2200 Terminal Controllers

Including the 2236 MXD, Triple controller,
2236 MXE and 2236 SVP

This document was written by Eric Wilson in August of 1983 at the tail end of
the implementation of the MXE microcode revision R2.52.

DM aTa Y Sl o

MXE, SVP, MXD and Triple controller Specifications

The 2236 MXE and 2236 SVP controllers are the latest (and probably last)
controllers in the series of 2200 MVP terminal multiplexer boards. Not
withstanding the exceptions listed in the next paragraph the MXE and SVP are
the same. Thus, whenever the MXE is discussed in this document the SVP is
implied. The MXE provides all functions provided by the MXD and Triple
Controller and has had many enahancements to functionality added. In the
description which follows all four controllers are described together with all
differences indicated. (the MXD should be treated as a subset of the Triple
controller which is a supset of the MXE) All references to the MXD include
the Triple controller.

The MXE and SVP are functionally equivalent but have some minor hardware
differences. The SVP has only three RS232 ports while the MXE has four.
Also, port O on the SVP does not supply all the RS232 signals needed for
remote applications thereby limiting it to local terminals only. See the
section on MXE/SVP RS232 pinout for full details.

This document defines the protocol between the 2200 and its various terminal
controllers. Additionally, some other pertenent information about some
controllers is included to help build a full picture. This document is
intended as a supplement to the 2236MXE controller microcode.

Page 2

2200 Interface

The controllers can be enabled and accessed by a set of seven
different device addresses. Typically Olh, 02h, 03h, 04h, 0O5h, 06h,
and 07h. Since, however, the high order two bits of the controller
address is switch settable, each controller can mapped to addresses
Olh thru 07h, 41h thru 47h, 81h thru 87h, or Clh thru C7h.

Each device address is used for specific functions as stated in he
following table:

Addresses Function

OTh and 05h VP or bootstrap mode to 2236 terminal
#1 only (power on, bootstrap and
hardware errors, and running a normal
VP).

02h Receiving complete status of the
terminal control (CRT, print buffer
empty, entered lines ready, etc).

03h MXE: Transfer Remote Screen Dump bytes
from the controller to the 2200.
MXD: Unused

04h Sending a print 1line to the slave

printer of the ‘'currently selected"”
terminal. Also usable in VP mode for
slave printer on terminal #1.

MXE: Basic programs may talk to this
address through $GIO commands.

06h Controlling operations to and receiving
data from the controller (selecting
terminals, requesting 1line inputs,
receiving line request data, etc.).

07h Sending display data to the currently
selected terminals's CRT.

Page 3

OPERATION MODES

A.

VP/Bootstrap Mode

When a 2200 CPU is first powered on, the bootstrap interacts with the
terminal connected to the first port on the first controller. This is
the MASTER terminal. No other terminal on the system may talk to the
2200 while in VP/Bootstrap mode (Exception: On an MXE the master
terminal need not be the first terminal. Through the use of MXE command
mode the MXE can be instructed to treat any one of terminals 1 through 4
as the master terminal. See MXE command mode description for full
details).

(HISTORY: In this mode the master terminal acts like a 2226 terminal
but does not support all possible ATOMS. The master terminal is the
only terminal capable of setting the RESET and HALT/STEP strobes on the
2200 I/0 bus.)

In VP/Bootstrap mode both controllers may be enabled at address Olh, 04h
and O5h. Additionally, the MXE may be enabled at address 06h in
BP/Bootstrap mode.

MVP Mode

MVP Mode is a special mode in which communication between all terminals
and the 2200 is supported. In this mode, output may be sent to and
input received from any of the 4 possible terminals. In this mode
addresses Olh and 05h are not normally used. Enabling the controller at
either of these two addresses causes the controller to return to
VP/Bootstrap mode.

Set up of the MXE

In order to enter MVP mode on the MXE the controller must furst be
downloaded with operating code. The 2200 does this in VP/Bootstrap mode
then gives the MXE a command at address 06h to enter MVP mode. The MXE
will then start executing the code loaded in RAM.

Setup of the MXD
Unlike the MXE, the MXD contains all necessary operating code within its
4 K Prom code space. When the 2200 enables the MXD at any of addresses

02h, 06h or 07h the MXD will begin operating in MVP mode (thus allowing
all terminals to interact with the 2200).

Page 4

Controller Buffer Usage:

Buffer MXE MXD Use

CRT 250 250 To store characters to be transmitted
to the terminal for displaying on its
CRT.

PRINTER 250 160 To store characters to be transmitted

to the terminal for printing on the
slave printer.

LINE REQUEST 512 480 To store data associated with the
line request.

KEYBOARD 36 36 To store all keystrokes received from
the terminal. If a line request has
been established then these are
placed in the 1ine request buffer.
If no line request has been made
these characters will be stored until:

1. A line request is made
2. A KEYIN command is issued
3. The buffer is full
4. The buffer is emptied via
software command
Remote Screen Dump

256 none To store Remote Screen Dump bytes
from the terminal until the 2200
takes them.
This function is not implemented in
the MXD.

NOTE: The MXE uses 2 other buffers as follows:

A Receive buffer for temporary storage buffer of bytes taken from the
DART.

A Data Transfer buffer for bytes to be transmitted to the terminal
during Remote Screen Dump.

Page 5

This 1ist contains the commands from the 2200 to the controller:

HEX CODE DESCRIPTION

FF Select Terminal

00 Null

01 Poweron Sequence

02 Initialize Current Terminal
03 Delete Line Request

04 Keyboard Ready Check

05 Keyin Poll Request

06 Keyin Line Request

07 Line Request

08 Prefill Line Request

09 Refill Line Request

0A End of Line Request

0B Query Line Request

0C Accept Line Request Data
oD Request Crt Buffer

0] Request Print Buffer

OF Error Line Request

10 Terminate Line Request

A1l command from this point on are NOT implemented in the MXD. These commands
will be ignored if issued to an MXD. Some of the commands are implemented in
the Triple controller.

n* Device status

12" Start clock

13 Download code

14 End download

15 undefined

16 undefined

17 undefined

18 undefined

19 undefined

20 $MXE command

21 Return result of $MXE Command
22 Enable Connect

23 Disable Connect

24 Enable Disconnect

25 Disable Disconnect

26 Alert 2200 to ALL connected ports

27 Clear pending disconnection

28 Get ID of terminal

29 Initiate Remote Screen Dump

2A Abort Remote Screen Dump

2B Initiate Remote Screen Dump in responce to terminal request

2C Reconnect port

2D Select special package

2E Set Controller password

* Commands implemented in the MXE and Triple controller but not the MXD.

Page 6

Control

The 2200 passes commands to the controller at address O06h. The
controller has no way to pass requests (i.e. commands from a slave device) to
the 2200. The MXE may pass one byte commands to the 2200 at address 02h as
explained in the section on the status address.

The following is a description of the command structure at address 06h:

Address 06h allows the MVP to define which terminal 1is to be
communicated with and what tasks it is expected to perform. In
particular, each command at address O06h is devided into primitive
operations thereby allowing much flexibility. Some examples of command
primitives are:

1. Cause the flow of data to be directed to and from a particular
terminal (SELECT terminal).

Query the condition of a CRT or print buffer.

Define a line request.

Cause one or all terminals to be initialized.

Take single bytes from soft controller (KEYIN).

Query a line request completion.

S
e e e e

The specific functions and command codes of addresses 06h are defined in
more detail on the following pages. Although address 06h commands are
described individually below, they can be transmitted to the controller
in various combinations in a single stream.

The first byte of each command is sent with a CBS strobe. The
subsequent bytes should be OBS's, sent without timeout. The controller
should not be disabled during a command. Unless otherwise stated,
output from the controller will be sent at address 06h.

NOTE: The examples given throughout the command section utilize the
following symbols :

CBS(xx)> A Control Bus Strobe of byte xx is sent TO the
controller.

0BS(xx> An Output Bus Strobe of byte xx is sent TO the
controller.

IBS(xx) An Input Bus Strobe of byte xx is read FROM the
controller.

ENDI(xx) An Input Bus Strobe of byte xx with the 9*" data
bit SET is read FROM the controller.

CPB The 2200 sets the CPU Busy signal active on the 2200
bus. This signals its readiness to receive bytes
from the controller.

'xx' is a hexadecimal number.

For a more detailed description see the section on 2200 bus architecture.

Page 7

Address 06h - Control Commands

SELECT TERMINAL CBS(FF) OBS(xx)

Whenever a command code of FF is received, the next byte will determine the
terminal port which will be the subject of subsequent commands. All commands
which are port specific (i.e. output to a terminal, input, etc.) act on the
port most recently selected with this command. The data byte specifying the
port must be a hexadecimal representation of the desired terminal (i.e., O0Oh =
terminal #1, Olh = terminal #2, ..., 03h = terminal #4). For the remainder of
this memo the current terminal is the last SELECTed terminal.

Example, select terminal #2:
CBS(FF) 0BS(01 00)
(NOTE: The 2200 often ends a sequence with an OBS(00). This extra
byte may or may not be needed for timing purposes)

POWER ON CBS(01)

MXE: The MXE jumps back into Prom and begins executing as a VP. A1l ports
have been reset and the protocall between the 2200 and the controller
must be the VP/Bootstrap protocall. The code downloaded to it
previously is not harmed and may be restarted when the 2200 sends the
proper command.

MXD The MXD reinitializes itself to VP/Bootstrap mode. Everything is set to
the way it is at power on. All buffers are cleared, all pointers reset,
all flags cleared. The mode becomes VP mode.

INITIALIZE CURRENT TERMINAL CBS(02)

This command will cause the CRT screen, pending line request CRT buffer, print
buffer, and input buffer of the current terminal to be cleared (used at RESET).

Example,
CBS(02) 0BS(00)
DELETE CURRENT LINE REQUEST CBS(03)

This command causes a pending line request and input buffers of the current
terminal to be cleared (used at HALT and with special function keys).

Example,

CBS(03)

Page 8

KEYBOARD READY CHECK CBS¢04) IBS(xx)

Whenever a command code of 04h is received, the controller checks the keyboard
buffer of the selected terminal. An IBS(00) is sent if it is empty, and non
zero if there is a character (the non zero byte is of no particular value).
Example,

CBS(04) IBS(xx)

KEYIN POLL REQUEST CBS(05) IBS{xx)

Whenever a command code of 05h is received, the controller checks the keyboard
buffer. If there is no character an IBS(00) is returned. Otherwise, a non
zero byte is returned followed by an IBS of the byte (with ENDI if it is a
Special Function key).

KEYIN LINE REQUEST CBS(06) IBS(xx)

Whenever a command code of 06h is received, the controller checks the keyboard
buffer. If there is a byte in it, this command is treated exactly as the
command 05h. If not, a IBS(00) is sent, and a special Keyin Line Request is
set up. An interrupt (completed line request) will be generated at address
02h when a character is later received.

REQUEST LINE CBS(07) OBS(XXXXYYZZ)

A command code of 07h will cause the controller to setup to receive a field of
up to XXXX characters (a hexadecimal representation of the count, not to
exceed 480 (O1EOh)) starting from the current CRT cursor position for the
currently selected terminal. All field entries will be forced to stay within
the field limits set. A line request is active until either a carriage return
or a special function key is entered, or until a delete line request command
is issued (RESET, HALT, etc). YY specifies three parameters as follows: The
80-bit specifies wunderline. The O04-bit specifies EDIT mode. The O0l-bit
specifies that characters previously entered in the keyboard buffer should be
flushed. (In other words, keystrokes received prior to a line request being
set, can be either received as part of the line or deleted). If deleted they
are never echoed back to the CRT nor entered into the line request buffer. 2z
specifies current column of CRT cursor (the 2200 should have already
positioned the cursor at this position).

Example,
CBS(07) OBS(00 CO 05 08)

sets up a 192 byte line request without underline starting in EDIT mode. The
field begins in column 8.

Page 9

PREFILL REQUEST LINE CBS(08) OBS(YYYY...)

This optional command code of CBS(08) can be sent after a line request command
CBS(07) to prefill the desired 1ine with the supplied characters YYY...
starting with the Jleftmost position. The characters are treated as
keystrokes. The cursor is left a the leftmost character. The string of
characters is terminated by the next CBS, which will normally be an
END-OF-LINE-REQUEST CBS(OQA).

Example, prefill the line request with the string 'PREFILL':
assuming Tine request has been made
CBS(08) OBS(PREFILL)
Note: All characters are legal in a prefill, but when codes 00h-OFh are

being displayed at the terminal, they are changed to periods. Codes 80h-8Fh
are also legal.

REFILL LINE REQUEST CBS(09) OBS(XXXX...)

The refill command is identical to a prefill except that it does not cause
repositioning of the cursor to the beginning. Thus the characters are treated
as keystrokes. It is normally used for RECALL AND DEFFN' quotes. It is
generally followed by an END-OF-LINE-REQUEST CBS(0A) or a
TERMINATE-LINE-REQUEST CBS(10).

END OF LINE REQUEST SEQUENCE CBS(OA)

A special command must be supplied to signal the end of a line request
sequence which consists of the setup and prefill if desired. The last command
sent, however, must be a CBS(OA), to signal the microcode to invoke the line
request. Nothing is sent to the CRT until the CBS(OA) is issued.

Example,
assuming setup and prefill are complete.
CBS(0A)

This command is also used after usccessful RECALL or DEFFN' text entry to
signal the controller to resume processing the line request.

NOTE: The 2200 will sometimes skip this command when it knows it will read in
the data from the controller on the next command. This is a violation of
protocol but the controllers live with it. Should the 2200 skip this command
and go directly to CBS(OC) the controller should update the screen before
allowing another Line Request to be started.

Page 10

QUERY LINE REQUEST CBS(0B)

When an CBS(0B) command is received, the controller responds with one of the
following IBS values.

00h -- No line request in progress.

0lh —- line request still in progress.

ODh -- line request terminated by CR.

FFh -- Recall key pressed (see note).
ENDI(XXD S.F. key pressed.

Note on recall:

After the FFh, the controller may send one or more bytes to the MVP.
Each time the MVP sets CPB ready, the controller will send one more data
byte with IBS. These are the characters from the entered text, read
from right to left, beginning with the cursor position. The begnning of
the buffer is indicated by ENDI. This sequence ends whenever the MVP
stops setting CPB eady, sends OBS or CBS, or switches address. The
controller should not clear the buffer when the 2200 has read all the
bytes contained therein. Unfortunatly, the 2200 takes some shortcuts
for expediency and may reread the buffer later.

Following the query, the MVP may do one of the following:

1. Nothing (another query later).
2. Delete line request (usually for HALT, and SF keys without parameters).
3. Refill -- this is more data to be merged to the present line request, as

though the operator typed it (used for recall and DEFFN' quotes). Then
End Line Request.

4. Terminate Line Request -- used to implement DEFFN' HEX(OD).

5. Error Line Request -- this beeps an error and continues the line request.
6. Ask for data.

ACCEPT LINE REQUEST DATA CBS(0C)

When a CBS(OC) is received after a line request has been completed, the
controller will send the data. It should only be issued after a query has
shown that the line is complete.

The controller sends the data if any, then an ENDI as terminator. if the ENDI

is zero, the line request is complete; if Olh, the controller needs more time
to finish updating the screen.

Page 11

REQUEST CRT BUFFER CBS(0D)

This command causes the controller to check the CRT buffer of the current
terminal. If it is empty, the appropriate status bit is set (address 02h =
ready) to signal the fact. If not, then the controller will set the bit when
the buffer does go empty.

REQUEST PRINT BUFFER CBS(OE)

This is just like the previous, except it refers to the current therminal's
PRINT buffer, not CRT buffer.

ERROR LINE REQUEST CBS(OF)

This command causes the 1line request to resume, just like END-LINE-REQUEST,
except it beeps first. It should not be used in conjunction with PREFILL or
REFILL. It is normally used for undefined function keys.

TERMINATE LINE REQUEST CBS(10)

This command is used (after optional PREFILL or REFILL) to cause all the same
actions as the operator pressing EXEC. It is normally used for the basic
statement DEFFN' HEX(OD).

DEVICE STATUS CBS(11) IBS(xxxxxx) ENDIC00)

This command gets the controller type. Controllers which do not support this
command will cause a timeout error in the 2200. MWhen the timeout error is
gotton the 2200 will assume that the controller is an MXD. The MXE and Triple
controller support this command. The string returned by this command has the
following format:

Byte 1 01 Triple controller without clock
02 W/Time of Day clock
04 W/Battery Backup TOD clock
80 Needs Downloading (This bit may be set regardless of
other bits)
Bytes 2 and 3 Code Revision:
Byte 2 Revision integer portion
Byte 3 Revision fractional portion times .0l
Bytes 4 + Controller name
ENDIC00)

Start Clock (€BS(12)

This command causes the board to begin issueing one second ticks to the 2200
at address 02h.

Download Code CBS{(13) OBS(xxxx....)

This command signals the start of a block of RAM microcode for the
controller. The 2200 does not care what the format of the block is. Each
block will start with a CBS(13) and will be sent to the controller unbroken.

It is assumed that the controller understands the format of the blocks.

Page 12

End Download Code CBS(14)

This command signals the end of the downloading process. MWhen the controller
receives this command it will begin executing the downloaded code. Currently,
the MXE is the only downloaded board. It expects to begin executing at the
locations pointed at by location 4000h.

$MXE Command CBS(20) OBS(Command String)

This command has not been implemeted by the 2200 and is therefor not fully
tested.

$MXE commands can be passed to the MXE preceeded by a CBS(20). Almost all the
commands supported at the terminal end could be executed this way. The entire
command string would be passed to the MXE without interpretation by the 2200.

Return Result of $MXE Command CBS(21)

This command would be used to get the result of an MXE command issued with
CBS(13).

Enable Connect CBS(22)

This command enables the connect alert system for the currently selected
port. This command sets a flag which the controller tests when a terminal
connects to a device. If this bit is set (or the disconnect flag bit is set)
then the controller alerts the 2200 to the connection through a connect flag
at address 02h.

A connect is defined as the Data Set Ready signal on the RS232 line becoming
active.

Disable Connect CBS(23)

This command disables the connect system for the currently selected port.

Enable Disconnect CBS(24) OBS(xxxXx)

This command enables the disconnect alert system for the currently selected
port. This command sets a flag which the controller tests when a terminal
disconnects from a device. If this bit is set then the controller alerts the
2200 to the disconnection through a disconnect flag at address 02h.

The bytes xxxx define a timer value which is interpreted as follows:

If xxxx = 0000 then the device is disconnected immediatly.

If xxxx = FFFFh then any current disconnect countdown is canceled
and the device is NOT disconnected by the controller.

Otherwise, the value of xxxx is used a timer value and causes the
controller to forcably disconnect the device after xxxx seconds.

NOTE: the controller disconnects the device by resetting DTR to it's inactive
state until the 2200 allws reconnection by use of the command CBS(2C).

Page 13

A disconnect is defined as the Data Set Ready signal on the RS232 1line
becoming inactive.

When a disconnect occurs AND the disconnect flag is set the controller should
reset Data Terminal Ready to its inactive state for a period of 3 to 5 seconds
so that any communication equipement connected to the port will let go of its
communication line (such as a telephone line).

Disable Disconnect CBS(25)

This command disables the disconnect system for the currently selected port.

Alert 2200 to All Connected Ports CBS(26)

This command causes the controller to set the connect bit at address 02h for
each port which is currently connected to an active device. This command does
NOT set or reset any flags; it's action is one time only.

Clear Pending Disconnection CBS(27)

This command cancels a pending disconnection for the currently selected port
but does not disable the disconnection detection system for that port.

Get ID of Terminal CBS(28) IBS(xxxx)

This command causes the controller to pass a 2 byte value to the 2200 which
designates weather or not the currently connected device (at the currently
selected port) supports RSD. The 2 bytes should be decoded as follows:

Byte 1: 00
01

No RSD support
Supports RSD

Byte 2: 00 = unknown terminal type
01 = 2336 DW terminal byte

Initiate Remote Screen Dump CBS(29) OBS(RSD parameters) ENDI{(xx)

This command is used to begin a Remote Screen Dump from the currently selected
port. If the device supports RSD then the controller returns a value of
ENDICO1) to the 2200, initiates the RSD by sending the proper RSD start
command to the device and passes the device the parameter string received from
the 2200. If the device does not support RSD than the controller returns
ENDICO0) to ther 2200 and discards the parameter string.

Parameters: N bytes to be sent to the terminal at the start of
the screen dump which specify the area of the screen
to be dumped.

xx: 00
01

RSD cannot be done to this terminal.
RSD begins

Page 14

Abort Remote Screen Dump CBS(2A)

The 2200 issues this command to the controller when it wishes to stop a RSD
already in progress. The Remote Screen Dump at the currently selected port is
aborted and all RSD buffers are flushed. If no RSD is currently executing at
the currently selected port the controller ignores this command.

Initiate Remote Screen Dump from Terminal Request CBS(2B)

This command is the same as CBS(29) except it is issued in responce to a RSD
request issued by the device. The reason this is a seperate command is so
that RSD requests can be queued up and the controller can keep track of them.

Reconnect Port (CBS(2C)

This command instructs the controller to begin a 5 second timer which will
then reconnect the currently selected device. This command is issued after
the 2200 has completed all necessary disconnect procedures for a disconnecting
device.

Select Special Package CBS(2D) 0BS(xx) ENDI(yy)

This command selects a special support package such as Asynchronous
Communications to be run at the currently selected port. The OBS byte is
currently decoded as follows:

00h NULL
Olh Standard Wang Terminal
02h Asynchronous Communications Package (TC)

Set Controller Password CBS(2E) OBS(string)

The first six bytes of 'string' are set as the controller password.

Addresz/a/;:{ Asynchronous Communications
(_//

Address 03h is only used by the MXE. It is used for communication between a
Basic program tand the MXE Asynchronous Communications code. The user may use
the $GIO command to perform input and output at this address useing the A##
addressing convention. For a description of the protocol see the
'Asynchronous Communications Guide for 2236 MXE' Wang # 700-8089. Commands
at this address may be broken at any time due to 2200 breakpointing. The user
is not trusted as the 2200 is at other addresses and extensive error checking
is done at this address. <(at all other addresses the 2200 is TRUSTED not to
send anything which will confuse the controller).

Page 15

Address 07h - Send data to CRT

Address O07h 1is used to transmit characters onto the CRT of the current
terminal. It should be ready whenever there is at least three bytes of space
available. MWhen it goes busy the CPU will time out (one millisecond) and
service other partitions until a buffer-empty interrupt occurs. In addition
to OBS with data to be displayed, this address also supports CBS's at this
address. When the controller receives a CBS(xx) at address O7h it should
place a FBh before it in the buffer. This will cause the terminal to accept
this string as a command. The following are the three possible commands to
the terminal:

1. Repeat
FBh count character Where count is in the range 00h to
50h

A CBS(04) to CBS(50), followed by an OBS of any byte except FB will
have the effect of generating 4 to 80 characters of that byte. The
code will be stored and transmitted in compressed form and thus will
save time. It can be used to easily generate position cursor or tab
functions. (CBS(00) to CBS(03) will work, but with a 1loss in
efficiency).

