This PDF contains the contents of a folder from the
Wang 2200 development group, labeled

2600 DEVELOPMENT TOOLS

It is an assortment of specifications and some
handwritten notes.

BASBOL

C . ’ MICROPROGRAMMLNG

; +Revised March 24, 1981 .
| Bruce Patterson
i
. \
TN

h

LABORATORIES, INC.

2200 MVP COMPUTER ARCHITECTURE

Author: Bruce M. Patterson

November 30, 1979

e)

ONE INDUSTRIAL AVENUE, LOWELL. MASSACHUSETTS 01851 TEL (617)851-4111 « TWXT1 0-343-6769 « TELEX 94-7421

System Architecture

Wang 2200 computer systems employ a direction execution
high-level-language (HLL) architecture. With direct execution HLL
systems the HLL 1is effectively the machine language of the computer.
Unlike more conventional architectures where the source code 1is
transformed into a diséinct?,object code before processing, the direct
execution system processes the sourée code directly.

The direct execution system provides a number of advantages over more
traditional architectures, not the least of which is its conceptual
simplicity. The more conventional layers of software including
assemblers, linkage editors, compilers, and loaders are eliminated. The
inherent conversational nature. of the system facilitates programming and
debugging. The debug run and execution run are identical. = Error
messages can easily include a listing of the actual source code,
Program execution can be halted, single stepped, and restarted. Since
there is no compilation . phase, the System responds ‘immediately to
program entries and modifications. Programmers can understand the
language semantics by observing the direct response of the system.

The 2200 provides the user with a single HLL, BASIC-2, which is used for
all programming. Proficiency in system use ig easily achieved since
there is only one language to learn. A fundamental design criterion in
the development of BASIC-2 was to provide a self-sufficient language
that would be as flexible as conventional general purpose computer
instruction sets. 1I/0 and data handling language extensions provide the
user with flexibility not usually found in a' high-level-language.

The 2200 is not a pure direct execution machine since the source code is
Preprocessed into a form more memory conservative -and more efficiently
interpreted. However, source and object differences are such that the
breprocessor transformation 1is nearly completely reversible. As a
result, only the condensed code is stored in the machine. The
preprocessing function eliminates gross inefficiencies 1in memory,
timing, and logic requirements.

2200 Hardware

2200 computers consist of a microprogrammed MSI processor coupled with a
number of special purpose LSI I/0 processors &nd controllers. The 0S8
and language interpreter réside in a large control storage memory which
is independent from user data memory; this microprogram directs the
execution of the CPU and coordinates communication with the 1I/0
processors. The independent I/0 Processors permit the overlap' of the
CPU and I/0 processing. The CPU is relieved of the responsibility for
controlling peripherals that would otherwise require frequent or
dedicated CPU attention.

05. 4 (MW Mo\,?vd-w = cmn%mkz%au.y, Mo

&

a«) “\Q
T~ CONIROL/! " ! 1 ! “DATA !
! STORAGE ! ! cPU ! « 1 MEMORY "!

L'MEMORY 1T ! z ™ !

¢ TP ! ! DPU ! ! TC t ! I/O !
! 1ol 1) ! |CONTROLLER!

- S tm® cem O Smm S= Suw S0 = s vem e=m
o]
—
-

9= o= =
o svmf cce o
- -b- — o)

] !

| TERMINAL!
! !

! DEVICE!

1

1

1

- .

1
! !
| T
1
! ! !

Figure 1 2200 System Block Diagram

The 2200 CPU is a pseudo l6-bit processor using a 3-bus architecture for
interconnecting a bank of general purpose, status, and I/0 8-bit
registers and the ALU. A microinstruction can address these registers
as double, single, or half registers for performing 16, 8 or 4-bit
operations. In addition, a bank of 16-bit registers that can be
exchanged with the. data memory address pointer provides quick access to
major system pointers. The extensive microinstruction set consisting of
24-bit words provides decimal and Dbinary arithematic, logical
-operations, and a wide variety of conditional branching instructioms.

In a single CPU cycle, a 24-bit microinstruction can be fetched, 16-bits
of data memory can be fetched, and a lé-bit operation can be performed.
The wide memory path, 600 nsec. cycle time, and rich microinstruction
set provides a highly effective processor for implementing direct
execution languages.

User programs and (system controllers are kept ig_g§53~gggg£zlﬂgf whi
_Z56K can be installed. in e s address space is limited to 64K,
however, data memory is divided into 64K banks. 1In order to provide the
microprogram with access to§control tab1e¥ without switching memory
banks, the lower 8K of the address space always refers to bank 1. The
lower 8K of banks 2, 3, and 4 is not used.

MVP Operating System

The 2200 MvP multiprogramming operating system allows several users to
share a single computer effectively. To accomplish this, the operating
system divides the resources of the computer -- memory, peripherals, and
CPU time, -- among the users. Once each user has been allocated a share
of the computer resources, the operating system acts as a monitor,
allowing each user to utilize the system in turn while preventing the
various users from interfering with each other's computations.

The MVP employs a fixed partition memory scheme. User memory is divided
into a number of sections or "partitions", each of which can store a
separate program. From the wuser's point of view, each partition
functions independently from the other partitions in the system. Each
user may LOAD and RUN BASIC software, compose a program, or perform
Immediate Mode operations. As in a single-user environment, the wuser
has complete control over his or her partition. No user on the system
may halt execution in, or change the program text of, a partition
controlled by another user.

Each terminal may coatrol several partitions executing independent
jobs. At any given time, however, only one of these partitions is in
control of the terminal and thus capable of interacting with the
operator. The partition in control of the terminal is said to be in the
"foreground." Other partitions assigned to the terminal may continue to
-execute in the "background" until operator intervention becomes
necessary. ‘

Although partitions in general function independently of ome another,
there are situations in which it is useful for two or more partitions to
cooperate. Cooperating partitions may share program text and/or data.
The sharing of commonly used programs and data by several partitions
eliminates needless duplication and produces more efficient use of
available memory. The integrity and independence of a partition which
contains shared programs or data are maintained by requiring the
partition to explicitly declare itself to be global (sharable) before it
can be accessed by other partitions. Correspondingly, a partition
wishing to access shared text or data in a global partition must
identify the desired global partition.

————————————————————————————————

ee oum smm s Sem sam Swe Smm eus Omm Omw ewms S=m Gamw 4B 4mm OO om= omm o=y

!

!
! ! Tt
! ! DIAGNOSTICS !_!
' ! !

! !
! SYSTEM !
1 CONFIGURATOR!

!

!

1

TASK SCHEDULER

! !
! PRIORITY !
! ANALYSIS !
1
!
1]

1/0 t t 1/0 !

[}
!
1
1
1
1
1
1
T T !
TP FOR T TPOLL FOR T !
1
I|COMPLETION! !ACTIVITY ! !
1 1

1

1

1

!

!

1

1

!

!

!
TSET CONTROL!
|PARAMETERS !

ITO ACTIVE !
IPARTITION !

!

!
! ! ! !
! LANGUAGE ! ! 1/0 !

! PROCESSOR ! ! DRIVERS !
z !

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Figure 2 Block Diagram of 2200 MVP 0OS

To the programmer who regards the MVP system as a whole, it appears that
all partitions are executing simultaneously. Because all partitions
share a single CPU, however, only ome partition can be executing at any
given moment. The operating system creates the illusion of simultaneous
execution of several programs by rapidly switching from ome to the other
in turn.

Partitions in the 2200 MVP are serviced by the CPU in a "round-robin"
fashion, with priority given to I/0 operations. Each partition in turn
is given a "timeslice" 30 milliseconds (ms) in duration. The CPU has a
30 ms timer which is set at the beginning of the timeslice; at the
completion of each BASIC statement {and at various points in the middle
of long statements and I/0 operations), the clock is checked to see
whether the 30 ms timeslice has been exhausted. When a partition's
timeslice has expired, the operating system saves the status of that
partition so that it may be restored later when that partition's turn
comes around again. The operating system then loads the status of the
next partition in line and begins its 30 ms timeslice. The process of
halting execution of a Partition at the end of its timeslice is called a
"breakpoint".

Timeslices do not always last exactly 30 ms. Unlike many operating
Systems, the MVP switches users (breakpoints) whenever it is convenient
rather than strictly by the clock. This technique reduces the amount of
status information that must be saved, giving the MVP low operating
system overhead when compared with most other multiuser systems. More
importantly, breakpoints may occur in the middle of BASIC I/0
statements. If, for instance; the current partition attempts a disk
access and the disk is hogged by another partitiom, this condition is
quickly detected and a breakpoint occurs. I/0 breakpoints differ from

Program breakpoints in that the partition is specifically marked as -

"waiting for I/0". When the partition's turn comes around again, the
system takes only a few microseconds to decide whether processing may
proceed or whether the partition is still waiting for the I/0 device and
may be bypassed. Thus, if a printer goes "busy" while it performs some
mechanical function or if a partition that does not currently control
the terminal attempts to write to the CRT, the system bypasses that
partition almost as ‘effectively as if it were removed entirely from the
system until the I/0 device becomes available.

DOCUMENTATION

Careful documentation is a requirement of all BASBOL system software.
It is essential for system maintenance. and will encourage complete,
well thought out design with well defined interfaces. Most of the
module documentation should be included within the source 1listings;
however, it is acceptable to provide supplementary narratives and
diagrams in memo form. Documentation should be structured, providing
first a quite general view of the project followed by progressively
more detailed levels of description. The following approach should be
used when documenting a logical software module.

a. Module documentation
< ——

1. Introduction

Should present an overview of the function and scope of the

naive reader. This is the starting point for understanding
what the module does and how it‘ performs that function.

2. Completion Report

Documentation should include a ‘section describing what
portion of the project has currently been implemented. For
BASIC-3, specify all implementation exceptions and
extensions to BASIC-2, For COBOL; include all exceptions
and extensions to ANSI and VS COBOL.”

3. Processing

This section should deseribe how the software performs the
specified function. The explanation should describe what
happens 'in each phase (entry, resolution, and execution) of
processing general flow diagrams should be included to
clarify the process flow where necessary. ‘

y, Data Structures

Descriptions and diagrams explaining -the functionm,
relationships, and data structures used should be provided.

5. Register and Data Memory Use
Register and data memory use common throughout the module

should be deseribed. Include equates for AUX registers and
data memory locations.

d.

e.

Routine Section Comments

A routine generally should be decomposed into logical sectiox.as.
Each section should be separated and started with a description

of the function of that section.

For example, the following routine shifts a string to the right
or left.

*%:2:2:2::::::::::::============
. Describe whether to shift left or right.
LPI,R . START get start address
BLRX CHCL,FIFO,LEFT branch if start dest.
*%::=:====:=::=::=:=:====:::::::
¥ LEFT: shift string to left. Now we start at left end of
string.
LEFT XPA + 1,R, ,0

It is often convenient to ineclude checkpoint information at major
section headers. Current register contents are particularly
useful for program checkout. For example, the following logic is

‘part of the MOVE statement:

#¢= ==SETUP======
* Setup parameters for move
* routine

MVX F3F2, PHPL

#¢-==PERFORM MOVE====
At this point the following

* registers are setup:

*

* AUX 3 = address of descriptioh A
b AUX 4 = address of description B
* AUX 5 = offset to A

* AUX 6 = offset to B

SB MOVE COB MOVE DATA
Source Line Comments
Nearly every source line should be commented as to its logical
function. Avoid deseribing physically what the instruction does,
for example,
MV CH,FO load FO with CH
Blank Lines

Blank lines should be used freely to improve code readability.
Crcmmmta YTamimal Mite af code with blank lines.

5.

f. Tags

Tags within a particular routine -should all begin with the same
prefix, to avoid conflicts with other programmers. Tags
internally referenced should have a numeric suffix. Tags
externally referencable (i.e., entry points) should have an

alphabetic suffix.,
NOTATION CONVENTIONS:
a. byte = logical 8-bit group
b. - ‘bit notation:
1. in a byte, X X X X X X X X
’ 80 40 20 10 08 o4 02 01

2. to reference more than 1 bit in a byte, the HEX value of
the combined bits can be used. For example,

bits CO = bit 80 and bit 40
bits 05 = bit 04 and bit 01
bits A2 = bit 80, bit bit 20 and bit 02

3. in multibyte values (e.g., AUX's), the HEX value of the
bits is used. For example, : '

bit 0001 = low order bit
bits OOOF = low 4 bits
bits FF00 - high byte of value

REGISTER USE

Auxiliary registers 10-1F are reserved for system pointers and flags.
They are referenced by name only (e.g., VSPTR) to improve code
readability. AUX registers 00-OF are for general use. By convention,
subroutines should wuse the lowest numbered registers possible,
Hopefully, this will conserve the register use and minimize conflicts,

The following 1list specifies which AUX's are available during the
various phases of processing.

Entry phase: AUX 0-7

Resolution phase:
COBOL

IDENTIFICATION DIVISION: 0-7

ENVIRONMENT DIVISION: 0-7

DATA DIVISION: O0-F

PROCEDURE DIVISION:
statements: 0-7
global logic: 8-F

7.

BASIC-" . .
statements: 0-7
_ global logic: 8-F

Execution phase: 0-F
The lower level routines should use lower numbered
AUX's. For example, in COBOL the arithmetic and move

primitives use AUX registers 0-6.

Lowest numbered file registers should be used whenever possible.

Typically, entry and return parameters are passed Fhroughnlow numbered
file registers. When 16 bit values are stored in a file registers

pair, the register with the higher address contains the high byte of

_the value.

The low 2-bits of register SL specify the processing phase. The
following equates should be used whenever phase checking is done:

EPHASE EQU FF-03 entry phase (00)
RPHASE EQU 01 resolution phase (01)
¥PHASE EQU 02 execution phase (02)

For example:
BFL XPHASE,SL,TAG1 branch if not exection
BTL RPHASE,SL,TAG2 branch if resolution
BFL RPHASE+XPHASE,SL, TAG3 branch if entry.

BASBOL Base Code

" The MVP BASIC-2 Release 2.1 microprogram provides the base code for

BASBOL development. The base code resides at 0000-SFFF and will be
changed infrequently, perhaps once a month, to incorporate developed
code. Each microprogrammer will be assigned his own 2280 platter which
will contain the base code external symbol. table files, the base object
code, and space for microcode development. The base source code should

be modified at the prescribed update times. During development, the

base code can be patched or routines can be duplicated in the
development space and then modified.

The base object code is contained in the files @BAS.

EYHLARN

8. CONTROL MEMORY MAP T

0000-5DFF .

BASE
CODE

5E00-5FFF

e

‘MDU

6000-TFFF

NEW
, CODE

Current development units are limited to 32K; however, 64K units are
under _development.

9. DEVELOPMENT SYSTEMS

Four MDU systems are available for debugging microcode. A floppy disk
(/310 or /320) and a sort to the band printer (/216) is available on
each system.

~ Three additional 256K MVP systems are used for monltorlng the MDU
systems, editing, and assembling.

. System #1 is used for editing, assembling, and 2280 backup to
tape. Assembling is done via terminals in the 1lab. . The
following perpherals are available:

y 22704 - (/7310) floppy disk
2260BC-2 (/320) 10 mb disk
2280-3 - (/D30-/D=75) Pair of 80 mb disks
2263 (/7215) chain printer
2273 (/7216) band printer
22094 (/0TB) tape -drive
o System #2 monitors MDU #1 and MDU #2 and provides partitions for
editing. The following perpherals are available:
2270A (/310) floppy disk, shared with MDU #1
2270A - (/320) floppy disk, shared with MDU #2
2280-3 (/D30-/D75) pair of 80 mb disks
2273 (/7216) band printer
. System #3 monitors MDU #3 and MDU #4 and provides partitions for
editing. The following perpherals are available:
22704 (/310) floppy, shared with MDU #3
22T0A (/320) floppy, shares with MDU #4
2280-3 (/D30-/D75) pair of 8 mb disks o

2273 (/7216) band printer

=3

!
i
13
i
t
¢

‘F\ (WANG) LABORATORIES, INC.

MEMORANDUM
TO: 2600 Distribution
FROM: F, Vine, B, Patterson
DATE3 August 27, 1975, Revised September 12, 1975

§UBJECT: Revisions to 2600 Hardware Structure

This memo describes changes, as understood by 2600 microcoding groups, to the
2600 CPU specifications described in the document "2600 Calculator Structure"
dated December 6, 1974, Revised Pebruary 14, 1975. Additional specifications
are also provided. Updated pages for the specifications document are included,
If any specifications are incorrect, please provide corrected specification
A.S.A.P,) .

l. Deletion of binary add (A) instruction
The register instruction binary add (A) has been eliminated from the
micro-instruction repertoire. The binary add with carry (AC) instruction
suffices since carry can be set off at the beginning of the instruction,
Note, that the AI and ACI instructions have not been eliminated,

2, Addition of binary subtract with carry (SC) instruction

The register instruction binary subtract with carry (SC) replaces the A
instruction,

3. Write control memory (SR, WCM) instruction
The SR, WCM instruction requires that the high 8-bits of the instruction
being written (K register) be complemented; PH, PL remain as originally
specified (true, uncomplemented).
The data read by a SR, RCM instruction is true in K, PH, and PL.

4o Write to data memory on an extended register instruction
In an extended register operation with write to data memory specified, the

high order byte of the result is written (i.e., the result of the 2nd half
. of the operation).

836 NORTH STREET, TEWKSBURY, MASSACHUSETTS 01876 * TEL. (6!7) 8514111 * TWX 710-343-6769 * TELEX 94-7421

Se

6.

7e

8.

Instruction timings

The cycle time is 600 nanoseconds for all instructions except for the
following 3 that execute in 800 nanoseconds:

BLERX
BLRX
SR

and the following 2 instructions that execute in 1,6 microseconds.

sk, ke gl Ke W?ﬁmwﬂ R

SR, WCM [/ ot CARO2ELO%
Trap addresses (located in PROM/ROM bootstrap area)
8000 -~ PECM (parity error in control memory)
8001 -- RESET
8002 -- PEDM (parity error in data memory)
8003 =~ POWER ON :
8004 -- 800F (spares)
Load PC's immediate instruction extention
Write to data memory (W1, W2) are legal on LPI instructions; however, the
data written is always zero since there are no extra bits available to
specify what is to be written. In previous specifications write was
illegal on LPI instructions.
Parity specifications

Page 14 deseribes instruction and data parity and parity errors.-

ot . AT ¢

T e g e e,

(WANG) wusomsronss, me.

‘e

MEMORANDUH

T0: 2600 FILE

FROM: Bruce Patterson

DATE: December 6, 1974, Revised February 14, 1975, Revised Sept. 12, 1975

SUBJECT : 2600 Calculator Structure

the 2600 structure as of December 1, 1974, 1I/0
The following 1list

ed in the memo '"2600

The following memo describes
specification will be described in another document,

summarizes the major changes to the specifications present
Calculator Structure" dated October 11, 1974:

1. Due to timing considerations, instructions that reference data memory will
use the contents of PH and PL at the beginning of the instruction as the
memory address. Previously, the contents of PH and PL at the end of the
instructions were to be used. The LPI instruction is the only exception
to the rulej if an LPI instruction specifies a read or write, the ' new
contents of PH and -PL will be used as the memory address.

2. The codes for the Mini Instructions and SHFT instruction have been
slightly changed for easier decoding.

3. The instructions that Read and Write control memory (RCM, WCM) have been
replaced by 2 new instructions (SR,.RCM and SR, WCM).

Note, that the SHFT instruction has been modified so. that either the high or low

4=bits of both the A and B BUS registers can be specified. Also, A-BUS
specification of PC incrementing and decrementing is disabled during extended

_operations.

836 NORTH STREET, TEWKSBURY, MASSACHUSETTS 01676 * TEL. (617) 851-4111 * TWX 710-343-6769 * TELEX 94-7421

(WANG) wasosronss e

~-MEMORANDUM

TO: 2600 File i

; FROM: Norman Lourie, Bob Kolk, Bruce Patterson
- DATE: October 11, 1974, REVISED December 5, 1974, REVISED February 14, 1975,

A,

- REVISED September 12, 1975
| SUBJECT: 2600 Calculator Structure

This memo will specify in detail the register structure, instruction set and ' !
memory referencing structure for a 24-bit micro-programmed processor which is
planned for the 2600. Although maintaining the A, B, C bus structure of the 800

micro-processor, it has a number of features which will significantly improve
- speed, code efficiency, and capacity.

A, Register Structure

a ' Figure 1 illustrates the tentative register structure for the processor.

The processor will contain 15 8-bit registers which can be read and/or
vritten by micro-program instructions, an arithmetic logic unit and
registers for holding the current 24-bit micro-program instruction and
16-bit address, and 32 16-bit auxiliary registers which back up the Data
Memory Program Counter. In addition, an 8-bit dummy register exists, the
dummy register cannot hold data; its value is always zero. Also, a 96 I

level subroutine stack is provided to allow efficient subroutine calling.

836 NORTH STREET, TEWKSBURY, MASSACHUSETTS 01876 * TEL. (617) 851-4111 * TWX 710-343-6769 * TELEX 94-7421

aveay OIP9 oL dn) < v
L1g-91 XIOWAW VIV a0 ~_
(°1d | W 1I9-8 < T < ¢
yatm s,0d)0 (s,2d)D
A4
b HD SSAYAAV
q904.S VIV o
11d1N0g, L19-91

\ A4 _ ‘ Z 41I¥M/T FLIUM

*

|
‘4
snga-v
\ / nu 0d A 1d Hd 1S HS
—2 1+ ML 4

—»
--
e}
L p

8-BIT WRITE TO RAM FROM C-BUS

AR & sﬂl
q0d.L
v dNI SY4ISIOTY
®) Xny
4> A BD “NAX .mzv
L — 00 ‘ag¥ ‘ITvH
‘ w:ﬂlu) 1 B
“IOUINOD DI901 ONIWLL l XUOWIN
oriawirey € <ugaonac TOYINGD -
AFISIHTY NOIIDNYMISNI | LIg-vZ
. {hovils ssauaav
(¥4INNOD - - NINIAY
NOIIDNUISNI) [¢—P ANIINOYENS
F S, 01 . TIATT 96

e

NAISIOFY 0097 T MUNOIA

3

. (blr
(1) SH - Status Register High
An 8-bit register used to sense or set various ar tic, I/0, and
keyboard status conditions. It has the following assignments:
T tt————

DP | PE| HALT RB| RFN| CRB| Ca

7 6 5 4 3 2 1 0

T ﬁ A A A 7

K

L CARRY (BIT 0) (H/M)

0 = NO CARRY
1 = CARRY

—
\'\ .
ey

CRB (BIT 1) (H/M) (ALIAS KBD)
0 = ALLOW INPUT FROM KBD
OR SELECTED DEVICE
(I.E., CPU IS READY)
1 = INHIBIT ALL INPUT FROM
DEVICES (I.E., CPU BUSY)

KFN (BIT 2) (H/M) .
SET TO 1 WHEN INPUT RECEIVED
FROM KBD IS SPECIAL FUNCTION
CODE. IT IS A 9TH DATA BIT
FOR INPUT. :

@BH 3) (0) .
>~ 0 = DEVICE NOT_ENABLED OR BUSY,
1 = DEVICE ENABLED OR READY |

=SPARE- (BIT 4)

HALT (BIT 5) (H/M)
SET TO 1 WHEN HALT/STEP PRESSED
ON KBD

PARITY (BIT 6) (H/M)
SET TO 1 WHEN A PARITY ERROR
OCCURS ON CONTROL OR DATA
MEMORY

DPRTY (BIT 7) (M) .
0 = TRAP IF PARITY- ERROR
1 = DO NOT TRAP IF PARITY ERROR

NOTE: (M) = Set by microprogram only‘.
(1) = Set by hardware only (D. C. level).
(M/H) = Set by microprogram or hardware.

