2200VS
~ BASIC Language
Reference Manual

2200VS
BASIC Language
Reference Manual

Release: 1
September 1978
© Wang Laboratories, Inc., 1978

800-1202BA-01

LABORATORIES, INC.

(i N ANG) ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 861-4111, TWX 710 343.6769, TELEX 94.7421

Disclaimer of Warranties and Limitation of
Liabilities

The staff of Wang Laboratories, Inc., has taken due care in
preparing this manual; however, nothing contained herein
modifies or alters in any way the standard terms and conditions of
the Wang purchase agreement, lease agreement, or rental agree-
ment by which this equipment was acquired, nor increases in any
way Wang's liability to the customer. In no event shall Wang
Laboratories, Inc., or its subsidiaries be liable for incidental or
consequential damages in connection with or arising from the use
of this manual or any programs contained herein.

LABORATORIES, INC.

(WAN G)0'! INDUSTRIAL AVENUE, LOWELL, MASSACKUSETTS 01851, TEL. (617) 851-4111, TWX 710 343-6769, TELEX 94-7421

J

TABLE OF CONTENTS

PAGE

PART 1 INTRODUCTION TO BASIC. « « « « o 1
CHAPTER 1 INTRODUCTORY CONCEPTS. « « « .« . 2
1.1 An Overview: BASIC on the Wang VS 2

1.2 VS Hardware Configuration. . . o . . 4

1.3 Entering and Compiling a BASIC Program . . e 4

1.4 Running the BASIC Object Program 11

1.5 File Types Supported on the V§ 11

1.6 Program Development. « . . « « « .« . 11

1.7 Source File Format « « « « « o « o & 12

1.8 BASIC Language Structure « « + + « & 15

1.9 Rules of Syntax. . . . « « « ¢ ¢ ¢« « o ¢ o & 16

CHAPTER 2 NUMERICS . . + ¢ &+ ¢ ¢ ¢ « o o o o o o o s = 19

Introduction . . « ¢ « ¢ ¢ s e 4 e 4 e e e 19
Numeric ConstantsS. . « « + « « o« s « o o o & 20 .
Numeric Variables. « . . + . 21
EXPressions. . . « ¢ ¢ ¢ o ¢ o o« o o o o o . 26
Mixed Mode . . . & ¢ ¢« ¢ ¢ v ¢ ¢ « o o o o 27
Numeric Functions . . . e e .« o . 27
Summary of Rules, Formats, and Syntax .. 33

NN BNMMDDDNDDNDDN
e o o e s e o
N O UM P WLWN -

CHAPTER 3 ALPHANUMERICS. « ¢ « ¢ ¢ ¢ « o o o & 36
3.1 Alphanumeric Character Strings 36
3.2 Alphanumeric String Variables. 37
3.3 Literals e e e e e e s 40
3.4 Alpha Receivers and Alpha Expres51ons. . . e 41
3.5 Concatenation of Strings 43
3.6 Alpha Array Strings. . . « « « « o« o « ¢ o 43
3.7 Hexadecimal Literal Strings. 44
3.8 Logical Expressions. . . . e e e e e e 44
3.9 Functions with Alpha Arguments e e e e e 47
3.10 Summary of Rules, Formats, and Syntax . . . 51
CHAPTER 4 CONTROL STATEMENTS . . ¢ « ¢ ¢ ¢ &« & o « o & 56
4,1 Introduction « v 4 4 e 4 4 W . . 56
4.2 Subroutines. . . . et e e e e e e e e e 58
4.3 Internal Subroutlnes e e e e e e e e e e e 59
4.4 External Subroutines 61

iii

CHAPTER

CHAPTER

PART 11

WORKSTATION AND PRINTER INPUT/OUTPUT
STATEMENTS

Introduction

Printer Output

FMT and Image Statements . e e

The Workstation Screen
Field Attribute Characters
DISPLAY., . . .

ACCEPT .

TAPE AND PRINTER FILE I/0.

Introduction« + 4 ¢
File Hierarchy
Selecting File Numbers
Opening a File
Summary of I/0 Statements. . . .
File I/0 System Functions.
Error Recovery + ¢« « + &

SPECIAL STATEMENTS: MATRIX AND
DATA CONVERSION STATEMENTS

Data Conversion Statements
Matrix Statements

BASIC KEYWORD FORMATS.

ACCEPT . . . ¢ & v ¢ ¢« o« o o o s o =
ApD([C] . e e e s s e e e s e e
ALL Functlon . . . e s s s s e s s
AND Logical Operator e e e e e e
BIN Function . . . e s s e e
BOOLh Logical Operator c v e e e
CALL . + ¢« v ¢« v ¢« o o o o o o o @
CLOSE. « « « ¢ ¢ &+ « o s o s o o o
COM. ¢« v v ¢« v o o o o o o o o o o s
CONVERT. « « « o « o o & o &

COPY . . &+ v v ¢ ¢ o o o o« »

DATA . . . ¢ ¢ ¢ ¢ ¢« o o« &

DATE Function. e e e e e e e
DEFFN. . & & ¢« ¢ ¢ ¢ ¢ o o o o o &
DEFFN' «

DELETE « . . .

DIM. . . ¢ ¢ ¢ ¢ ¢« ¢ o o o o o« «
DIM Function . . . « « « + « o &
DISPLAY. . . . e e e e e e e e e
END. ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o
FMT. . ¢« ¢ v v v ¢ o o o o

iv

PAGE

69

69
73
73
75
76
77
78

82

82
83
84
86
87
89
90

93

93
94

98

100
106
108
109
110
111
113
116
117
118
120
121
122
123
125
129
130
131
132
133
134

FN Function.
FOR.

FS Function
GET.

GOSUB.
GOSUB'

GOTO .

HEX Literal String .

HEXPACK.
HEXUNPACK. . e
IF...THEN...ELSE .
Image (%). . .
INIT
INPUT. .

KEY
LEN Function .
LET.
MASK Function
MAT+o .
MAT ASORT/DSORT
MAT CON. . .

MAT =.
MAT IDN. . . .
MAT INPUT.
MAT INV. . . .
MAT *. . .

MAT PRINT.

MAT READ .

MAT REDIM.

MAT ()*.

MAT -. .

MAT TRN.

MAT ZER.

NEXT . .

NUM Function .

ON
OPEN

OR Logical Operator

POS Function .
PRINT.
PRINTUSING .
PUT.

READ

READ File
REM.

RESTORE.

RETURN
RETURN CLEAR .
REWRITE.

RND . .

PAGE

137
138
139
140
141
142
143
144
145
148
149
151
153
154
157
158
159
161
162 -
163
164
165
166
167
169
171
172
173
175
176
177
178
179
183
184
185
186
190
191
192
196
197
198
199
201
202
203
204
205
207

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

ROTATE
ROUND
SEARCH
SELECT
SELECT File

SIZE . .
SKIP
STOP
STR Function .
SUB.
TIME Function.
TRACE. . . .

TRAN

VAL Function .
WRITE.

XOR Logical Operator

GLOSSARY . . .

2200T and 2200VP Considerations.

VS Field Attribute Characters.

BASIC Compiler Options

VS Character Set .

