1/4" storage device is
competitive with that of other offerings in the personal computer marketplace.

The MVP-P1, P2, P3 and the 2275 units address four specific market needs:

1. AFFORDABILITY

High performance at low cost is now a reality with the introduction of the
MVP-P1, P2 and P3 line of 2200 small business computers. With an entry level
price of $7,525 for a minimum configured MVP-P1, this new line of 2200 systems
is most affordable. At $4,000 for the 2275-20 disk peripheral, 20 megabytes
of add-on disk storage is now available at low-cost.

2. EXPANDABILITY

With 8 additional I/0 slots available, the full complement of existing
hardware options can be utilized by the MVP-P1, P2 and P3. A wide variety of
communications and peripheral combinations are therefore possible. The user
can start with the lower priced MVP-P1 and upgrade memory until reaching the
MVP-P3 level. The user can start with a single workstation and expand up to
13 users processing simultaneously. Also, if the user should require a system
with more than 256K of memory, an MVP upgrade is available via the addition of
a “C" Option (Refer to MVPC upgrade prices).

3. RELIABILITY
Hith over ten years of proven performance, the 2200 Series of small business
computers has been one of the most reliable products in the marketplace.

Potential customers will take note of the large installed base of over 60,000
systems worldwide.

4. SOFTWARE AVAILABILITY

Potential customers will take great comfort in the knowledge that a
comprehensive array of off-the-shelf software exists for this product line
both from Wang and third-party developers. Do not overlook the power of this
selling point.

Wang has also announced the availability of P.R.I.S.M., a data dictionary
driven software product which is targeted to the same market as the new series
of MVP systems. With P.R.I.S.M., a user can perform many of the ad hoc
inquiry and reporting functions virtually without programming. The data
dictionary is also accessible via a user program. This makes it possible to
develop complex applications using P.R.I.S.M. as a foundation.

Of course, all current Wang developed software, including the Operating System
and P.R.I.S.M., will be available on 5 1/4" diskettes for use by the 2275-10

disk peripheral.

14

MARKE [LNG IRAIEGY

PRODUCT POSITIONING

This announcement demonstrates a continuing corporate commitment to the 2200
product 1ine. The 2200MVP-P1, P2 and P3 represent excellent low cost, proven
DP solutions which are attractive to a broad prospect base where cost is a
prime consideration. The addition of the 5 1/4" disk storage technology
introduces a new dimension to the expandability of the 2200 product 1ine.

TARGET MARKET
Fisting Accounts *

Significant add-on business can be generated by introducing your customers to
the 2275-10 and 2275-20 disk peripherals. Both of these units may be attached
to any existing 2200VP, LVP, LVPC, MVP or MVPC system. Priced at $3,000 for
the 2275-10 and $4,000 for the 2275-20, this device represents a low cost
means for add-on disk storage utilizing the latest in disk storage technology.

The 2200MVP-P1, P2 and P3 make an excellent choice for distributed processing
needs for large accounts.

New Accounts

For the small account, the 2200 MVP-P1, P2, and P3 systems represent a low
cost entry level solution to their data processing needs. For the large
account, these systems are a strong solution to their distributed processing

needs.

CONFIGURATION

Two new offerings are being introduced. These are:

1. A new family of 2200MVP small business computers available in three
configurations -- MVP-P1, MVP-P2 and MVP-P3

MVP Processor with 8 Available I/0 Slots .
22C32 Triple Controller : . .
5 1/4" Disk Storage Device with 10MB Fixed Storage and 320KB Removable

Floppy Drive
The three MVP configurations differ in available memory.

-P1 has 64K
-P2 has 128K
-P3 has 256K

2. An add-on disk peripheral unit available in two models -- 2275--10 and
2275-20

The 2275-10 disk peripheral is equipped with a single 10MB 5 1/4" Winchester

drive and a single 5 1/4" 320KB Floppy Drive. The 2275-20 unit comes equipped

with dual 10MB Winchester drives. These disk peripheral units must be used

with either a 22C03, 22C11, or a 22C32 Controller.