‘ (2)

(3

(4)

5)

(6)

SL - Status Register Low

An 8-bit status register used by the micro-program to indicate phase
of processing, mode, and other conditions. This register 1s set
only by the micro-program.

PH, PL - Data Memory Program Counters (PC's)

‘are read into the CH and CL registers.

These 2 registers are used to hold the 16-bit current address of
data words which are read from and written into Data Hemory or
Control Memory.

Data memory reads and writes are specified in the register
instructions by use of the DD bits. For writes, 8-bit data is
written from the C-bus to the Data memory location specified by the
jnitial contents of the PC registers, For reads, 16-bits of data
The details of memory
addressing are described in a later section.

The PC's are also used for reading and writing the low 16-bits of a
24~bit instruction in control memory.

K = Keyboard Input and I/0 Registers

This 8-bit register is used to receive keyboard input and to receive
and send data to and from other I/0 devices. The K register is also
used to read or write data to Control Memory.

FO - F7 - File Registers

These eight 8-bit registers are general purpose registers which will
be used to perform arithmetic computations and related calculator
processing. The file registers can be both source and object
registers for any of the register transfer micro instructions,

ALU = Arithmetic Logic Unit (5-bit path)

This unit is used to perform the addition, subtraction, and Boolean
functions specified by the micro-program instructions.

Eight-bit data paths are input from the A and B bus and output to
the C=bus. For add instructions, a carry bit is also transferred
between the ALU and status register bit SHp, if specified.

(7)

(8)

(9)

AUX 0 - IF - Auxiliary PC Save Registers

There are up to 32 16-bit registers which are used to temporarily
save and restore - the contents to the Data memory program counters
(PH, PL). Sixteen bit transfers of PC's 5 AUX and AUX -+ PC's and a
sixteen bit exchange are provided. These operations are extremely
useful when Data is being moved, or when two sets of data are being
operated on at the same time, When the address is transferred (or
exchanged) to the Auxiliary registers, a 16-bit incrementing or
decrementing of +1,+2, or * 3 can be specified on the data
received by the auxiliary register by certain mini-instructions.,

The AUX registers are selected by the five Ax bits of the
mini-instructions which specify the transfers and exchange,

CH, CL - Data Memory Read Buffers

These two 8-bit registers are used to receive the 16-bits of data
read from data memory. CH will always receive the 8~bits of data
from RAM that is exactly specified by the 16-bit address in PH, PL,
CL will receive the 8-bit word located at the address specified in

ICl, IC2, IC3, IC4 - Instruction Program Counter

The four 4-bit registers contain the current micro-program
instruction address., Although these registers are not addressable
by register instructions, they are reset by Branch, Subroutine
Branch and Subroutine Return Instructions. A 96 level circular
subroutine address save stack is available to save and restore the
IC register, 1In addition, commands are available to transfer the PC
registers (Data Memory program counter) to and from the stack.

B.

e

lfemory Addressing Structure

The processor can be considered to have two separate memories:

1)

(2)

Control Memory (24-bit RAM)

" This RAM memory contains up to 64K of 24-bit words. It holds the

micro-instructions. Instructions fetched and executed under control
of the Instruction Program Counter, (IC1l, IC2, IC3, IC4), which is
indexed for sequential instruction execution and reset for branch,
subroutine branch and return micro instructions.

Control Memory is available in increments of 4K words, up to 64K

words. Since only 10 bits are referenced by some branch
instructions, instruction memory can be thought of as paged memory

" with 1024 24-bit words per page for these instructions and an
" in-page jump is performed. Other instructions allow full 16-bit

(64K) transfers.
Data Memory (8/16-Bit RAM)

Data Memory is the memory which is read and written by the micro
instruction. Up to 64K of 8-bit RAM (Random Access Memory) can be
addressed.

The memory is addressed by the Data memory program counters (PH,
PL). The program counter contains a 16-bit address which addresses
a location in RAM.

Reads and writes are done by having non~zero data in the DD bits of
register instructions. (00 = no read or write, Ol = read, 10 =
write 1, 11 = write 2). For a read, 16-bits are read from Data
memory. CH receives the 8-bits of data specified by the address in
the PC's. CL receives the 8-bit word located at the address in the
PC's but with the low order bit of the address (PL;) complemented
(i.e., the address in PC's + 1).

For a write 1, 8-bits are written from the C~Bus (final result of a
register instruction) to the address specified by the initial
contents of the PC's. For a write 2, 8-bits are written from the
C-Bus to the address in the PC's but with the 1low order bit of the
address complemented. (i.e., the address is PC's + 1).

(tedor T 20) poxowity g L
UOTATITITINS oI syyrers . .
<o L s g sdopy=dryy qul 325 :g : o
BEIAPPR yduTag Sy eeyy
T = X JT uorivavdo popuazxy X .
T o3 L1320 300 W qT

0 04 L1180 Ja8 w ABME HaBm -
| A22md 398 ou 0p - g puviddo ajwypoumy speceyg
Uotae21330de (Oyg) Kiawd 995 smoes 83q~ U3y = T
€~80d = TIL 8IFq~y MOT w» ¢ .
2 -8,00 = O[T 29387332 Jo BITq~y AOT/YIFH iTH ‘g .
) T=80 = 10T E7M1EA - T
8,0d = OT T 937 = 0OF. .
€+8,0d = 110 ., prax = 10
T+ 801 = 010 93ITIN/PTIX Ou = QQ
T+959 = 7100 UOTIEIFITI3ds aIpan/pesy :qq -
8,94 = 000 _ 8821ppy 2038TBIY SAA-0 20009 >
UOFIBITITOads Juoud1o0p/Jucworduy fuyr ur 8821ppy 2938T39Y Sng-@ :qaag
19387421 AIRYTIXNE JO 6SIIPPY SXVXVVXYXY : §821ppy 1938339y ‘sug~v vvvy
“--mzumuxguzxmuzuxm.ﬁamcﬂ YDUBIq TCUOTIFPUCIU] - € T
ST ¥Y ¥ oY Od|M oM od oufy w9 ouly vytoltoot uduRig IUrInOIqNS - as FIRIG
(4378-9 WH | (S3TG~0T A1) G914 TORVER 1 q¢0040 SNOLIDOMULSHI WONVId °IA .
mmnn<<.<<gzxgzmx.._nmAcﬁﬁoﬁ I91STAIY # I YOURIg = wnm
mnnn<<<<guxzxum==m_coﬂcu 1935H8ay = IT WPURIF - yug
mnnm<<<<m¢xazuuzmmlﬁaooa 2318T33Y =.> IT YOUUIE ~ ' YyIg .
nnnn<<<<zgzmxg.xxzxr,oooﬁ J2ISFday > IT yomEag -~ yIg ; .
(§3F4-0T roT) : : i '
sng-g sng-v . dTI1d Honvug 300940 SHOTIONUISHT HOMVES WILSIOHNY °A w -
‘8% 8 §H W W RY ¥ 4 99 4 8 9% Cat|IfT 1T T ASTR £ IT Pueag - ang {
_nmmnzzzzuxmmxnx«uua_oaad jse)l = IF youwexg - QYug i
nnmnzzzzzx.._xgzzmmméuoﬁu . 2378y 3IT Puelg - ag !
"mmnnszzzxxzxuxammxéooaa . 9MIL IF WouRIg - ig S
]
(§3T4~0T HOT) e : .
ASVH a1 Hoxvug 20040 SHOTIDNULSNT HOMVMG NSVH °AI |
111 1 1 1/ 3 1 1fa 9{x 1)t 1JTiT 0 o dj'LpanAL 8,04 prOT - | 147
: TIT T T 1|0 0 o : -
I|T T T ofo 0 0
..-....aaaaa._.a_moo...nﬂ.naoao and3ng/Indur toxwey - gpp ! =+
nnmma----noonnn.ﬁﬂaﬁocec | uanlay oupInoigns - us ! .
_.n..n....u..uuc.hou..na.nua‘oooc ¥S + ATowoll 70IIU0) BITAIN - oM ‘ug H
“.u....‘..u......ﬁuo..uuﬁa.n.nooeo ¥S + Atowsf foa3ue) peey — oy ‘ug M
manmnunnun-nanannﬂoadqo 9,0d 03 ¥BIg o3sUBIL -~ ggp R
18 8 € 0] « -~ « -} -[GFOT 0]a a +Tit 0 1 o0|lo o- 9815 03 8,04 I9ySUBIL - gqx .
(8 8 8 9%V Xy XV XV|XVjuI ul of q q *T|IT T 0 0{0 0 0 ¥y 03 9,04 aVuepxy - vy | .
.nmnn%<u<g<n<x<.ﬁ:~onn+naooooo ¥ny 03 5,04 a9yTuRIL - yiz o
nmnmn<x<x<x<x<|-oann.n.n I 0 T{0 00O 8,04 01 xny l938weIl - qvi
IIT 0 0 T|0 0 o
sng-g a4 a . 24000 SNOIIOMILSMI IKIK °*III '
99949 IITI000o0lda=~mw ~-jo T.IlT T o 93IFpaum] ATd3ITn Axvutgy - IR '
nanmuaauuuuonnnuuﬁo.nﬂﬁo_. djvrpoumy &11e) WITA ppy KIBUFE - 19y
nnnnaumaouuonnnuuH“..noaﬁo#ﬁﬁbuauﬁ?uuﬂu?mﬂaﬂuunn 195a .
2 8 ¢ 49111 31/3 090 92 a|q G I IfI XI;0 Of|T T 0 asvppoumy Kizen UY3ITA PPV TeWID(-~ 1ovq- T
nnmnunuuuuoonamauﬂaﬁoac 23T PPy AIBUTY - v .
nnnammuaouoonnuﬂuﬁcaoﬁo 9IVFPAWE pUY = TNV .
nnnnaanuooou:auuH.ﬁaooao 9IVFPIW] X0 SATSNTIXT - TyOX .
nmanuuuuouounnnaﬂﬂoooﬁo 2IBFPIML 20 - I1HO
_ (HOT) [ISST
SNE-g § JIVIGADNI SNg-0 | 4 At IWIADHI - adoddo SROLIONNLSHY YILSIOHIY AIVIATIST °I 'y
, 1
nnnm<<<<oouo= 0o o IS - s
89 9 8y vy vio g alg T 00 Atdratng Qvorg - L
99 9 8fv vy vis g a3 a|q T 09 £23e) 4ITA PPV L1vupgy - v
29 8 9ly vv vlo g3 a]lg T 0 ¢ 43ze) qara Wesigng TemIOq - ggq . 1
T 9 g afvvy vy g s glg T 0 0 A1ty yira ppv TenTIsG - gvq
Plerg s alvvy vy 2.9|a 0 0 v A133) 4aa 3enIqRs Lawupg - s .
=m==<<<<uou\ua 0 0 0 puv - qgyv -
n‘m/==<.<<<ou,,oo= o o o 20 JAISNTIXT - Yoy . .
==<<<<uuou=...58o“ 0 0 o : . 0 - %0 N
Silg-y SNT=D_ | a_a Kawp| iyl 40240 SHOTIOMILSNT ¥ALSIONY °f .

:
S 9 ¢t Y 60T IT 71 €1 YL ST 9T 4T T 61 0% 1% oel

118 FOIIDMILSMI 0097 *q

R bt et S DURT Y

@r 1. DD =~ Data Memory Read and Write Selection Bits

DD = 00 Null (No read or write)

DD = 01 Read; 16 bits read from memory into CH, CL
where C(PC's) ~ CH
C(PC's with PLg) =+ CL
DD =10 Write 1l; 8=bit write to memory

" c-BUS + C(PC's)

DD =11 Write 2; 8-bit switched write into memory
T : c-BUS —+ C(PC's with PLg)

2. A, B, and C-Bus Register :Addressing

| A-BUS B=-BUS C-BUS BINARY ADDRESS
! . File registers (FO - F7) FO=-F7 FO=F7 0000 - 0111 .
CL with PC's = PC's = 1 PL PL . 1000
CH with PC's = PC's = 1 PH PH 1001
CL CL illegal 1010
CH CH illegal 1011
CL with PC's = PC's + 1 SL SL 1100
CH with PC's = PC's + 1 SH ‘ SH 1101
Dummy with PC's = PC's + 1 K K’ 4 1110
Dummy with PC's = PC's = 1 Dummy Dummy 1111

1. The B-BUS and C-BUS registers are identical except that CL and
CH are illegal on the C-BUS. .

2. The A-BUS field can specify that the PC address bits be
incremented or decremented by 1 at the completion of the
instruction. ‘

3. When the D D bits specify a read or write and the A-BUS field
specifies a PCl = PCl +1, the read or write 1is executed
before the PC's are incremented or decremented.

4, For mini commands with write selected, the B-BUS register will
be written (before PC's are incremented or decremented, if
applicable).

5. ' The "contents" of the dummy register is always zero.

3. X = Extended Operation Bit
Normally, a register instruction performs an 8-bit operation on the
specified A-BUS and B-BUS registers and puts the result in the C-BUS
register. A BLR (branch less than) or BLER (branch less than or
equal) instruction compares two 8-bit registers and branches if the
relation is true. In these cases, the extended operation bit is not
set (i.e., X = 0).
If the extended operation bit is set (i.e., X =1), a register
instruction performs a 16-bit operation on a pair of A-BUS registers
with a pair of B~BUS registers and puts the result in a pair of C-BUS
registers. A BLR (branch less than) or BLER (branch less than or
equal) instruction compares a pair of A-BUS registers with a pair of
B-BUS registers and branches if the relation is true.
For extended operations, the register pair is treated as a single
16-bit register. The registers used are determined ag follows. The
low half of the pair is the register whose address is specified in
the instruction. The high half of the pair is the register whose
address is one more than the address specified,

EXTENDED OPERATION REGISTER PAIRS
A~BUS B-BUS C-BUS BINARY ADDRESS

F1, FO F1, FO F1, FO 0000
F2, F1 F2, Fl1 F2, F1 0001
F3, F2 F3, F2 F3, F2 0010
F4, F3 F4, F3 F4, F3 0011
F5, F4 F5, F4 F5, F4 0100
F6, F5 Fé6, F5 F6, F5 0101
F7, F6 F7, Fé6 F7, F6 0110
CL, F7 PL, F7 PL, F7 0111
CH, CL PH, PL PH, PL 1000
CL, CH CL, PH illegal 1001
CH, CL CH, CL illegal 1010
CL, CH SL, CH illegal 1011
CH, CL SH, SL SH, SL 1100
Dunmy, CH K, SH K, SH 1101
Dunmy, Dummy Dummy, K Dummy, K 1110
FO, Dummy FO, Dummy FO, Dummy 1111

NOTE:

1. On extended operations A-BUS specification of PC incrementing or
decrementing is disabled. '

2, On an extended operation, if write is specified the value written is

the high order result,

-

4,

Se

6.

7.

8.

CaCa —- Set Carry Field

All register instructions except M and SHFT can set the carry bit
(SHg) to 0 or 1 at the beginning of the instruction execution. The

set carry options are:

CaCa = 00 —- Do not set. carry
CaCa = 10 =-- Set carry to 0
CaCa = 11 == Set carry tol

(NOTE: Ol reserved for SHFT)
Ha, Hb — High/Low 4-Bit Selection
The Mask Branch, M, and MI instructions operate on either the high
or low 4 bits of the A and/or B registers. The Ha bit specifies the

high or low 4 bits of the A-Bus register; the Hb bit specifies the
high or low 4 bits of the B-Bus register.

Ha = 0 Low 4-bits of A-Bus register
Ha = 1 High 4~bits of A-Bus register
Hb = 0 Low 4=-bits of B-Bus register
Hb = 1 High 4-bits of B-Bus register

II.esI == Immediate Operand

For Immediate Register Instructioms, the actual 8 bits contained in
the Immediate Operand Field (IIII) are gated directly to the A-Bus.
For the LPI '(load PC's immediate) instruction, the PC's are set
equal to the 16-bit immediate field.

RR...R = Branch Addresses

The R field is the branch address specified by the
micro-instruction. The 10-bit address branches are treated as
in-page branching for theoretical pages of 1024 steps. (i.e., the
upper 6 bits of the branch address are the same as that of the
current instruction).

MMMM == Branch Méék

For the mask branch instructions, these 4 bits in the instruction
have the following meaning:

Branch True, Branch False —- MMMM specifies what bits in the
specified B-bus register are to be

tested.

M = 1, test the corresponding bit; if
M = 0, do not test the corresponding
bit'

4

- 10 =

g

9.

10,

Branch Equal, Branch Not Equal -~- MMMM is the 4-bit pattern to which
: . the high or 1low 4 bits of the
specified B-Bus register is to be

compared,

AXAXARXAXAX —— Auxiliary Register Field

This field specifies which of the 32 Auxiliary registers is to be
used in the Auxiliary -- PC Mini-Instruction, Three mini-
instructions (TPA, TAP, and XPA) transfer 16 bits between the
program counter (PH, PL) and the specified Aux register (0 - 1F),

X In In - Increment/Decrement Field

The + In In field specifies whether or not the 16=bit value in the
PC's 1is to be incremented or decremented (by 1, 2, or 3) as it is
being transferred to the Auxiliary register’ (TPA, XPA) or subroutine
return stack (TPS).

+InlIn = 000 PC's + Aux or stack
+InIn = 001 PC's +1 ~+ Aux or stack
+InIn = 010 PC's + 2 + Aux or stack
+InIn = 011 PC's + 3 + Aux or stack
+InIn = 100 PC's + Aux or stack
+InIn = 101 PC's = 1 + Aux or stack
*InIn = 110 PC's = 2 * Awx or stack
+InIn = 111 PC's = 3 * Aux or stack

1
|
i
|

E. Timing Sequence

The following timing sequence of events takes place for the 2600
micro-instructions:

Register and Mini-Instruction Timing Sequence

L.

~. 20

3.

.4.

¢

6.

7e

8.

For LPI instructions, the PC registers are joaded with the specified
value.

1f DD bits specify a Read or Write, the contents of the Data Memory
Program Counter (pH, PL) are transferred to the memory control logic

) to select the address.

‘The dinitial contents of the registers selected by the A-Bus (or

Immediate Operand), and the B-Bus fields, and carry bit are gated to
the Buses and into the ALU.)
1f set carry is specified (CaCa field of Register Instructions), the
carry (SHO) is set as specified.

The arithmetic or logical operation is performed in the ALU.

The results of the arithmetic or logical operation in the ALU 1is
stored in the register specified by the C-Bus field.

1f PC, stack, and Auxiliary Register transfers or exchanges are
specified by the instruction, they are done. (TPA, TAP, XPA, TPS,
TSP).

1f Auxiliary register +1, * 2, or+3 incrementing or decrementing
is specified, (e«ge., TP+1, XPA-3, XPA+2) +1, + 2, or + 3 1s added
with 16=-bit of data received by the Auxiliary PC register,

If a Read or Write is specified, data ig read into CH, CL or written
from C-Bus (result of ALU operation) to memorye.

If PC incrementing or decrementing is specified by the A-field, PC's
are incremented or decremented by 1.

The Instruction Program Counter (IC's) is incremented by 1.

F,

Branch Instruction Timing S Juence

1, For Conditional Branches, the test is made to branch or not branch
based on the contents of the B-Bug Register. .

2. If the test ig valid, the branch is made by replacing the low order
10 or full 16-bits of the IC registers with the R instruction
operands,

3. If the test is not valid, the IC counters are incremented by 1 to
get the next instruction,

(Note == For Subroutine Branches and Subroutine Returns, the
address saved in the subroutine stack is the current
instruction address + 1, The stack is circular,

4, If PC increﬁenting or decrementing is specified by the A-field, PC's
are incremented or decremented by 1 after the branch test is
performed, The incrementing will occur whether the test 1s true or
falae. :

2600 Trap Locations

16 control memory locations are reserved as traps (address 8000 through
800F). When a trap condition occurs, normal Processing is immediately
terminated and an automatic branch is made to the appropriate trap
location, At the trap location is a branch instruction which transfers

8000 -~ PECM (parity error in control memory)
8001 — RESET

8002 -~ PEDM (parity error in data memory) .
8003 -- POR (power on — MASTER INITIALIZE)

-13 -

|

Ge

Memory Parity

The 2600 uses odd parity on both control memory and data memory.

1.

(2

2,

3.

_ the trap 1is inhibited. The address of the data with bad pa

Control Memory Parity

The high order bit of each instruction in control memory is the
parity bit; parity is odd. The parity bit of each instruction is
generated by software; the SR, WCM instruction writes the 24 bits in
the K, PH, and PL (parity and instruction). The WCM instruction does
not generate parity.

Instruction parity is checked when fetching an instruction for
execution, If there is a parity error, the system will set parity
error status bit (SH n] and trap to location 8000 in control
memory. The address 21 of the instruction with bad pari%y is pushed
into the subroutine return stack.

If the instruction (data) read by a SR, RCM instruction has bad
parity, the parity error status- bit (SH,) is set to 1. No trap is
made and the address of the instruction with bad parity is not saved
in the stack.

Data Memory Parity

0dd parity is generated and written by the hardware at the time of a
write to data memory.