ASCII Collating Sequence

BASIC Keywords

vi

PAGE

208
209
210
212
213

216

217
218
219
221
224
225
227
228
229
231

232
236
250
251
254

255

256

HOW TO USE THIS MANUAL

This manual 1s desiaoned as a reference for Wang VS BASIC,
For information on operating system programs and utilitiess see

the 2200VS_Programmer®s_Introductiope

The BASIC manual is divided into two partse Part 1Ies which
contains Chapters 1 through 7 has general discussions of the
parts of the Languages while Part II contains short descriptions
of each of the BASIC dnstructionss including details of the
required formatse

VS BASIC 4s very similar to 2200 BASIC with the most
important differences being in workstation and disk 1/0. See
Section 52 for 1information on workstation 1/0s Chapter 6 for
disk 170 informations and Appendix B for ~ additional information
on the 22007 and VP.

vii

J

PART I

INTRODUCTION TO BASIC

CHAPTER 1 INTRODUCTORY CONCEPT§

l.1 AN _OVERVIEW: _BASIC ON THE MWANG 2200¥S

Wang VS BASIC is a compilede general-purposes high-Level
programming Language developed by Wang Laboratories for use on
the VS Systeme This modified version of the original Dartmouth
BASIC offers all the original Language®s important featureses as
well as added capabilities which suit it for both technical and
commercial applicationse Although VS BASIC is extremely powerful
and versatiles It s also designed to be easily Llearned by
beginning programmerse There are two reasons why this s sol

1. BASIC statements bear a close resemblance to

English-Language statements, giving beginning
programmers clues to their meaninge. In sfituations
where formulae must be useds the BASIC Language

resembles standard algebraic notation and other
programming languages such as FORTRAN.

2. A programmer does not need to know much about BASIC to
write a simple programe The programmer need not Learn
about the advanced capabilities of BASIC wuntil he or
she has a specific need for those capabilitiese.

The advanced capabilities of VS BASIC are diverse. Vs
BASIC can perform computations wusing either floating-point or
integer quantitiese. For scientific applicationss a full set of
functions =~ arithmetice ¢trigonometrice and transcendental - are
provided. In additions the programmer may define -his own
functions in the course of writing a program. Exponential
notation is supported throughout the language. For applications
in businesse BASIC provides powerful editing features for
producing formatted screens printeres or disk outpute. For
simulattons and system programminges BASIC allows the programmer
to perform a variety of conversions to and from binarye provides
all 16 Boolean functions of two variablese and allows hexadecimal
output. BASIC allows alphanumeric data ("strings" of text) to be
manipulated as easily as numeric gquantitiese. Strings can be
concatenated (put together)s broken up 4into substrings, or
searched.

I

VS BASIC supports both numeric and alphanumeric arrays
{groups of variables referred to by a single name). Numeric
expressions (subscripts) select one of the elements of the arrays
allowing a single BASIC statement to access different variables
on successive fterationse. Both singly-subscripted variables
(one=-dimensional arrayse or vectors)e and doubly-subscripted
variables (two-dimensional arrayse or matrices) are supportede A
full set of matrix statementse functionss and operators are
provided to perform all standard computations on matricese.

VS BASIC provides a set of record-oriented 1i{nput/output
statements which allow the user to exercise detailed control over
the transfer of 1informatione Finallyes VS BASIC can interface
with external subroutines written in BASIC or other lLanguages.

The VS 14s an interactive system whose primary means of
program and data entry is the interactive workstation terminale.
Each workstation consists of a Llarges easy-to-read CRT screens
used to display program messageses and a typewriter-lLike keyboard
used to enter operator commands and responsese '

The programmer accustomed to batch-oriented systems will
find that an dinteractive system such as the VS offers many
conveniencese Programs can be entereds editeds compileds and run
directly from the workstatifon keyboards and results can be viewed
at once on the CRT screens the time-consuming intermediary steps
of processing cards and printing out provisional results are
completely eliminatede A complete set of system utilities also
may be dinvoked directly from the workstation to perform common
funetions such as sortinge copyinge and program Linkinge.
Finallys an extremely powerful interactive debugging facility 1is
provided to enable run-time debugging of a program from the
workstatione. This debug facility also permits the programmer to
examine and modify data values by referencing their symbolic
data-names; it 1is not necessary to specify their absolute
addresses in memory. All of these features are fully documented
in the 2200VS_Programmer®s_Introduction.

For the program wusers toos the interactive workstation is a
distinct conveniencee. User dinstructions are displayed on the
workstation screen in a cleary readable formate bata 1is entered
from the keyboard and immediately wvalidateds 4if correction is
requiredy an appropriate message 4§s displayeds and the data can
be reentered correctlye. The wuser can also interact with the
BASIC program by selecting run-time options and supplying device
and file informatione.

In summarys the interactive workstation provides a powerful
and useful tool for the programmer and the program user alikee.
It enables the programmer to develop dinteractive programs which
provide the user with far more control over program options and
processing flow than was feasible in traditionals card-oriented
systemse. Because programs are entereds compilede and debugged at
the workstatione and because data validation and correction are
performed automatically as data 1s entereds the tasks of progranm
development and data entry are greatly facilitated on the VS,

1.2 HARDWARE_CONEIGURATION

The Wang VS is an 1interactives disk-based computer which
supports multiples concurrent tasks from interactive workstation
terminalse and provides an efficient virtual memory addressing
capabilitye. The system dJs available with a wvariety of disk
unitse ranging from smalle flexible diskette drives through
medium-scales fixed/removable disk drivess up to Large-capacity,
high-performances multi-platter disk unitse Industry-compatibles
nine~track magnetic tape drives also are supportede For hardcopy
outputey a variety of printerss ranging from character matrix
printers to high-speed Lline printerse are availablees The primary
device for oprogrammer and program user communication with the VS
system is the workstations which s an dinteractive terminatl
consisting of a keyboard and a CRT display with 24 Lines of 80
characters eache

1e3 ENTERING _AND COMPILING A_BASIC_PROGRAM ON THE VS

The process of creating and running a BASIC program on the
VS consists of three steps:

1« The BASIC source text is entered at the workstation
using the VS source text EDITOR.

2. The source program +is compiled into -an object program
using the VS BASIC compilere

3;b The object program 1s rune

These three steps can be accomplished by means of the
Command Processors this sequence is fully documented in Chapter 3
of the 2200VS_Programmer®s _Introduction and summarized briefly in
this section and the nexte The entire sequence can also be
accomplished by EZBASIC and the EDITORe system utilities designed
to provide dintegrated programming environments within which the
processes of creatinge editinges compilinge and running progranm
files <can be carried out easily and efficiently. EZBASIC and the
EDITOR are fully documented in Chapter 6 of the 2200VS
Programmer®s_Introduction and summarized below in the next few
pagesSae .

/ﬂj

Logging On_To The Sysiem

Before accessing any VS system resourcess you must lLog on
to the system by entering your User I.De and passworde When the
LOGON procedure is successfully completeds the Command Processor

Menu 1s displayeda

A program 9$s run on the VS by 4nvoking the RUN command
(depress Program Function Key (PF) 1)¢ and entering the program
name as well as {ts Library and volumes System utilities (such
as the EDITORe BASIC compilere and EZBASIC) reside in the systenm
prcecaram Librarye and do not require specification of a Library or
volumee

The VS contains two wutilities which can be used to enterys
edite compilee and run BASIC programs - the EDITOR and EZBASICe.

The EDITOR

To run the EDITORs ¥nvoke the RUN command from the Command
Processor Menus type EDITOR for the program names and key ENTER.

The EDITOR first displays an Input Definition screen. Type
in B (or the full word BASIC) for Llanguagee If you are creating
a new programe leave the 1input file name blanks the permanent
source file is created and named latere. If you wish to edit an
existing program source files enter the program name and the
names of the Library and volume to which it is assignede. If you
are writing stgnificantly more than 500 Lines of new texts type
an estimate of the number of Lines in the space allotted.
Otherwise Leave that space blanke Now press ENTERe.

The EDITOR next creates a work file for text editinge The
editing of source text =- 4{ncluding entry of new text and
modification of existing text =-- actually takes place in this
temporary work filee. In order to permanently store any text
entered in the EDITORs the user must efther CREATE a new file of
the edited texts or if an old file was usedes REPLACE the old text
with the edited texte. The original file 1s not altered until a
REPLACE .is dones as all changes are made in the work filee

The EDITOR also now displays its normal menus containing 14
functions for examinings enterings and editing source texte
Program Function (PF) keys 1 to 7 are the Display Mode Keyse. PF
8 to PF 14 are the Edit Mode Keyse. The three most {mportant
functions are explained briefly heres More detail on these and
explanations of the other functions may be found in the 2200VS$

Programmer®s Introductione. o

PF 9 - MOD (modify mode) allows the user to enter a new
programs modify existing source Linessy or add lines to the
end of an existing program.