Example,
0BS(01)> CBS(05) 0BS(0A)

will place the string 0lh FBh 05h OAh in the CRT buffer and
will move the cursor to the beginning of row 5.

*Note: The OBS must be sent without timeout.
2. Pause
FBh delay where delay is in the range COh to C9h
A CBS(CO) to CBS(C9) will cause the terminal to pause for 0 to 1.5
seconds (one-sixth second increment). The controller will still
continue to accept data until its buffer is full.
3. Character FBh
The character FBh must be followed by the byte DOh so that the
terminal will not interpret it as the start of a command. The

controller places a DOh in the buffer immediatly after storing the
FBh.

Page 16

Address 04h - Send Line to Slave Printer

Address 04h is similar to address 07h except that the characters are directed
to the printer of the current terminal. This may be used in VP mode, as well
as MVP mode, but then only with terminhal #1. The terminal does not support
pause or repeat to the printer but all FBh must be followed by DOh as at
address 07h.

MXE only: Remote Screen Dump bytes are transfered to the 2200 at this
address. Whenever the 2200 sets CPB ready at address 04h the MXE will send
RSD bytes to the 2200 followed by an ENDI(00) when the buffer is empty.

Address 02h - Receive Controller Status

Address 02h is used to report the stati of the various terminals to the
2200. MWhen enabled by address 02h with CPB ready the controller will
send from 7 to 11 bytes of data and 1 ENDI data byte to be used as a
terminator for the input sequence.

Bytes Explanation
1 Low nibble: RESET flags (1-bit per terminal)
High nibble (MXE only): Connect flags
2 Low nibble: Halt/step flags (1-bit per
terminal)
2 High nibble (MXE only): Disconnect flags
Note: The above 2 bytes are organized so that the 01 & 10-bits

represent terminal 1, 02 & 20-bits terminal 2, 04 & 40-bits
represents terminal 3 and the 08 & 80-bits terminal 4.

3 One second clock tick as follows (MXE and Triple controller
only):

If the 2200 has commanded this controller to tick of
seconds then it will interrupt the 2200 at each one second
tick and will pass the number of seconds which have elapsed
since the 2200 last read the board status in this byte.
The 80-bit must be set for the 2200 to consider this count
legal. It is legal for the 2200 to not read the status
for as long as it wants and the board must maintain the
elapsed time in this byte. A board should only use set the
80-bit in this byte if the 2200 has previously issued
command CBS(12).

Page 17

4a Terminal 1 status
4b (MXE) Terminal 1 request
5a Terminal 2 status
5b (MXE) Terminal 2 request
6a Terminal 3 status
6b (MXE) Terminal 3 request
7a Terminal 4 status
7b (MXE) Terminal 4 request
Note: The above 8 bytes are organized as follows:
Byte a:
Bit 01 - Print buffer became empty (requested)
02 - CRT buffer became empty (requested)
04 - Keyboard buffer not empty or Line Request complete
08 - RSD buffer almost full
10 - unused
20 - unused
40 - unused
80 - Request byte (byte b) follows this byte
Byte b:
This byte is a one byte request to the 2200 for some function to be
performed. It is only sent to the 2200 when the terminal has a request
to make. The following requests are currently defined:
00h Null
01h Request Remote Screen Dump to be performed
02h Cancel currently executing RSD

Page 18

2200 Input/Output Bus

This section describes the signals on the 2200 I/O bus and their uses. Those
signals which do not pertain to the functioning of the 2200-controller
protocol have been omitted (such as ground). The list of bus signals is as
follows:

RESET Reset strobe - used by the controller in VP mode to
reset the CPU

PRIME Halt/Step strobe - used by the controller in VP mode
to Halt or Step the CPU

Address bus 8 bit address bus controlled by the 2200

ABS Address Bus Strobe

Input Bus 8 bit data bus from the controller to the 2200

ENDI ENDI bit - 9'" data bit in the direction of from
the controller to the 2200 only

IBS Input Bus Strobe - from the controller to the 2200

Output Bus 8 bit data bus from the 2200 to the controller

0BS Output Bus Strobe - from the 2200 to the controller
for data bytes

CBS Control Bus Strobe - from the 2200 to the controller
for control bytes

CPB CPU Busy - Signal (not a strobe) from the 2200

signaling to the controllers that the 2200 is ready
to input bytes.
Ready/Busy Ready-Busy signal to the 2200 from the controller

The 2200 selects a controller by setting the Address Bus to the controller
address and strobing ABS. All controllers not selected should then not use
the bus in any way so that the 2200 can communicate with the selected
controller. The Ready/Busy 1line is set by the controller whenever the
controller 1is selected. If more than one address is found on the same
controller the R/B signal is set to the selected sub-address.

The Output Bus is used by the 2200 to output bytes to the controller using the
OBS and CBS strobes. The controller can distinguish the two strobes apart
thus allowing both data bytes and control bytes to be sent to the controller.

The Input Bus is used to transfer data bytes from the controller to the 2200
with the IBS strobe. A ninth data bit is used in this direction called the
ENDI bit. This bit is used to indicate special conditions such as end of data
transfer, etc. The ENDI bit is actually a flag in a register in the 2200
rather than a strobed data bit.

CPB is set by the 2200 to indicate its readiness to accept bytes from the
controller. MWith a few exceptions the controller must respond within 15MS or
a timeout error will occur. Once the CPB signal is set either bytes are
transfered or the timeout condition is encountered.

The RESET strobe is used by the terminal controller in VP mode to reset the
CPU. This signal should not be strobed in MVP mode or the system will crash.

The PRIME signal, also called HALT/STEP is strobed by the terminal controller
to signal the deesire to Halt between instructions or step through the next
signal. This signal is used in MVP mode only.

Page 19

MXE/SVP Option W RS-232c¢ Connection Pinout

Pin # EIA CCITT Name Signal Source
1 AA 101 Protective Ground

2 BA 103 Transmit Data DTE
3 BB 104 Receive Data DCE
4 CA 105 Request to Send DTE
5 CB 106 Clear to Send DCE
6 CcC 107 Data Set Ready DCE
7 AB 102 Signal Ground

8 CF 109 Received Line Signal Detector™ DCE
9 Unconnected

10 Unconnected

11 Unconnected

12 Unconnected

13 Unconnected

14 Unconnected

15 Unconnected

16 Unconnected

17 Unconnected

18 Remote Analog Loopback™ DTE
19 Unconnected

20 cD 108.2 Data Terminal Ready” DTE
21 Remote Digital Loopback™ DTE
22 CE 125 Ring Indicator” DCE
23 CH/CI 111/112 Data Signal Rate Selector™ DCE/DTE
24 Unconnected

25 Unconnected

This pin is not connected on port 1 of an SVP Option W (Ports 2 and 3
utilize these signals)

Page 20

Baud Rates:

The MXD and Triple controller baudrate switches are usually marked to indicate
the desired settings. For older controllers it may be necessary to consult
the 2236 terminal guide for setting.

Below is a 1list of baud rates available on the MXE and SVP controllers. Some
of the rates can only be set via the $MXE baud rate command and will not have
an entry in the second column. Others can be set by the hardware baud rate
switches. Please see the discussion following the table which describes how
default hardware baudrates are set. MWhen setting baudrates via the $MXE
command, the baud rate should be entered exactly as found in this table.

Rate Hardware switch setting

50

75

100

110

134.5

150

200

300

600

1200
undefined
2400
undefined
4800
undefined
9600
19200
undefined
see note

TMOOWPrPOvoo~NOTOTHAWN—O

NOTE: Setting all the hardware switchs to X'FF' will cause the MXE to go into
diagnostic burn in mode. In this state the MXE will continuously loop
on its board diagnostics and will not talk to the 2200 or allow any user
input. A1l board errors found will be displayed on the screen.

Page 21

MXE Code Structure
Eric Wilson

22 August 1983

This document contains a basic description of the MXE code and its structure.
The user would be advised to read this document alongside a copy of the MXE
microcode.

System Files

MXE source files are arranged in groups according to their package name. Each
file name is an eight character name whose root describes the type of

support. The main routine is ALWAYS found in a file ending with '00' and
ALWAYS includes the names of all the other files required for the assembly.
The 1list below describes all current main routines and there package

function. NOTE: The actual disk file name does not include the '.' but the
assembler and editor require it.

NAME Package description
EW.MXEPOO MXE bootstrap code
EW.SVPPOO SVP bootstrap code
EW.MXEDOO General MXE code. Supports all MXD functions plus Remote

Screen Dump and MXE command mode. Base to which other
packages may be appended.

EW.MPACOO Special version of EW.MXEDOO. Does everything the latter
does plus special MPAC Remote Editor. Acts as general
base in the same mannar the latter does.

EW.MXETO0 MXE Asynchronous support package. NOT standalone. Must
be combined with EW.MXEDOO or EW.MPACOO (ie a general
base).

Code Assembly

To assemble any of the above code the general 2200 Z-80 assembler (written by
Max Blomme) should be used with main file (listed above). This code was
written on the 2200 and can to date only be assembled and edited on a 2200
system!! The Prom files for both the MXE and SVP are assembled standalone and
do not require the use of a symbol file. Changing the prom code may
necessitate changes to the ram code as some entry points into the proms are at
assumed locations. The Base packages should always be assembled using a
symbol file so that any package assembled as an addition to the base can have
access to all base variables. A1l code must have access to the entire buffer
and main storage area.

Each base package contains an assembly date, revision number and ID message
(which can be displayed in MXE command mode) located in module EW.xxxxBA where
'xxxx' is the package root node. This message should be changed before
assembling the code for release.

If the base is to be used without another package (such as Asynch) then the
'SELPACK' block in module EW.xxxxCB should be modified to respond negativly to
the 2200's select package request. The code description in that module
supplies all needed information to make the change.

Page 2

After assembling the code the various parts should be combined into one file
using the 'Combine Object File' program. The Base Code should be loaded into
the file first and the secondary package(s) second. To date, only the TC
(Asynch) package exists as a secondary package.

Lastly, the file should be named '@GMXEQ' and copied onto the system disk. The
2200 will load the contents of file '@MXEQ' into each MXE controller or SVP
controller in the system at poweron time (only at poweron).

No checksums are maintained in the ram code files. However, a checksum must
be generated for the prom files and the diagnostic code must be combined with
the prom code. Use the combine object code program to add the diagnostic code
to the MXE/SVP prom code. Then use the "Checksum Calculator” to add a
checksum byte to the file. The checksum will replace the last byte in the
code.

Entry points and polling

The entry point at powerup is location x'0000'. This location points to the
diagnostic code which performs various diagnostic test on the board before
passing control to the MXE/SVP prom code through location x'0003'. An
absolute jump should be in each of these locations. Two types of diagnostic
errors can be found by the diagnostic code; Fatal and Crippling. If a fatal
error occurs the diagnostic code will not pass control to the bootstrap prom
code. A crippling error will allow control to be passed but and a status code
will be passed in register C. In both cases the diagnostic code will not turn
off the diagnostic LED on the board (which was turned on when the board was
reset at poweron). The state of the LED will not be changed by the bootstrap
prom code. However, a bug exists in the way the prom code passes control
information to the ram code such that the ram code does not know which state
the LED should be set at. Since the LED bit shares a register with some other
bits needed at poweron by the ram code it will ALWAYS be turned off at ram
initilization.

The structure of the bootstrap code is very similar to the RAM code. The
bootstrap was written first and then expanded into the RAM code. Many changes
have been made to the RAM code since it diverged from the prom. Many new
functions have been added necessitating restructuring of much of the code on
numerous occasions. But it will prove easy to understand the prom code when
the RAM code is understood. For this reason I do not present a description of
the prom code here. To work with the prom code one should read the rest of
this document and ignore any reference to labels which do not exist in the
prom code.

Page 3

Various labels and their associated functions

In the following descriptions the use of underlined characters in names
designates that this is a label FORM and varies the underlined part.

example: '"CONBLCK#' where # is O to 3 designates the labels:

CONBLCKO
CONBLCK1
CONBLCK2
CONBLCK3
"GENSTORE' Start of the shared data area. Up to 2k of RAM is
reserved for shared variables, etc. Only 1k is currently
used.
' CONBLCK#' # is the port number (0 to 3). This label designates the

begining of the ports data and buffer area. The first
page contains ALL the ports varaibles and pointers so
that paging is not needed. The rest of the area (and
part of the first page) is devided into buffers. This
data area is often refered to as the ports 'control block'

'STACK' Starting location of the system stack.

"START.P! Initialization entry point into the bootstrap.
"MVPSTART' General storage area in RAM.

"CURNTUSR' Pointer to currently selected ports control block.
'SWAPLIST' A table which describes a mapping between the 2200 port

numbers and the actual control block addresses. This is
used because the user can redefine port one to be any
port before entering RAM. Thus, it is possible to swap
any two ports but only port one is currently able to
become any other port.

In the following descriptions 'BUF' can be any of KEY, CRT, PRT, LR, RX, DT or
RSD. Each is the name of a buffer and has various pionters and counters

associated.

'BUFBEG' Pointer to the start of the buffer. Contains the page
address and assumes the offset of zero except in the case
of the keyboard buffer ('KEYBUF'). The offset from
'"KEYBUF' 'BUFBEG' since the keyboard buffer is not a full
page (described later).

‘BUFRD' Buffer read pointer. MWraps around at page boundry as

most buffers are curcular (exception is Line Request
buffer which is 2 pages long and is not curcular).
ALWAYS read and increment.

Page 4

' BUFHR'

' BUFCOUNT'

'BUFBEG'
'2200DATA'
"NOP'
'DIAGBOOT'
'MVPSTART'

'INTVEC'
'START'
'"MAIN'
'TABLOOK"

'SEL##'

' POLLBUF
'OBS##'
'CBSH##"
'CPBA#'

'CO6##"

'"USRFIND',

'LREDIT'

‘TXSERVER'

'FINDUSR',

Buffer write pointer. HWraps around at page boundry as
most buffers are curcular (exception is Line Request
buffer which is 2 pages long and is not curcular).
ALWAYS write and increment.

Number of bytes in buffer. NOTE: When the read and write
pointers are equal the buffer is empty or overflowed
(same as empty as count goes to zero).

See this label for buffer sizes and constants.

MXE register and device map

List of constants

diagnostic code entry points

pointer to start of RAM code. This is located at

location 4000h.

Interrupt vector table

initlial entry point into RAM code
Top of polling loop

Table lookup routine which is JUMPPED to from many parts
of the code

here designates a 2200 address (O to 7 but not 3) which
needs service.

Top of buffer polling loop

Routine to check for Output Bus Strobe at address #
Routine to check for Control Bus Strobe at address #
Routine to check for CPU Busy to go active at address #

Routine to respond to 2200 command of ##. (see command

list following SELO6 in code)

"FINDUSRP' and 'FINDPORT'
Translate masks and pointers into other masks and
pointers which point at data areas or flags specific to
each port.

Line Request editor

Transmitter service code
Page 5

'STATEROA' Start of receiver service table

'RXIN' Service routine for received bytes. Bytes in the RXBUF
are translated and interpreted and stored in the KEYBUF.
A prescan has already been done in the receiver int
routine but is repeated here for certainty.

'CLOCKI' Clock int service routine
'CLOCK' Clock init routine

'ENTX' and 'DISTX' Manipulate WAIT/READY status line on DART chips to
effectivly enable and disable transmitter interrupts.

'TIMEOUT' Sets up an event timer for an event which must be
performed later

'PUTBUF' and 'GETBUF'
These routines manipulate the various buffers. A suffix
may often be found on the end of these names which imply
that they perform some function similar to the routine
without the suffix. Care should be used in modifying
these routines to check all routines with similar roots
for reentrancy.

'LROUT' Main routine for manipulating screen in Line Requests.
Most updating of the screen during LR's is done through
this routine. Timing is very critical in this section of
the code.

"INIT' Start of the board initialization code. Calling this
routine will completly reinit the board.

‘RSTBUF' Buffer reset code.

Page 6

Interrupts

The use of the various devices is described in this section.
INT PRIORITY:

CTCO0
DARTOA
DARTOB
CTC11

CTC channels 0 and 1 (CTCOO and CTCO1) on both chips are used as time bases
for the DART receiver/transmitters. The baud rates are controlled through
these channels.

CTC channels 2 and 3 on chip one (CTCO2 and CTC03) form a cascade counter for
a one second clock int. This int is used to provide the 2200 with a one
second tick and also as a flag to test various conditions. Events which must
be timed are linked to this clock (so long as the time span is greater than
one second).

CTC channel 2 on chip two (CTCI2) is used to produce the transmitter ready
int. It was decided not to use the transmitter empty int from the DART chips
directly because this would put some transmitters at higher priorities than
some receivers which could result in lost data. Therefor, the WAIT/READY
outputs of the DARTs are ORed together, clocked and used as input to this CTC
channel which is in cout mode. Thus, by manipulating the WAIT/READY function
ont the dart chips the transmitter int's may enabled and disabled (see 'ENTX'
and DISTX").

CTC channel 3 on chip two (CTC13) is not used in general terminal support.
The TC (Asynchronous) package uses it to provide a source of 10MS int's for
event timing.

Page 7

Interrupt and Service routine pointers

Each port has a set of pointers which point at interrupt service routines,
polling loop service routines, and a one second interrupt service routine.
Each pointer is a two byte address with the low byte first (Z-80 convention).
A1l pointers may be changed by the code running for a port at any time but

MUST point at a valid address or be equal to zero!!! The pointers are as
follows:

TXSTRT Transmitter service routine

RXSTRT Receiver service routine

RXSTRTS Status change service routine

RXSTRTP Parity/Framing error service routine

BUSTAB22 2200 service table

SERVLOC Poll loop service routine

TESTSEC One second service routine (run once per second)

Some routines are JUMPED TO (not called) with the B register equal to the
currently selected ports control block. see an example of the type of routine
being written before writing one. All interrupt routines are responsible for
restoring any registers which where saved BEFORE the routine was called and
for performing a RETI to end the int. Receiver int routines may use the
auxilary register set but MUST leave interrupts disabled while useing them.

No other service routines should use the auxilary register set!

The TESTSEC pointer should point at a routine which performs actions needed
only on an occasional basis and is CALLED once per second (and should be kept
as short as possible!!). Interrupts should be left enabled as much as
possible. A1l interrupt routines should be as short as possible to prevent
data loss on the receivers (which could result from interrupts being disabled
for to long a period).

Interrupts are sometimes disabled for a few instructions at a time to provide
a locking mechanism around devices (especially when programming a device) and
buffer pointers which are accessed in both main loop and interrupts. This has
proven to be a problem in the past since the Z-80 has no semiphores.

Page 8

From: Eric Wilson

Subject: MXE Data Transfer Facility
Date: 03/28/83 (revision of 06/15/82 memo)
Pages: 4 (including cover)

Your comments are welcome and shou]d be directed to Eric Wilson at
X7192, M/S 1389A in Lowell Tower II.

PAM * 0020 e

P (2) (3

T - MXE (normal state) T-MXE (DT) MXE-T (DT)

FO Edit key DO

F1 Escape D1

F2 Start Data D2

F3 Request Data Transfer D3 Start Data Transfer
Fa End Data Transfer D4 Abort Data Transfer
F5 D5

Fé D6

F7 D7

F8 CRT go CRT go D8 Send

F9 PRT go PRT go D9

FA CRT stop CRT stop DA MWait

FB PRT stop PRT stop DB

FC Transparency DC

FD ENDI/ATOM DD

FE Dead key DE

FF DF

During a Data Transfer (DT) the MXE will use the codes in column 3 above
to control the flow of bytes from the connected device. Column 2 contains the
allowable commands from the device to the MXE during a DT. All the commands
in column 2 must be preceeded by escape byte 'F1'. 'F1' in the normal data
stream must also be escaped. Thus, a data byte of 'F1' would be sent as
'F1''F1'. An end of DT command would be sent as 'F1''F4'. Commands from the
MXE to the device must be escaped by escape byte 'FB' which is the normal MXE
toc Terminal escape byte. 'FB' in the data stream will be converted to
'FB''DO' to be compatible with older terminal formats.

Data flow is allowed in both directions (to and from the connected
device) to allow for the transmission of error checking codes in the reverse
direction.

NOTE: A device MUST issue an'E5' to the MXE immediatly following EVERY reset
and restart. This is used by the MXE as an indication that the device
supports Data Transfer. The MXE will NOT allow DT with a device which has not
issued an 'ES5' since the last reset or restart. (This is to prevent a DT from
being attempted with a device which does not support it).

This is page number 1 !

General Command Sequence:

In the following description 'T-MXE' means 'From the device to the MXE',
'MXE-2200' is 'From the MXE to the 2200', and so on.

Device initiation:
T-MXE: '"F3''ID'"
MXE-2200: Set DT bit at address 02.
MXE-2200: Pass 'ID' at address 06.

A request has now been made to the 2200 for the desired Data Transfer. The
MXE will continue in its normal mode until the 2200 initiates the DT as
follows. (in the case of a terminal requesting a Remote Screen Dump, the
terminal will also remain in its normal state until the 2200 initiates the
RSD. This is to prevent the MXE and terminal from hanging while waiting for
the 2200 to get ready. The 2200 may not be able to honor the terminals
request at all!):

2200-MXE: Command at address 06 - pass 'ID' followed by
any needed parameters for the requested DT.

The 2200 is now ready to proceed with the transfer and will wait for the
devices to proceed.

MXE-T: '"FB''F3''ID' 'parameters’
Both the device and the MXE prepare for the DT. When the MXE is ready:

MXE-T: 'FB''F8'
The device should now begin the transfer. As needed the MXE will send the
following Go and Wait codes to the terminal to control the flow of data once

the transfer has begun:

Go: 'FB''F8'
Wait: 'FB''FA'

Five conditions may terminate a DT. They are as follows:

1 Normal termination: T-MXE: '"F1''F4'
MXE-2200: Set DT bit at address 02
MXE-T: '"FB''F8'

2) 2200 Abort: 2200-MXE: Abort DT command at address 06
MXE-T: 'FB''F4'
MXE-T: 'FB''F8'

See section on ID for a complete description

This is page number 2 !

3 Reset Abort: T-MXE: "F1''12'
MXE-2200: Set DT bit at address 02
MXE-2200: Set Reset bit at address 02
MXE-T: Normal terminal reset procedure

4) Device disconnect: MXE-2200: Set DT bit at address 02
MXE-2200: Set Disconnect bit at address 02

5) MXE Abort: MXE-T: 'FB''F4'
MXE-T: 'FB''F8'
MXE-2200: Set DT bit at address 02

It should be noted that the device connected to the MXE does not have to be a
terminal. It could be some other device (EX: Wangwriter) which usually looks
lTike a terminal to the MXE but may use the MXE for Data Transfer other than a
Remote Screen Dump. For this reason, the above protocall has been kept as
general as possible. The MXE never has to know the format of the data being
transfered nor the number of bytes.