Diskette formats supported by the 2275 disk peripheral unit are:

256 bytes/sector (Standard format used for 2200 disk operations)

Sector size: 256 bytes
Sectors/track: 16 -
Tracks/side: 40

Sides: 2

Total Capacity: 320KB

512 bytes/sector (Standard Wang PC format)

Sector size: 512 bytes
Sectors/track: 9
Tracks/side: 40

Sides: 2

Total Capacity: 360KB

The 512 bytes/sector format is the standard Wang PC format and is supported by
the 2200 for interchange purposes. Sector data is therefore transferrable.
However, conversion may be required for file handling. The 512 byte sectoring
Is transparent to the 2200 Operating System. The Disk Processing Unit (DPU)
maps two 2200 256 byte logical sectors into one 512 byte physical sector.

BASIC-2 accesses diskettes with this format as if the platter were formatted

with 256 byte sectors.

A11 BASIC-2 disk operations can be performed.

b4

SUPPORT POLICY

Current 2200 entitlement and support policies will apply.

ORDERING INFORMATION
PRICING

Standard 2200 volume discounts apply.

Purchase Pricing

PURCHASE PRICE MONTHLY
MODEL # DESCRIPTION (U.S. DOLLARS) MAINTENANCE
MVP-P1 64K MVP $ 7,525 $161
MvP-P2 128K MVP $ 8,725 $176
MVP-P3 256K MVP $ 11,125 $206
2275-10 10MEG/320KB $ 3,000 $ 56
2275-20 10MEG/10OMEG $ 4,000 ‘ $ 84

Rental Pricing
Only the 2275-10 and 2275-20 disk peripherals may be rented.
———————— MONTHLY RENTAL PRICES ————m—m—me-

1 YEAR 2 YEARS 3 YEARS 5 YEARS
2275-10 $165 $153 $132 $120
2275-20 $220 $204 $176 $160
AVAILABILITY
Effective : May, 1983

First Customer Ship : Q1 FY 84

Customer Engineering Software Support
SPR NO FOOu4274 Wang Problem Report ADD .
Wang Laboratories UPDATE X

ORIGINATOR INFORNMATION Datz 01/16/84
Name: KEN X OUX Organization: T5C
(5 7 0381 EXT .. RDB: 7341
CUSTOMER INFORMATION
Name: HUJ SYSTENS | oo, GRS
Cont: LINWOOD FERGUZON Phone: (804L)Y 977 2732 EX

B L DT Ty >

!

PRODUCT INFORMATION
Product: 2200 Model: M¥P System Rel: €2 05
Component : B3ASLC. IL Ver: 02 05
Other Release Info
PROBLEM INFORMATION
Desc 51Dtlon~
When u

T e - et

tQm;L;

i

,eﬂa

How To Dupllca
selac th°,ﬁ.,,w_

drlve°

T e

Other W te
User, mus:

vrEEA e CTEMAT Mg Low e MESATALC ASiaeiu g wa Sivala T saes sl me rcoi

L R e 8 e T AR SN TET M4 e A R ey an g

RESOLUTION STATUS D
Circamvention /
Temporary Fix /

Permanent Fix /

/
/

O ara II3N e T RESTITES L e AT e € S ML AR TR TRTE LTI L2 S % fhac a3t 4 et 5w e o niameceo . we emia a4

o BESTLEL A L kAR et A e SIT A3 mes e R LRI T PP

oduﬁlblamg; samnitt

foo]
=
b
O 3
r,r
"$
W

Rejected 10

Delayed . .o . JN) :ﬂ
CIRCUMVENTION INFORMATION

"CURRENT STATUS:
Description:

. Not reproducible as submitted

P PO feerTaAIm e ST Tt Taee T Te TNl 4 e e s

PO TR G T IR e TR AR T L TSI A3 G Tl e R MG S MM T T e AT AT G Ak ¢ e s wend r ce L ees

i st T e s 3

WANG LABORATORIES, INC.
ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 @ TEL: 617/459-5000, TWX 710-343-6769, TELEX 94-7421

To: Lee Collette (MS 0115)
From: Jerry Sevigny
Date: 28 February 1984

Subject: @RECOVER

The following change to @RECOVER should be given‘to customers who desire to be
able to specify whether this utilty will generate a disk with the new or old
hashing algorithm. T

The following lines should be added:

1115 PgINT AT (13,0,160);
- K$="0" -
: LINPUT "Do you want to use the NEW (N) or OLD (0) Hashing"
Algori thm?"-K$
: ON POS ("OoNn"=K$) GOTO 1120,1120,1125,1125
: ELSE GOTO 1115

1125 PRINT AT (18,20,60);"Scratching output disk";
: SCRATCH DISK ' T#2, LS=R1, END=R2
: PRINT AT (18,20,60);
: RETURN

Note: When | made this change, the size of @RECOVER exceeded the previous disk
storage space. Shortcuts could be implemented but this appeared to be the
~most simple.