PF 11 - INS ¢(insert mode) allows text to be inserted in an
existing program between liness before the beginning of the
programe or at the ende. Unlike 4n MOD modes the Lline
numbers supplied by the EDITOR can be altered in places if
the user wishese.

PF 12 - DEL (delete mode) allows the user to delete text
from the source filee efther a specific Llines a range of
Linese or ALLe.

The normal menu also has two special functions: PF 15,
which causes the column number of the current cursor position to
be displayed (active in Display wmodey modify modes and insert
mode) and PF 16s which causes the EDITOR Special Menu to be
displayede This menu 1s described belowe. ‘

To enter Llines of texte enter either MOD or INS mode and
simply type 1in the Lines. Pressing ENTER sends the LlLines which
were Just typed 1into the system for processinge. This must be
done after every Line of INS modee In MOD mode the screen may be
filled up with new Lines before ENTER is keyed.

In order to return to Display mode from modify or insert
modese press PF 1 after the last Line of text 1s ENTERed (or if
in modify modes you may press ENTER after typing in no new Lines
of text)e.

Now press PF 16 to reach the EDITOR Special Menus The
Special Menu has thirteen functionse The most important ones are
Listed belowe These functionss as well as the others which are
not described here at ally are described in detail in the 2200VS

Programmer®s Introduction.

PF 1 - RETURN TO DISPLAY returns the EDITOR to the point in
text editing from which the Special Menu was {invokede.

PF 5 = CREATE creates a new file of the edited texte. The
user s asked to supply files Librarys and volume names and
several optional pieces of informatione fneluding a
retention period during which only the file®s creator and
system security administrators can scratch or rename the

fileo

PF 6 - REPLACE replaces the old 1{1nput file with the new
edited texte.

‘D

~

PF 9 = RUN compiles and runs an uncompiled programe or
simply runs a compiled programe If the text has not
already been successfully compiled in this EDITOR session
since the lLlast text entry was mades RUN 9Jnvokes the BASIC
compiler and LINKER to compile the programe and then
automatically runs the program (unless there are serious
compilation errors)e If the compilation 1s not necessary
because it was done successfully in this EDITOR session
since the last text entrye the program is rune.

PF 10 - COMPILE 4nvokes the BASIC compiler and the LINKER
utility.

PF 11 - ERRORS appears only i1f the compilation errors were
encountered after RUN or COMPILE were 1invoked. This key
causes a list of the errors detected to be displayede 1If
the default value of ERRLIST in the Compiler/LINKER Options
display was changed to NOe this key will not be displayeds
and the error List will not be accessible from the EDITOR.

PF 16 = EOJ ends EDITOR processing and returns progranm
control to the Command Processore

NOTE:

The user must specify an object file name,
Librarye and volume whenever a progranm is
compiled from the EDITORe Specifying a file
name beginning with ## causes a temporary
file to be createde Such a file 1s auto-
matically scratched at the end of the EDITOR
sessione

e —————— e —— — ey, = s
e ——— — o w—— — — — o—

EZBASIC

The EZBASIC utility is an enhancement of the text EDITOR
utility. EZBASIC can call the EDITOR directlys and thus perform
all the functions of the EDITOR wutilitye It can also call the
BASIC compiler and the LINKERs and can run system utilities or
other programs without returning to the Command Processore

To run EZBASICs invoke the RUN command from the Command
Processores type EZBASIC Jin the space for PROGRAMe and press
ENTER The next screen Js the default LUtibrary and volume
definition screens This Lists (1) a source "Library (by default
the user®s Log on ID plus the Letters SRCE) and volumes and (2) a
programe or objects Library (by default the user®s logon ID plus
the Uletters PROG) and volume. The default values may be
changede. ALl source and object programs created in this EZBASIC
session are automatically placed In these Librariess and when a
program is run from the EZBASIC menus the object Library is used
as the default Locatione.

7

Once this screen Ais ENTERed the EiBASIC menu 1s
displayede A space s allowed for a program namee« The options
are described briefly belowe. For more 1information see the

2200VS_Programmer®s Iniroduction.

PF 1 = RUN runs the program whose name s fnserted 1in the
space allocatedy if an object file for it exists either in
the user®s default Librarye defined on the first EZBASIC
screeny or in the system librarye.

PF 2 - EDIT invokes the ECITORe.

PF 3 = COMPILE causes the source program with the progranm
name given to be compiledes with Linking by the LINKER

PF 4 = UTILITIES displays a menu of system utility programs
which can be invoked simply by pressing the appropriate PF
keyse

PF 5 <~ MODIFY ENVIRONMENT allows the wuser to modify the
Compiler/LINKER Options and the default source and object
Library and volumese.

PF 16 = END BASIC PROCESSING returns the wuser to the
Command Processore.

Ihe BASIC Compiler

BASIC source programs must be translated 4nto machine
language -- the internal instruction <codes of the VS -- before
they can be executede. This translation 4s carried out by a
special program called a compilere The compiler reads the BASIC
source programe translates it into machine formate and stores the
resulting programe called the object programe in an output file.
The name of the BASIC compiler ise appropriately enoughe BASIC.

Options

When BASIC 4s rune it first displays the List of compiler
optionse with the default value for each optfone The complete
List of options 4ds documented in Appendix De. The three most
important options are: -

- LOAD -~ This option directs the compiler to produce an
object program as outpute Its default wvalue 1is YESo.
If NO is typed insteads no object program s produced.
(The code generation phase of the compiler is not rune)

J

. SOURCE - This option directs the <compiler to produce a
Listing of the source <code for the compiled progranm
combined with a List of any compiler detected errorse
YES causes the Listing to be producede. To suppress
this lListings type NOe.

. SYMB = This ootion directs: the compiler to insert
symbolic debug 1information dinto the object programe
Symbolic debug 1information permits subsegquent use of
the VS 1dnteractive symbolic debug facility when the
proagram is rune Symboliec debug 1dinformation <can be
removed from a program with the LINKER utilitye.

When all desired options have been selecteds key ENTERe.

Input Definition

BASIC now requests the name of the source file to be used
as input. ¢Enter in the file names along with its Library and

volumee

OQutput Defipition
Unless LOAD = NO was specifiede and if the program passes

the compiler®s syntax check with no error with severity equal to
or greater than the specified STOP Level (see Appendix D)e a name
for the output file to be created containing the compiled
(object) program is requestede Enter the file names along with
the names of the Llibrary and volume to which 1§t will be
assiogneds The following options may also be specified:

NUMBER OF The number of records 1in the output file 1s

RECORDS automatically determined by the compiler based
on the sfze of the 4nput filee. This wvalue
should note in generaly be changed by the usere.

RETENTION During the specified Retention Periode the file

PERIQD cannot be scratched or renamede Only the owner
can change the Retention Periode. If such
protection s not deemed necessaryy¢ the RETAIN
field should be Left blanke

RELEASE If RELEASE=YESe any extra space in the object
file 4s released for use by other filese.
Otherwises it remains reserved for use by the
obJect file.

FILE CLASS The object file may be assigned to one of the
Vs file protection classese. Consult vyour
system security administrator to determine in
which protection class your file belongse

When the output file name and all options. have been
defineds key ENTER. .

Return Code

The program is now compiled by the BASIC compilere. When
the compilation is completedy the Command Processor Menu is
displayeds with a Return Code immediately above the menue. This
Return Code indicates the status of the compilation:

Code Meaning
0 No errors.
4 Warninge.
6 or 8 Severe error (program probably will not run

correctly).

12 or 16 Terminal error (program will not run at
all)e

I1f production of the source Listing was not suppresseds
this Listing is printed on the selected printers followed by a
List of compiler diagnosticse ALL other optional Listings and
tables are also printed.