ID:

A one byte ID is used to designate which type of Data Transfer is being
requested (by the device) and which type is being initiated (by the 2200).
Currently, only two ID's exist. An ID of 01 specifies Remote Screen Dump and
an ID of 02 specifies File Transfer. As additional uses for the Data Transfer
facility of the MXE are generated, new IDs will be assigned. In any case, the
MXE does not care which transfer is being done so the ID is not important to
it at this time.

Following the ID, the MXE will send to the terminal a 1list of parameters
(four bytes in the case of RSD). For RSD this parameter 1list 1is a
specification of the part of the screen which is to be dumped. The first two
bytes specify the upper left corner of the area while the second two bytes
specify the lower right corner. The first byte of each group is the column
number (from O to 79 for a 2336DW terminal) and the second byte is the row
number (from 0 to 25 for a 2336DW terminal). The MXE receives the parameters
from the 2200 when it issues a DT command.

Compression (RSD):

Data compression has been defined for an RSD. The byte 'EC' followed by
a count of the number of bytes being compressed followed by the byte being
compressed will be used. To send an 'EC' the terminal must send 'EC''EC'.
Counts of 'EC' (decimal 236) and 'F1' (decimal 241) are not allowed (ie. a
string of 236 or 241 compressible bytes must be broken into two compressions).

'"EC' ‘'count' ‘'compressed byte'

This is page number 3 !

To: Bruce Paterson

From: John S. Deutsch
CC: Eric Wilson
Date: September 1, 1983

Subject: MXE Code extension proposal

I have reviewed Eric's proposal to add extensions to the Async MXE code set.
I believe that this is a very good idea. I know that you are are anxious to
have Eric wrap up 2200 MXE activity, However I believe that this is a good
investment. The added function in the Async code will help in competitive and
development situations.

Your support for this project is appreciated and Eric's professional attitude
towards the MXE project is to be commended. Let me know if you require any
additional input in this area.

CUSTOMER ENGINEERING

“

: .

PRODUCT MAINTENANCE MANUAL

2236 MXE

TERMINAL
CONTROLLER

(EARLY FIELD SUPPORT) -

NOTICE

“This document and the information it contains are the confidential prop-
erty of, and are propietary to, Wang Laboratories, Inc. This document
and the information it contains may not be made public without the writ-
ten consent of Wang Laboratories, Inc. If for any reason this document is
permitted by Wang to leave the physical custody of the company, it is re-
turnable upon the demand of Wang Laboratories, Inc.” .

MAY 1982

2% Nov (483
E ric \a((\{qu\

These documents proude preces

0Q v R or mitign d€Scfl‘b|;g the L’\'}{:w7 o

-

Mmx€ develgpen et au) past grposaly .

Mok of the (Wlormatiym mn these dOCj

(5 Contanr ed (‘V\ @(‘6\4\00) sectims oL <h/p

ne€Cebodl . teag <l e freul\ad sectimg Liese

TL\eSe docu»«@»-"(ﬁ ar e Cov\’elu\ae’A 4d the

DSk ete o = clud e vy £h thif NiTeb ook,

DOCUMENT SUMMARY

Document Id: 0015E
Document Name: MXE Specifications

Operator: Eric
Author: Eric
Comments:

‘Pages to be printed 21

Notify U13 on system PAM.

2200 Terminal Controllers

Including the 2236 MXD, Triple controller,
2236 MXE and 2236 SVP

This document was written by Eric Wilson in August of 1983 at the tail end of
the implementation of the MXE microcode revision R2.52.

MXE, SVP, MXD and Triple controller Specifications

The 2236 MXE and 2236 SVP controllers are the latest (and probably last)
controllers in the series of 2200 MVP terminal multiplexer boards. Not
withstanding the exceptions listed in the next paragraph the MXE and SVP are
the same. Thus, whenever the MXE is discussed in this document the SVP is
implied. The MXE provides all functions provided by the MXD and Triple
Controller and has had many enahancements to functionality added. In the
description which follows all four controllers are described together with all
differences indicated. <(the MXD should be treated as a subset of the Triple
controller which is a supset of the MXE) All references to the MXD include
the Triple controller.

The MXE and SVP are functionally equivalent but have some minor hardware
differences. The SVP has only three RS232 ports while the MXE has four.
Also, port O on the SVP does not supply all the RS232 signals needed for
remote applications thereby Timiting it to local terminals only. See the
section on MXE/SVP RS232 pinout for full details.

This document defines the protocol between the 2200 and its various terminal
controllers. Additionally, some other pertenent information about some
controllers is included to help build a full picture. This document is
intended as a supplement to the 2236MXE controller microcode.

Page 2

2200 Interface

The controllers can be enabled and accessed by a set of seven
different device addresses. Typically Olh, 02h, 03h, 04h, 0OS5h, 06h,
and 07h. Since, however, the high order two bits of the controller
address is switch settable, each controller can mapped to addresses
01h thru O7h, 41h thru 47h, 81h thru 87h, or Clh thru C7h.

Each device address is used for specific functions as stated in he
following table:

Addresses Function

01h and 05h VP or bootstrap mode to 2236 terminal
#1 only (power on, bootstrap and
hardware errors, and running a normal
VP).

02h Receiving complete status of the
terminal control (CRT, print buffer
empty, entered lines ready, etc).

03h MXE: Transfer Remote Screen Dump bytes
from the controller to the 2200.
MXD: Unused

04h Sending a print Tline to the slave

printer of the ‘'currently selected"
terminal. Also usable in VP mode for
slave printer on terminal #1.
MXE: Basic programs may talk to this
address through $GIO commands.

06h Controlling operations to and receiving
data from the controller (selecting
terminals, requesting line inputs,
receiving line request data, etc.).

07h Sending display data to the currently
selected terminals's CRT.

Page 3

OPERATION MODES

A.

VP/Bootstrap Mode

When a 2200 CPU is first powered on, the bootstrap interacts with the
terminal connected to the first port on the first controller. This is
the MASTER terminal. No other terminal on the system may talk to the
2200 while in VP/Bootstrap mode (Exception: On an MXE the master
terminal need not be the first terminal. Through the use of MXE command
mode the MXE can be instructed to treat any one of terminals 1 through 4
as the master terminal. See MXE command mode description for full
details).

(HISTORY: In this mode the master terminal acts like a 2226 terminal
but does not support all possible ATOMS. The master terminal is the
only terminal capable of setting the RESET and HALT/STEP strobes on the
2200 I/0 bus.)

In VP/Bootstrap mode both controllers may be enabled at address Olh, 04h
and 05h. Additionally, the MXE may be enabled at address 06h in
BP/Bootstrap mode.

MVP Mode

MVP Mode is a special mode in which communication between all terminals
and the 2200 is supported. In this mode, output may be sent to and
input received from any of the 4 possible terminals. In this mode
addresses Olh and 05h are not normally used. Enabling the controller at
either of these two addresses causes the controller to return to
VP/Bootstrap mode.

Set up of the MXE

In order to enter MVP mode on the MXE the controller must furst be
downloaded with operating code. The 2200 does this in VP/Bootstrap mode
then gives the MXE a command at address 06h to enter MVP mode. The MXE
will then start executing the code loaded in RAM.

Setup of the MXD

Unlike the MXE, the MXD contains all necessary operating code within its
4 K Prom code space. MWhen the 2200 enables the MXD at any of addresses
02h, 06h or 07h the MXD will begin operating in MVP mode (thus allowing
all terminals to interact with the 2200).

Page 4

Controller Buffer Usage:

Buffer MXE MXD Use

CRT 250 250 To store characters to be transmitted
to the terminal for displaying on its
CRT.

PRINTER 250 160 To store characters to be transmitted

to the terminal for printing on the
slave printer.

LINE REQUEST 512 480 To store data associated with the
line request.

KEYBOARD 36 36 To store all keystrokes received from
the terminal. If a line request has
been established then these are
placed in the 1line request buffer.
If no Tline request has been made
these characters will be stored until:

1. A line request is made
2. A KEYIN command is issued
3. The buffer is full
4. The buffer is emptied via
software command
Remote Screen Dump

256 none To store Remote Screen Dump bytes
from the terminal until the 2200
takes them.
This function is not implemented in
the MXD.

NOTE: The MXE uses 2 other buffers as follows:

A Receive buffer for temporary storage buffer of bytes taken from the
DART.

A Data Transfer buffer for bytes to be transmitted to the terminal
during Remote Screen Dump.

Page 5

This list contains the commands from the 2200 to the controller:

HEX CODE DESCRIPTION

FF Select Terminal

00 Null

01 Poweron Sequence

02 Initialize Current Terminal
03 Delete Line Request

04 Keyboard Ready Check

05 Keyin Poll Request

06 Keyin Line Request

07 Line Request

08 Prefill Line Request

09 Refill Line Request

0A End of Line Request

0B Query Line Request

oC Accept Line Request Data
0D Request Crt Buffer

OE Request Print Buffer

OF Error Line Request

10 Terminate Line Request

A1l command from this point on are NOT implemented in the MXD. These commands
will be ignored if issued to an MXD. Some of the commands are implemented in
the Triple controller.

n* Device status

12* Start clock

13 Download code

14 End download

15 undefined

16 undefined

17 undefined

18 undefined

19 undefined

20 $MXE command

21 Return result of $MXE Command
22 Enable Connect

23 Disable Connect

24 E-able Disconnect

25 Disable Disconnect

26 Alert 2200 to ALL connected ports
27 Clear pending disconnection
28 Get ID of terminal

29 Initiate Remote Screen Dump
2A Abort Remote Screen Dump

2B Initiate Remote Screen Dump in responce to term1nal request
2C Reconnect port

2D Select special package

2E Set Controller password

*

Commands implemented in the MXE and Triple controller but not the MXD.

A Page 6

Control

The 2200 passes commands to the controller at address O06h. The
controller has no way to pass requests (i.e. commands from a slave device) to
the 2200. The MXE may pass one byte commands to the 2200 at address 02h as
explained in the section on the status address.

The following is a description of the command structure at address 06h:

Address 06h allows the MVP to define which terminal is to be
communicated with and what tasks it is expected to perform. In
particular, each command at address 06h is devided into primitive

operations thereby allowing much flexibility. Some examples of command
primitives are:

1. Cause the flow of data to be directed to and from a particular
terminal (SELECT terminal).

Query the condition of a CRT or print buffer.

Define a line request.

Cause one or all terminals to be initialized.

Take single bytes from soft controller (KEYIN).

Query a line request completion.

ST P wh

The specific functions and command codes of addresses 06h are defined in
more detail on the following pages. Although address 06h commands are
described individually below, they can be transmitted to the controller
in various combinations in a single stream.

The first byte of each command is sent with a CBS strobe. The
subsequent bytes should be OBS's, sent without timeout. The controller
should not be disabled during a command. Unless otherwise stated,
output from the controller will be sent at address 06h.

NOTE: The examples given throughout the command section utilize the
following symbols :

CBS(xx) A Control Bus Strobe of byte xx is sent TO the
controller.

OBS(xx) An Output Bus Strobe of byte xx is sent TO the
controller.

IBS(xx) An Input Bus Strobe of byte xx is read FROM the
controller.

ENDI(xx) An Input Bus Strobe of byte xx with the 9'" data
bit SET is read FROM the controller.

CPB The 2200 sets the CPU Busy signal active on the 2200
bus. This signals its readiness to receive bytes
from the controller.

"xx' is a hexadecimal number.

For a more detailed description see the section on 2200 bus architecture.

Page 7

Address 06h - Control Commands

SELECT TERMINAL CBS(FF) 0BS(xx)

Whenever a command code of FF is received, the next byte will determine the
terminal port which will be the subject of subsequent commands. All commands
which are port specific (i.e. output to a terminal, input, etc.) act on the
port most recently selected with this command. The data byte specifying the
port must be a hexadecimal representation of the desired terminal (i.e., 00h =
terminal #1, Olh = terminal #2, ..., 03h = terminal #4). For the remainder of
this memo the current terminal is the last SELECTed terminal.

Example, select terminal #2:

CBS(FF) 0BS(01 00)
(NOTE: The 2200 often ends a sequence with an OBS(00). This extra
byte may or may not be needed for timing purposes)

POWER ON CBS(01)

MXE: The MXE jumps back into Prom and begins executing as a VP. All ports
have been reset and the protocall between the 2200 and the controller
must be the VP/Bootstrap protocall. The code downloaded to it
previously is not harmed and may be restarted when the 2200 sends the
proper command.

MXD The MXD reinitializes itself to VP/Bootstrap mode. Everything is set to
the way it is at power on. All buffers are cleared, all pointers reset,
all flags cleared. The mode becomes VP mode.

INITIALIZE CURRENT TERMINAL CBS(02)

This command will cause the CRT screen, pending line request CRT buffer, print
buffer, and input buffer of the current terminal to be cleared (used at RESET).

Example,
CBS(02) 0BS(00)
DELETE CURRENT LINE REQUEST (CBS(03)

This command causes a pending line request and input buffers of the current
terminal to be cleared (used at HALT and with special function keys).

Example,

CBS(03)

Page 8

KEYBOARD READY CHECK CBS(04) IBS(xx)

Whenever a command code of 04h is received, the controller checks the keyboard
buffer of the selected terminal. An IBS(00) is sent if it is empty, and non
zero if there is a character (the non zero byte is of no particular value).
Example,

CBS(04) IBS(xx)

KEYIN POLL REQUEST CBS(05) IBS(xx)

Whenever a command code of 05h is received, the controller checks the keyboard
buffer. If there is no character an IBS(00) is returned. Otherwise, a non
zero byte is returned followed by an IBS of the byte (with ENDI if it is a
Special Function key).

KEYIN LINE REQUEST CBS(06) IBS(xx)

Whenever a command code of 06h is received, the controller checks the keyboard
buffer. If there is a byte in it, this command is treated exactly as the
command O05h. If not, a IBS(00) is sent, and a special Keyin Line Request is
set up. An interrupt (completed line request) will be generated at address
02h when a character is later received.

REQUEST LINE CBS(07) OBS(XXXXYYZZ)

A command code of 07h will cause the controller to setup to receive a field of
up to XXXX characters (a hexadecimal representation of the count, not to
exceed 480 (O1EOh)) starting from the current CRT cursor position for the
currently selected terminal. A1l field entries will be forced to stay within
the field limits set. A line request is active until either a carriage return
or a special function key is entered, or until a delete line request command
is issued (RESET, HALT, etc). YY specifies three parameters as follows: The
80-bit specifies wunderline. The 04-bit specifies EDIT mode. The 01-bit
specifies that characters previously entered in the keyboard buffer should be
flushed. (In other words, keystrokes received prior to a line request being
set, can be either received as part of the line or deleted). If deleted they
are never echoed back to the CRT nor entered into the line request buffer. 77
specifies current column of CRT cursor (the 2200 should have already
positioned the cursor at this position).

Example,
CBS(07) 0BS(00 CO 05 08)

sets up a 192 byte line request without underline starting in EDIT mode. The
field begins in column 8.

Page 9

PREFILL REQUEST LINE CBS(08) OBS(YYYY...)

This optional command code of CBS(08) can be sent after a line request command
CBSC07) to prefill the desired line with the supplied characters YYY...
starting with the leftmost position. The characters are treated as
keystrokes. The cursor is left a the leftmost character. The string of
characters is terminated by the next CBS, which will normally be an
END-OF-LINE-REQUEST CBS(OA).

Example, prefill the line request with the string 'PREFILL':
assuming line request has been made
CBS(08) OBS(PREFILL)
Note: All characters are legal in a prefill, but when codes 00h-OFh are

being displayed at the terminal, they are changed to periods. Codes 80h-8Fh
are also legal.

REFTLL LINE REQUEST CBS(09) OBS(XXXX...)

The refill command is identical to a prefill except that it does not cause
repositioning of the cursor to the beginning. Thus the characters are treated
as keystrokes. It is normally used for RECALL AND DEFFN' quotes. It is
generally followed by an END-OF-LINE-REQUEST CBS(0A) or a
TERMINATE-LINE-REQUEST CBS(10).

END OF LINE REQUEST SEQUENCE CBS(0QA)

A special command must be supplied to signal the end of a line request
sequence which consists of the setup and prefill if desired. The last command
sent, however, must be a CBS(OA), to signal the microcode to invoke the line
request. Nothing is sent to the CRT until the CBS(OA) is issued.

Example,
assuming setup and prefill are complete.
CBS(0A)

This command is also used after usccessful RECALL or DEFFN' text entry to
signal the controller to resume processing the line request.

NOTE: The 2200 will sometimes skip this command when it knows it will read in
the data from the controller on the next command. This is a violation of
protocol but the controllers live with it. Should the 2200 skip this command
and go directly to CBS(OC) the controller should update the screen before
allowing another Line Request to be started.

Page 10

QUERY LINE REQUEST CBS(0B)

When an CBS(OB) command is received, the controller responds with one of the
following IBS values.

I

00h —- No line request in progress.

OTh —- line request still in progress.

ODh -- Tine request terminated by CR.

FFh -- Recall key pressed (see note).
ENDI(XX) S.F. key pressed.

Note on recall:

After the FFh, the controller may send one or more bytes to the MVP.
Each time the MVP sets CPB ready, the controller will send one more data
byte with IBS. These are the characters from the entered text, read
from right to left, beginning with the cursor position. The begnning of
the buffer is indicated by ENDI. This sequence ends whenever the MVP
stops setting CPB eady, sends -OBS or CBS, or switches address. The
controller should not clear the buffer when the 2200 has read all the
bytes contained therein. Unfortunatly, the 2200 takes some shortcuts
for expediency and may reread the buffer later.

Following the query, the MVP may do one of the following:

1. Nothing (another query later).
2. Delete line request (usually for HALT, and SF keys without parameters).
3. Refill -- this is more data to be merged to the present line request, as

though the operator typed it (used for recall and DEFFN' quotes). Then
End Line Request.

4. Terminate Line Request -- used to implement DEFFN' HEX(OD).

5. Error Line Request -- this beeps an error and continues the line request.
6. Ask for data.

ACCEPT LINE REQUEST DATA CBS(OC)

When a CBS(OC) is received after a line request has been completed, the
controller will send the data. It should only be issued after a query has
shown that the line is complete.

The controller sends the data if any, then an ENDI as terminator. if the ENDI

is zero, the line request is complete; if 0lh, the controller needs more time
to finish updating the screen.

Page 11

REQUEST CRT BUFFER CBS(OD)

This command causes the controller to check the CRT buffer of the current
terminal. If it is empty, the appropriate status bit is set (address 02h =
ready) to signal the fact. If not, then the controller will set the bit when
the buffer does go empty.

REQUEST PRINT BUFFER CBS(OE)

This is just like the previous, except it refers to the current therminal's
PRINT buffer, not CRT buffer.

ERROR LINE REQUEST CBS(OF)

This command causes the line request to resume, just like END-LINE-REQUEST,
except it beeps first. It should not be used in conjunction with PREFILL or
REFILL. It is normally used for undefined function keys.

TERMINATE LINE REQUEST CBS(10)

This command is used (after optional PREFILL or REFILL) to cause all the same
actions as the operator pressing EXEC. It is normally used for the basic
statement DEFFN' HEX(OD).

DEVICE STATUS CBS(11) IBS(xxxxxx) ENDI(00)

This command gets the controller type. Controllers which do not support this
command will cause a timeout error in the 2200. MWhen the timeout error is
gotton the 2200 will assume that the controller is an MXD. The MXE and Triple
controller support this command. The string returned by this command has the
following format:

Byte 1 01 Triple controller without clock
02 W/Time of Day clock
04 W/Battery Backup TOD clock
80 Needs Downloading (This bit may be set regardless of
other bits)
Bytes 2 and 3 Code Revision:
Byte 2 Revision integer portion
Byte 3 Revision fractional portion times .01
Bytes 4 + Controller name
ENDI(00)

Start Clock CBS(12)

This command causes the board to begin issueing one second ticks to the 2200
at address 02h.

Download Code CBS(13) OBS(xxxx....)

This command signals the start of a block of RAM microcode for the
controller. The 2200 does not care what the format of the block is. Each
block will start with a CBS(13) and will be sent to the controller unbroken.

It is assumed that the controller understands the format of the blocks.

Page 12

End Download Code CBS(14)

This command signals the end of the downloading process. MWhen the controller
receives this command it will begin executing the downloaded code. Currently,
the MXE is the only downloaded board. It expects to begin executing at the
locations pointed at by location 4000h.

$MXE Command CBS(20) OBS(Command String)

This command has not been implemeted by the 2200 and is therefor not fully
tested.

$MXE commands can be passed to the MXE preceeded by a CBS(20). Almost all the
commands supported at the terminal end could be executed this way. The entire
command string would be passed to the MXE without interpretation by the 2200.

Return Result of $MXE Command CBS(21)

This command would be used to get the result of an MXE command issued with
CBS(13).

Enable Connect CBS(22)

This command enables the connect alert system for the currently selected
port. This command sets a flag which the controller tests when a terminal
connects to a device. If this bit is set (or the disconnect flag bit is set)
then the controller alerts the 2200 to the connection through a connect flag
at address 02h.

A connect is defined as the Data Set Ready signal on the RS232 line becoming
active.

Disable Connect CBS(23)

This command disables the connect system for the currently selected port.

Enable Disconnect CBS(24) OBS(xxxx)

‘This command enables the disconnect alert system for the currently selected
port. This command sets a flag which the controller tests when a terminal
disconnects from a device. If this bit is set then the controller alerts the
2200 to the disconnection through a disconnect flag at address 02h.

The bytes xxxx define a timer value which is interpreted as follows:

If xxxx = 0000 then the device is disconnected immediatly.

If xxxx = FFFFh then any current disconnect countdown is canceled
and the device is NOT disconnected by the controller.

Otherwise, the value of xxxx is used a timer value and causes the
controller to forcably disconnect the device after xxxx seconds.

NOTE: the controller disconnects the device by resetting DTR to it's inactive
state until the 2200 allws reconnection by use of the command CBS(2C).

Page 13

A disconnect is defined as the Data Set Ready signal on the RS232 1line
becoming inactive.

When a disconnect occurs AND the disconnect flag is set the controller should
reset Data Terminal Ready to its inactive state for a period of 3 to 5 seconds
so that any communication equipement connected to the port will let go of its
communication 1ine (such as a telephone line).

Disable Disconnect CBS(25)

This command disables the disconnect system for the currently selected port.

Alert 2200 to A1l Connected Ports CBS(26)

This command causes the controller to set the connect bit at address 02h for
each port which is currently connected to an active device. This command does
NOT set or reset any flags; it's action is one time only.

Clear Pending Disconnection CBS(27)

This command cancels a pending disconnection for the currently selected port
but does not disable the disconnection detection system for that port.

Get ID of Terminal CBS(28) IBS(xxxX)

This command causes the controller to pass a 2 byte value to the 2200 which
designates weather or not the currently connected device (at the currently
selected port) supports RSD. The 2 bytes should be decoded as follows:

Byte 1: 00 = No RSD support
01 = Supports RSD
Byte 2: 00 = unknown terminal type

01 = 2336 DW terminal byte

Initiate Remote Screen Dump CBS(29) OBS(RSD parameters) ENDI(xx)

This command is used to begin a Remote Screen Dump from the currently selected
port. If the device supports RSD then the controller returns a value of
ENDI(O1) to the 2200, initiates the RSD by sending the proper RSD start
command to the device and passes the device the parameter string received from
the 2200. If the device does not support RSD than the controller returns
ENDIC00) to ther 2200 and discards the parameter string.