On a read from data memory, parity is checked on the 16 bits read.
If there is a parity error, the parity error status bits (SH.) is set
to 1., If the parity trap control status bit (SH.) is set to 0, the
system will trap to location 8002;, in control memory. If SEI =],

ty is
not saved in the stack regardless of whether the system traps or not.
Also, the PC's may not be the address of the data with bad parity
(e.g., XPA, R).

Parity Status Bits

SH6 — parity error. Set to 1 whenever bad parity is detected
when fetching instructions or reading data.

SHy == parity trap control. (Data Memory)

0 = parity error trap for data memory enabled.
1 = parity error trap for data memory inhibited,

- 14 =

APPENDIX A

DETAILED DESCRIPTION
OF THE

INSTRUCTION SET

OR — OR

0 0,00 0|x|0|Ca,Ca|D D|C,C.C,SC A A A AlB B BB

d
If X = 0, the OR of the registers gpecified by the A and B fields is formed an
the resuit is stored in the register specified by the C field. If X =1, the OR
of the register pair specified by the A field is OR'ed with the register pair
specified by the B field and the result is stored in the register pair specified

- by the C field.

Register use in the A, B, and C fields:

FQO - F7, CL-, ci-, CL, CH, CL+, Cht, +, -

A
B FO - F7’ PL’ PH,] C'L’ CH’ SL’ SH’ K, dumy
(if x = 0) c H FO had F?’ PL’ PH’ Y SIJ’ SH' K’ dumy

Carry (SH) options: CaCa = 00, do not change carry
. caCa = 10, set carry to 0 at beginning of instruction
CaCa = 11, set carry to 1 at beginning of instruction

Read/Write options:

DD = (00: no read or write
DD = 0l: read

DD = 10: Write 1

DD = 11: Write 2

For instructions that modify the PC registers, the read and write address will
be the initial contents of the PC registers, If CH or CL is specified in the A
or B fields, the previous contents of CH or CL will be used in the instruction.

The A field can specify that PC's be incremented or decremented at the end of
the instruction.

_If A and/or B and/or C are set to indicate the dummy register, the net result

will be:
A = Dummy B > C Memorxy]
B = Dummy A > C [Memory]
Cc = Dummy Aor B ~» [Memory] v
A, B = Dummy 0+ C [Memory]
A, C = Dummy B - [Hemo:y]
B, C = Dummy A > [Memory]
A, B, C = Dummy 0 -» [Memory]

XOR —— EXCLUSIVE OR

O'O‘OIO'I Xi0|ca-ca|D D¢ C]C c A,A’A A B'B B!B

Register use in the A, B, and C fields:

A H FO - F?’ CL-, CH-’ CL’ CH, CL+’ Cﬂ"', +’ -
B : Fo - F7, PL, PH, CIG’ CH’ SL’ SH’ K, dumy
({ifX=0) c: Fo - F7, PL, PH, » SL, SH, K, dummy
(1fX=1) c: Fo-F7, L, » SL, SH, K, dummy

Carry (Silo) options: CaCa = 00, do not change carry

CaCa = 10, set carry to 0 at beginning of instruction
CaCa = 11, get carry to 1 at beginning of instruction

Read/Write options:

DD = ¢ no read or write
DD = (0l: read

DD = 10: Write 1

DD = ¢ Write 2

For instructions that modify the PC registers, the read and write address will
be the initial contents of the PC registers. If CH or CL is specified in the A
or B fields, the previous contents of CH or CL will be used in the instruction.

The A field can specify that PC's be incremented or decremented at the end of ,

the instruction,

If A and/or B and/or C are set to indicate the dummy register, the net result
will be:

A = Dummy B + ¢ [Memory]
B = Dummy A > ¢ [Memory]
c = Dummy A®DB - [Memory]
A, B = Dummy 0 > ¢ [Memory]
A, C = Dummy B -+ [Memory]
B, C = Dummy A » [Memory]
A, B, C = Dunmy 0o -~ [Memory]

-~

-

AD — AND

0,0|01110

X|0

CalCa

D
|

D|C ¢ ¢c C|A A A A|B B B B
R | 11 [|

in the C field.

(£ X = 0)

(£ X=1)

A
B
c

C:

Read/Write options:

e o8 OO

Register use in the A, B, and C fields:

If X = 0, the AND of the registers specified by the A and B fields is formed.
The result is stored in the register specified by the C field. If X = 1, the
register pair specified in the A field is AND'ed with the register pair
specified in the B field and the result is stored in the register pair specified

Fo - F7’ CL-, CH-, CL’ CB’ CL"', CH+’ +, -
FO - F7’ PL’ PH, CL, CH’ SL’ SH. K, dllmy
FO - F7’ PL, PH’

FO - F7’ PL’

Carry (SHy) optiomns: CaCa

CaCa
CaCa

oououo
voovo

» SL, SH, K, dummy

00, do not change carry
set carry to O at beginning of imstruction
set carry to 1 at beginning of instruction

10’
1,

00:
0l:
10:

no read or write
read

Write 1
Write 2

For instructions that modify the PC registers, the read and write address will

be the initial contents of the PC registers.

If CH or CL is specified in the A

or B fields, the previous contents of CH or CL will be used in the instructionm.

The A field can specify that PC's be incremented or decremented at the end of

the instruction.

If A and/or B and/or C are set to

w:l.l:!. be:

L J

»w&ycw»

.
wOOw

Dummy
Dummy
Dunmy
Dummy
Dummy
Dummy
Dummy

A,

indicate the dummy register, the net result

COO0OO0OWOO

2R 25 2K R K A -
aQ

— A

[Memory]
[Memory]
[Memory]
[Memory]
[Memory]
[Memory]
[Memory]

SC — BINARY SUBTRACT WITH CARRY

0,0,0.1,1]x[0[ca,caD,D c,c,c,cla A A alB,B,B,B

If X = 0, the 8~bit register specified by the B field is complemented and added,
with carry, to the 8-bit register specified by the A field, The final result is
stored in the register specified by the C field, and SHo will receive the
resultant carry, If X = 1, the register pair specified by the B field 1is
complemented and added, with carry, to the register pair specified by the A
field. The result is stored in the register pair specified by the C field, and
SHy will receive the resultant carry.

Reglster use in the A, B, and C fields:

FO - F7’ CL-’ CH"" CL, CH, CL+’ CH'I" +, -

A

B : Fo - F7’ PII’ PH. CL’ CH, SL’ SH’.K’ dumy
({f X=0) C: FO - F7, PL, PH, » SL, SH, K, dummy
(ifxl) C H FO"‘F7, HO’ ’SI.’ SH’ K’ dumy

Carry (SH¢) options: CaCa = 00, do not change carry
. CaCa 10, set carry to 0 at beginning of instruction
CaCa = 11, set carry to 1 at beginning of instruction

Read/Write optioms:

DD = 00: no read or write
DD = (0l: read

DD = 10: Write 1

DD = 11: Write 2

For instructions that modify the PC registers, the read and write. address will
be the initial contents of the PC registers. If CH or CL is specified in the A
or B fields, the previous contents of CH or CL will be used in the instruction.

The A field can specify that PC's .be incremented or decremented at the end of
the instruction.

If SH 1s specified in the C-field, the results are indeterminate,

If A and/or B and/or C are set to indicate the dummy register, the net result
will be:) }

A = Dummy - B(::) + Carry =+ C Carry [Memory]
B = Dummy A =1+ Carry =+ C Carry [Memory]
A, B = Dummy -1l+Carry - C Carry [Memory]
c = Dummy A - B -1 + Carry - Carry [Memory]
A, C = Dummy - B-1+Carry =~ Carry [Memory]
B, C = Dummy A -1+ Carry -~ Carry [Memory]
A, B, C = Dummy -1+ Carry - Carry [Memory]

- A4 -

DAC — DECIMAL ADD WITH CARRY

0|°.1|0|0 XOCa,Ca D(D C|C|C|C A.A|A|A B|B|B|BI

1f X = 0, the 8-bit registers specified by the A and B fields are the last
resultant carry (SHo) are added together in decimal. The final sum is stored in
the register specified by the C field and SHO will be set equal to the resultant
. carry. The addends must be decimal (0 - 9) or the sum will be indeterminent.
If X =1, the register pair specified by the A field and the last resultant
carry are added in decimal to the register pair specified by the B field; the
result is stored in the register pair specified by the C field and SH; receives
the resultant carry.

Register use in the A, B, and C fields:

A FO - F7’ CIO-’ CH-’ CL’ CH, CL+, CH"" +’ -
B FO - F7, PL’ PH’ CL, CH’ SL. SH’ K, d‘my
(4£ X=0) C: FO-F7, PL, PH, , SL, SH, K, dummy
(if X=1) ¢ FO - F7, PL, , SL, SH, K, dummy

Carry (SHq) options: CaCa = 00, do not change carry .
CaCa = 10, set carry to 0 at beginning of imstruction
CaCa = 11, set carry to 1l at beginning of instruction

-

Read/write options:

00: no read or write
0l: read
10: Write 1

s Write 2

voou
anaoaon

ooy

For instructions that modify the PC registers, the read and write address will
be the initial contents of . the PC registers. If CH or CL is specified in the A
or B fields, the previous contents of CH or CL will be used in the instruction,

The A field can specify that PC's be incremented or ' decremented at the end of
the instruction.

If A or B field registers contain non-decimal data, or if SH is specified in the
C-field, the results are indeterminate.

If A and/or B and/or C are set to indicate the dummy register, the net result
will be:

A = Dummy B+ Carry > C Carry [Memory]
B = Dummy A+ Carry * C Carry [Memory]
A, B = Dummy Carry ~ C Carry [Memory]
c = Dummy A + B + Carry Carry [Memory]
A, C = Dummy B + Carry Carry [Memory]
B, C = Dummy A + Carry Carry [Memory]
A, B, C = Dunmy Carry ~ Carry [(Memory]

- A5 -

T e e s

DSC ~— DECIMAL SUBTRACT WITH CARRY

lo.o.l.o.1|xlolca,Ca."D,DIC.c.c.c!A.AlA.A B.B,B B

decimal and the new carry is gemerated. (That is, the 9's complement of [the B
register] and the carry are added to the A register and the new carry is
generated). The result is stored in the C register,

Similarly, if X = 1, the register pair specified by the B field plus the last
resultant carry is subtracted from the register pair specified by the A field in
decimal and the new carry is generated. The result is stored in the register
pair specified by the C field.

Register use in the A, B, and C fields:

A : FO - F7, CL-, CH~, CL, CH, CL#, Ci+, +, -
B: FO~F7, PL, PH, CL, CH, SL, SH, K, dummy
(1f x 0) c : FO - F7’ PL’ PH, 'y SI‘, SH’ K’ dllmy
(if X=1) c: Fo - F7, PL, ~, SL, SH, K, dummy.

‘Carry (sH,) options: CaCa = 00, do not change carry

CaCa 10, set carry to 0 at beginning of instruction
CaCa = 11, set carry to 1 at beginning of instruction

. Read/Write options:

DD = 00: no read or write
DD = 0l: read

DD = 10: Write 1

DD = 11: Write 2

For instructions that nodify the PC registers, the read and.writé address will
be the initial contents of the PC registers. If CH or CL is specified in the A
or B fields, the previous contents of CH or CL will be used in the instruction.

The A field can specify that PC's be incremented or decremented at the end of
the instruction.

The A and B field reglsters must contain decimal data (0 - 9) or the results are
indeterminate, :

If SH is specified in the C field, the results are :l.hdeterminate.

A = Dummy -B=-Carry -+ C Carry [Memory])
B = Dummy A=-Carry -+ ¢ Carry [Memory]
A, B = Dummy -Carry -+ C Carry [Memory]
c = Dunmy A-B - Carry - Carry [Memory]
A, C = Dummy = B - Carry - Carry [Memory]
B, C = Dummy A - Carry -~ Carry [Memory]
A, B, C = Dummy - Carry - - Carry [Memory]

- Af -

\

A) .

3

AC =—— BINARY ADD WITH CARRY

ot

@ AA.)%

Ca Ca|D, D B8 BB

A A A A

0011 0[x|0

4

c.cc.cC

if X = 0, the 8-bit reéisters specified by the A and B fields and the last
resultant carry (SH() are added together in binary. The final sum is stored in
the register specified by the C field, and SH0 will receive the resultant carry.
If X = 1, the register pair specified by the A field 1is and the last resultant
carry are added in binary to the register pair specified by the B field; the
resultant is stored in the register pair specified by the C field, and SHo will
receive the resultant carry.

Register use in the A, B, and C fields:

Fo - F7’ CL-’ CH-. CL’ CH‘ CL+’ Cn"’, +’ -

A
B . Fo - F7’ PL’ PH. CL’ CH, SL. SH,, K’ d‘]my
(if x = o) c H Fo - F7’ Hl’ PH’ » SL’ SH’ K, dumy
‘(4 X=1) C: FO - F7, PL, » SL, SH, K, dummy
Carry (SHp) options: CaCa = 00, do not change carry

CaCa = 10, set carry to 0 at beginning of imstruction
CaCa = 11, set carry to 1 at begimming of instruction
Read/Write options:
DD = (00: no read or write
\ DD = 0l: read
Sk DD = 10: Writel
DD = 11l: Write 2

o
\ For instructions that modify the PC registers, the read and write address will
be the initial contents of the PC registers. If CH or CL is specified in the A
<or B fields, the previous contents of CH or CL will be used in the ingtruction.

The A field can specify that PC's be incremented or decremented at the end
of the instruction.

If SH is specified in the C-field, the results are indeterminate.

If A and/or B and/or C are set to indicate the dummy register, the net résult

will be:
A = Dummy 0+B+Carry - C Carry [Memory]
B = Dummy A+0+Carry -+ C Carry [Memory]
A, B = Dummy 0+0+Carry + C Carry [Memory]
c = Dummy A + B + Carry -~ Carry [Memory]
A, C = Dummy 0 + B + Carry -~ Carry [Memory])
B, C = Dummy A+ 0 + Carry -~ Carry [Memoxy]
A, B, C = Dummy 0+ 0+ Carry -~ Carry [Memoxy]

- A7 -

M --= BINARY MULTIPLY

00111x0leHaDDCCCCAAAABBBB
TS R N | } | [L1 | =1 "

If X = 0, the low (or high) 4~bits of the register specified in the A field iIs
multiplied in binary by the low (or high) 4=bits of the register specified in
the B field; the product (8-~bits) is stored in the register specified by the C
field, If X = 1, the above operation is performed; the above operation is then
repeated but on the registers whose addresses are one greater than those
specified 4n-the A, B, and C fields.

Selection of high/low 4-bits of A, B registers:
HbHa = 00, low 4=bits of A and low 4~bits of B
HbHa = 01, high 4-bits of A and low 4~bits of B
HbHa = 10, low 4~bits of A and high 4=bits of B
,HbHa = 11, high 4~bits of A and high 4~bits of B

Register use in the A, B, and C fields:

A: FO - F7, CL-, CH~-, CL, CH, CL+, CH+, +, -
B: FO-F7, PL, PH, CL, CH, SL, SH, K, dummy
(1£fX=0) C: FO - F7, PL, PH, s SL, SH, K, dummy
({f X=1) C: FO-F?,PL, s SL, SH, K, dummy
Read/Write options:
DD = 00: no read or write
DD = (0l: read
DD =]10: Write 1l
DD 11: Write 2

For instructions that modify the PC registers, the read and write address will
be the initial contents of the PC registers. If CH or CL is specified in the A
or B fields, the previous contents of CH or CL will be used in the instruction.

The A field can specify that PC's be incremented or decremented at the end '
of the instruction. :

If A and/or B and/or C are set to indicate the duﬁmy register, the net result
will be: .

A = Dummy 0 - ¢C [Memoxy]
B = Dummy 0 - C [Memory]
A, B = Dunmy 0 +- C [Memory]
c = Dummy A.B -+ [Memory]
A, C = Dummy 0 ~» [Memory]
B, C = Dummy 0.~ [Memory]
A, B, C = Dummy 0 ~» [Memory]

' SHFT(~- SHIFT

0 0 O|Hb Ha x| o[o 1[p D|c,c c C|A A A AB B B B

| ! L]

If X = 0, the SHFT instruction sets the low 4-bits of the register specified by
the C field equal to the high (or low) 4-bits of the register specified by the A
field, and sets the high 4-bits of the C register equal to the high (or low)
4-bits of the B register. If X = 1, the above operation is performed; the above
operation is then repeated on the registers whose addresses are one more than
those specified in the A, B, and C fields.

\
 Selection of high/low 4~bits of A, B registers:

Hb Ha = 00, high 4=bits of C = low 4-bits of B
low 4=~bits of C = low 4=bits of A

Hb Ha = 01, high 4-bits of C = low 4~bits of B
low 4-bits of C = high 4~bits of A

Hb Ha = 10, high 4=bits of C = high 4-bits of B
low 4~bits of C = low 4-bits of A

Hb Ha = 11, high 4-bits of C = high 4-bits of B
low 4=bits of C = high 4~bits of A

Register use in the A, B, and C fields:

A H FO - F7’ CII-. CH-. CL’ CH’ CI‘+’ CH"', +’ -
B: FO - F7, PL, PH, CL, CH, SL, SH, K, dummy
(1f x EB-L C H Fo - F7’ PI‘. PH’ » SL’ SH’ K’ dumy
(1fX=1) C: FO-F7, PL, » SL, SH, K, durmy
Read/Write options:
DD = 00: no read or write _
DD = 0l: read - oy |
DD = 10: Write 1l
DD = 11: Write 2

For instructions that modify the PC registers, the read and write address will
be the initial contents of the PC registers. If CH or CL is specified in the A
or B fields, the previous contents of CH or CL will be used in the imstruction.

The A field can specify that PC's be incremented or decremented at the end
of the instruction. '

If A and/or B and/or C are set to indicate the dummy register, the net result
will be: ‘

A = Dunmy BO + C [Memory]
B = Dummy 0A + C [Memory]
C = Dummy BA -~ [Memory]
A, B = Dummy 0 ~¢C [Memory]
A, C = Dummy BO -~ [Memory]
B, C = Dummy oA = [Memory]
A, B, C = Dummy 0o - [Memory]

« A9 ~

ORI — OR IMMEDIATE

o T o0 0[r,1.5,15.0 cic,c,cl1,1,1,1|8,8,B,8

The OR of the register specified by the B field and the 8-bits in the I field
are formed. The result is stored in the register specified by the C field,

Register use in B and C fields:

B

_ FO - F7, PL, PH, CL, CH, SL, SH, K, dummy
c

Fo - F7’ PL, PH, ’ SL’ SH’ K’ dulmy

Read/Write options:

DD = 00: no read or write
DD = (0l: read

DD = 10: Writel

DD = 11: Write 2

For instructions that modify the PC registers, the read and write address will
be the initial contents of the PC registers. If CH or CL is specified in the B
field, the previous contents of the CH or CL will be used in the instruction,

If B and/or C are set to indicate the dumnmy register, the net result is:

B = Dummy , I »>¢C [Memory]
c = Dummy BorI - [Memory]
B, C = Dummy I - [Memory]

« AID o

-

XORI —— EXCLUSIVE OR IMMEDIATE

0,1,0,0,1

B,B,;B;B

1,1,1,1|p,pjc,c,c,C|T T T,1

The exclusive OR of the register specified by the B field and the 8-bits in the

1 field are formed.

field.

Register use in

B
C

The result is stored in the register specified by the C

B and C fields:

FO0 - F7, PL, PH, CL, CH, SL, SH, K, dummy
F0 - F7, PL, PH, s SL, SH, K, dummy

Read/Write'options:

DD = 00: no read or write
DD = 0l: read

DD = 10: Write 1.

DD = :t Write 2

For instructions that modify the PC registers, the read and write address will

“be the initial contents of the PC registers.

If CH or CL is specified in the B

field, the previous contents of the CH or CL will be used in the instruction.

If the B and/or C are set to indicate the dummy regisf;r, the net result is:

= Dummy 0:»C [Merory]
= Dummy BOI » [Memory]
= Dummy 0 » [Memory]

- A11

ANDI -~ AND IMMEDIATE

|19,1,0,1,0/1,1,1 1|p Djc ¢ c.clr,1,I,1 B,B,B B

The AND of the register specified by the B field and the 8-bits in the I field
are formed. The result is stored in the register specified by the C field.

Register use in B and C fields:

B: FO - F7, PL, PH, CL, CH, SL, SH, K, dummy
C: FO - F7, PL, PH, , SL, SH, K, dummy

Read /Write options:

DD = 00: no read or write
DD = 0Ol: read

DD = 10: Writel

DD = 1l1l: Write 2

For instructions that modify the.PC registers, the read and write address will
be the Initial contents of the PC registers. If CH or CL is specified in the B
field, the previous contents of the CH or CL will be used in the instruction.

If B and C are set to indicate the dummy register, the net result is:

B = Dummy 0 > C [Memory]
c = Dummy B.,.I = [Memory]
B, C = Dummy 0 - [Memory}

- A2 -

AI == BINARY ADD IMMEDIATE"

jo,1,0,1,1jr, 7, 1,Tfp DjCc,c;C¢C 1 1,1 ,1|B B BB

=

The 8-bit register specified by the B field and the 8-bits in the I field are
added together in binary. The final sum is stored in the register specified by

the C field.
Register use in B and C fields:

B
C

FO - F7, PL, PH, CL, CH, SL, SH, K, dummy
FO0 - F7, PL, PH, s SL, SH, K, dummy

Read/Write options:

DD = 00: no read or write
DD = O0l: read

DD = 10: Write 1

DD = 1ll: Write 2

For instructions that modify the PC registers, the read and write address will
‘be the initial contents of the PC registers. If CH or CL is specified in the B
field, the previous contents of the CH or CL will be used in the instruction.

If B and/or C are set to indicate the dummy register, the net result is:

B = Dummy 0O+I > C [Memory]
c = Dummy B+I > C [Memory]
B, C = Dummy I~ [Memory]

A

DACI ~~ DECIMAL ADD IMMEDIATE WIH CARRY

pjc,c,c,Cc|I I,I I|B,B BB

0,1,1.0,0[1,1,1 1|D

The 8-bit register specified by the B field and the 8-bits in the I field and
the last resultant carry (SHo) are added together in decimal. The final sum is
stored in the register specified by the C field. The resultant carry is stored
in SHo.

