<::::E£;;;;;rnn SUPPORT SYSTEM (ISS) | : I

CHAPTER 1 - INTRODUCTION

The Integrated Support System (ISS) is a collection of software designed
.to make it easier +to create and run a disk-based Wang 2200 system. It
provides utility programs to do some of the standard tasks of the system and
- subroutines to do some of the standard tasks of programs. It ties together
support and application software.” Under ISS, a common system setup tests the
CPU, and then begins the processing day by requesting standard system data.
Beneath this common setup, a hierarchy of accessways links all parts of the
system and makes the standard system data universally available.

The START modules are the key links of the system. They offer easy
access to the routines on their respective diskettes, as well as transfer
routes to the other START modules and to application software. They execute
"an intra-system CPU initialization which makes standard system data available
to all software in the system. At the end of execution, each user program or
ISS routine offers a route back to a START module. START is a major

system-integrating factor which puts all the elements of the system at the
fingertips of the operator. ‘

1) COPY/VERIFY - Copies files from one disk to another and verifiec
. the copy. Additional sectors may be added to the copied files.
Copied files may be renamed, or may replace existing files on the
output disk. Files to be copied may be specified directly, during
operation of the utility, or indirectly by means of a COPY/VERIFY
Reference File. : ' :

@) . SORT DISK CATALOG - Prints a disk catalog index, sorted
alphabetically by +file name or numerically by starting sector
- address., '

3) DISK DUMP - Prints the hexadecimal and character equivalents of the
contents. of any disk file. .

4) DECOMPRESS - Copies a program file and in doing so breaks wup all
- : multi-statement lines, assigning a unique line number to each BASIC
statement. .

5) LIST/CROSS REFERENCE - Prints a list of a program file with each
BASIC statement printed on a separate line. For each input program
file, it prints three cross-reference tables: one which associates
referenced line numbers with the lines which refer to them, one
which associates all variables with the lines in which they appear,
and one which associates all DEFFN’ subroutines with the 1lines
which refer to them. B :

&) CbMPRESSION - Reduces the size of source program files by
eliminating REM lines, extra spaces, and inessential line numbers.

7) LIST - Prints a list of a program file with each BASIC statement on
T ‘@ separate line.

8) RECONSTRUCT INDEX - Reconstructs a disk catalog index in thg event

of its accidental destruction. .
N

(Y

9) CREATE REFERENCE FILE - Creates a reference file for use by the
COPY/VERIFY utility.

KFAM

KFAM is a software system designed to produce, search, and maintain an
index to the records in a disk-based data file. The index is kept as a cat-
aloged file on disk. KFAM includes subroutines which are incorporated into
user written application programs. These subroutines perform all the routine
‘operations on the index: random access search, sequential access search,
adding and deleting entries. KFAM also includes utility programs that set-up
a new KFAM index, and, programs which carry out a variety of occasional
maintenance tasks on a file.

There are two versions of KFAM in ISS. KFAM-3 ' is a powerful general
purpose version for use when a file is to be accessed'by only one CPU. KFAM-4
is designed for use in a multiplexed disk envzronment in which several CPU’s
may wish. to access a file simultaneously.

2.2 PROGRAMMING AIDS DISKETTE

The Programming Aids diskette offers the ISS programmer a variety of
"DEFFN’ subroutines which may be incorporated into application programs. These
subroutines are designed to perform standard tasks frequently required within
(»lication programs.. In addition to these subroutines, it also offers
LuRT-3, a sub-system for sorting records on a disk file. SORT-3 is loaded via
a user written set-up program that provides all the operational parameters for
the sort. After completing its execution, SORT-3 optionally loads a user
application program. SORT-3 is a fast and highly flexible sorting utility.

1 Search Catalog Index: This subroutine examines the Disk Catalog

Index to see if a particular file has been cataloged.

2) Allocate Data File Space: This subroutine opens a data file on any
selected disk, and allocates to it the available sectors between
the current end and the end of the cataloged area. It checks the
index to ensure the uniqueness of the file name; it allows a
minimum acceptable file size to be specified.

3) Free Unused Sectors: This subroutine examines the last file in a

" catalog area, de-allocates those sectors between the DATASAVE DC
__END trailer and the end of the file, and repositions the end of
“file control sector. The de-allocation may be restricted by
specifying that a minimum number of extra sectors be maintained in
the file area. :

4) Data Entry: This subroutine accepts a keyboard entry, using the
KEYIN Statement, and checks the entry to ascertain whether it is
within a specified range and whether its 1length, and number of
places before and after the decimal, is -acceptable. It also
displays a prompt and an appropriate entry mask.

<:J 5) : Open/Close Output: These subroutines open for output, or close,
. data files containing certain, special purpose, software header and

“

€)

e

8)

9)
100

11)

trailer records.

Open/Close Input: These subroutines open for input, or close, data
files containing certain, special purpose, software header and
trailer records.

Alphanumeric’ Input: This subroutine displays a prompt on line 1 of
the CRT, and a series of prompting dashes on line 2 indicating the
maximum field size to be entered. The entered alphanumeric
information replaces the prompting dashes.

Numeric Input: This subroutine displays a prompt on line 1, and,
on line 2, a series of prompting dashes indicating the maximum
number: of digits to be entered before and after the decimal point.
The entered numeric data replace the prompting dashes.

Position Cursor: This subroutine moves the cursor.to any point on
the. CRT and, optionally, erases characters to the right of the new
cursor position and lines below it. A

Date: This is a group of routines which convert and manipulate
dates in Gregorian and Julian form. It includes a routine for
operator entry of the date. :

. Operator Wait: This subroutine displays the message "Key

RETURN(EXEC) TO RESUME* and waits on an INPUT instruction for
depression of RETURN(EXEC).

.

The Translation Table subroutines'set.up a table (an alphanumefic array)
for use: with the BASIC statement $TRAN. Four subroutines are provided which
assign the proper hex codes for the following translations:

e

EBCDIC TO ASCII
ASCII) EBCDIC
2200 TO 1200
1200 TO 2200

CHAPTER 4 - SYSTEM REQUIREMENTS FOR ISS OPERATION

-

4.1 HARDWARE REQUIREMENTS

1.

2.

3.

4,

ISS requires dual disk handling capability with at least one
diskgtte drive, .

ISS requires a Wang 2200C processor which is equipped with Options 2
and 5. . ;

All thevISS Utilities require 8K of memory, except LIST/CROSS

- REFERENCE and COMPRESSION, which require 12K. The KFAM-2
" stand-alone utilities require 12K; the KFAM-4 stand-alone wutilities

require 1l€K. The SORT-3 system requires 8K, except if a KFAM file
is being sorted in which case 12K is required.

The following programs require a printer (address 215). |
N\

DISK pump

LIST/CROSS REFERENCE

LIST PROGRAM

KFAM-3 and KFAM-4 Stand-alone Utilities

(With minor programming changes described in Chapter 29, the
printer may be omitted for KFAM.)

4.2 SOFTWARE REQUIREMENTS_FDR INTEGRATING APPLICATIONS PROGRAMS INTO ISS

i ;?a :pplication disk catalog index must contain a program file named
ART. ‘

€. If an 1SS diskette has been removed from the ISS standard loading
address as a result of application processing, the application
program must SELECT DISK XYY, where XYY is the ISS standard loading
address, and then provide for remounting an ISS diskette. It must
offer a means of loading START from the 1SS standard loading
address. ;

. 3. The START module on the application disk should provide return to
ISS diskette START modules via Special Function key 15 (or 31, if 15
must be used otherwise). Though this is not strictly required, it
is a recommended system convention.

Y(CAPTER 6 - THE COPY/VERIFY AND CREATE REFERENCE FILE UTILITIES

INTRODUCTION

The COPY/VERIFY utility copies files from one disk +to another, . and
verifies <the copy. Files are copied up to and including the trailer record.
Unused sectors are not copied. Additional sectors may be added to the copied
files. Copied files may be renamed and may replace existing files on the
output disk. Selected files or all files may be processed. Selected files
may be specified directiy, during the parameter entry phase, or indirectly, by
means of a COPY/VERIFY reference file. 1If files are specified directly, up to
100 files may b> processed. If files are specified.indirectly, in a reference
file, 999 +files may be processed. The copy and verify operations may be
executed independently, or sequentially under program control.

Copying is accomplished by read/write operations rather than COPY or
MOVE statements. ‘

~ The utility’cén only process files with “hardware® header and trailer
records, i.e., program files, or cataloged data files that have a DATA SAVE DC
END trailer. '

The index of the output disk is checked to ensure the uniqueness of each
incoming file name. Files with names that already appear in the output disk
ff;alog index are not copied. .

The CREATE REFERENCE FILE utility is used to create, edit, and 1list a
reference file for the COPY/VERIFY utility. A reference file is a listing of

N\

!
o
,f i

the names of files to be copied, and the names to be given +to the output
files. 1If a reference file is used it must reside on the input disk.

CREATE REFERENCE FILE

The CREATE REFERENCE FILE utility is used to create, modify, and list s
reference file for the COPY/VERIFY utility. The reference file is stored as &
data file on <the disk containing the files to be copied. It specifies the
names of the files to be copied and the name that is to be given to each
copied file on the output disk. Files are copied in the sequence specified in
the reference file. A single input file name may be specified twice if
different output file names are used.

‘The “"create*' function creates a new reference file. It catalogs a new
file or reuses a previously cataloged, scratch program or data file. The
operator enters the number of files to appear in:the reference file and the
utility calculates the required file size. No extra sectors are included, but
~ the operator may enter a value that anticipates future expansion.

'The'”modify” function allows file references to be changed, added, and
deleted from an already existent reference file. It is recommended that the
operator have a printed listing of the reference file to be modified.

The "list" function prints a list of all input and output file names in &
reference file. Output is at device address 215, ;

A reference file can accommodate 999 File‘references..
SORT DISK CATALGG

The SORT DISK CATALOG utility prints a sorted list of the contents of &
disk catalog index. The 1list may be sorted alphabetically by file name or
numerically by starting sector address; it may be output to the display or to
the printer. Active files, scratched fiies, or both, may be included in the
list. The size of the sort array limits a single list to 255 items. During
processing, if the array is filled before exhausting the selected index items,
a partial list is produced. .

DISK DuUMP

The DISK DUMP utility prints the contents of a disk file. Three kinds of
dump can be obtained.

. The Vertical and Horizontal dumps print the hexadecimal and alphanumeric
. ctharacter equivalents of the contents of the file. They differ only in output
format. In the Horizontal dump the alphanumeric values are given on the same
line as the hexadecimal values. In the Vertical dump the alphanumeric
characters are on one line, with the hexadecimal values given on the two lines
immediately below <them. Hexadecimal values below 20 cause "." to be printed
in place of an alphanumeric character; values above 7F print "@",

The third kind of dump is the Data File Structdbe dump. It prints the
contents of a data file, field by field, giving the type of field (numeric or
alphanumeric), the length, and the value represented relative to the type of

N\

.\ .
DECOMPRESS UTILITY

The DECOMRRESS utility breaks up all the multistatement 1lines in a
program so that each statement appears on a numbered line by itself. As input
it accepts any cataloged program- file or series of files. It outputs the
decompressed version on another disk as a cataloged program file (or files).

The utility breaks up multistatement lines by assigning to each BASiC

statement, after the first in @ line, a line number one greater than that of
the previous statemeqt in the line.

I1f there are not enough line numbers available between two lines in the
input program, the utility decompresses until it runs out of line numbers. A
.multistatement line is left at the highest numbered ;line in such a group.
When encountered, this condition is brought to the operator’s attention.

In'produ:ing the output file, the utility creates a uniform system of
indentation: '

a) A11 REM statements are indented one space from the line number.

ﬁ "b).. All other statements, except those within a FOR...NEXT loop, are
(:> indented S spaces. '

€) ° Non-REM statements that are within a FOR...NEXT loop are indented e

- 'Spaces in addition to any indentation they would have otherwise
received. - :

If selected files are processed, the.maximum number of files is 40. ~Any
number of files may be processed under the ALL option.

LIST/CROSS-REFERENCE UTILITY

) The LIST/CROSS REFERENCE utility consists of {wo components which may' be
executed independently or sequentially under program control.

d The LIST component Breaks up all the multi-statement lines of a program,
printing each BASIC statement on a separate line.

For example, the statement line

4IOCDM'Fl,Ttl,N(64)8,F,F1,C,O:COM W4$1,Q6$64,D%1,D%(2)3: COM L,
E,E1:DIM N$8,B%$(16),L$1,H$2,W1$8:GOTO 660

is listed as: _
(} - 410 COM F$1,T$1,N$(64)8,F,F1,C,0

:COM W4$1,Q6$64,D%1,D$(2)3
:COM L,E,El

:DIM N$8,B$(16),L$1,Hs2, W1$8
:GOTO €60

The CROSS‘REFERENCE component assembles and prints four cross reference
tables: a 1lineé number cross reference, a variable cross reference, a DEFFN’
cross reference, and a GOSUB’ cross reference.

- In the line number cross reference table each line number referenced in
the program ' is printed, together with the numbers of the lines that contain
the references. The variable cross reference lists each variable that appears
in the program, and identifies the lines in which it appears.

The DEFFN’ cross reference table lists the locations of all the DEFFN’
statements. The GOSUB’ cross reference table lists all the GOSUB’ references
to DEFFN’ marked subroutines.

The date, file name, and page number appear atop each page of'output.

During the program inspection stage of the CéDSS REFERENCE utility, an

'internal ~tabie is built up as variables, subroutines, and line references are
‘encountered. Should this internal table be filled before the entire program

has ‘been inspected, the wutility prints <the three cross reference tables,
clears the internal table, and resumes program inspection from the point at
which it "left off. The final result is two sets of partial cross-reference
tables with each set complete for the program section inspected.

~Input programs for the LIST/CROSS REFERENCE utility are assumed to be

- free of syntax errors.

1f only the LIST component is to be executed, the LIST utility generally
offers improved performance over LIST/CROSS REFERENCE. See Chapter 12 for
information about the LIST utility. h ,

o~ ——

All the program files on the input disk may be processed, or selected
files may be processed up to a maximum of 40 selected files.

COMPRESSION UTILITY

The COMPRESSION utility reduces the amount - of memory occupied by an
application program., In addition to permitting the execution of more powerful
programs, COMPRESSION increases the speed of program execution, and reduces
storage requirements.

The CDMPRESSIDN utility does three things to an input program file:

a) It eliminates all REM statements, except those in the first
statement line. _

b) It eliminates all space characters not enclosed by quotation marks.

.. €) It eliminates as many unnecessary line numbers as possible by

- assigning to each 1line numbe the maximum number of BASIC

statements consistent with program operation. -

AN

CAUTION:

A program”to.be compressed cannot contain branches to
statemgnt lines beginning with a REM statement, since all
:u;htlznes (except the first line in the program) are

eleted. .

. "To preserve EDIT mode capability, the maximum compressed line length may
be restricted to 180 bytes. Though this is less efficient than compressing to
the absolute maximum of 256 bytes per line, it is recommended if maximum
compression is not required. It is impossible to use the EDIT mode on a
"statement line containing 193 bytes or more.

The compression utility works in two stages. In the first stage the
input program is examined, and a table is built of all line numbers referred
to.by statements in the program. This table is called the “protect table®,
since, if +the program is to execute properly, these referenced line numbers
must be preserved. .

A convention is observed that allows the programmer to explicitly exempt
"any statement 1line from being compressed into another line. A blank REM
F'gtatement appearing within an input program causes the next non-REM line to be
‘(iptected. Blank REM statements which immediately surround a single 1line

therefore, have the effect of exempting that line from compression. (A blank
REM statement is REM followed immediately by RETURN(EXEC).) If a compressed
program is compressed a second time, lines previously protected by blank REM’s
are no longer protected, since the protecting REM‘s have been eliminated.

The first statement line in a program is unaliered, regardless of its
content. . '

During the utility’s second stage, called "compression”, the compressed
version of the program is produced and written to the output disk.

The output disk:) T

- a) Must have a catalog established on it. -
b) Must not have a file with the same name as the input program file.
o) Must have sufficient space to store the input program file in its-

pre-compressed state.

o —

The utility compresses selected files or all files from the input disk.
However, the maximum number of selected files for a single execution is 40.
i:e input disk files must be cataloged. .

{ECONSTRUCT INDEX UTILITY

—— . ——— e o

The RECONSTRUCT INDEX utility is an aid to the recovery of disk files in
the event .of' accidental destruction of the disk catalog index. The utility
searchgs the disk, looking for file control sectors established during catalog
operations. Based on the control sectors found, it attempts to reconstruct a
catalog index for the files on the disk.

CAUTION:

Before executing this utility a backup copy of the disk
should be made.

\

The‘utility constructs names for all data. files and for duplicate program
file names. The constructed names have the following form:

. IEXXXX#/

where: XXXX is a four-digit number. Numbers are assigned consecutively +to
files that require constructed names.) ;.

OVERVIEW OF THE KFAM SYSTEMS

The 2200 BASIC language includes a group of statements used for disk
operations that are known as the Catalog Mode statements. They are given this
name because they create and maintain on a disk, a catalog, or index, of the
"files which are stored on the disk. This catalog includes, among other
things, the name given to the file and the file’s starting and ending sector
addresses. The catalog system allows a file to be found by simply supplying
its name (a service performed for data files by the statement DATA I.OAD oC
OPEN). ‘

Though the catalog system keeps track of where each file is located on a
disk, and thereby allows files to be easily found, it does not keep track of
the individual records within a file. For example, a given disk may have an
employee file called "PAY", an accounts receivable file called "A/R", and an
inventory file called "INVT". The disk catalog system keeps track of where
each of these files is located. However, the "PAY" file may consist of 250
employee records, the “A/R" file of 400 customer records, and the "INVT" file
of 5000 product records. KFAM is a system for keeping track of and locating
these individual records within a file.

For each file of records, KFAM creates and maintainrs an index of the
individual records and their locations in the file. For the purpose of this
index, each record is identified by some key field that can serve to mark it
off from all other records. For example, for a payroll file, the employee
name or number might be designated as the key field; for an inventory file =«
product number might be the key field. A record’s key field is called its
"key". The index constructed and maintained by KFAM can ve thought of as s
. list of all the keys for a given file. Associated with each key in the index

is the location of the record that the key identifies. ~

The index that KFAM constructs and maintains is itself kept as a

cataloged file on a disk It is called the Ke i isti i i
: Sk. y File to distinguish it £
the file of records that it indexes. The latter is called the Usgr F;I;. e

wheﬁ a file is indexed by KFAM, you can say in g "Fi '
program, Find me the
record for product AB-4375-1." KFAM subroutines, incorp;rated into the
program, ?hen search the Key File index and put the sector address of record
AB-4975-1 into the User File’s Current Sector address parameter in the Device

Table. The program can then simply execute a DATA LOAD DC statement to read
the desired record. v

KFAM subroutines, incorporated into the user’s programs, do all the work
of searching and u?dating the Key File. There are KFAM subroutines to find

records in a random sequence, and in ascending key sequence; there are
subroutines to delete records, and to find a location for a new record and add
the new key to the Key File. Thus, the programmer who uses KFAM need never
know how the Key File is constructed. KFAM subroutines carry out all the
necessary operations on the Key File.

The Key File that KFAM constructs is a sophisticated +tree structure,
designed so that keys can be found quickly in a random sequence, and even more
quickly in ascending key sequence. It allows keys to be added and deleted
easily, without disturbing the organization of the Key File.

(:\ Whenever a KFAM subroutine is to find a record, or add a new key to the
ey file and find a location for the record in the User File, the KFAM
subroutine puts the User File record location into the Current Sector address
parameter of the Device Table, opposite the file number (#0-#€) being used for
the User File. Thus, on return from the subroutine, an ordinary Catalog Mode
DATA LOAD DC or DATA SAVE DC can be executed, and will take place at the
desired sector location. ‘ -

There are two versions of KFAM included in ISS. KFAM-3 is the general
purpose KFAM system for use when a file is to be accessed by only one CPU at s
time. KFAM-4 is a modification of the KFAM-3 system designed for a
multiplexed disk environment, in which more than one CPU may wish to access a
file simultaneously. The key file structures built by KFAM-3 and KFAM-4 are
identical, and operations performed by the utilities and subroutines are very
similar. The chief difference is that KFAM-4 includes special protective
procedures +to prevent _destructive conflict by different CPU’s. Though the
main functions performed by KFAM-4 software are very similar to +those of
KFAM-3, once a _file is organized under one version, only the software
associated with that version may be used on it. A conversion program is
provided +to convert a KFAM-3 Key File to a KFAM-4 Key File. KFAM-3 offers
better performance than KFAM-4, and should be used whenever it is certain that
a file is used by only one CPU at a time.

There are two versions of KFAM not included in ISS. These are the
original KFAM, (referred to as KFAM-1 in this document) and KFAM-2. Unlike
these versions of KFAM, KFAM-3 and KFAM-4 use the BASIC = statements described
™. SORT STATEMENTS <(Publication #700-3553A). This permits improvements in
“wxecution speed, memory requirements, program simplicity, and system
flexibility which could not otherwise be achieved. Utility programs are

\

10

T

(ﬁ provided to convert to KFAM-3 from KFAM-1 and KFAM-2.

]
i

FUNCTIONAL COMPONENTS OF KFAM-3 AND KFAM-4

KFAM-3 and KFAM-4 can each be broken down into the following functional
types of software. . '

1.

3.

Set-up Utilities: Stand-alone programs used to initialize a new

gg; File, and to create a Key File for an already existent User
ile.

KFAM Subroutines: DEFFN’ subroutines which are incorporated into a
User program. These are used to locate records in the user file
and to add and delete keys from the Key File. These are the

- operational heart of KFAM.

Supplementary Maintenance Utilities: Stand-alone programs which

perform a variety of tasks related to the maintenance of a Key File
and User File.

Subroutines are évailable to perform the Following tasks.

TYPE AND NAME ' . FUNCTION

General Purpose

OPEN Open specified User File and com-
panion Key File.
CLOSE. x ' 4 Close User File and companion Key
' ’ File. :

e

Random Access

FINDOLD . ' Locate specified key in the Key File
set User File Current Sector Address
to record in User File with that key

Key Sequence Access

-

FINDFIRST Locate record with lowest key in
User File; set User File Current
Sector address to that sector.

FINDNEXT Locate next record in User File in
' logical key sequence; set User File
Current Sector Address to that secto

FINDLAST Locate record with highest key in
User File; set the User File Current
Sector Address to that sector.

Add and Delete

O

FINDNEW Add specified key to Key File; al-
locate space for a new record in the-
User File, and set the User File
Current Sectqr Address to that sector.

FINDNEW (HERE) Add specified key to Key File;
: s set the User File Current Sector
Address to the sector where the
. new record is to be written.

DELETE Remove specified key from Key File;
set the User File Current Sector
' Address to the record that has the
\ deleted key.

Special Purpose (KFAM-4 ONLY)

RELEASE Allow a User Fiie record, previously
’ protected by one CPU, to be
accessed by any CPU.

Though the KFAM subroutines are the heart of the KFAM system, and
perform most of the +file maintenance, a group of Supplementary
Maintenance Utilities are included to carry out certain maintenance
tasks that will occasionally be required. ‘

a) The REORGANIZE Utilities: When a record is "deleted" by
- using the DELETE subroutine, its key and location are simply
removed from the Key File. It then cannot be accessed- by
KFAM. The record itself in the user file is not removed. It
is possible to reuse the spaces occupied by deleted records
in the User File, but if this is not done the User File
gradually becomes bloated with DELETED records. The
reorganize utilities reorganize the User File putting its
records into key sequence and eliminating DELETED records.
They +then automatically construct a new Key File for
" accessing the reorganized User File. KFAM-3 and KFAM-4 each
have two versions of REDRGANIZE utilities.

THE REORGANIZE SUB-SYSTEM: Is a three-module utility
program which reorganizes & "file by outputting & new
reorganized User File and Key File. The o0ld Key File
and User File are left intact. It is called by & user

- written set-up module which provides parameters for the
reorganization.

REORGANIZE KFAM FILE: Is a utility program which

reorganizes the User File and Key File in- place. It
should be wused only for a file so large that adequate

output files could not be mounted at the same time as
the file to be reorganized. ; -

Detailed instructions for KFAM-3 and KFAM-4 Reorganize
~utilities are given in Chapter 23.

\

12

.

b) The Adjust Files Utilities include two utilities which can be

used together to copy a KFAM file and increase or decrease

. the amount of disk space allocated to the file. These

.. . utilities are called REALLOCATE KFAM FILE SPACE and DISK COPY

" AND REORGANIZE. The latter can be used alone to copy any
cataloged file to another disk. :

c) PRINT KEY FILE: This utility prints the complete contents of
the Key File with appropriate labeling of data. It can be

- useful as a diagnostic tool, and helpful +to advanced
programmers who may wish to examine the Key File structure.

Recovery Utilities: A KEY FILE RECOVERY utility is provided
. ‘to reconstruct a Key File in the event of its accidental
T ’ destruction. The User File must be intact for this progranm
to operate successfully.

-

d)

For KFAM-4 only, there is a second kind of recovery wutility
called RESET ACCESS TABLE. KFAM-4 maintains in the Key File
information about which CPU’s are- operating on the file.
This information is kept in a part of the Key File called the
- "access table". This access table will contain erroneous
S information if a CPU fails to CLOSE a file it has opened, due
‘to power failure or program error. The RESET ACCESS TAGBLE
utility is provided to clear this erroneous information fron
the access table.

e) The KFAM Conversion Utilities. Utility programs are providec
with KFAM-3 to convert from KFAM-1 to KFAM-3, and from KFAM-:
~to KFAM-3. A utility program is provided with KFAM-4 +c
convert from KFAM-3 to KFAM-4.,

mm—

OVERVIEW OF PROGRAMMING AIDS

- The Programming Aids Diskette contains a library of DEFFN’ subroutine:
‘designed.to"reduce the time required to develop application programs. It alsc
contains SORT-3, a disk sort subsystem that is called by a user written set-u;
* PO gram. Since it must be called by a user written program, SORT-3 does no-
;appear in a Programming Aids menu.

There are two groups of subroutines: +the SCREEN/DISK subroutines an¢
the TRANSLATION TABLES subroutines. The GSCREEN/DISK subrcutines perforr
standard tasks related to operator to CPU, and CPU to disk interaction. The
TRANSLATION TABLES subroutines initialize 256-byte arrays with the proper he:

- codes for four standard code translations. The arrays are designed for use
with the BASIC staiement $TRAN.

All scalar and array, ‘alpha and numeric variables used by the
subroutines have - their initial symbol within -the range G - W. All DEFFN
routines are identified by numbers 200=255, While individual items withis
these ranges may not be used by any given release of ISS, in supporting ISS i-
is assumed that no variables or DEFFN’ subroutines in these ranges are use.

AN

13

9
r application purposes unrelated to the subroutines.

.]
- 'All the subroutines are compatible with one another in regard to wusage

of vdriables. However, all the translation table subroutines load the same
array variable. : :

DATA ENTRY
N . This subroutine accepts a keyboard entry and checks that its value,
‘length, and number places before and after the decimal fall within specified

limits. It uses the KEYIN statement. Therefore, the possibility of a
"hardwire-signaled data input error is eliminated. It can be wused for

alphanumeric - or numeric input. It displays a prompt and creates an
appropriate entry mask with decimal location indicated by a slash (/), and all
other -éntry positions indicated by a hyphen (-). Note that the significance
of the subroutine arguments, as given below, depends upon whether the field to
be entered is numeric or alphanumeric. T is the argument that specifies which
type of field is to be entered.

FREE UNUSED SECTDRSi

_ .This subroutine examines the last file in a disk catalog area. It
de-allocates those sectors between the end of the file and the DATASAVE DC END
trailer. It repositions the end of file control sector. The de-allocation
may be restricted by specifying that a minimum number of extra sectors be
“maintained in the file.

Tor

\

~ The file must have been ended with a DATASAVE DC END statement. If this
‘subroutine is executed on a file which lacks a DATASAVE DC END trailer, the

file is destroyed.

. This subroutine is'designéd as a counterpart to Allocate Data File Space.

—

' ALLOCATE D*TA FILE SPACE

This subroutine opens a data file on any selected disk and allocates +to
it the available sectors between the current end of cataloged files and the
end of the cataloged area. It checks the catalog index +to ensure the
uniqueness of the file name; it allows a minimum acceptable file size to be

specified. .
This subroutine is designed to be a counterpart to Free Unused Sectors.

SEARCH INDEX

. The Search Index subroutine searches a disk catalog index for a specified
file name. It returns the status of the file as active, scratched or
nonexistent.

OPEN/CLOSE OUTPUT

) These subroutines open for output, and subsequently close, disk data
iles which utilize special header and trailer ‘informa%ion. In addition to
“satisfying the file open and close requirements for disk catalog operation.
they produce single sector software header and trailer records -

AN

14

_‘

OPEN/CLOSE INPUT

These subroutines open for input and subsequently close disk data files
which utilize special header and trailer information. They are designed tc
work in conjunction with the Open/Close Output subroutines and depend upor
properly structured software headers and trailers. (See Section 9-5 for this
structure.) .

The subroutine displays the prompt MOUNT VOL. XX OF FILE 1 3 11131 13
= UNIT X. After the proper disk is mounted, the catalog index is searched for
the file name. 1If the file name is found, the software header is read to
determine if the volume number is correct. A correct volume number causes the
_subroutine to return control to the application program with the file open.