Parameters: N bytes to be sent to the terminal at the start of
the screen dump which specify the area of the screen
to be dumped.

xx: 00 = RSD cannot be done to this terminal.

RSD begins

o
nn

Page 14

Abort Remote Screen Dump CBS(2A)

The 2200 issues this command to the controller when it wishes to stop a RSD
already in progress. The Remote Screen Dump at the currently selected port is
aborted and all RSD buffers are flushed. If no RSD is currently executing at
the currently selected port the controller ignores this command.

Initiate Remote Screen Dump from Terminal Request CBS(2B)

This command is the same as CBS(29) except it is issued in responce to a RSD
request issued by the device. The reason this is a seperate command is so
that RSD requests can be queued up and the controller can keep track of them.

Reconnect Port CBS(2C)

This command instructs the controller to begin a 5 second timer which will
then reconnect the currently selected device. This command is issued after
the 2200 has completed all necessary disconnect procedures for a disconnecting
device.

Select Special Package CBS(2D) OBS(xx) ENDI(yy)

This command selects a special support package such as Asynchronous
Communications to be run at the currently selected port. The OBS byte is
currently decoded as follows:

00h NULL
Olh Standard Wang Terminal
02h Asynchronous Communications Package (TC)

Set Controller Password CBS(2E) OBS{string)

The first six bytes of 'strings 2§i‘set as the controller password.

Address 03h/- Asynchronous Communications

Address 03h is only used\byféke MXE. It is used for communication between a
Basic program tand the MXE Asynchronous Communications code. The user may use
the $GIO command to perform input and output at this address useing the A##
addressing convention. For a description of the protocol see the
'‘Asynchronous Communications Guide for 2236 MXE' Wang # 700-8089. Commands
at this address may be broken at any time due to 2200 breakpointing. The user
is not trusted as the 2200 is at other addresses and extensive error checking
is done at this address. <(at all other addresses the 2200 is TRUSTED not to
send anything which will confuse the controller).

Page 15

Address 07h - Send data to CRT

Address O7h is wused to transmit characters onto the CRT of the current
terminal. It should be ready whenever there is at least three bytes of space
available. When it goes busy the CPU will time out (one millisecond) and
service other partitions until a buffer-empty interrupt occurs. In addition
to 0BS with data to be displayed, this address also supports CBS's at this
address. MWhen the controller receives a CBS(xx) at address 07h it should
place a FBh before it in the buffer. This will cause the terminal to accept

this string as a command. The following are the three possible commands to
the terminal:

1. Repeat

FBh count character Where count is in the range 00h to
50h

A CBS(04) to CBS(50), followed by an OBS of any byte except FB will
have the effect of generating 4 to 80 characters of that byte. The
code will be stored and transmitted in compressed form and thus will
save time. It can be used to easily generate position cursor or tab
functions. (CBS(00) to CBS(03) will work, but with a loss in
efficiency).

Example,
OBS(01) CBS(05) OBS(0A)

will place the string O0lh FBh 05h OAh in the CRT buffer and
will move the cursor to the beginning of row 5.

*Note: The OBS must be sent without timeout.
2. Pause
FBh delay where delay is in the range COh to C9h
A CBS(CO) to CBS(C9) will cause the terminal to pause for 0 to 1.5
seconds (one-sixth second increment). The controller will still
continue to accept data until its buffer is full.
3. Character FBh
The character FBh must be followed by the byte DOh so that the
terminal will not interpret it as the start of a command. The

controller places a DOh in the buffer immediatly after storing the
FBh.

Page 16

Address 04h - Send Line to Slave Printer

Address 04h is similar to address O7h except that the characters are directed
to the printer of the current terminal. This may be used in VP mode, as well
as MVP mode, but then only with terminal #1. The terminal does not support
pause or repeat to the printer but all FBh must be followed by DOh as at
address 07h.

MXE only: Remote Screen Dump bytes are transfered to the 2200 at this
address. Whenever the 2200 sets CPB ready at address 04h the MXE will send
RSD bytes to the 2200 followed by an ENDI(00) when the buffer is empty.

Address 02h - Receive Controller Status

Address 02h is used to report the stati of the various terminals to the
2200. When enabled by address 02h with CPB ready the controller will
send from 7 to 11 bytes of data and 1 ENDI data byte to be used as a
terminator for the input sequence.

Bytes Explanation
1 Low nibble: RESET flags (1-bit per terminal)
High nibble (MXE only): Connect flags
2 Low nibble: Halt/step flags (1-bit per
terminal)
2 High nibble (MXE only): Disconnect flags
Note: The above 2 bytes are organized so that the 01 & 10-bits

represent terminal 1, 02 & 20-bits terminal 2, 04 & 40-bits
represents terminal 3 and the 08 & 80-bits terminal 4.

3 One second clock tick as follows (MXE and Triple controller
only):

If the 2200 has commanded this controller to tick of
seconds then it will interrupt the 2200 at each one second
tick and will pass the number of seconds which have elapsed
since the 2200 last read the board status in this byte.
The 80-bit must be set for the 2200 to consider this count
legal. It is legal for the 2200 to not read the status
for as long as it wants and the board must maintain the
elapsed time in this byte. A board should only use set the
80-bit in this byte if the 2200 has previously issued
command CBS(12).

Page 17

43 Terminal 1 status
4b (MXE) Terminal 1 request
5a Terminal 2 status
5b (MXE) Terminal 2 request
6a Terminal 3 status
6b (MXE) Terminal 3 request
73 Terminal 4 status
7b (MXE) Terminal 4 request

Note: The above 8 bytes are organized as follows:

Byte a:

Bit 01 - Print buffer became empty (requested)
02 - CRT buffer became empty (requested)
04 - Keyboard buffer not empty or Line Request complete
08 - RSD buffer almost full

10 -~ unused
20 - unused
40 - unused

80 - Request byte (byte b) follows this byte

Byte b:

This byte is a one byte request to the 2200 for some function to be
performed. It is only sent to the 2200 when the terminal has a request
to make. The following requests are currently defined:

00h Null
0lh Request Remote Screen Dump to be oerformed
02h Cancel currently executing RSD

Page 18

2200 Input/Output Bus

This section describes the signals on the 2200 I/O bus and their uses. Those
signals which do not pertain to the functioning of the 2200-controller
protocol have been omitted (such as ground). The list of bus signals is as
follows:

RESET Reset strobe - used by the controller in VP mode to
reset the CPU

PRIME Halt/Step strobe - used by the controller in VP mode
to Halt or Step the CPU

Address bus 8 bit address bus controlled by the 2200

ABS Address Bus Strobe

Input Bus 8 bit data bus from the controller to the 2200

ENDI ENDI bit - 9'" data bit in the direction of from
the controller to the 2200 only

IBS Input Bus Strobe - from the controller to the 2200

Output Bus 8 bit data bus from the 2200 to the controller

0BS Output Bus Strobe - from the 2200 to the controller
for data bytes

CBS Control Bus Strobe - from the 2200 to the controller
for control bytes

CPB CPU Busy - Signal (not a strobe) from the 2200

signaling to the controllers that the 2200 is ready
: to input bytes.
Ready/Busy Ready-Busy signal to the 2200 from the controller

The 2200 selects a controller by setting the Address Bus to the controller
address and strobing ABS. All controllers not selected should then not use
the bus in any way so that the 2200 can communicate with the selected
controller. The Ready/Busy line is set by the controller whenever the
controller is selected. If more than one address is found on the same
controller the R/B signal is set to the selected sub-address.

The Output Bus is used by the 2200 to output bytes to the controller using the
0BS and CBS strobes. The controller can distinguish the two strobes apart
thus allowing both data bytes and controi bytes to be sent to the controller.

The Input Bus is used to transfer data bytes from the controller to the 2200
with the IBS strobe. A ninth data bit is used in this direction called the
ENDI bit. This bit is used to i.dicate special conditions such as end of data
transfer, etc. The ENDI bit is actually a flag in a register in the 2200
rather than a strobed data bit.

CPB is set by the 2200 to indicate its readiness to accept bytes from the
controller. MWith a few exceptions the controller must respond within 15MS or
a timeout error will occur. Once the CPB signal 1is set either bytes are
transfered or the timeout condition is encountered.

The RESET strobe is used by the terminal controller in VP mode to reset the
CPU. This signal should not be strobed in MVP mode or the system will crash.

The PRIME signal, also called HALT/STEP is strobed by the terminal controller
to signal the deesire to Halt between instructions or step through the next
signal. This signal is used in MVP mode only.

Page 19

MXE/SVP Option W RS-232c Connection Pinout

Pin # EIA CCITT Name Signal Source
1 AA 101 Protective Ground

2 BA 103 Transmit Data DTE
3 BB 104 Receive Data DCE
4 CA 105 Request to Send DTE
5 CB 106 Clear to Send DCE
6 CC 107 Data Set Ready DCE
7 AB 102 Signal Ground

8 CF 109 Received Line Signal Detector* DCE
9 Unconnected

10 Unconnected

11 Unconnected

12 Unconnected

13 Unconnected

14 Unconnected

15 Unconnected

16 Unconnected

17 Unconnected

18 Remote Analog Loopback™ DTE
19 Unconnected

20 CD 108.2 Data Terminal Ready” DTE
21 Remote Digital Loopback™ DTE
22 CE 125 Ring Indicator” DCE
23 CH/CI 111/112 Data Signal Rate Selector* DCE/DTE
24 Unconnected

25 Unconnected

This pin is not connected on port 1 of an SVP Option W (Ports 2 and 3
utilize these signals)

Page 20

Baud Rates:

The MXD and Triple controller baudrate switches are usually marked to indicate
the desired settings. For older controliers it may be necessary to consult
the 2236 terminal guide for setting.

Below is a list of baud rates available on the MXE and SVP controllers. Some
of the rates can only be set via the $MXE baud rate command and will not have
an entry in the second column. Others can be set by the hardware baud rate
switches. Please see the discussion following the table which describes how
default hardware baudrates are set. When setting baudrates via the $MXE
command, the baud rate should be entered exactly as found in this table.

Rate Hardware switch setting

50

75

100

110

134.5

150

200

300

600

1200
undefined
2400
undefined
4800
undefined
9600
19200
undefined
see note

MMOOWIPOONOTOP,WND—O

NOTE: Setting all the hardware switchs to X'FF' will cause the MXE to go into
diagnostic burn in mode. In this state the MXE will continuously loop
on its board diagno:'ics and will not talk to the 2200 or allow any user
input. A1l board errcrs found will be displayed on the screen.

Page 21

Document Id: 0019E
Document Name: MXE commands

Operator: Eric
Author: Eric
Comments:

Pages to be printed 4

Notify U13 on system PAM.

DOCUMENT SUMMARY

To: Bruce Patterson
From: Eric Wilson

Subject: MXE commands

Last revised: 07/27/82

Pages: 4 (including cover)

The following is a BRIEF description of the MXE command structure. By
no means is this the final version. I submitting this only for the purpose of
obtaining feedback.

Your comments are welcome and should be directed to Eric Wilson at
X2192, M/S 1383 in Lowell.

c.c. Neeraj Sen

The following is a list of MXE commands from the 2200 to the MXE. Also
listed are those commands which are currently supported by the MXE only:

HEX CODE DESCRIPTION

00 Null

01 Poweron Sequence

02 Initialize Current Terminal
03 Delete Line Request

04 Keyboard Ready Check
05 Keyin Poll Request

06 Keyin Line Request

07 Line Request

08 Prefill Line Request
09 Refill Line Request

0A End of Line Request

0B Query Line Request

0C Accept Line Request Data
0D Request Crt Buffer

OE Request Print Buffer
OF Error Line Request

10 Terminate Line Request
mn* Device status

12* Start clock

13* Download code

14” End download

15

16

17

18

19

Commands pertaining to MXE only are greater than 1F:

20 $MXE command

21 Return result of $MXE Command

22 Enable Connect

23 Disable Connect

24 Enable Disconnect

25 Disable Disconnect

26 Alert 2200 to ALL connected ports
27 Clear pending disconnection

28 Get ID of terminal

29 Initiate Remote Screen Dump

2A Abort Remote Screen Dump

2B Initiate Remote Screen Dump in responce to terminal request
FF Select Terminal

*®

Command not implemented in MXD.
Not yet implemented.

x K

Page 1 of four

Command Descriptions

28 - Get ID of terminal:

CBS(28) IBS(2 bytes)

Byte 1: 00 = No RSD support
01 = Supports RSD

Byte 2: 00 = unknown terminal type
01 = 2336 DW terminal byte

29 - Initiate Remote Screen Dump:

CBS(29) OBS(RSD Parameters) ENDI(byte)

Parameters: N bytes to be sent to the terminal at the start of
the screen dump which specify the area of the screen
to be dumped.

RSD cannot be done to this terminal.
RSD begins

Byte: 00
01

Won

2A - Abort Remote Screen Dump:

CBS(2A)

Remote Screen Dump is immediatly ended and any bytes currently in
the buffer of the MXE are flushed

Page 2 of four

Remote Screen Dump:

RSD bytes are read by the 2200 at address /03. Each time the 2200 wants
RSD bytes from the MXE it sets CPB ready at address /03 of the MXE after
checking for ready. The MXE sets bit 08 in the termstat byte of that port
whenever it has bytes ready for the 2200 (as is done for the CRT at address
07). The MXE signals the end of RSD by outputting ENDICFF) after all the RSD
bytes have been taken by the 2200. Each time the 2200 empties the RSD buffer

in the MXE the it will send ENDIC00) to signify an empty buffer but NOT THE
END OF RSD!

Page 3 of four

DOCUMENT SUMMARY

Document Id: 0021E

Document Name: MXE Description
Operator: Eric

Author: Eric

Comments: MXE Specification

Pages to be printed 14

Notify U13 on system PAM.

2236 MXE SOFTWARE SPECIFICATION
(Second draft)

Eric Wilson
Jan,22,1982

MXE DESCRIPTION

The 2236MXE is an intelligent multi-terminal controller which is

downward compatible with the 2236MXD terminal controller. In addition to
emulating all MXD functions exactly the MXE will have the following
additional characteristics:

48K ram will be loaded with applications programs (such as editors)
thus allowing changes to be easily made to MXE operation. As prom
will have only poweron diagnostics, bootstrap, and basic I/0, it
should not need to be changed to support foriegn terminals and new
devices.

Various editors and applications programs can be loaded into ram at
any time to suit specific applications

The standard editor (which will emulate the MXD editor) will change
add an insert mode to the current space insert mode. This new insert
mode will allow characters to be directly inserted in the line
without having to first insert blanks.

An MXE command mode will be implemented to allow the user to alter
parameters within the MXE and run MXE diagnostics. MXE command mode
will be entered by pressing the "LOAD" key three times. The MXE will
then ask for a command which will not be passed on to the 2200. This
mode will be extremly helpful to customer engineering for diagnostic
purposes.

MXE command mode will be protected by a password system. The 2200
will pass a password to the MXE during system configuration. This
password must then be wntered to use most MXE commands. The default
password is "SYSTEM" and will be used until the 2200 passes the MXE a
password.

A1l MXE commands follow a general format as follows:
'Command Name' ‘password' 'parameterl' 'parameter2' ‘'parameter3' ‘return’
Where:

'Command Name' one character command abbreviation

‘password'’ = six character password following these rules:
1> No imbeded backspaces or returns, and
2) The first character must not be a space.
'parameter#' = command parameter as specified in each command
description
'return’ = return key on keyboard

Blanks may be wused anywhere in the command with the following
exceptions:

1) Parameters which include test strings may not have extraneous
imbeded blanks, and

2) the command name and the password must be separated by only one
blank.

The following is a list of MXE commands and their format:

code function parameters
P Jump to poweron Sequence. NOTE: this command will
reinitialize the MXE. The

current state of the board will
be completely lost.

S Set mode. Additional parameters are required to specify what is
to be set:

Txx Select port xx as subject
of next set command.

Bxx Select Baud Rate. XX is
index into baud rate table,
not actual rate.

Ppsw Set password to psw which consists of
any 8 keyboard enterable printable
characters.

NOTE: Password is intially set to six
blanks and it is suggested that it be
set by the superuser or the MVP when
loading the MXE editor.

XXX Exchange Superuser (initially port one) with port xx

Lxxxxyyyy zz Load xxxx bytes starting at location yyyy in ram. Code
will be loaded from port zz or terminal issuing command if
zz is not specified.

JIXXXX Jump to location xxxx. NOTE: If the routine being jumped
to will Tlater return to MXE
command mode it must save the
return location which 1is passed
in index register IX.

E Display error history. A short history of parity errors
is kept in a FIFO stack. As errors occur they are flagged
on port one and stackec. Errors are pushed off the end of
the stack when it is full.

D Dump status of MXE board. This command may not be
implemented depending on space considerations. The status
of wvarious board elements <(darts, registers, etc) is
displayed.

'* NOTE: x, y, and z are always in hexadecimal form.
*** NOTE: psw is a password consisting of 8 keyboard enterable
printable characters

MXE commands originating from the MVP have the following format
(please see complete description of each command following this table):

HEX CODE DESCRIPTION

00 Null

01 Poweron Sequence

02 Initialize Current Terminal
03 Delete Line Request

04 Keyboard Ready Check

05 Keyin Poll Request

06 Keyin Line Request

07 Line Request

08 Prefill Line Request

09 Refill Line Request

0A End of Line Request

0B Query Line Request

oC Accept Line Request Data
oD Request Crt Buffer

OE Request Print Buffer

OF Error Line Request

10 Terminate Line Request
1n* Select Baud Rate

12" Exchange Superuser

13" Set Password

14" Download Code

15* Jump to Location in Memory
16" Dump Status

FF Select Terminal

* Command not implemented on MXD.

the above commands to the MXE are received at MXE board address 06.

DETAILED COMMAND DESCRIPTION

HEX(01) - Poweron Sequence
Restart the MXE as at Poweron; Diagnostics are rerun, buffers and devices
are reinitialized, crt's are cleared, and the mode becomes VP mode.

HEX(02) - Initialize Current Terminal
Reinitialize the currently selected terminal. Buffers are cleared, flags
and pointers are initialized, and the crt is cleared.

HEX(03) - Delete Current Line Request
The pending line request to the current terminal is cleared along with
the terminals input buffer.

HEX(04) - Keyboard Ready Check

If the terminal input buffer of the currently selected terminal is empty,
the MXE will send HEX(00) on IB1-IB8, if there is a character in the buffer it
will send a non-zero value.

HEX(05) - Keyin Poll Request
If there is a character in the current terminal's input buffer it is sent
(with ENDI if it's an SF key), otherwise HEX(00) is sent.

HEX(06) - Keyin Line Request

If there is a character in the current terminal's input buffer it is
sent, otherwise HEX(00) is sent and 3 Keyin Line Request is set up causing the
next input character to generate a completed line request.

HEX(07xxxxyyzz) - Line Request

Set up 1line request for a field of up to xxxx characters (hex
representation of the count, not to exceed 480 characters) starting from the
current cursor position on the current terminal. Field Timits are strictly
enforced. A Line Request remains active until a carriage return or a special
function key is entered, or until a Deleted Line Request command is issued (as
in reset or halt). vyy is defined as follows; The 80-bit specifies underline,
the 04-bit specifies Edit mode, and the 01-bit specifies that the terminal
input buffer should be flushed (thereby ignoring any keystrokes entered
previous to the Line Request). Characters flushed from the buffer are not
echoed on the crt. zz specifies cursor position (columnwise).

HEX(08xxxx...) - Prefill Line Request

This command is optional and must follow a Line Request command
(HEX(07)). The current line request is prefilled, starting on the left, with
the text following the HEX(08) code and proceeding until a CBS strobe which
accompanies an End of Line Request (HEX(OA)) command. The cursor is left at
the Tleftmost position of the request and the prefill string is treated as
keystrokes.

HEX(09xxxx...) - Refill Line Request

Identical to a Prefill Line Request (HEX(08)) except that the cursor is
not repositioned at the begining of the prefill string. The prefill is
treated as keystrokes.

HEX(OA) - End of Line Request Sequence .

This command signals the end of a Prefill Line Request. The prefill
. string is not displayed on the crt until this command is received.
This command is also used after successful RECALL or DEFFN' text entry to
signal the MXE to resume processing the Line Request.

HEX(OB) - Query Line Request
The MXE responds to this command with one of the following:

00 - No Line Request in progress

01 - Line Request still in progress

0D - Line Request terminated by carriage return
FF - Recall key pressed *

ENDI+xx - SF key pressed
" Recall note: After HEX(FF) the MXE can send one or more bytes to the
MVP. Each time the MVP sets CPB ready, the MXE will send
one data byte. The bytes sent are from the 1line request
buffer in reverse order (starting at the cursor position).
The begining of the buffer is denoted by an ENDI. This
continues until the MYP stops setting CPB ready, sends OBS
or CBS, or switches address.

Following the Query the MVP may do one of the following:
- Nothing (query again later).

- Delete Line Request (for Halt, SF key, etc).

- Refill - this string is added to the terminal input buffer and
treated as keystrokes. An End Line Request follows.

- Terminate Line Request - used to implement DEFFN' HEX(OD).
- Error Line Reque t - beeps an error and continues Line Request.
- Ask for data.

HEX(OC) - Accept Line Request

After a Line Request is completed the MXE will send the line. This
command should only be wused after a Query has found the Line Request
finished. An ENDI is sent as terminator. If the ENDI is HEX(00) the Line
Request is finished, if it is HEX(Ol) the MXE needs more time to finish
updating the crt.

HEX(OD) - Crt Buffer Request

If the crt buffer is empty the MXE sets address HEX(02) ready, otherwise
it sets address HEX(02) ready if/when the buffer goes empty.

HEX(OE) - Print Buffer Request

Identical to the Crt Buffer Request except that it refers to the print
buffer.

HEX(OF) - Line Request Error

This command causes the current line request to resume after beeping. It
should only be used for Line Requests without pre- or refill. It is usually
used for undefined function keys.

HEX(10) - Terminate Line Request

This command causes all the same actions as when the operator presses
Exec. It is normally used for DEFFN' HEX(OD).

HEX(11pswxx) - Select Baud Rate*™

This command selects a baud rate for the currently selected terminal. xx
is an index into the Baud Rate Table in prom. psw is the current password and
must be sent. The Baud Rate Table is as follows:

Index (HEX) Equivalent Baud Rate (bps)

00 110
01 300
02 600
03 1200
04 2400
05 4800
06 9600
07 19200

HEX(12pswxxyy) - Exchange Superuser”"
Port xx is swapped with port yy.
NOTE: The effect of the swap is to give port xx the partition of port
yy. The effect is the same as physically swapping the board connections'!