To: Ken Mailloux (MS 0115)
From: Jerry Sevigny
Date: 28 March 1984

Subject: TIME Function

The TIME function within the MVP operating system was designed to provide for
the capability of centiseconds. This is compatible with the VS. However, the
devices which we currently offer (triple controller and the MXE) do NOT have
this ability. Therefore, the user will always see a value of 00 when using
either of these two devices. In the future, if a more accurate clock 1s made
available then the operating system would be able to handle t.

-

L UIOUNCTING

ADCITIONS TO THE

2200 FRAILY

by 2200
Product
Marketing

Wang Laboratories is pleased to announce two additions to
the family of 2200 system packages. The MVP-P4 and -P5
packages include the latest in 5 1/4" disk storage
technology. Comoined with aggressive pricing and increased
flexibility in hardware configurations, the 2200 family
continues to excel in price/performance.

The family of 2200 products now includes five MVP packaged
configurations as well as four versions of the standalone 5
1/4" disk storage peripheral. The new MVP-P4 and -P5
packages with their unique complement of components define
the high performance small business computer market.

HIGHLIGHTS

PRODUCT OVERVIEW

The Wang 2200MVP-Pl through -P5 systems represent five
exciting small business computer solutions. The MVP-Pl
through MVP-P3 packaged systems address the low-cost entry
level market. The MVP-P4 and -P5 systems with increased
disk storage capacity and intelligent backup capability
provide the growth path from ths earlier P-packages while
appealing to th= needs of ths lzrge end-user.

The 2275-30 and -60 provids fcr lov cost add-on storage
for existing users. Its compact c2sign will be most
attractive to the space conscious buyer. Measuring
approximately 14.9" x 6.5" x 1l€" (38cm. x lécm. x 40cm.),
the unit will utilize an enclosure similar in design to the
Wang PC electronics unit anc house the disk drives, one
printed circuit logic boarc, ons Regulator board, a 60 watt
linear power supply and one 5C of: fan.

Because sector size and sectcTts psr track are compatible,
the 2275 can represent the m=diz oridge for users who wish
to migrate software and data files to ths Wang PC. The
units can be used with any 2200vF, LVP, LVPC, MVP or MVPC
system. When combined with a low cost MVP it makes a very
price competitive entry level system. Since this device
incorporates the latest in 5 1/4" micro-Winchester
technology, it will be helpful in selling new accounts.
With the addition of the 2275 unit, the price/performance
ratio of our low to middle range 2200 systems has been
significantly improved.

SOLUTIONS

The new offerings provide a highly expandable progression
from the earlier systems at prices competitive in the small
business arena. The 5 1/4" package prices will take
advantage of tne new storage psripheral for the 2200. The
pricing of the 5 1/4" storags csvice is competitive with
that of other offerings in ths personal computer
marketplace.

ackages anag the 2275 units sagjrese three specific

1. AFFORDASLE High performance st low cost is now a
reality with the availability of the MVP-Pl
- P5 line of 2200 small business computers.
With an entry level price of $7,525 for a
minimum configured MVP-Pl, this new line of
2200 systems is most affordable.

2. EXPANDABLE With 6~ 8 additional I/0 slots available,
the full complement of existing hardware
options can be utilized by the MVP-Pl
through P5. A wide variety of
communications and peripheral combinations
are therefore pcssible. The user can start
with the lower priced MVP-Pl and upgrade
memory and/or disk until reaching the MVP-P5
level. The user can start with a single
workstation and exsand up to 13 users
processing simultaneously. 1In the case of
the P4 and P5 pacwkages up to four
woTkstztions czn Immadistely be supported by
the 2236MXE contrciler.