Register use'in B and C fields:

B
c

F0 - ¥7, PL, PH, CL, CH, SL, SH, K, dummy
FO0 - F7, PL, PH, s SL, SH, K, dummy

Read/Write options:

DD = 00: no read or write
DD = O0l: read

DD = 10: Writel

DD = 1l: Write 2

For instructions that modify the PC registers, the read and write address will
be the initial contents of the PC registers. If CH or” CL is specified in the B
field, the previous contents of the CH or CL will be used in the instruction.

If SH is specified in the C field, the results are indeterminate, The addends |
must be decimal (0 - 9) or the results are indeterminate.

If B and/or C are set to indicate the dummy register, the net result is:

B = Dummy I+ Carry = C Carry - [Memory]
c = Dummy B+ I+ Carry —» Carry [Memory]
B, C = Dummy . I+ Carry » .Carry [Memory]

- Al4 - .

DPSCI ——- DECIMAL SUBTRACT IMMEDIATE WITH CARRY

0,1,1,0,1]r,1,1,1{p DjC,C C,C|T T I I|B BB B

The 8-bit register specified by the B field plus the last resultant carry (SH,)
is subtracted in decimal from the 8-bits in the I field and the new carry is
generated. (That is, the 9's complement of [the B register] and the carry are
added to the immediate field and the new carry is generated). The result is
stored in the register specified by the C field.

Register use in B and C fields:

B
C

Fo - F7, PL’ PH' CL’ CH’ SL, SH’ K’ dumy
FO - F7, PL, PH, , SL, SH, K, dummy

Read/Write options:

DD = 00: no read or write
DD = (0l: read

DD = 10: Writel

DD = 11l: Write 2

For instructions that modify the PC registers, the read and write address will be
the initial contents of the PC registers. If CH or CL is specified in the B
field, the previous contents of the CH or CL will be used in the imstruction.

The I and B fields must contain decimal data (0 =~ 9) or the results are ‘
indeterminate.

If SH is specified in the C field, the results are indeterminate, ' l

I1f B or C specify the dummy register, the results will be:

B = Dummy 1 - Carry = C [Memory]
C = Dummy I = B - Carry = [Memory]
B, C = Dummy I - Carry — [Memory]

~ Al5 -

0 @ = BINARY ADD IMMEDIATE_ WITH CARRY

0,1,1,1,0J1,1,7,1|D,D|C,C,C C|I T I, 1 B,B B B

The 8-bit register specified by the B field and the 8-bits in the I field and
the last resultant carry (SH) are added together in binary. The final sum is
stored in the register specified by the C field. The resultant carry is stored

in SHo.
Register use in B and C fields:

B
c

FO - F7, PL, PH, CL, CH, SL, SH, K, dummy
Fo - F7’ PL’ PH’ » SL’ SH’ K’ dummy

Read /Write options:

DD = 00: no read or write
DD = Ql: read

DD = 10: Write 1

DD = 11: Write 2

For instructions that modify the PC registers, the read and write address will
be the initial contents of the PC registers. If CH or CL is specified in the B
. . field, the previous contents of the CH or CL will be used in the instruction,

If SH is specified in the C field, the results are indetermingte, l
If B and/or C are set to indicate the dummy register, the net result is:
= Dummy 1 + Carry - C [Memory]

= Dummy B + I + Carry — [Memory]
s C = Dummy I + Carry - [Memory]

B Ow

- Al6 -

MI =- BINARY MULTIPLY IMMEDIATE

0,1,1,1,1]0]-,®m -|p pjc cCcCcjT T T,T B B B B

The low (or high) 4-bits of the register specified by the B field is multiplied
in binary by the 4-bit I field. The 8~bit result is stored in the register
specified by the C field.

If Hb = 0, the low 4-bits of the B register are used.
I1f Hb = 1, the high 4~bits are used:

Register use in B and C fields:

FO - F7, PL, PH, CL, CH, SL, SH, K, dummy
FO - F7, PL, PH, 9 SL’ SH, K’ dumy

‘B
c

Read /Write options:

DD = 00: no read or write
DD = O0l: read

DD = 10: Writel

DD = 1l: Write 2

For instructions that modify the PC registers, the read and write address will
be the initial contents of the PC registers. If CH or CL is specified in the B
field, the previous contents of the CH or CL will be used in the instruction.

If B or C specify the dummy register, the results will be:

B = Dummy 0 »~-C [Memory]
c = Dummy I.B [Memory]
B, C = Dummy o [Memory]

— A17 -

TAP —— TRANSFER AUX TO PC's.

0,0,001,0,1,1]|1 -[p plo - - Ax Ax Ax Ax Ax[B B B B

The contents of the auxiliary register specified by the Ax field is transferred
to the PC registers,

Register use in the B field:
B H FO - F7’ PL’ H{, CL’ CH’ SL, SH’ K’ dumy

Read/Write options:

DD = 00: no read or write
DD = 0l: read

DD = 10: Write 1l

DD = 11: Write 2

For writes, the register specified in the B field will be written; if B
specifies the dummy register, a zZero will be written., The read or write address
is the initial contents of the PC registers.

—_ A10

TPA —— TRANSFER PC's TO AUX

BB
0,60 l0 l0 l0 0 l1 1I + DI D| O lIn 'In Ax 'Ax IAxl Axl Ax Bl Bl |

The 16=bit value in the PC's is optionally incremented or decremented by 1, 2,
or 3 and transferred to the auxiliary register specified by the Ax field. The
PC's are not modified.

+InIn = 000 PC's + AUX
¥InIn = 001 PC's + 1 > AUX
¥InIn = 010 PC's + 2 > AUX
+InIn = 0L PC's + 3 * AW
+ In In = 100 PC's + AUX .
¥InIn = 101 PC's - 1 * AUX
+InIn = 110 PC's - 2 * AWX
+InIn = 111 PC's = 3 7 AW

Register use in the B field:
B : FO - F7, PL, PH, CL, CH, SL, SH, K, dummy

. Read /Write options:

DD = 00: no read or write
DD = 0l: read

DD = 10: Write 1l

DD = 1ll: Write 2

For writes, the register specified in the B field will be written; if B
specifies the dummy register, a zero will be written. The read or write address
is the initial contents of the PC registers.

- A19 -

e XPA —- EXCHANGE PC's AND AUX

0;0,0,0,0 1,12 +{p, D 0 In In Ax Ax Ax Ax Ax|B B BB
i

The 16-bit value in the PC's is optionally incremented or decremented by 1, 2,
or 3 and exchanged with the 16-bit value in the auxiliary register specified by

the Ax field,
*InIn = 000 PC's + AUX
+InlIn = 001 PC's +1 > aux
+InIn = 010 PC's + 2 » aApx
+InlIn = 011 PC's +3 + ayx
#InIn = 100 PC's > AUX
4+ In In 101 PC's = 1 +> Apx
+InlIn = 110 PC's = 2 + Amx
+InIn = 111 PC's = 3 + Apx

Register use in the B field:
B : FO - F7, PL, PH, C¢L, CH, SL, SH, K, dumny

Read/Write options:

. DD = 00: no read or write
DD = 01l: read
DD = 10: Write 1
DD 11: Write 2

For writes, the register s el ittens; if B

- specifies the dummy registe ten, The read or write address
e initial contents of the PC registers,

- A20 - '

TPS -- TRANSFER PC's TO STACK

- - - - -|B B B B
00,001 011 +ID D 0 In In /B B

The 16-bit value in the PC's is optionally ijncremented or decremented by 1, 2,
or 3 and transferred to the subroutine stack. The PC's are not modified.

Specifying incrementing or decrementing:

+InIn = 000 PC's + stack
+InIn = 001 PC's + 1 > stack
+InIn = 010 PC's + 2 = stack
+InIn = Ol1 PC's + 3 * stack
+InIn = 100 PC's + stack
+InIn = 101 PC's - 1 + stack
+InIn = 110 PC's - 2 + stack
+InIn = 111 PC's - 3 + stack

Register use in the B field:

B : FO - F7, PL, PH, CL, CH, SL, SH, K, dummy

Read/Write options:

DD = O00: no read or write
DD = 01l: read

DD = 10: Writel

DD = 1l: Write 2

For writes, the register specified in the B field will be written; if B
specifies the dummy register, a zero will be written,

- A21 -

TSP —- TRANSFER STACK T0 PC's | ™R

0,0,0,1,1,0,1]1,- D Dj-, =, =, - - - - = B, B ,B,B

The last address in the subroutine stack is removed and transferred to the PC
registers,

Register use in the B field:
B : F0 - F7, PL, PH, CL, cH, SL, SH, K, dummy

Read/Write options:

DD = 00: no read or write
DD = 01: read

DD = 10: Write 1

DD =

11: Write 2

For writes, the register specified in the B field will be written; if B
specifies the dummy register, a zero will be written. The read or write address
is the initial contents of the PC registers,

- A22 -

LPI — LOAD PC's IMMEDIATE.

001 ,1j1 1|1{1 I|DD 11 1,1,1,1,1,1 1 1,11

The PC registers are set equal to the 16-bits specified in the I field. If D =
1, data will be read from Data Memory; the read address will be the new contents
of the PC's. If a write is specified, the data written will always be O0; the
write address will be the mew contents of the PC's. ~

Read/Write options:

DD = 00: no read or write

DD = 0l1l: read

DD = 10: writel

DD = 11: write 2(the data written is always 0.

SR = SUBROUTINE RETURN

co 0001111 -|pD|OO|-~~-~--]BBBEB

The last address stored in the 96 level subroutine stack is removed and
transferred to the ROM Imstruction Program Counter. The program execution will ‘
continue at that address,

Register use in the B field:
t B : FO - F7, PL, PH, CL, CH, SL, SH, K, dummy

[Read/Write options:

DD = 00: no read or write
DD = O0l: read

DD = 10: Write l

DD = s Write 2

For writes, the register specified in the B field will be written; if B
specifies the dummy reglster, a zero will be written.

— A7 ..

SR, RCM — READ CONTROL MEMORY A*D SUBROUTINE RETURN

0,000,211 1]1 -]~ = 0,11/~ ~ - o] - -

The SR, RcM instruction 1s used to read control memory. SR, RCM removes the
last entry (16-bits) from the subroutine return stack; this value ig the address
of the instruction in control memory that is to be read, The specified
instruction is read and stored in the registers K, PH and PL ag follows:

K 231122 |I21]12p I19(I15]137 I;:6

~——Parity bit

PH I15|I1y |13 I12|T11(I10]19 Isg

PL I7 |[Ig Is |14 I3 (I, I, |19

Finally, a4 normal SR ig performed; that is, the next entry in the subroutine
stack is removed, and transferred to the Ic'g (instruction counter). Program
éxecution will continue at that address, '

A tyﬁical instruction sequence for reading control memory is:

LPI sxxxx set PC's to address of instruction to be read

SB RCM
RCM TPS transfer address to stack
SR, RCM read control memory and return

- A24 -

SR, WCM == WRITE CONTROL MEMORY AND SUBROUTINE RETURN

W.0|0l0|1'1|1|1.- -l—loll 0|-|-|-|—|-|---I-I-I

The SR, WCM. instruction is used to vrite into control memorye. SR, WCM removes
the last entry (16-bits) from the subroutine return stacks this value is the
address of the location in control memory that ijg to be written to. The data
in K, PH, and PL is written into control memory at the specified location;
however, the data in K nmust be complemented. Instructions to be written are

stored in K, PH, and PL as follows:

K IT o3l Top| T21] T20]T19fT18 1,7} T1s6 (data complemented)
b Parity bit

PH | Tas| TauTi3lTi2jI T10|Io [Is |

. 17| %6 |Is|Ius [T3 T2 |T2 Io |

Fi.naliy, a normal SR is performed; that is, the mnext ‘entry in the subroutine
stack is removed, and transferred to the Ic's (instruction counter). Program
execution will continue at that address.

A typical instruction sequence for writing to control memory is:

MVI x; K
MVI x, PH [K, PH, PL = jnstruction to be written (K complemented)
MVI x, PL

TPA ,0 save PH, PL in AUX
1PI xxx PC's = address to write to
SB WeM

wcM TIPS transfer address to stack
TAP L0 PH, PL = saved instruction
XORI OFF,K,K : .
SR, WCM write instruction and return

'Y, § -4

S

*s9sodand JWSISIITP 103
3T @Sn s9dTADp 3sOm pue ‘uyd JUSISIITP ® uo ST 9qox3s 3daoxa S90 se aweg

(0000100 = ILLLILL) 990135 sng anding foazuoy ‘sdd ‘¢

(0000070 = 1311111) °qox3g Sg Indang ‘g ey

*Sgy ay3 sanssy 3jeyy UOE3IonI3Isuy
SV ¢

Sues Y3 4q 398 aq Lem sdorgy drrs QQI) *P919esSIp oar sao I9Yy30
ITV °*3jues sy aqo:ns_ggy Y3 usym parqeus ST sdorz dyr3 8saxppe 01 oy

8T 889 C ‘SWII B 3w (9AT
3Wo Lyug -e3p Yiga p ST)55 - :

398) pot

i ®ITASpP (00zZ yoeg

(000000T = I11111T) °9013s sng ssaxppy ‘sEy et
$PRUTISp Ar3usains o1p saqox3s SurmorTo3 YL °‘pemiozaad

4 03 04y ey WOl 9qo13s yo adfy 243 sauryaep PTST3 I oyl °*39s o1 sdor3y-dy13
g0I 9Y3 x93 Suxozyiad oq TTM 3r ¢ Y3y 4q PoT3IToads 3qo13s
B 3T °19351821 y oy ° 943 YyIs sdoyi-df o1 1

b'-'-'-'m'm'z'z'm'm'm's 0 of-"1 t't't'o't'o'ol

 10d1no/Inany T08INOD — 07 5

~,@

BT -- BRANCH IF TRUE

EE 0 0le‘R|R,RIR_.k;R|R|R'R|R M M MM B B B, B

The low (or high) &4-bits of the register specified by the B field a::ie t.estl:ed.
If all of the bits specified by corresponding one bits in the M field are h, ;
branch will be made to the in-page instruction memory address specified in the

field.

Since only 10 bits are specified in the R field, the branch in effect is an
in=-page branch with instruction memory being treated as paged memory with 1024
24=bit words per page. Therefore, when the branch 1is made, the low-order 10
bits of the instruction progranm counter are replaced by the R field.

If the mask is zero, an unconditional branch is made.

1f the B field specifies the dummy register, the instruction will become a NOP,
(No Branch), unless the mask is also zero, in which case an unconditional branch

is made.
Register use in the B fields:

B : FO - F7, PL, PH, CL, CH, SL, SH, K, dumy
Specifying high or low 4-bits of B regisi:er:

Hb = 0 low 4~bits of B

Hb = 1 high 4-bits of B

BF —— BRANCH IF FALSE

\TlOlanRRRRRRRRRnMMMBBBB

The low (or high) 4-bits of the register specified by the B field are tested.
1f the register bits specified by corresponding one bits in the M field are all

0, a branch will be made to the in-page inmstruction address specified by the R
field. .

Since only 10 bits are specified in the R field, the branch in effect will be
executed as an in-page Jjump with instruction memory being treated as paged
memory with 1024 24-bit instructions per page. Therefore, when the branch is

made, the low-order 10 bits of the instruction program counter are replaced by
the R field.

If the B field specifies the dummy register, an unconditional branch will be
made.

Register use in the B field:
B : FO - F7, PL, PH, CL, CH, SL, SH, K, dummy
Specifying high or low 4~bits of B register:

Hb = 0 low 4-bits of B
Hb = 1 high 4-bits of B

= A27 -

BEQ -~ BRANCH IF EQUAL ToO MASK

[1'1'1'0 Hb R'RiR‘RlR'RIR'R‘R‘R M MM M|B B g B
] . L1

The low (or high) 4-bits of the register specified by the B field are compared
to the 4~bits in the M field, 1If they are equal, a branch will be made to the
in-page instruction address specified by the R field,

24=bit words. per page, Therefore, when the branch is made, the low~-order 10
, bits of the instruction Program counter are replaced by the R field.

;ff;h:d B field specifieg the dummy Tregister, 0 is comﬁared to the 4 bits in the
eld,

Register use in the B field;
B : FO - ¥7, PL, PH, c1, CH, SL, sH, K, dummy
Specifying high or low 4=~bits of B register:

Hb = 0 low 4~bits of B
Hb = 1 high 4-bits of B

BNE —— BRANCH IF NOT EQUAL TO MASK

1llleRRRRRRRRRRMMMMBBB'B
I T S Y R R) L

The low (or high) 4-bits of the register specified in thé B field are compared
to the 4-bits in the M field, 1f they are not equal, a branch will be made to
the in-page instruction address specified by the R field,

Since only 10 bits are specified in the R field, the branch in effect is an
in-page branch with instruction memory being treated as Paged memory with 1024
24~bit words per page. Therefore, when the branch is made, the low 10 bits of
the instruction program counter are replaced by the R field,

If the B field specifies the dummy register, 0 is compared to the 4 bits in the
M field. : .

Register use in the B field:
B : FO - F7, PL, PH, CL, CH, SL, SH, K, dummy
Specifying high or low 4~bits of B register:

Hb = 0 low 4=bits of B
Hb = 1 high 4-bits of B

- A28 -

BER — BRANCH IF EQUAL TO REGISTER

\1010ORRRRRRRRRRAA'AIABBlB'BJ
[R P | ll|i||||) 1

The registérs specified in A and B fields are comparede 1f they are equél, a
branch will be made to the in-page instruction address specified by the R field.
Since only 10 bits are specified in the R field, the branch in effect is an
in-page branch with instruction memory being treated as paged memory with 1024
24=-bit words per Page. Therefore, when the branch is made, the low~order 10
bits of the {nstruction program counter are replaced by the R field.

1£ A (or B) specify the dummy register, 0 is used in the compare.

Register use in the A, B fields:

A
B

¥0 - ¥7, CL-, CH-, CL, CH, CL+, CH¥, +, =
FO - F7, PL, PH, CL, CH, SL, SH, K, dumy

The A field camn specify that PC's be incremented or decremented at the .
end of the instruction. : ‘

BNR —-- BRANCH IF NOT EQUAL TO REGISTER

1 0 1 I1 olR R R R R R R R R R A A A A|B B B B
1 |

The registers specified in the A and B fields are compared, If they are not

;g;itida branch will be made to the in-page jnstruction address specified by the

j2gEg;_J2EgZ‘_;2w;%%f_;EE_E2ES3figgﬂin_hhe—R—figlgj_Ehs branch in effect is an
in-page branc fistruction memory being treated @6 paged memory with 1024
—2&:EE§fZE§E§iBEE’_EE§E. Therefore, Wwhen the branch is made, the low-order 10_——)
bits the fastruction program counter are replaced by the R field.

"I1f A (or B) specify the dummy register, 0 is used in the compare.

Register use in the A, B fields:

A : FO - ¥7, CL-, CH-, CL, CH, CL¥, CH+, +, -
B : FO - F7, PL, PH, CL, CH, SL, SH, K, dummy

The A field can specify that PC's be incremented o
r de
end of the instruction. cremented at the ‘

- A20 -

BLR ~~ BRANCH LESS THAN REGISTER

.

, 1 ‘0 IO' 0 IX IR lR.'R ,R ;R R R R‘ R RI/A A A AfB B B B
] { ! !

If X =0, the registers specified in the A and B fields are compared, If X = 1,
the register Pairs specified in the A and B fields are compared, If A is legs

N=page branch with instruction lemory being treated as paged memory with 1024
24=bit words;per page. Therefore, when the branch is made, the low~order 10
bits of the instruction program counter are replaced by the R field,

If A (or B) specify the dummy register, 0 is used in ;ﬁe compare,
Register use ip the A and B fields:

A
B

FO - F7’ CL-', CH-’ CL, CH’.CL+, CH+’ +’ -
FO - ¥7, pL, PH, cL, cH, $1, s, K, dummy

The A field can specify that PC's bpe incremented or decremented at the
end - of the instruction.

BLER -~ BRANCH LESS THAN OR EQUAL REGISTER

1 0 0 1/x R R R R R R R R R‘ RIA A ‘A A|/B B B B
i | | i]] | I L | i !

If X = 0, the registers specified in the A and B fields are compared. If X =1,
the register pairs specified in the A and B fields are compared. If A is less

Since only 10 bits are specified in the R field, the branch in effect is an
‘in-page branch with instruction memory being treated as Paged memory with 1024
24-bit words per Page. Therefore, when the branch is made, the low-order 10

bits of the instruction program counter are replaced by the R field,

If A (or B) specify the dummy register, 0 is used in the compare,
Register use in the A and B fields:

FO - F7, CL-, CH-, CL, CH, CL+, CH+, +y -
FO - ¥7, PL, PH, CL, CH, SL, su, K, dummy

A
B

The A field can specify that PC's be incremented or decremented at the
end of the instruction.

- A2 -

SB == SUBROUTINE BRANCH

72 011 1|R R R R R R R R R RIRRRTRR R|e= =
I|||II!||||I|II1I|

An uncondifional branch is made to the instruction memory address specified by
the 16-bit address in the R field. In additionm, the current contents of the

Instruction Program Counter +1 are stored in the 96 level subroutine address
stack, If the subroutine address stack already contains 96 addresses, the oldest

address will be lost.

The rightmost 6 bits of the R field are the high order 6 bits of the branch
address; the leftmost 10 bits are the low order 10 bits of the branch address.

B -- BRANCH.

721 010 1/]RRRRRRRRRIERRRRRTRIRI~- -
I I [A N SR TR TSN N B I W SN B |

An unconditional branch is made to the instruction memory address specified by
_the 16-bit address in the R field. (i.e., the R field is transferred to the
Instruction Program Counter).

The rightmost 6 bits of the R field are the high order 6 bits of the branch
address; the leftmost 10 bits are the low order 10 bits of the branch address.

T

Al4

A20

® ¢ ¢ 0 0 0 0 0 2 o

® o, 0 o o ¢ o o

® o o o e 6 6 o 0 o0 o0 ¢ ¢ o e & ¢ ¢ o ¢ o o .0.....‘..

® & o o

® 0 o 0 0 o 0o o ¢ o

® o o o ® 0 © o ¢ 0 o o o o ® o o o o o o o

o & o ¢ o & o o

® & & o o o o o o

e & o o ® & ¢ o ¢ 0 ¢ o o o e & ¢ o o o o o 0.0......