Ihe LINKER UtiLlity

The VS LINKER e¢an be wused to perform the following
functions? '

1. Link two or more object program modules or subroutines
into a single executable programe

2 Link Library subroutines into a main programe.

3 Remove symbolic -debug 4{information from an object
programe

4. Replace one or more object program modules in a program.

The LINKER utility can be optionally called whenever a
program is compiled from' either the EDITOR or EZBASICe. If the
proagram s compiled using the BASIC compiler directlyes the LINKER
must be run independently by 1invoking the RUN command from the
Command Processor and typing in LINKER as the program name.

See the 2200VSs Programmer®s Introduction for more
information on the LINKER.

10

ﬁﬁ@

1.4 RUNNING THE_BASIC OBJECT PROGRAM

The compiled program is run with the RUN command from the
Command Processor Menu. Depress PF 1 to invoke ¢this function,
and type the BASIC object file name opposite PROGRAM. Type the
appropriate Lltibrary and volume namess and key ENTER to initiate
execution of the programe.

If the program opens one or more data filese the operator
must specify the file name(s)y as well as the appropriate Library
and volumes during execution. (In the case of tape filesy only
the volume name and a file sequence number are necessarye.) This
information must be entered by the operator ynlegss it is supplied
by an accompanying procedure (procedures are discussed in the
2200vS _Programmer®*s__Introductjons Chapters 7 and 8) or by the
programe (If the files Libraryes and volume names are supplied by
the programe the GETPARM display requesting these will be
displayedes with the names filled 1ne unless NODISPLAY or
NOGETPARM were specified in the OPEN statemente)’

1.5 F1LE_TJYPES SUPPORTED ON THE 2200VS
The VS supports two file typess seguential and indexed.

Sequenttal files contain records in strictly consecutive
sequences while 1indexed files are organized on the basis of
designated key fields within the records. Both types of files
may be accessed efther gseguentially or candomlyes and a file may
be accessed both sequentially and randomly within the same
programe

le6 PROGRAM_DEVELOPMENT

BASIC programs are entered from a keyboard using the EDITOR
utility (which can be reached directly from the Command
Processore or through EZBASIC). This program stores them on disk
as "source®™ files. By using the BASIC compiler <(which can be
accessed directlys from the EDITORey or from EZBASIC) to process
the source files an ®object™ file is produced which can be
executed by the VS processore. The compiler performs a
translation from the Llanguage specified in this manual to the
machine language of the VSe '

In addition ¢to an object files the compiler produces a
printed Listinge Optional components of this Listinges which are
selected when the compiler ¥s invokeds include the following:

. A Listing of the source file.

- A cross~-reference Listing of symbols and Line numbers
appearing ¥n the programe.

11

. A listinge din Assembly Languagee of the machine
Language code which the compiler producede.

- Notification of any compilation errors detected by the
compileres .

The programmer handles compilation errors and other errors
detected after compilation by wusing the EDITOR to review and
correct the source files and then re-compile it.

The symbolic debugger 4Js a powerful tool that the
programmer uses to trace the execution of a BASIC programe and to
detect the source of program errors which are. not otherwise
readily visibles The programmer must 9Jndicate ¢to the compiler
that it is to produce an object file which includes symbolic
debugging capabilitye. Such an object files when executeds will
provide an additional Llevel of operator interactions allowing the
programmer to trace the progress of the programe and examine the
values of 1its variablesey referring to them by the names they were
given din the source file. After 4ddentifying design or logic
errorsy the programmer typically edits the source file and
re-compiles it to produce a correct object filee.

1e7 SOURCE _FILE FORMAT

A BASIC program consists of one or more statementse. A
statement usually begins with a word (called a ®"verb®) which 1is
typically an English verbe such as PRINT or INPUTe. Following the
verb is whatever dinformation may be required to complete that
particular statement. For example:

100 RETURN is a verb which forms a complete
statement by dtselfe. It signals
the end of a subroutinee.

100 LET X=2 LET assigns values to variablese.
In thts case the variable X is
assigned a value of 2.

100 GOTO 40 6070 transfers control to the
Line number givens so processing
is continued from theree.

100 IF A=B THEN RETURN among the additionat information
which may follow the IFeeeverb 1is
another entire BASIC statemente.

100 IF IF by 4itselfe howevers is not a
complete BASIC statemente

12

If a statement does not begin with a verbe it is presumed
to be a "LET" statement.

X=2 ¥s a valid BASIC statements and
is equivalent to writing "LET
X=2",

There are two types of BASIC statements: executable and
nonexecutable. An executable statement specifies program action:

100 READ A8
200 A = 6*B

A nonexecutable statement provides dinformation for progran
execution:

100 DATA 144
or for the programmer:
200 REM THIS IS PROGRAM 1

but no specific action is taken when nonexecutable statements are
encountered in the sequence of executfon. The following BASIC
statements are defined to be nonexecutable:

CoM

DATA

DEFFN

DEFFN ¢

DIM

FMT

% (Image)

REM or «

SELECTs when used in File I/0 (f.ees SELECT # and SELECT
POOL) ’

SUB

The BASIC source file consists of Llines. Lines in the
source file contain 72 columns or character positionse which are
numbered from left to right as columns 1 through 72. Each column
may contain one character from the ASCII character sete There are
no restrictions on the character set: uppercase and lowercase
letterss numeralsy and all symbols may be contained in a BASIC
source filee. Howevers lowercase letters can be used only as data
in literal stringse.

600 Let X=Sin(y) (lowercase is unacceptables.)

13

Columns 1 through 6 of each Line contains a unique
six=-digit Line number which ddentifies that Line. (Note: for
conveniences this manual drops Lleading zeros in Line numberse.)
The EDITOR wutility takes care of Line numberina for the usere.
Ife 1in facte the wuser supplies Lline numbers of his own 4n
addition to the EDITOR supplied Line numbersy they will result 4n
error messagese Note that the user pay edit LULine numbers in
insert mode. Columns 7 through 72 may contain one or more
statements in the BASIC Llanguagee. Column 72 may contain an
exclamation point (') to indicate continuatione as described
belowe An asterisk (*) in column 7 causes the Line to be ignored
(feeey treated as a REM statement) unless the previous Line ended
in a continuation charactere.

Spacing of the statements in columns 7-72 4s up to the
programmer. BASIC ignores blanks except within quotese. (Note?
the words "™space®™ and ®"blank®™ are used dJnterchangeably in this

manu;l.)

100 PRINT "A B C* Lines 100 and 200 will

200 PRINT ®™ABCH® definitely have different
300 PR I N T ™ABCH effectse Howevers the added

spaces in Line 300 are
superfluousi that lLine will have
the same effect as Line 200,

A Line in the source file may contain more than one BASIC
statemente. A colon () is wused to separate one statement from
the next. For exanmple:

400 LET X=5 ¢ LET Y=5 : LET 2=5

Converselys a BASIC statement may occupy more than one line
in the source file. BASIC assumes that the end of a Line marks
the end of a statement 4in the same way that a colon doese.
Howevery an exclamation point in the rightmost column of a Lline
(column 72) indicates that the rightmost statement in that Line
will continue on the next Line. For example:

400 LET X
500 =4

Each Line in the oprogram must have a unique Line numbers even §f
it is used to continue a statement from a previous Llinee.

Although a statement may begin on one Line and end on
another Lines verbse constantse and Line number references may
not be split between linese For example:

400 LE
500 T X=¢4

14

fﬁ%

AN

This §s an example of an invalid way to split up a statement,
since the verb "LET" is divided between Llines. Literal stringss
howevers may be splite.

There 9s no Limit to the number of lines which can be used
to contain a single statementsy nor to the number of statements
which can occupy a sfingle Line. Null Lines ¢(lines without a
statement) are acceptable to the BASIC compilersy as is the use of
the colon to form a null statement within a Linee For example?