3. RELIA=_Z With over ten yesrs of proven performance,
the 2200 Series of small business computers
has been one of the most reliable products
in the marketplace. Potential customers will
take note of the large installed base of
over 60,000 systems worldwide.

MARKETING STRATEGY

PRODUCT PCSITIONING

This anncuncement demonstrates a continuing corporate
commitment tc the 2200 product line. The 2200MVP-Pl
through FZ represent excellent, reasonably priced DP
solutions which will prove attractive to a broad prospect
base where cost is a consideration. The addition of the 5
1/4" disk storage technology introduces a new dimension to
the expandability of the 2200 product line.

TARGET MARKET
Existing Accounts

Significant add-on business can be genmerated by introducing
your customers to the line of 2275 disk peripherals. These
units may be attached to any existing 2200VP, LVP, LVPC,
MVP or MVPC system. Priced between $3,000 for the 2275-10
and $850C for the 2275-60 in guantities of one, these
devices represent low cost means for add-on disk storage
utilizing the latest in disk technology.

New Accounts

For the small account, the packsgsZ svstems rzoTeszs"t = 1o
cost solution to their data processing nesas. For ths
large account, these systems are e strong solution tc their

distributed processing needs.

PRODUCT DESCRIPTION
DETAILED DESCRIPTION

Two new offerings are being introduced. These are:

1. Two additions to the family of 2200 packaged systems
-- the MVP-P4, and MVP-P5

2. An add-on disk peripheral unit available in two models
-- 2275-30 and 2275-60

The 2275 Disk peripheral units must be used with either a (<

22CC2, 22Cl1, or a 22C32 Controller.

Iskette formats supported by the 2275 disk peripheral unit
ace:

256 byte/sector (Standard format used for 2203 disk

operations)

Sector size: 256 bytes
Sectors/track: 16
Tracks/side: 40

Sides: 2

Total Capacity: 320k bytes

512 byte/sector (Standard Wang PC format)

Sector size: 512 bytes
Sectors/track: 9
Tracks/side: 40

Sides: 2

Total capacity: 360k bytes

The 512 byte/sector format is the standard Wang PC format
and is supported by the 2200 for interchange purposes. The
512 byte sectoring is transparent to the 2200 Operating
System. The Disk Processing Unit (DPU) maps two 2200 256
byte logical sectors into one 512 byte physical sector.

BASIC-2 accesses diskettes with this format as if the
platter were formatted with 256 byte sectors. All BASIC-2
disk operations can be performed.

Memozry

Controllers

1/0 Slots
Available

2207 SYSTEM CONFIGURATIONS

These packaged configurations are aimed at new customers,
existing users as add-on equipment and large corporations
buying multiple units. Because of their low entry price
and expandability, they are viable as a competitor against
a wide range of low-end minicomputers, personal computers
and other high-end micros. The following table highlights
the positioning of the new MVP-P4 and P5 within the family

of 2200 packaged systems.

CONFIGURATION SUMMARY

MVP-P1 MVP-P2 MVP-P3 MVP-P4 MVP-P5
64K 128K 256K 128K 256K
22C32 22C32 22C32 22C11 22Cl1

2236MXE 2236MXE

222910P 22291I0P

8 8 8 6 6
2275-10 2275-10 2275-10 2275-30 2275-30
2229 2229

SUPPORT POLICY

Current 2200 entitlement and support policies will apply.

ORDERING INFORMATION

PRICING

Standard 2200 volume discounts apply.

Purchase Pricing

Refer to the pricing section at the end of this issue for

pricing information.

PACKAGED COMPONENT DESCRIPTION

Controllers

22C32 Triple controller board for diskette,
printer, and 1 2200 terminal

22Cl11 Dual controller for printer and diskette

222910P Controller supporting 2229 Cartridge
Tape Drive

2236MXE 4 port terminal processor for 2200

workstations and provides asynchronous

communications capabilities

2275-30

2275-60

Disk Upgrades

UJ-5054
UJ-5055

Tape Device
2229

AVAILABILITY

Effective:

First Customsr Ship: May, 1984

Disk czvice containing ons 10M2
winchester drive and ons 320K floppy
drive

Disk device containing dual 10MB
Winchester drives

New disk device containing one 30MB
Winchester drive and one 320K floppy
drive

New disk device containing dual 30MB
Winchester drives

Upgrades 2275-10 to a 2275-30
Upgrades 2275-20 to a 2275-60

Intelligent start/stop tape device suitable
for disk backup and archiving

Domestic
April, 1984

International
May, 1984
June, 1984

e : FREQUENTLY ASKED QUESTIONS ABOUT THE MVP

How compatible is MVP BASIC-2 with the wang 2200 BASIC and BASIC-2 of earlier
2200 models?