OR =
XOR =
AND -

Index

OR
Exclusive OR
And

SC == Binary Subtract with Carry

DAC ==
DSC
AC

1

SHFT

‘ORI
XORI
. ANDIL
AI
DACI
DSCI
ACI
MI

TAP
TPA
XPA
TPS
TSP
LPI
SR

SR, RCM
SR, WCM
CcIO0

BT
BF
BEQ
BNE

BER
BNR
BLR
BLER

I

Decimal Add with Carry
Decimal Subtract with Carry
Binary Add with Carry
Binary Multiply

Shift

OR Immediate

Exclusive OR Immediate

And Immediate)

Binary Add Immediate

Decimal Add with Carry Immediate
Decimal Subtract with Carry Immediate
Binary Add with Carry Immediate
Binary Multiply Immediate

Transfer Ax's to PC's
Transfer PC's to Ax's
Exchange PC's and Ax's
Transfer PC's to Stack
Transfer Stack to PC's
Load PC's Immediate
Subroutine Return

= Read Control Memory

== Write Control Memory
Control Input/Output

Branch if True
Branch if False

Branch if Equal to Mask

Branch if Not Equal to Mask

Branch if Equal to Register

Branch if Not Equal to Register
Branch if Less than Register

Branch if Less than or Equal Register

Subroutine Branch
Unconditional Branch

ane

PSEUDO INSTRUCTION FORMATS . (ASSEM26)

<pseudo> $:= <name> «delimiter> ORG <delimitér> <éxpréssion> /
<symbol> <delimiter> EQU <délimitéf> <expression> /
| «delimiter> MODULE . «deliniters. ccoment> /
é&elimiter;. TITLE<deiim1tet> <é?é&ent> l“
«delimiter> SPACE<delimiter> cexpression> /
«delimiter> EJECT / |

<ame> <delimiters’ PAGE [

<delimiter> CONT <«delimiter> <file name> /

2

<delimiter> SYMBL <delimiter> <file name>

N 5 v:]. .-
sl

MICRO INSTKUCTION FORMATS (2600AT)

<register instruction> <Iw> kcarry> <delimiter> <a-reg> |,

[s<c-reg>1] /

<multiply or shift> <ry> <delimiter> <a-reg>

<immediate instruction> <rw> <delimiter
fs<cmreg>1). /2. - iy
<immediate multiply> <pw> <d,
[, <c-reg>]] / Ag
2m°“

[<‘l:-‘1ieg> [s<c-reg>1] /

) b I
> <expression > [, <b-reg>

elimiter> <éxpression > [,<b-reg>

<mask branch> <de1:lmit:‘j'eﬂrd>* <éxpressioxi >, <b=reg>

'§\‘«$\

»<expression’s/:
: .

—:'<regist;er branch> <de,11mit.ef> <a-regx, <b-reg>, <expr‘éSSion4>/

<branch instruction> <delimiters> <expressionu>/

<aux instruction> <ry> <delimiter> <b-reg>

<misc. mini> <rws- <delimiter> <b-regs /
LPT <rw> <delimiter> ge):pressiom‘Bfg’ /
CI0 «delimiters <expressionl> /- . .-

SR <xw control> /

» <aux-reg> /

INSTR <«delimiter> <hexdigit> <hexdigit> <hexdigit> <hexdigits>

<hexdigit> <hexdigit> /

MV <rw> <delimiters <b-reg>, <c-reg> /

MVI <rw> <delimiter> <express:l.on1>, <c-reg>

MVX <rw> <delimiter> <b-reg>, <c-reg>

0 < expression value < FFg

0 < expression value < Fig

0 < expression value X 3FF¢
0 < expression value < FFFF,g

W=

<name> ::= <symbol> / <qull>

oymbol> 3:= detter>[<letter> / <digit>] AR
delimiter> ::= [<space>]';

<comment > :3= [iéharacter >]:

<a-reg> :‘:.= ~13'0/Fl/FZ/F3/F4/F5/F6/F7/CL-/CH-/(:L/CH/CL-I‘-/CH'i-/H- (non-extended)
' F1FO/F2F1/F3F2/F4F3 [F5F4/F6F5/F1F6/CLF] /CHCL/CLCH/DCH/PB/FOD (extended)

“zb-reg> 3= ;é-reg> /C_I_I_ICL” (non-extended) FI
: ‘ <c-reg> /CLPH/CHCL/SLCH (extended)
\ . 'y R T ’ :
«<-reg> := FO/Fl/FZ/F3/F4/F5/F6/F7/PL/PH/SL/SH/K/ <qull> (non: ended)
- . F1F0/F2FL/F3F2/F4F3/F5F4/F6F5/FIF6/PLF7 /PHPL/ SHSL/RSH/I ;.»/133? (extended)

@ux-reg>::= <expression?> » 4 - .

™

1 .) o
<expression >::= <term> | <expression> + <term> |/ <expression”> - <term>
r

" germ> ::= <hexstring> / * / <gymbol> / C'character"

n R v
dexstring> ::= <digit> [Cexdigitel, ~ ° ' S .

Faaied .

1
For 2600 EI, <expression> ::= <hexstring>/ * / * + hexdigit / * - hexdigit

2
0 < expression value <1F .,

7oA
La

<hexdigit> ::= «digit> /A/B/c/D/../F

pie]

<letter> ::= A/B/C/.../Z/@/$/#
digit> ::= 0/1/.../9

qull> :;= . SR
<tw> 3= ,R/,W1/,W2/<qull> R i

<carry> ::= ,0/,1/<mull>
'i"-;"»'._b: . R Yy

€W control> ::= ,RCM/,WCM/<null>

<register instructibn> L OR/‘{OR/AND/A/DAC/DSC/AC/ORX/XORX/ANDX/AX/DACX/
Ty BTl e ., DSCX/ACX/NOP/ @ull> *

) o} N
A r', " ~‘.' - o

A
17 e

<mu1tip1y or. shift> ::= mm/mn./mu/m.L/snm/mm/rmr,x/mm/m.l.xbsnm

J:‘ ‘d,v M ﬂ
<:l.mnediate instruction> t2=" ORI/XORI/ANDI/AT/DACI /DSCT /ACT

SE4% S TS

<:I.nunediat:e mult:iply> ~,.= MIH/MIL °

By
*. . <mask branch> ::= BTH/BTL/BFH/BFL/BEQH/BEQL/BNEH/ BNEL
<register branch> ::= BLR/BLRX/BLER/BLERX/BER/BNR
<branch instructions ::= SB/B

<aux instruction> ::= TAP/TPA/TPA+1/TPA+2/TPA+3/TPA—l/TPA-Z/TPA-3/XPA/XPA+1/
XPA+2/XPA+3/XPA-1/XPA~2/XPA-3

<misc. mini> ::= SR/TSP/TES/TPS+1/TPS+2/TPS+3/TPS-l/TPS-Z/TPS-3

8-BIT DATA

<micro > t:= DC <delimiter > [<value 3 ? A , =
<value > ::= [<hexdigit>] \; / yo
"[<character 3:" /
(<expression>) ' o

where: h must be an even integer
g,)
\z—-.

Examples:

A.DC 81BCOA =- defines a 3-byte constant; each byte represented by
2 hex digits,

- pCc “ABCD" 'A $ * Jefines a 4-byte constant whose value :l.s the ASCII
codes of the characters A, B, C C and D.

:DC (TAGH+3)== - defines a Z-byte constant whose value 1s the current
vglue of "TAG" + 3. , .

R

DC 04"STEP"BO(SSTEP) -- defines an 8-byte value. - L

~ ~ . L. P . .
[Las, e 1 st o L . . A
et [P . . it

P

WNOZERrR"RHEHOW >

+RN LA B WO

00 BN

-

Bk @ B:0 B O O R pog.0 WD B 8w weg

ASSEMBLER ERROR CODES

_invalid A—Bus specification
=+ invalild B—bus specification
- invalid C-bus specification

too many operands Tt
illegal immediate value

. ...invalid CIO operand (> FF)
q“yatigin lower than address of last instruction + 1
" multiplt-defined symbol '

invalid R/W field for SR
name required e

:“ﬁilegal opcode field
““-out ‘of ‘page branch

invalid HEX codes

name not allowed

11legal read/write/carry specification '
invalid HEX on 'INSTR'

improper name (SYMBL).or tco many pames
undefined symbol referencedA

illegal vdlue -

invalid AUX register apecification

CONT not . ldst line in an EDIT file
feature not - supported -

K2

Warnings

B bus extended 1nstru¢tion€‘

Avbué}. non-extended register mnemonics used with
C bus

'A' or 'Ax’'. instruction. These instructions no longer exist,

and are assembled as 'SC' and 'SCX'

Nt
\

MEMORANDUM

TO: Bruce Patterson
FROM: Matthew Lourie
DATE: Aug 19, 1980
SUBJECT: CHANGES TO THE 2600 ASSEMBLER
I ' Overview of Changes
A File names
1 w2600ASMS" is the start-up program (used to be called
npASSEM26S"). ' :
2 “2600ASM2" js the assembler program (used to be called
"ASSEM26") . .
3 "2600ASMB" is the block allocating program.
4 n2600ASMG" is the data generating program (used to be called
1" ASSEM26G") .
5 n2600ASMD" is the data file produced'by n2600ASMG" (used to
be called "ASSEM26D").
B Programs

9

Changes to Start-up ("2600ASMS™)

a Entry display slightly reorganized.

b Asks for a work file address:
1) If an answer of 000 is given the assembler will

function essentially the same as the old one
(i.e. no pass "M1" is done, ete.).

2) If a valid address is given, a block work file
name will be made as Such: XXWK.TMP where XX
equals your initials. The assembler will assume
that the source is to be assembled the new way
(i.e. as blocks). The question "Do you want the
code in order?” will be asked (default equals
"Y"). . If the answer is "Y" then allocating
program will fipst attempt to deal the blocks in
listing order before Scrambling them.

d Although it is not apparent to the user,
initialization is now done in start-up rather than in
the assembler overlay.

Changes to the assembler ("2600ASM2")

a Format of displaying has changed.
b Passes have changed:
1) Pass "Wi" gets block sizes and allocates blocks,

2) Pass "W2" is the same as "PREPASS",
3) Pass "WF" is the Same as "PASS ONE"
) Pass "MF" is the same as -"PASS Two"

Description of the block allocator ("26004ASMB")

a Chained to aftérvcompletion of pass "M1m,
b Overview of function:
1) Reads in block sizes.
2) Creates spans. '
3) Allocates addresses to blocks.,
B) Saves the addresses out.
5) Prints chart of block allocations.
6) Chains back to the assembler, thus starting pass
"M2 ” N

Changes to the data generator:

a Renumbéred.
b Restructured.
(o] Dgta file name changed.

D e L

‘a

II

Blocks

A

Description of blocks

A block is a segment of code that can be moved around so long as
the whole segment is contained on one page of memory. This means
that there can be no conditional references to addresses outside
the block. If a conditional reference is made outside a block, it
will be flagged as a "P" error. A block should not fall through
since there is no way to tell where it will fall to (most likely
to the scratch disk routine!). This error unfortunately can not
be detected by the assembler (especially with computed branches).

Defining of Blocks

There are essentially two types of blocks: floating blocks and
absolute blocks. Floating blocks can be orged anywhere by the
assembler. This allows the assembler to pack the code, allowing
it to compactly fit into memory. This type of block is defined by
starting it with an "ORG *¥". All modules are considered to be
floating blocks by definition. Absolute blocks are blocks which
are defined to go ‘at a certain address. They are defined by
starting the code with an "ORG address" where the address is a
hexadecimal number specifying where you want it to go. The
address may not be anything but a simple hex number (i.e. 0120).
Aside from their predetermined address, absolute blocks are the
same as floating blocks and may not conditionally reference other
blocks.

Setting the LIMITS

In order to tell the assembler where you want the code to go, you
must use the LIMITS pseudo. The LIMITS pseudo is of the form:

LIMITS lower address, upper address

This statement effectively tells the assembler where to put the

floating blocks. The floating blocks will be allocated addresses .

within the 1limits inclusively. Floating blocks will not be
allocated addresses which conflict with absolute blocks. If a
LIMITS pseudo is not specified, the assembler will give an error
after pass "M1" and then abort. If the limits are not big enough
to hold the code, the program will still attempt to allocate the
blocks. After failing the standard memory map chart will be
printed out, displaying the blocks which have been allocated as
well as the ones which were not. Then an error message will be
given and the assembler will abort. If more than one LIMITS
pseudo appears in the source, the first one will be used, and the
others will be flagged as "D" errors.

3

P
i
I
‘.
k
E.Z
N

D

Notes on using the new assembler

1.

. (N

Advantages

a Source files need not be rearranged to-make the code
fit. . (This should save a lot of time and paper).

b A person with a disassembler would have a tough time
understanding the organization or lack thereof of the
code!

Disadvantages

With the old assembler, after doing an entire assembly, one
could simply reassemble one module and insert it back into
the old code. With the new assembler it is not as easy to
do this. If one chooses or is forced to scramble the code,
it is impossible to reassemble and insert a module since 2a

module's object code would be all over ‘the place. If one

chooses to assemble in listing order then with a little
trouble it is possible to reassemble a single module. One
could put the proper limits statement into the module and
reassemble, taking it out afterwards. This same method can
be used to patch code into existing code.

Allocation method
The scrambling program has four modes:

a Mode one tries to allocate the blocks in order. If it
Succeeds it exits, else it switches to mode two.

b Mdde two does a fast scramble of all the blocks. If
there is 1less than zero free space it exits.
Otherwise it goes to mode three.

c Mode three swaps the blocks around trying to compress
them into smaller spaces. If after getting done the
blocks fit, it exits. Otherwise it goes to mode four.

e Mode four is incredibly slow. On a typical assembly
of BASBOL, it took a half ‘hour a pass! It is very,
very unlikely that mode four will ever be invoked even
with zero free space. Even if it were invoked, it
should only require a couple of passes but then who
knows? '

NOLIST/ LIST feature

NOLIST and LIST pseudos have been added to the assembler (as an
after thought of course). NOLIST causes the assembler to continue
assembling (I hope!), but disables listing. LIST causes the
assembler to resume listing. At the start of a module, the
assembler is automatically put into 1ist mode. NOLIST's and
LIST's are stacked. This way if two NOLIST's appear with no LIST
between them, two LIST's are required before listing will resume
and vice versa (read that carefully). Cross references and title
pages are always printed. ‘

Multiply Defined Symbols

The way in which the assembler reports multiply defined symbols
has been cleaned up. The line which multiply defines the symbol
is flagged with an "M" error, and the symbol is again entered into
the symbol table, this time as a multiply defined symbol, and thus
will appear twice in the cross reference.

Suggestions for Future Enhancements

1 At the end of the assembly, make a chart of module name and
starting page number.

2 Change the line numbers to include the module number; file
number, and the line number.

3' Absolute branches should tell the line number (new form i.e.
module number etc.) of the instruction that it references.

‘\ .1 T

H 1 ,
~
) ' B
i : ‘
. s %
12 :
. ‘ ,) §
v . 2
. b .
. | . *
A i . v
. . - N
- “ :
~]
\. EE - :
v : - e w0 : :
R . - o . . - ’
. ' i
L . :)
- . - [P
: .
\ .
2
e
. ’
.
.
P C L : : . |
: 0 Yo o
T
» .
..) ‘
. e .

LA

v = OKL .Y‘T') Pt |\cv2,,,:\' o
Mvi= ORT u(?vessios,okmmy V%‘b\‘/;_'fux‘”l"”
M‘/)(z Oﬁ o{%w\m1 'Yl.g/ r’om y ﬂb}wl, Q,,Ya

> . 2 7 ‘
_ - SR - subroutine return 57% Address From shack I P @ PC
™. AP _ . - transfer auxiliary to PC's 3—&3, At &50,": o-AF
B3 o e Pe iz TR
TPA | 2, - transfer PC's to auxiliary B'Rtgzy 0
3]
2N , e ¥ 1,22 -”Sbok
) TPS \7;1-_2 - transfer PC's to stack 2 Z’é fe x b2
- 3
'] | TStk —7 P
TSP - transfer stack to PC's - 6’2’5) :
8-z, C- - RXRE
._}{OR[X] - exclusive or A-tag, - Rz, ﬂﬂs 148 XoR p,-g,s-—vc-&s
- XORI - exclusive or immediate lag, B-Ra, ¢-fg ’D p
-il c /23 “« U<, _1¢
XPA _1-_2}' . - exchange PC's and auxiliary %-&9.,9‘47‘ e’éo F i 7 o]
+3 -
where: H = high 4=-bits of register
1L = low 4-bits of register
" 4§ = high 4-bits of A and B
HL = high 4-bits of B, low 4-bits of A
14 = low 4-bits of B, high 4-bits of A
IL = low lt-b:lts of A and B
X = extended operation .
Non-Extended EX nded
Fo—=F7 FiFo,F2F1,F3F2,F4 F3;F5F4 F6F5,FIF6
CL- ,CH- CLF7,CHCL , CLCH, OcH, DD,
CL,CH
CL+,CHY
+, -

B—Reg, C—R%,CH,'C,L C-R%_)CLPH)CHCL,SLCH

- —F .
C R% A ';?‘I,‘?SL:?SH, K, Nl F1Fo, F2FI F3FZ,F4 F3 F5FL4, FoF5,FTF0
, PLF7, PHPL, SHSL, KSH, DK 1 Fop

18

INSTRUCTIONS

pull
AC[X]
ACI

Al
AND[X]

B
~ s) H
“BEQ L
BER

)
BF L

BLER[X]
BLR[X]

BNE {I%

BNR

o)

cIO -
DAC[X]
" DACI
DSC[X]
DSCI

LPI

| HH
HL
u{m} [X]
o
. I
o)
MV[X]
MVI
NOP
OR[X]
. ORI

SB
sclx

)
HH
HL
H([X]

A

C~ /‘\

¥

binary subtract with carry Cin, A-fls. 6-Req, GRee, |

. control I/0

" 2600 ASSEMBLY LANG_UAGE MNEMONICS

ORL

binary add with carry Cin, A- Rtg ,5'2'3; :
binary add with carry imedia%; Ld 8- g S :
binary a.dd :Lnnnediate A AwD B—=2C :

2nd tomed te szmx,?rz%cﬂg_ [ieaky D 8- Ry = ¢~ -

branch

Q,é, A+B+ Cin—3 CF Cout
%'6_&} &j-g+6+c,n—a(_' Cout

branch if
branch if equal to register A-
if

equal to mask Qirh, B- ?zeaa;‘.l?&!-lb

f"}fe.gug -Bg SHE S&Azs Zmi

branch false —-f"‘? .
branch if less than or equal to registe
branch if less than register A-

branch if not equal to.mask .Q/J“f @ 2’5 &H
branch if not equal to register -&5 b

branch if A true

decimal add with carry Carryin, A” Reg, B-Fag | c— A+B+C — C +Cout

decimal add with carry immediate ﬂws % B+\-+8Km""C+C~*

decimal subtract with carry larfin , A- C- A-B-CinC, Cont ViEEE

decimal subtract with carry immediate Litg,6-s,C- Vg ~B-Cn>C. ,Cont
(Lits+ “)'50MFCB)+CM)

load PC's immediate [iF16

binary multiply A;R%»&; Reg, C'QR‘& A X 5"?6

binary multiply immediate L4, 6~Pn-a,, C"?la. Lrix B—~C

move value of register to register 5'&5_,0“3@_

move value to register ,&}8,6—@3_

ORI

or c/a’g/ A-Reg, 6-{?:5 C-—st | A oR B—~C '

or immediate ’literaly, B-Reyg , C-Reg. - Czvel, OR 5"2“3'—»0’&3
subroutine branch vd(7] |

Af‘é"j’@n‘y\ —9C,CMT

sh:i.ft A-R,%'B_Q%,Q_Qg_? i AL T_f T ;J\:. T AlH
CH HC Cn CL Ca C

2600 ASS_EMBLY LANGUAGE MNEMONICS

.. C‘)

INSTRUCTIONS |

null - ORI . N e o g
AC[X) " pinary add with carry Cin A Reg 523 ,g Reg- &?g-{-BJ-C;n-?C,wa :
ACI - binary add with carry dmedia% Litg, %,C-ﬁj_ Gigs B> C :
AL - binary add immediate C-Reg A AND BrC :
AND([X] - and ‘-g ‘ -)

ANDT - and immed te Ni'voj% Q?_C'Rea, MA’ND&«QAQ;?C‘%J—

B branch

L . n

"BEQ |\L - branch if equal to mask Qik4, B- ?2 b

BER - branch if equal to register A- Ezs Qlj Like .

H (:

BF {L} - branch if false -———"‘5* .(,, Ff* Eguﬁ 9@ ke 3‘_ A<B, Brmd
BLER[X] - branch if less than or equal to registe 1
ELR[X] — pranch if less than register A- , 8-, eJ" /6 |

BNE {HX
n)

branch if not equal to .mask L4, @ Q‘é ﬂ!’lb
branch if not equal to register -&5

=
=
'

pranch if true

CIO - . control I/0

DAC[X] Genimal add with carry Carryin , A, 8- C- A*'B*C- —v C +Coxt

DACI - decimal add with carry jmed:!.ate Q« ', &- B'r"*8*‘°"\”'C"“’“’:-:-:-:-:-:-:-.-.

psc[X] - decimal subtract with carry Zarffim, B A-B~Cin-r€,Cont G

pSCI - decimal subtract with carry innnediat:e C Vil —B-CnC Cot
(L~*$’+%cmf66)+0a)

LPI - load PC's immediate LiI6

HH
HL
M{Lﬂ} [x] « binary multiply A’Irﬂ“&»@j“ﬂ: Cf’& qus'—?c

LL
o ‘ |)
MI L} -. binary multiply immediate L+, 5'9-3.,6'&3- Lrix B—C
MV[X] - move value of register to register 5’&?_,0'&9_ |
MVI - move value to register E,}g, C»Qg- .
NOP ' - ORI
' - ‘A OR B—C
OR[X] - or ,a’g’ B—%, c-Peg .
. ORI - or immediate Heral, B-Req , C-Reg. - bavet OR B- Rﬂ@»""cpﬂ‘
SB subroutine branch vdl
sc[X] - binary subtract with carry Cin, A-Rss. bR, G, dA.f.e-]‘-.c,-ﬂ —C, CuT

g M| Ba Ad

sa{ }[x] - snife A.R%'g_&é’c_&% 5 ,_ -
A% - A i)

v\v

-

ORL ¢7, ") , N7

MVI= ORT u(msswn ,onvwm Hemioh) '107("“'4’
M= OR dmet ¥ posr Ragt, Ry .
L
SR subroutine return GRy Address from stk —7 =
TAP _ _ - transfer auxiliary to pC's @ &9 Auwr ({,_5 1 Aux _1‘—"" PC
i +1 | Bt &é AF Pc +1,2,% —7 Ao
TPA | +2, - transfer PC's to auxiliary B- Rigzy 0
| 3
C+17 ‘ 25 o SincK
TPS | +2 - transfer PC's to stack 6'2% fe £b2
+3
i —» P
TSP - transfer stack to PC' 'E’é Toihjo) :
XOR[X] - exclusive or A-lleg Ei‘_ B-Ree —C
- XORIL - exclusive or :!.mmediate. 2, B- ﬂﬂz,, LJ'; xoR P& hs
+1 23
- AM cxi% =
XPA \:;} exchange PC's and auxiliary B- &? v e‘é AF
wheres H = high 4-bits of register
1L = low 4-bits of register
HE = high 4-bits of A and B
HL = high 4-bits of B, low 4-bits of A
14 = low 4-bits of B, high 4-bits of A
1L = low lt-bits of A and B
X = extended operation
Non - Extended Extended
A-Eeé, FO—=F7 FiFo,F2F{,F3F2,FAF3, FGSFY ,F6F5, F1F6
S CL- CH- CLFY ,CHCL , CLCH, OCH, PD, FoD
cL, CH
C.L+ CH+
+, 7 :
‘ . CHCL,SLCH
B-Rog C-Reg,CH, O C-Rey., CLPH, EHEL
- —=F1
¢ Reﬂ' n 2?4 SL,SH, K, Nl F1Fo, F2F1 F3F2, FyF3 F5FU, FOFS, FTFO
PLF7, PHFL, SHSL, K3H, DK, FOP

(WANG LABORATORIAES. INC.