1f the file is scratched, or cannot be found, or the volume number of the
file is not the specified volume number, an error message is displayed
*together with the mount prompt. ;

CLOSE INPUT

The subroutine reads the software trailer and checks whether it specifies
an end of file or end of volume. An end of file trailer causes the subroutine
to close the file and return control to the application program. An end of
volume trailer causes the subroutine to increment the volume counter by one,
and initiate the Open Input subroutine with the same file name and the new
volume number specified.

POSITION CURSOR

‘This subroutine moves the cursor to any location on the display and,
optionally, erases the characters to the right of the new cursor position, anc
the lines below it.

The cursor is moved +to +the specified position. If E is 1zero, nc
characters are erased. 1If E is one, characters to the right of the cursor or
the specified row are erased. If E is greater than one, an additional number
of lines equal to the value E-1 are erased.

.ALPHANUMERIC INPUT A ' -
¢ ‘These two subroutines allow keyboard entry of alphanumeric data. One
displays: a “message on line 1 as well as prompting dashes; the other displays
only -‘the prompting dashes. The prompting dashes appear on line 2 and indicate
the maximum field size which can be entered. They are replaced by the enterec
information. ' The routines use the INPUT statement of the BASIC language.
Line 3. 4s cleared on exiting the subroutines. If the entry exceeds the
maximum field size, "RE~ENTER" appears on line 33 the prompting dashes are

~ reconstructed on line 2.

NUMERIC INPUT

- These two subroutines allow keyboard entry of numeric data. One displays
a3 message on line 1 as well as prompting dashes; the other displays only the

N
15

, i
ompting dashes. The prompting dashes appear on line 2 and indicate the
maximum number of digits to be entered before and after a decimal point. The

de;fﬁél point position is indicated by a slash (/). The entered numeric data
replace the prompting dashes. Line 3 is cleared on exiting the subroutine.

... The following applies to both subroutines. If L1 is positive, only a
.posdtive number may be entered. If it is negative, a negative or a positive
number may be entered, and the absolute value of L1 specifies the number of
digits left of the decimal. .

If L1 and R1 are zero, no prompting dashes are displayed, and any numeric
entry is accepted.

Three error conditions cause "RE-ENTER" to be displayed on 1line 3, and
the prompting dashes to be recreated on line 2. These error conditions are:

a) The number of digits entered exceeds that'specified by L1 or Rl.
b) No digits are entered. ;
¢ The entry is negative and L1 is positive.

Numeric input is returned by the subroutines in Q9.
All the routines are designed to automatically account for leap years.

o Enter Date - Gregorian Form .

This subroutine provides for keyboard entry of a - Gregorian date. It
returns the entered date in. Gregorian and Julian form. A prompt must be
specified. The entered date is displayed in Gregorian and Julian form for
operator verification before the subroutine is exited. T '

Entered characters replace the prompting dashes. The slashes (/) in the
date must be entered, though leading zeroes need not be. If MM or DD assume
values outside their valid ranges, the prompting dashes will reappear after
depression of RETURN(EXEC). Otherwise, the message is DATE OK (Y/N) appears
on line 2 with the entered date in its Gregorian and Julian forms. I+ N is
entered, the prompting dashes reappear. If Y is entered, the Gregorian date
is returned in U9% and the Julian in U9; the subroutine is exited.

Convert.Date - Greg&rian to Julian,

The routine returns U9% with the Gregorian date and U9 with the Julian
equivalent of G$. If G$ could not be converted because the values of MM or DD
were outside the valid range, G6% is returned as "E".

Enter Date - Julian Form . o -

This subroutine provides for keyboard entry of a Julian date. A prompt
must be specified. The entered date is displayed in Gregorian and Julian form
r operator verification. :

~— .

‘The'prompt is displayed on line 1. On 1line 2 21 31 3 1 1/ ‘appears

N\
16

- &
(¢ indicating the maximum number of characters to be entered. Entered digits®
- replace the prompting dashes. No check is performed to ensure the proper form
of the entered Julian date. The message IS DATE OK (Y/N) appears on 1line 2
with the entered date in its Gregorian and Julian forms. If a Julian date was
entered which was not in proper form, the Gregorian date is incorrect. If N
is entered, the prompting dashes reappear. If Y is entered, the Gregorian
date is returned in U3% and the Julian in U9; the subroutine is exited.

" OPERATOR WAIT

This subroutine displays the message "KEY RETURN(EXEC) TO RESUME?" on
line 2. Execution is halted on an INPUT instruction until RETURN(EXEC) is
depressed. Up to one entered character is returned in variable GEs.

TRANSLATION TABLE SUBROUTINES
\ 4

The translation table subroutines assign specific sets of hex codes to an
array so that it may be used as a translation table with the BASIC statement
$TRAN. The subroutines do not actually accomplish the translation; they
merely initialize the array. The array is TO$(). It may be initialized for
any of the following translations by means of the indicated GOSUB’ subroutine
call.

SORT-3

~ - SORT-3 is a subsystem for sorting the records in a disk data file. It is
- loaded from disk by a user written set-up program. The set-up program
provides the parameters for the sort, and thereby eliminates a lengthy screen

" dialog that would otherwise be required for operator entry of the sort
parameters. When sorting is complete, SORT-3 can load a specified application
" program module. SORT-3, therefore, can be used as a subsystem to an
application program. It requires very little operator attention.

SORT-3 offers the following operational features.

- 1. For maximum efficiency it uses the extended BASIC statements
‘ described in SORT STATEMENTS (Publication #700-3553A).
\ T = The programmer may specify whether a key sort or @ full-record sort
' is to be performed, or let SORT-3 decide.
3. Four input file formats are accepted.
a) an ordinary cataloged data file
b)) ~ a BAS-1 data file,
c) a KFAM-3 file, o
d) - A data file opened and closed with ISS OPEN/CLOSE subroutines.
T a. Tﬁe sori>key can contain up to 10 fields. They may be alphanumefic
. - - or numeric, but their total length must not exceed €4 bytes, not
N counting control bytes. Sort order may be specified as ascending
- or descending for each field. ‘
N\
17 4

® ' m

S. If a key sort is specified, the sort keys may be partial Fiélds;
that is, a STR() function of an alphanumeric variable.

6. If a full-record sort is specified; the mounting of the output
-platter ‘may be deferred until the last pass, at which time the
input platter may be removed. This permits the sorting of a full
- disk platter in a dual platter system. (A full record sort can

- only be performed if the record length is less than 128 bytes.)

7. . The programmer may write ; special input procedure, to be overlaid
in Pass 1, to process or screen individual records before input to
the sort. ‘

8. ' If a key sort is specified, the programmer may write a special

output procedure to be used instead of the normal Pass 3 program.
Such an output procedure can be used to screen sorted records,
print them, or output them to other media.

ﬁs;B WRITING THE SET-UP MODULE
T In order to use SORT-3, you must write a set-up program which provides
the operating parameters for the sort, and loads the first module.

* .. This set-up program has two parts. Statements in the first part must be
assigned line numbers 10 to 179. The statements in this part are executed
, when the'set-up program is executed, and cleared by it as it 1loads SORT-3. .
. ngluded’' in this part of the set-up program are REM statements, SELECT
' #tatements, and a DIM statement. The second part of the set-up program must
us¢ line numbers between 3400 and 36€99. The statements in this part of the
set-up program are not cleared when SORT-3 is loaded. They become a part of
the first module of the SORT-3 system, and are not executed until that module

fis‘executed. They include, in assignment statement- form, mast of the
parameters for the sort. '

18

.-

. R I EA R SRR B N SR S S R L T ¢ B LR | Bving £ k3

i 41.m.u.ll....u.n.mm i mm;:mé“ AR o

performs mst file mamtenance tasks au:omatlcally with each marked
- subroutine call. Data files mcet::.ng KFAM-5 record requirements are
easﬂy convetted to KFAM-S fxles us:.ng a supphed uuh.ty program. .
- So:nng dz.sk flle records is.. accontphshed by a h:.ghly versatzle o
- subsystem called SORT-4. A. short: user written set-up module loads
.~ 'the’ SORT=4- subsystem and provides t:he necessary sort prrameters. '
" ‘Three- types: of sorts: m.cludmg tag, key, and full~-record sorts are
" “-available. Input récords can be included in or excludad from
.- sorted: output, - and-’up . to ten ascending or: ‘descending order sort key
.. filelds: control cutput: record order. - A variety of input record and
:'ﬁ"mput: fxle fomats are. fulIy suppotted

: ISS funct:l.ons, in coajuncuon t-uth (1) the 2200 CPU's mult:.ple file
“access. capabx.h.t:.es (device table), (2Z) Automatic File Cat:alog
-~ . statements and 2209 disk data hierarchy, (3) programming in the
B gouerful high-level BASIC or BASIC-2 languages, and (4) the
. automatic’ po].l:.ng performed. by t:he mult:.plex coutroller hardware
- €;|.£ applicable). . .

Hulnplexed File &cceas

o Bxles resldzng on a multiplexed disk drive may be concurrently
sccessed by multiple: CPU's. Marked subroutiges provide a

. controlled CPU file access system with four available access modes:
. and password: protection for- both KFAM and non-KFAM: files.. KFAM - .
. _.. supports record protection which allows concurrent CPU access to a .
» file being updated. Features normally asscociated with small

S compncer data base managment. systems are thus provided by ISS in
"~ 7 coajunction with 2200 hardware without the complex:.ty of an

" ope:atmg system.

P S Hardware Rech.rements - . . T -

I o *ISS requn'es dual’ platter uandh:xg .capability with at least
-~ . one diskette, flexible disk, or mifidiskette drive. All
- - minidiskettes, flexible disks, d:.sz.ett..s, or. dlsks nmst: be
”,f :';formal:ted and cataloged o o _' LT LT

AR Isg requtre :.t Wang 22000 CPU equlpped' m.t:‘z Opt* ons. 2 and 5
. & 2200T, or a 2200VP.. ,

' AII Iss Uuhty Programs requu'e 12’(of memory excep: Program;
"-(.fompa:e which requires. 16K. ' Tha KFAM-5. Uta.h.ty Programs =
~_requ1re 16K. - The. SORT=4 system requn:es 8K, unless a KFAM -
file is betng sorted in. wl'u.ch ease 12K is reqm.red.‘

qu‘f' \LAEOQ“TQR‘ES INGL od 2 ‘ L T prinwedin S A
X /oxgmausmm AVENUE, EOWELL. MALSSCHUSCITS O1ASI TEL 1A17) AB1-S331, 1WX 710 uam TRLEX 947e2r . . '

1I.

.A unique indexed se

~. L
M RE M) ['ﬁn,.__’. mw}'f} AT gmﬂ

iNTEGRAEED SUFPORT SYSTEM (ISS) RELEASE 3.2

SOFTWARE ANNOUNCEMENT

Application Bulletins #11, #14, and #20 introduced the Integratfd
Support System (ISS) Réleases 1 and 2. Since the release of I85-2,
ISS has undergote major revision and expansicn. The result of this
revision is 158 Release 3.2, waich is now available. 183 Release
2.1 will still be maintained and available. Users of 185 whc have
purchased'an'ISS softwvare maintenance agreement will obtain ISS
Release 3.2 free of charge. '

OVERVICY
R —

The Integrated Support System Release 3.2 minimizes the progracming
costs necessary to extend and custcmize the data hardling
capabilities of a Vang 2200 CPY equipped with 2 direct access
storage device such as disk, flexible disk, diskette; or
minidiskette, by providing a comprehensive set of standard
functions typically required in a disk or diskette based cata
processing and programming enviroament.. It consists of 45 marked

subroutines, 21 utility programs, 2 subsystem routiras, and system -

access software that links 1SS .software compoaents aad user
application programs. 1558 software is available om diskatte,
flexible disk and minidiskette, and may be copied to a single hard
disk (if available) from any issued medium. ISS progrem storage and
loading is supported by all four media. :

" Programming Support

Marked subrcutines eliminate repetitious, detailed programming
tasks otherwise required of an application prograwmer, and provide
a simple interface between user applicatioﬁ programs and a wide
range of potentially complex disk-related or operator-related tasks.

Utility programs provide the ability to list, cross reference
compress, and decompress files containing preogram text (progr;m
i;ies) ;nd compare two program fi%es on a line-by-line basis.

o, the presence of other supplied utility software eliminates

the need for user written

prograns to perfomn thoga fymepi

- ' et long
Access Mat} . quential ae . L
rapid Etﬁod)’ 15 avail Cess me{hgd

submw accassed {n :able fop data r% ' Gs‘lllg

utine; ';umdls; f‘ “‘Sﬂquentfﬂl (‘@E l dKMMNj ‘

GQCﬁs

recop e N
|

L . ————r g P —————"

R e I "“ e 4” i "-’;‘ "4 §1:
S S 3 3 - 1N ‘ 4 »
awliud :3 ad LJUE:: ia d.m

l‘ﬂnwmmmmm i uimmnmmmruu*-i‘- o l""""""’

L.:." b :r.‘c":& L A et ".]! ‘
2

v, """‘""""lt"""'m l " o1 aoer-y nymmmrmnrrmwm HU Ly "
ll&*m-"r‘dwmuhvt. e zru.-.a b"ﬂ!ﬂ‘dﬁl 4 T meﬁﬂﬁ';{k i ':" i h.::tlm ul:‘n:mmmn i I'I"-dlilm“‘ll,u e ul AR BRI -‘llu.m
b, ,'Au prxnr.er is recommended fot all utility programs, but is

only required for the Disk Dump and List/Cross. Reference ISS
Ut:.l.).tv Progra.ms and the KFAM-5 Utility Programs. Other hard
Sl copy ‘output devices may be used; however, because top-of-fom
. 'nse is* uot supported multl-page output is not recommended.

5. ~ Ouly hatd dxsk (fixed/ removable disk drive) is recomended as
U a storage medmm £or multlplexed filea.

&. An. ECN (engxneenng) change is’ reqt.u.red for the ‘Iultlplex
- " ‘Controller- if Multiplexed files are used. Customers with a.
'Preventative Maintenance contract receive the ECN free of
‘charge. Customers-without: this service: agreement will be
- billed for the EC‘! change. Hog mode now occurs mmed.:.ately
(8610 hog). ,

"me ECK numbers reqm.red are listed below. -

MULTIPLEX CONTROLLER - ECN NUMBER
‘Model 2224 - 57127
" Model 2230MXA - 56368
Model. 2230MXL . 5720

2200 Wozkstat:x.on (WS) . 5119

Dlstn.but:.on Media _

.‘ ISS Release 3.2 is ava:.labl.e on mn:.d:.skette, ﬂexz.ble disk and.
diskette. " All versions may be copied to, and thereafter loaded
from, a single hard disk (if available). Oace. ‘copied to hard disk,
ISS ma.y be copied to any medmm.

R Iss-32mmnm " - PACKAGE NUMBER
| three &1sket:t‘es"(Model'e 2270, 2270A). 195-0032 - 3
| ;_three flex:.hle disks (r[odel 2240) .. 195-0032 = 2. -
o S mm mm.dlskcctes U, . 195-0032 - 8
N)
i E J.k' RN -
.51%'6.3 exa.n_it‘iu.smm AVLNUE. LOWELL. Massacuus&ttsoipga; TEL ('om 8614191, FWX TI0 :a:)-ev'_as; TELEX 94-7423 ' S :

T S s A nm vsmmgs oF 1SS v-m: \SE- 3 2

" Those. aot fam.har with: TSS. Kelease 2 slwuld read "Iy, FUNCTIONAL. -
SUHHARI" (on- & followmg page) before read:m the follom.ng text.

System Accesv Software

;e Enhancements t° ISS SYStem: access scfrma:re mclude the. follomng.' .

IR P Operatzanal CPII statt-up‘ pro~ed1.rres~ &llow selecnon of either
T Ly a Warm Start,. vhereby existing system information is not
- updated, or (2) a Cold Start, whereby the date and other .
- system: 1nfomat10n may be chatxged Cold Start’ Informatlon,

. ‘ - such: as disk or Err.nter addresses, is used by ISS and KFAM
' o Otility Progra .- ('ﬂxe ISS mems h:.erarchy ‘has changed
e Shzhtly-) i o

L Ze '.l'he CPU memory ch.agnostm: is bypassed" ‘if the CPU- is a 2200VP
: and opt:.onaL on other. CPU's. _)
3.. - Hessagea can: be sent to a speczfa.c CRU or: a11 CPU's in the
. same multiplexed enviromwent, after which conversation-like
message trausfer may accur. . -

.

: 4;. » Apph.catzon prowra:m nay have— any program f:.le name,
ISS Unh.ty Programs . o -

- ‘

o Enhancement:s to the Iss Ut:.l:.ty Programs mclude the followmg
. TI. - The T.J.st: UI:‘11:.t:y has been removed. because the same functions
Tof 7 v are-available with. the List/Cross Reference Utility. The
: - Disk Sort Utility has been removed: because. of similar -
_ : ' functions availabla with SORT=4. The following ISS Uglhty
. - .. Programs have been added. and- prov:.dc funct:.o'xs supporting
o I " mll:l.plexed envxronmsnts program development, .and media
f . - .- ¢ - conversion: (a) File Status' Report (b) ‘Program Compare, and
- L ;(c) Cozpy -Tape ta DI..J(e e e e
.,,"2-.* o (bpy/?errfy, Decompress,. L.Lst:/Cross-Reference, Comp"ess, and
: - - Program. Conpqre allow- file nam. specification within entered
N r-~~~~’~a'l?habet1c limits: (RANGE). - Copy/Verify imput files are now -
: e e T specified by an INPUT MODE selectm, alse, whether the
e r_.,.us:,pn:. Eiles: REEIA&-.»emsuno £iles, or:are -ADDed" to- the :
' v - output. disk, or bat oth, i dcte'rm.m-d by the QUTLOT: KODE. The
~Eist: and’ the- €ross: Referemce-options of: List/Cioss: Reference
<74 have-also beem- zmprcved and have BA‘!IC—" (‘ZZOOVP)
‘ _ccnpaubxlxty' PR :

R

e S A
f Iy LAQGRATOH'“‘" NG e TP C Mrinted in Us.a,
hl“u } mmmmz, LowELE: mssmus:nsmsst m:;(am IST- 4117, TWX 710°743.6733. TELEX:94:7421.. - . S s

'
hie

1
Ja
“

R o Rt m""n'wmm L
21t ui’w!n suas.mimmmnu&'nlnl\dunmmxdaunm«..xm.ssu]

N 3~.g; Sor: Dzsk Ca..alog now allows the disk catalo'v index to be
- " “~gsorted by index sector sequence. The summary of disk space
- USEDY; -FREE, and ALLOCATED is. now output for the chosen file
: ca:egory m sectors.. Up-to 340- flles may be output per list.

Kev Flle Acce';s I’ﬂthod. ReIe.—.se 5 (KFAM—S)

. Imptovements to the Key E:LIe Access Hethod (KFAM) system ,.nclude :
the fallom.ng: o : A

1. KFAM-S m:'ovxdea maJor enhancements in the area of multlplexed R
(mult::.ple CPT). file access. KFAM-5 supports ome
non-multiplexed mode and four multiplexed modes. Its .
‘mon-multiplexed mode provides KFAM-3 characteristics within. = P

- tka framework of the. same KFAM syst:em that also supports :
‘enhanced multiplexed file access. KFAM-5 retains the Shared
and’ Exclusive access modes found in KFAM-4, and also: includes
~ the Inqu:.ry and Read 011y access modes. .
-A. CPU which: opens a file in the "Inqu:.ry" mode may onIy read -
. within the file specified, while other CPU'3 requesting the:
-~ --. -=Tnquiry (read), Read Oaly (read), or Shared (read/write).
- modes- are granted access to the same ﬁle. '
A CPU? wh:.ch Opena a file fn the "Read Only" mode: may only
oo =~ read within the- file specified,- -while-CPU's requesting the
- - Inquiry (read) or Read Only (read) modes are: also granl:ed R
" file access. .. . S e

T i TS

... Acmm vhich Opens a file in the "Shared" mode may read and

‘ ' write within the file specified, while CPU's requesting the
" Inquiry (read) or Shared" (read/mta) mdes are also granted
f:.le access. .

A CP%I whxch opens a file in the "Exclusive" mode may read and-

.“ L - 3 ypites within. the. lee specxfxed- No other: CPU. ma.y access the -
R same fﬂ.e. . B _': e j*‘““‘ e e -

;e e e et e
- . ; e oe o i

.'_;; In access modes ‘where (1), mult:.pls. CPU access to a KFAI'[f1Ie ’
C ‘is: not zllowed (Exclusive and noﬁ/-;mluplexed access modes),
“or {2) writing in the file is not allowed. (Read Only access)

" KFAM~5 need not be, concetned with record protection and hog:

node options (neu:her are available under the c:.rcumst:ances),
g Key' File: integrity: Thus;- throughpar. characteristics are.
‘Bet.tex. in the Read Caly, Exclusive, or nou-multiplexed access

f.mdes t:han in: the’ Inqu:.ry or Shared: modes where sueb check:.ng S
':Featuraq are ne”o-:tﬂry-' o R T R e R S e e s T

e g vem s et e pamie e =y

LABO-—-ATOFHE::. NG LY T Printed in 180

&l 3 ong K‘MW&MM& I.OWEI.L MASSACHMITS m..t YCL (G‘ll] 8..1 4”1 TWX 710 3‘3 6159 ?tl.i‘ 9‘-7'2‘

FEEEEE g IV
!y Bpe d
¥ Jte

IO PR S S R B SRS R B S I T Iy N IS 1
Guaed wwlod iJUEadsha b Edd ._ fdaig ba ¥

T S T

RN e e NG TR e e R A o A

. In the Inquiry and Shared access modes where hoth multiple
-~ CPU access and ‘writing in the file can occur, KFAM employs a .=
. mew techmique using a busy/ free flag to permit only.one CPU - ‘
© access to the Rey File at -a.time, thus preserving Key File
- -integrity. Hog 'mode ‘is therefore used by KFAMfor only about -
"20%: of average subroutine execution time (unlike KFAM-4's
- '100Z).. Record protection and hog mode options. are available -
. - and the KDR (Rey Descriptor Racord) is read/written more . '
o _-frequently. Therefore, ‘concurrent. multiple CPU ‘access to a
i - -+ 7. file being updated (by:one or more CPU's). is:fully’ supported

- in the Inquiry or ‘Shared access modes.

B " 2. New subroutines have been added to the FFAM~4 set and include
' ' L FINDPREVIOUS, RE~OPEN;, ‘WRITE RECOVERY INFORMATION, and

. SET-UP. Also, the following ISS Disk subroutines are also
- ... selectable from the KFAM "Build Subroutine Module" menu: . -
R . . Multiplex Open,Multiplex End, Multiplex Close, Set/Release -
o . -~ .. Hog Made, and Search: Catalog Index. - s -

3. Most KFAM-5 subroutines are identical to their KFAM~4
" ° ' counterparts,. whereas the following KFAM-5 subroutinss
‘require new argument lists and/or perform enhanced functions:
~ Open, Deletz;, Findnew, Findnew (EHere),. Release, and Close.

- E oo _.__'..._..._. e e : ..._...‘_.. T.._.,J.m. '..;. —...“_j ..A,..‘A - T .) . - -
-4. The KFAM-5 versiom of ‘Build Subroutine Module has been

" modified- operaticmally.: Subroutines are now- selected from. -
the displayed list and included in the output module (a

'T““W’ﬁl'e')"’y”ﬂéﬁfeS'éipg the appropriate Special Function’ T
.. key. R T e e
o " 5. The “ﬁisik-(.:opy and. Reor gauizé""ﬁti‘lify has been removed.
... ... Both Key Files and User Files now contain an' END record
o (end-of_—live-data)_ﬁxich. is maintained by KFAM. Therefore, = _

T TTthe ISS Ueility Copy/Verify is used instead to copy and
v resmiemio-.OPflonally reallocate. file space,. but must.be foliowed by the.
. RFAM Utility "Reallccate EFAM File Space" to ad just internal
KFAM (RDX) pointers. A back-up disk copy may be obtained by
vl e U8 i0g @ COPY statement-without using the Reallocate KFAM File
. Al"pA ";::"";T':;"‘,-...space U':iIit}' Ptcg‘:am. o : L .t .

s . z

U O — i S v : - - S

B - 6. The'Initialize KFAM File Utility allows. blocked records

=L written in BA mode’ as data. file input' (file type "B").

» Minimum key length. for-any. file is now:2 bytes. Scratched

- . 7T files may now be initialized: . END records are written in the

. TR %7 Uder File and Key File. The other set-up utility program, - .

e s ‘A'M?ﬂ'e_teréétfoﬂ‘f‘fsiﬁﬂ':{fI“y“}‘_ti;*’zxid-l‘e’S?'ENﬂ'*’féédfcf‘s;:' and = T

7o becausa of the presence: of an END-record in the User File, . . -

e i e e G the Tast: Reéy Is. usually not required. & file . . .~ &
- PRt R SO R R i 5. ot it g ——i H Taiair Teoga G e e Y et e T e g Ll —:‘."...g\fﬁ‘-:_:ﬁ'.:, iy 4 T :
paseword 1s Teauasted when crenting s moer fila. - - '
6-..' . _ e e -v~..‘.3'¢c; BRI) R T
e & %‘i,‘Al\ﬁP . YI.A_B‘GAB n,Tonlg.s,. NG e T T ﬁtpttd-.n usa
DN TTERLNRSR J one voustriag ave v, LOWELL. MASSACHUSETTS 0105); TEL. (617) 651-41M, TWX 710 343.6769. TELEX 94.7a21 ~ . T - L

SR plind 0503
Hon Liud f s
§HEdy Eddde 2

S e A Dt R e e
il vt vl Il b A i

7. The two Reorganize utilities have alsoc been modified. The
. . 'KFAY Jtility Program. “Reorganize KFAM File" is now called
v . . . ‘'Reorganize In Place," but is essentially the same as in
RFAM-4. The XFAM program-controlled routine "Reorganize
Subsystem" does not requirz user hog mode selection and

N Ll . .

v . 7 - variables S3 and S4 have been changed.

i

' 8. The “Reallocate KFAM 'Fite_- Space"'TUt-i.I'ity has been sinipI‘ifi.ed._ "_ v

to reflect changzs now handled by Copy/Verify.

9. The conterts of the Key File's Key Descriptor Record (XDR),

' - with the exception of the Key- File busy/free flag, are now
stored in the next-to-last sector of the User File for use by
the Key File Recovery Utility, should the Key File be
accidently desirayed. This recovery information is written
upon Closing a file if the "Close With Recovery Information"
option was chosen during Build Subroutine Module, or after
executing the "Write Recovery Information" subroutire. The
.KDR's contents have been changed. :

. 10. "Print Key File" prints the current contents of the access .
ST o ~ table as well as the Rey File. The access table is part of a ' |
- - - multiplexed User File's catalog trailer record (last sector - S
allocated). Any MOVE statement destroys this access. taBla, ;

~ which is used by KFAM files and multiplexed non-XFAM files as

.77 well, sad thus destroys. the file (use COPY or Copy/Verify
- . _-instead). = - . - T o
ISS: Subroutines o
) 1. . _The general. category of the ISS Screen/Disk Subroutines still. .
. " applies. Howevar, now they are subdivided into -the Screen,
.- - the Disk, and’the Translate Table Subroutines, each with
. - their own menu. All use a subroutine selection operating
procedure pearly identical to that used by KFAM's Build —

T} T subréutine Modwled L Ll S

B A e —The:Screen ‘subroutine Position Cursor has been modified to T T
' : ' " :. . accommodate both 16 by 64 character and 24 by 80 character -

‘ : .. Jdisplay screens. Data Eatry provides operator Special '

+~- - Functiom Keys.for reentering the current field, and has been
o . enhanced to provide for numeric default value use. New

...Screen subroutines include Reenter and Primt. | SHp

e

SO EREE S T e i dd o, ST Y -
LE - . - il Aesliies ., T T e mmmmeeseeal a0 L
el T T e e, . - 5 PRI P LI Vemiame 0o ol e Tl T LA v le L L paeeen T

i
. . '
~ - - - el —- mee epmnver — . eyt e - LTRSS - L. -
-]
- LS D e et eeima o e e \

T f '3.'37’""1?:"". LABORATCRIES, INC. o o S SR o . Printed i Us.a,
J A% - — " - - - n . . .
o\ &lh Sewb] ONE INDUSTRIAL AVEKUE. LUWFLL. MASS/CHUSETTS O1BSY. TEL. (617).951 4110, TWX /10 133.6769; TELEX 94.762¥ .

L | e

B e i
;miu%iﬂi.m&:lﬁimdi:i!‘i.lanmﬁiﬁ iw.fm...