For the most part, MVP BASIC-2 is upward compatible with VP BASIC-2.
BASIC-2 is in turn compatible with Wang BASIC as supported on the 2200T.
The MVP imposes some restrictions on $GIO, especially $GIO with delays or
timeouts. The main software compatibility problems arise with program
logic, not individual statements. An MVP is much like a multiplexed disk
environment, with the added complication of a shared printer. MVP BASIC-2
contains new statements to allow programs to "hog" a shared printer.

Can terminal 1 terminate a program executing in a partition assigned to another
terminal?

No. Unlike most rulti-programming systems, the MVP has no main console
with ultimate control over the system. It is true that terminal #1
controls the system at partition generation time, but after memory has
been partitioned, terminal #1 has no special status. _ (The only special
power terminal #1 maintains is the ability to.set the Broadcast Message):

Of course, programs may cooperate by exchanglng control in ormation via
global variables.

How fast is the MVP?

The MVP CPU processes at the same speed as a 2200 VP (6 to 10 times faster
than the 2200T). However, CPU time is shared among the partitions, with a
small swapping overhead. Dividing CPU speed by the number of partitions
as a measure of partition execution speed is quite conservative since
“during most 1/0 operations, the partition is put to "sleep" releasing this
partition's CPU time until 1/0 completion.

How are the terminals numbered? .

Terminals are numbered according to which port on which 2236 MXD they are
plugged into. The terminals plugged into the first MXD are numbered 1-4.
The terminals plugged into the second MXD are numbered 5-8. It d1is not
necessary to fill the MXD ports in order, nor is it necessary to assign a
memory partition to unused MXD ports. A good use for spare !IXD ports is
to set them to various baud rates for use with various speed remote
terminals. It doces not hurt the MXD to move the terminal connectors
around while the system is powered on.

Does the MVP support foreign terminalé?

No. The communication protocol between the 2236 MXD and the 2236D
terminals is 8 data bits plus odd parity. This is not a popular mode of
asynchronous communication. Secondly, the !MXD frequently sends special
control characters such as atoms to facilitate compressed data to the
terminal. These would appear as random garbage on most foreign terminals.
Third, the MXD does not have any facility to translate our cursor control
characters into different characters that may be required by the foreign
terminal, (To support foreign terminals, the MXD would have to be
redesigned to provide PROM space for the extra microcode).

N

. . -Are global partitions associated with a terminal?

May a

Yes. All partitions on the HMVP are assigned to a terminal. The terminal
to which a partition is assigned exercises ultimate control over it.
({.e., the operator at that terminal may CLEAR the program from the
partition). Global partitions differ from non-global partitions in that a
global partition executes a DEFFN (PART statement, which makes its
subroutines and - global variables available to other partitions. By
default, any MVP partitiorn may access the global partition. Access may
: N
optionally be (ggsficted gg,gpggif}qﬁferminals.

terminal be attached to a global pattifion and execute it?

Yes. A global partition may contain the appropriate DIM and COM
statements to allocate variable storage. It is then possible to execute
the global partition directly, rather than calling it from another
partition. A directly executed global partition is still reentrant its
program text may still be shared by other calling partitions. There are

- at least 3 practical situations where directly executing a global

partition is desirable. First, the 1K system overhead of setting up a
separate calling partition is saved. Second, unrelated jobs may use the
global partition naming facility to locate each other and pass
synchronizing information back and forth through global variables. Third,
it may be desirable to merely give jobs a name, so that an operator
responsible for controlling several partitions can refer to them by name
rather than partition number.