HEX(13pswuuuuuu) - Set New Password™™
This commands changes the old password psw to a new password uuuuuu.

HEX(14pswxxxxyyyyzz) - _.ad Code"“”

Xxxxx bytes of are t> be loaded starting at location yyyy. If zz is
specified as FF the bytes are loaded from the 2200 bus, otherwise they are
loaded from port zz (with 00 being port one, and so on until port four).

HEX(15pswxxxx) - Jump to Location in Memory™*
A jump to location xxxx is executed. If the code at location xxxx will
later execute a return it must save the return address passed in register IX.

HEX(16xx) - Return Information™"
The information requested by code xx is returned to the MvP.
The request codes are as follows:

CODE (HEX) INFORMATION RETURNED

01 Baud rates of all the ports.

02 Everything known about each port

03 Revision numbers of ram and prom code
04 Error history

The return for this command is of the form:

YYXXX. ..
Where: yy is the number of bytes being returned.

XXX.. is the stream of bytes.

HEX(FFxx00) - Select Terminal
Terminal xx is selected as the current terminal to which all subsequent

commands will apply.

Possible selections are: 00 to 03 for ports,
and FF for MXE.

NOTE: In the case of commands directed to the MXE which require a large
response, the MXE will be treated (logically) as another port with
its own buffers. So, to receive the information requested by an
MXE command the MXE must be selected in the same manner as MXE
ports are selected. (All commands already implemented on the MXD
will be emulated exactly)

* W

This command not implemented 2>n the MXD.

BOARD ADDRESSES

Each MXE Controller Board can be accessed through several different
addresses. The high order nibble selects the board while the low order nibble
selects an address on the selected board. Possible high order nibbles are as
follows:

HEX(0)
HEX(4)
HEX(8)
HEX(C)

The seven addresses on each board serve specific functions as follows:

ADDRESS (hex) FUNCTION

01 Used only in VP and bootstrap mode for the
superuser's keyboard. This address is always busy
in MVP mode.

02 Terminal controller status.

03 Unused

04 Printer of currently selected terminal (also used

in VP and Bootstrap modes).

05 Used only in VP and bootstrap mode for the
superuser's crt.
NOTE: When this address is enabled in MVP mode,
ths MXE will enter VP mode.

06 Ceontrol operations and output from controller.
A1l MXE commands are issued to this address.
NOTE: When this address is enabled in VP mode, the
MXE will enter MVP mode.

07 Currently selected terminal's crt.

10

MODES OF OPERATION

MXE SET-UP

When the system is powered on the MXE first does extensive diagnostics
on its various components. Parity is tested throughout memory, all Z-80
registers are checked out, the CTC and DART chips are verified as accurate,
and the 2200 bus registers are checked for errors. If the board has passed
all its, tests it then proceeds onto VP/BOOTSTRAP mode. If not, any
malfunctions found will be displayed on the terminal at port one (or, if that
port is not functioning, the next highest functioning port) and, depending on
the malfunction, the MXE either stops running or goes into VP/BOOTSTRAP mode.

VP/BOOTSTRAP MODE

After the diagnostics routine, if a fatal malfunction has not occured,
the MXE enters VP/Bootstrap mode. It initializes all its buffers and
pointers, and sets up the CTC timers and DART chips. It then sets the 2200
bus ready and begins its basic polling loop. Only the terminal at port one
can operate in this mode (if port one is not working the next highest
functioning port is utilized). The MXE does not perform editing in this
mode. Input is passed on to the MVP until an editor is loaded and the mode
becomes MVP. A1l MXE commands can be entered in this mode. MXE commands are
identified by an escape sequence which informs the MXE not to pass them on to
the MVP. The escape sequence is as
follows:

In this mode the RESET and HALT functions from the superuser (port one,
etc.) actually cause strobes on the I/O bus (Prime and Halt 1lines). This
never occurs in MVP mode.

MVP_MODE

MVP mode is entered when communication from the MVP is received at
addresses other than HEX(01) or HEX(05). In this mode all ports are fully
operational. HOWEVER, apart from backspace, no editing functions will operate
until an editor is loaded and running!

BUFFERS

Each port has associated with it four buffers as follows:

Buffer Size (bytes) Use
Keyboard 32 - 2byte To store all keystrokes received from
entries the keyboard. If no line request is

pending these keystrokes will remain in
the buffer until:
- A line request or keyin
command is issued.
- The buffer is emptied by
an MVP command.
NOTE: Keystrokes are lost after the
buffer is full!

Line Request 480 Bytes entered in response to a line
request are stored in this buffer.

Printer 160 Bytes to be sent to the printer are
stored in this buffer.

Crt 250 Bytes to be sent to the crt are stored
in this buffer.

Index (HEX) Equivalent Baud Rate (bps)
00 110

01 300

02 600

03 1200

04 2400

05 4800

06 9600

07 19200

13

DOCUMENT SUMMARY

Document Id: 0026E
Document Name: MXE Modes

Operator: Eric
Author: Eric
Comments: Mode & addr descr

Pages to be printed 4

Notify U13 on system PAM.

VP Mode (Prom)

VP (or Bootstrap) mode is entered whenever the system powers on or
the 2200 enables the MXE at addresses 01 or 05 or poweron diagnostics are
rerun.

In VP mode the 2200 communicates with terminal one (logical terminal
one) only and does all editing jtself. The MXE acts only as a buffer
between the two (but does search the input stream for the MXE escape code
for MXE commands from the terminal). Whenever the keyboard buffer holds a
keystroke the MXE sets address Ol ready. Addresses 05 and 04 follow the
states of the crt and printer buffers (respectively). When the buffer is
empty the address is set ready. The MXE continues to set the address ready
until the buffer is full. The address is then set busy until the buffer
goes empty again.

Addresses 07, 03, and 02 remain busy in VP mode.

Address 06 is kept ready whenever the MXE is ready to process MXE
commands from the 2200. Unlike the MXD, the MXE does not automatically
enter MVP mode when enabled at an address other than 01, 04, or 05. A
subset of MXE commands are allowed in VP mode (generally those which
control functions other than editing or input from terminals, etc.). The
MXE will set up to receive a command from the 2200 whenever 06 is enabled
with CBS set. The MXE is expected to output to the 2200 when enabled with
CPB set at address 06 (some commands require a response). CBS is used
(generally) to denote the begining and end of a control sequence.

MVP Mode (Ram)

MVP mode is entered when the 2200 issues the command to transfer
control to RAM after the MXE has been downloaded (a jump is performed to
some location in RAM). In MVP mode the MXE functions as both editor and
multiplexer for the 2200.

Address 06 is used for MXE commands and output from the terminals and
MXE. The status of 06 (R/B) is determined by the status of the currently
selected terminal.

Addresses 04 and 07 are used for the currently selected terminals
printer and crt respectively.

Address 02 is the status address. It remains busy until one of the
following occurs:

- any crt buffer goes empty,

- or any printer buffer goes empty,

- or a line request completes,

- or a Reset or Halt/Step is keyed,

- or the Time of Day clock on the MXE board reaches a second.
When the 2200 enables address 02 (with CPB set) the MXE returns several
status bytes which denote the status of port buffers, TOD clock, etc.

Address 03 is not used in MVP mode and therefor remains busy all the
time.

Addresses 01 and 05 follow the states of the current superusers
keyboard and crt. When the MXE is enabled at either of these addresses the
MXE will perform a jump to a location in PROM thereby returning to VP mode.

page 1

Address uses in VP mode”

Address Use

(logical/bit)

01/01 Terminal one keyboard
02/02 Board status

03/04 Unused

04/08 Terminal one printer
05/10 Terminal one crt
06/20 Command address

07/40 Unused

08/80 Unused

Status

Ready when terminal ones Kkeyboard
holds a keystroke.

Busy in VP mode.
Always busy.

Ready when terminal ones printer
buffer is empty. Remains ready
until buffer goes full. Goes ready
again when buffer goes empty.

Ready when terminal ones crt buffer
is empty. Remains ready until
buffer goes full. Goes ready again
when buffer goes empty.

Ready when the MXE is ready to
receive a command.

Unused in VP mode

No hardware support for this
address.

* NOTE: The above definition are different than those for the MXD in VP mode!

page 2

Address uses in MVP mode

Address Use Status
(logical/bit)
01/01 Terminal one keyboard Ready when terminal ones keyboard

holds a keystroke.

02/02 Board status Ready when:

- any crt buffer goes empty,

- or any printer buffer goes
empty,

- or a line request completes,

- or a Reset or Halt/Step is
keyed,

- or the Time of Day clock on the
MXE board reaches a second.

03/04 Unused Always busy.

04/08 Current printer Ready when the currently
selected terminals printer
buffer is empty. Remains ready
until buffer goes full. Goes
ready again when buffer goes
empty.

05/10 Terminal one crt Ready when terminal ones crt
buffer is empty. Remains ready
until buffer goes full. Goes
ready again when buffer goes
empty.

06/20 Command address Ready when the MXE is ready to
receive a command.

07/40 Current crt Ready when the currently
selected terminals crt buffer is
empty. Remains ready until

buffer goes full. Goes ready
again when buffer goes empty.

08/80 Unused No hardware support for this
address.

page 3

DOCUMENT SUMMARY

Document Id: 0030E

Document Name: $MXE command
Operator: Eric

Author: Eric

Comments: Commands + baud rate

Pages to be printed 14

Notify U13 on system PAM.

To:

From: Eric Wilson
Subject: MXE command mode
Date: 03/19/82

Pages: 5 (including cover)

- This document is a preliminary, IN HOUSE release describing the - $MXE
command mode as it is currently implemented in the first MXE prom release.

, Your comments are welcome and should be directed to Eric MWilson at
X2192, M/S 1383 in Lowell.

$MXE command mode

$MXE COMMAND MODE:

To enter $MXE command mode key three "LOAD" keys in succession (typing
LOAD will not work. The MXE must receive three LOAD ATOMS). The prompt
message "ENTER MXE COMMAND:" followed by a new line of "%" will be printed on
the terminal. The user should then enter the desired $MXE command (as
described on the following pages) followed by a return. The MXE will process
the command and prompt for another command until a blank line is entered thus
putting the user back in the previous mode. The next MXE command should not
be entered until the MXE prompts for it. Keying extra 'RETURN's to try to
speed up the processing of MXE commands will only serve to slow down the
command processing and take the user out of MXE command mode after the current
command!

Any terminal may enter $MXE COMMAND MODE at ANY time. If the 2200 is

printing to the screen during MXE command mode the 2200 output will be
temporarily suspended to prevent the two outputs becoming intermixed:

1/0 BUS SPECIFICATION:

$MXE commands may be issued from the 2200 at address 06 as follows:
CBS(20) O0BS('command string') CBS(00)

Where 'command string' is of the same format as $MXE commands
issued from the terminal.

The MXE will return the result of the command at address 06 followed by
a 00 byte with ENDI if the 2200 sends a CBS(21) and sets CPB ready. The 2200
must take the entire result at once. If the 2200 breaks while taking the
result, the rest of the result will be lost.”

*x

NOTE: in the bootstrap all return codes are one byte long fcilowed by a
byte with ENDI on. A return code of '00' denotes no eri: s.

Page 1 of 7

$MXE command mode

MXE COMMANDS:

In the command descriptions that follow, please use these definitions:

'psw' is a six character password containing no blanks (the
default is 'MXEPSW'), and
'port designator' s a one character designator as follows:
0 = the port at which the command is being typed (this is
so that the user need not know which port s/he s
connected to), and
1, 2, 3, 4 are the absolute MXE physical port addresses.
A1l commands begin with a ONE BYTE command code. Most commands then
have a sixbyte password which is the MXE password (similar in use to the
2200 system password) followed by any needed parameters in the order
specified below. The user can always type help (while in MXE command
mode) to obtain a list of command codes.
The command line is devided into fields. The first field is one
character long and is the 'COMMAND BYTE' field; it should be used for
the one byte command. The second field is the password field. it is
six characters long and begins at the third column (thus allowing one
blank after the command byte). When the password is typed in the
password field it will not be printed on the screen. Instead, the MXE
will print the numbers O through 5 as characters are typed. this is so
that the password can be protected. After the password field is a free
format field in which the user types the rest of the command. The MXE
is blank insensitive so the command parameters may be typed as the user
wishes with the following exceptions:

1) A blank must not be found in a baud rate specification, and
2) The string that is to be printed on all screens (command 'G')
must be typed exactly as it is to be printed.

Commands:

A)

B)

Set primary user.
Format: A 'psw' 'port designator'

The port desinated becomes the new primary user in VP mode
Set baud rate.
Format: B 'psw' ‘port designator’' 'baudrate’

The baud rate specified is set at the port designated

Page 2 of 7

)

D

)

F)

$MXE command mode

Set password.
Format: C 'psw' 'newpsw'

"newpsw' becomes the new password

Download code.
Format: D 'psw' 'port designator'

7-80 microcode is loaded into the MXE at the port designated. The
protocall is as follows:

If the command is not legally specified the MXE will send an
"ILLEGAL COMMAND' to the port originating the command (which may
also be the port designated). Otherwise, the MXE will ask the user
for a confirmation of the command. If the wuser responds
affirmativly, the MXE will output a X'00' at the designated port
when it is ready to start receiving code. It will then expect to
receive ten bytes of X'00' in succession followed by code in the
following format:

'2-byte destination' '1-byte count (n)' ‘n bytes of code’

The MXE will continue taking in strings of this form until a count
of zero is received at which time the MXE will jump to the address
contained in location X'4000'. No form of error detection exists
in this format once the downloading has begun so the user should be
very careful to not get out of synch with the MXE. Also, all other
MXE activity will halt while this command 1is in progress. It
should be noted that the string of 10 zero bytes is needed for
protection against a user designating an incorrect port address or
the accidental invocation of this command.

Analog loopback
Format: E 'psw' ‘'port designator'
Analog loopback is executed at the port designated. This command
will cause all I/0 at all ports to be temporarily suspended!
Digital loopback

Format: F 'psw' 'port designator'

Digital loopback is executed at the port designated. This command
will cause all I/0 at all ports to be temporarily suspended!

Page 3 of 7

Q)

H)

D

J)

L

$MXE command mode

Print to all screens
Format: G 'message’

Print 'message' on all terminals connected to this MXE. 'message'
must not run over the 78 byte 1imit of the command. ‘'message' will be
inserted in the output stream of all terminals regardless of their state
and a 3 second pause will be executed to allow all users to read the
message.

Help
Format: H

A list of all $MXE commands is printed on the terminal

Memory test
Format: I 'psw'

A1l of RAM is tested in a nondestructive way. Although all port
activity on the MXE will slow down somewhat, no damage will be done.

Restart
Format: J

This command restarts the MXE at its poweron diagnostics. This
command can only be issued while in the bootstrap. The current state of
the MXE will be completely reinitialized! All baud rates which have
been set through $MXE command mode will be reset to their hardware
defaults!!.

Lock
Format: L

This command locks the current baudrate of the port issueing it.
No port may change the baud rate of a port which is locked. This
command is a toggle. Each time it is issued the state of the baud rate
lock will be reversed.

NOTE: During many of the above commands the performance of the MXE will
be impaired. Generally, this consists of all the ports slowing down
somewhat. But in the case of analog and didgital loopback ALL port I/0
will cease until the loopback is completed. Therefor, it is absolutly
imperative that all users connected to the MXE when loopback is to be
performed be notified that the MXE will not be functioning smoothly.

Page 4 of 7

$MXE command mode

Baud Rates:

Below is a list of baud rates available on the MXE. Some of the rates
can only be set via the $MXE baud rate command and will not have an entry in
the second column. Others can be set by the hardware baud rate switches.
Pleas see the discussion following the table which describes how default
hardware baudrates are set. When setting baudrates via the $MXE command, the
baud rate should be entered exactly as found in this table.

Rate Hardware switch setting

50

75

100

110

134.5

150

200

300

600

1200
undefined
2400
undefined
4800
undefined
9600
19200
undefined
see note

MTMOODPITPWOWONNOAUTRARWN—O

NOTE: Setting all the hardware switchs to X'FF' will cause the MXE to go into
diagnostic burn in mode. In this state the MXE will continuously loop
on its board diagnostics and will not talk to the 2200 or allow any user
input. A1l board errors found will be displayed on the screen.

Page 5 of 7

$MXE command mode

How to set hardware baudrate defaults:

Two eight bit baudrate selection switches exist on the MXE. Each bank
of eight bits is devided into two four bit groups each of which cooresponds to
a specific MXE port. To find which group is used for each port hold the MXE
board with the rail in your right hand and the two banks of baudrate switches
facing you at the bottom left corner of the board. There will actually be
three banks of switches in this corner; the two eight bit banks mentioned
above and a smaller four bit bank which is used for setting the boards I/0 bus
address. Disregard this smaller bank for the purpose of this discussion.

The four ports on the MXE are numbered 1 to 4 with the port closest to
you being 1 and the farthest one being 4. The switch banks are devided with
the top right four bits cooresponding to port 1, the top left four bits
cooresponding to port 2, the bottom right to port 3 and the bottom left to
port four.

Once you have located the group of switches for the desired port, find
the switch setting in the table above and set the switch with the most
significant bit to the left and least to the right. Notice that the bits will
be ON when the switch is positioned toward you (as marked on the switch). The
baud rate chosen for a port must match the baud rate of the device connected
to the port. If this is not the case, communication will not be possible
between the device and the MXE.

Parity errors:

The MXE hardware is equiped with parity checking in its Random Access
Memory (RAM). Each time a byte is read from RAM the parity on that byte is
tested. If the parity bit is incorrect the MXE will perform a parity
interrupt which will cause it to return to the bootstrap no matter what it is
doing at the time. If it is already in the bootstrap it will restart the
bootstrap. All data will be lost in this situation.

At this point the user may enter $MXE command mode and run specific
diagnostics or may restart the MXE at 1its diagnostic bootstrap. The
diagnostic bootstrap will diagnose the board completely (as it does each time
the board is powered up) and 1list whatever error it finds on all screens. It
is NOT possible to return to the code in RAM without downloading new code into
the MXE first!

Page 6 of 7

To:

From: Eric Wilson
Subject: MXE command mode
Date: 03/19/82

Pages: 5 (including cover)

This document is a preliminary, IN HOUSE release describing the $MXE
command mode as it is currently implemented in the first MXE prom release.

~ Your comments are welcome and should be directed to Eric HWilson at
X2192, M/S 1383 in Lowell.

$MXE command mode

$MXE COMMAND MODE:

To enter $MXE command mode key three "LOAD" keys in succession (typing
LOAD will not work. The MXE must receive three LOAD ATOMS). The prompt
message "ENTER MXE COMMAND:" followed by a new line of "%" will be printed on
the terminal. The user should then enter the desired $MXE command (as
described on the following pages) followed by a return. The MXE will process
the command and prompt for another command until a blank line is entered thus
putting the user back in the previous mode. The next MXE command should not
be entered until the MXE prompts for it. Keying extra 'RETURN's to try to
speed up the processing of MXE commands will only serve to slow down the
command processing and take the user out of MXE command mode after the current
command!

Any terminal may enter $MXE COMMAND MODE at ANY time. If the 2200 is

printing to the screen during MXE command mode the 2200 output will be
temporarily suspended to prevent the two outputs becoming intermixed!

I/0 BUS SPECIFICATION:

$MXE commands may be issued from the 2200 at address 06 as follows:
CBS(20) OBS('command string') CBS(00)

Where 'command string' is of the same format as $MXE commands
issued from the terminal.

The MXE will return the result of the command at address 06 followed by
a 00 byte with ENDI if the 2200 sends a CBS(21) and sets CPB ready. The 2200
must take the entire result at once. If the 2200 breaks while taking the
result, the rest of the result will be lost.”

x

NOTE: in the bootstrap all return codes are one byte long followed by 2
byte with ENDI on. A return code of '00' denotes no errors.

Page 1 of 7

$MXE command mode

MXE COMMANDS:

In the command descriptions that follow, please use these definitions:

'psw' is a six character password containing no blanks (the
default is 'MXEPSW'), and
'port designator' is a one character designator as follows:
0 = the port at which the command is being typed (this is
so that the user need not know which port s/he is
connected to), and
1, 2, 3, 4 are the absolute MXE physical port addresses.
A1l commands begin with a ONE BYTE command code. Most commands then
have a sixbyte password which is the MXE password (similar in use to the
2200 system password) followed by any needed parameters in the order
specified below. The user can always type help (while in MXE command
mode) to obtain a list of command codes.
The command line is devided into fields. The first field is one
character long and is the 'COMMAND BYTE' field; it should be used for
the one byte command. The second field is the password field. it is
six characters long and begins at the third column (thus allowing one
blank after the command byte). When the password is typed in the
password field it will not be printed on the screen. Instead, the MXE
will print the numbers O through 5 as characters are typed. this is so
that the password can be protected. After the password field is a free
format field in which the user types the rest of the command. The MXE
is blank insensitive so the command parameters may be typed as the user
wishes with the following exceptions:

1> A blank must not be found in a baud rate specification, and
2) The string that is to be printed on all screens (command ‘G'/
must be typed exactly as it is to be printed.

Commands :

A)

B)

Set primary user.
Format: A 'psw' 'port designator'’

The port desinated becomes the new primary user in VP mode

Set baud rate.
Format: B 'psw' 'port designator' 'baudrate'

The baud rate specified is set at the port designated

Page 2 of 7

C)

D

)

F

$MXE command mode

Set password.
Format: C 'psw' 'newpsw'

"newpsw' becomes the new password

Download code.
Format: D 'psw' 'port designator'

7-80 microcode is loaded into the MXE at the port designated. The
protocall is as follows:

If the command is not legally specified the MXE will send an
'ILLEGAL COMMAND' to the port originating the command (which may
also be the port designated). Otherwise, the MXE will ask the user
for a confirmation of the command. If the wuser responds
affirmativly, the MXE will output a X'00' at the designated port
when it is ready to start receiving code. It will then expect to
receive ten bytes of X'00' in succession followed by code in the
following format:

'2-byte destination' 'l1-byte count (n)' 'n bytes of code'

The MXE will continue taking in strings of this form until a count
of zero is received at which time the MXE will jump to the address
contained in location X'4000'. No form of error detection exists
in this format once the downloading has begun so the user should be
very careful to not get out of synch with the MXE. Also, all other
MXE activity will halt while this command 1is 1in progress. It
should be noted that the string of 10 zero bytes is needed for
protection against a user designating an incorrect port address or
the accidental invocation of this command.

Analog loopback
Format: E 'psw' 'port designator'
Analog loopback is executed at the port designated. This command
will cause all I/0 at all ports to be temporarily suspended!
Digital loopback

Format: F 'psw' 'port designator'

Digital loopback is executed at the port designated. This command
will cause all I/0 at all ports to be temporarily suspended!

Page 3 of 7

G

H)

D

J

L)

$MXE command mode

Print to all screens
Format: G 'message’

Print 'message' on all terminals connected to this MXE. 'message’
must not run over the 78 byte limit of the command. 'message' will be
inserted in the output stream of all terminals regardless of their state
and a 3 second pause will be executed to allow all users to read the
message.