.+ 3. . The Disk subroutine Search Index now: provides- a return code
. E "~ identifying the file requestad: as active or.scratched, data
' .. or' program file, or not: found. = Freec Unused Sectors updates
. the end-of-catalog as well as end-of-file when the file is
the last'file in the catalog area. Limits Next has. been _
- added, and returns the name of the next file in index sector
sequence. (same order as LIST DC command) and the file's o
. 'status-as scratched. or active, data. or program, or not found. ,

B S Disk subroutines, designed for shared file, multiple CPU use
. onmultiplexed- disk drives, are called the. Multiplexed..File:
. Open/End/Close Subroutines. Access modes: include Inquiry,
- Read’ Only, Shared, and Exclusive. . Each access method's rules
~ about reading/writing in the Eile, provided with KFAM-5, do

'

) * not. apply. However;. rules: about a CPU being granted or
. denied. file accéss based on its access mode and access modes.

already granted to other CFU's do apply. ~

5. Translate table subroutines are identical to their 1S5-2)
~ ° . counterparts, with one exception: array T0$() is now Q9$(). .

e T e A e Th DT i e = -SSR

mrf-& o

SORT-4. énhaacemen:s;..iqc.lude;; o i.’ B ,7‘;"..,."....,...:‘, - e - .i,l - oy e
SRS _File;._@;_@z_z_tg;s_j:ppqp;g _:iqv;;;ir_zc,rudé bo?th-,f.ﬂm_and. KFAM-5 - - . ____ __
- files. TC (Telecommunicatiomns) files are supported by a-

- miablfe‘;‘leng,q&{teéo'r&fqrm‘at‘:...,._' o _ L

2. Input record. formats supported by SORT-4 include, in additio;.r'
- - to the DC mode, _array=type blocking supported by SORT-3,. ,
- -packed- arrays, .contiguous packed records, certain variable-. - - .—__|

~ length records; and BA mode. . 4 o }

3. SORT-4 allows a full-record sort on records up to 256 bytes,

* . . packed." It also allows a full-record sort. Wwith partial
Lo Ll HeldsTas sort keys.. 0 T UT T TR s e
oo e b SORT=4 will dovs tag sorr;” which producés as its output the ™ T
.- " - pointers to the originsl input records, instead of full L
| .+~ . - ,records. The:output £ile for the tag sort may be the sort T
[T ... work . file," thus: eliminating the. néed for a ‘separate-output. - ‘

L S Riles "Therefore, - SORT-4 ‘does not provide for a special

e . - . e m!t_zuwt «Pqusg_,ge.% -w\.u\, '"‘ﬂém};“%-‘t‘m{mv:‘.a«ov"@"' ':m-.a-..-.—'.a‘—-qé'c’ e Sealede (g e
* Tt " rels v(: LIt o s e e N . s) . : o
PR 28

|/ ONE INOUSIFIAL AVENUE. LOWELL. MASSACHUSETTS Q18SY. TTL. (617) #51-A1T. T\WWX 710 343.5769; VELEX 24-742)

o0 B Al
=0 o gde 5 7 X5
~ A J\fB bow g

R S
B R R T ;

PSS 1 TS L e e ap e e s
B i bt i s S imbisttindh oth

IV.. FUNCTIONAL SUMMARY ©

] |) A bn.ef summary of fmctibné ;év'a;illalilel wu:h veacis} ISS.AiSo.’ﬁ.tyégre'-

category is as follows: -

: _ 2‘§if$ténr .Ac‘ce'ss: Software B B -

To: reduce the .poés-iﬁii’ity ‘_df’_an-: oper.jat;.or:‘i’ﬂ.én-téi:'ing"‘th."e' wrong CPU

.. includes az 2200°WS, WCS;, PCS; or other 2200 CPU*s.) A label
o " ghowing the assigned CPU number s type of CPU, and memory size

' ' should be placed near the CPU. console screen for easy operator ,
reference. . Similar ly, all peripherals should be labcled with their
respective device: addresses: for operator reference purposes..

‘Each CPU must complete ISS. start-up operation after the CPU is

. powered on, for iustance, at the beginning of the processing day..

S - -To begin--ISS start-up operation, the program module "START" is

B loaded from an ISS platter (disk, -flexible disk,. diskette, or -

" minidiskette). START uses operator “prompts™ to. request entry of
the CPU mumber and other information, waich might ‘include the

B - - ‘periphéral addresses associated with this CPU's system o

inf‘ormatiotr,'"the’*lss".‘"syaet‘n'menu" is displayed. =

The system menu allows easy selectiom of several displayed optionms,
and links ISS software components and user application programs as
well. System menu. options allow the user to: - S

'« load ISS support software contained on- that 6f another Iss 7
L ... platter; such as. a utility program or a. group of marked . .
- " 7 subroutines, T : S ;

Z message to one or a__II; CPU's. in the same multiplexed

i T E number- dtn:ing~’ISS::start:-ug_-bp&atiqn; a -utique CPU mumber of 1,2,3, -~
: <. . or & should be assigned to each CPU in- am installation. (A "CPU™. .

" 7 configuration. CPU information, including the system e
configuration, is- automaticzlly maintained by 1SS for each possible .
CPU: (1-4). After successful entry of all requested start-up - ’

L e 1 g - load-.other- - IS5 system access software ;- for example, to send. - .- ...

-

S .. @NViTODmENnt, QE:

Ly

. : loadan applicat:xon program'.) . SURCATRINEE L " '

CPU s‘tart-’ui:'};ihfbm&ci&ii:féﬂsﬁpz‘éé{-.‘f"'oé. example, . Ehéi:—f,afipfat:ﬁeé-"f‘7"
" address entered. during the operation. of z utility program is a

— -appears .on priatouts; and the printer address Which determines if - .
oTocTen - ~printed- outpat” i‘_gl’ist_‘:é&‘ct’r‘“a,ha?::_t_?ﬂcopy‘f yrinterdevice -or ‘the CRT -
R L R o> - SR & nih ol e T N e 1 -

Ysereen, YT T T T =S ~

v "‘va:ﬁd:;adai:e?'s*. Other: CP® informatisn fncTudes the date’ ‘which e

D L e L P S

E
S emeke ey e e et
- N

[<x=pa mie~ \LABORATORIES, inc. T I . ERE
WANG JLasonarenies e, - - il .-
¥ N3 o iDUSTRIAL AVENUE LOWELL, MASSACHUSTTIS 01351, TEL. (G171 851 4115 TWX 710 243:6769. TELEX 94-7821-

‘ C Pramecd i 1.8.a

(b d|:|;':ggn,-qnmf!}'mmm.m--r.
. :&;&!mnfii!szi.lfal‘ EX

e ISS Utility Programs

_ . ISS Utility .P.r‘:ograms are dperaﬁor—cont'r.olled routines.. Each .
v . Processing operation performed by ISS Utility Programs (except Disk.
. f ' * . Dump) can be performed on multiple files. All are compatible with

multiplexed files. Their functions are summarized below:

1. 'COPY/VERIFY - Copies files from one disk platter to amother. . .
~ . .+ andverifies the copy. Media comversion can occur during ‘
"' R copy- by merely specifying the. appropriate device addresses of
i 1 the disk, diskette, flexible disk, or minidiskette drives.
' Additional sectors may be added to the copied files. Copied
- files may be renamed, or may replace existing files on the
output platter. Files to be copied may be specified directly
. during Copy/Verify operation, indirectly by means of a
reference file, or by means of alphabetical file name
limits. Also, all files may be copied from a platter.

2. CREATE. REFERENCE FILE - Creates a reference file which
. contains pairs of file name entries for indirect use by the
Copy/Verify or Program Compare Utility Programs. .

: '~ " 3. SORT DISK CATALOG - Prints a disk catalog index report; with
‘ - - files sorted-(1) alphabetically by file name, (2) numerically - - -
by starting sector address, or (3) by file sequence in the

- index. e L e e —

S DISK DUMP — Prints the hexadecimal code and -graphic character
~ equivalents of the contents of any one disk file. In
- addition, the data file's contents may be printed with a
- field-by-field description. .

S.. DECOMPRESS - Copies a program file and in doing so breaks up
- - -aklk multi-statement-lines, assigning a unique line number to-
each BASIC statement. Files may be specified by file name or
A by alphabetical file name limits. Also, all program files on . _
7L s 7 d platter may be decompressed. ..~ = S e
o e § oo - EESP/CROSS REFERENCE = Trints 4.I{st of a program file with —~ = =~
o " each. BASIC statement printed on a separate line. For each
"input program file, it prints four cross-reference tables:
. .~..-.one which- assaciates referenced line-numbers with the ‘lines
. which refer to- them, one which associates all variables: with '
_ .- the lines in which they appear, one which. identifies where .
- marked subroutines are located. and one wviiich associates all

......macked subroutines with the lines. which refer to them. Files. . _
e :;,i;l&';:,bev.speciﬁied;..hy:.-;file;”na‘me;.or:‘Byal‘phabe:ic “file name - . : - e
T limits.” Also, all program fiies on a platter may be ..

IR .lis:c,d.«feljasu_.m:fs:rcm:aﬂ,_«“:_ oL T L

.] S R =l . o [
- AN T e et il e i memee e L R i T Lr TRt SR RN e S e PR e .
PN am e . - . o T T a~- : '

S

LABORATORIES, INC.

o . ’. . - T . S -) Printed in .S\,
N VY YRR X - . - i -
. ‘55!1:‘ IR (ONE INQUSTRIAL AVEMUE: LOWCLL, MASSACHUSETTS 01851, TEL (617) 51 4111, TW 710-343-6769, TELEX 94-742t . '

: ' ME—— ’ - ! ! |

I

D g A
ik st mﬁl'ﬁ:imui!d- IR TR T A

7. COMPRESS - Reduces the size of Source program. files by
N ‘e@liminating REM (remark) lines, extra spaces, and inessential .
.. .. . Iine numbers.. Files may be specified by file name or by
© 7 . alphabetic file name limits.! Also, all program files on a
' © platter may be compressed. - ‘ :

8. ".ﬁECONSIRUCT INDEX. - Reédnst’rué.ts.a]ctisk catalog index in the ™ |
- . . event of its accidental destruction. o o T

9. - FILE STATUS REPORT - Performs: several functions tailored to a
. multiplexed disk environment, including closing one or all
files open to 'a CPU, printing the CPU status of one or all
. files, and printing all files currently open to a CPU. '

10. "PROGRAM: COMPARE - Compares two program files on a
_ line-by-line basis, and indicates ‘statements that do not
datch, if a statement number exists in ane program but not in
the other, if one program ends before the other, “and whether
‘they end with the same statement (statement numbers, device
addresses, and file names are listed). The pairs of program
- -files to be compared reside on different platters and may be

specified divectly by file name, indirectly by a.reference

. file, by alpuabetic file name limits, or all program files.

- -~ -With the latter two, files of the same name are compared.

1. COPY TAPE TO DISK - Oue to 99 files may bé copied from
| ' cassette to disk. Up to 99 tape-resident files may be:
s skipped before the first-file is cgpied. Additional sectors

¢ may. be: added. e

Rey File Access Method (RFAM-5) . .

E e Key File Access Method (KFI\I&-S) -cons-zst:; of the

following-
utility programs: - o

. l. INITIALIZE KFAM FILE calculates the required size of the Rey.
E e "File ‘based on the estimated maximum number of records to be .
. "'stored’in the User File (data file), and catalogs and ’ -
Soeiedoe glTocates - the “required space for the Key Pile. It stores T e
. vital information about ' the User File in -the Key File, based
~ . om parameters supplied by the operator. It optionally ,
... . catalogs aud allocates .space. for the. User:File, if nome . .

E ~ LABORATFQRAIES, INC.

PFrinted in U S A,

SANA3 ONE INDUSTRIAL AVCNUE, LOWELL, MASSACHUSLITS C1R51. TEL. (F17) 8S1-4171. TWX 710 J43.6763, TELEX S4-7421

. - User File and-Key File... Opt::.onally, the: old: Key File:and -~ .- - - ...}

PTG e T T n";ﬂ!l]p ity
; ‘l.J:u.akmi' i xu..uu.u..tuu.m.u S

’--"_'_*: RBORGANIZE IN PI.AC‘F‘ is a ut:l.h.ty program whwh reorgam zes

. 4. - The ISS Copy/Verify Utility and the-REALLOCATE KFAM FILE

Tl Tl
lim:ilm;mufu id

2. KEY ‘FILE CRE:;IIQH_‘_should be run-after Initialize KFAM Flle 1f
- the User: File contains data records. Accem:able record -
formats mclude unhlocked records occupying one‘or umlt:.ple

L sectors, array blocked’ records, and. contiguous blocked
records accessible in both "DC" or "BA™ wodes. - It reads the
~ User File: and’ creates in the: ‘Key File an entry. for each User
- File record.’ After. completing Key Fl.le Creation with a User -
File: containing data, or after: rumning: Initialize KFAM File - °
‘with a Usér File- conl:ammg no. data:. records, KFAM subroutines:
may be used to: add, delete, and update User File records and -
.their correSpondmo en:x:xes in the Key Fz.le.. : :
3. Although the KFA; subroutines are the heart of the KFAM
system and perform most of the file mamtenance, the
 REORGANIZE UTILITIES also may be required. REORGANIZE :
- UTILITIES deleste spaces left by deleted records and rearrange
the order of the User File records according to ascending ,
‘order of their keys. . A new Rey File which reflects the new
User File is then constructed.. . There are two Reorgan:l.ze
Utxh.t:.es. - T -

'Ihe R.EOR.GANIZE SUBSYSTEH is a program,-controlled routine-
which reorganizes.a file by autputting a new and reorganized :

‘User File are. left intact.- It is. called by a.user written
....8et-up module which_ provides parameters for ‘the o
. reorgn.nrza..:.on, and may load a: program upon its complet:.on..-

the User File and Key File in place. It is used only when a
«file is. so large that a&equate output files:- couId not be _
... .. mounted vhen the fxle is. reor,am.zed. e e

. %

SPACE Utility cam be used together to copy a KFAM file and
increase. or. decrease the amount of disk space. allocated to
7.7 the filei Use of Reallocate KFAY File Space is required
‘2fter any KFAM file (User File and Key File) is copied by . 4
- =~ CopyfVerify— “The: Rzorwzmt'rSubsystem'm'-ra"so be-uwsed tog--- — ——+
i nnult:aneously -copy, change file space alloca.t:.on, cha.nge t:he S
‘:.Ie name, and reorgauze a KI'A'I F:.le.A
ERINI’ KEY FH.K. Th:.s unlxty pruu:s the complete contenl:s of
: the. mltxplexegt Access Iable and the current contents of the -
Key.FLIe with appropna.:e_labehng of data. It can be useful .
as a dlagnosuc tool,. and. helpful. to advinced: grogra.mers who;
my tus& tm e:mmne the.Key;H Exle enruo:unem,

. S .t T o . L - . St e . .
B e TR DTSR X e TPt —ie SPMP I AN AT A e bt v i AT o b il

e e e v e L e

(.L

tﬁ)

e e g

L.\BCJRA:DRIEa iNe. T e e ST T prieted in LS

oue c-musmw. szms wwt.u Masswmem omws 'm. (swy 851 4, 1wx nome7aa. TOLEX 94-742%. > :

bt et st S i RN ik

e A T R
6. Récove:y Utilties: The KEY FILE RECOVERY utility is provided-
- to' recomstruct.a Key File in- the event of’its accidental =
. déstruction. The User-File must-he intact. for this program.
« to operate successfully. = . - - S :

Fo:éi'miilﬁipl‘é‘zed_:ﬁ,les-f éhefé is. anadditional recovery utility.

e . ,called RESET ACCESS TABLE. KFAM-5 maintzins in the User File
3 I ST ., trailer record iaformation-which indicates the. CPU 's o .
| -7 7777 accessing the file.- This information. is called the "Access
- Table'.and its. contents. may.be printed by PRINT KEY FILE.
- This- Access Table will-contain erroneous information when a
CPU fails to CLOSZ a file it has 'op‘ened.,-;.jd'ue: to power failure
"or program error: The RESET ACCESS TABLE utility is provided
.) . to clear this. erroneous information from the access. table..

IR 7: The KFAM Conversion Utilities: These-utility programs are
- provided to. convert files from KFAM~-3 to KFAM~5, and from
" KFAM-4 to KFAM-5. = . | | L
S : 28 KFAM Subroutines: may be selected from the BUILD" SUBROUTINE
' MODULE Utility Program.. The selected subroutines are written -
_to disk in a program (module) file. EFA4 subroutines are
marked subroutines- that automatically perform most

"~ maintenance- tasks. " Unlike similar access methods, records . -
© may be. added to: KFAM files in random order of their keys; the .’
-~ Reorgamize Utilities may be used to. reorganize a KFAM file's
e .. key order to ascending key record order if key .sequence
. = " . access is- required. - - . .7 - R v

General Purpose KFAY Subroutimes:

OPER . ~ Opens- speéi-fied User File and = e
o ' . companion Rey File. S

. .~ CwsE . Closes. User File and companion Key

"A_‘ PRI RO ~x—~‘v§~. Fileo' . v - . . »,. R B R i .s-.....-.. . e

-

| T RE-OPEN - - Changes the access mode ofa . o
i il : SRV W — BRI 'wm’g';ur;e'ng], : en multi:plexed KFAM File. .
» WRITE RECQVERY ‘W‘i.-thouc .ilél_csfn'g"‘ the. f:fle‘, writes:cur-)

e “INFORMATIOW “Tent-filé ‘END -record at end of active

E -+data in the User file, .and: recovery _
~inform cion in the: mext-to=last el e
s’seetor.. Both: would normally occur - -
> ~only.-when a:. file-is-closed. ' - . i e
. 2oLy MM** el i = -, ;:._.-“1--;.#-'5:‘&_&@9:«‘-.‘0

\LABCRATORIES, INC)

Printed in U5,

INDUSTRIAL AVENUE. LOWELL., MASSACHUSEITS 051, TEL. (617):851:4113. TWX 710 343-6763. TELEX 347428 .-

(wanNg

1 e] 1

T AT e

ot i e 5 i e . it
Required Vitﬁ.'_BUILD SUBRCUTINE MODULE'
~ which breaks up subroutines iato L
.- various wodules. SET-UP initializes
. ,) ' .__'KEA‘H:'int‘elrnal common variables, and
P s e 7 is required before any subroutines
{ . M ‘ . - are-.called. ' ’

o .~ RAndcm:,Aécessg KFay Sfub'rqutit‘xes-:,.
I . FINDOLD: -~ Locates a #peéif-ied key in the Key .
_ =y L mmbhelee ~ Pile and sets the User File Current
: : .. Sector Address to the record in the

. User File with that Ley.

o . " Key Sequence Access KFAM Subrout{ﬁes:

FINDFIRST Locates the record with the lcwest

o - .~ key in the User File and sets the _
: A User File Current Sector Address. to
L ' B ' that sector. ’ :

FINDPREVIOUS Locates the previous record in-tirmssmce -
4 , ... User File in-logical key sequence -and
- - TR L e the User File Current Sector
’ ' : D e sl e L AddTe 88 tO- that sector. e s e
FINDNEXT W _Locates the next record in the User .
T) File in logical key saquence and sets. ‘
el _si.+. .- 7 ' the User File Current Sector Address -

.) - .~ to that sector. . - -
. FINDLAST - Locates_ the. record with the highest -
. . _key in the User File and .sets the . . .
. User File Current Sector Address to

- - " . e e e o :-thag:.sector. . o~ -

. - e e — -
. e et s L Lgmras ceammr o o - T
—— s e e v— - - . —— X -

. .. FIRDNEIW Adds a specified key to the Rey File, ‘
S U SN — —altlocatas space for aTnew record im -
1 .7 the User File, and sets the User File .
Current Sector Address to that o _
.. sector... Adds one to the record count. - . .

S e el

U : dd and Delete KFAM Subroutines:

. oo ST L L s R malt e Lo S o SR e e]
e e R (S, ~ N - e

” . . f
. ’, v }ul}i“d—‘: " ONE INDUSTRIAL AVENUE, LOWELLL, MASSACHUSET €S 01851, TEL. (837),851:‘““!. Twx 710 343-6769: TELEX 3¢.7421 . . M :

QBT L ER O DT IS

~ Adds a Spec1f1ed key to the Kev File .
" and sets the User File Current Sector
‘Address. to. the sector where: the new

) ‘. record is- to be writtem. It is

_ e : ‘normally used to change the- Pey of a

] o T : - - . deleted record; therefore, it is -
e R - normally preceded by: a. DELETE.. Adds
T R ~ " oneto the :ecord count. -

 FINDNEW (amz)

"+ DELETE.. . - -~ Removes the spenﬁed key from the -
. Key File and sets the User File :
Current Sector Address to the record
that has the deleted key. Subtracts
one. from the record count, ' :

S*pec:.al Purpose KFAM Sub:outlnes.
RELEASB : . Allows a User F:.Ie record, prev10usly |

' ‘protected by one CPU, to be accessed

by any CPU. Also releases hog mode.

- KE’AM also provldes a mrl::.plexed file access system. with- four
available aczess: modes, . security features including file . . -
Passxmrd ptot:ect:.cm; and. record protectiom in. apphcable
--access modes, and im general, rapid access to ‘ _
randomly-dispersed - records. A non-multiplexed access mode is

~ also pravxded. - ‘ ' '

. - e . IR - - . .4 -
e e iceemeis mee wem s .

' ISS..SnbroutJ.nes ‘ S

The general category of Iss Screen/D:.sk subrout::.nes includes three

. .- groups of marked subroutines: : the Disk, the Screen, and the
_ Iranslate Tzble Subroutines. They are laaded into mewory ‘from ,
displayed menus. 4 o .

-
-

. Disk subroutines, which simplify disk-re-latéd pi:ogrémming tasks,
: - im:lu,def the fo 1lowing: :

- L.

, ‘ i - Search Index: - This Disk. subrout:.ue examines. the Disk Catalog ’
o e B e ~—Index to-determine-if a particular: file: (1) has been

: R »cataloged (2) is scratched ‘or -active, and. (3) is a data or
- ptogram f::.le.. : _

< Allocate Dat:a Fxle Spar:e' Thr.s m.sk subrouune opens a data
f:r.le on any- selected disk,. and allocates to it the available
" ‘sectors: between the current end and the end of t:he cataloged
_area. - 1t checks the- index to emsure the. unlquencss of t:he
" Ble name, and allowa a minimum: accep:able Eile size to-be

(h
"J -
[P 0
0.
! ,.‘
‘-d o
o
Gh
]

V’S \LABORATORIES! INnE: L N T Printed v GS.A,
—P ONG: INGUSTRIAL AVERUZ, LOWELL. MASSACHUSCITS GBS, TEL ($17) 851-aR1, TVX 790 343.6769; TELEX 54,7807 R o

T o, ey St

i 4.

‘ ‘Unused Secto This Dz,s'k..suhvroutine examines a
. selected file in a catalog area, de-allocates those sectors
between the END trailer record and the end of the file, and

- .. de-allacation may be restricted by specifying that a minimum
. .number of extra-. (reserved) sectors be:maintained in the file:
b area. = R o P

4, . Open/Close Cutput: These Disk- subroutines open for output,
©. or.close, data’ files cont&iﬂing:certain-s.pecial purpose,
S software header and trailer records. . '
5. Open/Close Imput: These Disk subroutines open for input, or
~ close, data files containing certain, special purpose,
- software header and trailer records. =

6. Limits Next: This Disk subroutine returns the name of the
- mext file in the order of-file entries in the disk catalog

index. It also indicates whether the file is a program or
data file and active or scratched. :

7. Multiplexed Pile Open/End/Close.:- These Disk subroutines

- ‘provide a controlled: file access system for data files om a.
multiplexed disk drive. This access. system. is made possible

i by maintaining file access information im the file's '

- -~ - (hardware-generated)- catalog trailer record. Four access

. modes are available'including._Exclusive. file access.

of a new file, accessing an existing file, changing access
-modes without closing a file, writing an END record, closing

a file, and file password protection. A Set/Release Hog

" "Mode. subroutine is also included.- '

Screen subroutines, which simplify operator-related programming
tasks,. include the following: : - '

— e —a

I. = Data Entry: Thic Screen subroutine accepts a keyboard entry,
i e~y USLDE the KEYT statement, and checks the entry to. ascertain
‘ -.whether it is within a specified range and whether its

acceptable. ' It -also displays a prompt and an .appropriate -

: SR RS " ‘entry mask. or' defzult value,

~om.lime I of the CR ", ‘and a series of prompting dashes on

“r“entered Aalphanumerie information replaces the prompting— .
dashes. . - S o
216 .

C e e

- length, and mumber of places before and after the ‘decimal, is.

.+ repositions the end of file control sector, The . =

-t ‘Mulriplexed file Open/End/Clase subroutines support creatiom

e gl ~~Alphammmeric Input: This Screen subroutine displays a prompt

“Yine-Z indicating the maximum field size to be entered. The

—=
A WANG)

ONC INDUSTINAL AVENUE, LOWELL, MASEACHISETTS 1851, TEL. (#17) HS¥ At TWX 710 343 G789 TELEX 94.7421 .

. e R

be
T
——_— o :

e

LABORATORIES, NG, . S S rinted i US4

R s

R s e
R T T

ST N TS

3.° Bumeric Input: This Screen subroutine. displays a prompt on
lige 1, and on line 2, a series of prompting dashes ‘ :
~ indicating the maximum number of digits to be entered before
-~ . anod after the decimal point. The entered numeric data . =
-~ replaces the prompting dashes. L e

. 4. Pesition Carsor: This Screen subroutine moves the cursor to
- - any point on the CRT. and, optionally, erases characters to
o , the right of the new cursor position and also the' lines below . .
- -, it. Both 64'x 16 and 80 x Z4 character. display screens are
- " supported. Usually a PRINT-or INPUT statement follows cursor.
positioning, ‘ - B ‘

5. - Date: This group of Screen subroutines converts and

’ . manipulates dates in Gregoriam and Julian form. It imcludes
- ' a subroutinme for operator entry of the date. '

6. Operator Wait: This Screen vsubrclmt.ine displays the message
: “KEY RETURN(EXEC) TO RESUME" and waits on an INPUT
instructior for depression of RETURN(EXEC).

7. Print: This Screen subroutine allows a specified churacter
.~ to be printed a specified number of times.

8. Re-Enter: This (iiti:’efngl) Screen ‘subroutine displays - ST
‘ BE-ENTER to indicate invalid operator entries.. ‘

—————— er e e mmta— s i e S e v e R .. v e

" The Tramnslation Table subroutines set up a table (an alphanumeric
array). for use with the BASIC statement $TRAN. Four subroutines.
are provided which assign the proper hex codes for the following
tramslations: = e

EBCDIC -~ TO- ASCIL — - e oo
_ASCII ° ' TO EBCDIC

| L ga00 IO 1200 - - o meememe e e
. 1200 TO. 2200. ‘ -

e s = 00 e . M v S = @ o

| SORT-4 Subsystem (Disk Sort Standalome Routime) . et

- _SORT-4 is loaded from disk by a user written ‘set-up progrzm. The =~ TT " T
-set-up program provides the parameters. for the sort, and thereby =~
eliminates a lengthy screen dialogue that would otherwise be : _

- - -required -for operator entry of.the sort ‘parameters. Vhen sorting .- -

.~ = is. complete, SORT-4.can-load a specified. application program el
“: ...module, and therefore. can be used as. a.subsystem to.an application .. _ .

'~ ' program Wwith its program linkage capabilities. It requires very
=i« little-operator: atteation S I T

PR E ——Sr - ST T e e AL LRI s Lt el

P R e

gt

LABORATORIE S.) lNC. - R R T S - T ‘ki;ltcd in LS.\

YWAFA DIy — — : : o
VLAl a3 ONE INUSTRIAL AVENUE. LOWELL, MASSACHUSETTS . OIHSY. TEL.. (617) BH1-4111, TWX.710 343.6769. TEIEX 94.7421.

” --um-m L —

SORT-4 oiffers the falldwingAoPe:ationaﬁifeatﬁte§i
1. :Foi/makiﬁumjeffiéiency;.if«uses the exﬁepded’BASIG statements
~+ described 'in SORT STATEM -S;(Pﬁblibation'#700-3559). '

2. . The programmer may;specify{whethet~aikey"sg:t‘orfa;,k1
, L full-record sort’ is to be performed, or permit SORT-4 to
; o ..~ "decide. Both the key sort and full~-record. sort provide - . .
E : e sorted ocutput records. which resemble their input record’
counterparts. In- additiom, a tag sort may be specified, in
-~ which case only the painters to: each input record's position
on-the disk are written into the output (or work) file, and.
not the records themselves. - - :

L 3, , SORI“&lcperates'in a multiplexed;envirpnment, under ISS-3
e conventions, : - o

4. Six.inﬁut:file formats. are accégtéd:
a) aﬁ:oﬁdingrj.cataloged d#téifile;J
e x data’ file'.‘:gpeﬁe'&' and cxaéed:"wi:h ISS' OPEN/CLOSE ~

subroutines,

—— .