Does the MVP support Batch processing?

i
13
-

Yes, but not directly. The MVP operating system does not form queues of
pending jobs, assign priorities, or provide an automatic wmeans for
processing a queue of BASIC programs one at a time. #Alse;—the-MVP does-
ROt —~SUPP card-—reader— re—present—time However, BASIC-2 provides
all of the tools necessary to write a batch processing system.

Does the MVP support Print Spooling?

Not really. The goal of automatic print spooling is to make a disk file
look exactly like a printer from the progsram's point of view. BASIC~2 has
the PRINTUSING TO statement that allows one form of MVP output operation
to be targeted to variables in memory, rather than a printer or CRT. This
could be used to write a SPOOLING program, at the expense of some normal
I1/0 flexibility. It would probably be easier, however, -to implement batch
processing and sequentially process report generating programs. Batch
processing would also require less disk space. A more automatic spooling
is a consideration for a future release.

What happens if 2 or more partitions assigned to the same terminal try to print
"“to the CRT? : :

‘At any given time, only one partition is "attached" to the terminal. The

attached partition has exclusive control of the terminal. If another
partition attempts to access the terminal, it is "put to sleep" until tha
terminal becomes available to it. The ‘"attached" partition maintains
control over the terminal until it explicitly gives up control by
executing a $RELEASE TERMINAL statement, either in program or immediate

-mode. Control of the terminal is usually released to "any waiting

partition", though it is possible to specify which partiti
be releaseé to. P y par on control is to

-2-

Why must the MVP be powered down in order to reconfigure memory?

As far as the operating system is concerned, reconfiguring memory is a
very drastic operation. It is not possible to move an executing progran
from one memory address to another. Further, it is not possible for the
operating ‘system to detect whether a partition may be safely cleared. (We
can't tell the difference between the case of an operator leaving the
terminal without clearing the program text and a program under
development, where the operator has not keyed 'return' lately). By
insisting that the system be powered down in order to reconfigure memory,
we hope to impress upon the user how drastic the action of reconfiguring
menory is on the current contents of the system.

Can a program executing in a partition assigned to one terminal cause a message
to appear on the CRT or local printer of another terminal?

Not directly. Part of ouf protecting !MVP users from each other's
programning. errors is to not allow direct access to the other guy's
terminal. In order to send a message to another terminal, the message -
must be put someplace where a program executing in a partition attached to
the receiving terminal can access the message. Global variables and disk
files are means by which terminals may communicate, Even the DBroadcast
Message requires a specific effort by the receiver before it will be
displayed. Terminals communicate on the MVP system by mnutual
co-operation. -
SRR S

Are global partitions reentrant?

Yes. Any number of partitions may be simultaneously executing the global
.~ shared program text. This is possible because each calling partition
contains its own set of variables,

In cases where the global partition contains shared data (global
variables), it may be necessary to "hog'" the shared data while critical
updates take place — just as it is sometimes necessary to hog shared disk
files. Global variables may be used as semaphores to easily implement
this hog mode.) :

How difficult is it to modify an existing 2200 program to be loaded into a
global partition and accessed by several calling partitions?

Modifying a program to be shared as a global partition is a fairly simple
clerical change, if the program does not require overlays,

A DEFFN @ PART statement must be added to declare the partition global. A
DEFFN' statement must be added to form the entry point to the global
program., DI and COM statements are removed, otherwise variable storage
will be allocated within the global partition, which will waste memory.

A short calling program must be written. This program will be loaded into
all partitions wishing to call the global program. This short calling
program consists of a SFLFCT (@ PART statement, several DIM and COM
statements (like the ones removed from the glcbal text) and a GOSUR' to
cause execution of global text to begin. All variables, including numeric
scalars, must explicitly appear in the calling partition, wusually in DIM
- or COM statements, '

g

Can a progran tell which partition it is loaded into or which terminal it is
assigned to?

Yes. The mumeric function #PART returns the partition number. The
function #TERM returns the terminal number. Example:

PRINT #PART, #TERM
10 IF #PART = 3 THEN 20

(In the case of global text, #PART and #TERM give values that apply to the
calling partition).

Can a program tell the size of the partition it is loaded into?

Yes. The SPACEK function gives the partition size in K (including the 1K
system overhead)., The SPACE function gives the free space (the space not
currently used by program and variables).