400 LET X=4 I LET Y=4 : LET Z=4 2
500

Execution of a BASIC program always proceeds in Line number
seguence from the Llowest-numbered Line through the highest-
numbered Lines unless the normal sequence of execution is altered
by a program branch 1instruction. Program branch instructions
include the following: FOReeoeNEXT LoOpse GOTOe GOSUBe GOSUB®,
CALLs RETURNy FNo andes in certain casess IFooeTHENsooELSES

1.8 BASIC LANGUAGE SIRUCTURE

Programs written in BASIC must adhere to certain rules of
syntaxe These rules and the terms used to define them are
described belowe

Symbol QOperators

The symbols wused as operators 1in BASIC fall into three
categories: arithmetics relationale and assignment operatorse.

Arithmetic Operators

The following symbols are used as arithmetic operatorse.

Symbol Sample Expression Explanation
T or =»x ATB or A=xB Raise A to the power B.
% AzB Multiply A by Be
/ A/B Pivide A by B.
+ A+B Add B to A.
- A-B Subtract B from A.

The foLlowing priorities are observed when evaluating
expressionss. ;-

1 ALL operations within parenthesese.

2. All exponentiation (T or =*2*) is performed (from left to
r‘ight).

" "

15

3. AlL multiplication and division are performed (from

teft to rightl.
negation are performed

4. All additions subtractions and

(from Lleft to rioht).

using the

used 1n
the
the
For
the

parentheses are evaluateds
parenthesized quantity is
further computations. When there are no parentheses in
expression and the operaters are at the same Llevel in
hierarchys the expression is evaluated from Left to righte.
examples in the expression A*B/Ce A 1is multiplied by B and
result is divided by Ce.

Quantities within

above oprioritieses before the

Relational Operators

Relational operators are used Iin an IFeeeTHEN statement
when values are to be comparede For examples when the statement
IF G6G<10 THEN 60 is executeds if 6 is Less than 10e processing
continues at program Line number 60. Otherwises execution
continues 1in the normal sequence with the statement following the
IF statement.

The following relational symbols can be used in VS BASIC:

- Symbol Sampte Relation Explapation
= A =B A is equal to B
< ACB A is less than Be.
<= A <= B A is less than or equal to B.
> A > 8B A 1s greater than Be
>= A >= B A is greater than or equal to B.
< A <> B A is not equal to Ba

These symbols are also used in the POS

Assignmept Operator

function and

in SEARCH.

The equal sign (=) is also used to indicate assignment of a

value to

At. (Also

1.9 RULE

a variablee For

see the LET statement.)

S_OF_SYNTAX

examples
written in BASICes indicates tassign the

the

value 10 to

The following rules govern EBASIC syntaxe

1.

statement A=10e w

hen

the variable

Except_in__alpbhapumeric Literalss % __(Image) statementss

and__PIC__clausess BASIC_ _Jgpores. _bltankse

For examp

Lesy

the following statements are both valid and equivalent:

100 LET A = 2+B+C
100 LETA=2*B+C

16

3

2e

3e

4.

Se

The

Blank Lines and null statements (I :) are allowede

BASIC statements may be continued on as many Llines as
needede The continuation character is *!*y which must
be present in the Last column (column 72) if the Line
js to be continued. The continuation character may not
break up a keywords constante. or ‘ine _number
referencee. A variable may be continued only if the
initial part is sufficient to identify {its types for
examples an alpha scalar may be continued after the
mgn, an array variable may be continued after the ®("%,

etce

A Literal may be continued for up to 255 characterse
Note that all characters are considered part of the
Literal except the !9 4n column 72. ‘

Continuation lines have line numberss just as do other
linese.

Columns 1-6 contain the tine numbers so only 66 columns
are actually available for program texte.

following rules are used in this manual in the syntax

specifications to describe BASIC program statements and system

commandse

1.

2e

Se

4.

Uppercase letters (A through Z)e digits (0 through S)e
and special characters (%xo /4 +¢ etce) must be written
exactly as shown in the general forme

Lowercase words represent items which are supplied by
the usere.

Items Jin square bracketses [Jo indicate that the
enclosed 1information is optionale. For examplees the
general form: RESTORE [expressionl] indicates that the
RESTORE statement <can be optionally followed by an
expressione

Bracess { }e enclosing vertically stacked dtems
indicate alternativess one of the items 1is requirede.
For exampleys

{Literal }
operand = {alpha variable}
{expression }

indicates that the operand can be either a Literalese an
alpha variables or an expressione

17

Se

Ge

ELLipsise ecees indicates that the preceding item can be
repeated as necessary. For examples

INPUT Cliteralel receivér Cereceiverleeee

indicates that additional receivers as needed can be
added to the INPUT statemente.

The order of parameters shown in the general form must
be followede.

18

2

CHAPTER 2 NUMERICS

2.1 INTRODUCTIION

Vs BASIC supports two classes of numeric data:
floating-point and integere. The classes are clearly
distinguished 1in BASIC syntaxe require different amounts of
internal storages are represented differently in internal format,
and have a different range of allowable valuese.

Integer datae which are used to represent "whole® (iec€es
non-fractfonal) numberss are stored in four bytes of memorye.
Integer operations are considerably faster than floating-point
operations. Floating=-point data are stored itn eight bytes of
memory in the form of: (1) a hexadecimal fraction between 0 and
le and (2) a power of 16 This format provides a convenient way
of representing numbers whose magnitude ¥s either extremely Llarge
or extremely smally and of operating upon such numbers with a
high degree of precision. It is also the only way to store
fractional numberses VS BASIC allows complete freedom to mix both
classes of data in arithmetic expressions and assignment
statements. Resulting expressionss which are called mixed modes
are covered at the end of this chaptere.

A third data classes alphanumerice which also has distinct
representation 1in syntax and {nternal formate 4{s used to
represent Literal datae. Alphanumeric data 4s discussed in
Chapter 3.

Each class of data 1{s further broken down -into two
subclasses: constants and variables. The value of a constant is
fixed and does not change during program execution. Variables do
not have fixed values and can be assigned new values during
program executione. A numeric constant is represented in a BASIC
source file by a number. A numeric variables on the other hand,

is represented by a symbol (the "variable name®). This symbol is

19

used to name that area in storage which holds .the value of the
variables In the following statement:

100 X = 3.25

X 1is a variable names 3.25 a constant. The statement itselfy an
assignment statements assians the value 3.25 to the variable X.

2.2 NUMERIC_CONSIANTS

Eloating=point

A floating-point constant may be a positive or negative
number of up to 15 digitse Numbers - with more than 15 digits
result 4n a warninges and only the first 15 digitss excluding
leading zerose are used by BASIC statements or functionse.

The magnitude of a floating-point constant can be 0 or range
-65 63 ~-79 75
from 16 to 1e (approximately 5.4 x 10 to 72 x 10)
Very large or very small numbers can be expressed in exponential
forme
7 7

For examples 45 x 10 ds written as 4.5E+07 and 4.5 x 10 is
expressed as 45 E-07. Exponents must be integers. Leading 0°¢s
in the exponent may be omitteds 1f the sign is omitteds + 1is
assumede

The following are examples of floating-point constants in BASIC:
44 =109 14324439 =78659 24045639 =-3E2¢ 246E-27
The following show invalid use of scientific notation:

BeTES 8B Not valid because of the 1llegal decimal form
of the exponent. :

«87E-99 Not valid because it is less than S<4E-7S.

-103.2E39 Not valid because it is greater than 7.2E75.

20

NOTE:

In ceneraly decimal numbers may contain any
number of digits provided that the value of
the number 1itself is within Legal boundse.

Any BASIC statement or function dealing
with such numbers will wuse only the 15

most sfanificant digitse
This applies in the following situations:
le Any number in the source filee.

2e Any user-input value (eeges INPUT,
ACCEPT).

3¢ Any number converted via Image (%)
or FMT (PIC) (eeQee ACCEPT DISPLAY,
PRINTUSINGe disk 1/0 statements)e.

4¢ Any dnternal character-string rep-
resentation of such a number (eeges
CONVERTe NUM).