. Ces e e e mtil e sien —
B e D g T e . =

@) a KFAH-3 file,

| &) " a KTMN-G File, and DR Tt
£) " a KFAM-S file. “

3. The sort key can contain up to’ 10 fields. They may be
5 .= " " alphanumeric or’ ‘numeric, but their total length must not
’ exceed 64 bytes (not counting control bytes). Sort order may
. be _specified as ascending or descending:for each field and 4
: ﬁ,so:t:keys wmay be partial fields, that is, a STR () function_ ‘
‘of an alphanuméric~véria§1e. - 4 ‘ -
6. Input :ecdrdvfb:mats:supported include, iﬁfgaditiog.to the DC.
- mode .array-type blocking, tha following record formats: '

_— -, P O TSN

e e . —

' S T fa)7f}’Paéked;ézray§§~ﬁheie-ﬁﬁe;artay;typeghioékiug iS'paéke&V-i '
o . ~oomode. T - e . : = :

"\LABORATORIES, InC. Sl Printedin UsA

. S ong -.,.11:;“ - - - - - s - - . .
L vYL: AW ONE INDUSTRIAL AVERUE. LUWELL. MASSACKUSEFTS 01451, TEL. (R17) 651-4717. TWX 710 333 6783, TELEX 94.7321

QU E
(e A

b)Y Contiguous packed records, vhere each individual. rec'ofd A

;gmy;;:ﬁ:ﬂ!ﬂ'”‘{p!:hgt’ﬂ?

aepebitd UL
m;um.iabﬁllll;.i;!m.xi‘uﬁ.:mu:a.;l-,hu:m-mz-

" 18 packed into a contiguous-space within an E
alphanumaric array, and written on disk in eit:he: DC or
BAmode. . o0 oo o

c)- Vafiable Ienggh‘:rec‘oi.'-ds ',..‘pa'cked: into an alpharihmgti‘g)
" . ‘array with eifher a one-byte length indicator (block:
size up to 256) or a two-byte lergth- indicator (block

<" size'greater than 256). The block may be written in
. either D€ or DA mode.. TC (Télecommunications) Files. -
are supported by a variable length record format.

d) Individual alphanumeric fields in records written in
unpacked furmat, blocked or unblocked, may contain
L .. packed sub-fields. - S o

o In the above recerd formats, the field form of $PACK is
Supported. However, the intermal and delimiter forms of
: . §PACK are not supported. A record may contain either one
A L packed array, or any number of packed fields. In addition to
' ' - .7 the. formats defined for the field form of $PACK, Wang packed
: ‘ . decimal format, signed and unsigned, is .also supported; . - '
W o= TEITTT L expomential as defined in the PACK statement is not supported.

. Any cembination of record format -and file format is- .
permitted, with the exception of BAS-1 format, which is

. ; allowed only with array-type blockirg or packaed arrays. ,

.- - en .. Although KFAM itself does not Support variable length. - o

—.. L. 7T _records, SORT-4 will sort a KFAM file with variable length !

S ' records. : ' . v : ~ ,

.,.. | N 7 -, When output files are written to a non-multiplexed disk drive . . N
i -] after a full-record sort was specified, the mounting of the
e i oo, OUEPUE platter may be deferred until the last pass, at which - -

A . time the input platter may be removed. With a tag sort,

. . deferred muunting is also allowed vhen the output file is not _
T DT T vEdtten ' to a multiplexed disk drive,- and is mot the work - - < —
N e = 4 OOk This permits sorting a full disk platter in a dual | _ v
RER S R A. i lr\m: system. s meees ._.-;....«.....,.l.,.A._,V.A.._'.‘........_ - et : — - - .. A-_

<m0 8w’ The programmer may write a special input procedure, to be
ooverlaid in Pass I, to process or scr_eex:.,.iq@ivi.dualA.record_s.. D]
- before input. to the sort.. T AR .

**“m *‘9:'“""”805!‘1"-& treats ’ arrays in ‘input records asafrays. “An 1nput ~
it e e TecOTd may contain up to 255 fields, with each.array element... . .
T e0 Cord can Be, K ._ T j:";' L i

ounting as one: field,. provided. that. the re

= described in not mere than 60 table entries. :
DR S SNSRI 95T e T e T BT [

: “, x‘f":’ . .',;.._q ~ LABQRATORIES, ING. e L B - Printed in 1.5,
2 ‘&"&l N ONE INUUZTRUAL AVENUE. LOWELL, FAASSACHUSETTS 01851, TEL. (617).851.4111,- Twx. 710 343 0763, TELEX 94-742Y B

e i A

P
10. SORT-4 a.llows a fuIl-record sort on re..ords up to’ 256 bytes
‘ packed. It also allows a full-record sort with partial
_ fields as sort keys. In most cases a full-record sort will
- - be fast:er ‘than a. kcy so:t on the 2200VP..
].-1; Sortmg of KFAM. files should be fast:et w1th SORT-4 than
' ‘;803'17-3 becanse specul-purpose subroutines have been written
- to access a K‘FAH file in FIN I‘IRST/FINDHEXT sequence.
12: VA:.s:artxno and endl.ng key may be specx.fled for sort:.ng a:KFAM
file; instead of a- starting.record number and the number of
. records to be sorted.
. - - aq,.-__..,....—_ <8 e o a i e e .:......, -, - e ~ . o~ ...-.
- . Sew . - ‘. -...“: ¢ m————— - — - 3
:) .,,_, -—;;1; - :ﬂ;-- o .-,.::4..;.4...-4.; -w,-'-.:u.-.......,...w atvre 'j«v«- .
’ i

B SO,

fo‘.ﬁ "')

LA scm A'rcm IESING. imted i S5,

ONE' mWS"ﬂAL A\f‘lwh. LJWELL. MASS, &CW.’ZU"’&? 0IBSY, TEL. (617) 8%i-atv8, TWX 710 343 6769, TELEX 98- 7429

Eal

d 1y W'~ /=

' P

(WAN® LABORATORIES, II;C.

MEMO T0: BOB SOUCY

FROM: TOM CAMP
SUBJECT: ISS RELEASE 4.9 (PRE-RELEASE 5.0)

DATE: JUNE 18, 197°¢

SS 5.0 will be available within the next few weeks.
Porpleto cucumentation will be distributed shortly thereafter.
Thic memc is intended to highlight the major new features of
this 2200 scftware product. Please see that our field analyst
orgernization is aware of this information.

Fcr certain criticsl situatiens, we carn distritute a
pre-release version of the utilities and KFAM-7. Shoul¢ you
“now of 2n urgent need, please contact me. We woulé of ccurse,
like to ship as few pre-releasec as possible.

ISS Utilities

1. isk Dump
This utility now supports the CRT (for vertical curp
only). The EDIT keys allow the user to step tbrouck
the file. _

2. Program Compare
Also supports the CRT for error messages and now
provides an error limit feature which will terminate
the compare after a certain number of errors.

3. Alter Disk Index
2 new utility designed to display the disk incdex and
celete unused files at the end of the catalog. It
alsc allows for changing names and status (active,
scratched) of the file.

KFAM-7

KFAM-7 in the Multiple Bank Pre-release version contains
the following modifications.

1. It supports the 2200MVP with extended memory (up to
256K) .

2. It supports the 2280 (Phoenix) disk.

p

R ‘g

r

C (WANG) usonxror.uss. INC.

ISS RELEASE 4.9 (PRE-RELEASE 5.0)
Page 2

3. The reset access table utility has been modified to
clear internal tables anc¢ close zll, or specifiecd,
XKFAM files for a given station or all stations.

4, The print key utility now includes a CRT display
option.

S. Al utilities use input mocules and cdisplay cdefaults.

The new release cf KFAM-7 will reguire the following
chances to application programs.

1. The last parameter in the OPEN statement (GOSUR' 230),
user file device adcress, formerly rnot used in KFAM-T7,
will be useé, ané will be important in icentifvinc the
file. BReth the user anéd key file cdevice accrecsses are’
selected during KFAM OPEN.

2. Device addfesses are limited, as follows:
Diabloc or floppy disk:

310, BlO
320, B20
330, B30
350, B50
360, B60
370, B70

Phoenix disk:

B10 or D10, 310 or D11, D12 through D15
B20 or D20, 320 or D21, D22 through D25
B30 or D30, 330 or D31, D32 through D35
B50 or D50, 350 or D51, D52 through D55
B60 or D60, 360 or D61, D62 through D65
B70 or D70, 370 or D71, D72 through D75

The open subroutine will check the user file and key file
device addresses and return an error condition (Q$ = "X") if it
is not one of the above.

NOTE: The disk addresses are now relatecd by the KFAM
: subroutine 'OPEN' to the specified device numbers.

3. In the Multiple Bank version of the KFAM-7
subroutines, global variables reside in partition

e V4

s

gj? (f‘hLAlPJ<;)l%#okATORESJNc

ISS RELEASE 4.9 (PRE-RELEASE 5.0)

Page 3

+3
(D]
5

3

"KFAMCOM" and not "KFAM". User programs accessing
KFA¥ global variables directly, must be mecdified tc
select "KFAMCOM" and then select back to "KFAM" to

access the subroutines.

The Single Bank Version of the KFAM-7 subroutines,
mocel KFAMO0107, requires a partition csize of 9.5K,
starting with Release 5.0.

~
|(7"\
Tom Camp

G

N

7€m\

KFAM-7 SUBROUTINES, MULTIPLE BANK VERSION

On the 2200MVP with extended memory, global partitions can be
accessed only within a bank, except for a 5K common area which can
be accesssed by all banks. The KFAM subroutines will not fit in 5K
and therefore must be duplicated once for each bank accesssing

KFAM. But the KFAM global tables must appear only once, in order to
control disk access, and these tables must be available to all
partitions using KFAM.: Therefore, in order to run on a 2200 MVP
with extended memory, the KFAM-7 subroutines must be split into two
sections. One section contains only global variables, and is stored
in the 5K common area. The other section contains subroutines only,
and is duplicated once for each bank accessing KFAM.

This split version of the KFAM-7 subroutines is being added to
KFAM-7 in the form of two new modules. KFAM0307 will contain only
subroutines, and will reside in a partition called "KFAM" on each
bank. This version of the subroutines will be referred to as the
"Multiple Bank version". KFAM0407 will contain only KFAM global
variables, "KFAMCOM" in order for KFAM0307 to run.

This means that there are now three versions of the KFAM-7
subroutines:

1. KFAM0107, Single Bank version
2. KFAM0207, MUX version ,
3. KFAM0307, Multiple Bank version

The Single Bank version may be used on an MVP with up to 64K of
memory not multiplexed. The MUX version must be used if the MVP
(any size) is mutiplexed with another CPU (2200T, VP or MVP) to the
same disk. If the MUX version is used, it must be used by all
programs concurrently accessing any given KFAM file. The Multiple
Bank version can be used on any size MVP, but not if it is
multiplexed.

In most cases, no changes are required to user programs in order to
use the Multiple Bank version of the KFAM-7 subroutines. The user

selects the "KFAM" partition as before. KFAM selects "KFAMCOM" as

necessary and selects back to "KFAM" before returning control to he
user program. If the user program refers to KFAM global variables,
then the user must select "KFAMCOM" and then select back to "KFAM"

to access the subroutines.

e "

—
i:
e

The KFAM-7 utililties are modified to run with whatevér version of
the subroutines happen to be resident in the "KFAM" partition. They
will also run on the .VP by using overlays.

Module KFAM0307 requires a "KFAM" partion size of 8.25K per bank.
Module KFAM0407 will require 2.75K (including partition overhead) in
partition "KFAMCOM".

In some cases, the KFAM global tables may not be large enough to
accomodate all programs accessing KFAM files on a 256K system.

protected, in any file, by any program. The penalty for table @TsS()
being full is error code Q$="S" being returned from the OPEN
subroutines. If @V43$() is full, the program simply waits until
there is a slot available. Either of these tables may be expanded
upwards from 30 by simply changing the array dimension in module
KFAM0407.

KFAM-7 will support a maximum of 16 "stations™ as before. These
"station" numbers can be terminal numbers, partition numbers, or any
other numbers assigned by the user, as long as no two programs are
accessing KFAM with the sam station number at the same time.

PHOFNIX DISK

The KFAM-7 utilities will be modified to support the 2280 "Phoenix"
disk (16-bit sector address). KFAM-7 will also support the device
addressing scheme on the Phoenix disk, for upwards compatability,
where B10 is the same as D10, 310 is the same as D11, B20 = D20, 320
= D21, and so forth.

To determine whether it is a Phoenix disk, KFAM uses the $GIO
statement:

$GIO #n, (70AO40087OB,X$) ,
If this returns HEX (DO) in byte 11 of X$, then it is a Phoenix

disk. Values of HEX (CO) through HEX (CF) indicate another disk.
Byte 8 of X$=HEX(00) if the operation was ok.

S e e A A € T g

RESET ACCESS TABLE UTILTIY

This utility has been enhanced to support clearing a single station or all stations, all
files or files specified by part or indirect mode from a configuration.

TABLES CLEARED

PROTECTED MUX ACCESS

! KDR ! TABLE OF ! QUEUE ! ! PROGRAM ! !
! ! OPEN FILES ! | SECTORS | HOG ! TABLE !
SINGLE ! ! X ! X ! X ! X ! X !
MUX ! X ! ! ! ! X ! X 1
MULTIPLE ! ! X ! X ! X ! X ! X !

In addition, KFAMWORK will be cleared (at the system address) automatically, if 'ALL'
mode is used, or if specified (at a given address) when 'PART' or 'INDIRECT' mode is
used:

IN GENERAL ! ALL MODE I PART, INDIRECT MODE !
: ! ! 1

STATION N=0 ! CLEARS ALL FILES IN GLOBAL ! CLEARS SPECIFIED !
! ACCESS TABLES FOR ALL ! FILES FOR ALL STATIONS !

! STATIONS ! !

! ‘ ! !

STAION N O 1 CLEARS ALL FILES FOR ! CLEARS SPECIFIED FILES !
. ! STATION N ! FOR STATION N !

! ! !

Note: 'ALL' mode is not supported for the MUX version.

This utility should cover most situations where a particular station has crashed in the
middle of a program. It will not close file which are opened only with MUX OPEN and not
KFAM OPEN. It does not write "END" records or save recovery information. If the
program has crashed in the middle of a FINDNEW or DELETE operation, it may be necessary
to run KEY FILE RECOVERY to reconstruct the Key File.

vy

PRINT KEY FILE

=

- The utility now includes CRT output with the following options:

'3 . -in case of KIE's too long for one 8creen, switch from hex key to
' remaining information and back.

'4 END -display last KIR '20 END -display last KIE in KIR
'6 -display KDR information

'7 BEGIN -display first KIR _ '23 BEGIN -display first KIE in KIR
'8 =-specify KIR to display

'9 -redisplay current KIR - '25 -redisplay at current KIE
'10 ~Print current KIR (or KDR)

'11 =jump ahead 5 gectors '27 -display next 5 KIE's
'12 -jump ahead 1 sector '28 -display next KIE
'13 -jump back 1 sector '29 -display previous KIE

'14 =jump back 5 sectors '30 -display previous § KIE's

.

~

km%f the MUX sector of a particular file is not positively identified,
._-he program displays:

FILE NOT FOUND °
USE ISS FILE STATUS REPORT TO CLOSE FILES

This may be one file, or more. The operator should be provided with
a list of opened files for every application, and use the ISS
Utility to close all files for this station.

C

N
_. TABLE OF OPENED FILES, @T$()

The file identification scheme is table @T$() has been changed,
first because of the equivalency of different device addresses on
the Phoenix disk (B10=D10,310=D1l, etc) and second because it is
necessary to find the last sector of the User File for the CLOSE
STATION utility, in order to reset the MUX access table.

FORMERLY the first 3 bytes of each entry of @T$() WERE:

Bytes 1-2:
Byte 3:

KDR sector (VO0§$) : | [

Key file device address, packed. (HEXPACK 2nd and 3rd
bytes of device address, and or HEX (80) if first byte
is "B").

This field identifier is changed as follows:

Bytes 1-2:
Byte 3:

KDR sector (V0$)

Key File device address, packed. (If first byte of
device address is "3", make the third byte = "1",
Then HEXPACK 2nd and 3rd bytes of device address).

In addition the User file address and device number have been
inserted into the table beginning at.byte 4 as follows:

ﬁEJyte 4-5:
"~“Byte 6:

Last sector of User File, HEX. :
User file device address, packed. (See above).

This new packing scheme for the device address insures that any
given file location can result in only on packed file identifier:

Device Address Packed (hex)
Bl0 or D10 10
310 or D11 11
D12, etc 12, etc.
B20 or D20 20
320 or D21 21
D22, etc 22, etc.

Hog mode addresses (8 added to second byte) are now rejected by the
KFAM OPEN subroutine.

Note that where certain device ‘addresses are equivalent for the
Phoenix disk (B10 and D10, 310 and D11, etc), they may be specified
either way from program to program.

)

The Use of MULTIPLE KEY FILES and DUPLICATE KEYS with KFAM-7
ISS RELEASE 5.1

KFAM has been developed to maintain a file of pointers (Key File)
to a sequential file with records in random order based on some
unique field within each record. Sometimes it is worth maintaining
a second file of pointers (Secondary Key File) based on some other
field within each record which may not be unique. An example might
be an employee file for which a primary key file is maintained based
on social security numbers (unique) as well as a secondary key file
based on department .numbers (duplicates allowed). ! Thus any .
individual employee's record can be located by finding the social
security number and pointer in the primary key file. AYso; - the
records for every member of a department can be located by finding
all pointers corresponding to the department number in the secondary
key file. :

Although KFAM-7 does not maintain two identical keys at any time, a
convention for building and updating a key file for duplicate keys
is recommended and supported. For such a system, several stages are
significant. . ' -
I. Initializing a KFAM file for duplicate keys: B ‘
The supported convention for duplicate keys requires that a key
length 3 bytes longer than the actual key be specified when the
file is initialized. The use of these three bytes is described
below. One complication that may arise during initialization
has to do with the checks made to ensure that the key does not
exceed record or sector boundries. When DUPLICATE key type is
specified, the checks mentioned are made on the actual key
lengths, not the extended length which includes the three extra.
bytes. In addition, it must be decided whether or not recovery
information should. be written. This information contains a copy
of key file parameters fron KDR (Key Discriptor Record) and is
- maintained in the next to last sector of the user.file. Since
only one set of recovery information can be maintained in this
sector, it is bprobable that WRITE recovery information should be
specified when initializing the primary key file and DON'T WRITE
recovery information should be specified when initializing the
- secondary kev file. ‘ :

I1. Opening a KFAM filet _

The primary key file is opened first by a station. Since the
user file is opened by the multiplex convention by the station,
a special parameter (the negative of the key file number) 1is
used to reopen the user file as the station does KFAM open on
the secondary file(s). In the case of the single bank and
multiple bank version of KFAM-7, open files are identified by
their KDR (first sector, key file) sector address and packed
device address. Hence each of the key files 1is wuniquely
jdentified even though several of them may be referring to the
same user file. In this way, file access integrity is
maintained.

EXAMPLE:

GOSUB '230 (1,1,2,1, "KFAMFOl10", 3, "D10", ®=D10") :REM, OPEN
PRIMARY .

GOSUB '230 (2,3,4,-2, "KFAMFO10", 3,"D10, "D10") :REM OPEN
SECONDARY

I1I1I. Adding a record: . .
When adding a record to the user file, the primary key must be
added to the primary key file and the secondary key must be
‘added to any secondary key file. 1In the case when the secondary
key is not necessarily unique, the user must create such a
unique key. The procedure recommended here is to ‘enter the key
in the primary key file using FINDNEW. This will produce a
pointer T4$ indicating relative sector and record within
sector. The secondary key can be created by concatenating this
pointer with the secondary key field. Since the pointer is
unique to the record, the secondary key thus created becomes
unique. A FINDNEW (HERE) 1is then used to enter this created
secondary key 1in the secondary key file. Note that this
procedure requires that a key 1length 3 bytes longer than <the
actual secondary key has to be specified when the secondary key
file is initialized.

NOTE: FINDNEW (HERE) is recommended for secondary key files
since there will be no need to cross check the pointer obtained
by FINDNEW on different key files: As before, if different
files are to be used, the pointer must be set up in the new
file's parameters prior to the call (see example).

EXAMPLE: GOSUB '233 (1,1,K1$,0) : REM FINDNEW FOR PRIMARY KEY
STR(K2$, L+1,3)=T4% : REM SET UP UNIQUE SECONDARY KEY
STR(T5%(2),1,3)=T4% : REM PREPARE TO SWITCH FILES
GOSUB '234 (2,1, K2$,0): REM FINDNEW(HERE) FOR SECONDARY

IV. Deleting a record: - :
Using the same convention discussed under adding keys, deleting
a record could be accomplished in the following manner. First,
DELETE the key from the primary key file. Then obtain the
unique secondary key by taking the secondary key field and
concatenating the pointer T4$ obtained from the original
DELETE. DELETE this unique key from the secondary key file. As
always it is recommended that the deletion of the record in the
user file be indicated by setting the first byte of 'the key
field to HEX(FF). Since it may be necessary to use BUILD KEY
FILE to create secondary key files at -some point, the first byte
of every secondary key field should be set to HEX(FF) when the
record is deleted.

EXAMPLE:
GOSUB '231 (1,1,K1$): REM DELETE ON PRIMARY
STR(K2$,T4-3,3)=T4% : REM SET UP UNIQUE SECONDARY KEY
GOSUB '231 (2,1,K2$): REM DELETE ON SECONDARY

V. ‘Locating a record:

If a primary key is known, it is sufficient to use FINDOLD. - If
only a secondary key 1is known and that key may occur several
times, a special procedure is required. The secondary key is

- concatenated with the 1lowest possible pointer, T4$=HEX(000000)
and FINDOLD is called. This positions the routine at the first
of the duplicate keys. There after FINDNEXT is wused until the
key obtained T7$ (not counting the last three bytes) changes,
ijndicating a new secondary key value encountered.

EXAMPLE: 1000 STR(K2$,L+1,3)=HEX(000000)

: 1010 GOSUB '232(2,1,K2$): REM FINDOLD (ON SECONDARY)
1020 IF Q$="X" or Q$="B" THEN EXIT ‘
1030 GOSUB '237(2,1) :REM FINDNEXT (ON SECONDARY)
1040 IF Q$="E" THEN EXIT (END OF FILE)
1050 IF Q$="X" or Q$="B" THEN EXIT
1060 IF STR(K2$,1,L)>STR(T7$,1,L)THEN EXIT (NO MORE KEYS)
1070 PROCESS RECORD)
1080 GOTO 1030

-

VI. Protecting records while working on them: :
" When sector protection is required, in order to keep other
stations from accessing a record during processing by a station,
the sector is placed in a ‘global table of protected sectors
indicating the station and key file protected as well as the
packed disk address and sector jdentifier (obtained by taking
the trailer record of the users file SUBC the relative sector
within the user file). The global table is available in the
Single Bank and Multiple Bank version of KFAM-7 only. The MUX
version keeps track of sector protection in the KDR (first
sector of the key file) and is adequate as long as only one key
file exists for a user file. If more than one key file exists
for a user file, no mechanism exists to cross check KDR's and
sector access integrity can be violated. For the mux version,
the users will have to establish sector protection schemes of
their own, such as maintaining a 1list of protected sectors or
setting a protection flag byte on the record itself.
Note that the global tables of protected sectors in KFAM-7 has
been modified so that a sector protected by a station via one
key file can be accessed by the same station via a second key
- £ile. Should the user want to release the sector, it will be
necessary to release it for all key files that have accesssed it
by that station. ' . ‘ ’

1

VII. Closing Files:~
When it is time to close files, two consideration arise when
dealing with multiple key files. First, only one set of
recovery information is maintained (next to last sector, user
file). This recovery information is used in case of accidental
destruction by the utility KEY FILE RECOVERY, thus avoiding the
need- to initialize (with all KDR specifications). It 1is Tlikely
that the user will want this information to refer to the primary
key file. A special parameter for CLOSE (negative file #) is’
used to indicate that the recovery is not to be written in the
user file and should be used for closing the secondary key files.
Inh addition, FINDNEW(HERE) never updates the number of sectors
used in the user file. If an END record were to be written in
the user file while closing a secondary key file built by
FINDNEW(HERE) calls only (as recommended), it would be written
in the first sector of the user file, destroying records and
altering the actual numbers of sectors used. The same parameter

- gpecified above indicates that an END is not to be written in
the user file.

EXAMPLE:
GOSUB *239(1): REM CLOSE PRIMARY FILE’
GOSUB '239(-2): REM CLOSE SECONDARY FILE

VIII. Build Key File:

IX.

The BUILD KEY FILE utility can be used on an initialized key
file (initialize does not ‘affect an already existing user
file). A parameter "KEY TYPE" (standard or duplicate) will
indicate if the duplicate key convention described here is to be
used. It can be run for the primary key files and all secondary
key files. Note again that deleted records should have the
first byte of all key fields set to HEX(FF). Otherwise BUILD
KEY FILE will file keys on records deleted according one key but
not another. Also note the need to specify and extra three
bytes when initializing a key file containing duplicate keys.
In addition to deleted records, there are other records which

should not have keys added for them. These are indicated by the

Findnew Sector Table as portions of sectors assigned to a
station. When blocked records are involved, a station will be
given a sector in the user file in which to put records until
the sector 1is filled. A new sector will be assigned for
additional dinsertions. The Findnew Sector Table is maintained
in the KDR and a copy 1is maintained in the recovery

_information. Sometimes, especially with secondary key files

which use Findnew (here) it is necessary to use the findnew
sector table as stored in the recovery information.to Tocate any
unused portions of sectors assigned to the various stations.
For this purpose, USE/DON'T WRITE recovery information should be
used. On the other hand, WRITE/DON'T USE recovery i information
should typically used on the primary key file.

Key File Recovery:

It is unlikely that a user would want to maintain recovery
information in the user file for a secondary key file or for a
key file allowing duplicate keys. However, for flexibility, the
KEY TYPE (DUPLICATE or STANDARD) parameter has been included in
the XEY FILE RECOVERY wutility. Remember that whatever KDR-
information has been stored as recovery information in the .user
file will be used to recover the key file. (Note that a

~secondary key file built by FINDNEW(HERE) will not indicate any

sectors used in the user file, hence an end record would be
written in the first sector of the user file). Typically, the
procedure to recover multiple key files for a user file would
have several steps. First use KEY FILE RECOVERY to recover the

_primary key file. Next use INITIALIZE KEY FILE with the DON'T

WRITE recovery information option to initialze any secondary key
files. Finally use BUILD KEY FILE specifing USE/DON'T WRITE
recovery information on the freshly initialized seondary key
files.

Reorganizing KFAM files in the Multiple Key File, Duplicate
Keys environment: . :
Two means of reorganization are supported for KFAM-7, the .
REORGANIZE IN PLACE utility and the reorganize subsystem. Both can
be used to move the records into order in the user file and rebuild
the key file as 1is required for a primary key file. After
reorganizing a KFAM file according to jts primary key, it will be
necessary to rebuild any secondary key files (all the pointers will
have to be changed since the records have been moved around).
During this rebuilding stage, the user file records cannot be moved
around again. The following procedures are provided for
‘reorganization of Multiple key files.

1. Reorganizing via the KFAM-7 menu:
Use the REORGANIZE IN PLACE utility to reorganize the primary
key file. (NOTE: it 1is usually preferable to wuse the
REORGANIZE subsystem since it 1is faster and no backup is
required. REORGANZE in place should only be used if there is
not enough space available for a work file). Next use
INITIALIZE KEY FILE with the DON'T WRITE recovery information
option to dinitialize. any secondary key files. Finally use
BUILD KEY FILE specifing USE/DON'T WRITE recovery information
on the freshly initalized secondary key file. :
2. Reorganizing under program control - ~

The same approach to reorganizing a file with multiple
keyfiles is used for program control as is used via the KFAM-7
menu, i.e. reorganize according to the primary key file and
then rebuild each of the secondary key files. For this
-purpose a new module has been added to the Reorganize
Subsystem as well as several new parameters. 06%$="B"
indicates "BUILD KEY FILE" as opposed to "REORGANIZE".
07$="S" indicates that the recovery information and end record
are not to be written for the user file (usually the case with
secondary key files as indicated in the discussion on closing
files). 08%="D" indicates that the duplicate key convention
is to be used in reorganizing or building the key files. The

. following example indicates the way these parameters might be
used to reorganize a KFAM file consisting of a user file, a
primary key file with unique keys, and two secondary key
files, one of which has duplicate keys.

KEY FILE #1 ' KEY FILE #2 - KEY FILE #3
06$="C"COPY BACK 06$="B"BUILD KEY FILE 06$="B" BUILD KEY FILE’

07%=" "WRITE RECOVERY 07$="S"SKIP RECOVERY 07%="S" SKIP RECOVERY
08%=" "STANDARD KEYS 08$="D"DUPLICATE KEYS 083%=" " STANDARD KEYS

Note that for Build Key File, parameters relating to Output .
user and key files are ignored. Also note that some of the
recovery information ds wused by Build Key File under
program control. Specifically, unused record -slots in
blocked sectors are flagged as deleted. This requires that
the recovery information and end record are kept up to
date. Such updating is done normally whenever a file is
closed (DEFFN'239). In addition, one <can wuse WRITE
RECOVERY INFO after executing FINDNEW on the primary key
file. :

3. Alternatively the _user may want to write a program to
- rebuild the secondary key files. This would begin by
jnitializing the secondary key files. The easiest way to
jnitialize a key file under program control is to copy the
first two sectors of the initialized Key File to a separate
data file and then recopy them to the original key file at
jnitialization time. This restores the KDR and the first
KIR of the key file. The next step is to open the primary
and freshly initialized secondary key files. FINDFIRST is
done on the primary file, producing the pointer T43. The
secondary keys can be determined from the record - and
concatenated with T4S$. FINDNEW(HERE) 1is done on the
secondary key files. The procedure is then repeated using
FINDNEXT until Q$="E" is returned. ‘

XI. Rea]Ibcate KFAM File Space:

REALLOCATE KFAM FILE SPACE is designed to update a KFAM key file
and user file to reflect modified file sizes. 1In the case of a
primary key file this involves updating the KDR in the key file
and rewriting the recovery information and end record in the
user file. 1In the case of the secondary key file only the KDR
js updated. It is important for secondary key files that the
recovery information and the end record are not written.
(Again, note that a file built by FINDNEW(HERE) only will not
indicate any sectors used and will write an end record in the
first sector of the user file). The KEY FILE TYPE parameter
should indicate PRIMARY or SECONDARY as appropriate. .Note that
as of ISS Release 5.1, the upper bounds of the User and Key
files- are updated whenever OPEN (DEFFN'230) is executed. Thus

" it is no longer necessary to use this utility following file
size changes. .