Example: PRINT SPACEK
In the case of global text, SPACEK applies to the calling partition.

(By the way, if you want to know how much memory is being used by a VP or
MVP program, PRINT SPACEK -~ SPACE/1024. The answer will be output in K).

How are global partitions identified?

-"By a name of up to 8 characters.

Can a global subroutine call a global subroutine in yet a different global
partition?

Yes.
4What happens if a LOAD statement is encountered in global text?

#ﬁ* The program overlay is loaded into the original calling partition.
2 jf] Execution proceesds in the original calling partition, just as if the LOAD '
statement had been encountered in the original calling partition. J]

Ad

What happens if a STOP statement is encountered in global toxt
e A f
The program stops. The CONTINUE command will cause execution to resume

with the next statement in the global partition.

What security features are provided on the MVP?

No hardware protection, such as memory storage keys, are required because
the MVP nmicrocode Operating System/BASIC interpreter controls all mermory
allocation and memory references. A user progranm cannct escape from its
partition and run wild through memory. The opesrating system allows a
partition to access only the terminal it is assigned to. This insures
that a programming =rror in one partition will not disturb the screen of
another terminal.

An important !IVP security feature is the ability to disable programming on
any partition. This forces the operator to go through software to access
disk files, With programming disabled, the operator may only load a
program called "START". The "START" program is responsible for causing
othar programs to bes loaded. The operator running with a non-prograrmable
partition cannot read or alter the contents of memory, list the program,
or 1list the disk catalog without the aid of software. Pass word
protection of disk files is built into KFA7 software.

Programs saved with SAVE! command are encrypted when stored on disk and
thus cannot be examined by an unauthorized person. When an encrypted
progran is loaded, it cannot be modified or listed,

Will the MVP eventually support all 2200 peripherals?

Some 2200 peripherals present potential timing problems on the MNVP,

Others present logical problems. We will add new peripherals to the VP

" as we test them to make sure they perform well and don't bog down the

" system. The 2226 console will probably nevar be supportad bescause it
lacks necessary keyboard bufferlng.

How much memory does a typical program require? .
The Wang 2200 is very menory efficient, Programs are stored in atomized
form, where each BASIC keyword is represented by a 1 byte atomn. One
benchmark showsd that the average BASIC statement required 11 bytes.
Humeric variables require o bytes. Alpha variables require the number of
bytes mention=d on the dimension statements. Wang BASIC is rich with data
conversion statznents that allow numeric data to be stored to 1less than
full 13 digit precision in alpha variables. ; .

Memory requirements on the VP differ from other 2200 systems cnly in the
amount system overhead. If one thinks of the 2200T and 2200VP as "single
partition systems" the comparison of per partition overhead is as follows:

2200T 2200VP 22001VP K

700 bytes 3K & L‘ukw@/w‘

/ ‘
In addition, the VP requires 3K bytes for tables used in the control of
the systz=m as a whole.

Shall I write 2200T compatible BASIC programs for my !MVP?

The BASIC-2 is a more efficient language than Vang BASIC as far as program
size and execution speed are concernad. [ven so, writing 2200T compatible
prograns for the VP is justifiable since only a single program need be
maintained for either CPU.

However, on a multi-prograrming system the considerations are different.
Since an inefficient program uses more CPU time, less CPU time is
available for processing other prograns. Thus, mnot only does the
inefficient program run mora slowly, but the entire system performance is
degraded, Good !iVP prograrming must consider the effect of the progran's
execution on the total system performance, and thus, should be written
efficiently making use of the tools provided by BASIC-2. This primarily
involves areas of terminal/keyboard I/0 and delay loops.

For example, character entry is often performed on the 2200T as follows:
100 KEYIN A$, 110, 120 : GOTO 100

The progran loops on line 100 until a character is entered, but note that
no meaningful procassing is actually being performed. The BASIC~2 form of
KEYIN is much preferred

100 KEYIN A$,, 120

. since the progran is put to "sleep" until a character is entered. The CPU
" is only involved when characters are actually entered.