Help
Format: H

A list of all $MXE commands is printed on the terminal

Memory test
Format: I 'psw'

A1l of RAM is tested in a nondestructive way. Although all port
activity on the MXE will slow down somewhat, no damage will be done.

Restart
Format: J

This command restarts the MXE at its poweron diagnostics. This
command can only be issued while in the bootstrap. The current state of
the MXE will be completely reinitialized! A1l baud rates which have
been set through $MXE command mode will be reset to their hardware
defaults!!.

Lock
Format: L

This command locks the current baudrate of the port issueing it.
No port may change the baud rate of a port which is locked. This
command is a toggle. Each time it is issued the state of the baud rate
lock will be reversed.

NOTE: During many of the above commands the performance of the MXE will
be impaired. Generally, this consists of all the ports slowing down
somewhat. But in the case of analog and didgital loopback ALL port I/0
will cease until the loopback is completed. Therefor, it is absolutly
imperative that all users connected to the MXE when loopback is to be
performed be notified that the MXE will not be functioning smoothly.

Page 4 of 7

$MXE command mode

Baud Rates:

Below is a list of baud rates available on the MXE. Some of the rates
can only be set via the $MXE baud rate command and will not have an entry in
the second column. Others can be set by the hardware baud rate switches.
Pleas see the discussion following the table which describes how default
hardware baudrates are set. When setting baudrates via the $MXE command, the
baud rate should be entered exactly as found in this table.

Rate Hardware switch setting

50

75

100

110

134.5

150

200

300

600

1200
undefined
2400
undefined
4800
undefined
9600
19200
undefined
see note

MTMOOTITWONOUITRARWN—O

NOTE: Setting all the hardware switchs to X'FF' will cause the MXE to go into
diagnostic burn in mode. In this state the MXE will continuously loop
on its board diagnostics and will not talk to the 2200 or allow any user
input. A1l board errors found will be displayed on the screen.

Page 5 of 7

$MXE command mode

How to set hardware baudrate defaults:

Two eight bit baudrate selection switches exist on the MXE. Each bank
of eight bits is devided into two four bit groups each of which cooresponds to
a specific MXE port. To find which group is used for each port hold the MXE
board with the rail in your right hand and the two banks of baudrate switches
facing you at the bottom left corner of the board. There will actually be
three banks of switches in this corner; the two eight bit banks mentioned
above and a smaller four bit bank which is used for setting the boards I/0 bus
address. Disregard this smaller bank for the purpose of this discussion.

The four ports on the MXE are numbered 1 to 4 with the port closest to
you being 1 and the farthest one being 4. The switch banks are devided with
the top right four bits cooresponding to port 1, the top left four bits
cooresponding to port 2, the bottom right to port 3 and the bottom left to
port four.

Once you have located the group of switches for the desired port, find
the switch setting in the table above and set the switch with the most
significant bit to the left and least to the right. Notice that the bits will
be ON when the switch is positioned toward you (as marked on the switch). The
baud rate chosen for a port must match the baud rate of the device connected
to the port. If this is not the case, communication will not be possible
between the device and the MXE.

Parity errors:

The MXE hardware is equiped with parity checking in its Random Access
Memory (RAM). Each time a byte is read from RAM the parity on that byte is
tested. If the parity bit is incorrect the MXE will perform a parity
interrupt which will cause it to return to the bootstrap no matter what it is
doing at the time. If it is already in the bootstrap it will restart the
bootstrap. All data will be lost in this situation.

At this point the user may enter $MXE command mode and run specific
diagnostics or may restart the MXE at its diagnostic bootstrap. The
diagnostic bootstrap will diagnose the board completely (as it does each time
the board is powered up) and list whatever error it finds on all screens. It
is NOT possible to return to the code in RAM without downloading new code into
the MXE first!

Page 6 of 7

DOCUMENT SUMMARY

Document Id: 0037E
Document Name: MXE 2200 interface

Operator: Eric
Author: Eric
Comments: Brief

Pages to be printed 1

Notify U13 on system PAM.

Connect enable:

CBS(22)

Enables MXE connect funtion. MWhen a terminal connects to the a
port with connect enabled the MXE will alert the 2200 via a bit being
set at address 02 (the bit is set one time only!).

Connect disable:
CBS(23)

Disable the connect function.

Disable enable:
CBS(24) OBS{XXXX)

Enables the MXE disconnect function. When a terminal disconnects
from a port which has this function enabled, the MXE will alert the 2200
via a bit set at address 02 (the bit 1is set one time only!'’.
Additionally, if XXXX is not equal to hex(FFFF) then the connected
terminal will be disconnected by the MXE in XXXX seconds. If a previous
command set a disconnect time then this new time will replace (starting
the count at 0). If XXXX is hex(FFFF) then any current count down is
disabled and the terminal is not disconnected. The timeout is5 a ONE
TIME countdown and will not have any effect once the countdown is
terminated <(by disconnection or being disabled). when a terminzai
disconnects all unfinished countdowns are disabled

Disconnect disable:
CBS(25)

The above function is disabled and all countdowns are disabled.

DOCUMENT SUMMARY

Document Id: 0039E

Document Name: Remote Screen Dump (RSD)
Operator: Eric

Author: Eric

Comments: Preliminary

Pages to be printed 4

Notify U13 on system PAM.

From: Eric Wilson

Subject: MXE Data Transfer Facility

Date: 03/28/83 (revision of 06/15/82 memo)
Pages: 4 (including cover)

Your comments are welcome and should be directed to Eric HWilson at
X7192, M/S 1389A in Lowell Tower II.

QP (2) (3

T - MXE (normal state) T-MXE (DT) MXE-T (DT)

FO Edit key DO

F1 Escape D1

F2 Start Data D2

F3 Request Data Transfer D3 Start Data Transfer
F4 End Data Transfer D4 Abort Data Transfer
FS D5

F6 D6

F7 D7

F8 CRT go CRT go D8 Send

F9 PRT go PRT go D9

FA CRT stop CRT stop DA HWait

FB PRT stop PRT stop DB

FC Transparency DC

FD ENDI/ATOM DD

FE Dead key DE

FF DF

During a Data Transfer (DT) the MXE will use the codes in column 3 above
to control the flow of bytes from the connected device. Column 2 contains the
allowable commands from the device to the MXE during a DT. All the commands
in column 2 must be preceeded by sscape byte 'F1'. 'F1' in the normal data
stream must also be escaped. Thus, a data byte of 'F1' would be sent as
'"F1''F1'. An end of DT command would be sent as 'F1''F4'. Commands from the
MXE to the device must be escaped by escape byte 'FB' which is the normal MXE
to Terminal escape byte. 'FB' in the data stream will be converted to
'FB''DO' to be compatible with older terminal formats.

Data flow is allowed in both directions (to and from the connected
device) to allow for the transmission of error checking codes in the reverse
direction.

NOTE: A device MUST issue an'E5' to the MXE immediatly following EVERY reset
and restart. This is used by the MXE as an indication that the device
supports Data Transfer. The ! <E will NOT allow DT with a device which has not
issued an 'ES' since the last reset or restart. (This is to prevent a DT from
being attempted with a device which does not support it).

This is page number 1 !

General Command Sequence:

In the following description 'T-MXE' means 'From the device to the MXE',
'MXE-2200' is 'From the MXE to the 2200', and so on.

Device initiation:
T-MXE: '"F3''ID'"
MXE-2200: Set DT bit at address 02.
MXE-2200: Pass 'ID' at address 06.

A request has now been made to the 2200 for the desired Data Transfer. The
MXE will continue in its normal mode until the 2200 initiates the DT as
follows. (in the case of a terminal requesting a Remote Screen Dump, the
terminal will also remain in its normal state until the 2200 initiates the
RSD. This is to prevent the MXE and terminal from hanging while waiting for

the 2200 to get ready. The 2200 may not be able to honor the terminals
request at all!):

2200-MXE: Command at address 06 - pass 'ID' followed by
any needed parameters for the requested DT.

The 2200 is now ready to proceed with the transfer and will wait for the
devices to proceed.

MXE-T: "FB''F3''ID' 'parameters’
Both the device and the MXE prepare for the DT. When the MXE is ready:

MXE-T: 'FB'FB"
The device should now begin the transfer. As needed the MXE will send the
following Go and Wait codes to the terminal to control the flow of data once

the transfer has begun:

Go: 'FB''F8'
Wait: 'FB''FA"

Five conditions may terminate a DT. They are as follows:

1) Normal termination: ~-MXE: '"F1''F4"
*17E-2200: Set DT bit at address 02
MXE-T: '"FB''F8'

2) 2200 Abort: 2200-MXE: Abort DT command at address 06
MXE-T: 'FB' 'F4'
MXE-T: 'FB''F8'

See section on ID for a complete description

This is page number 2 !

3 Reset Abort: T-MXE: '"F1'"12!
MXE-2200: Set DT bit at address 02
MXE-2200: Set Reset bit at address 02
MXE-T: Normal terminal reset procedure

4) Device disconnect: MXE-2200: Set DT bit at address 02
MXE-2200: Set Disconnect bit at address 02

5 MXE Abort: MXE-T: 'FB''F4'
MXE-T: 'FB''F8'
MXE-2200: Set DT bit at address 02

It should be noted that the device connected to the MXE does not have to be a
terminal. It could be some other device (EX: Wangwriter) which usually Tooks
like a terminal to the MXE but may use the MXE for Data Transfer other than a
Remote Screen Dump. For this reason, the above protocall has been kept as
general as possible. The MXE never has to know the format of the data being
transfered nor the number of bytes.

ID:

A one byte ID is used to designate which type of Data Transfer is being
requested (by the device) and which type is being initiated (by the 2200).
Currently, only two ID's exist. An ID of 01 specifies Remote Screen Dump and
an ID of 02 specifies File Transfer. As additional uses for the Data Transfer
facility of the MXE are generated, new IDs will be assigned. 1In any case, the
MXE does not care which transfer is being done so the ID is not important to
it at this time.

Following the ID, the MXE will send to the terminal a list > parameters
(four bytes in the case of RSD). For RSD this parameter 'i:t is a
specification of the part of the screen which is to be dumped. Tne first two
"bytes specify the upper left corner of the area while the second two bytes
specify the lower right corner. The first byte of each group is the column
number (from O to 79 for a 2336DW terminal) and the second byte is the row
number (from O to 25 for a 2336DW terminal). The MXE receives the parameters
from the 2200 when it issues a DT command.

Compression (RSD):

Data compression has been defined for an RSD. The ty.e 'EC' followed by
a count of the number of bytes being compressed followed by the byte being
compressed will be used. To send an 'EC' the terminal must send 'EC''EC'.
Counts of 'EC' (decimal 236) and 'F1' (decimal 241) are not allowed (ie. a
string of 236 or 241 compressible bytes must be broken into two compressions).

"EC' ‘'count' 'compressed byte'

This is page number 3 !

DOCUMENT SUMMARY

Document Id: 0043E

Document Name: MXE summary sheet
Operator: Eric

Author: Eric

Comments:

Pages to be printed 1

Notify U13 on system PAM.

2236MXE Terminal Multiplexer

The 2236MXE terminal multiplexer is a 280 microprocessor based device
controller with the capability of controlling upto four 2236D, 2236DE, 2236DH,
2336DE, and 2336DW terminals in any combination.

The following is a Tist of 2236MXE features:

1)

2)

K))

4)

5

6)

D)

2236MXE operating code is downloaded into the controller at
configuration time to allow various applications to be performed by
the same board in a variety of operating environments,

A time of day clock enables the 2200 system, through the 2236MXE,
to provide the Basic TIME and DATE functions (in both Basic-2 and
Basic-3),

In addition to local terminals, the 2236MXE has the ability to
support remote terminals through the use of an RS232 compatible
modem (such as the wang WA3451 full duplex modem or similar),

A special $MXE command mode allows the user to communicate directly
with the 2236MXE. This allows the changing of buadrates, modem
diagnostics, board diagnostics, and so on (see below),

Terminal port baud rates are both hardware and software
selectable. At powerup the baud rate switches are read to
determine the default powerup baudrates. The baudrates may be
changed at any time through the use of the baud rate command in
$MXE command mode.

An extensive set of diagnostics is run at powerup to completely
test all board components and provide these results to the customer
engineer in case of faults. Many of these diagnostics can be rerun
through $MXE command mode,

The wang WA3451 modem can be tested by the 2236MXE through $MXE
command mode,

Future Enhancements

An INPUT SCREEN statement is currently being implemented to allow the
user to input an exact image of the users screen through basic. This function
requires the use of the 2236MXE.

An Asynchronous software package similar to that on the 2227B TC board
will be implemented soon.

A file transfer function will be added to the 2236MXE to allow high
speed transfer of large amounts of data (such as WP documents) through the
2236MXE in background while normal terminal processing continues.

Document Id: 0046E
Document Name: ATOMS (copy)
Operator: ROGER KIRK
Author: ROGER KIRK
Comments:

Pages to be printed 1

Notify U13 on system PAM.

DOCUMENT SUMMARY

8 9

0 LIST TRACE
1 CLEAR LET

2 RUN FIX(
3 RENUMBER DIM

4 CONTINUE ON

5 SAVE STOP
6 LIMITS END

7 COPY DATA
8 KEYIN READ
9 DSKIP INPUT
A AND GOSuB
B OR RETURN
C XOR GOTO
D TEMP NEXT
E DISK FOR

F TAPE IF
(s)=select
(a)=arc

resv=reserved

A
PRINT
LOAD
REM
RESTORE
PLOT
SELECT
COM
PRINTUSING
MAT

REWIND

SKIP

BACKSPACE
SCRATCH
MOVE
CONVERT

(s)PLOT

P.L.N.=Packed Line #.

STEP
THEN
TO

BEG
OPEN
(s)CI
(s)R
(s)D
(s)CO
LGT(
OFF
DBACKSPACE
VERIFY
DA

BA

DC

FN
ABS(
SQR(
COS(
EXP(
INTC
LOG(
SIN(
SGN(
RND(
TAN(
ARC
#P1
TAB(
DEFFN

(a) TAN(

D
(a)SIN(
(a)COoS(
HEX(
STR(
ATN(
LENC
RE
(s)#
%(image)
(s)P
BT
(s)G
VAL(
NUM(
BIN(
POS(

HEX
UNPACK
BOOL
ADD
ROTATE
$(qgio)
ERROR
ERR
DAC
DSC

SuB

F
LINPUT
VER(
ELSE
SPACE
ROUND
ATC
HEXOF(
MAX(
MINC
MOD<(
resyv
resv
resv
resv
resv

P.L.N.

COMPANY CONFIDENTIAL

Report on Wang Deutschland X.25 Project
(Current Technical Problems)
13 January 1983

By: Eric Wilson
To: Neeraj Sen and Bruce Patterson

¢.c. Heinz Jurack, Peter Thornton

COMPANY CONFIDENTIAL

COMPANY CONFIDENTIAL Report on German X.25 problem

TABLE OF CONTENTS

CHAPTER Page
1 SYSTEM DESCRIPTION 3
2 TECHNICAL PROBLEM DESCRIPTION 4
3 POSSIBLE SOLUTIONS 6
4 Suggested solution 9

Page 1

COMPANY CONFIDENTIAL Report on German X.25 problem

This report contains a description of the Wang Deutschland X.25 network
project along with a detailed discussion of current problems and possible
solutions. It is the result of a four day visit to Wang Deutschland
facilities in Frankfurt and Hamburg Germany the week of December 6 1982.

A1l comments pertinent to this report should be directed to:
Eric Wilson at Mail Stop 1389A in Tower I Lowell.

Page 2

COMPANY CONFIDENTIAL Report on German X.25 problem

1 SYSTEM DESCRIPTION

Wang Deutschland GMBH, Transfer Data Test GMBH (TDT), BDB, and Shell
0il1 of Germany have undertaken the task of establishing a large distributed
network within Germany for Shell 0il and its retail supply network. The
purpose of the network is to facilitate highspeed, online communications
between various members of a distributed data base and shared resources. The
main intent of the project is to provide links between remote offices and
their regional computing <(and controlling) centers as inexpensively as
possible while retaining full on line capabilities.

It should be noted that British Petroleum (BP) has also expressed
interest in establishing a similar network and that Wang Canada in Burnaby has
expressed concern over problems they are experiencing with a similar network.

1.0.0 System Geography:

Ten central computing and controlling centers located throughout
Germany provide regional computing facilities for their
respective branch offices with Wang 2200 multiprocessing
equipment. Fach branch office is connected to its respective
central computing center over the Deutsche Bundespost X.25 public
packet switching network. The central computing centers in turn
communicate over the X.25 network thereby providing communicatior
between all points in the network. (It should be noted that
although communication is possible between ALL members of ttre
network, each branch office communicates directly with its
regional computing center only)

1.0.1 System Interfaces

Every device connected to the X.25 network 1is treated as a
'Generic Device'. No distinction is made between CPU's and
terminals by the network. No master slave protocol exists at the
system packet level thereby creating a true ‘'packet delivery

system'. The network is therefore transparent to the connected
devices up to the packet level and transparent to all application
software.

At each end of a link the X.25 network connection is interfaced
to the Wang equipment by means of an X.25 to RS232C converter
(MPAC) manufactured by TDT <(see figure). -The MPAC converter
performs all conversion functions including packet manipulation
and error handling.

Page 3

COMPANY CONFIDENTIAL Report on German X.25 problem

Y=====X.25 link========= ! MPAC ! ==== ! Terminal !
_______) e e
| 1)
I | - 2 mmmmmeee e
| CPU ! == ! MPAC ! =======X.25 link========= ! MPAC ! ==== ! Terminal !
I | e =) mmmmmmme s
] [})
_______) e I
Yo====X.25 link========= ! MPAC ! ==== ! Terminal !

Figure 1: Typical link configuration

2 TECHNICAL PROBLEM DESCRIPTION

Unfortunately, the X.25 connection 1is currently not ABSOLUTELY
transparent to the devices utilizing it. When the device communication
protocols for these devices were established the packet switching environment
did not exist. Adjustments need therefore be made to the protocols to
maximize there functionality and efficiency in this new environment.

2.0.0 Cost

Charges for use of the X.25 connections are based on corinection
time and packet use. A flat charge is levied per minute of
connection time. A flat charge per packet, regardless of the
number of data bytes in the packet is also charged. (i.e. a
packet containing one data byte costs the same as one containing
128 data bytes) It is therefore desirable to PACK each packet as
much as possible and to minimize traffic on the network to only
that which is absolutely necessary.

2.0.1 Echo

Currently, each byte entered at the keyboard is transmitted over
the X.25 network to the CPU. The byte is then processed by
either the CPU or the terminal controlier (MXD or MXE) and one of
three actions is taken:

Page 4

COMPANY CONFIDENTIAL Report on German X.25 problem

- The byte is DIRECTLY ECHOED to the CRT at the cost of one
X.25 packet (two for the round trip), or

- The byte is TRANSLATED into some number of bytes which are
then sent to the CRT as a group (examples: Text Atoms, end
of line characters) at the cost of one X.25 packet (two for
the round trip), or

- The byte is passed to the 2200 CPU which then takes
appropriate action (examples: end input mode, recall line).

As cost is of major importance it 1is highly desirable to
eliminate unnecessary packet traffic between the terminal and the
CPU. Packet loading (number of data bytes per packet) and echo
are of importance in this consideration.

2.0.2 Performance

Internal to the Deutsche Bundespost X.25 packet switching network
the packets are transmitted at a rate of 64Kbps. However, the
actual 1links between the central X.25 processors and the devices
are usually at rates around 4800 bps to 9600 bps. These lower
rates being the 1limiting ones it can be plainly seen that a
substantial delay must be experienced by each packet. Thus,
bytes which are remotely echoed by the terminal controller will
take longer to reach the CRT than packets locally echoed. A
local echo function (where possible) would greatly increase the
performance of the system.

2.0.3 Flow Control

The flow control currently used by locally attached terminals is
not suited to the packet environment. When the terminal finds
itself lagging behind the data stream at the RS232C connection it
sends out a STOP code which causes the terminal controller to
stop transmissions until it receives a GO code. Additionally,
two data streams (the CRT and PRT) are multiplexed on this
channel through the use of two STOP/GO code sets. In the X.25
environment these codes are Jelayed such that by the time the
terminal controller stops transmitting the terminal is already
overflowed causing an error condition. To prevent this from
happening, the MPAC has a flow control protocol of its own. The
MPAC on the terminal end of the link reacts to the flow control
commands from the terminal as the terminal controller does.
However, the MPAC on the terminal controller side uses the RS232C
Clear to Send (CTS) signal to the terminal controller to stop the
controller sending rather than the flow control codes from the
terminal (some flow control bytes are passed through the X.25
link to keep the controller sending to the proper device). This
is not supported by the current release of MXE terminal
controller software as it is not wused with standard Wang
terminals. CTS flow control must be supported if the MXE is to
be used with the MPAC.

Page 5

COMPANY CONFIDENTIAL Report on German X.25 problem

3 POSSIBLE SOLUTIONS

The following three solutions are those which I feel are most appropriate and
workable given the current state of all system components as they now stand.

3.0.0 SOLUTION 1: MXE Flow control

The reason the MXE is not currently configured to allow CTS to be
used for flow control is three fold.

In the first place, the standard Wang terminal cable does not
fully support all standard RS232C signals. Many standard signals
are missing and thoses which do exist are not always used in the
standard way. CTS is always tied to Data Set Ready (DSR) in the
cable thereby making it impossible for the terminal to manipulate
this signal. Thus, it has not been necessary for the terminal
controller connected to a Wang terminal to respond to CTS as flow
control.

Secondly, as two data streams (CRT and Printer) are multiplexed
over the terminal cable it is inefficient for the terminal to use
CTS to stop the flow. Both streams would be halted when only one
needed to be.

Lastly, the terminal cable does not provide Data Carrier Detect
(DCD) to the MXE. Since the standard use of CTS as flow control
(in full duplex systems using standard ZILOG interpretations) is
CTS ANDED with DCD the absence of this signal would cause the
transmission to be halted at ALL times.

It is therefore clear that in order to use CTS as flow control to
the MXE the device attached to the MXE must perform certain
functions:

- Instead of a standard Wang terminal cable the device must
be connected using a cable which fully supports all (or
most) RS232C signals. The standard Wang TC cable fulfills
this need.

- The device must supply DCD and CTS as VALID control
signals.

- The device must pass on the flow control codes from th.
terminal for the CRT and Printer so that the CTS signal ic
used only as a secondary flow control mechanism. (i.e. the
CTS signal is used to prevent the MPAC from being
overflowed while the normal terminal flow control codes are
used a level above to control the two streams to the
terminal).

The MPAC fulfills all the above criteria. With some minor
modification to the MXE software it can be capable of detecting
devices which supply CTS as flow control and respond accordingly.