0436C

NS 9w

KFAM-T7
TRAINING MATERIALS
I$S RELEASE S.|

. CONFIGURATION
. STRUCTURE
. TABLES - KDR /LocAL /GLoBAL

LOGIC - QUEUE/SECTOR PROTECT
KFAM-T UTILITIES

MULTIPLE KEY FILES/DUPLICATE KEYS
ISS 5.1 UTILITIES /SUBROUTINES

@ KrAn3 xrmns () ()

T/ve/mvP
T /ve/nve cor I
AA KOO P 1o T€ DEK
oy EWE IOV RS | KFAM T
R m DSER FUE, CPW cpud (Mux VERS1oN)

YP/mvp

[2.6)
ACCUSS CONTROL TABLES Arwows <
NO AccEssS CoNTRoL TRBLES ARE ON DISK Commo o cRTE TO
€y 6THER

‘s T1&

D) D KFARM N

(sineLe /nuLTipLe BANK VERSIONS)
vP/mve

2

\:Rau conTROL
TADLES ARE [V
" NEMORY

KFAM CONFIGURATIONS

SINGLE BANYK

APPLICATION

APPLICATION !

APPLICATION

KPAMOlI0n

@ Parr KFad
)

N.z\n LUDES >Rm&.v

CONTROL TABLES

® KFAM T MEMORY CONFIGURATIONS :

MULTIPLE BANK

\m BOLES

PART “Kenmcon"

A.zn..comu ACCESS
CONTRoL TABLES
L B ky

RAPLICATION | APPLICATION] A APPLICATION
\. APrLICATION

JRPPLICATION RPrLICATION APPLICATION
|peeeicarion [\/] appucarion | {7 |arreicarion APPLICATION

Geer) :

KFAmMoson |\ | KFAmMasot| | KFamozon| |wramessr |54,
emnt'uran” | \ |@PRRT “kran"| | @PAAT "KFAN®
KFaMoYo” XXX DX XX

MUX VERSION

APPLICATION

APPLICATION

APPLLCATION

KFAr 0207
©PART ‘A

met

ACLESS ConTROL

TABLES ARE onv Disu

)

KFAM FILE LAYOUT ,
S kDR RECseD
(Tl N UMNERC]
KEY ENLE
Q'T— KDR ¢ Oters ° | ProTecred secroas
- | T$(3)434 |KDR INFORMaTION NOT USED——b]
FINDNEW S ECTORS
Tas2
L KIR s KIE wie i |// wie i [FF e vE ee e
RELAT\VE ,/' \ ‘\
KIR SECTOR \
—TY —>| 3
P
END WEY 2 poinTER
N
5’1 10}0
n
) J USER FILE 5£¢72!
TRAILER 7 / (sl 2
. ; | 7 | 7 | FF /I
AlCEsS _IOPES 2 | 2| FF|FF 2
3
] ___L_L.Zz—’- 3 4 s read RECORDS { 3 3 a‘ 3 _—
) \/ :t \/ N | etters read 3 | 3 | FF| FF] td
LIU’@UM —] — veer resd marfe AWRNABLE
READ y \/ /\/ A/ o /“‘/ Sppce 1V SEcT?C
omeL I\/ vEL? read € z":)’i - weT i AL (FE) Fou
AW Y e A 727) END FUTIRE USE L it
- i ULr only FueE Rezooerey
wavsk N A/ \ /‘/ \ A/ tHer's cpatoded)
ADR - /rEy DESCRIPTOE RLD
AR - FEY IWDEL RCD
W fiE — KEy WO SMTRY
RECOVERY INFORMATION
@ ’/—rnux TRALLEWR
—
Al T /5lmux [F1 Le wamne
+—P A SS WORD |)¢ BYTES
' z 3 L s ¢ 7 e 9 o o 2 13 w5 K
73
1 ¢ 1t 2e wy 24 ¢ 214 aFf 2 27 W 29 3 N AN PER STATION ACCESS TATBLE
11 3¢ s Je JY ¥ Iy %0 W @ 43 Yy 45 ¥ 4T Yo

FINDNEW (1)

/57 ontey o pesdiy seefd? .

© ADDING KEYS FORCES WIR SPLIT
AND A NEW LEVEL
SECTOR | SECTOR 2 SECTOR 3 (HLKIR)
4% (1)
43]8 % (v)
\\\t\
4ol6 %92 (1)
254 % |6 %]8 %10 (V)
[agfusls4 b 5[8 510 e (3)

Q _u_zcz::.&
MULTIPLE LEVEL KEY FILES

%\ §§w
_.— _l —A _ —ﬂ B ONE
: LEVE L
| LIH|LI |10
I ‘ "
. Two
1jajyisie <4— RELETIVE W®KIR FM(MPM
214 112112124
3 .
2
3 2lals tlglio AT 19)20|22 226 |28]0]s2] >/
{ 2 y s 3 <— RELETIVE WIR
: THREFE
218 —-— LEVELS
|18 / Rerr
J —e—
AERKE] AL T
21612 12{24)30 o2 REOUS
3 .. g 7
9 2|4{5 L|glo 120041 19| 20|22 24|2¢|28 sobalsyl |1 3 eenos
! z Yy 'S L 7 -

LOCATION OF KFAM TABLES

(v menory)

APPLICATION
LOCAL TABLES (BY KFAM I.D.)
LocAL mnws\ '
& VARIABLES
APPLICATION OLD PARA™METERs (FRom vLAsT caL) Ts$(3)se
RBCTIVE FILE INFORMATION Yo3(3) U
LOCAL TABLES ¢—] NA MES Vit (3)g
+ VARIARLES DPEVICE NUMBERS Tot 16
APPLICATION
woeat TABLES/
+ VARIAGLES
SUBROUTINES | GLORAL TABLES
" @TABLES<_ PROGRAM Hoe @T

] QuElE @ Q§, @Qlt, @Q

TABLE oF OPEN FiLES CTE(E@ 1
TABLE oF PROTECTED SECToRs @V43$(30)5

KDR TARBLES
W fey £x€

"MUX ACCESS TARLES
IV USER FLE

KDR: 7% (48) 3

Q2 T1hi.14] (8BYTE NUNERIC FIELD)
A
USED ONLY 1IN
] . . . (3 L] [} .] . [) . m .
T$0) ARBHBHHEBHHHEHH BRI
' " " ['7 4
COMPLETION CODES PRO TECTED SECTORS ,
(L BYTE PER STATION) (2BYTES PER STATION) 2
£—Gypann 1€ ConsTRN T — 3:._\&«%\%
. \\h“\ .
To T2% Q¢ vag TS 7%] <u#\..\\ﬂu.w¢4«\ ve$ Vi$ (nor Pacued) NOT USED
T$(2) n| [Aln]| [A]A AlAL NN NN Al [rla] [A]R A USED //
\ 1 4 ¢ ? 12 3 1S Yy 19 1 20 211 23 14 16 Ny
wn X
Z ¢ 2r =5 X M xXxr cC m uﬂomm.m
3 a M v D M w o) m 3 » o o 0 My <3
=) z O 2w - = o - m v o m O =2 @
.m m - o - 2 o = 2 m 2 0o X4 " m
2 3 Zvy I o 2 T2 » 9 nY%z02=2
< - @ m - 0 v -z M w v Z 5
~ N m - R m - ~- ® o
z m>» I o (o) < ® r O) o Z - n
=4 sV c o 2 c m m C m 0o Jdxm
- C m o x -— -
& v m P 3 - z r
< m v »n x N ~ xn ® — b
. n% 23 S A p. < o m
5 o = S o 3 9O > z Vv
m m A ~ :
» v =] -
w (o} v X (7 2
3 x
Frwpwe Secrre THELE R =2

[} []
L) °
. .

H TABLE OF SECTORS
' A LAST ASS\GNED BY CFIVDNEW'
(2 BYTES PER STATION)

esce
ceoe
sce

T4(3)

REETIVE| RECORD
SECTOR | WITHIN BlOoCK

313 k3n |~
Ss3qQqy 9 NILHWLS

31dy¥l 314 3a0Y Y
M1 NOLL1SOd

U\
s 3IN aleoud,}

404 399Ul X3H
aqow ss329W

¥3IBWAN Igvld
35IA34 3113 AN

}s
y3ygwaN 319l 15
7I31A3Q 3113 Y3sn

HLON3IT |F
3

i Nl @3asn
S31AY Tyiol

=

3ty dsui

Ld

NO1L1YI01 }B

Uy
$0A

9N\

Y4y

$HhA

N
OA

N
11

N

N N
T1

N

hl

NN

N N
LA

Sl

A

IT(€)$0A

NOILBWYOA NI ald 3A1104 40 3186l

YOUL23S
AA113T13n
qaydoo3y

3407 ol dWod

A3N
A

JIN ‘HIY4

WoL33S IAIL3734 ‘HIvd

!

w

<—//—0f —]

A

t£$hl

1$8L OESLL

s$l

< (8)$TL

85(c) $51

sy313Wvivd 110 40 37aYd

si3gunN 31gvl 391A3Q 3A1L0U J4O 318 vl

91 $01
3(E)$LA
s31dyl 14i)01 ©

S3WUYN 3113 JAIDY 10 NEY L

w GLOBAL TABLE OF OPEN FILES: Q

. KEY USER
eT$w FILE FiLe T
" “ d ” .°. ® 8 ¢ & 8 o ¢ g v 0 5*
erse» | 3 M ——
4 ov»v 2 = COMPLETION CODES
o223 70 P °c = % '
m™ea e o+ 29 (2 BYTE PER STATION)
= =z .
£0n 2rco E 2 o
r c c 9. nom P ,
2 Se Xm¥ m m - @ QQUEUVE (GLOBAL):
m m -—
Yo = m 5 m o _ & STR(@T$(Te), 4, 3)
nefh Som T X3 USER FILE — :
o 3 :
d@g=» saz 2 *35 LD eot | -
205 g = a
=2 [t
v 2 m.om - FILE# VL @94
(4 v M 1 °
- sTATIoN#s2 @Q

m@&.ow»w TABLE OF PROTECTED SECTORS:

@Vi$()

@ vi4 (39)

-

Y3IGWNN MNOIIYLS - TS

X 3 4y s

an.d cw

.SW w3

3 m% o3
o

- T, T_

o Fm -

T mE w37

o ~

3 82

z W H..

n) pu

- m

[I -

W [%]

v ~

v

&

PROGRAM Hot (GLOBAL):

eT
@T

o
S2

- NOT HOGGFD
- HOG¢ED BY STAYTION S

16

@Q = NEXT AVAILABLE POSITION IN QUEVF

" REVIE KEEA SUBROUTIHES ,

SUBROUTINES FOR FILE ACCESS
'930 OPEN A KFAM FILE
'733 CLOSE ‘A KFAM FILE
'213 RE-OPEN A KFAM FILE

1SS MILTIPLEED FILE SUBROUTINES (FOR SEQUENTIAL FILES)
1917 OPEN A MULTIPLEXED FILE

'219 CLOSE A MULTIPLEXED FILE

1918 MULTIPLEX 'END' — SIMUILATES A 'DATASAVE DC END' WITHOUT DESTROYING
THE ACCESS INFORMATION i

 URROUTINES FOR KEY FILE UPDATE !
1933 FINDNEW - INSERT KEY FOR NEW RECORD, RETURN WITH ASSIGNED USER FILE LOCATION

1931 EINDNEW. - GIVEN A RECORD'S LOCATION IN THE FILE, |
(HERE) INSERT THE KEY INTO THE KEY FILE (0%< 455164/5 LOcHTION FYINTE. f)

'73] DELETE - GIVEN A KEY, REMOVE THE CORRESPONDING KEY INDEX ENTRY
FROM THE KEY FILE '

NOTE — FOLLOWING A 'DELETE’, USER FILE SHOULD BE MARKED WITH A HEX(FF) .
- ALSO, TU$ POINTS TO USER gu.s LOCATION (RELATIVE SECTOR NO., AND
RECORD NO. WITHIN SECTOR.

'

SIBROUTINES FOR KEY FILE SEARCH

9% FINDOLD - GIVEN A KEY, LOCATE THE RECORD
935 FINDFIRST - FIND THE RECORD WITH THE LOWEST LOGICAL KEY

| '23] FINDNEXT - LOCATE THE RECORD FOLLOWING THE PREVIOUSLY FOUND RECORD
19365 FINDLAST - FIND THE RECORD WITH THE HIGHEST LOGICAL KEY

'212 FINDPREVIOUS - LOCATE THE RECORD PRECEDING THE PREVIOUSLY FOUND RECORD

’

EXECUTION OF THESE SUBROUTINES ALWAYS PRODUCES A RETURN CODE AND OTHER-
VARIABLES THAT ARE AVAILABLE TO THE USER.

o
M.v mc@mOCA._me FOoR mﬂ,Zu NEXT .Nu._u
(FIND_PRevious '212.) m

Fie Searew

(FINDFIRST '235)

(svanroe)

T1$=ALL(00)

CHPC
Comraniony
covy’

CNGae

OK — PATH VAL
COMPLE TIOP VALLD g

PREVIOUS
BANOR
?

(Finp LAST 936)

«wg) (SmARrve) oy
- (esrwir) (Locave a ay)
T § =HEx(Fr)

% [N
IN

LocATE A KEY

(FiNDoLD 232

(ser paevious kie) (Locar awsy) (6ET NExT KIE)
é © - (Locate A weY)

SECTYOR
PRoTRCTED

ACCESS
Modg = 1,3

?

(ENDING)

(posiTion FoR USE R)

.CF-\ND. NEW(HERS) 234)
(5_1;@ CF\NDNEw ‘2..3_3) SUBROUT INES. _FOR
| (uwpack wor) @@ | Fie Uepare
(unpack wor)

(T wesr usER FuE SWOT)

<+ Y ~SUFRCIENT ™
SPACE FoR A
RECORS

(DeLeTE 'a31)
(starTUP)

((LocATE A KEY)

DUPLICATE

(PELETE A KIE)

(R—Eumrs KD&)

AUESS Y y
nosE 3

(FLAG KDR CHANGED

(enpinG |

N

A

(PosiTioN FoR USER)

END ING

(s1aRTUP)

A_umoﬂmﬁ. me.OMV

mzm CURRENT OLD v:w;mqm@u

(ERRoRD—< :

(SToRE compLETION CODE)

(GET REQUESTED OLD PARA METERS)

(GET REQUESTED ACTIVE FILE 1FO)
) (RemovE enTry FROM QUEVE)

(RELEASE PROTECTED SECTOR)

(et uP QUEVE ENTRY)

aﬂ nozvrmﬁ..oz noumv

NEW LEVEL
zvo.w [

(cET_T9, T2$)
X !

UFAM-T UTILITIES - 5.0

© TINITIQLIZE KFAM FILES 4 CONVERT To KFAM-T
NEAM 3
Argm 4
FAAN S5
I BuiLd KEY FILE 5 PRINT WEY FILE
2 REORGANIZE N PLACE ¢ TRESET ACCESS TABLES
3 REALLO CATE FILE SPACE 7 TBUILD SUBROUTINE MODULE
Dow'r wveep ov /355 5.2 USvAy ‘GeogAc ' on/ mVE

8 WUEY FILE RECOVERY

ﬁmozgz_ﬁm\wm.mc_rv SUBRSYSTEM

: 2
) RECOVERY 2
KEY

ACTWE FILE _Eoz ly m m

KFAM-T UTILITIES CATALOG STATUS - w - z

(ISS 5.0) STATUS —~ ek n b ¥

awv r P hd x “

e A~ w3 m G & =

wy Sguw F9. EZw

<n4mm_~mz=.=3 w.._..m 2o w 3 K mw.w

N = No/ NoT REQUIRED Kmn Z8 HMrvo.. me

OR = OPTIONAL By ESY “Nm Lzl e

A = . w23 A3 = &I goe
NA = NoT APPLICABLE RFM.NP Hmm DDm w
wEEss BEI I RE

SxX0o 2 & S=£3 993

" INITIALIZE ORGP N VA M N N N N N oF YYY

INITIALL1Z E('O) oRY N WANA N Y N NNOP YYY

BUILD KEY FILE YY N WM YNN N OPOP YY Y

REORGAN |ZE IN PLACE YY YNANA NY Y NN Y YN N

KEY FILE RECOVERY YO.N MANA N NN YYY YN Y

REORGAN IZE (SUBSYSTEM)[Y Y N OROR N Y Y N N OB YNY

REBUILD (SUBSYSTEH) [YY N MAM NYN NYor YYY

REALLOCATE FILE SPACE |Y Y N NANA

CONYERT TOo KFAM-=7 |Y Y N NA WA

PRINT KEY FILF YY N jawa

2|2|Z|2
< (==l
z| 2|22
$
=
>
<

RESET ACCESS TABLES |Y Y N NAWA

~<| < |~ |=
<|<|=|=
JEHE

'

BUILD SUBROUTINE MOD.[*~ NA

SECTONR

& 1 L P

MULTIPLE KLY n?mm.\ecngam KEYS

USER FILE

RECORD

RECORD 2

~000~ _393__53\.

PRIMARY
KEY FILE

YEY POINTER,
i1 oo o ol° &
' oo o I |51
\ 0 © 0 2|2 1

__ooo._ _vdeXxx_

SECONDARY

KEY FILE (1)

UEY

POINTER

SECONDARY

UEY FiLe (1)

KEY POINTER
X X X o 1|0 1
X X X 5 1]15 0
X X Y 2 2|2 2

#

Q\\W&w&%

JNAKE Recot D UWIGVE By A& fowiEL-
75 FEY 7D AL H MW AEY

ISS UTILITIES - S+

o CoPY /VER\FY

| CREATE REFERENCE FILE

2 LIsT/ CRoss ~REFERENCE

3 COMPRESSION

"4 DECOMPRESSION

5 wcﬁ.._. DISK CATALOG

L DISK DUMP

7 FILE STATUS REPORT
g8 TPROGRA™M COMPARE

3 TRECONSTRUCT DISK INDEX

10 ALTER DISK INDEX

SCREEN/DISK SUBROUTINES
I3S 5.

A. Screen RouTiNES *

1. PosiTion CURSOR
2. PrRinT RouTINE
3. OperaTtor AT

4. DaTE Rcu*nues

5. Data EnTRY

B. Disx Routines

. Searen Disk Lnpex

2. LimiTs Nexr :

. ALroeaTte Dara Fue Seace
Free Unvsep Seetors

. OPEN/CLOSE Oureur

. O?EM/CLOSE‘ Turur

. MUX Oprewn /END/CLOSS‘

g. gsLscr/Vaunm-e Appresses

20N 0 kW

C. -r;zhuél.ﬁ‘rlow TEmss

. EBCDIC T ASCIT
2. ASCTT To ERCDIC

(WANG) cseraronc. e

T0:
FROM:
DATE:

SUBJ:

MEMORANDUM

v/ﬁim McEvoy

Gerry Claggett
November 9, 1979

Modifications Incorporated in ISS 5.1

" The following changes have been 1incorporated in ISS. 5.1 (a
maintenance release of ISS 5.0). ‘ .

1.

KFAM SUBROUTINES

A significant fault of the queue has been corrected
(KFAMO107, KFAM0307) where in some instances a second
station was allowed to begin to modify a key file
concurrently with an initial station. The intention of the
queue is to maintain file integrity by restricting access

"to a file to one KFAM call by one station at a time

(interactive mode only).

The queue has been modified (KFAM0O107, KFAMO307) so that it
now refers to user files rather than key files. This is
important only where multiple key files exist for ‘a given
user file. It insures that only one station will ‘be.
modifying the user file at a time, el1m1nat1ng ‘the
possibility of access by separate key files at the~ $ame
time (interactive mode only). :

The upper bounds for both the user and key files are
automatically updated in the KDR by KFAM OPEN: (DEFFN 1230 -
KFAMO107, KFAM0207, KFAM0307, KFAM230S). - This s done
based on the actual limits of the files at the time OPEN is
executed,” and takes into account record. lengths for
multiple sector records. This modification ‘eliminates the
required use of the KFAM utility REALLOCATE KFAM FILE SPACE
following the change of key and user file sizes.

A minor modification has been made in RE-OPEN (DEFFN '213 -
KFAMO107, KFAM0307) to hog the systém while completion

-codes are updated. This was previously ommitted, allowing

the remote possibility of two stat10ns updatwng the
completion codes concurrently when RE- OPEﬂf was executed
giving spurious results. e

-

KFAM UTILITIES

INITIALIZE: :
The option for duplicate and standard key types has been

included with the default values. As before, it is only
significant when checks are made on the key lengths.
(KFAM107U, KFAM117U).

The option to write or not write recovery information has
been included with the -default values, Typically the
recovery information is written when initializing the
primary key and not written when initializing any secondary
key files. (KFAM107U, KFAM117U).

The order of displayed default parameters has been adjusted
to include these two additional items. They have also been
jncluded in the hardcopy printout of the parameters.
(KFAM107U, KFAM117U). i '

Modification has been made to insure that all space in the
key file is made available. Previously, the number of
records requested was always used to determine the upper
bound of the key file. Thus, when reinitializing using an
exisiting key file, it was possible to have an erroneous
upper bound established. (KFAM107U, KFAM117U).

BUILD KEY FILE:

The option to write and not use, or use and not write, the
recovery information has been included in this utility to
support building multiple key files. Typically WRITE/DON'T
USE recovery information would be specified when building a
primary key file, and USE/DON'T WRITE would be specified
when building a secondary key file. Only the FINDNEW
SECTORS portion of the recovery information is used.
(KFAM207U, KFAM217U). :

REORGANIZE/REBUILD SUBSYSTEM: .

Modification has been made to correctly reactivate a
scratched output key file if such a file has been
specified. (XFAM3507). .

Modification has been made so that the variable Cl1 1is no
longer erroneously left as a common variable at the
conclusion of the subsystem execution. (KFAM3507).

PRINT KEY FILE:
Modification has been made to present a full screen of
KIE's where possible. (KFAM617U). :

RESET ACCESS TABLES:

This utility -has been modified to support the addition of

_the variable Q0$ to~the queue. (KFAM717U).

-~

ISS SUBROUTINES ~

FREE UNUSED SECTORS (DEFFN '227): :

VModification has been made to this routine so that the high
order bit for "next available sector in catalogued area" s
no longer removed from the catalogue index. This was done
previously to support disk platters formatted on the
2200T. Up to the 2280 (Phoenix) disk drives, the high
order bit was not used by the VP -and MVP. Now it s
necessary to leave it intact for addresses up to 52,609
requiring the full eight bits. (1SS.227S)-. .

DATE ROUTINES - CONVERT GREGORIAN TO JULIAN (DEFFN '221):

More efficient code has been incorporated in this routine.
(15S.2208). '

ISS UTILITIES

COPY VERIFY: | .

Modification has been made to allow up to 65,534 extra
sectors to be specified. Previously only 255 extra sectors
were allowed. (ISS.000U, ISS.001U). ‘

Modification has been made so that error messages
encountered during this utility go to the specified output
device. Prevously all error messages came to the CRT.
(1ss.ooo0u, I1SS.001U). : .

Modification has been made so that when indirect .mode is
being used and the reference file =specified includes a
reference to .itself, the output reference file will not be
copied with its MUX trailer 1left open by the copying
station. (I1SS.001U).

CREATE REFERENCE FILE:
Deffn '15 has been disabled until appropriate in the input

module, thus preventing - unintended screen display.
(1ss.010U). ' ' '

CROSS-REFERENCE: o

Modification has been made so that form feeds are no longer
erroneously issued when "REMXT" is encountered during the
building of the cross-reference tahle. ‘(I1SS.022U).

e e e ey e e v gt S5

o

LIST: '

Modification has been made to correctly use PEM%Pin giving
expanded print and form feeds. Previously an extraneous
underline appeared. Also, it 1is no longer necessary to
leave a blank space following REMZ if "4" is not used.
(155.024U). -

Modification has been made to process the statement "LIST'
“ if found in the text. Previously the program crashed on
this statement. (ISS.024U).)
Modification has Dbeen made to begin new lines as
appropriate for text in trailing REM's. - Previously the
entire trailing REM was printed on one line. (ISS.024U).

CROSS REFERENCE:

Modification has been made to give proper form feeds and
heading for marked subroutine cross reference listings.
Previously the line count logic was faulty. (1SS.022U).

" . DECOMPRESSION:

DECOMPRESSION: .
Modification has been made to process the statement "LIST'
" if found in the text. Previously the program crashed on
this statement. (1SS.044U). "

ALL UTILITY INPUT MODULES: ‘
Modification has been made to make the use of PART mode
easier. Subsequent to a return to "enter parameters”
(*15), old "entries are retained and correctly checked,
including output name and extra sectors where specified.

It is now possible to specify up to 16 parametars in the
input modules. Previously only 14 - were allowed.
(155.0508).

EXECUTION MODULES: :

The statement "SELECT PRINT #24¢ S$(1)> » is no Tlonger
executed when the printer address (S$(1)) 'is equal to ° ..
Previously a crash could occur. (1ss.001U, ISS.031U,
1SS.041y, 1SS051U, ISS.061U, 1SS.071U, 1SS.081U, KFAM117U,
KFAM617U). :

SORT4

SORT400C:

Modification has been made to the hog device routine (DEFFN
1215) to use $OPEN and $CLOSE instead of a $G10 statement.
The $G10 statement did not work on the MVP or the Phoenix
disk drive. .

SORT490A: .

Modification has been made to this SORT4 exit module so
that the first executable 1line selects print to the CRT
screen. Thus it is possible now to run SORT4 in background
by selecting print n000* (output dump) and executing
"$RELEASE TERMINAL®" in the start up module. -

LIMITATIONS:

Underlined characters in literals REM's and image
statements are not supported in some ISS Utility programs
ét;gzﬁE)CROSS-REFERENCE, COMPRESSION, DEPRESSION, PROGRAM

cc: Pradeep Barthakur
Fred Fredericks

L4

GC/nc
1220C

- Awger M€Y —2 nroe€ RIRDS (#easr. TREC) S
 Stpe7ER ASy > L &S5 EFns (Lowir 77:5:.)

 VAchpnr REE sr2- SeacE Ro7 DELETED REoLps SHodp & o RAED .

L LITH //r’ég(fiﬁ_)/az_% FHE TV enBBe REToV/ERy (ATCR By
_ THE USEIC Y oTHERw TE CHLY lavc werEns BorcD o7ty /S Bt/ .

L ussRe Fle , o , o R
R IPRBY Hr FE ST o , o
B LI pED peran) ek iTE PeediEy jporT suBfeocTInE. /S gund

AT & ofet S, -, B
s popacs ewrmy oo THBLE OF opEn Frias (Cioprt)

 TABLE OT oPTW FiLsS o Q!,I{Ui TELLS lebbteps STP77040 /S CREL /i E

L

S WEAMTS AT FCE - Loprt Chv ILE no TABLE /U FRIT —ComrL
N2, posromcr mwee | . FoesF e Basts

. MASs7TER Aer] o

,Aﬁz,smk&{:, o [/(F/‘\Mj 6[.5“1{93@,, |

/CFA/’V’ _ 3,7’ / MP//»-/VP - Z,‘A’/bwf ez p/:;é 70 cPai's

SEAM S TNVPIMUP - HRS Comnimot) CONTIZOL ALESS TRBLES
B Aleew 1 Osen. T ALESS. A FARTICKEAHR
L Recond AT A GruEl’ TINE ,.,,<S€C7ae Caarmé)

S 7V P/MI/P, -~ Swel€ /@yafxé’ﬂwt VERSIatrs — CotTRES ACEST
B REDRPS (A A SIUEL SEETOR wrrtm) A Free... S

YIEN20 ds£ S

SRS

 AEANP I D7 — AEAm D JExT E ConTRoL TABLES PR ALl PACTITIOOS
Wil SroRED s 5 PATr Tl tosrion) s BewA (ELosAl)

7

Lo sElecT 4 T onERSIL BLoBAL 7O STORE JFAm Y 7480,
Copreoe TABLES —P AFEMPIFT /Ll Srees K TEXT
o EACH IRRTI7I/aN .

o ~4’€im_¢3¢7 L — TERT ol (z /ék), (&w:p JU CRCK BAWK)

 AFRM papP — RLLESS ConTROL TABCES (smrep once w L. ,,,,fz';;Q o

J5817) JRFT — ORI S AESS oI THELES JrAm D MUK YRS

S 7 — 7S AZY 1) ADsL ¥ TS 7O FOSTTIONS L SECTOR TP werrs
T HHOSVER. | USER ST LWRITE PT HIRISELF .

ST - Seers AEYS g AEy wDek AuD fo0ES £ AIR ST /5
necessory £ TS MK ATYS S WERT SETTOR.,

HLAIR — friny Level AR Conrmms Porvrer- 7o /=7 fgey ml &
IREcEDIwE SEeTOR. T PLAES KTy /) ALFfEor/2mre SEETIR -

level s 9F KIE Scrpper D
- Lz 2K A1
2 5 =5

Se =as5
f,‘g =425

~

NSO &

3:

L A) T, VP, ryr 32K

jﬁ)éﬁ s

A WU?/? g 0/9777 9u7,e7 Afcress sy.s"r?:a?