ASSEMBLY LANGUAGE EDITOR

Program Description

Revised Septembér 9, 1975

The following describes the function, operation and use of the 2200 Assembly
Language EDITOR program. This program was written by Dave Angel, Research and
Development Department in Tewksbury.

836 NORTH STREET, TEWKSBURY, MASSACHUSETTS 01876 * TEL. (617) 851-4111 * TWX 710-343-6769 * TELEX 94-7421

A.

PNTRRNG T L T kP T e

B,

C.

EDITOR — 9/9/75 VERSION

Purpose

To create and edit assembly language format data files for use as input to
various assemblers operating on the 2200 and the 360.

Requirements

32K 2200B or 2200C with Options 2 and 5

or ' :

Equivalent WCS series

Disk Unit (floppy or cartridge) and/or cassette unit
Optional Printer)

Features and Limitations

The editor operates on disk files of no more than 320 lines., These lines
are stored in a compressed format, 4 1lines to a sector; usually in a file
of 86 sectors, For programs of more than 320 lines, multiple files, with

‘unique file names, must be used. The convention to be used for file

naping is that the first two characters are initials and the other six are
neither all blank nor all numeric. When the file name is displayed on the
CRT or entered from the keyboard, a period is included to separate the
initials from the file name. (This period is not actually written on the
digk, so a LISTDCR will not show it). Periods, blanks, commas, and dashes
are special characters and cannot be used in the file name except exactly
as defined,

The character set within a 1line includes all codes between HEX(10) and
HEX(7F) that are available on a keyboard., Care should be taken not to
Create data which cannot be handled by the assembler. Index and reverse
index are ignored, and backspace, space, and carriage return are used as
special characters. ’

All or part of one or more disk data files (or all of one cassette data
file) may be loaded into memory up to the restriction of 320 lines,
individual 1ines may be edited, and groups of lines may be d4nserted or
deleted from the file in memory. A range of lines may be initialized to a
particular image. Finally, the file in memory may be saved, either over
an old disk file, in a newly defined disk area, Oor on & cassette.

D.

Line Edit Format

Lines are edited in a field format as follows. The last statement in the
BASIC program is a data statement with four numbers, These define the
maximum lengths of the four fields in each 1line. Generally, the values
used are 8, 9, 23, 59. These have the following meanings:

Field Usual Meaning Maximum Length
1 Tag Field 8
2 Opcode 9
3 Operand Field 23
4 ‘ Comment Field 59%

*The length available in the comment field is (59 - 23 - 9 - 8) plus
whatever is not used in the first 3 fields. Thus in a typical line with
no tag, an opcode of 4 characters, and an operand of 10 characters, the
comment field can be up to 45.

The display of a line, for list or edit, consists of one or two lines, as
follows. :

If the first character of a line is an asterisk, the 1line is a comment
line, whose maximum length is automatically 58 characters. All field
oriented features are inactive for the line. At the left of the display
is a line number and a colon. Then the line (beginning with the asterisk)
is displayed. ’

If the first character of a line is not an asterisk, the fields are as
defined in the chart. The line number and colon are at the left, followed
by the first 3 fields in tab form. The fields always start in columm 6,
15, and 25 (with this field definition convention), in order to line up
the columms. There 1s always at least one blank separating the fields,
If there is a comment f£field, it is displayed on the following line,
indented under the tag field.

If these field definitions are not suitable, the data statement may be
changed subject to the following restrictions. There must be four
positive integers in the data statement, The first 3 numbers must not
total more than 55. The fourth number should be 59.

« 3«

F,

RUN Sequence

When the program is first loaded into memory, as well as whenever a
different person wishes to EDIT, the RUN sequence should be followed.

Type RUN (EXEC). The CRT will then display the special function key
options. At any later time, this display can be recalled by S. F. '16, or
a condensed version by S. P, '0.

'0 - S. F. KEY OPTIONS DISPLAY '16 - EXPANDED S. F. DISPLAY

1 - EDIT MODE '17 - EDIT LAST LINE

'2 - LIST 18 - LIST TO PRINTER

'3 - INSERT MODE '19 - COPY LINES

'4 - DELETE MODE '20 - LOAD '!' FROM DISK
'S = DISK/CASS. . '21 -~ CHANGE EDIT FILE NAME
'6 - SEARCH EDIT '22 - INITIALIZE LINES

‘The program will then go to the change EDIT FILE NAME routine (see S, F,

‘21 description) and ask for today's date, operation initials, and the
EDIT FILE NAME. Finally it asks if it should load the EDIT FILE from
disk,

Special Function Keys

Once the program has been RUN, the first seven special function keys ('0
to '6, '16 to '22) are used to get into, and to change, modes of
operation., A function key may be pressed at any time except as listed
below, and the current operation will be aborted in favor of the new,
There is no danger of stacking subroutines too high, as the stack is
alwvays kept under careful control. The function keys are described below.

Each time a function key is pressed ('1, '2, '3, '4, '5, ‘6, '17, '1s,
'19, '21, '22) one or more questions will be asked. There are only four
types of questions, and they are answered as follows:

If a number is needed

Only positive numbers are used; a negative number will be rejected.
A decimal 1s truncated before interpreting. In most cases only a
range (i.,e., 1 to 320, or 1 to 319, ...) is legal. Carriage return
will get a default value.

If a file name is needed

Up to 6 character file name is taken., There must be some
pon-numeric character in the name. Thus J341,.285L6 are legal, but
489 is mot. Carriage return will get a default name (displayed).
The initials of the operator may be overridden by typing II.NNNNNN
where I1I are the overriding initials, and NNNNNN is the file name,
The initials may not be overridden for a SAVE operation; this
protects the other person's data.

If a keyword is needed

L, L is interpreted the same as LOAD, likewise for S = SAVE, F = FILE,
T = TAPE, D = DISK, Y = YES, N = NO,

If a 'character string' is needed
This character string (used by the SEARCH EDIT) must be typed
exactly as you want it, Blanks and punctuation (if any) are
important, and trailing blanks are not ignored. Type the string
exactly as it appears, and press EXEC. : .

1f the questions can be anticipated correctly, more than one answer
may be typed, separated by blank or comma,

Example:

LIST FROM LINE # 10, 20
will 1list from 10 to 20 and be equivalent to

LIST FROM LINE # 10
TO LINE # 20

1f default values for the questions are wanted, a period can be used
to indicate this. :

Example:
LIST FrOM LINE # 10,.
will list from 10 to the end of text and be equivalent to

LIST FROM LINE # 10
TO LINE # (CR)

TETRRa—"r

Se Fo '0 and '16 — display options

S. F,

These keys each display the S. F, key options, then return the
machine to Console Input (CI) mode. At all other times, once a §,
F. key has been pressed, the program stays in KEYIN mode. S. F, '0
gives a short list of options, in order to save CRT space, and S, F.
'15 gives a long list (see Chart on Page 4). Undefined S. F. keys
default to S. F. .0'

'l = EDIT

This is the mode used most of the time. A question appears: “EDIT
LINE #" and the response should be a number in the range from 1 to
320, A zero will default to line 1., If “,L™ is typed after the
line number to be edited, the previous 12 lines will be displayed
(1isted) before editing the specified 1line. Once the number has
been accepted, that line is displayed (if the line is null, only the
line number appears) with the cursor at the end. There are nine S.
F. keys for cursor positioning, inserting, deleting, etc., and
semicolon, LINE ERASE, asterisk, BACKSPACE, SPACE and the text atom
keys are specially defined. When the line is correct or complete, a
carriage return will store it in the array, and recall the next
line. If it 4s desired to edit out of sequence, either press
CONTINUE or S. F. 'l to return to the question “EDIT LINE #". A
line is not changed in memory until CR/LF, EXP(, or LOG(is pressed.
To leave EDIT mode and get into a different mode press the
appropriate S, F, key at any time.

EDIT mode S. ¥, keys

. The following S. F. keys have meaning only within EDIT mode,
and while editing a line. Most of them are very similar, or
at least analogous to the built in EDIT functions for the same
keys, For most of '7 to 'l4, shift does not affect operation;
but '15 and '31 are different, and '12 and '28 are different.

S. Fo '7 (and "23) — Reverse tab (circular)

S. F. '8 (and '24) — Erase remainder of line

S. F. '9 (and '25) =~ Delete one character from current field
(This does not affect following fields).

S. Fo '10 (and '26) — Insert “4" or " " at current cursor
position, This moves the rest of the
field, and the last column of the
field is lost,

S. F. '11 (and '27) — Move right 5 columns

S. P, '12 = Move right 1 column

Se Fo '13 (and '29) =- Move left 1 column

Se Fo '14 (and '30) == Move left 5 columns

S. F. '15 — Move cursor to end of line
S. F, '28 == Change character to lowercase
S. F. '31 = Move cursor.to begin of line

-

EDIT mode special characters

Backspace — move cursor left one space, operates just like
S. F. '13.

Semicolon — move cursor to beginning of next field., If
already in comment field, this key is a normal semicolon,

Line erase — erase all of current line, move cursor to
position 1. This is the only key which can delete the * from
colum 1 of a comment line.

Asterisk — (in column 1 only) — this makes the line a
comment, :

Space — clears remainder of field and tabs to beginning of the
next field. If already in comment field this is an ordinary

blank character, \\‘Ej'*?f’

EDIT mode text atom characters

In order to expand the capabilities of the keyboard, certain
text atom keys have been defined., These fall into three

groups. .
(1) to replace those characters used as special characters,

PRINT = put a blank in current field without tabbing.
In the comment field this is equivalent to a space. It
should be used with caution anywhere else.

ARC —~ becomes a semicolon with no tab function.

(2) to provide ASCII characters not normally provided on a
keyboard.

SIN(=— left bracket '['
COS(== right bracket ']'
TAN(= left arrow "<
#PI == back slash "\'

(3) to provide additional features while editing.

EXP(— after editing a line, the line may be entered by
pressing EXEC, EXP(or LOG(. The difference 1lies in
what line is displayed next., When EXP(is pressed, the
current line is saved, the next four 1listed, and the
fifth displayed for editing, This is useful when paging
through the program to find a particular line.

LOG(— after editing a 1line if you wish to go back to
the previous line, press 'LOG(' instead of 'EXEC'. The
present line will be saved and the previous line
displayed for editing., This is useful for correcting
migtakes, as well as for charts and tables where columns
must be aligned.

RUN — this key interrupts the editing in order to
change the line number; effectively moving the line. A
question is asked 'NEW LINE #'., Type in the line numper
where this line 1is to go, and the new number will be
displayed with the l1ine. Finish editing the 1line and
press EXEC. The line will be stored at the new line #
instead of the old.

Se Fo "2 — LIST

S. F,

A question appears: "LIST FROM LINE #" and the response should be
in the range 1 to 320, Then the question "TO LINE #" appears, and a
number greater than or equal to the first should be entered, For
convenience both numbers may be entered at -once, separated by a
comma, The defaults are 1 and the .highest defined 1line
respectively,

This 1isting appears in EDIT format. Null lipes are represented by
the line ** NULL ** XX where XX {s the number of null lines. This
is to save CRT space., After the listing i3 complete, the program
gﬁes automatically into EDIT mode, asking the question "EDIT LINE

If you wish to interrupt the listing there are two choices — please
do not press RESET.

(1) press a S. F, key — program will immediately jump to that
routine, ignoring remainder of listing,

(2) press a regular character (e.g., EXEC). This will halt the
listing, which will resume when the key is pressed again, or
abort is a S, F. key is pressed.

'3 == INSERT

This is used to dinsert lines between existing lines. Operationally
it inserts null 1lines' at the specified point, then moves the
remaining lines down to accommodate them, The questions are:

INSERT AFTER LINE #
HOW MANY LINES?

The first answer 1s in the range 0 to 319, and the sum of two must
not be greater tham 320, Default for number of lines 18 1. Once
the insert operation has started, it should be allowed to complete
(do not press RESET).

If text may overflow (because the last line is moved beyond 320) the
question "OKAY TO OVERFLOW?" will appear. The answer Y (or YES)
will cause the INSERT to be performed, and possibly lines will be
lost. Any other amswer will interrupt the INSERTING process.

S. F. '4 — DELETE

Se. F.

This is the inverse of INSERT. It removes lines from the specified
range, then moves the remaining lines up to fill the void. Null
1ines are added at the end as needed. The questions are:

DELETE STARTING LINE #
ENDING LINE #

The first answer is in the range 1l to 320, the second must not be
less than the first, mor greater than 320. The default for the
second is the value entered for- the first. Note, that by using
1,320, all the data is quickly cleared from memory., Once the delete
operation has started, it should be allowed to complete (do not

press RESET).

15 = DISK and CASSETTE OPERATIONS
This begins by asking the question:
CASSETTE (C), DISK (D), OR DELETE NULLS (N),
The response to this will branch the editor to one of the three

types of logic. The default 1is Disk. A fourth response is also
valid; LOAD will cause a disk load from the current EDIT FILE name.

CASSETTE:

There are 2 cassette operations. The question will be asked,
CASSETTE: SAVE (S) OR LOAD (L) ?

After typing L or S, the system will wait with the message
PRESS EXEC WHEN CASSETTE IS MOUNTED

When EXEC is pressed, the editor will begin saving or loading.

SAVE — The current EDIT FILE name and the entire contents of memory
18 saved on the cassette., It is the operators responsibility to (1)
rewind the cassette before and after saving, (2) be sure that the
proper cassette is mounted, (3) protect his data from other users
by proper cassette storage.

LOAD — all of memory is cleared, and the cassette is read in. The
date and file name from the cassette is displayed for the operator
(but not saved anywhere) and the data is loaded. There 1is no
provision for combining data from more than one cassette. This
should be done with disk load and save operations.

e - e

DISK:

There are 3 disk operations, identified by the first letter of the
keyword. The question will appear:

DISK: LOAD (L), SAVE (S), RESERVE NEW DISK FILE (F)

The response to this will branch the editor to one of the three
routines below,

(L) LOAD — loads in data from disk saved previously by the editor,
Four questions must be answered before loading commences, as
follows:

LOAD WHAT DISK FILE -~ this is the name of the EDIT FILE when
it was saved, and the name of the actual disk file to be
loaded. If it is the same name as that of the current EDIT
FILE, press CR/LF to get the default.,

LOAD STARTING AT WHAT (MEMORY) LINE NUMBER - first line to be
loaded over. (default = 1)

ENDING AT LINE NUMBER == last 1line to be loaded over. Note,
that all 1lines in the range will be initialized, whether or
not the digsk file is large enough to fill them, (default =
320).

DISPLACEMENT (DSKIP) IN DISK FILE == this is basically a DSKIP
to be performed before reading., It allows a portion other
than the beginning of a disk file to be 1loaded. (default =
0).

(S) SAVE — this command saves the entire current edit file (without
null lines) on a previously defined disk file, .

The program will ask what the old disk file name is with the
question

SAVE OVER WHAT OLD DISK FILE ?

Note, that this disk file's information is to be lost, and the disk
space re-used, For this reason the disk file must be your own
(identified by initials). It will generally be either an earlier
version of the EDIT FILE, or a newly created (see (F) RESERVE NEW
DISK FILE, below) disk file., In either of these cases, the OLD DISK
FILE name is the same as the EDIT FILE name, and CR/LF will get the
correct default. If the new name does not match the old, then the
OLD FILE name must be entered.

The file is renamed if necessary with the name of the current EDIT
FILE. This is the name to be used in the assembler or in the future
editing.

- 1N -

S. F.

(F) RESERVE NEW.DISK FILE — 1is used to allocate new disk space. 86
sectors are reserved for each file, no matter how many lines have
been entered. This allows total compatibility for renaming and
combining files. This should not be used if current files exist
that are useable; SAVE allows renaming while SAVING.

'The program will ask what name to use for the new disk file with the
question.

CREATE WHAT NEW DISK FILE ?

The default name for the reserved file is the name of the current
EDIT FILE. Disk errors such as ERR 79 (File Already Catalogued) are
not fatal to the program or the data., Simply press s. F. '5, and

-try again with a name that hasn't been used before.

'6 —— SEARCH EDIT

This allows a handy way to find (and possibly change) all lines with
some character or character string. The program gsks: .

SEARCH EDIT, WHAT CHARACTER STRING ?

The response is to type 1 to 24 characters followed by a carriage
return., Type the string exactly as it appears in the line, Do not
include leading or trailing blanks unless they are meaningful. All
the characters should be within one field for comparison purposes,
Thus the editor can search for a particular tag (and find both the

.tag and any operands using it), but cannot look for both tag and

opcode or for both operand and comment. In operation, the editor
searches for the first matching line. When it is found, it is
displayed for editing. There is a + before the line number to
remind the operator he is in SEARCH EDIT mode. The line may be
changed, and EXEC will save it and find the next matching line., The
RUN key for renumbering should not be used while in SEARCH EDIT
mode, as it will return the EDITOR to standard EDIT mode. When all
the lines have been displayed, the editor goes into standard EDIT
mode (with EDIT LINE # message). If there are mo matches, the
editor goes directly to EDIT mode, Note, that the search can take
seconds, depending on the amount of text and the particular
characters being searched for.

-11 -

N T A et O

S. F.

S. F.

S. F,

S. F,

'l7 =~ EDIT LAST LINF

This displays the last 12 1lines and enters EDIT mode with the
following one. This is a convenient way to add to a file.

18 — LIST TO PRINTER

This operates like LIST, except the listing is to device 215 instead
of 005. Also, null lines are represented by a single blank line,
instead of the symbol ** NULL ** XX,

f19 — COPY

This statement is used to copy & vrange of lines within the EDIT
FILE. There are two fields, of the same length; a FROM field and a
T0 field. The location and direction of the copy is specified by
the first line of each field. Four questions are asked:

COPY FROM -- FIRST LINE #
FROM ~— LAST LINE #
* TO == FIRST LINE {
TO == LAST LINE # (XXX)

The first question must be answered in the range 1 to 320, The
second defaults to the first (e.g., for copying 1 line), and 1if
entered must be at least as large. The third answer should be from
1 to 320. The fourth question is redundant information., The editor
calculates from the first 3 values what this should be, and displays
this (default) value in parentheses. This provides some protection
in case of mis-types. Usually the operator should press EXEC to
start the COPY. However, one may type a replacement value, which in
effect will override the second answer. The number of lines copied

is
B=A+1l=D=C+1

'20 — LOAD '"!' FROM DISK

Assuming a program is on the fixed disk platter called '!', this key

will load it in, clearing the EDITOR in the process., This can be
used to go quickly from the EDITOR to other Programs, such as an

assembler,

- 12 -

@F\

S, P, '21 — CHANGE EDIT FILE NAME

Se. F.

This routine (automatically called during a RUN sequence, as well as
vhenever S. Fo '21 1is pressed) allows the operator to change the
revision date and the EDIT FILE name, as well as allowing the old
text to be cleared and new to be loaded. The program asks:

REVISION DATE (y?

with the default date in parentheses, If the default is correct,
press EXEC, otherwise type a new date (up to 9 characters)., If
several revisions are made to one file in a single day, it is useful
to append a letter to the date. Thus typical dates are: 11/20/75
12/14/74A 8/12/75C. Blanks and commas may mnot be included in the

.date, After the date has been entered, the system may ask

OKAY TO CLEAR OLD TEXT ?

(this message is skipped if there is no text currently in memory).
The response Y or YES will cause the text to be cleared. The
default answer is N (for NO). Next the EDITOR will ask for the

NEW EDIT FILE NAME
Once again, the default is displayeds If the default is not

correct, it can be changed by typing name, -or initials.name, in the
format described on Page 5. Neither the name nor the initials may

"have any dashes in them.,

Next comes the question
DISK LOAD THE FILE ?

The default is NO, If Y is typed, the EDITOR will clear the text in
memory, then load the entire disk file with the same name as the
current EDIT FILE name. This load is the fastest kind (and is
equivalent to answering LOAD to the first question on S. F. '5).

122 == INITIALIZE LINES

This statement is used to set a range4'of lines equal to a certain
value, e.g., a null line. The program asks:

INITIALIZE STARTING AT LINE #
Type the first line number of the range. The preseant value of that

line will be displayed and the program will go into INIT mode. This
mode 1s identical to EDIT mode except that

(1) There is an asterisk before the line number to remind
the user than he is initializing,

(2) When CR/LF is pressed, control returns to the next
question:

‘INITIALIZE ENDING LINE #

. B

G.

H,

If the number enterec ig less than or equal to the first, then only
the one 1line is changed, Otherwise, all lines in the specified
range are initialized to the value of the starting line. Note: the
RUN key for Trenumbering must not be used while initializing, It
will turn the operation into the standard EDIT,

After a file has been saved

Once a file has been edited and saved, the data may be cleared for another
file 1in one of the following ways:

(1) If the parameters of the new disk load are 1,320, then all previous
data will be cleared while loading the new. A cassette load always
clears the previous data, :

(2) If an initialize is dome with a range 1 to 320, all lines are set to
a specific value (i.e., to clear, type S. F. '20, 1 EXEC, LINE ERASE
EXEC, 320 EXEC.