Page 6

COMPANY CONFIDENTIAL Report on German X.25 problem

3.0.1 SOLUTION 2: MXE no echo configuration

The echoing of PRINTABLE ASCII characters and backspace would be
handled by the MPAC in this configuration. A1l bytes would be
sent to the MXE as is currently done (with somewhat better
packing of the packets) but the MXE would send no bytes to the
terminal except in the following circumstances:

- TEXT ATOM key depressed, or

- Special Function key depressed requiring printing to the
screen, or

- Editing key depressed such as insert or delete mandating
screen updating.

This procedure would minimize the delay time required for each
printable ASCII character to reach the screen and would greatly
reduce the number of packets required. Unfortunately, some major
drawbacks exist with this solution:

- No wraparound of the line could be allowed as this would
cause a race condition between the MPAC and the MXE. At
the end of a line the terminal controller repositions the
cursor to the beginning of the next 1line by means of a
cursor down control byte. It is highly likely that by the
time this control byte is received by the terminal the MPAC
would have already echoed the next byte causing the data on
the screen to be in error. It is not possible for the MPAC
to generate the proper end of line sequences without a
protocol between it and the MXE being established. Thus,
all linputs must be limited to one line (i.e. may not cross
line boundary).

- A backspace off the left side of an input field should not
be echoed. The MPAC will echo this backspace.

- When a special function key is pressed the MPAC must delay
the echo of the next printable ASCII byte until the MXE has
time to take any action necessitated by the function key.
This must be done to prevent events from occurring in the
wrong order. (such as a text atom being printed two bytes
after it is depressed).

3.0.2 SOLUTION 3: Shifting of Responsibility

This solution addresses the problems unattended to by the above
solution by means of a protocol between the MXE and the MPAC.
The MXE would inform the MPAC, through a protocol addition, of
the information it needs to control the keyboard and CRT handling
more completely. Special function keys and TEXT ATOMS would
still be handled by the MXE but all other editing functions would

Page 7

COMPANY CONFIDENTIAL Report on German X.25 problem

be performed by the MPAC directly. The number of packets needed
would be further decreased while some performance efficiency
would be realized. Unfortunately, the MPAC would no longer be a
transparent part of the link. The code used in the MPAC would
need to be specific to the MXE application and would probably
require substantial changes. The next solution deals with these
issues.

3.0.3 SOLUTION 4: PC screen handler

With a change of hardware this solution would prove the most
effective and easiest to maintain. Instead of a DE or DW
terminal a stripped down Professional Computer (PC) would be
employed. Two possibilities exist:

- A stripped down, low cost version of the PC with one
terminal attached would act as a remote MXE terminal
controiler. Most of the functions currently performed by
the MXE would be done by the PC. No control communication
between the MPAC and the MXE or PC would be needed thereby
keeping the MPAC a transparent part of the link. Data
could be highly packed as the PC would communicate with the
MXE only when absolutely necessary. This solution would
realize the greatest reduction in packets employed.

- Similar to above this solution would use the extra RS232C
port on the PC to control a second terminal from the same
PC. Both terminals would use the same x.25 connection
thereby realizing further savings in connsction time and
fewer packets. The data stream would be multiplexed at the
MXE through one port (i.e. two MXE logical ports would use
one MXE physical port) transparent to both 2200 MVP Basic
and the MPAC's.

3.0.4 Generally speaking

In all the above solutions some method of allowing some ports to
continue to work in their current 'i..al terminal support mode'
while others on the same MXE work in ‘r:mote echo off mode' needs
to be formulated. An addition to MXE command mode could support
these new functions. Additionally, the MPAC might be programmed
to automatically send a control sequence to the MXE on connection
for automatic configuration transparent to the user.

Page 8

COMPANY CONFIDENTIAL Report on German X.25 problem

4 Suggested solution

Solution 1 must be done in all cases. Solution 2 is a quick fix
solution; One parameter in MXE command mode could invoke this. Solution 3 is
actually a superset of 2 and could be treated as a parameter when selecting
the mode. The PC solution, although the most desirable, would require a much
longer developement effort and must wait until appropriate hardware s
available. It is quite possible that an X.25 link may be added to the PC
thereby making it unnecessary to use only one MPAC unit (at the MXE side).
Such an addition would make this solution most desirable and easily
implementable.

For the immediate future I recommend that we implement the the CTS
solution and solution 2 with the possibility of adding solution 3 or perhaps
the PC solution later. It would require two days to change the code in the
MXE to support the 1 and 2. A pre-release version for testing could be sent
with subsequent adjustments being made later with not much time commitment
required. Solution 3 would require more iterations. The quickest and easiest
method would be on-site implementation in coordination with TDT.

Page 9

FROM: Eric Wilson
SUBJECT: NML Trip Plans
DATE: 4/4/83

Distribution: Neeraj Sen
Rich Racicot
Bruce Patterson
Jerry Sevigney

John Deutsch MS 14A7A
Gene Mantoni MS 14A7A
Neil Aronson MS 14A7A

The following 1ist contains those problems reported by NML and some other
users which I consider the main thrust of my investigations at NML and
Dayton™:

1) Terminal port Tockup on 2236 MXE terminal controllers.
2) Extraneous HEX(FO) (CANCEL key) somehow received by the MXE (or Option

W) when printing to a remote terminal printer but not generated by the
terminal (thereby aborting the print job).

3) Garbage generated by a disconnecting modem connected to a terminal
thereby locking up the terminal necessitating the cycling of power to
the terminal to regain terminal functionality.

See Northwestern Mutual Life letter of 3 March 83 from Mark A. Prange to
John Deutsch.

In order to investigate these problems I plan to do the following before and
during my upcoming trip to the Milwaulkee and Dayton sites (my investigation
will certainly not be limited to this memo whose primary purpose is to promote

commentary):

D) Before the trip I will arrange to have the power sources for all systems
at both sites monitored for line noise and voltage tolerance.

2) Both cites will have selected systems tested for static tolerance.

3 Those systems which seem exceptionally problematic will have these
additional tests performed:

A1l 1/0 bus voltages will be checked with an eye toward
adjustment where needed.

Where possible, an attempt shall be made to monitor I/0 bus
characteristics during various system conditions.

4) I shall monitor the RS 232 terminal connections to help determine the
state of the system just before failure.

5 A1l test results and observations will be meticulously recorded for
future study.

6) I shall carry with me various software tools to facilitate software
testing.

7 If possible, I will arrange for a particularly inoperative system to be
brought back to Towell to try to reproduce system failures in a fully
equiped R&D environment. (Customer Engineering tells me that a swap
with the user for a bad system may be possible)

8) I will have a developement system in Lowell available for my use over TC

lines should I require software assistance apart froi. that which I take
with me.

I expect to receive assistance from Customer Engineering in the form of a Tech
qualified to work with 2200 LVPs at both a system and basic electronic level.
The Tech should come equiped with a static tester and be qualified to use one.

FROM: Eric Wilson
SUBJECT: Milwaukee-Dayton trip report
DATE: 5/6/83

Distribution: Neeraj Sen
Rich Racicot
Bruce Patterson
Jerry Sevigney

John Deutsch MS 14A7A
Gene Mantoni MS 14A7A
Neil Aronson MS 14A7A

Michael Riley MS 8236A

This report is the result of a trip to Northwestern Mutual Life (NML),
Milwaukee, Wisconsin and C.H.Dean, Dayton, Ohio made by myself and Mike Riley
(Customer Support) on 21 April 1983.

Purpose of the trip

The purpose of the trip was to investigate critical system problems
reported at each of the sites. The problems reported were:

1) Terminal port lockup on 2236 MXE controllers.

2) Extraneous HEX(FO) (Cancel key) being received into the basic
program ouputting a WP document to a remote system via the
Remote Control Maintenance package (RCM). This problem caused
the print job to be prematurely aborted. (NML only)

3) Garbage generated by a disconnecting modem connected to a
terminal thereby locking up the terminal necessitating the
cycling of power to the terminal to regain terminal
functionality. (NML only)

Other problems

In addition to the above both sites presented additional problems which
they considered less critical. In the problem status section each problem or
topic of interest is discussed singly.

| System configuration

NML: Four LVP-C cpus with one or two 2236 MXE controllers and one 2228D TC
controller board.
2236DE, 2236DW and 2336DW terminals.
Other unrelated 2200 equipment.
Port one on each system is local while all other ports are remote
through Racal Vadic modems (equivalent to Wang WA3451) mounted on large
racks.
Each 2228D connects remotly to an IBM host.
A1l HWang cpus are located in the same room in two single files with many
other pieces of communications and processing equipment.

C.H.Dean:
One 2200 MVP cpu with two 2236 MXE controllers plus printer controller
plus disk controller.
One 2200 MVP cpu with one 2236 MXE and one 2236 MXD plus printer
controller plus disk controller.
2236DE and 2236DW terminals.
Other unrelated 2200 equipment.
Both 2200 MVP cpus are located side by side near system printers along
an office wall in a room with static mats.

Page 2

Specific problems and their status

P

Terminal port lockup on 2236 MXE terminal controllers. (NML and C. H.
Dean)

Symptoms: A port on the MXE locks up for no apparent reason. It is
sometimes possible to regain port functionality through the use of MXE
port diagnostics from another port on the same MXE although more often
than not the system must be rebooted to restore the port. Additionally,
the problem tends to stay with the system rather then the MXE when MXE
controllers are swapped. Frequency of failure varies widely from system
to system with some systems failing as often as every few hours while
others may not fail for weeks (if at all).

Investigation: For two weeks prior to the trip the power lines at both
sites were monitored for abnormalities. Large spikes were detected at
NML but these do not seem to have any connection with system failures.
Both sites showed a large variance in line voltage, again with no
apparent coerelation.

Static testing was performed at the Dayton site (NML has too much
equipement in the vicinity of the systems to perform static testing).
The system tested out at 2,500 volts with the 2236DW terminals failing
before any other system component.

Unfortunatly, the system log at NML (which I requested be kept starting
2 months prior to the trip) was not kept properly and was therfor of no
use in these investigations. At Dayton a better log was kept with
copies of the screens attached to the locked up port at the time of the
failure whenever possible. Unfortunatly, many of the failures occured
at night.

While at NML no system failures occured. Also, the frequency of
failures has recently dropped way down. It has become standard practice
to reboot all systems every morning and this may be a contributing
factor to the decline in system failure frequency. It is also possible
that a recent software modification could have contributed to this
decline.

While at Dayton we were able to produce the port lockup problem
consistently. Sufficient information was collected to cause the problem
to occur in lowell.

Problem resolution: One cause of the port lockup problem was traced to
the $DISCONNECT function. If a disconnecting port was in control of
more than one partition at the time of disconnection AND the highest
numbered partition was a background partition then the system would not
command the MXE port to allow a reconnection thereby locking the port.
THIS PROBLEM HAS BEEN RECTIFIED in the latest version of the operating
system which went to Q&A on 4 MAY 1983 (Rel 2.5.2)

HOWEVER! It is not clear that this problem is completely solved! It is
highly possible that the $disconnect bug was only a contributor and that
some other bug still exists. This bug could be a software bug or it
could be a hardware bug (such as sensitivity to static).

I have commited Wang to the future investigation of this problem until a
satisfactory solution is implemented.

Page 3

2)

3

Extraneous HEX(FO) (Cancel key) problem (NML only)

Symptoms: During the printing of a document to a remote system using
the Remote Control Maintenence package over a TC line a HEX(FO) without
ENDI (i.e. not a control byte) is received by the basic program in the
host. A HEX(FO) is interpreted as a cancel key and therefor aborts the
print job. No key was pressed on the terminal to generate this byte ans
the source is unknown.

Investigation: This problem could not be duplicated while I was at
NML. NML no longer considers this a probiem so no further action will
be taken on this problem.

I made no commitments to further investigate of this issue.

Garbage generated by a disconnecting modem causing terminal lockup (NML
only)

Symptoms: A terminal connected to a modem which has just disconnected
from a system will lock up when the next connection is made. The
terminal must be powered off and on to get it working again.

Investigation: This problem is repeatable and I saw it happen 3 times
during 20 trials. The phone 1line is dropped by switching the modem to
the off-line position. Either the modem sends a few garbage bytes to
the terminal or sets the RS232 signals into a state not expected by the
terminal (it is not clear which) causing the terminal to occasional
hang.

Problem resolution: Unfortunatly, Wang 2236 and 2336 series terminals
are sensitive to garbage on the line. I have had this problem in the
lab not only with modems but when changing cables or testing code which
may send illegal bytes to the terminal.

I see no solution apart from rewriting the 2236 and 2336 terminal code
from scratch and possibly redesigning the RS232 interface. I do not
think this is necessary as NML considers this a nuisance but not a major
problem and no other users have considered this enough of a problem to
report it (or no other user has experienced this problem).

No commitment was made by me to provide a solution to this problem. NML
was informed (by me) that there would most likely be no action on this
issue by Wang.

Page 4

4)

5)

6)

[D]

Printer defaults: NML some time ago requested special proms for their
2233, 2235, DW20 and 2281 printers to change the page length defaults to
51 (8'/, inches) lines from the current 66 to match the format used

by NML on all their forms. These proms were promised by Joe Sapienza
but were never created. It has been many months and no proms have been
provided to NML nor has any contact with various Wang reperesentatives
(including Joe who has repeatedly promised that they are forthcoming)
produced results.

Action taken: This problem has been refered to Rich Racicot. No
commitment has been made by me apart from refering this issue to the
proper channels within Wang.

"Chinese printer problem": NML has experienced a problem with some of
their terminal printers which they have chosen to name the "Chinese
printer problem". The printer will occasionaly begin printing garbage
(It seems to lose track of where the print wheel is therby transposing
the character set) instead of the proper document until the next printer
reset is sent which brings the proper character set back.

This problem is seems to be identical to one often experienced in-house
which is caused by a faulty daisey wheel position sensor.

Solution: Replace the daisey wheel position sensor.

7 bit terminal protocall request: Many networks currently in use do not
support the 8 bit data byte size used by Wang 2236 and 2336 terminals.
This is a problem for NML as they would like to allow their network
users to tie into their network through other existing networks. They
are therfor quite interested in iWang switching to a 7 bit protocall.

Action taken: I was very firm in telling NML that we currently have no
plans to switch to a 7 bit protocall but that we have discussed this
issue and would be sure to let them know if we decide to support it.
Absolutly no commitment was made on this issue and this was made very
clear to Mark Prange.

A list of 2200 Word Processing bugs was given to me by Darrell Fulton at
C.H.Dean. I have pas.cd this list on to Rich Amico who has promised to
attend to them and contact both Darrell and myself.

The only commitment made by me to Darrell was to forward his bug list to
the proper persons.

Page 5

Other points

Jim Jefferies, Bob Hayden, Blane Woodard and Mark Prange all made it
very clear to me that the greates problem NML has with Wang is our reluctance
to say NO to NML when we are unwilling or unable to fill an NML request. They
would much rather have us say NO than have us make promises we cannot
fulfill. As Jim put it, "They may no like it but it at least helps them find
alternate solutions before it is too late.".

The technical support provided by Wang Customer Engineers Kevin Knepp
and Ron Brockman at the Dayton site was exceptional. They were both willing
and eager to do anything that was needed (including working odd hours) to aid
me in my investigations.

Contacts:

Northwestern Mutual Life, Milwaukee, Wisconsin:
Mark Prange Systems coordinator group leader, Teleprocessing
Bob Hayden Systems Analyst, Teleprocessing
Blane Woodard Systems Analyst, Teleprocessing

Wang Labarotories, Inc, Brookfield, Wisconsin:
Jim Jefferies Senior Systems Consultant, Wang Brookfield

C.H.Dean & Associates, Inc., Dayton, Ohio:
Darrell N. Fulton Director, Information Systems

Customer Engineering, Cinicinnati, Ohio:
Kevin Knepp Customer Engineering Reperesentative
Ron Brockman District Technical Specialist

Page 6

DOCUMENT SUMMARY

Document Id: 0066E

Document Name: MXE RS-232 Pinout
Operator: Eric

Author: Eric

Comments:

Pages to be printed 1

Notify U13 on system PAM.

MXE/SVP Option W RS-232c Connection Pinout

Pin # EIA CCITT Name Signal Source
1 AA 101 Protective Ground

2 BA 103 Transmit Data DTE
3 BB 104 Receive Data DCE
4 CA 105 Request to Send DTE
5 CB 106 Clear to Send DCE
6 CcC 107 Data Set Ready DCE
7 AB 102 Signal Ground

8 CF 109 Received Line Signal Detector® DCE
9 Unconnected

10 Unconnected

11 Unconnected

12 Unconnected

13 Unconnected

14 Unconnected

15 Unconnected

16 Unconnected

17 Unconnected

18 Remote Analog Loopback™ DTE
19 Unconnected

20 CD 108.2 Data Terminal Ready” DTE
21 Remote Digital Loopback™ DTE
22 CE 125 Ring Indicator” DCE
23 CH/CI 111/112 Data Signal Rate Selector”™ DCE/DTE
24 Unconnected

25 Unconnected

This pin is not connected on port 1 of an SVP Option W (Ports 2 and 3
utilize these signals)

To:
From:
Date:
Subject:

Melanie Kempton

Eric Wilson

1 November '83

Estimation of work to add PC disk access to MXE

Distribution: Bruce Patterson

Jerry Sevigny
Rich Racicot

These additions need to be added to the protocol between the MXE and the PC:

Disk data transfer channel in both directions
Disk channel flow control in both directions
Disk channel selection in both directions

Disk channel control commands in both directions
Keyboard channel selection from PC

The following restrictions, changes and functional modifications should be
made to facility implementation:

Either drop Remote Screen Dump or change the way it functions. If
RSD is kept then it is a mutually exclusive channel (as is the case
with all current channels). We may want to rewrite the way RSD is
handeled in the protocol to allow it to be treated as just another
channel.

Clean out the protocol for the purpose of talking to the PC. There
exist many leftovers in the protocol due to "History" (how I hate
that word') which keep us from easily adding functionality. For
example, many TEXT ATOMS have never been used on any terminal and
will certainly not be used on the PC; let's get rid of them.

These additions need to be added to the interface between the 2200 and the MXE:

Add address 06 commands (command address) to control disk channel
flow. A set of commands could be passed on the disk channel
transparent to other functions.

A different address must be used to transfer data between the 2200
and the MXE. Unfortunatly, no unused, bidirectional address exists
thereby necessitating the multiplexing of another address (perhaps
address 03 which is currently used for RSD and TC).

page 1

Time requirements:

If someone other than myself is to do the MXE modifications it could take 2
months or so to get up to speed on the MXE. Someone with microcodeing
experience would get ther a bit faster. The MXE has gone through so many
changes that it is currently very delicately balanced. Many changes could
bring on timing problems which could, as we've seen from past experience,
cause large delays in the deadline.

Assuming RSD is dropped and not including time to change the MVP OS I expect
the changes to require:

PC-MXE protocol: 10 - 15 persondays

MXE-2200 interface: 8 - 10 persondays

This ESTIMATE does not include QA, Beta-site or design time of which design
time has proven to be the longest.

page 2

DOCUMENT SUMMARY

Document Id: 0074E
Document Name: Remote editor proposal

Operator: Eric
Author: Eric
Comments:

Pages to be printed 8

Notify U13 on system PAM.

Subject: Remote Terminal Editor for the MXE and 2336 terminal

From : Eric Wilson

Date : 13 MAY 1983

Distribution:
Neeraj Sen MS 1489
Bruce Patterson MS 1389A
Jerry Sevigney MS 1389A
Rich Racicot MS 1489
John Deutsch MS 14A7A
Peter Thornton MS 13A3B
Tim Sloane MS 13A3B

A1l comments and questions concerning this document should be directed to:
Eric Wilson, MS 1489, Tower II ext 7192

This document describes the proposal for a Remote Terminal Editor for
use with the 2236MXE terminal controller (Some other terminal may be used
instead depending on the terminals capabilities). The editor would be
initially implemented on the 2336DW terminal and could be added to the PC
terminal emulator package and other keyboard entry devices of the future.

This proposal provides a long term solution to the X.25 packet switching
network problem in that it solves the network delay problem and economizes the
use of packets over the network. The savings provided by this proposed system
would not be limited to X.25 packet switching networks. On the contrary, this
system could be used with any type of communications connection between the
terminal and controller including packet networks, leased line, telephone
lines, and direct connections.

The Remote Editor is made possible through an extension to the existing
Terminal-Terminal Controller protocol. This extension is outlined in the
following pages. It is suggested that the reader refer to the "2200
Terminal-Terminal Controller Communication Protocol" document dated May 1983
by Eric Wilson which describes the existing protocol in depth. Familiarity
with the existing protocol would be helpful to the reader since this document
describes the proposed extension only.

NOTE: This proposal does not cover every detail in full. The structure of the
solution is presented here and those details which do not effect the structure
as a whole have been left to future study. The reader should not be alarmed
by this as all the major structural specifications are contained herein.

Page 2

Functional description:

The idea of the Remote Editor is to allow the terminal to perform as
much of the screen editing as possible thereby minimizing traffic over the
communications link and speeding up the editing process. Unfortunately, not
all editing functions can be independently performed by the Remote Editor
since interaction with the 2200 operating system is needed for some keys.
Editing functions to be performed by the Remote Editor are insert, delete,
erase, cursor movement, backspace, Text Atoms and normal character entry. All
special function keys including special functions O to 31, Prev and Next
screen, Recall, Tab, GL and return must be handled by the 2200.

Current editing system:

A1l editing is currently done by the MXE with occasional 2200
interaction where needed (all cases stated in the last section). The MXE is
responsible for screen updates as each key is pressed on the keyboard. MWhen a
key is pressed which the MXE can not handle independently it signals the 2200
which then instructs the MXE. In most cases the 2200 does not care what is in
the edit buffer since most keys are independent entities (ie the action taken
in response to a key is not dependant on anything that came before it). 1In
the cases of Recall and return the 2200 will need to read all or part of the
edit buffer in order to determine the next course of action.

Suggested system changes:

The terminal would be commanded by the MXE to execute a line request of
with a certain size and initial conditions. The terminal would then perform
all independent edit functions and be responsible for updating the screen. Up
to this point no communication would occur between the terminal and MXE. When
a key is pressed which requires 2200 interaction the terminal would inform the
MXE and in the cases of Recall and Return would pass the entire edit buffer to
the MXE. The terminal would then do nothing until the MXE responded. All
keys pressed during this time would be stored in a terminal keyboard buffer
but no editing would be done until the MXE commanded the terminal on its next
course of action. Meanwhile, the MXE would confer with the 2200 on what to
do. In the case of Recall the 2200 has the option to change the contents of
the edit buffer after which it will allow the line request to pick up where it
left off. The MXE would pass the new contents of the edit buffer to the
terminal (if the buffer was changed by the 2200), position the cursor and tell
the terminal to continue. All keystrokes in the keyboard buffer at that time
would be acted on at that time.

In the case of Return the terminal would pass the MXE the contents of
the edit buffer. The MXE would then pass that on to the 2200. The terminal
does not exit the editor until the MXE tells it to do so. Thus the Remote
Editor would be completely controlled by the MXE and 2200 at all times.