[— D ey Tl T T s T — — A — — —) r— — T e e e—
b—-——-——————————————_——-—————-——-—

Integer

An integer constant may range from =241474483¢648 to
2¢147¢483+4647 and muste as its name indicatesy be an integer. An
integer constant 1is denoted by a ®%" following the constant.
Thuse "4X" 4s an integers and %"4" 4s floating=-pointe. However,
the percent sign for numeric constants 1is only permitted for
numbers actually contained in the source filee. Therefores
numbers qiven to the program during execution (ie.e«s from the
workstation or from a data file or converted from an
alpha-expression) are given {in floating-point forme without the
percent sian,

2¢5 NUMERIC VARIABLES

Numeric variables are used to store numerdic data in
memorye. Unlike constantses whose values are fixed and cannot be
changed during program executions variables can be assigned new
values during execution by a variety of different statementse.
Each variable name in 2 program is associated with an area in
memory which is wused to contain the value of that variablee.
Numeric variables are initialized to zero by the compilere.

21

Within each class of numeric vartables there are two
distinct data types: scalar variables and array variabless which
differ both in how they are handled in the syntax and 1n how
storage 1s allocated for them. A numeric scalar variable can
contain a single numeriec wvalue. All floating-point scalar
vartables are eight bytes in Llengths while all dinteger scalar
variables are four bytes in lengthe

A floating-point scalar variable is designated by a single
uppercase letter (A-Z) or a Lletter followed by a digit (0-9).
There are thus 286 floating-point scalar variable namese. Integer
variable names are distinguished from floating-point variable
names by the presence of a percent sign ('%%) immediately
following the variable namee. For examples N 1is a floating-point
variable namey while N% is an integer variable namee. Similarly,
A3 is a floating-point variable names A3%X an integer variable
names Examples of valid numeric variable names are:

Eloating=-point | Integer
A ¥
Al A1X
BO P9X
N8 B1%

A floating=-point variable name and an integer variable name
always identify different variablese even if the names (i.eces the
‘Lletterse or the letters and digits)e are 4ddentical. For examples
N2 and N2X identify two different variabless one floating-point
and one 1integery and both may be used to refer to different
pieces of data in the same program without ambiguitye.

Array Variables

An "array variable®™ 1is really a collection .of scalar
variables identified by a common name. The array as a whole 1is
referred to by the array names plus two parentheses to form an
"array-designator® (ee.ges B())e The array name alone (ee.ges B)
is used only in special matrix statements (e.aesy M™MAT INPUT and
MATPRINT)e Each of the scalar variables contained 1in the array
s referred to as an "element®™ of the arrays and can be
identified by specifying the array name followed by a subscripts
or pair of subscriptse which ULlocate the element within the
arraye A subscript s denoted by a pair of parentheses enclosing
the number. For exampley the fifth element in array N() could be
specified as N(5). Note that the subscript is enclosed 1in
parentheses immediately following the array namee The names of
array variables are formed in exactly the same way as the names
of scalar vartables (that ise a Lletter or a letter and a digit)e.

22

Since scalar variables are different from array variablesy the
same name (feees the same letteres or the same letter and digit)
may be used both as a scalar variable name and as an array
variable namee. Thus N() desiaonates an array variables while N

names a scalar variablee.

In generale any reference to an array variable must consist
of the array name immediately followed by parentheses. If the
parentheses enclose an expressione or a pair of expressionse the
expressions are interpreted as the subscripts of a particular
element 1in the arraye In the example <cited aboves N(5)
identified the fifth element of array N()es If the syntax allows
the entire arrays rather than a particular element of the arrays
to be referencede the array name must be followed by empty
parenthesess eeges N() or A%()e to form the array-designatore. An
array can have the same name as @a scalar variables but the array
must (with few exceptions) always be referenced with an
array-designatore to indicate that an arrays rather than a scalar
variables is meante. For example: :

N6 identifies a floating-point scalar variablee.
N6% identifies an integer scalar variablee.
N6 ¢) identifies a floating=-point arraye

N6%() identifies an integer arraye.

One-Dimensional Arrays_and JIwo-Dimensiopal Arrays

Array variables are of two typess one-dimensional and
two-dimensionale. A one-dimensional array is a %"list"® of
variables all identified by the same namee A two-cdimensional
array is a "table® of variablese all identified by the same namee.

One-dimensional arrays are also called "listse™ "vectorse”®
"column vectorse® ande since each element 1is dJdentified by a
single subscripte ®singly-subscripted arrayse®™ 1In generals the
term preferred by a programmer is the one which makes the most
intuitive sense for his application: programmers involved 1in
data processing tend to prefer "liste®” while those programming
mathematical applications tend to be more comfortable with
"vector."

A one-dimensional array can be <conceived as a Llistqy or
columnes of variables ("elements®™)s each occupying 1Jts own slots
or Yrows" in the columne Considery for examples the
representation of array N(} in Figure 2-1.

23

NO)

Row 1 N¢(1)
Row 2 - N(2)
Row 3 N(3)
Row & NC€a)
Row S NCES)

Figure 2-1« The One-Dimensional Array N()

Note that N() <contains a total of five elements and that
each element 1s identified by specifying ¥ts row in the column
(eeges element N(3) is located in row 3)e.

It 1s not difficult to generalize the scheme In Figure 2-1
to contain two or more columnse When this is dones the resutt is
a two-dimensional arraye Two-dimensional arrays are also called
"tableso” or "matriceses" and because each element 4{s {dentified
by a pair of subscriptse "doubly-subscripted arrays."

A two-dimensional array can be conceived as a table
consisting of two or more columns of elements. Considers for
examples the representation of the two-dimensional array M() in
Figure 2-2.

MO)
Column 1 Column 2
Row 1 M(le1) M(1l.2)
Row 2 M(2¢1) ME24¢2)
Row 3 M(3¢1) M(3¢2)
Row 4 MCae1) M(442)
Row 5 M(541) M(592)

Figure 2-2. The Two=-Dimensional Array M()

24

.

Note that M() consists of two columns of elementss with
five rows in each <columnes for a total of 10 elementse 1In this
casee it is not sufficient to identify each element by 4dits row,
since the element may be in column 1 or column 2. A second
subscript is required to identify the columne The convention
followed when referencing a particular element in a
two-dimensional array is always to specify the row firsty and
then the <columne. Thus M(342) identifies the element 4n the third
row of column 2.

Elements in an array can be referred to by subscripts that
are legal BASIC expressionse Thus J(N) refers to the Nth element
of array J() for whatever value N has at the time of executione
This ability to reterence an array by a variable subscript is one
of the useful features of the arrays since it can eliminate a
considerable amount of repetitive codinge. For examples the
following three statements

100 FOR I =1 TC SO
200 PRINT J(I)
300 NEXT I

will cause the first 50 elements of array J() to be printed with
considerably less coding than 50 consecutive PRINT statementse.

Dimensioning an_Array

Although arrays in BASIC default to 10 by 10s they can be
explicitly dimensioned to from 1 to 324767 elements per
dimensione If a value other than the default is to be useds the
program must specity the size of the array before any other
references are made to the arraye. This is done by means of the
dimension (DIM) or common (COM) statemente. (The COM statement
also reserves a common area of memory for variables that are used
in several programs - a callipg__proaram and one oOr more
subroutinese This enables variables whose values are changed by
one program to be passed with these changes to another variablee)

NOTE :

I

|

|

| The total size of all the wvariable in a
| progarame fncluding array variablesys s
| timited to a maximum of not more than 512K
| bytese The exact maximum will depend on the
| particular circumstances under which a
| proaram is rune.

l

e e ————

25

The DIM statement (or the COM statement) defines the amount
of memory allocated to an array prior to program executione The
following DIM statement defines a one-dimensional integer array
of 10 elements:

100 DIM AX(10)

A DIM statement can be used to define any number of arrays
of any types as long as each array is separated from the one
following 1t by a commae The following DIM statement defines a
one-dimensional integer arrayy a two-dimensional integer arrays, a
one~-dimensional floating-point - arrays and a two-dimensional
floating=-point array:

100 DIM B%(5)s C1%(245)9 A(10)s C1(10,10)

If an array is not dimensioned by a DIM or COM statement,
VS BASIC gives it default dimensions of 10 by 10

Note that since DIM statements are processed during
compilations prior to program executions they gcapnot be supplied
with variable subscriptse since the value of the variable is
unknown at that timee. The following statemente for examples
produces an error messages

100 DIM A1(5.N)

2.4 EXPRESSIONS

A numeric expression may consist of a single variable or
constante or {1t may consist of a series of variables and
constants connected by arithmetic operators and numeric
functionse. An expression may be preceded by plus or minus and
may be contained within parentheses. In the following examples
valid BASIC expressions are boxed:

1AL
152Y+FNBCX) = LOG(T]
FC |X2245] #1K] 131

FOR I = 13+K2] TO |4*Y| STEP |D(3+K)-1 |

X

X

PRINT ISINCK)=4#%J]

26

Numeric expressions can be evaluated 1in a variety of different
BASIC statementse Most commonlys expressions are evaluated and
their values assigned to vartables in assignment (LET)
statementss or they are evaluated and their values printed or
displayed in PRINT statementse Operations in an expression are
executed in sequence from highest priority lLlevel to Lowest (see
Section 1.11).