(3) In a similar vay, delete 1,320 will clear out all lines very
quickly.

(4) Immediate mode INIT (20) L$Q)

(5) Change Edit File Mode Name (S. Fo '21) — The editor will ask if the
old text should be cleared, Type Y EXEC,

'The last method is preferable, since it's quick and foolproof, Also, it

allows the EDIT FILE name to be changed at the same time.

Miscellaneous Comments

If the system ever 1locks out, and a printer list preceeded it, suspect
that the printer 1s still selected. Key RESET, S. F. '0, to reselect the
CRT, .

If disk errors occur, the program and data is generally still safe. Check
error number to find out what was wrong (N1$ is EDIT FILE name; N2$ is the
name of the DISK FILE to be loaded, and the old file name to be scratched
and saved over). Then press RESET and retry the sequence. A LIST DCR may
help find the problem.

Anytime a system command may be useful, rather than pressing RESET, type
S. F, '0, which returns the 2200 to CI mode., At this time, disk
catalogues may be examined, variables printed, or immediate mode
calculations made. .

Incidentally, if RESET is ever pPressed during an operation, S. F. '0

should cure all pointer problems, but we recomment doing a 1list (S, F. '2)
to check, especially if an insert, delete, or load was in operation.

- 12 -

1f disk data is coming from or going to a disk other than the R (removable
= right) disk, press S. F. '0 to get CI mode, then type an appropriate
SELECT DISK command.

SELECT DISK B10 — Removable or right
SELECT DISK 310 - Fixed or left
SELECT DISK 350 — 3rd platter (model 2243)

B10 is reselected each time the RUN aéquence is followed.

Similarly, if more than one cassette 1is to be used, or other than the
standard 10A, an immediate mode)

SELECT TAPE 10B
SELECT TAPE 10C

should be typed to reselect. 10A is reselected each time the RUN sequence
is followed.

I. DISK FILE FORMAT

This section is needed only by those writing agsemblers for this editor,
not for users.

The disk file is saved as a catalogued disk file, with up to 86 sectors.
On each sector are four 62 byte 1ine images, and after the last used
sector is an end of file sector. The first sector is not considered part
of the data, and contains the file name and revision date in the first
line image. This information ig useful for a subtitle on assemblies, The
62 byte compressed line images are defined as follows:

(1) If blank, it is a aull line and should be ignored for assembling.

(2) 1If the first colum is an asterisk, then it is a comment line, and
in print form.

(3) If the first colum is not an asterisk, then it is compressed as
follows.

There are three HEX(AO) 'tab' characters separating the four fields.
Each field may have embedded blanks, but trailing blanks are not
included in the compressed format. Using POS and STR functions the
fields may be separated {nto four variables, an array of length
four, or any other format the assembler desires., The first field
may be null, indicated by & leading HEX(AO). The second or third
field may be null, indicated by two oOr three consecutive HEX(AO)
characters. The HEX(AO) may be eliminated by AND(,7F) after
separation, A simple program could be (assuming B$ = 62 byte
compressed line). .

Je

K.

FORI =1 TO 3

L = POS(B$ = AC,
A$(I) = STR(BS, 1, L)
AND (A$(1), 7F) -

B$ = STR(B$, L + 1)
NEXT I

A$(4) = BS

A faster way, if the SUNPACK dinstruction is available, 15 the
following., (Assuming D$ is a two byte alpha variable).

INIT (20) A$()

D$ = HEX(01A0)

SUNPACK = (D = D$) B$ TO A$(Q)
CASSETTE FILE FORMAT

This section is needed by those writing assemblers for this editor, not
for users,

The cassette file is savé.d as a data file of wp to 62 blocks on the

cassette, There is a data header block with the name "“EDIT".

Next is a block with four alpha variables in it, Only the first is used,
and this contains the FILE name and revision date. Next is the data, four
62 byte line images per block, in the format described in section I,, DISK
FILE FORMAT, Finally, there is a tratler record.

Generally, only one file will be on a cassette, but if the cassette was
deliberately not rewound by the operator, it may safely contain 3 files,
and possibly more.

NOTES ON ASSEMBLERS

Note, that since the commment ig Testricted to 58 characters it is useful
to allow some sort of "tab' character to allow part of a comment to line
up with comment fields of regular lines, This is entirely a function of
the assembler, but we are Planning in the future assemblers to use the
backarrow ¢! as a tab,

Algo note that sgince multiple files are needed for an assembly, an
automatic chaining technique would be useful. One successful technique is

CONT <« filename >

vhere CONT is an assembler PSEUDO Op and <filename> 1s the (eight
character) file name of the next file to be assembled,

- 16 -

L.

2200 ERROR CODES

If any of the following 2200 errors occur, the description may help to
find the problem.

61 =-- Disk hardware error - Try pressing RESET, then repeat the
sequence.

62 — File Full — If the edit file on disk was originally catalogued by
other than the EDITOR, perhaps mnot enough space was allocated. Use LIMITS
or LISTDCR to check; at least 86 sectors should be reserved.

65 — Disk hardware palfunction =— See error 61.
66 — Format key engaged = Turn format key to LOCK.
67 =- Disk format error =— 1If this is a new platter, it must be formatted

at SCRATCHED before the EDITOR can use it. If it's an old platter, see
error 61, ‘

- 68 = LRC error — This 1s usually a dirty or loose connector to the disk.

72 == Cyclic Read error = See error 6l.
78 — File not gcratched — This error should never occure.

79 — File already catalogued -~ This error may occur when saving the EDIT
FILE over some other disk file, It means that there is already a disk
file with the same name On the catalogue. There are two solutions: Change
the EDIT FILE name before saving (e.g., if the duplication was accidental,
or if two versions are to be maintained), or save the current EDIT FILE
over the disk file with the same name (i.e., update). .

80 == File not in catalog == Check if the proper platter is mounted. If

attempting to save a new file, space must be reserved on the disk prior to
savinge Qt‘nerwise, check for spelling errors.

"5

(WANG) wasonsrones. e

2200VP RESIDENT 2600 ASSEMBLER

January 31, 1978

INTRODUCTION

ASSEM26 is an assembler designed to run on the 2200VP (BASIC-2) and
assemble 2600 source code, both control memory and data memory. This is
not a released program and is intended for internal use only. Questions
should be directed to the 2200 Microprogramming group.

HARDWARE REQUIREMENTS:

1. . 2200VP with 64K RAM
2. 132 column printer (address 215)
3. Dual disk drive (mormally address 320, B20)

SYSTEM INPUT

1.

2.

3.
4.

Source Text

Source lines packed &4/record are read from a disk file on the removable
platter. Each line is up to 62 characters in length and must be in one of
the following formats:

1. * comment
2, name AQ;¢ opcode A016 operand A°16 comm?nt

Blank lines are ignored.

The first record of the sourcée file contains the source file name and the
REV. date. (The first 25 characters of the first variable (alpha) in the
record). The name and date are printed at the top of each page of the
assembler listing.

Two generalized editing programs writtem by Dave Angel produce a source

file in the above format, "EDITOR" which runs on a 2200C or 2200T, and
"EDIT26" which runs on a 2200VP.

External Symbol Files (#2)

External symbol files may be referenced by use of the SYMBL pseudo in the
assembly.

System Tables (#1)
External Reference Check (i##5)

This file should contain a list of all the modules that may possibly
reference this module. When reassembling only part of a system, the
external reference feature allows all linking errors to be noticed and
corrected. :

&

SYSTEM OUTPUT .

1.
2.
3.
4

CRT display while running hows progress of assembly and counts errors.

Listing and cross reference on 132 column printer.

Object file (#4).

Symbol table files (#3) (internal and external),

All are optional except CRT output,

To customize the program all disk selects are done and documented at the end of
e By convention we use 320 for all files except the EDIT files, which can
be selected to B20 or Bl0 by the operator.

w.Lext,

One line can be changed to alter any or all of these.:

OPERATING INSTRUCTIONS

A,

B.

C.

E.

RUN

Press EDIT, then S. F..key '0 (as prompted)

1,

2.

3.

4,

5.

6.

Hard Copy == this wiil select whether the listing will be printed or
not,

Continue — this determines whether the assembler will accept the
CONT pseudo,

Title Page — this determines whether title page(s) will be included
in each assembly module.

Chk extern - this determines whether an external ‘cross reference
check will be performed after the module is completed, to identify

any symbols which have changed and will cause problems in other
modules,

Edit disk -~ this identifies which source disk will be used for the
edit files., :

Assemlist ~- this allows a single file to contain all the names and
symbol files to be used for this assembly. The file is created
"AS.MLIST" by the EDITOR and consists of simply name fields with the
file names spelled out, This option can save a lot of typing if
several modules need to be assembled often,

Press EXEC when all options are acceptable,

Type initials.

Type object file name == this must begin with your initials and end with
an "@". It should not have a period in between.

F. For each module.

1. Type one or more edit file names.

2. Type external symbol file name (ends in $) or type just $ to nmot
_ save external symbols.

These names will default to the operators initials, or initials can be
entered explicitly, followed by a period.

G. Press CR an extra time.

“H,. Enter date and time.

¢

The followin

2600 ASSEMB

LER LANGUAGE SYNTAY DEFINITION

December 3,

g pages define the

1974, Revised Januvary 27, 1975
Revised January 31, 1978

Syntax of the 2600 Assembler Language in Backus
g meta symbols are used:

at may be repeated from 'a' to 'b' times,

Normal Form where the followin
< > encloses syntax classes
‘= means "is defined ag"
/ p ©F
. []'._l encloses entries th

(if 'a' ig onitted,

ces implies a sequence

default = 0, if "p' g omitted, default = 1)
of elements '

Three forms of the 2600 Assembler Language.are defined:

1. 3

60 Assembler

<360 assembly line>

Card format:

<delimiter><c

colums 1 - 71 <360 assembly line>

$3% <name> <delimiter> <micro>
omment> / %<comment>/ <pseudo><delimiter><comment>

colums 72 - 80 <sequence number>

<name

> must start in column 1.

2, 2600 AI Assembler (ASSEM26)

<2600 assembly line>::= <name> <delimiter> <micro>

<delimiter>

3. 2600 EI

<comment> / * <comment> / <pseudo> <delimiters <comments

<2600 EI line>::= <inétruction> <delinmiter>

<comment>

2600 ASSEMBLER SEMANTICS

A, Pseudo Instructions
. MODULE - define a module title (should be first text line).
) ORG - origin ipstructions at the specified address.
EQU - define the symbol equal the specified value.
TITLE - issue a form feed if not at top of page and print the
N, ' specified comment.
- SPACE - gskip the specified number of lines. A null operand
- implies skip one line.
__EJECT = issue a form feed if not at top of page.
- origin instructions to the beginning of the next page
l M . (1024 instructioms) if not at the beginning of a page.
SYMBL - defines an external symbol table that can be referenced
during the assembly.
‘ CONT - assembly source code continues.in the specified files
& B. Move Instructions

The move instructions are implemented by using the OR and ORI instructions
as follows:

MV = ORI 00, register 1, register 2
MVI = ORI expression, dummy register, register
MVX = OR dummy register pair, register 1, register 2

@y)

- -y

2600 ASSEMBLY LANGUAGE MNEMONICS

INSTRUCTIONS
null - ORI
AC[X] - binary add with carry
ACI - binary add with carry immediate
Al - binary add immediate
AND[X] - and
ANDI - and immediate
B - branch
.. {H
‘BEQ |L C - branch if equal to mask
BER - branch if equal to register
H
BF {L} - branch if false
BLER[X] - branch if less than or equal to regiate.r
BLR[X] - branch if less than register
H
BNE {L} - branch if not equal to -mask
BNR - branch if not equal to register
H
BT {L} - branch if true
CI0o - - control I/0
DAC[X] - decimal add with carry
DACI - decimal add with carry immediate w
‘ ~ DSC[X] - decimal subtract with carry T
; DSCI - decimal subtract with carry immediate
LPI - load PC's immediate
HH
HL
MILH([X] - binary multiply
LL
H
MIL - binary multiply immediate
MV[X] - move value of register to register
MVI - move value to register
NOP - ORI
OR[X] - or
ORI - or immediate
SB subroutine branch
SC[X] - binary subtract with carry
HH
HL

SH|LH (| [X] = shift

@ LL

\\2

- 2

2600 ASSEMBLER SEMANTICS

A, Pseudo Instructions
. MODULE =- define a module title (should be first text line).
ORG =~ origin instructions at the specified address.

EQU - define the symbol equal the specified value.

TITLE - issue a form feed if not at top of page and print the
e . specified comment.
- SPACE - skip the specified number of lines. A null operand
: implies skip one line.
 EJECT = issue a form feed if not at top of page.
- origin instructions to the beginning of the next page
l 0 M (1024 instructions) if not at the beginning of a page.
SYMBL - defines an external symbol table that can be referenced
during the assembly.
CONT - assembly source code continues.in the specified files
@ B. Move Instructions

The move instructions are implemented by using the OR and ORI imstructions
as follows:

MV = ORI 00, register 1, register 2
MVI = ORI expression, dummy register, register
MVX = OR dummy register pair, register 1, register 2

s & N

2600 ASSEMBLER SEMANTICS

SYMBL PSEUDO

SYMBL is used to define external symbol tables that can be referenced
during an assembly. The operand field contains a file name of the symbol
table file that can be referenced. Up to 40 SYMBL pseudos are legal in
any assembly. The external symbol tables are disk files stored on the
fixed platter.

When the assembler encounters a SYMBL pseudo, the specified symbol table
name is entered in the External Symbol Table Name Table. Whenever a
symbol is referenced, the internal symbol table (the symbol table
generated by this assembly) is scanned for that symbol. If the symbol is
not found, the external symbol tables defined by the SYMBL pseudos are
scanned for the symbol in the order in which they were defined. If the
symbol is found in an external symbol table, that symbol and its value are
entered into the internal symbol table and marked as being externally
defined. If the symbol is not found, it i1s entered into the internal
"symbol table and marked as being undefined.

External Symbol Table Names

Generally, external symbol table names will have the following format:
(X, MopD dd, $
t$ indicates file is a symbol table
module number (2 digits)

programmers initials

When an externally defined symbol i1is entered into the internal symbol
table, the module name is entered into the definition field. The
cross-reference then prints the definition for the external symbol as the
module name in which it was found.

Creation of External Symbol Tables

During assembly setup the user is asked:
INITIALS. FILE NAME (CR IF NO MORE)?

If a pame ending in $ 1s specified an external symbol table will be
created. Only those symbols defined in the current assembly will be
saved. If '-N' follows the name, a new file will be created; if '-N' is
omitted, the file 1is assumed to be old (already created). If old, the
existing file will be overwritten.

MICRO INSTRUCTION CODES

<

MNEMONIC SKELETON CODE MNEMONIC SKELETON CODE
%A MOCOOOO- MHLX 1E8000
AC 180000 MIH 3¢8000
ACI 380000 MIL 3C0000
ACX ‘ 1A0000 MLH 1¢4000
AI 2¢0000 MLHX 1E4000
AND 080000 MLL 1€0000
ANDI 280000 MLLX 1E0000
ANDX 0A0000 MV 200000
*AX 0E0000 MV1 20000F
~3, B : 5C0000 MVX 0200E0
"~ BEQH 740000 NOP 200000
BEQL . 700000 OR 000000
BER . 500000 ORI 200000
BFHI 6C0000 ORX 020000
BFL 680000 SB 540000
BLER 480000 sC 0C0000
BLERX 4c0000 . SCX OEG000
BLR 400000 SHFT 104000
BLRX 440000 SHFTX 124000
BNEH 7C0000 SR 078000
BNEL 780000 TAP 088000
BNR 580000 TPA 018000
BTH 640000 TPA+1 _ 018200
BTL 600000 TPA+2 ‘ 018400
cI0 178000 TPA+3 018600
DAC 100000 TPA-1 01C200
DACL 300000 TPA-2 01c400
DACX 120000 TPA-3 01C600
DSC 140000 TPS 058000
DSCI 340000 TPS+L 058200
DSCX 160000 TPS+2 058400
INSTR 000000 TPS+3 058600
LPI 190000 TPS-1 05C200
MHH 1cc000 TPS=-2 05C400
MHIHX 1EC000 TPS-3 05C600
MHL 1c8000 XOR 040000
e o
XORX
XPA+2 038400 060000
XPA+3 038600
XPA-1 03C200
XPA=2 03C400
XPA-3 : 03C600

*These mnemonics no longer valid

2600 ASSEMBLY LANGUAGE MNEMONICS

&

INSTRUCTIONS
null - ORI
AC[X] - binary add with carry
ACI - binary add with carry immediate
Al - binary add immediate
AND[X] - and
ANDI - and immediate
B - branch
.. {H
BEQ |L § - branch if equal to mask
BER - branch 1if equal to register
H
BF {L} - branch if falge .
BLER[X] - branch if less than or equal to register
BLR[X] - branch if less than register
H
BNE {L - branch if not equal to -magk
- branch 1if not equal to register
H
BT {L} - branch 1f true
CIo - - control 1/0
DAC[X] - decimal add with carry
DACI - decimal add with carry immediate
' : DSC[X] - decimal subtract with carry
- DSCI - decimal subtract with carry immediate
LPI - load PC's fmmediate
HH
HL
M)LH [X] - binary multiply
LL
H
MIL - binary multiply immediate
MV[X] - move value of register to register
MVI - move value to register
NOP - ORI
OR[X] - or
ORI - or immediate
SB - subroutine branch
sC{x] - binary subtract with carry
HH
HL

SH)LH| {X] - shift

@-\ SR - subroutine return

TAP _ _ - transfer auxiliary to PC's
+1
TPA -_EZ - transfer PC's to auxiliary
+3
+1
TPS | +2 - transfer PC's to stack
3
TSP - transfer stack to PC's -
“’XQR[X] - exclusive or
XORI C - exclusive or immediate
i+l
XPA | ¥2 _ exchange PC's and auxillary
+3
where: H = high 4-bits of register
1L = low 4-bits of register
HR = high 4-bits of A and B
HL = high 4-bits of B, low 4-bits of A
1H = low &4-bits of B, high &4-bits of A
1L = low 4-bits of A and B
X = extended operation

Other instruction field parameters:

»
instruction sR [,O]
s WL o1
s W2 -
»RCM
» WCM
where: R = read
WL = write 1
5, W2 = write 2
RCM = reaq control memory (SR only)
WM = write control memory (SR only)
0 = gat carry to 0

1l = set carry to 1

(WANG) wsomsronss. e,

2600 MICROCODE DEVELOPMENT SYSTEM
January 11, 1977
Revised October 21, 1979

SYSTEM DESCRIPTION

The 2600 MDS is a combination of hardware and software that provides the
user. with convenient 2600 microcode debug capability. Registers, data,
and . instructions within the 2600 can be examined and modified.
Execution can be started and stopped at specified instructions or single
stepped, and register dumps can be performed at specified imstructioms.

The 2600 MDS hardware consists of a_ debug system. coupled to a modified
2600. The debug system is a standard 64K 2200VP or '2200MVP with a

partition, a terminal with a 24x80 CRT, and two 2250's. The working

2600 is a standard 2600 with CRT, keyboard, disk, 2250 and at least 24K
of control memory. One of the control memory boards is replaced by the
MDU__(microc evelopment unit) board and a jumper on the 2600
motherboard is added for disabling control memory. Typically, the
2200's are multiplexed to a floppy disk and to a 10 MB disk.

The debug 2200 may, optionally be equiped with an MDU clock, which is
used for execution timing. The MDU clock is a 2228B controller loaded
with a timer microprogram. The MDU clock is connected to the MDU board
in the 2600.

Vgt po 29

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851 « TEL. (617)851-4111 » TWX 710-343-6769 « TELEX 94-7421

e"

s
)
.

2

it

X

A

W

P}ﬁ
W, F\;{p,%

WORKING 2600

2600

!

1 1

! ! P
! ! mw_m
! T ! (12K) !
! ! 1o CONTROL MEMORY T
! T +¢ (12K) WITH MDU !
T ™MDU CLOCK edf—| |]
I 2250 (/034) oJ ! - !

“CRT] 1 CRT 1
! " KBD I 1 KBD 1
1) 2250 (/OFE) ei— To 2750 (JOFE) 1 “%

w1 DISK 1 I DISK] ~
yoee DISK Y] lq DISK !
FLOPPY
DISK
o r ;
. 10 mb-
38 DISK
CRN
2

state Executingﬁinstrugtionswin_ggQMNathWQEicéllg,Duts,the 2600 Pato
gtate. In this “state, thelmachine is executing standard microcode,
'After .the MDU jhas "halted” the CPU, the machine 1s 1n

, and 1s %ecuting _cu . h
<th the debug 2200 via 2250's. _The debug_ microcode

high end of memory (5E00 - SFFF).

The BASIC program, "2600MDU", in the debug 2200 displays debug
information and allows operator interaction. When the system returnms to \/

Thej600 has two states of operation. It powers up in the first, o
0

RUN

resides at the

mn——y

v :
6ﬁfw%; RUN state, all registers are first restored to .their Srevious values Vvia
'Ckpd/“AbL -—thie—debug microcode, then control is passed back to the standard

Sicrocode—Omiy microcode resident i¥h this memody may be stepped and
N4 debugged (PROM may not be stepped) . ~ Vv 7/
- .

A Content Addressable Memory (CAM) containing eight 16-bit words resides
In the MDU. On power— up, the outputs of this CAM are inhibited.
Writing to this memoty-is- dome via the 2250 from the debug 2200 using
the following sequence:?

WR, CBS '00', OBS 'WX', OBS 'yz' repeated 8 times

where:

- o ——_——

high 8-bits of address s)
low 8-bits of address ’ oo -

WX
YZ

I}

After the CAM has been loaded, the debug 2200 may enable the CAM with a
CBS of 10. It may also be disabled again with a CBS of 20. If the CAM
is enabled, and the system is in the RUN state, the MDU continually
monitors the accesseé“tb'fﬁe,Gont:oliﬁéﬁsf§f' Whenever @ match is Found
~Pbetween the IC's and one of the CAM locatioms, a "halt" is initiated.