An extension to the above procedure could be made for use when traffic
over the communications connection need not be minimized. In this case the
terminal would pass all keystrokes to the MXE as they are entered thereby
minimizing the delay time incurred when Recall and Return keys are pressed.
The MXE would always have a copy of the edit buffer so the need for the
terminal to pass its edit buffer to the MXE would be eradicated. This
alternative procedure would use the same protocol as above.

Page 3

Enabling the Remote Editor:

Each time the terminal sends a reset to the MXE it would follow it by a
command byte which tells the MXE that the terminal supports some version of
the extended protocol. This byte would not cause any problems when the
terminal is connected to an MXD except when the VP operating system is used.
This byte would then be turned into a text atom the 2200. This problem can be
rectified by a changed to the 2200 VP operating system. This would be the
last change to the VP 0S of this type (a similar change was necessitated by
the implementation of Remote Screen Dump) because the MXE would respond to
this code by asking the terminal what it supports rather than defining a new
code each time a new function is added. A1l terminals generating this code
must support some minimum set of extended commands so the MXE could be sure it
was legal to talk to the terminal in this way.

Several options are at this point possible. If the terminal does not
have the RAM code space to be downloadable the terminal must have the Remote
Editor in Prom. If the terminal is downloadable then the MXE and 2200 will be
responsible for downloading code to the terminal. Currently, there is no way
for the MXE to request data from the 2200 for downloading but an extension to
the 2200-MXE protocol could be set up to allow this. Alternatively, if the
set of downloadable terminals is kept small and the code needed for all these
terminals is within some reasonable limit (which is a function of extra RAM
space in the MXE) the download code for the terminal could be passed to the
MXE at system configuration time and all terminal downloading would be
transparent to the 2200.

Once the terminal is ready to act as a Remote Editor (ie it has been
downloaded if necessary and the terminal has been command to use the extended
protocol) all editing can be done using the terminal as editor.

The selection of editor mode could be automatic or manual. If manual,
an MXE command mode command could be implemented to select the mode of remote
editing desired (two modes: the MXE always keeps a copy of the screen or the
MXE gets updated as needed). It is also be possible that criteria could be
developed for the MXE to decide which mode it to be enabled. The criteria for
auto mode selection could be changed as with future MXE code releases when it
became necessary to respond to changes in communications technology.

Page 4

Protocol Extensions:

This section contains a description of the added command structure at
the protocol level.

The control byte from the terminal to the MXE after each reset would be
a hex(E3). This code would signify to the MXE that the terminal supports some
subset of the extended protocol. This byte is NOT escaped. The VP Operating
System will interpret this byte as a $CLOSE text atom (using an MXD. The MXE
will not pass this byte to the 2200).

The extended protocol adds new commands to the currently existing
command structure from the MXE to the terminal. In this direction the command
escape code is hex(FB) and is followed by one byte designating the command
desired. No command structure in the opposite direction (from the terminal to
the MXE) currently exists. A new command escape code of hex(FF) would be used
in this direction.

Commands to the Terminal

Code Meaning

FB CO Select protocol mode

FB C1 Pass identification string

FB C2 Start download block

FB C3 End of block (any type of block
FB C4 Execute code

FB C5 Set up edit parameters

FB Cé Start block of edit data

FB C7 Begin edit

FB C8 Cancel edit

FB C9 Continue edit

FB CA Add to e2it buffer at end

FB CB Start biock of keystrokes for edit
FB CC Pass edit buffer to MXE

FB D3 Start Remote Screen Dump Data *
FB D4 Stop Remote Screen Dump Data ~*
FB D8 Stop *

FB DA Go ~

NOTE: to send a data byte of hex(FB) the MXE sends a hex(FB DO)

Commands to the MXE

Code Meaning

FF CO Start device parameter block

FF C1 Start block or edit data

FF C2 Edit termination

FF C3 End of block (any type of block)
FF C4

NOTE: to send a data byte of hex(FF) the terminal sends a hex(FF FF)
* These commands were added when Remote Screen Dump was added to the 2336DW
terminal and would be considered part of the extended protocol.
Page 5

Command descriptions:

Commands to the terminal

FB CO XX XX ... FB C3 - Select Protocol mode

This command would be used to inform the terminal that the MXE will
allow it to use the extended protocol. Parameters would also be passed to
configure the terminal for the selected editing mode, etc, etc. This command
can easily be extended by adding more parameter bytes as new functions are
implemented. The string MUST be ended by an end of block command.

FB C1 - Pass Identification string to MXE

This command instructs the terminal to pass its identification string to
the MXE thereby making the MXE aware of the terminals capabilities and
limitations.

FB C2 - Start Download Block

This is the start of a block code to the terminal. Each block of code
consists of a START command followed by a TWO or FOUR BYTE ADDRESS (depending
on the terminal) followed a variable number of data bytes followed by an END
OF BLOCK command (FB C3).

FB C3 - End of Block

This command signals the end of a block of any type.

FB C4 xxxxxxxx - Execute Code at lLocation xxxx

"xxxxxxxx" is the four byte address of the start of the downloaded
code. On terminals with only two bytes of address space the first two bytes
will by zero.

FB C5 xx xx ... FB C3 - Set Up Edit Parameters

This command designates to the terminal all parameters needed to execute
the next edit. The string of parameters must be terminated by the end of
block command FB F3. The terminal should stop sending keystrokes to the MXEt
at this pcint. A1l keystrokes should be saved in a keyboard buffer for later
use when the edit begins.

FB C6 - Start Block of Edit Data

The MXE uses this command to start the data block which is to be used as
the contents of the edit buffer. This command may be used anytime the MXE
sees fit. The previous contents of the edit buffer is completely wiped clean
but the screen is not changed until the MXE sends a continue edit or begin
edit command.

Page 6

FB C7 - Begin Edit

This command starts the editing process. Until this command is issued
the terminal should not have manipulated the screen in any way.

FB C8 - Cancel Edit

The current edit is cancel and the screen is updated. All bytes are
passed to the MXE as they are typed until the next edit. The contents of the
edit buffer are should not be changed until the next command from the MXE
which operates on the buffer.

FB C9 - Continue Edit

This command causes the editing procedure to continue from exactly where
it left off. This command is generally used after a special function or
recall. The screen should be updated.

FB CA xx xx ... FB C3 - Add to the Edit Buffer

This command is the start of a string which is to be added to the end of
the edit buffer. The end of block command FB C3 must be used to terminate the
string. The screen is not updated until the MXE sends the continue edit
command .

FB CB xx XX ... FB C3 - Start Block of Keystrokes for Edit

The string started by FB CB and ended by FB C3 is to be used as
keystrokes from the keyboard would be. A1l bytes must be valid codes which
can be generated from the keyboard. This string is usually the contents of
the MXE keyboard buffer when the edit command was received from the 2200. The
string should be placed in the keyboard buffer in front of all bytes in the
buffer at the time.

FB CC - Pass Edit Buffer to the MXE

This command instructs the terminal to pass the current contents of the
edit buffer to the MXE. The terminal should respond with command FF Cl.

Page 7

Commands from the Terminal to the MXE

FF CO xXx XX ... FF C3 - Start Device Parameter Block

This command signals the start of the device parameter string. The
string must be terminated by the end of block command FF C3. The string
contains information about the device capabilities and limitations (such as
remote edit support, remote screen dump support, etc.). Since the block is
variable length new functions can easily be added in the future.

FF C1 xx xx ... FF C3 - Start Block of Edit Data

This command signals the begining of an exact copy of the edit buffer in
the terminal. This block must be terminated by end of block command FF C3.
The MXE will replace the contents of its edit buffer with this block. The
block can be no longer than 480 bytes.

FF C2 xx - Edit Termination

This command signals the termination of the edit in the terminal. The
byte immediately following the command describes the type of termination. If
the termination was caused by a return or recall then the terminal will follow
this command by sending the contents of the edit buffer using command FF C1.
Otherwise the terminal will take no further action until the MXE instructs it
to. All editing will cease until the MXE instructs the terminal of its next
action.

FF C3 - End of Block

This command signals the end of a block of any type.

Reset and Halt/Step

Reset (hex(12)) and Halt/Step (hex(13)) in the edit data must be escaped
with transparency escape hex(FC) or they will be interpreted as other than
data. This is in keeping with the conventions already established in the
existing protocol.

Page 8

DOCUMENT SUMMARY

Document Id: 0081E

Document Name: Trip Report, Germany 6/83
Operator: Eric

Author: Eric

Comments:

Pages to be printed 5

Notify Ul13 on system PAM.

Subject: Trip report - Trip to Germany to implement the X.25 network
temporary solution

From : Eric Wilson

Date : 30 JUNE 1983

Distribution:
Neeraj Sen MS 1489
Bruce Patterson MS 1389A
Jerry Sevigney MS 1389A
Rich Racicot MS 1489
John Deutsch MS T14A7A
Peter Thornton MS 13A3B
Tim Sloane MS 13A3B
Heinz Jurack Wang Deutschland

This report is the result of a trip taken by the author in June of 1983
to Germany for the purpose of implementing a solution to the "Terminal Echo
Problem" over an X.25 network. All comments should be sent to Eric Wilson at
MS 1483, Tower ext 7192.

Purpose of the trip

Using a 2200 terminal (2236, 2336 series) over an X.25 network proved to
be inefficient and expensive due to the system packet transfer delay and the
volume of packets used respectively. Normal editing functions were being
performed over the network thus requiring a long period of time for a
character to be echoed to the screen and at least two packets to be
transferred. This was unacceptable to Shell 0il of Germany and British
Petroleum of Germany so the "Echo Off" solution was devised to ease the
situation. This solution was devised as and is still considered a SHORT TERM
solution until WANG is able to provide a long term COMPLETE solution at a
later date.

For a full description of the proposed solution please see "Short term
TEMPORARY solution to the german X.25 packet switching network problem" 13 MAY
1983 by Eric Wilson.

Solution Shortfalls (as implemented)

The solution implemented in Germany was based upon the above mentioned
document with some modifications due to MPAC limitations and timing problems
encountered during testing. Also, the severity of some limitations stated in
the solution proposal was lessened through MXE functionality added during
testing. One timing problem was found to be unsolvable although not
critical. All solution limitations and enhancements are listed below along
with their status.

D It is possible to type outside the proper edit field causing the screen
image of the edit field to be different then the MXE image (the MXE
image will be sent to the 2200 at the end of the edit). This happens
because the MPAC has no knowledge of edit fields and simply echos all
bytes as they are typed. To help rectify this problem the INSERT,
DELETE, BEGIN and END keys perform the added function of reprinting the
contents of the edit field before performing their usual function. In
this way the user can always find out exactly what will be sent to the
2200 at any time.

Page 2

2)

3

4)

Some keystrokes require action by the MXE or the 2200. As this response
must be transmitted over the X.25 network it is possible for a user to
type ahead of the response thereby causing events to occur in the wrong
order on the screen. To prevent this from happening the MPAC waits for
a response from the MXE after sending keystrokes which it knows may
require a response. All responses from the MXE have a HEX(0000)
appended to the end to signal to the MPAC the end of the response.

Until the HEX(0000) is received by the MPAC no local screen editing is
performed and keystrokes are buffered. The MPAC keeps a count of the
number of outstanding responses so that local editing does not resume
until all responses are received.

The utility programmer should be careful not to use HEX(0000) within
LINPUT prefills so as not to confuse the MPAC (although this is a highly
unlikely case as HEX(0000) serves no purpose in normal LINPUT data
streams).

An unsolvable (NON-CRITICAL) MPAC timing problem exists as follows:

If the user were to hold down either the left or right cursor key on a
DW terminal the MPAC would continuously respond by echoing a move cursor
command to the terminal. The cursor keystrokes would be buffered in the
MPAC until a full packet were formed thereby necessitating transmission
to the MXE. When the MPAC sent the packet to the MXE it would loose one
byte from the terminal (because the bytes are coming to fast) thereby
missing one half of a cursor keystroke from the terminal (cursor
keystrokes are two byte escape codes). The MPAC would then see the next
byte (or the byte following the next byte) as a one byte code and would
echo it to the screen instead of a move cursor command. Thus, an
extraneous character would appear in the edit field. Of course, there
is no reason for the user to hold down the cursor key for so long a
time. Although this protlem does not always occur when the unshifted
cursor key is held down it will almost always occur when a shifted
cursor key (5 left or rignt) is held down. In this case the cursor must
wraparound on the screen at least 3 times!

It was previously thought that only DW type keyboards are used on the
system remotely. If this were the case than the function keys need
never be used for cursor movement. As this is NOT the case a
modification needed to be made so that the MXE would respond over the
network to update the screen. This function was not added in Germany
due to equipment malfunctions on the last day before my return to
Lowell. However, this fix will be sent to Germany shortly (Heinz Jurack

is currently visiting WANG Lowell and will take the new version back
with him).

Page 3

Code Testing

As a final test before my return to Lowell the MXE and MPAC code was
installed at a Shell computing center near Munich. The system used was an MVP
with one MXE and two MXD controllers connected to four remote terminals, two
local terminals and a 300 baud modem used for diagnostic purposes by Shell.
One remote terminal was operated using the new code configuration and two
local terminals as before. One of the local terminals was connected to the
MXE and the other to an MXD.

Using Shell's standard network software the new configuration was found
to use packets far more efficiently and response time to most keystrokes was
the same as a local terminal. The editing functions INSERT, DELETE, BEGIN and
END still required MXE action so these functions performed slower (ie with a
network delay).

It was at this stage of the testing that a DW keyboard was connected
remotely and the lack of cursor control noted.

It was not possible to accurately measure such system parameters as
packet usage and network delay due a lack of measuring equipment. Estimates
can be made theoretically but exact figures will vary according to the
application being used. No such conjectures will be made in this report.

Code Status

Shell Germany will test the new code at a selected computing center for
a two to four week period before installing it at all their german sites.
Testing will have already begun by the writing of this report. WANG Germany
will control the MXE code within germany and will absolutly not release the
code outside germany without the written consent of WANG Lowell R&D.

No written legal agreement has been made with Shell Germany or TDT thus
far.

Time Usage

No log was kept of WANG resources utilized on the project. Some figures
are known and are presented here:

Time in germany: 2 weeks = 2*5days/week 10 days
Prep time in Lowell: 3 days 3 days
Wrap-up time in Lowell: 4 days 4 days
Total days 17 days
Total hours 17days * 8hours/day 136 hours

This is an approximation and does not take into account much time spent
in various related activities, other WANG personnel nor WANG equipment usage.

Page 4

Participants

Wang Lowell:
Eric Wilson Software Engineer II
Tim Sloane Market planning

Wang Deutschland GMBH:
Heinz Jurack Manager, Distributed-Information-Processing (DIP)
Telecommunications and Networking
Shell Oil Company of Germany:
Herr Griem Computer systems
Frau Holz Systems analyst

TDT <(Transfer Data Test GMBH):

Antherm Pickhardt Geschdfstfiihrer (Manager)

Gerhard Riedl DFiU-techn.-Unterstiitzung (Technical support
technician)

Herr Bartel DFU-techn.-Unterstiitzung (Technical support
technician)

Page 5

DOCUMENT SUMMARY

Document Id: 0085E

Document Name: TC extension proposal
Operator: Eric

Author: Eric

Comments:

Pages to be printed 8

Notify Ul13 on system PAM.

From: Eric Wilson

Subject: MXE TC extension proposal
Date: 25 July 1983
Distribution:

Rich Racicot
Bruce Patterson
Jerry Sevigney

John Deutsch MS T4A7A
Gene Mantoni MS T14A7A
Tyler Olsen MS 1459

A1l comments on this proposal should be directed to Eric Wilson @Tower x7192,
MS 1489.

This proposal is written in response to several user requests for
extensions to the MXE TC package. It is intended as an extension to the
already existing TC package and would require minimal code changes.

No flow control options are currently supported by MXE TC. The only flow
control currently supported is the interpretation of CTS as output data
throttle and DCD as input data validator. These interpretations are
automatically assumed by the MXE upon configuration. This proposal would
allow the user to select from two forms of flow control in each direction
including Xon/Xoff and various control signals.

It is currently not possible to detect the state of many of the RS 232
signals. This proposal would allow the current state of DCD, RI, DSR, CTS,
DTR and RTS to be read by the user.

It is often necessary to use some RS 232 signals in non-standard ways. This
proposal allows direct user control over RTS and DTR.

The attached appendix contains a description of the current Status Vector,
Control Vector and command formats. The following extensions apply to that
description.

Page 2

Status Vector extension

An eighth byte will be added to the status vector which contain the current
state of all control signals supported by the MXE (in both directions) as
follows:

bit pin meaning

01 8 DCD (Received Line Signal Detector)
02 Always zero

04 6 DSR (Data Set Ready)

08 5 CTS (Clear To Send)

10 20 DTR <(Data Terminal Ready)

20 4 RTS <(Request To Send)

40 22 RI (Ring Indicator)

80 Always zero

Please note that the bit positions for each signal in status byte 2 map
directly on to the above byte.

Also: the user should be careful in his/her interpretation of this new status
byte with respect to bits 02 and 80. If future extensions were to be added to
this byte these bits could take on new meanings causing them to change from
zero. Bits 02 and 80 are guaranteed to be zero for this extension.

The user may read in only 7 bytes if desired so that all old applications will
not be affected by this extension.

Page 3

Communications Control Vector extensions

Seven bytes will be added to the communications control vector. These bytes
will be appended to the end of the currently existing control vector with no
changes to current byte definitions. The seven bytes are as follows:

Byte

2]**

22

23

24

25

26

27

Bit
01"
02"
04***

-08***

10
20
40
80

Meaning

select CTS/DCD as flow control from connected device
select DTR as flow control from MXE

select Xon/Xoff as flow control from connect device
select Xon/Xoff as flow control from MXE

select direct control of DTR from basic program
select direct control of RTS from basic program
always zero

always zero

flow control escape from connected device for
Xon/Xoff two byte escape sequences.

If this byte is zero then a one byte flow control
code is assumed

Xon code from connected device. ***

If byte 22 is NOT zero then this code must be
preceded by escape byte 22 to be interpreted as an
Xon command.

Xoff code from connected device. ™™~

If byte 22 is NOT zero then this code must be
preceded by escape byte 22 to be interpreted as an
Xoff command.

flow control escape from MXE for Xon/Xoff two byte
escape sequences.

If this byte is zero then a one byte flow control
code is assumed
Xon code from MXE. ***

If byte 25 is NOT zero then this code must be
preceded by escape byte 25 to be interpreted as an
Xon command.

Xoff code from MXE. ***

If byte 25 is NOT zero then this code must be
preceded by escape byte 25 to be interpreted as an
Xoff command.

Page 4

If the user does not wish to use any of the above functions then only the
first 20 bytes of the control vector need be loaded. All old applications
will therefor not be affected by this extension.

If Xon/Xoff is not being selected but flow control via DTR is desired the user
need load only byte 21 with the appropriate bits set.

If Xon/Xoff is desired the user should load ALL bytes up to byte 27.

If the user selects Xon/Xoff from the connected device and uses a two byte
escape sequence only valid Xon/Xoff codes will be deleted from the data
stream. - Two byte sequences which are not valid flow controls will be passed
to the users basic program.

When using Xon/Xoff flow control the MXE will send Xon/Xoff controls even when
the connected device has sent an Xoff code.

When using DTR flow control the MXE will accept data from the connected device
even when DTR is inactive. It should be noted however that buffer overrun may
occur if data is received when DTR is Tow.

The MXE will NOT send Xon/Xoff if CTS is low and CTS/DCD are selected as flow
controls.

Xon/Xoff codes will not be recognized when CTS/DCD is selected as flow control
and DCD is low.

The MXE normally interprets CTS as output flow control and DCD as input
data validator signal.

. Caution should be used when designating options in byte 21 (especially
multiple flow control in one direction or mixed combinations)..

If Xon/Xoff is selected and any of bytes 23,24,26,27 are zero then the

MXE will assume no flow control in the direction where the Xon/Xoff
codes are not completely defined.

Page 5

Command Extension

A new command to set the states of DTR and RTS is to be added as follows:
CBS(10) 0BS(xxyyzz) CBS(0C)

Where: bit 10 of xx sets the state of DTR
bit 20 of xx sets the state of RTS
byte yy designates which bits in xx are to be ignored
byte zz designates which states set in xx are to be locked

Byte xx designates the states which DTR and RTS should be set to. 1 is the
active state (positive voltage). Byte yy is a mask which designates which
bits in xx are valid. It is therefore possible to set one or both signals at
the same time. Byte zz allows the option to lock these states so that no
other condition in the MXE may change them (including flow control and opening
output channels)>. Bits 10 and 20 of yy and zz correspond to bits 10 and 20 of
XX-.

This command will set DTR and RTS the the states desired no matter what flow
control option is currently selected. However, if DTR is optioned to flow
control this command will not set the DTR bit permanently unless the lock bit
in zz is set. MWhen the MXE decides to set DTR to a specific state due to flow
conditions it will do so unless byte zz has specified that the state set is a
permanent one in which case the MXE will not change DTR until told to do so.

The disconnect command will work as it does currently by setting DTR inactive
for 3 to 5 seconds and then setting it to active. The DTR lock will be
cleared by the disconnect command.

RTS is set active each time the user opens the output channel. RTS is set
inactive automatically when a line turnaround occurs in half duplex. If byte
zz has locked the state of RTS then RTS will not be changed by the MXE until
told to do so.

The user need not output all three bytes to the MXE each time a signal is
changed. All three bytes (xxyyzz) are saved by the MXE and are overwritten by
each time the command is issued. The user may overwrite 0, 1, 2 or all 3
bytes as desired. The signal states on the RS 232 connector are not changed
until the CBS(OC) is received by the MXE. If the CBS(OC) is not sent then the
current signal states are not changed. It is therefor possible to lock the
current state of DTR and RTS by writing 3 bytes to the MXE with the third byte
containing the desired lock information but writing a CBS(00) instead of a
CBS(0C) to end the command without setting new signal states (beginning a new
command after the third byte will produce the same results but the user should
be careful to reopen the output channel before resuming output).

Page 6

22278 TC board compatibility

These new functions are not being proposed for the 2227B communications
controller. A1l programs which run using the MXE without these extensions
will run on the 2227B. Any attempt to use these functions on a 2227B will be
IGNORED by the 22278 as any command outside the currently defined range is
ignored as are command bytes past 18 in the command vector.

Manhours

Two manweeks will be required to code and test the proposed changes (not
including Q&A).

Page 7

APPENDIX

Page 8

P G

	2200 Terminal Controllers
	Code Notes
	MXE Code Structure
	MXE Data Transfer Facility
	MXE Code extension proposal

	Early Field Support (elided)
	Developer Notes 28 Nov 1983
	MXE Specifications
	MXE Commands
	MXE Description
	MXE Modes
	$MXE command
	MXE command mode
	MXE 2200 interface
	Remote Screen Dump (RSD)
	MXE summary sheet
	ATOMS
	Report on Wang Deutschland X.25 Project
	NML Trip Plans
	Milwakee-Dayton trip report
	MXE RS-232 Pinout
	Estimation of work to add PC disk access to MXE
	Remote editor proposal
	Trip Report, Germany 6/83
	TC extension proposal