))23 2 seerors (Aol O p2z) 2 pSESrTES

) B) EO x Y scree

. C) 1y 2ot AeT , -
,,,,,, D) R V.S ELorAl (7€em rpin) w74 z,ssr},,
. 5W%< -
/'?) MHIAHM .
B) A= REC LrETH /&df Bores
o) pmar e frerDs
- D- @.mpg;:)??@

e RS
o? AN FE

) f éfcolc D /’»eﬂﬂﬂad v EcOks EVEL

ot S ByTEs (AT B SERr 5 (WTIGOSUS /127 e <

e
<. ,4/047/”& AreEs

 H. ExpD FiE —Z LEeAD SePLE/TIL, F~ reccen?e

- RUCkeLT

wR0§5 —— T'[/ J ‘)
RN
ve LT T
e IV //}

/\/ﬂ/ l{ hﬂ{/‘é’éﬁ " 4l m‘/%m g find hSYYla el
Iy & mserded m EI< 1h sord oker
(Bls x vpda«fae pth new '57

16 gy b ke 1 81 by bt o d DS

“lerinse | — fobaes et Fooon ,améf;ﬁm corlos cz.wya (afddg)
. s M,o/'é;

ff_é&}s_ 234 - pmbls vier £ Fake achtctege s wrued spece

o Aelegis ote. o

,,,,%Af% 233 Mmﬁcw@ /pm /W/M;é}@%‘w Af_k
, = LAl leble /044%77 /474/%314 o7’ a/am Rtz .

/7%7 UE fnes — /?e—deée?/y/&c /J/e//;M/z/a rss
o — KAL) SECODIHTY fFrlss

Sry e Be /30 supE=s L

, s K D seasmmns (Horuiatrors)

RSPy R riterTS S ,, | i

@ kFﬂﬂﬁ@¢7 ("W CoRE —> commw./ //74/4-’3!4?'5) o

@ : o e oy e PART

S'oZ = S'rﬂr/aa/ NIBER. T AEPpRT SR TERm S S Term
ore 2/ CPU_ use S = .é{,@ﬁgz-r-,,,(x,) ,

. screer @ prer " wrpm ” L

- c o o) o : [T 7.

@ 60508’230 < / S, 7,_,1 oy] 7,1?1#). 3 D(ﬁﬂﬂ)

7 hyme | vtk kewne | Usrewr Kes pss fome b
12
tray ~ DEVER Oeveew A MMe Gbe W L i;efg

i e ,)
@ TF @4 <Y " Tees sl U errr osw oPend

@ o503 QS‘R,,C’ . LCTosts Eic._g_i} , | -

/. Pesrrey — Rerodsrz LTY FEE

P oAy — (TR 2L & BUES AEy FE

B RevresansttE [FLAEE

G, REoZEAN (. SUSSASTEN
5. BNgD Selalimy ATSF/EE

ﬂgﬁawzac//@/sw@ =SvmBsY SN —> USER

sFIs,
4,1
V/

L SF 2

et 7TEN “T0 7

MEMO
TO: George Levine
Wang Labs
110 East 59th St.
33rd Floor
New York City, MY 10022

FROM: Wendy MacGown
DATE: January 20, 1981

SUBJECT: Differences between KFAM-5 and KFAM-7

Citibank has expressed a desire to know why KFAM-7 is superior to KFAM-5,
as often stated. I hope this memo will provide sufficient information.

The primary reason why KFAM-7 was originally introduced was to take full
advantage of the MVP multi-user operating system. With the multi-user
operating system, KFAM-7 subroutines are run in a background partition
while the user's program is run in a foreground partition. The processing

is faster and more efficient.

The subroutine programs KFAMO107 (single bank) and KFAM0307 (multiple
bank) both access tables in core rather than on disk. KFAM-5 accesses
tables on disk and was designed to run in one contiguous partition of
memory. The KFAM-7 program, KFAM0207 (multiplexed) was designed to be
used on the VP operating system and is basically the same as KFAM-5. An
upgrade to KFAM-7 is not necessary if the user has a VP operating system
and is running KFAM-5.

Subtle Differences:
KFAM-7 uses BASIC II, whereas KFAM-5 uses the earlier Wang BASIC.

Multiple key access to the user file does not work with KFAM-5 or with
KFAM-7's KFAMO207. The protect table is contained in the key file itself,
so when the user file is being accessed by one of the key files, the other

- key files don't know that the protect bit has been set. In KFAM-7 the
protect table is in the global background partition, and can be accessed
by all the key files.

In KFAM-7 the Reorganize/Rebuild Subsystem utilities will reorganize the
user file based on one key file. If there are multiple key files, the
secondary key files will not be mapped to the new user file. KFAM-7
however, allows for multiple key files. The Reorganize /Rebuild Subsystem
set-ugiTodu1e can be written to map the secondary key files to the new
user e.

Lz
=
<D

October 26, 1981

Mr. Al Goldman
WANG LABORATORIES
Mail Stop 1213
ILowel, Mass. 01851

Dear Mr. Goldmans

As I told you on our telephone conversation the other day, I am
having KFAM-5 problems. You informed me that these errors could be
caused by the fact that KFAM-5 was running on a Phoenix 80 meg disk
drive. Also you suggested that we should change to KFAM-7. I had spent
some time last year in Massuchuttes with Mr. Frank Sullivan trying
convert from KFAM-5 to KFAM-7 but we were unable to do so. As you
suggested, I am sending you the system-so you can do the conversion.
Enclosed you will find:

program disk

- good database disk

- file definition

- system usage and KFAM changes

We would appreciate it if you would let me know when you receive
the disks. There is very important data on these disks that we would
like to keep track of. We will also be grateful if this data is kept
confidential.

I will be looking forward to hearing good news from you soon and
receiving a KRAM-7 system. My telephone no. is (212) 559-6282.

Sincerely yours
Caridad Ferro

CF/mb
Enclosures

TO: Elda Dilorenzo

FROM: Chuck Wilson

DATE: 07/13/83

SUBJECT: ISS Release 5.3 (new hash capability)

Enclosed is release 5.3 of ISS which contains the new 2200 hash
capability. Along with this release there are reports showing
program discrepancies between ISS 5.2 and ISS 5.3. I have noted
what each error on the program compare is so we could concentrate
our testing on those specific areas of the package. I have also
enclosed catalog listings to verify those files that have changed in
size and to assure that the correct number of data files and program
files are placed on the diskettes as they go out.

The only file to change extensively is ISS.229S which is the "search
index" routine. This routine allows a user to use MVP basic release
2.5 with the new catalog hashing algorithm which is not supported in
earlier versions. There is a significant change in the size of this
file, the original version of it in release 5.2 was approx. 1.5k
bytes and it is now approx. 2.4k. It is approx. .84k larger now.
Users may need to know this.

Oother modules that have changed since release 5.2 are as follows:

1SS.031U0 —— Change was made so that HEX(80) as part of a
valid line number would be masked as it resembles
the keyword 'LIST' during compression. Without
this change a program going through compression
which included any line from 8000 to 8099 may
stop prematurly with an unrecoverable error.

1SS.081U

Change made to line 1710 for the same reason
noted for ISS.031U update.

Change made to line 3880, "DEFFN'254" found on
that line in the 5.2 version should have been
"GOSUB'254". Without this change the List/Cross
reference utility with the List option and all
options specified would crash on line 8310 with a
P48 because slot 3 of the device table has no
valid disk address assigned.

IS85.217S8

KFAM3707

|
|

Change made to line number 4870 to initialize
sector buffer in reorganize rebuild subroutine.
Without change reorganize/rebuild would not
functuon properly with certain KFAM files.

The file "KFAMREFS" has also been edited so that it may be
referenced properly. The difference between this version and ISS
5.2 has to do with the last absolute sector of the file. This
sector has been reconstructed for the new release and seems to be
fine.

If there are any questions or problems please give me a call at ext
6565.

WANG LABORATORIES, INC.
ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 e TEL: 617/459-5000, TWX 710-343-6769, TELEX 94-7421

MEMORANDUM

TO: Brian Weir
CcC: Renee Plummer
Jim Mahoney

Duane Frunz
FROM: Ken Mailloux « _ /::
SUBJECT: Probe F007149 - Wollaston Alloys

DATE: Nov. 16, 1984

I would like to emphasize the importance of unique station numbers when
running multiplexed KFAM. The application that we looked at included a
configuration named WAI-07. Loading this configuration into both CPUs is
a potential problem. The application equates the KFAM variable S2
(station number) to #PART (partition number). Lock at the screen dump of
WAI-07 and notice the programs that are loaded and the partition

numbers. The program "HELIO" that initializes the system and then loads
"WAI" is in partition 2. The program "WAI" is loaded into partitions 6,9
and 12. 1If both CPUs are brought up under this arrangement then we have
conflicts in partitions 3,6,9 and 12. The partition numbers are the same.
for both CPUs. As an example, CPU #l1 part 3 has S2 =3 and so does CPU #2
part 3. The application will work sometimes until conflicting station
numbers try to access the same file. The first one in will effectively
hog the file and an access conflict error message will be signaled.

A better way would be to load separate configurations into each CPU as in
the two examples. The user would not have to run partition status -and
perhaps release wo a different partition to insure unique station
numbers. At the user site you can check for 'conflicts by running @PSTAT
on each CPU or print the value of S2 on each terminal when the main
system menu is loaded.

Another potential problem is hitting the RESET key instead of Fn '3l and
leaving the files open. A hardware problem that forces an exit without
closing files would require resetting the access tables. The KFAM
utility RESET ACCESS TABLES does not permit the ALL function and the user
would have to know which files are accessed by a given module. This
could be frustrating to a user not familiar with the details of the
programs. Make sure they exit the modules the proper way.

As you have seen, an application that is designed to run on a Multi-Bank
system must be modified to work in a Multiplexed environment. The ISS
user manual explains most of the differences.

Good luck, and please call if you need additional information.

enclosures

0057Y

: kkx AANG 222J4VP ?AQTI;IJMnggERQEIgg ngigé“ 52*”3 56,22
qu]]liLa nenary: %1.93 $4.20 S5A4) 3484 3%.: Q -y 2. S
i 2 . o J! . 3.3’3)6.33 56030 55-30 56033
-q Qamnaining nemory: Je3JJ J.2390 2.30 s LIS{ SF 0PT£3¥S']
i € SRMIVAL PROSRAMMABLE PRIGRAM *30 = claar partition
* PART%TIJN 513.55) MR 5 - N\ SF’21 = clear device table
g 2 17.20 J N KEAMD2]7 '
. 3 23.29 1 Y 4SLLD §57J2 - divide men. evenly
iz ’ . 2 Y
» g ?3.%8 2 \ KFAMQ23]7 §=24 = edit Qa_tLﬁLOﬂS___
4 5 23.20 3 Y AAT §E7)5 - edit jevice table
s 7 23,29 A Y SFJ6 = edit 3MSG
. 3 13.329 p] N K=au02)7 . .
s 3 23,33 5 Y AAT $=’98 - 153d zonfiguration
e 10 23.33 5 Y §F"39 = save -onfiguration
?, 1 10.290] N §:%w0237 SE‘1) - d2lat2 confige.
i s 7 Y ' ,
;n }% %%_gg 3 Y SE’15 = exacute
% -0?
EJ ~hack sanfiguration. 2J¢ 1O ex2zut2 (Y or W)?
i kek AJANG 2203uVP 2ARTITIOIN GENERATION PROGRAM »*#
"_Ayailasle namary: £1.37 54.00 56.00 S4.37 54.20 S54.30 54,20 56433
Ra2naining namory: J.3D J.00 2.3J3 3.933 55.00 5%.00 56437 56.J)
, | : . , LIST JF OPTIONS:
ol PARTITION SIZE(X) TEQMINAL PROSAAMMAZLE PRIGRAM SF’Q0 = clear partition
o 1 3 .20] N §F’J1 .- clear device tapl
> 2 10.320 J N KFAav0217 J
n 3 23.33 2 Y _ §F“32 = divids mem. evenl
. 4 2332 1 Y HELLOD
z 5 13.22] \ XKFAaMI217 SFE*)6 = edit ;a_xgixpﬁs
B 5 23.3) 4 Y SF’JS = edit davzca table
5, 4 23.32J0 3 Y AAT §=734 = edit BMS
- 3 10.2J2 J N K=aM02)7
o 9 23,390 4 Y SF’J8 - laad zonfiguratio
3 13 23.332 5 Y WA I S=739 = s3ve ,onfxguratzo
: 11 1232 J \] XEAM022)7 SF’10 - da2leta2 config.
12 23.323 3 Y
13 23.33 7 Y WAT SE’13 = exacute
Configaration “CPU=27 1loadad. =dit which oartition (default = 1)?
ke JANG 22004V> 2ARTITIIN GENERATIIN PROSIAM Hikx
Ayailasle mnemory: 51,00 55.30 54.23 56,23 55.00 56.49 56.30 56.33
a R2n13inil1g nemory: JeJJ J.J0 0.33 J.J) 55.0d 5%.dJ3 55,70 3%8.JJ
-l e . - . . , LIST OF OPTIJNS:
i PARTITIIN >I§¢(K) TERMINVAL PRO54MMA3ZLZ PRIGRAM SF’00 = clear oartitions
7 14 5.3 J N SF’31 - clear deviza tabl
. : 13:33 i Y A SF’02 - divide 1
i~ 2 3.0 42 ‘ - divid2 men. even
; A 233120 2 Y ‘
» 5 13.290 2 N KFamMQ23l7 SF’J4 - edit oartitions_
i [23.J0 3 Y WAl SF*0S = edit devicas table
" 7 23.29 4 Y - SF’J4 = edit 3M4SG
_ 3 10.323] N KFAMQ21)7
" 3 23.329 5 Y WAL SF’08 - 1oad :zonfiguratior
5 13 23,773 5 Y SF4J9 = §ave -onfz;urstxor
- 11 13.22] N K=4av3217? SE’10 - deleta config.
_ 12 23.22 7 Y WAL
o 13 2397 3 Y SF’15 - execute e

{| configusatian ‘CPU-1” loadsd. Zdit uhich oartition (default = 12

WANG LABORATORIES, INC.
ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 o TEL: 617/459-5000, TWX 710-343-6769, TELEX 94-7421

Memarandum //'/\ /
To: Max Mickiff \(

ATOM Latin America

a
Fraom: Sheila D. Mitchell \(
Section Manager, VS Value Added/2200 Suppart

Swject: Technical repart far TAC L5205000 and PROBE F009254
Date: 12 August 1985
CC: Mary Bowker

Duane Frunz
Henry Schinnagel

The attached technical repart far TAC L5205000 and PROBE F009254 has been
prepared by Duane Frunz to assist Sisteco with resalving the reparted KFAM
processing prablem. The report is organized in the following manner:

1. Histary of prcblem since 7 Jan 85.

2. General description of Sisteco system.

3. Technical discussion of KFAM and 2200 CPU processing.

4, Seven (7) prcblems and recammendations far Sisteco system.
5. Appendices in suppart of prdblems and recammendations.

When the recommended system changes are mace by Sisteco, we expect that
Sisteco's prablem will be resolved.

The duplication of the variable '@T' causing the system to hang is still an
open question with the following issues:

1. Software (KFAM processing).

. The software issue is that '@T' does not get cleared toc zero.
However, we have not been able to find rules for duplicating the
prablem using only the KFAM processing.

2. Haroware (cable installation). ,

. The Haraware issue is that the cable can be installed with MUX
to TERMINA. and TERMINA. to MUX. With cables reversed, the 2200
will continue to operate and only occasionally will cause the
RESET signal to be sent to a different partition.

3. Operator training (using RESET).

. The Operator issue is known to happen even after extensive

operatar training.

Also, enclosed are copies of the diskettes which we have received fram
Sisteco. If there are any additional questions or you should need mare
information, please call us.

Regards,

Sheila D. Mitchell

0059d: vVS1002

History of Sisteco problem

KFAM based applications using the WANG 2200 have historically encountered
performance and system hanging problems due to misunderstanding the
procedures specified in the manuals. The three major problems with the
manuals' descriptions are:

1. How shared (global) programs are used.
2. What is variable @T and how is it used.
3. Record (sector) protection.

The majority of reported problems have been resolved after the systems
analyst implemented recommended changes based on understanding the
manuals specifications. With a clarification of these principles, we
believe that a majority of the problems with the Sisteco application will
be corrected.

The problem with the KFAM system hanging due to the variable @T is an old
problem that has eluded exact duplication rules. Also, the problem was
always associated with an installation using four (4) or more terminals.
So, the Sisteco system appeared to be an opportunity to obtain exact
duplication rules with a two terminal system. Sisteco did prepare a
special, stripped down, version of their system and supporting data.
However, the following problems with the backups and instructions were
encountered:

Backup dated 1/03/85:
1. Data file DF11F10 was received with a status of 'SHARED'
2. Data file ADDRESS1 showed that both terminals were using the
program @DFPO010. Whereas the instructions stated that one
terminal use program @FP0010 and the other use @CCP0020.
3. Duplication not realized.

Duplicaton on 7/23/85:
1. Sisteco had problem at step 3. of instructions and cleared
the variable '@T' without rebooting the system.
2. Sisteco encountered problem immediately upon using programs.
3. Data file ADDRESS1 showed that terminal two had been using
the system.

Backup dated 7/23/85: Unable to duplicate per instructions.

The Technical Assistance Log dated 01/07/85 describes the problem as
Sisteco understood what was causing the hang. However, their description
contained a misunderstanding about the use of the variable '@T' but the
problem with the program hanging at statements 6100 and 6110 while
accessing file CCONTRA was well defined and consistent with the manual.
- The manual states that when an open is attempted and the status 'A' is
received, then the program should attempt the open again. This is
exactly what the program was doing but the cause for the file CCONTRA
being unavailable had to be explained. An examination of the program
@CCP0010 found numerous potential reasons for CCONTRA to be left open and
hence unavailable to program @DFP0020.

The reasons for CCONTRA being left open by @CCPO0O10 is not a simple

isolated problem. Therefore, all the potentially contributing problems
have been identified and are being reported.

Page 1 of 5

System overview of Sisteco processing

The system processes accounting data for many different types of
transactions. The only portion of the system which we will discuss is the
processing that affects two programs @FP0O010 and @CCP0020. Transactions
added to the system by programs @DFPO0L0 (DISCHARGES) and @CCPOO10
(INPUT/CHARGE) are processed basically in the same manner:

1. Operator selects program from menu.
2. System records program name and data in file CONTROL.
2.a @CCPO020 opens KFAM files and is ready for step 3.
2.b @DFPO010 opens KFAM files and displays program menu.
2.c @FPO010 accepts operator choice and is ready for step 3.
3. Operator enters customer number or zero (0) to finish.
4. Operator enters data values for transaction. ‘
5. Using the operators' data, some values are computed, and the
system performs the following processing: v
5.a Save one or more transactions in two KFAM data files.
(@ccP0020 uses CC11F100 and CC11F110)
(@DFPOO0L0 uses DF11F100 and DF11F110)
5.b Open file CONTROL, save values, and close CONTROL.
5.c Open file CCONTRA, save values, and close CCONTRA.
5.d Buffer processing:
5.d.1 Increment buffer index
5.d.2 If index more than six (8)
THEN open special file, save values, and close file.
5.d.3 Set current values in buffer.
(@CCPO020 uses file ADDRESxx, with xx = partition number)
(@DFPO010 uses ADDRESS1)
6. When step five (5) is completed, continue with step three (3)
7. When operator enters zero (0), return to menu
7.2 @CPO020 closes KFAM files and returns to system menu.
7.b @FPOC10 returns to program menu.
7.c @FPO010 closes KFAM files and returns to system menu
after opertor enters zero (0) from the program menu.

This description is VERY over-simplified but in principle both programs
repeat the steps three (3), four (4), and five (5) until the operator
enters zero (0) for the customer number. With this understanding of the
normal processing, we will discuss the different ways the system will
appear to ‘'hang' because the program can not finish a step in the
processing.

Before discussing the 'hanging' conditions caused by a program, we should
note which terminals can use the programs and how the system responds to a
data problem. The system allows any terminal to use a program and both
terminals can be using the same program. However, the program @CCP0020
should be used only by terminal number one because when terminal two uses
this program the data file ADDRESO5 is used for step 5.d.3 and results in
an error after the operator has entered the seventh transactions. When
either program encounters a processing problem, a subroutine is used to
close the KFAM files. This is an excellent design feature but problems
can be created when an operator uses the subroutine by pressing function
'31 on the keyboard and restarting the program after the subroutine is
finished.

~ Page 2 of 5

KFAM technical summary

The Key File Access Method (KFAM) for the WANG 2200 is a collection of
programs and utilities which can be used by an analyst for control and
access of data. The access method used by KFAM is indexed files with two
data files, one for the indices and one for the actual data. During the.
system design phase, the analyst must decide not only standard data
structure issues but also how will the 2200 system be configured for the
actual processing.

Configuring the 2200 system is a process in which a system administrator
allocates the systems' user memory so that it will accomodate his
particular programs (tasks). Depending on the system, the user may
subdivide their total memory into anywhere from one (1) to a possible
maximum of eight (8) BANKS. These BANKS are then subdivided into
PARTITIONS which are specific allotments of user memory with the BANK.
The memory assigned to a particular PARTITION is determined by the
application program that will be performed in each PARTITION. A special
type of PARTITION can be shared by other partitions when certain system
conditions are satisfied.

The system condition for sharing a partition is that a program must
execute the special instruction 'DEFFN @PART "..name.."', When a program
in another partition must use the shared partition, the program must
execute a statement 'SELECT @PART "..name.."'. A second condition for
defining a shared partition is to have the shared program require less
than five kilobytes (5K) of memory and reside in the first partition.
The literature refers to these different shared partition definitions as
universal global and local global. That is, the small shared program in
the first partition can be accessed by all (ie universal) partitions of
the 2200 CPU whereas a larger shared program can be accessed only by the
partitions (programs) within one (ie local) bank of memory.

KFAM uses special programs for the definition of universal and local
global. The execution of the access method is performed by another
program name KFAMO307 which must be in each bank of 2200 memory that will
be using KFAM. Since this program is in each bank, the program KFAMO307
is referred to as the 'local global' program. Depending on how the
analyst designs the system, each local memory bank may have any number of
actual applications executing. When an application accesses data, KFAM
must take care of updating the system values by using the local and
universal global 'partitions’.

A3

Page 3 of 5

KFAM technical summary (continued)

Sharing data between the different global memory areas is controlled
-within KFAM by using a flag. This flag says either 1. Yes, shared data
is being accessed and changed by a program or 2. No, shared data is not
being accessed and is available for another program to use the data.
Technically, this flag has the variable name '@T'. With the flag saying
only yes or no, a problem will occur when an application sets the flag to
yes and does not complete processing and turn the flag back to no. This
problem can occur when the system is interrupted by pressing the RESET
key. The RESET key is the black button in the upper left corner of
latest model keyboard and is the little silver button in the upper right
corner of the older model keyboards. The black button has the word
'RESET' stamped upon it whereas the silver button has no label but has
the word 'RESET' stamped on the keyboard.

When the RESET key is pressed, program execution is interrupted. This can
create a problem when the program was using the shared program and the
variable @T was set for hogging the shared program space.

Since the 2200 is a multi-tasking system, the analyst can choose to have
one program (task) that is available to all the other programs within .
one bank of memory. When the 2200 has more than one bank of memory, the
system can have a shared program in a special memory partition which can
be accessed by all memory within the a single 2200. When the analyst
has a system designed for a single 2200 and must change the system for
two or more 2200s, the KFAM system allows a very minor change in the
definition of which programs are shared. That is, with a single 2200,
one program (KFAMO307) is shared in each bank (called local global) and
one program (KFAMO407) is shared by all banks of memory (called universal
global). Whereas, with more than one 2200 CPU only one global program is
used (KFAM0207).

Page 4 of 5

Summary of problems and recommendéd changes
for Sisteco's KFAM system.

1. Problem: When function 31 is used, files CCONTRA and/or CONTROL can
be left open by @CCP0020.

Recommendation: a) Change logic of @CCP0020 in section 'ACTUALIZO' (lines
7620 to 7690) so that file is not open while other processing is being
performed or b) Add a call to close multiplexed files ('219) to the
subroutine ('31) that closes KFAM files.

2. Problem: When operator presses special function key zero (0) or one
(1), the programs open, store data, and close the special data files
CCONTRA and CONTROL.

Recommendation: Change the function numbers to larger numbers. If system
design requires that operator use these function, then use a number that
requires the SHIFT key. For example, by using special function twenty (20)
instead of zero (0), the operator must hold the SHIFT key and the function
key. If the system design does NOT require the operator to use these
function, then use a number that can not be accessed from the key board.

3. Problem: Program @DFPO010 does not release the customer data
(CLIEF100) that is shared with program @CCPO020. So, if both
operators are using the same customer number, the operator using
program @CPO020 must wait for the operator using program @FP0010 to
use another customer number or finish processing.

Recommendation: a) Add the release ('238) function to program @DFPO010,
or b) Change the find old request from access with record protection
('232(1,1,F0$)) to access without record protection ('232(1,0,F0$).

4. Problem: When both operators are using the same program, one
operator may have to wait a long time for data to be saved because
record protection is used for saving data.

Recommendation: After the data has been saved, use the release function.

5. Problem: Program @CP0020 can take a long time to save data after
the operator has entered one transaction.

Recommendation: -Print a message that tells the operator the system is
working with the data.

6. Problem: When system is configured, the printer must be selected and
ready to print. .

Recommendation: Change program MENUGRA by a) advising operator to prepare
the printer, or b) removing code from MENUGRA and perform processing in
the program that uses the printer.

7. Problem: Locating data with a key value and loading data which
changes the variable. Then using the changed variable for processing.

Recommendation: Use a temporary variable and confirm that the loaded value
is the same (correct) value.

Page 5 of 5

e e cememe s

Problem 1: When function 31 is used, files CCONTRA and/or CONTROL can be
left open by @aCCP0020.

Recommendation: a) Change logic of @CCP0O020 in section 'ACTUALIZO' (lines
7620 to 7690) so that file is not open while other processing is being
performed or b) Add a call to close multiplexed files ('219) to the
subroutine ('31) that closes KFAM files.

.oo.o-ooooooo..o.oo.00000000o.o0o0.00.0........0000.000..0oooo.oooo.o.oo.o

The section ‘'ACTUALIZO' from program @CCP0020 and the necessary
supporting subroutines are attached. At statement 7630, we find that the
file CCONTRA is opened but not closed. The file is closed at statement
7670 but if anything goes wrong during the other processing the file will
be left open. That is, when something goes wrong a subroutine ('31) is
called which closes the KFAM files but not the multiplexed files CCONTRA
or CONTROL. The list of potential things to go wrong is:

A. Record not found in file CCl11FlQQ. >
B. Record has wrong format for unpack statement.

C. File CONTROL can not be opened.

D. File CCONTRA can not be closed.

E. Operator presses RESET and function 31.

When problems A, B, or C happen, the program would use subroutine '3l to
close the KFAM files and perform the statement END. After the 'END', the
operator can restart the program by entering RUN and RETURN. So, the
operator, instead of asking the system administrator about the problem,
could enter more data until another problem occurred.

The problem D would happen only if another program had the disk hogged.
This would probably be a rare occurence but is a possibility.

The problem.E would happen when an operator assumed the system was 'hung

again' instead of simplying taking much longer than normal to save the
data. Problem number four discusses this in more detail.