A CBS of 30 (from the debug 2200 to the MDU) will also create a "halt"
condition, if the machine is in RUN state.

Upon any "halt" condition, the MDU blocks the instruction from the RAM
CM, and substitutes a SB to the debug microcode (switch selectable) in
its place. This places the machine in DEBUG state, and the custom
microcode communicates with the BASIC program in the debug 2200. Once
the machine is in DEBUG state, subsequent "halt" conditions compare from
CAM, CBS 30 from debug 2200 are ignored.

Two new instructions, no-ops to the CPU, are interpreted by the MDU as
special commands:

CIOC -- returns the machine to RUN state after 16 cycles of delay.
CIOS -- generates a new HALT after 16 cycles of delay.

CIOC and CIOS are ignored by the system whenever CAM is disabled.

II'

DEBUG MICROCODEAFUNCTIONS

The 2§00 has two states i operation. t will power up in RUN state.
In this state, the machine is executing &tand icrocode, as a normal
2600. After the MDU -has "halted" the CPU, the machine iIs in the DEBUG
state and 1is executing custom debug microcode, which' is communicating
with the debug 2200 via 2250's. The debug microcode performs the
functions listed below:

1. HALT (enter DEBUC mode) -- interrupts the 2200T and sends vital
registers and current IC's.

2. STEP -- instructﬁihe MDU to execute one 2600 microinstruction.

3. GO =~ instruct the MDU to continue 2600 execution.

4, XR (examing fegisters) -- send registers,énd stack values to debug
2200. :

5. RR (restore registers).-- receive register values from debug 2200.

6. XD (examine data) -- read 2660 data memory and send it to debug

2200.

7. CD (change data) —- change 2600 data memory.

8. ID (initialize data) -- initialize 2600 data memory to a specified
value. -

9. XI (examine instruction) -- read an instruction from control

memory and send it to debug 2200.

10.: €I (change instruction) -- change an instruction ip 2600 control
o memo ry .

11. I (initialize inétruction) -- initialize control memory to
specified instruction.

III. DEBUG INTERFACE CONNECTORS

The communications channel necessary to implement the above functions
consists of two standard 2250's (one in the debug 2200, one in the 2600)

with a cable wired as follows:

OBl -- OB8<>IBl -- IB8

" OBS <>IBS
) RBI «CPB
COB1 «¥ENDI

The cable is symmetric, so the reverselchanngl looks the same.

&, A command sequence consists of:
_cBS 01
OBS XX -- (command) T &
CBs 00

followed by one or more OBS/IBS as neededs-¥ = - -

N . 7 PR UL P S WP

Iv. OPERATING INSTRUCTIONS I NS

- i .
1. Load 2600 with the debug microcode (@Dy) .. N

— e e _ R

' 2. Load debug 2200 with "2600MDU". ‘ B u)
- Ssw
:CLEAR

: SELECT DISK /ny .: o :: 1%
:LOAD RUN "2600MDU" PO .

3. Pressing STEP ('15) on the debug 2200 keyboard will halt the 2600
placing it in debug state. "2600MDU" will display the registers
and await a debug command.

R

V. DEBUG COMMANDS _

When the 2600 is ig "UN state, the debug 2200 displays 2600
EXECUTING...", The only command accepted on the debug 2200 is:

STEP (key-'15) <-.halt 2600

The. 2600 enters DEBUG state and transmits the current values of the
registers, etc, to the debug 2200. The debug 2200 displays the register

values and waits for a debug command from the operator. The display
looks as follows: ’ :

-XR- Foeel . 0.00 MS.
\JLAST 0000 - oR FO0,F0,FO 800000
NEXT 000l - OR F0,F0,F0 800000
BREAKPTS
K SH SL CH CL PH PL F7 F6:F5 F4 F3 F2 Fl FO -
00 02 00 00 00 00 00-00,00 09 00 .00 00 00 00 : STACK
8269
AUX 00-07 0000 0000 0000 0000 0000 0000 0000 0000 6660
AUX 08-OF 0000 0000 0000 0000 0000 0000 0000 0000 554F
AUX 10-17 ;~0000-0000 G600 00800000 0000 0000 0000 443
AUX 18-1F 20000 0080: 0000 0600 0000 0000 0000 0000 332D
0000 - 00000000 00000000 00000000 00000000 Cereteeeretenennn

L fDebugfcomméud?;?f' -
T R L

v * -The rlast instrucfion executed, next instruction to be executed, register

""" values, the .top few levels of the hardware subroutine stack, and 16

¥ . bytes of data memory are displayed. Execution time is displayed if the

- .system is equiped with an MDU clock.,

-~

The following commands are then allowed:
- e XR (key-'0) -- Examine Registers

Displays the current contents of all the 2600 registers, the last
and next instruction to be executed, and 16 bytes of data memory
starting at the current value of the high 12-bit of the PC's.

I

'xZ. *CR (key:*1): — Change Registers

Changes the contents of the specified registers to the specified
values. Eight bit registers are specified by their mnemonic names
(i.e., X, SH, sL, PH, PL, CH, CL, FO, Fl, --+F7); aux registers.
"+ are specified by 1 or 2 hexdigits (0:i~ 1F).
Cmya o * R -

3. ZR (key '17) -- Zero Registers -+ -

P

All 8-bit and aux registers are set to zero, except for SH which
is set to 02 (CRB = busy). , ﬂ#?
o+ . B ‘ .

6.

10.

11.

XD (key '2) -- Examine (Change) Data

Sixteen bytes . of data memory from the specified starting address
are displayed in both hexadecimal and ASCII. Pressing CR causes
the next 16 bytes to be displayed. Data can be changed by
entering EDIT mode, positioning the cursor, typing in the new
data, and pressing CR.

" DD (key '3) -- Definme Data

The user can define sections of data memory to be displayed
whenever XR is performed. The name, address and length of the
data area are entered after pressing DD.

ID (key '19) -- Initialize Data '

Sets each byte of memory ‘from the- specified starting address

. through the specified ending address to.a spetified value.

LI (key '6) -- List Instructioms: . "

The instructions from the specified startirig address are displayed

in mnemonic and hexadecimal form. ', Instructions are .displayed in

sections; press CR for next section.
) . -

EI (key '22) -- Enter Instructions

Change the contents of instruction qgmory\,starting irat the
specified address by the instructions specified in mnemonic
format. EI displays the old instruction after.thé addressiiof the
next instruction to be entered. Entering a null line .(CR only)
skips the current instruction (instructions- is -not modified). EI
is terminated by pressing another debug special function key. If
an entered line is syntactically incorrect, it will not be entered
and must be retyped. -

See "2200VP Resident 2600 Assembler" for a detailed description of
instruction mnemonics.

II (key '23) -- Initialize Instruction

Change the contents of control memory starting at the specified
address through the specified ending address. to a specified
instruction.

VD (key '7) -- Verify to Disk : . é= §

The contents of the.specified disk file'iéﬁﬁompa:éa against the
current contents of 2600 instruction and/or data memory. Any
differences are displayed. =1 .

LD (key '8) —— Load from Disk

The contents of the specified disk file are transferred into 2600
instruction and/or data memory.

7

R,

- 15

12.

13

14,

16.

17.

18

190

20,

SD. (key '24) -- Save on Disk

The current conten.;.of 2600 instruction and/or data memory (or -,
Portion thereof) are stored in the specified disk file.

TR (key '11) --.Trace On

Insert a Trace-on breakpoint at the specified location. Before
the execuction oﬁ‘the instruction at the specified location, trace

or a TO - breakpoint is encountered. TR may be turned on
immediately.

TO (key '27) == Trace Off

Insert a Trace-0ff breakpoint at the specified location. Before

the execuction of the instruction at the specified location, the

trace mode wil% be turned off. Trace may be turned off
immediately;) -

U TR S

JEBH“(ké§"1§3 --'Ereakpoint Halt

Ingert -a ~Breakpoint Halt at the specified location. Execution
will'terminatg.beforg the execuction of the instruction located at
the “specified’’address. When the termination occurs, a message
will 'be displayed indicating the Breakpoint Halt followed by a
display of the registers.

BC (key '28) -- Breakpoint Continue

Same as Breakpoint Halt (BH) except after the display of the
registers, simulation continues at the next instruction.

BR (key '27) - Breakpoint Remove
Remove ail or a specified breakpoint.
IC (key '30) -- Set Instruction Counter

Set the IC's to a specified value. 2600 execution will continue
‘at this address when GO, STEP, or STEP+l is pressed.

GO (key "31) -~ Continue Execution

Pressing '3l after 2600 execution has been halted causes execution
to continue at the next instruction (i.e., current value of IC's"
displayed).

STEP (key '15) -- Step Execution

Pressing 'l5 after 2600 execution has been halted causes the next
instruction to be executed after which execution halts.

'
i
i
i
i

.‘;.}

21.

22.

23.

24,

25.

26.

"PRINT (key '16) —— PRINT

STEP+]l (key '14) -- Subroutine Step

gTEP+1 functions the same as STEP except that if the instruction
to be executed 1s a subroutine branch, SB, the entire subroutine

is executed before execution 1s halted.

P
Y I

Causes the output from the next':"_c"oiﬁmé'n{d “to be. printed (/215)
rather than displayed on the CRT. o

zc (key '9) —- Zero Clock

Zeroes the MDU clock.

“cT (key '10) - Clock On

Insert a Clock Om breakpoint at the specifiea, ,.,.l:o.ca.'tion. Before
execution of the jnstruction at the specit‘ied' jocation; the MDU

clock is turnmed on. The clock may be turned on immediately.

co (key '27) -- Clock Off N i

game as CT except clock is turned Off instead of ‘on. .

N

cc (key '4) —- Calculate Checksums | ' . :) ,:',_ .

Calculate checksums on control memory and data memory..

MEMORANDUM

: File

FROM: Bruce Patterson
DATE: March 26, 1980

“guBJECT: 2200 Development Clock

Function: 2200 Development Clock is an event timer thgt qan_be'triggered
under program control or by an external hardware.-event.

Hardware: 2228B or 2228C with timer PROM (chip:fileVQBPCLOCK),vinstalled.
Controller address is /0FD. '

The timer PROM is a simple counter‘programrcoupled withvachmmand{
decoder which jnterfaces with the 2200 or -an. external event
- probe. (Pin xx on cable connector).

¥esilan

Sositor,
-~ Resolution: Approximately + 50 usec.

Calibration: The tick count can be converted to real time by multiplying
the count by the calibration factor. Determine the
calibration factor by allowing the clock to execute for

several hours; then, calibration factor is the actual time
divided by the tick count. The calibration factor is a
function of the clock board, not the CPU in which the clock

3 : is installed.

Commands: The timer program responds to the following commands.

Disable external probe -- $GIO (1405)
Reset Clock Board —= $GIO (4508)

. Zero clock -- $GIO (4400)

. Clock On - $GIO (4401)

. Clock Off —- $GIO (4u02)

. Read clock =-- $GIO (uh4g3 €620) T$ (4 byte binary count)
. Enable external probe —- $GI0 (Lbol)

PR

ONE INDUSTRIAL AVENUE
. LOW,
ELL, MASSACHUSETTS 01851 + TEL. (817) 85
. 14111 . Myn.

Utilitiéé':" BPQL_GCK'.'—-' activate clqek -under Keyboard control., Pr-b;bid«'es-'
: .+ EVENTIME. -- time spe_éified Program-.e¥ent.

-'u:.b‘S:Act'J‘.v_,va’tion:g” Thef2200MVPOS (’Re‘l‘ejgsé'1.9 or later) can be get. up to keep -

"% fraek- of "CPy- execution. time fop a given partition op for all

. .partitions, ' The 0S8 wil) tiirn cloek: en while the: ‘Specified .-

-t Partition(s) is “SXecuting. * ‘An additiona] $INIT parameter is

, ah-: 10 1f£ a11 Cxecution time is to be measured.
v, C o eab =3y if “exedttion time of Partition' (X+1) .is 4a .. be

~Mmeasured.
:The;, utility. “BPCLOCK can' be used to obtain executien ‘time.
. For ‘exXample, if - Partition 3 is . to be timed, BPCLOCK,-?_can-:be
" loaded. ,:j.nto_-, a 'di't‘f‘erént,,partitionf with a- di‘ffeneqtgi
o termiRa ;v Zér“b*clock”cou’zjt; “Perform event in partition 3y
' ' .. Often, it 43 useful-"to.-sample the execution
‘Partition. by - zeroing the clock count and. then

ock after’ some --kli@wn'-a'ctual time Period,. in

atbached to the MDUboarg witp 3 standard modem uabyes -

e). - 'Executionf_ftime between- breakpoints wilj .be-.

(o

A

S

- L T e

Tos’ Jerry Sevigny) . ~
From Bruce Patterson - . - P ‘
(Dates Deceaber 15, 1984 ~ . -
Subjects 2200 PRINTING T0.V5 PRINTERS S
SN
' \"} | .
This docusent outlines the procedures used to pnnt the 2200 BASIC-2 assesbly - Y
listings on the VS high-speed band printer. This sethod has sose advantages: ' } - /iy ,) A
. s Q& (;-'LX\\'» ‘
(1) The.VS band printer is fast (1100 lpa). SN A
(2) The V5 band printer stacks paper reasonably well. , /\/\ « '
(3} Print files are created on Lhe PC that can be accessed via PCEDIT. o< L) Al
(4) The 2209 is not used (il's broken) R DR NP
y N 49 ’
However, this sethod is not without probleas:
| R Y
{1) VS server errors cccurred, requiring operator attention. \O’/
. v
Q
Asseably
The print output froa the assesbly is captured in a PC text file, To do this:
{1) -Run MCS 2200 Terainal Esulator on the PC in 2200 lab.
i~ S }fj Use the 9600 baud, for spooling to PC configuration. 2\
~ . T
~ S.\‘)’) \{\v (2) Setup a text file for capturing print output. Do this by: '
XS 1.
\)‘W \)'\{\)<-o Press PRINT key. : <(/U/Uy ,(w(‘
> Q Enter the text file name when prompted. For exasple: ’ \,l(/m . .7,4
\J\A File for outputs /BASIC2/BASIC2.TAT Al 0 e W)
‘} \} Return to tersinal esulation by pressing RETURN (v ,Y“n-} 4 . Jo
LR
a N L“\ (3) Run the 2200 Block Asseabler. (!
e o
" Q\)’ ' ﬁsmneroutput 004 0 \/ {,J
\O [5. ﬂote,ftbaakssenbyr 2 poflified to-supress ERT output while .75 , kyl-‘/
0 Q aare:: Priating to /004, is m:ds a bug: in NCS code -- NS cannot Wb Sk HC) ' _
Q o piTa glterating AT and print autpul. Gnfortunataly, the N 377 O
dxsplay of the nusber of errors on. each sedole is also suppressad, d,)c,f)\“' :
W oo
{8 CIose tﬁa pnnt file by pressing SHIETHPRINT. ' , L
el fsenibly iy comtct
C('Q\/ ~—”h) 1S dﬁM_. ’- G,L MD\J\) i hadize 1“'5*)(“&‘{}@ A C‘f‘f?«-
V\Lm v .
v, (nCLﬂ-L
< of Ou-l’ﬁ-" D%w} CO‘L‘“) Std instueh “FFF
" S NI F —b onFF:— 4

h'\ S\: ’(}D '1\> (; e Q+L C}\@CSum} 4 save o o C\b v

C.t “0 ¥ ol ’m‘ A FFE - anad PD tauds o LD SFer
-.‘5,,.._}"'5.&.%. ,IQL&*“M «vm\«b\u ’(\) e

PO N e g e Y b R Sy Y IV P I T T T e A S T

Chop_Asseably Print File ' N o>
The asseably step produced a single PC text file containing all the print
output froa the asseably. This could be printed directly (assuming Lhe VS can

handle such a large print file), However, it is convenient to chop the text
file up into separate text files for each module. To do this:

1

(2}

Run PC BASIC-2 {select from PC Main Menu),

-sRUN

Enter nase of the file to be chopped. For example:
fissesbly text filenase: /BASIC2/BASIC2,TXT

Enter name of the Ist text file to be created. For example:
Ist text filename: /BASIC2/START

The 1st text file receives the beginning of the asseably listing.
Then, the listing of each module encountered is pul into a separate
text file. Each aodule begins with a coasent of the form:

s=aodule=nnnnnann, where nn...n is the acdule nase.

CHOPLIST closes the last text file and creates a new text file with
the name nnnnnnnn in the sase directory as the Ist text file
whenever ane of these special commenis is found.

CHOPLIST also produces a text file, 3ERRORS.txt, containing the
nuaber of errors in each aodule.

Printing_on_the VS

Printing is done by transferring the PC text files to the VS for printing
using DATA EXCHANGE. To do this:

n

{2)

Set the VS up for DATA EXCHANEE.

Select 928 Workstation from the PC Main Nenu,
Logon to the VS.

Press RETURN (this might not be necessary).

Suspend terainal emulation by pressing SHIFT+CONTROL+CANCEL and
then § and EXEC.

Send the text files to the VS.

Enter DOS Command Processor.

Run VSPRINT.BAT (in /bin) as follows:
C:YSPRINT fully-qualified-text-filename___vs-print-filenase
{e.g., C:VSPRINT C:/BASIC2/BPMVPGO BPNVPGO)

The batch file is setup to print to printer 159 (the high-speed
band printer). Other printers can be specified by modifying the
batch file. The user may also want to change the identifying
initials in the VS print file nase °"HOTLIPS:#BMPPRT,X2°.
A batch File has been set up to send all the BASIC-2 listing files
to the VS. To run this:

C:CD_/BASIC2 .

2 2t 4

—————-

The print output fros the Cross Reference is captured in a PC text ffle. To

do this:

[

)

(2)

(’ (3)

4)

(5

Run MCS 2200 Terainal Esulator on the PC in 2200 lab.
Use the 9600 Saud, for spooling to PC configuration.

Setup a text file for capturing print ﬁutput. Do this by:

Enter the text file name when prospted. For exasple:
File for output: /BASIC2/XREF.TXT

Return to terminal esulation by pressing RETURN
Run Cross Reference,

Output device address 004

oy

’

High w WM hall?4
Ly® ?'y‘é Lz?w w hin vvuvmr\a

- }*vﬂw%o%

s -MD V-bgadt—
L epr 225 -

S /Ztgc’/r, 7’,,/ e @FDFZQ{:
S kbt s Hak coeed

- AL W —MM%‘%W ”@/
O R)

o 5 ‘“@;@: epsy 5t @/t

B f i : __4@0

! S

ke Sd TS s,

TS E ew R@g)___ r% -

. ; o lfV o I A

: %_W‘._,_ o gr % > (__mﬁ‘g P 3 . &h_(_)_w?:i*i*:

S W ﬁmﬁéf%ﬁl e

I Lsd_@eliprnT Rk ihok
" /q” ds “~n%/ %sa/ %W%W%,, =
-—- ;1 .] A /\M\A@ M? ﬂeegj)=

} At Www SES(falt) o v.
| | 344 A JLK_M,LM_} ovj et /\W o
S ——W%EW——"’M’% m/r/-z/ 5 W M/M

- - B _“;,_,VQL/ . YF o BT ﬁ 2 W‘M/ﬂr
- | _ syo s 225 (7

A ACEAS D NN

o (FLBoeh 7iih Gif 15k SPak 10K) T8 o1

~ (7297 7% Of‘—f:’w&

. s by J5d

e Xf 8 4 ! or XwWH B
oy m?#ﬂﬂ'rV%/ W HAVYS va U

. —— (4920) CHIH agwqm

— (Cotp— LSO b 10hb)9H- Q] B -
“ii Tq i ”"’&W‘ff‘m A==

- (aahn) SH o/ B -

<

e Wy HqESId

9H# O+ -

TIPS fereenn YS SEg v wif B B

&/ PR VEY) __/L_KQQ@J_ig_- |

—— /‘QN?‘W“#W‘” -@mimaﬂmﬁw.éﬂ;__ — - '

I A e L g Y- PR EEWTIPE £\ E

o gg gt oS L, 005) ﬂ’“""j"%‘ —
i——i G gy gy /T'fw Hyis) T g ray |

= e & 27 A_%s 2 h—f-2Th—-

w - o d.f‘Z A dA Z/S o(th @ ‘7 Th o o T

M’"a « 4

—00hh— 00 10hP) I A 10 o
, R S)

—

“'(71 “OFHIUS Corhbh_apy aoht)SH ol

'%ﬁ"“‘A_ZW/ﬂfA/MJq Wl/f Wiy A M oL “'“""‘“““

S e
,.) e L iasqs¥fe¥y. 1 msysE?2E
o %) . n 00 ocwo oop | SWA reeerrle saspenE

a4 W 1000 plec 000D

>
Qe ﬂlw— Bu n:v_m’[ﬂs/ o O 1. A3 by W5 Ay ny__,,_,__f,_w
4 (¥ \ﬂ e Jé— M3 v y_ o 9 % 7 & $ 3 2 10

v ';& \ I S St S S W | \ { i \ \‘\—«T_\—Ae<9—‘*-
R A IR SUN
@ LS F AN

~ _ W 3 —O - ___@ 'f7 +°¥

Y | ok M

1, m < £ !
@L : M%m @ ~ JD_M.I ’,v W %
!
|
—{e
. .
-y ’
£ ..
. &5 =
[2aaY)
4.. - N
g
- * -
- L)
;
-~ = T
~ - — — Sy
- . ., =
—_— s L..U\.ﬁ
~- i1 - T B
- ; <
R ~° - -
- A L . —
e -
- - £ o
e 45
X = L N
3 L i
- | o ~ \
K PEY ...sf,,
F2Y ‘.
.
.
)
- (-
N
PN
i
kg
A

» RedShaw memo - .
! Test description : 2.6 3.4 % 386 386 % .
| . . VLSI VLSI 'gain 1.0 RRR gain

! ! P P

TESTI (Resolve w brackets))
: @MRTIAN - 10 times) ' 3:16 * 3:17 0. :58 +70 -
TEST2 (Resolve w/o .brackets R ' ' :
@MRTIAN - 10 times) - 3:20 3:20° O :60 +70

i Risk retrieval P
' No contention - cache ¢lear :
; 10 different risks in siuccdession . i24 e

22 sec S

@2.£ Q2.2) @4.6 -92
" ache ')

- ‘ 1.0 386
]
i .
v :

	Title Page
	BASBOL Microprogramming
	CPU
	Editor
	Assembler
	MDU
	Clock
	Note 1
	Note 2
	Note 3
	Note 4