Better yet is to request an entire line of data, for example:

100 LINPUT A$ L
in which case the program is put to "sleep" until the entire line of data
is entered,

Using dummy FOR/NEXT loops to delay for a specific period of time is
clearly wasteful of CPU time since no meaningful processing is taking
place. Implementing delays with SELECT P is recommendad since the
partition is put to "sleep" during the SELECT P pause (the timing is done
by the terminal). Unlike FOR/NEXT delays, SELECT P has the additional
advantage of being independent of the CPU work load.

- Big words that describe the !VP: (Reference Encyclopedia of Computer Science by
Ralston and Heek)

Multi-programming: We execute more than .one job at a time. We interleave 1/0
with computation. Ve also switch CPU bound wusers out every 30 ms. to insure
good response time for all.

MFT: This is a big word used by IBM. It means nulti-programming with a fixed
number of tasks. This term applies to the MVP because, 1like IBM OS 360/iFT, we
divide memory into a fixed number of partitions of fixed size.

Front end processor: This is a small, limited capacity computer used to augment
the I/0 capability of a larger computer. On the }MVP, we use a microcomputer
(based on 8080 microprocassor) to buffer keystrokes from the terminals, buffer
data to be printed to each CRT and local printer, and to do editing of text
lines. Our front end processor 1is called a 2236 MD. An MVP system has one
2236 MXD for every four 2236D terminals.

Background /Foreground: This is a limited form of multi-programming supported on
mini-computers. Background/Foreground involves one high priority job of a real
time nature (e.g., nonitoring instruments) and a lesser priority background job
that runs when the CPU is not processing the Foreground job. On the MVP all
partitions have equal priority, but there is some extra priority given to I1/0.
For the purpose of the MVP, we define a background task as one that runs with no
operator intervention. Further, a background job on the MVP releases control of
the terminal, so that the terminal may be used to interact with a progranm
rumning in another partition assigned to that terminal.

Because background/foreground implies a scheduling priority, the term does not
truly apply to the MVP., It is, however, the best way to describe the situation
where one terminal controls more than one partition.

Time Sharing, Time Slicing, Time Division Multiplexing: These roughly
synonymous terms describe a multi-programming system that is optimized for fast
response time to interactive users., The VP 1is definitely optimized for
interactive use, Our time slice 1is 30 ms, which is comparitively - fast by
industry standards. The BASIC INPUT statement is handled by the 2236MXD as far
as responding to individual keystrokes. From the tinmz the onsrater typzs
carriage return until the MVP begins to process that user's BASIC program can be
no longer than 1/2 second (assuming 16 partitions, none of which are waiting for
I/0). The above figure is very much a worst case. .

Batch Processing: As the name dimplies, batch processing has to do with
collecting jobs into a group or "batch" to be submitted to the computer in a job
stream. The IIVP operating system does not support batch processing directly,
. but it is possible to write BASIC software to perform jobs scheduling, queing,
etce.

Re-entrant code: Re-entrant code 1is program text that may be accessed by
several users in the mnulti-prograrming environment simultaneously, yet the
individual user need not worry about the presence or absence of any other users
that may be contending for the program code. This term preciselv describes a
global partition that is used to contain shared program taxt. All calling
partitions must have their own copy of the variables.

NG

‘55-232-0: This is the electrical standard that 'desdribes the connector and
cable used to connect the terminals with the 2236 D, The RS~232-C standard

connector and interface are also found on the 2227B and 2228B telecommunications
controllers. " : g

Asynchronous/Full duplex communication: Communication between the terminals and
the XD is serial-by-bit and asynchronous. This differs from bisync used by the
928 word processor in that each byte in asynch must send along some timing
information., Full duplex means that both parties may talk at once., It is
possible to type on the keyboard of a 2236D terminal while output is being
printed on the CRT or local printer. Our character format is 8 data bits plus

odd parity. This is a perfectly acceptable format, but it is not very cormonly
used,

	MVP Programming Guide, 78/05/31
	Expansion of MVP Terminal Support, 80/03
	Announcing the New Family of 2200 Small Business Computer Systems, 83/05
	SPR #F004274, Problem Report, 84/01/16
	@RECOVER, 84/02/28
	TIME function, 84/03/28
	Announcing Additions to the 2200 Family, 84/04
	Frequently Asked Questions about the MVP