Appendix I Page 1 of 6

0010 REM %
FROGRAMA GCCE GOS0
7620 REM %
ACTUAL I ZO

=7630 I1 = 10

GOSUER 7710 —

GOSUR 7900

GOSUER 7970

I1 =0 ’

GOSUE 7710 ClONTRA £

GOSUE 8570 .. A A C A FJMN O

GOSUR 7850 % -< =l

X127 \-®_ U PRACIK CRATHR

GOSUE 8640 ——————— C DO NT I L R S
IF A(3Z) <> 1 THEN 7650

Gi1(1) = G1(1) + A2

GO(2) =6B0(2) + A1)

B(E)= B(5) + A(21)

GOTO 7660

)-
-
-

) %0 me 88 em awnm

I
™1

o &
J
4]
(

764

—76350 B1(2) = G1(2) + AL
P GO = BO(I) + ARL)
i B(6) = B(&) + A1)
=7660 BO(4)= BO(1) + BO(2) - GO(I)
E(7) = B(4) + B(5) - E(&4)

7670 11 = 10 o e
GOSUE 7740 .~@;_, SO TR e AT Sk
I11=0 :

X1=7

GOSUE 8690 — 2T AL FLrDan

74680 GOSUE 7740

7690 FOR I = 15 ;6‘55\“‘

\ -
ACI) = 0 —~ sw';" L& P iy DN S O
NEXT I
RETURN

F9$=i%rAJz>/‘x 7' O hmem o~ -

7960 REM %

NSNSl LI L)

AL TA TRANSACD IONES

=7970

FACE (#####4#) STR(A$,5,3) FROM E9
GOSUE '233 (3, 1,A%,0)

IF G% = " " THEN 7990

IF @% ="E" THEN 7970

IF @% = "D" THEN 7980

GOSUE_' 100 ("ERROR EN FINDNEW - TRANSACCIONES",Q$,21,0,1)

(GOSUE '=1 >\ —

et eas e s

END B

\l

P
Lo
o~
e
us ss @p
‘} LL N)

GOSUE ' 100 ("TRANSACCION YA INGRESADA"," ",21,0

RETURN

INIT (FF) EOQO% ()

INIT ("o") E1s () ,E2% () ,E3% ()

IF @ = 1 THEN 3000

DATA LOAD DC #&6,E0% (), +E1$ 0 ,EZ2%$ () ,EZ$ ()
DEACKSFACE #6&, 18

EOs(Q) = A%

Els Q)= Hi%

2% (Q) = H=%

EZ& (Q) = HZ

DATA SAVE DC #6,E0% (), +E1$ O ,E2% (), EI$ ()
GOsSUER 7790

RETURN

10 REM % PROGRAMA ECCFOOZ0

7780

REM %

SRaED AaDDRESS 1

=77%0

7800

=7810

80 %9 Es =8 wm Ta ws

=7820

=-7830

Ml= M1 + 1

e Tt AR e asevanas v e

IF M1 > 6 THEN GOSUE 7810 *‘—"“‘\\\ WHeN mi =7

STR (A% (M1),1,2)="04"
STR (A% (M1),3,13) = As
STR (A% (M1) ,33,1) = » »

CONVERT S2 TO STR(A$ (M1),34,2), (##) i
CONVERT C1 TO STR(A$(M1).-6 1), (#) ,/
RETURN o

oo wme - -.——‘W‘.//
Mi=1 -

E1%="ADDRESXX"
CONVERT S2TO STRME1$,7,2), (##)

GOSUE 'Z17 (B1%,9,52,0,4," ",M1%,0) OPEN
IF @$=" " THEN 7830

IF @$="A" THEN 7820

GOSUE '100("DFEN - ADDRESXX",Q%,21,0,1)
(GOSUE

ERD ~ —

SEBREAF
GOTD 7810

DSKIF #%,END

DATA SAVE DC #9,A% ()

GOSUR '218(E1%,9.M1%,0)
GOSUE '219? (R1%,9,52,M1%,0)
INIT(FF) A% (O

RETURN
2 N N 7% s = s

ADDrReS D0

or RDDRISYS

TT(Close kEAY
—

4
[

ENMND

W REM 4 FROGRAMA @CCFOOZO
-8570 GOSUE '23I2(2, 1,F0%)

IF @$=" " THEN 8580

IF @%= "B" THEN 8570
Gqsuﬂ-_lgif"ERRUR EN FINDOLD - SALDOS C/C",Q%,21,1,0)
GOSUB ')

o2 s us ws ooy

END T LT e Qiéaﬁsé- /'T‘\
~8580 DATA LDAD DC #4,F&% () ,F7$ () ,F8% () i
: DEACKSFACE #4, 15 ‘ s S AD
: BI=0Q
: RETURN

10 REM % FROGRAMA @CCFOOQZO

=7850 X=1

FOR I? = 1 TO 4

UNFACE (—##3#484444 . #4) STR(F7$(BZ) ,X,4) TO B(T + I9)
X =X + 5

NEXT I9

RETURN

10 REM % FROGRAMA @CCFOO20

-8660 GOSUE '217 ("CONTROL",X1,82,0,4," "aMi%,0)

IF Q%= " " THEN 8680

IF O% = "A" THEN 8470

GOSUE '100 ("ERROR EN OFEN - CONTROL",Q0%,21,0, 1)

@DSUB wv}«»«...‘_______\‘
END B _ C-C'—Z'OSE K FH@
-8670 % BREAK 0
: GOTO 86460 2 E'/U D
-84680 DATA LOAD DC # X1,60,G1%,62%,60 () ,G3%,G54%
: RETURN

ADPEU'I\:V - &N A o em e) .

0010

REM %

FROGRAM® SCCR OO

=-7710

4 s

C.n- (LI T P

|
~
~J
I

0010

BOSUE '217 ("CCCONTRA",8,52,0,4," ",Mi%,0)

IF @$=" " THEN 7730
IF @% ="A" THEN 7720
GQSQE.LH@& ("ERROR EN _OFEN_- CCCONTRA",0%,21,0, 1)
‘GOSUR 'F1Y ToTmIZ T
END 7 T
—{(C /L OsLE /(F‘f.}/z;
% EREAK T
GOTO 7710 “
| 80TO 7 s END
DATA LOAD DC #8,62,G65%,G61 0,62 () ,G6%
IF I1 = © THEN EETURN / k? Tty .
G2 (1)=G2 (1) +1 LA) . el
IF B2(1) > 9999 THEN G2(1) = 1 LEAVIN & & CCONIRF
FACK (####) STR(AS, 12,2) FROM G2 (1) ;
DEACKSFACE #8, BEG FILE oprN Vs

DATA SAVE DC #8,G62,65%,610,62(),646%

GOSUE '219 ("CCCONTRA",8,52,M1%,0)
RETURN 3

premm— f— o5 ED
REM %

FROGRAaMe ®@CCF OO0

7890

b4

REM %

EMFAQUETO CAaAMPFOS TRANSAaCCIONES

=-7200

7710

" s g3 ams

~
~0
)

7930

7940

<™ %0 ss us &g

~
~0
u

FACK (###) STR(H1%$,1,2) FROM A ()
CONVERT A(3) TO STR(H1%$,3,1), (#)

CONVERT A(4) TO Is$, (##44h#)

F1$=STR (I$,5,2) %STR(I$, 3,2 USTR (1%, 1,2)
CONVERT F1% TD A(4)

FACK (######) STR(H1%$,4,3) FROM A (4)
CONVERT A(S) TO STR(H1%$,7,1), (#)

FACK (######) STR(H1%$,8,3) FROM A (&)

PACK (#####4#4838) STR (H1$, 11,6) FROM A(7)
CONVERT A(8) TO BTR(H1$,17,2), (##)

STR(H1%,19, 1)

= STR(FS%,3, 1)

FACE (##) STR(H1%, 20,

1) FROM A(10)

FACE. (######) STR(H1%,

21,3) FROM A(11)

FACE
FACE (##) STR(H1%,27, 1)

(######) STR(H1%$,24,3) FROM A(12)
FROM A1)

FACK (######) STR(H1%$,28,3) FROM A (14)
X=1

FOR I9 = 1 TO 8 |

FACK (H####844. #3) STR(H2$,X,5) FROM A(14 + I9)
X = X+5

NEXT I9

B(2T)= O
FACK (H##4#4. 4%#) STR(HI$, 1,4) FROM A (23)
A(;4>—(5,

FACK (s#bababs. fu) STR (H3%$,5,5) FROM A(24)
FACE (H#####4#4. #4) STR(H3$, 10,5) FROM A (25)

o™ Irsnt

Appendix II

?fgbl?; 2: When operator presses special function key zero (0) or one
, € programs open, store data, and close the special data fil
CCONTRA and CONTROL. ’ g s

Recommendation: Change the function numbers to larger numbers. If system
design requires that operator use these function, then use a number that
requires the SHIFT key. For example, by using special function twenty
(20) instead of zero (0), the operator must hold the SHIFT key and the
function key. If the system design does NOT require the operator to use
;hesg function, then use a number that can not be accessed from the key
oard.

The special function button on the keyboard are numbered zero (0) to
thirty-one (31). when a program can defined these functions as either a
one line computation (or message) or as a complete subroutine. The
operator can perform the function by pressing the key when' the program
has stopped or when the program is waiting for data entry. A processing
problem may occur when the operator uses a function at the wrong time.
For example, the Sisteco system uses function zero and one to open, save
data, and close special data files CONTROL and CCONTRA. When this can
happen is shown by looking at the screens from the two programs @CCP0020
and @FP0010:

From program @CCP0020, after operator has entered zero to finish the
processing:

/1/ ATENCION: ANTES DE CANCELAR ESTE PROCESO VERIFIQUE

/2/ QUE LAS DEMAS PANTALLAS LO HAYAN HECO
/3/ DIGITE (RETURN) PARA CONTINUAR?

4/ 2 :

/5/ 2

/6/ 2

7/ DIGITE (RETURN) PARA CONTINUAR?

The line number labels /1/ thru /7/ show what the operator sees on the
screen. The lines /1/, /2/, and /3/ is normal processing. The message
is translated to:

ATTENTION: BEFORE CANCELLING THIS PROCESS VERIFY
THAT THE OTHER SCREENS HAVE DONE IT.
PRESS -RETURN- TO CONTINUE

So, if while the operator is checking that other terminals have finished,
the special function key zero is mistakenly pressed, then the line /4/
will appear. The operator must press return twice to get lines /5/, /6/,
and /7/. This could very confusing to the opertator and instead of
pressing return, the operator might press RESET and function 31.

Appendix II Page 1 of 2

From program @DFPO010, after operator has entered one to start the
processing:

/1/ *¥* VALORES DIFERIDOS ***
/2/ 0 - FIN DE LA TAREA

/3/ 1l - ALTAS

/4/ 2 - BAJAS

/5/ INGRESE OPCION?

/6/ 2

7/ 2

/8/ 2

The line number labels /1/ thru /8/ show what the operator sees on the
screen. The lines /1/, /2/, /3/, /4/, and /5/ is normal processing when
the program is entered from the menu. However, if the operator presses
the function key one an extra time or happens to touch function key zero
after pressing function one, then the extra '?' are displayed.

Appendix II Page 2 of 2

Appendix III

Problem 3: Program @DFPO010 does not release the customer data
(CLIEF100) that is shared with program @CCP0020. So, if both operators
are using the same customer number, the operator using program @CCP0020
must wait for the operator using program @FP0O010 to use another customer
number or finish processing.

Recommendation: a) Add the release ('238) function to program @DFPOO10,
or b) Change the find old request from access with record protection
('232(1,1,F0$)) to access without record protection ('232(1,0,F08).

00000-ooooooooooo-ooooo-o00000oooooocoooo-ocooo00".00000000000000000000OO

When the operator using Program @DFPO010 (DISCHARGES) enters a customer
number and the other operator using program @CCPO020 (INPUT/CHARGE)
enters the same customer number, then the operator using program @FP0010
must wait for the operator using program @FP0010 to finish processing.
The program @DFP0O010 will keep the data sector protected until either a
different cusomter number is used or the operator finishes the program
and returns to the system menu. Especially confusing is that the
operator can return to the program menu (VALORES DIFERIDOS) and still
have the record protected and keeping the other operator waiting.

Since both programs are only reading the data from the customer data file
(CLIEF100), there is no apparent need for access with record protection
because no update is performed. That is, data only read not changed and
resaved. Therefore, reading without record protection would not affect
the processing.

Appendix III Page 1 of 1

o~
o

Appendix IV

Problem 4: Program @CCP0020 can take a long time to save data after the
operator has entered one transaction.

Recommendation: Print a message that tells the operator the system is
working with the data.

Program @CPO020 has a section named 'MODULO CONTABLE! (lines 7520, 7610)
which processes the data entered by the operator. The save process (step
5 of general description) will require ten cycles by the following
sequence of statements and data conditions:

l. At line 7530, the screen is cleared.

2. With 'C2' is not one, branch to line 7540,

3. With 'C2' is not two, branch to line 7580.

4. At line 7580, a loop of ten is started.

5. Within the loop, when all values in array 'V()' are not
zero, the 'ACTUALIZO' subroutine will be used ten times.

While this process is being performed, the operators' screen is blank with

the cursor in the upper left corner. Therefore, the operator does not know
if the system is hung or if the the program is still working.

Appendix IV Page 1 of 1

M Appendix V

#roblem 5: When both operators are using the same program, one operator
may have to wait a long time for data to be saved by the other program
because record protection is used for saving the data.

The long time delay can be a result of:
A. One of the files being opened is busy.
B. The data sector for a record is busy.
C. The number of save cycles (step 5) is large.

Usually the save cycle (step 5) is performed only onée; However, the save
cycle may have to be used ten (10) times which results in a long delay which
can appear to be a system hang.)

The file 'ADDRESSL' contains data that reports:

1. Bytes 1 and 2 are '05!'

2. Bytes 3,4,5,6 are account number.

3. Bytes 34 and 35 are partition number
partition three (03) is terminal one (1)
partition five (05) is terminal two (2)

4. Byte 36 is part of program being used.
('1' for ALTAS or '2' for BAJAS)

Using this information, we see that both terminal were using the program
@DFPO010 and were entering data for account 1516.

Appendix V Page 1 of 1

Appendix VI

Problem 6: When system is configured, the printer must be selected and
ready to print.

Recommendation: Change program MENUGRA by a) advising operator to
prepare the printer, or b) removing code from MENUGRA and perform
processing in the program that uses the printer.

oooooooouoooouooooto.oooootooccoooc.oooocoocooo""""""“OOOOOOOOO'OOO

When the system is configured, the program MENUGRA is started in
partition number three (3) for terminal number one (1). With the screen
cleared, the printer is selected and output sent to the printer.
However, the select statement has a zero (0) width, which is technically
correct, but the operator does not see anything printed. So, the
operator may not know the importance of the printer being turned on and
selected. The operator can get the terminal to 'unhang' by pressing
RESET, entering CLEAR, and doing LOAD RUN of another program.

This is a very minor issue but could have a major impact on the system
because the operator will have experienced a time when it is 0.K. to use
the RESET key.

uooooocoooc00oO‘0000000!O000000ooocc0000.o.OoIoic.oio.oioooooo.oooooccc000

Appendix VI Page 1 of 1

Appendix VII

7. Problem: Locating data with a key value and loading data which
changes the variable. Then wusing the changed variable for
processing.

Recommendation: Use a temporary variable and confirm that the loéded
value is the same (correct) value.

In program @CCP0020, the find old statement at line 5520 uses variable
FO$ as the key value ('232(1,1,F0$). When the data is loaded at 1line
number 5510, the same variable (FO$) is used to load the data. The data
could have a problem and not have the same value in the user file as is
in the key file. So, if they are different a problem would be created
with this processing.

With the backup received from Sisteco, the data did not have this

problem. We discuss this here only for completeness of the things which
could cause a problem with the processing.

Appendix VII Page 1 of 1

MEMORANDUM

i,

TO: Janice Grandy SUBJECT: ISS Rel. 5.3
cC: Sheila Mitchell DATE: November 11, 1985

FROM?«?“ Ken Mailloux 2200/VS Value Added Product support

The Integrated Support System (ISS) was updated to take advantage of
the New Disk Catalog Hashing Algorithm introduced with Rel. 2.5 of
the 2200 MVP Operating System. That is the basic difference between ISS
Versions 5.2 and 5.3.

The current Version of the MVP oS is 2.6.2 and it also supports the
New Hashing Algorithm. Release 5.3 is the compatible ISS.

The only file to change extensively was ISS.229S which is the "search
index" routine. This routine allows a user to use the new disk catalog
hashing algorithm which was not supported in earlier versions of the OS.
There is a significant change in the size of this file, the original
version (5.2) was approximately 1.5K bytes and with 5.3 it is
approximately 2.4K. It is about .84K larger with 5.3, users may need to
know this.

other modules that have changed since Rel. 5.2 are:

1SS.031U - Change was made so that HEX(80) as part of a valid
line number would be "masked" because it resembles the keyword
"1, IST" during compression. Without this change a program going
through compression, which included any line from 8000 to 8099,
could stop prematurely with an unrecoverable error.

1SS.081U - Change made to line 1710 for the same reason noted
for the ISS.031U update.

1SS.217S - Change made to line 3880, the statement "DEFFN '1254"
found on that line in the 5.2 version should have been "GOSUB
1254", Without this change the List/Cross Reference Utility
with the List Option and all options specified would abort on
line 8310 with a P48 error because slot #3 of the device table
had no valid disk address assigned.

KFAM3707 - Change made to line number 4870 to initialize the
sector buffer in the re-organize rebuild subroutine. Without
this change the re-organize/rebuild.subroutine would not
function properly with certain KFAM files.

KFAMREFS - This file was edited so that it could be referenced
properly. The difference between this version and the ISS 5.2
version has to do with the last absolute sector of the file.
The sector was reconstructed for the new release.

If you have any questions please call me at 60381 at 59 Electronics
Avenue MS 0115.

L g %
- SRPA I \ ‘
WAL) LABORATORIES, INC.

e
4

A

)

* 'KFAM=7 PRELIMINARY SPECIFICATIONS

KFAM-7 is a version of KFAM designed to run on the 2200

MVP. It is a modification of KFAM-5., File structures (Key

File and User File) are exactly the same as in KFAM-5. No

file conversion is required going from KFAM-5 to KFAM-7,.

Programs have been modified to take advantage of the design

structure of the MVP., Minor changes will be necessary to
. convert user programs from KFAM-5 to KFAM-7,

2200MVP PROGRAMMING NOTE

On the 2200 MVP, any partition may have access to a
common printer, usually specified as device 215.. It 1is
possible to have garbled - printout as a result of more than
one partition printing to device 215 at the same time.
Therefore, applications programs must ‘be changed for the MVP
in one of the following ways:

1) A local printer can be attached to a given
.vterminal and specified as device 204,
2) . The common printer can be hbgged by a particular
partition for the duration of the printout, for
) example: '
$0PEN/215

Or ‘the printer can be assigned a device address
and hogged that way:

SELECT #15/215
$OPEN #15 -
3) A program with infrequent printing can write the
information to be printed on disk, then print it
‘ in a subsequent program, hogging the printer for
a shorter perioed of time. ‘

47N

0

Al

KFAM-T PARTITION G NERATICN CONSIDERATIONS

KFAM-7 operates under the Integrated Support System Relecase
and is only operable omn a 29900MVP Central Processor. IsS-3.

start-up operatlon»requires that the following has occurred
prior to loading the 15§ "START" module.

~ W
.
)

1. The 2200MVP must have been Master Initialized.

2. All peripheral device addresses to be used as ISS
device addresses must be set in the 2200MVP Master
Device Table. Device addresses may be viewed and
updated by choosing the EDIT DEVICE TABLE option during
partition generation. Refer to the 2200MVP
Introductory Manual for all partition generation
Jnstructions. .

3. A partition configuration must be executed based upon
the following guidelines. For KFAM-7, each partition
must have at least a 9.0K memory size in order to run
KFAM-7 utility programs. A 9.0K partition is also
required for the global KFAM-7 subroutines, which are
contained within the module "KFAMO107" (or a customized
module created by BUILD SUBROUTINE MODULE). The user
may either (1) LOAD and RUN "RFAMO0107" (or customized
equivalent) following each partition generation or (2)
copy "KFAMO1O07" (or customized equivalent) to the
2200MVP Operating System Diskette and have the .
automatic bootstrap feature implemented to LOAD and RUN
this global module (e.g., assign terminal 1 two 9K
partitions with the higher partition number .set to
automatically bootstrap "KFAMO107"). :

4. After executing the partition configuration, the
SRELEASE TERMINAL statement is available to attach a
terminal to a different partition, which may be
necessary to LOAD and RUN "KFAMO107" if the automatic
bootstrap feature was not implemented.

5. 18§-3.7 start-up procedures may begin.

185-3.7 START-UP

I1S5s-3.7 start-up operation differs from ISS-3.2 start-up
operation and much less peripheral checking occurs. A "STATION.
NUMBER" and not a "CPU‘NUMBER" is requested during 188-3.7
start-up. Because 1§5-3.7 operates only on the 2200MVP, it is
recommended that the STATION NUMBER be the partition number
currently in use. For each station number, a l0-sector system
configuration file (station file) containing 188-3.7 start-up
default peripheral addresses may be created during 1s8-3.7
start-up operation. The station file allows Iss-3.7 to

~load/store and update default (common: variable) peripheral

addresses automatically during 1SS start-up operation for that
station nuunber.

7
N

2t

The same potential problem exists as in ISS-3.2 for the

station number, that is, if two partitions (or CPU's multiplexed .

to a shared disk) perform start-up at the same time and enter
the same station (or CPU) number, the system configuration
table's defaults may be changed without the station actually
chénging the defaults. Later, the statign number entered is
equated to common variable S2 and is available for use by all
software running in that partition. The use of variable S2 by
softvare may cause problems related to disk file access and
updates if unique station numbers are not used.

In addition to those common variables read from the station
file, ISS-3.7 equates'other common variables based on internal
tests during ISS start-up, e.g., Mmemory size. ISS common
variables are the same as in ISS-3.2, with the addition of CRT
width, scalar SO.

155-3.7 start-up instructions follow.
1. LOAD and RUN "START".

2. In reply to the ENTER STATION NUMBER prompt, the
" following options are available: .

a. To view existing station files and their default
values contained within, touch S.F. Key 00.

b. To create -a station file for a new station number,
touch S.F. Key 16.

c. Otherwise, enter:the station number (1-48). 1If
the number. is not accepted (the prompt reappears)
a station file does not exist on the ISS 'diskette
in use for the station number entered. If
accepted, see step 3.

3. In reply to the ENTER DESIRED FUNCTION prompt, if the

displayed default values for DATE, PRINTER ADDRESS,
.© - - DISK ADDRESSES, and ISS LOADING ADDRESS are not

‘ acceptable, enter the corresponding function number
(1-4) and enter the value(s) desired for that
function. When entering the PRINTER ADDRESS, the entry
is not accepted if the printer is not ON and SELECTED.
Any disk address or printer address entered must have
been entered in the 2200MVP's Master Device Table, .
‘although Master Device Table and on-line disk address-
checking does not occur. Standard device addresses are

displayed for the vafious address prompts and used for
entry checking.) :

- When the displayed defaults are acceptable, the
following options are available:

a. TovsaveAtheAdisplayed defaults into the station
file, touch S.F. Key 00. :

3

P

b To load an application program via the APPLICATION

Refer to
- linkages.

MERU and view all common variable values, touch
S.F. Key 16. The default application loading
address -and file name are also displayed and may
be modified. 1In reply to the APPLICATIONS MENU,
enter 0(zero) to load the specified application
preogram. ’

c. To obtain the KFAM-7 menu, enter 0(zero). 1If a
fixed/removable disk contains the modules from the
KFAM-7 diskette, the KFAM-7 menu appears; however,
if the fixed/removable disk contains KFAM-7 and
other ISS-3.7 components (when available), a
SYSTEM MENU appears, This is part of the ISS-3.7
dynamic menu hierarchy which adjusts to the
15S-3.7 software on a ISS disk. '

the illustration below for an overview of prompt

" NOTE:

S.F. Key 31 is valid to return to the previous level
prompt in reply to the KFAM-7 menu, the Applications
menu, and the ENTER DESIRED FUNCTION prompt. Also,
with all ISS-3.7 utility programs including KFAM-T7,
S.F. Key 31 is valid to abort a program, close any
files open and return the KFAM-7 menu to the screen if
the terminal is not in Edit mode (a blinking cursor
indicates Edit mode is active and may be switched off
by touching the EDIT key once).

\

185-3.7 START-UP FLOWCHART

LOAD RUN "START"

ENTER STATION -;>S.F.'00 (DISPLAY EXISTING STATIONS)=ZIm| ENTER STATION

NUMBER -—>5.F.'16 (ADD NEW STATION)=- NUMBER TO RE- }=2x(3)
| VIEW DEFAULTS
(0 = END)
ENTER STATION
s NUMBER TO —t(4)
CREATE
Al v @
ENTER DESIRED |--»S.F.'00 (SAVE DEFAULTS)=>=(B) | &
FUNCTION = [=-»S.F.'3l=2+(%) =
(0 = END) |--»S.F.'16 (LOAD APPLICATION MENU)==={ ENTER OPTION

TO CHANGE
(0=LOAD APPL.)

--» ENTER TODAY'S DATE

-3} APPLICATION r3>(C)
TO LOAD

--»| ENTER PRINTER ADDRESS

-—» APPLICATION —+C)

——»1 ENTER -DISK ADDRESS'—-QK:) DISK ADDRESS
(0 = END)
v
— LOAD APPLICATION
--»> ENTER LOADING ADDRESS -'ﬁﬁED PROGRAM STECIFIED

k4 .
MENU APPEARS |--»5.F.'3le=sx(E)

s

Dashed lines indicatée optiomal prompts. S.F.'31 is a valid reply to any
prompt and moves from level -C to prompt B or from level B to
prompt A . ' ' ’

KFAM-7 SUBROUTINES

b . The KFAM-7 subroutines (module KFAMO107) are designed
’ to be resident in a global partition named "KFAM," to be

accessed by any other partition. Only the instructions, and
not the variables, are resident in the global -partition.
This code may be executed by 2a number of calling partitions

simultaneously.

. Module KFAMO0107 (or a user subset generated by BUILD
SUBROUTINE MODULE) should be loaded into the global partition
and run, to set up global variables, before being accessed by
another partition.

.

The KFAM-7 variables (module KFAMO007) are overlaid or
jnciuded 1in each calling partition. KFAM00O0O7 (variables
only) physically replaces KFAM0005 (variables and
subroutines) in the application programe. Fach calling
partition has 1its own set of KFAM variables, but they all
share the same global RFAM subroutines.

The arrays on 1line 225 of module KFAMO007 may be
dimensioned from 1 to 38 depending on the number of KFAM files
to, be accessed by this particular application. The default

— is 3. ’

(U | | |

The complete set of KFAM-7 subroutines will fit in a 9K
partition,-including 1122 bytes- of MVP overhead. The KFAM=-7
variables, per calling partition, occupy about 1000 bytes,
plus.87 bytes per KFAM-7 file accessed.

The same software multiplexing scheme is used in KFAM-7
as 1s used in ISS-3 and KFAM-5. File access tables are
maintained in the last sector of each data file to indicate
which workstations are accessing the file, in which access
mode. Subroutines MUX OPEN, MUX END, and MUX CLOSE are
included in the KFAM-7 subroutine package, to control access’
to any file, whether a KFAM file or not.

In order to ‘aeccess the global KFAM, ‘the user program
must execute SELECT @PART PRFAM" at the start of the program
and following any.subsequent overlay.

The KFAM-7 subroutines are logically eduivalent to the
KFAM-5 subroutines, with the following exceptions:

.OPEN(230): The device address of the User File is not
used, but this parameter (last parameter in GOSUB'230) must
“be included,. with either a real value or a du@my’value.

<

OPEN.returns Qs = "s" 1if the internal table of open
files (@T$(), see below) is full, in addition to error codes

A, D, P, and X already defined.

Set and reset hog mode (215): This subroutine has been
dropped. GOSUR'215 should be replaced with $OPEN or $CLOSE,
to set or reset hog mode. . .

SET-UP (216): This subroutine has been dropped. The
set-up logic is inherent in the loading of the KFAH partition
and the calling partition. .The KFAM common variables
(KFAMOGO07) can be loaded and then overlaid by the application
program; to save the space occupied by the COH statements.

MUX OPEN (217), EED (218), and CLOSE (219): The device
address parameter is mnot used in any of these subroutines.
The parameter itself must be included, but it may be a dummy
variable or value.

SEARCH CATALOG INDEX (229): This subroufine has been
dropped. It is replaced by the BASIC-2 version of the LIMITS
statement. ‘ .

~ CLOSE (239): This subroutine has been changed
slightly. Recovery information will not be saved 1f the
access mode is (1) INQUIRY or (2) READ-ONLY, With access
modes (3) SHARED ‘or (4) EXCLUSIVE, recovery information will
be saved. (If the subroutines have been tailored using BUILD
SUBROUTINE MODULE, the option “"CLOSE WITH RECOVERY‘INFO" must
be specified to save recovery {nformation with access modes” 3
and 4.) To save recovery information regardless of access
mode, use WRITE RECOVERY INFO (214) before closing the file.

All other subroutines are funtionally the same as in
KFAM=5. -

Access modes 1 (INQUIRY), 2 (READ-ONLY), 3(SHARED), and
4 (EXCLUSIVE) are the same as in KFAM=5. Access mode 9 (not
multiplexed) has been dropped. ’

" The protect flag parmeter (dummy variable P) in
subroutines FINDOLD, DELETE, FINDNEW, FINDNEV (HERE),
FINDFIRST, FINDLAST, FINDNEXT, and FINDPREVIOUS may have the .
following values: ’ ’ :

I
0'or 2 = no sector protection

1 or 3 = sector protection

[

O

The option to retain hog mode has been dropped in
KFAM-7. This optiom is almost impossible to use in KFAM=5,
because of the combination of hardware and software hogging
of the Key. File, and the various combinations of file
accessibility that can result when multiple terminals are
accessing multiple files. The same problems apply in KFAM-T7,
and therefore the option of holding hog mode has been
drooped. It would mean complicating the program to support
an option which would be rarely, if ever, used.

‘ Similarly, in the MUX subroutines, the parameter toO
hold hog mode 1s ignored. . MUX OPEN, MUXEND, and_MUX CLOSE
hog the file to do the necessary updates, and then release

‘{t. Hog mode may be set by the user before <calling the

particular subroutine, but will be released by the subroutine
i{f another station has the program hogged, and released when
the subroutine is finished.

The user may set and reset hog mode in user programs
without danger of interfering with KFAM operations, but the
general rule is that hog mode will be released in all the
KFAM or MUX subroutines for the Key File, the User File, oOT
both. ’

Two possible approaches are suggested for complex
updating,operations. One 1is to run the program with all

files in EXCLUSIVE node. - The other is to do all KFAM

operations first, setting protect flags:as necessary - and
saving record pointers (T4$) 1if necessary, at then to set hog
mode in the user program and do all the updating operations.