2.5 MIXED_MODE

BASIC allows mixed-mode assignment., 1e€en either
floating-point or dnteger wvariables may be assigned either
floating-point or dinteger valuess with floating-point values
truncated to integers. Specifically:

i. ELET] assignment statements allow mixed-mode assignmente.

2« Statements performing implicit assignments such as
CONVERTs GOSUB®()s FN()s INPUTe ACCEPTs and READe allow
mixed-mode. The only exception to this is the CALL/SUB

procedures which does pot allow mixed-mode argument
passinge

3¢ The percent sign (%X)e used to 1indicate an integer
values can only be wused as a numeric symbol when it
appears as such 1in the source files 4n particular,
INPUTe ACCEPTe GETe READe and TCONVERT do_not allow X as
numeric input. Thuse floating-point constants must be
usede

4. Expressions in 1integer syntax are also treated Like
mixed-mode assiaonments (truncated to integer)e.

€egece BIN(expr)
END expr
ON expr GOTOeae
RESTORE expr

2.6

2

UMERIC_FUNCTIONS

A function is an dtem in the BASIC language which returns
to the program an output value based on input valuese As input
to the functions the programmer provides one or more expressions
(called arguments of the function). As outpute the function
returns a value which s made available for use 4in a larger
expressione. The value returned by the function witl depend on the
input valuese.

Syntacticallyes a function is written as follows?:

function namel (argumentlLysargumentlIl seeel)]

27

where "function name" is the name of one of the system-defined
functionse and “argument®" is any expression which s acceptable
to the particular function wused. Expressions used as the
arauments of a function are evaluated before the computation
indicated by the function 49s performede. The result of this
computation may be wused as part of a larger expressione For
example, .

100 LET X=SIN(Y/2)+1

causess in the following order: (1) the expression Y/2 to be
calculateds (2) the sine of that expression to be determinedy (3)
1 to be added to the sines and (4) the assignment of the final
value to the variable *X°*,

BASIC provides all the standard trigonometrics logarithmics
and exponential functions. 1In additions greatest-integers signum
(sce description of SGNe below)s and absolute-value functions are
provideds as are a random-number generator and several functions
which accept alpha strings as arguments and return numeric valuese.

The BASIC programmer can define customized functions using
the DEFFN statement. For instances having included the statement

100 DEFFNACX)=LEXP(X)=EXP(=X))/2

the programmer can use the user-defined function FNA(numeric
expression) anywhere in a numeric expression to return the
hyperbolic sine of the expression inside the parenthesese.

The SIZE functione which deals with file I1/0¢ is discussed
in Chapter 6.

Yrigonometric Functions

The sines cosiney tangent, arcsines arccosines and
arctangent functions are available in BASIC. Other trigonometric
functions <can be easily expressed using these functions 4n
expressionse.

Functiopn sSample
Name Expression Meaning
SIN SIN(X) the sine of the argumente.
cos CoOS(Xx) the cosine of the argumente.
TAN TANCX) the tangent of the argumente.
ARCSIN ARCSIN(X) the inverse sine of the argumente.
ARCCOS ARCCOS (X) the inverse cosine of the argumente.
ARCTAN ARCTAN(X) the inverse tangent of the argument.
ATN ATN(X) same (ATN is a synonym for ARCTAN).

28

-

These functions can express angular measure in one of three
modes: (1) degreesse (2) radianse or (3) grads (400 grads = 360

degrees)e. Radian measure is used as the detfault in every program
or subroutines until one of the following statements is
encountered: .

SELECT D which selects degreeses
SELECT G which selects gradse.
SELECT R which re-selects radianse.

The mode wused at any time {Js determined by the most
recently executed SELECT (De+Ge or R) statement in that program or
subroutinee. For dnstancee a program can execute a "SELECT D"
statemente thus changing the trig mode to degrees. If it .then
uses the CALL statement to call a subroutines the mode becomes
radianse assuming the subroutine has not previously reset the
modee If the subroutine executes a ®"SELECT G" statemente the
mode for subsequent trigonometric functions becomes grads. When
the END statement is executeds returning control to the calling
programe the mode reverts to degreese If that subroutine is
called againe the initial mode will be gradse

The SELECT statement is discussed further 1in Part 1Ile. The
arguments of the sines cosines and tangent functions will be
interpreted as degreess gradss or radians depending on the SELECT
setting in effect at the time of executione The values returned
by the dnverse trigonometric (arc) functions are Likewise
interpreted as degreess gradse or radians according to the SELECT
settinge.

Qther Numerical Functiops

The remaining nineteen numerical functions are described
belowe

Eunction_Name Sample_Expression Meaning
ABS ABS (X) The absolute value of the
argument: =X ¥f X < 0y X
if X >= 0.
DIM DIMIXC()o1) The maximum 1st or 2nd sub-
{see below) script of the array Xe
SQR SQR(X) The square root of the

arguments X raised . to the
«5 poweres

EXP EXP(X) The exponential functions
e (2e718¢00) raised to
the X=-th powere.

Function_Name

INT

LEN

LGT

LOG

MAX

MIN

MOD

NUM

#P1

POS

RND
(see below)

ROUND
(see below)

Sample Expression
INTCX)

LENCAS)

LGT(X)

LOG (X)
MAX(XeYe2)
MIN(XeYe2)

MOD(XeY)

NUMCAS)

#P1
POS(AS<BS)
RND(X)

ROUND (XeN)

30

Meaning

. The greatest~integer

functions the greatest
integer lLess than or equal
to the argumente.

The actual lengthe in
bytess of the argument.

Common (base 10) logarithme

Natural (base "e®)
Logarithms inverse function
of EXPo

The' value of the Llargest
element in the argument
liste

The wvalue of the smallest
element 1in the argument
Liste

The modulus functions the
remainder of the division
of the first element by the
seconde.

The number of sequential
ASCII characters in the
argument that represent a
legal BASIC numbere.

The value 3614159265359,

The position of the first
character of the first
argument which s < ¢ <=y
¢ 2= ¢ <>¢ or = the first
character of the second
argumente.

A pseudorandom number be-
tween zero and onee. '

The value of the first
argumente rounded off to
the accuracy specified by
the second argumente.

Function Name Sample Expression ' Meaning

SGN SGN(X) . The signum functions -1 if
the argument 1s negatives O
if the argument is zeroe or
+1 if the argument is
positives

SIZE SIZE(#1) The size 1in bytes of the
most recently read record
from the specified file.

VAL VAL(AS,43) The numeric value of the
first 19 29 39 or & bytes
of the first argumente.

The RNDe ROUNDe and DIM functions must be discussed in more
detaile.