In KFAM-7, the word "sration" replaces the term"CPU",
as used in KFAM~-4 and KFAM-5. The word "station" can refer
to a terminal, or more specifically to a partition calling
the global "RFAM" partition. 1In future versions of KFAM-T,
the "station'" could also be a separate CPU (2200T, VP, or
MVP) multiplexed to the same disk as theMVP. The variable
$2, which was formerly referred to as "CcPU number," 'is now
“"sration number,” but 1ts usage is the same despite the
change in terminology.

.
s

KFAM?7 controls access to the /gisk internally, through

‘tables in the global area, rather than by reading and writing

the KDR, as 1is done in KFAM-5. This saves disk access time
and also save time by mnot hogging the disk except on OPEN,
RE-OPEN, CLOSE,. and WRITE RECOVERY INFO. All KFAM accesses
go through the same global KFAM. It is dimportant that the
KFAM=7 subroutines should not reside in more than one global
partition, because this module (KFAMO0107) not only provides

subroutines but also coordinates accesses to KFAM files.

In the global area is 2a table of open-files, @TS$(30)14.

) The number of table entries can be increased or decreased
™ from 30, depending on the maximum number of KFAM files that
'kgk , can be open at any one time, by all stations on a given

system. - The contents of this table, per entry, are as
follows:
START LEXGTH CONTENTS
1 .2 KDR sector (V0$) = starting sector
: of key file .
3 1 : Device address of key file, com-

pressed. Bytes 2 and 3 of device
address are packed, then OR'ed

with 80 if byte 1 = "B".
4 1 Number of index levels, TO, in IBM
’ packed format.
5 2 Relative sector address of highest
- . level index sector, T2§. ,
7 . 8 _ Per station 1 - 16, one half byte

for internal completion code.

S Note 1: The first 3 bytes above form a unique
identifier for the particular key file being accessed.

Note 2: The internal completion code is used - for two
purposes, first to dtermine whether a particular file is open
or closed for a particular station, and second to determine
whether internal variables TO (number of index levels), T2$
(sector. address of highest level index), T2$() (path through
index to current record, in terms of KIR sectors read), and
T$ (path to current record, in terms of KIE starting location
within KIR) are currently valid. Bit settings within the
internal completion code are as follows:

0 normal completion, above variables‘valid.

1 path not defined (T2$() and T$), KDR OK.

2 path not defined (T2$() and T$), reread KDR
(changed by another statiomn).

4 index level added, get new values of TO, T2S$ from
table @T$(), above. :

8 error ébndition, next and previous records not
defined. <

E file open

F file closed.

The bit settings above are unpacked to THS. Tn access
modes 1 (INQUIRY) and 3 (SIHARED) internal completion codes
are packed into table @T$(). - In access modes 2 (READ-ONLY)
and'h.(EXCLUSIVE), the only values appearing 1in table @TS$()
_are "E" for open and "F" for closed.

An internal file IpD, V6, is maintained by KFAM-7 to
indicate the number of the entry for a given file within
@TS(). @TS(VE) is the table entry for the particular file.
The internal file 1D should not be confused with the KFAM ID,
the Key File Number, or the file numbers of the Key File and
User File in the jevice table.. The latter are:specified by
the user as OPEN parameters. The internal file ID is another
number which is assigned by KFAM-7 for its own internal use,
when the file is opened.

In the non-interactive modes (2 ' = RFAD-ONLY and 4 =
EXCLUSIVE), KFAM-7 simply makes an entry in table ATS$() to
jndicate that the file has Dbeen opened. It also stores TO
and.T2$ in the table @TS$ (V6) to save reading the KDR when
files are switched. It then operates very much as KFAM-3,
where no interaction 1is possible, becuase in EXCLUSIVE mode
no other CPU can access the file, and in READ-ONLY mode no

other CPU can change the Key File.

The interactive modes are defined as 1 = INQUIRY and 3
= SHARED. KFAM-7 maintains a queue to regulate access to
files in the interactive modes. The queue contains two
entries, the station nubmer (s2), in hex, in one byte of @Q$,
and the internal file ID (V6), din hex, 1in the corresponding
byte of @Q9$. Upon entry to a KFAM-7 subroutine in an
~interactive mode, the station number and internal file ID are
placed at the end of the queue. The queue (@Q9%) 1is then
searched for ‘the ijnternal file ID, and the station number in
the corresponding. position of @Q$ has access to the file.
All other stations requesting the file must wait. When the
station accessing the file is finished, its entry is drpped
from the queue, and the next station in the queue requesting
that file is allowed to access it. '

The queue® allows access to the .file on a
first-come-first-served basis. This is an improvement over
. KFAM-5 which establishes no such priorities and gives all
stations waiting an equal chance to get the file next,
regardless of which one requested it first. It is possible,
under KFAM-5, with bad luck, for one station to wait a long
time, whereas under KFAM-7 luck is not a factor in gaining
access to a file, and access is allowed from the various
stations in the order that it was requested.

There is only one queue for all stations requesting all
files. This does not inhibit different stations (from.
accessing different files at the same time. For example, 1if

- the queue looks like this:

@qs(station) 1 3 5 & 2
@Qos(file) 4 2.1 2 3

Station 1 can access file 4, station 3 can access file
2, station 5 can access file 1, and station 2 can access file
3, all at the same time. Station 4 must wait'to access file
2, until station 3 is finished.

. Like KFAM-4 and KFAM=5, KFAM-7 maintains a table of
protected sectors, protecting a sector of the User File from
access. by another station 1f the protect flag 1is set
(parameter P = 1 or 3). But unlike KFAM-4 or KFAM-5, in
KFAM-7 the table of protected sectors is stored in a global
variable, @V&4S$(30)4, and not in the KDR. This global table
contains all protected sectors for all stations accessing all
files. The array dimension can be changed wupwards oOT
downwards from 30 if necessary. 1f the table 1is full, the

‘station requesting sector protection simply waits until there

{s a vacant slot in the table. Sector protection is only
effective in the interactive modes (1 and 3). :

The .contents of @V4$(), per entry, are as follows:

START LENGTH CONTENTS
1 1 Station number, S2, hex
2 1 . " Internal file ID, V6, hex
3 2 Protected sector = STR(T4$,,2)

-

NOTE: 1If a User File is being accessed by 2 or more
Key Files, a protected sector as accessed through one Key
File will not be recognized by & subroutine accessing the
file ¢through another Key File. KFAM does mnot support
multiple Key Files per User File, but it 1is possible to
design a protection scheme extetnal to KFAM. This is also
true for KFAM-% and KFAM=-5.

Through the use of these internal tables, reading and
writing the KDR and hogging the disk are kept at 2 ninimun,.
Instead of the KDR being the comnunications 1ink between
different stations accessing the same file, this
communication information is held internally, thus
eliminating disk access time and making throughput more

;efficient.

11

A A it R

Global variables are also uscd as program constants and
working variables, in order to cut down on the space required
for KFAM variables in the user partitions., ITn order to
update global variables, the program 1s hogged at certain
eritical times. This means that there are certain points in
module KFAM01Q07 which can only be executed by the one station
or partition which has gained access, as opposed to the
normal case where the code may be executed at the same time
(Logically) by several different stations. At these critical
points, all stations other than the one which has gained
access must walt. ' :

Points at which the program is hogged are as follows:

MUX OPEN (217)
MUX END (218) ‘
MUX CLOSE (219) _ :
OPEN (230): Setting up table @TS$(),
executing MUY OPEN (217)
CLOSE (239): Setting table ATS(),
executing MUX END (218) and MUX CLOSE (219)
RE-OPEY (213): Executing MUX OPEN (217)
) WRITE RECOVERY INFO (21%4): Executing -MUX END (218)
FINDNEW (233) and FINDNEW (HERE) 234):
Whenever a KIR sector is split, or about one time
in eight, depending on key length and other
factors. :
Any subroutine: Adding or deleting a queue entry,
updating internal completion codes)

The times when the ©program 1is’' hogged are either
infrequent or brief, and therefore should not slow down
performance very much. '

KFAM=-7 UTILITIES

.

The KFAM-7 Utilities are the same as the KFAM=5
Utilities, with the following exceptions:

The KFAM-7 Utilities require the KFAM-7 subroutines to
be loaded in a global partition named "KFAM", The utilities
then run from another partition, accessing the global "KFAM"
as required. The utilities require a partition size of 9K,
in addition to the 9K partition requried for the KFAM-7
subroutines. - :

If the subroutines are tgilored-using BUILD SUBROUTINE
MODULE, it should be noted that the following subroutines are
required for the KFAM-7 Utilities:

.

230 OPEX
232 TFTINDOLD
234 FINDHEW (HERE)
235 FINDFIRST
T 237 FINDHEXT

_CLOSE WITH RECOVERY INFO

The screen-handling subroutines for the KFAM=-7
Utilities assume an 80-character CPU.

The words "CPU" or "CPU #" have been replaced with the
word "STATION" in all screen displays.

The work file "gEAMYORK" in EXCLUSIVE mode is used by
all KFAM-7 Utilities to generate code. Therefore, it 1is
possible in all utilities to get the message "WORK FILE NOT
AVAILABELE"™ if the work f£ile is being used by another station,
The work file is also used throughout _utilities KEY FILE
CREATION and KEY FILE recovery to store error messages to be
printed. Therefore it is impossible to run another KFAM-7
Utility concurrently with either of these.

ENITIALIZE KFAM FILE (KFA¥1007)

If the option to get a hard copy .printout of file
specifications is taken, the message WAITING FOR PRINTER will
be displayed on the screen if the printer 1is not available
(not turned cn, not selected, orT hogged by another
partition). The printer is hogged by KFAM1007 while printing
file specifications, and then released.)

KEY FILE CREATION UTILITY
KEY FILE RECOVERY

In the common module KFAM2007 which is shared by both
these utilities, the following changes have been made:

The prompt "TURN ON PRINTER, KEY RETURN(EXEC) TO
RESUME" has been eliminated. Error messages for duplicate
keys and unreadable records are written on the work file
"KFAMWORK" instead of printed directly on the printer. The

file "KFAMWORK" is held in EXCLUSIVE mode for the duration of
‘the program, thus making it impossible for any other KFAM=-7

Utility to operate concurrently. There 1s a limit to the
number of error messages. that can be contained in the work
file, and therefore the following program stop has been
added: "STOP WORK FILE FULL". »

13

g

The message "NO DUPLICATE ¥1rYs"™ at the ‘end of the
program has been droppedd, 1f there are nc error messages,
nothing 1s printed. iIf there are error messages, module
KFAM2107 (new) is loaded to print the error report.

KFAM2107 displays YJAITING FOR PRINTER" 1if the printer
js not available (not turned on, not selected, or hogged by
another partition). That message goes away when the printer
becomes available. It hogs the printer while the error
report is being printed, and then releases it.

If the user has designated the screen 2as the printer,
$$(1) = blank, KFAM2007 stores the error messages in disk
file "“EFAMWORK", and XFAM2107 then displavs them .one at a
time on the screen, followed by a STOP . This 1s different
from KFAM-5 which displays duplicate keys and unreadable
sectors as they occur.

The message "ERROR f# LINE FEp#® is eliminated. Any
errors other than disk read errors will result in a
“"hardware'" error display. ‘

“° CONVERT KFAM-3 TO KFAM-7
CONVERT KFAM-4 TO KFAM-7

¥ote that the conversion programs operate exactly the
same as in KFAM=5, and also that there is no need to convert

KFAM-5 to KFAM-7, since file formats are exactly the same.

PRINT KEY FILE

"WAITING FOR PRINTER" 1is displayed if the printer is
not available. The program hogs the printer for the duration
of its operation. Keying HALT/STEP and Special Function 31

will terminate the operation.

Note that protected sectors and internal completion
codes are not stored in the KDR in KFAM-7 and therefore are
not shown on the report. Protected sectors are shown as
HEX(FFFF) and internal completion codes as wzr,

RESET ACCESS TABLE

This program resets access information in the 1last
sector of the User File and in the XDR in the Key File, as in
KFAM-5. TIt also resets access dnformation for this file in
internal tables @TS$(), @v4s$(), @Q$, and @Q9S.

Other stations may be accessing other files while this

program is being run, but no other station should be
accessing the file being reset. ’

14

e

é“\‘u‘ ,J:'

BUILD SUBROUTTINE MODULL

The prompt "HUMBER OF FILES (1 = 8)" has bheen removed.

. Module KFAM0007, 1line 225, should be modified manually for

the number of files to be accessed by a particular

application, by changing the array dimensions to a number
from 1 to &. The default is 3.

BUILD SUBROUTINE MODULE is probably not as wuseful in KFAM=-7
as in previous versions of KFAM, because the KFAM subroutines
are global, and must include any subroutine to be accessed by
any calling partition while the subroutine module is resident
in memory. If ‘certain subroutines like FINDPRLVIOUS are
never used or if the machine 1is dedicated to a specific
application using a specific set of subroutines, BUILD

. SUBROUTINE MODULE can be used to advantage, shortening the
necessary size of the global partition. But 1in tho general
case it 1s perhaps best to load KFAM0107 intact into the
global partition, and not use this utility.

. The number of options has been shortened from KFAM-5.
The choices are as follows:

Fn Choilce
01 230 OPEN
02 231 DELETE.
03 - 232 FINDOLD
04 233 FINDNEW
05 234 FINDNEW(HERE)
06 235 FINDFIRST
07 236 FINDLAST
08 237 FINDNEXT
09 212 FINDPREVIOUS
10 = 238 RELEASE
11 239 CLOSE , . .
12 - CLOSE WITH RECOVERY INFO
13 213 RE-OPEN
14 214 WRITE RECOVERY INFO ..
15 217 MUX OPEN .
16 MUX OPEN NEW
17 218 MUX END
18 219 MUX CLOSE
29 CANCEL
30 PROCESS
31 RETURN TO MENU .
- Special Functions 1 to 18 'select the respective

subroutines to be included in the subroutine module to he
built. Subroutines which are called by other subroutines are
automatically included, as in KFAM-35, For exanmple, CLOGE
WITH RECOVERY INFO automatically includes 239 CLOSE, 218 MUX
END, and 219 MUX CLOSE. '

SRR e e e

CANCEL, PROCESS, and RETURN TO MEHU operate the same as
in KFAM-5, except that CANCEL is now Special Function 29
instead of €1, as 1in KFAM-5.

Special Function Keys mnot included in the above list
are ignored.

At the bottom of the screen display, the number of
files selected has been dropped. It reads simply '"MOCDULE
XXXXXXXX", where XXXXXXXX is the module nare selected by the
usere.

TECHNICAL INFORMATION

Variable 'V: ~ The variable V is not written as part of
the KDR record. ILts primary purpose is to serve as a flag to
indicate which subroutine is executing. Its secondary

purpose is to indicate whether the current version of the XDR
is necessary to execute the subroutine, If V is greater than
4, the current version of the KDR must be in memory in order

~to execute the subroutine. Values of V are as follows:

16

B e e

® 1 = FINDNEXT (237)
. 2 = FINDPREVIOQUS (212)
{ﬂﬁ 4 = default, TINDOLD (232),
-~ ' FINDFIRST (235), FINDLAST (236)
- RELEASE (233)
5 = RE-OPEN (213), YRITE RECOVERY INFO
(214), CLCSE (239)
6 = DELETE (221)
7 = FINDNEW (HERE) (234)
8§ = FINDNEW (233)
Vv 1s used as a working variable (access mode) in OPEXN
(230).
KDR Record: The KDR comnsists of a numeric variable

(flag) followed by array T$(), as in KFAM-5, except that the
flag is not used and is always set to zeTo.

Variables -Q4$ and V5% have been replaced by T3$
(current record pointer for FINDNEW). This change should be
made in the description of the KDR.

v0$(3)21, internal storage, per file: The hex image
for unpacking is changed to @Q8%20. Packed variable Q0$ has
been dropped, and variable V6 has been changed. Contents are
now as follows:

VARIABLE START IMAGE - DESCRIPTION

vo$2 : 1 A002 Absolute starting sector of Key File.

V6 3 5002 Internal file I.D.

V4s$h 5 - A004 Hex image for unpacking entry from
KIR, HEX(AO0XXAO003), where XX = Key

I Length

VO 9 5001 Access mode

T1 - 10 5002 - File #, Key File.

T2 12 5002 File #, User File.

T4 14 5002 Key length

T5 16 5002 . KIE length = T4 + 3.

v7 18 © 5002 KIR bytes used = INT(240/T5)*T5

V1 . 20 5002 Last key location = vV7-T5+1

-T54(3)58, internal storage: The hex image for unpackina s
changed to @I5$10. The contents of T5$() and @T5% renain the
same.

r

KFAM-7 SYSTEM DISK

The KFAM-7 System Disk should contain the following modules:

17

e it wemmRIE e R

Qs

\
H

MODULE

KFAMWORK

KFAM00O07

KFAMO0107

START
1S5.0nnD
155.0013
RFAM=7
KFAM1007
RFAM2007

KFAM2107

_ KFAM3007

KFAM3107
KFAM3207

KFAM&007
KFAM5007

KFAM6007

.KFAM7007

KFAM8007

KFAM9007

KFAM9907

KFAM3507
KFAM3607

KFAM3707 .

KFAM3907
ISS.REFB

DESCRIPTION

Work file for the KFAM-7 utilities.
This is a data file of 15 sectors.

A1l other modules are

progran files.

KFAM-7 variables, to be included in
user program.

KFAM-7 subroutines, to be loaded

in global partition.

‘Starting module for KFAM-7 utilities

1SS start-up station file for station nn (1-48)
ISS start-up functions

KFAM-7 utilities, menu and initial
dialog A

INITIALIZE KFAM FILE

REY FILE CREATION UTILITY, also

called by KFAM9007, KEY FILE RECOVERY
KEY FILE CREATION UTILITY and KEY FILE
RECOVERY, print duplicate keys and
unreadable sectors :

REORGANIZE IN PLACE:
start up

Generate code
Reorganize

REALLOCATE KFAM FILE SPACE
CONVERT FROM KFAM-3 to KFAM-7,
or KFAM-4 TO KFAM-7

PRINT KEY FILE

RESET ACCESS TABLE

BUILD SUBROUTINE MODULE

(uses KFAMO107 as input file)
KEY FILE RECOVERY, start up (uses
KFAM2007 to build Key File)
Close files (called by all
KFAM-7 utilities) .

REORGANIZE SUBSYSTEM (stand-alone):

Start up, open files
Generate code ~
Reorganize, parts 1 and 2
Part 3, close files

1SS Copy/Verify Reference Tile

18

FIUELRA TN L YTAER

¢ ¥

JISS/KFAM | 1SS 2 - KFAM3/4 | ISS 3 - KFAM/5 | ISS 5 - KFAM/7
| | |

Diskettes |3 diskettes I3 diskettes or 7 minis |3 diskettes |
|ISS Utilities |ISS uUtilities |ISS Utilities |
|Disk Support | KFAM=5 | KFAM-7 |
:KFAM—3 :ISS Screen Disk / Sort 4 |ISS Screen Disk / Sort 4 ’

Utilities [COPY/VERIFY |COPY/VERIFY |COPY/VERIFY |
|Sort disk |Sort disk |Sort disk l
|Disk dump |Disk dump |Disk dump l
Decompress	Decompress	Decompress
List-cross reference	List-cross reference	List-cross reference
Compression	Compression	Compression
Reconstruct index	Reconstruct index	Reconstruct index
Create reference file	Create reference file	Alter index
'	Program compare	
I |Copy tape to disk |Create reference file |
' * For multiplexed environment * |

|File status report |File status report |

KFAM=-3 is one CPyQ		
KFAM-4 is multiplexed		
l		

Sub- [Select validate disk |

routines |Search catalog index |Search catalog index |Search catalog index |
Allocate data file space	Allocate data file space	Allocate data file space
Free unused sectors	Free unused sectors	Free unused sectors
Datentry	Datentry	Datentry
Open/close output	Open/close output [Open/close output	
Open/close input	Open/close input	open/close input I
Alpha input	Alpha input	
Numeric input	Numeric input	
Position cursor	Position cursor	
Date	Limits next	Limits next
Operator wait [Multiplexed open end close [Multiplexed open end close		
	Date	Print
	Print	
	Operator Wait	
	Re-enter	
l	I	

Memory |KFAM=-3 12K [ISS Utilities 12K |Limits next |
|KFAM=4 16K |Program comp. 16K |[Multiplexed open end close |
[Sort-3 8K/KFAM file 12K |KFAM-5 16K |Print |
| |Sort-4 8K/12K | Re-enter ;
| | |

Sort |Must have DC End [File types [File Types |
| [1. ordinary cataloged data |1. ordinary cataloged data
|Records must be all in |2. BAS-1 |2. BAS-1
| same format [3. ISS open/Close sub. [3. 1SS Open/close sub.

|Very specific data
|Uses canned utilities

|4. KFAM-3
|5. KFAM-4
|6. KFAM=5

|Set up module

|4. KFAM-3
|5. KFAM~4
|6. KFAM=5 or 7
|Set up module

KFAM
Utilities

|Reorganize utilities
| deletes

| reorders
|1.Reorganize subsystem
|2.Reorganize KFAM file
|

|Adjust files

|1, Reallocate KFAM
|file space (same disk
|2. Disk copy & reorg
|

|Print key file

|

|Key File Recovery

[

|Reset Access Tables
|KFAM-4 only

|

|Conversion Utilities
| KFAM-3:

|KFAM-1 to KFAM-3
|KFAM-2 to KFAM-3

|

| KFAM-4

|KFAM-3 to KFAM4

|

|Initialize KFAM-3/4
|[Keyfile create

Reorganize utilities
deletes

reorders
1.Reorganize subsystem
2,.Reorganize KFAM file

Print key file
Key file recovery
Reset Access Tables

|Conversion Utilities
|KFAM=3 to KFAM-5
|KFAM-4 to KFAM-5

|

|Initialize KFAM file
|[Key file create

|Reorganize utilities
| deletes

| reorders
|1.Reorganize subsystem
:2.Reorganize KFAM file
|Adjust files

|1. Reallocate KFAM
|file space (same disk)
|2. Disk copy & reorg

|
|Print key file

|Key file recovery

|

|Reset Access Tables
|

|

|Convert to KFAM-7
|KFAM-3 to KFAM-7
|KFAM=4 to KFAM-7

[

|Initialize KFAM file
Build key file

ONE INDUSTRIAL AVENUé LOWELL,MA 01851 e TEL: 617/459-5000, TWX 710-343-6769, TELEX 94-7421

Upgrading from KFAM-5 to KFAM-7

Customers who upgrade their 2200VP system to a 2200LVP or 2200MVP system
will also want to upgrade their KFAM applications to take full advantage
of the multi-user system. Two gquestions that are ususlly asked by the
customer are as follows:

1. What will I gain by upgrading?
2. How do I upgrade?

This article will answer these two questions.

What will I gain by upgrading?

The primary reason why KFAM-7 was originally introduced was to take full
advantage of the MVP multi-user operating system. With the multi-user
operating system, KFAM=7 subroutines are run in a background partition
while the user's program is run in a foreground partition. This makes
more efficient use of user memory.

The subroutine programs KFAMO107 (single bank) and KFAMO307 (multiple
bank) both access tables in core rather than on disk. KFAM=5 accesses
tables on disk and was designed to run in one contiguous partition of
memory. The KFAM-7 program, KFAM0207 (multiplexed) was designed to be
used on the VP operating system and is basically the same as KFAM=5. An
upgrade to KFAM-7 is not necessary if the user has a VP operating system
and is running KFAM=5 (an exception to this is the presence of the
Phoenix disk drive).

KFAM=7 uses BASIC II, whereas KFAM-5 uses the earlier Wang BASIC.

Multiple key access to the user file does not work with KFAM=5 or with
KFAM=7's KFAM0207. The protect table is contained in the key file
itself, so when the user file is being accessed by one of the key files,
the other key files don't know that the protect bit has been set. In
KFAM-7 the protect table is in the global background partition, and can
be accessed by all the key files.

In KFAM-5 the Reorganize Subsystem utilities will reorganize the user
file based on one key file. If there are multiple key files, the
secondary key files will not be mapped to the new user file. KFAM-7
nowever, allcws for multiple key files. The Reorganize/Rebuild Subsystem
set-up module can be written to map the secondary key files tc the new
user file.

How do I upgrade?

For both MVP and VP versionsi

1.
2.
3.

4.

Make a back=-up copy of the user application.
CLEAR memory and then LOAD in user application.
CLEARP all KFAM subroutine text.

CLEARP all KFAM COMmon variables.

For the VP version:

1.
2.
3.

4.

RENUMBER the user program to start at location 4000, if necessary.
LOAD in KFAMO207 (subroutines).
LOAD in KFAMOOO7 (variables).
On line 40 take out:

DEFFN @PART "KFAM"

$RELEASE TERMINAL.

$BREAK
On line 40 add:

GOTO 4000
In GOSUB'230 (OPEN) make sure that the variables are set
properly. For example: The access method must be 1,2,3 or 4.
KFAM-7 does not support access mode 9 (not multiplexed). Change
all instances of access mode 9 to access mode 4 (exclusive).
Save the converted user application either under the same name as

the previous KFAM=5 user application, if it has been saved
elsewhere, or save it under a new name.

For the MVP version:

1.
2.
3.

LOAD in KFAMOOO7 (variables).
Create a new line at line 50, (50 SELECT @PART "KFAM")

IN GOSUB'230 (OPEN) make sure that the variables are set
properly. For a2xample: The access method must be 1,2,3 or 4,
KF4M-7 coes not support access mode 9 {(not multiplexeg). <nhancs
all instances of access mode 9 to access mode 4 (exclusive).

$$T

$$T
02/28/92

2200 1SS - CONFIG. GUIDELINES/DEPENDENCIES

Information regarding support of select discontinued products can be found
in the Discontinued Product Support section.

SYSTEMS SUPPORTED
cS-D, CS-N, €S/386-D/N, CS/386 TURBO

HARDWARE REQUIRED
Any currently supported 2200 workstation
Disk space allocated is approximately 1MB

SOFTWARE REQUIRED
No prerequisites or requirements

PERIPHERALS SUPPORTED
2536DW workstation or PC 200/300 series, IBM XT, AT and compatibles with
PC2200 emulator

LITERATURE

Part Number Title

700-5010A 2200 1SS Release 5 User Manual
700-5560A 2200 1SS Release 5 Reference Card

-

DATA SHEETS/MANUALS

Part Number Title
700-6161 2200 1SS Data Sheet
(3]

2200 1SS - DISCONTINUED PRODUCT SUPPORT
$$T
02/28/92

The following represents a list of select discontinued products that are
currently supported. This list is not all inclusive.

o The discontinued CS-10D thru CS-80N, LVP, MicrovP, MVP, SVP and VP
systems support ISS.

o The PC240, 280 and 380 support 2200 1SS with PC2200 emulator as well as
the 2436DW and 2436WP workstations.

$$T

$ST
02/28/92

2200 1SS - ADDITIONAL INFORMATION

o To run the PC2200 terminal emulator, which allows a Wang PC 200/300
series or IBM XT or AT compatible PC to emulate a 2536DW workstation,
operating system 3.3 or BASIC-2/386 1.0 is required.

$T

$$T
02/28/92

2200 1SS - DESCRIPTION/STRATEGY

195-0052-x ISS (Release 5.2)
(x) = Media Type

The Integrated Support System (ISS), developed for the Wang 2200 Series
product line, is a highly versatile software system which provides a wide
range of programming and utility support through its file access software,
utility functions, and pre-defined subroutines. The utility programs are
user-control led routines which allow program files to be copied, compressed,
decompressed, listed, sorted, cross-referenced, and compared to other

files. Special purpose utility functions allow creating, editing, or
printing a reference file, as well as displaying or printing the contents of
a data file. Screen/Disk subroutines perform standard programming tasks
related to either user/screen or program/disk interaction and greatly reduce
an application programmer's need to write repetitious, detailed routines.

The Key File Access Method (KFAM), an indexed sequential access method,
offers rapid access to data by means of subroutines capable of handling both
random and sequential record access. The versatile SORT subsystem, a major
function of the ISS utility system, supports a variety of both record and
file formats for sorting records.

ISS begins with system start-up procedures, displays current system
information allowing for its modification, and maintains a hierarchy of
menus which furnish access routes to both ISS support software and
user-written programs. The start-up procedure makes standard system data
available to all software in the systenm.

	Early ISS document
	ISS Release 3.2 Application Bulletin No. 24
	ISS Release 4.9 (pre-release 5.0), 79/06/18
	ISS Release 5.1, The Use of MULTIPLE KEY FILES and DUPLICATE KEYS with KFAM-7
	ISS Release 5.1 KFAM-7 Training Materials
	Modifications Incorporated in ISS 5.1, 79/11/09
	KFAM handwritten notes, 80/06/19
	Differences between KFAM-5 and KFAM-7, 81/01/20
	Ferro Memo re:KFAM-7 upgrade, 81/10/26
	ISS Release 5.3 (new hash capability), 83/07/13
	Probe F007149 - Wollaston Alloys, 84/11/16
	Technical Report for TAC L5205000 and PROBE F009254, 85/08/12
	ISS 5.2 to 5.3 KFAM update, 85/11/11
	KFAM-7 Preliminary Specification
	KFAM Version Comparison Table
	Upgrading from KFAM-5 to KFAM-7
	2200 ISS Config. Guidelines/Dependencies, 92/02/28