RND

The RND (random number) function 4s used to produce a
pseudorandom number between 0 and 1. The term "pseudorandonm®
refers to the fact that BASIC cannot produce truly random
numberse. Insteads 1t employs an internal algorithm which wuses
the Last random number to generate the next ones The resulting
sequence ("list") of valuesy though obviously not truly random,
is scattered about in the range zero to one in such a manner as
to appear random3 thus the term ®"pseudorandom.®

There are three ways to use RND(exp)e based on the value of
the argument:

1 expl < 0 or expl 2 1

1f the argument is less than zero or greater than or
equal to oney RND produces the next pseudorandom number
in the ®"liste™ as described abovee. If this 1s the
first use of RND 1in the programe the "previous® value
is assumed to be some arbitrary value set by the BASIC
compiler at compilations thuse the same value will be
produced until the program s re-compilede.

2 0 < exp2 < 1

If the argument is between zero and ones RND returns
the argument {tself as the result and resets the "List"
to this valuee. The next use of RND as in Option 1
above (expl < 08 or > 1) will wuse the value of the
argument (exp2) as the ®"previous®™ value. This allows
the user to produce the same sequence of random numbers
any number of times within the same program or within
different programse.

31

3« exp3d =0

If the argument is equal to zeros RND produces a number
whose vatue is computed from the time of day when the
RND function s executedy rather than from a user or
compiler specified value. This option can be used to
reset the "List® of random numbers to a random values
so that on subsequent calls using Option 1s a random
series of numbers will be producede.

Note that although Option 3. produces a ™random®™ number $n
the sense that it will generally differ each time this option is
useds repeated RND calls using this option will not produce a
dependably random List of numberse To produce such a Listey use
Option 3 onces followed by as many Option 1 calls as desirede.
Option 3 should be used only to reset the random number List to a
new starting values not to produce such a list.

Examples:

100 LET A= RND(.5)
200 LET B= RND(2)
300 LET C= RND(2)
400 PRINT "A="3A¢ "B="3Be "C="3C

Result:
A=e5 Bz.259780899273209 2.2989807370711264

Every time this program 4s rune 4t will produce the same
List of numberse.

ROUND

ROUND(X¢N) fs equivalent to the expression:
SGN(X)Y* (INTC(ABS(X)*1D0TN+0.5)/10TN)

Its effect is to round off the value of X to the precision
specified by Ne If N is positivee X is rounded off to N decimal
ptacese If N is negatives X is rounded off to the (1-N)th place
to the Left of the decimal pointe For example:

ROUND(123.456794) = 123.4567
ROUND(12344567¢3) = 1234570
ROUND(123.456792) = 12344600
ROUND(123.4567¢1) = 123.5000
ROUND(123.4567¢0) = 123.,0000

ROUND(123¢45679=13= 120.0000
ROUND(123.4567¢=2)= 1000000
ROUND(123445679=3)= 0 etc.

32

‘D

Note that ROUNDe unlike INTe will round up as well as downs for
examplee if ROUND s told to round 47 to 0 decimal placessy it

will produce 5¢ not 4.

DIM

1=

The DIM function (not to be confused with DIM statement)
requires two arguments: the first must be an array-designator
(the array name plus parenthesess eegese A()) occurring 1in the
BASIC programs the second must be a digit whose value is efither 1
or 2e The DIM function returns either the row or column
dimension of the named arraye.

DIM(X()el) returns the row dimension of the array X..
DIM(X()¢2) returns the cotumn dimension of the array Xe.

Just as DIM may be used to determine the dimensions of an
arrayes an expression of the form LEN(STR(alpha-expression)) may
be used to determine the defined Length of an alpha variable or
array stringes as discussed in the following section.

27 SUMMARY QF RULESs FORMAISe AND SYNIAX
Eloating=Point

The following are classified as floating-point values:

1. Any floating=-point variable (no °*°%*).
EeQeoe A9 Ble C(3)e DG(Xe5)

2¢ Any numeric constant with no °*%¢,
E-g.o Se Je7¢ =-6E3¢ 1lE-1

3« The result of any valid numeric function except FNaXe
LENe NUMe POSe VALs SGNe SIZEe DIMe ABS(integer)sy and
under certain conditions MINe MAXse and MODe.

FEeges FN2(2%)e SIN(3)e ABS(~-12)

4e. The result of any binary operation (+y =9 x9 /o)
or MOD function whose two arguments are not both
integers.
EegGes 2/5¢ 3XT17e 4%+SGR(16)

Se The result of the MAX and MIN functions when the
arguments are not all integerse.

33

3e

4.

Se

i |
| NOTE: |
| !
| Any 1intermediate or final floating- |
| point overflow causes an errors |
| underflow becomes 0 with no error |
| i encountered during program |
| executione A numeric constant which |
| is either too small or too Large |
| generates a compile-time errore. |
I ~ 1

following are classified as integer valuese.

Any integer variable (with *%%),
EeGes A%e BlZe CX(3)e DAX(Xe5)

Any dnteger constante which must contain a trailing
*x¥*y no decimal pointe and no exponente.
EeGee 375%e =10000Xy 2%

The result 6f the numeric functions FNa%e LENe NUMs
POSs VALs SGNs SIZEe DIM and ABS (integerde.
EeQee FNIX(T7e5)e SGN(X)e SIZE (#5)

The result of any binary operation (+¢ =9 *x¢ /o T) or
MOD function whose two arguments are both integerse.
EegQes 2%/5%e 3IXT(-17%)s 4% + LEN(BS)

The result of the MAX and MIN functions when the
arguments are all integerse.

NOTE:

Any intermediate or final {integer
value Lying outside the allowable
range causes an errore

fer e e — o——
e e > o p— — —

34

Numerlc lerms

' C] :
Ch 1. constant: |{+}| {floating-point constant}
1{~2} {integer constant}
C]
2. expression #: {numeric variable }
(or exp) {constant }
{mathemat ical function 3
{DIM function }
{FN function }
{LEN function 3}
" {NUM function 3}
{POS function }
{SIZE function 3
{VAL function }
{ L{+) 1L 1)
C LS R
{L{+)lexpression|{*)} expression | |eece] 2}
{ | {7} I} | 2}
{ {12 [| 3
{ C{x2} JC 11
{ (expression) }

3. jnt: digit [digitlessl%1

g”‘ 4. numeric array-desigpnator: letter [digitl [%])
Se numeric_array name: Lletter [digitl) [X]
6e numeric_array variable: letter [digit]l CX1 (exp [sexpl)
Te numeric_scalar variable: Lletter [digit] [%1]

Be puperjc _varjable: {numeric scalar variablel
{numerdic array variable }

9 mathematical _function: #Pls MAXe MINs MODs ROUNDe ABSs
ARCOSe ARSINy ARCTANe ATNy COSTy EXPs INTe LGTs LOGs RNDs
SGNe SINe SQRe TAN functionse.

adjacent operators are not allowed (€eQgese A¢++B).

35

CHAPTER 3 ALPHANUMERICS

3.1 ALBHANUMERIC_CHARACTER STRINGS

In addition to its ability to manipulate and operate upon
numeric valuese VS BASIC also provides an extensive capability
for processing information in the form of alphanumeric character
stringse. A ®"character string® s a sequence of characters
treated as a unite. A character string may consist of any
combination of keyboard characterse dncluding Lletters A-=Z,
numbers 0=-9y and special symbols +¢ =¢ $¢ etce Characters not
found on the keybocard can be represented in the form of
hexadecimal codes. Typical examples of uses of character strings
are namess addresses and report headingse

Character strings are represented in a program in two basic
forms:

le As the values of alphanumeric string wvariabless or
portions of string variablese.

2. As Literal stringse the alphanumeric equivalents of
numeric constantse.

Both alphanumeric scalar variables and -alphanumeric array
variables may be wusede The dimensions of alpha arrays can be
specified in a DIM or COM statement prior to their use in the
programs or the defaults (variable length of 16 bytess array
dimensions 10 by 10) can be usede.

36

J

3e2 ALPHANUMERIC_SIRING VARIABLES

Alphanumeric character strings are stored and processed in
a special type of variable called the alphanumeric string

variable, or simply alpha . variablee. Alpha variables are
distinguished from numeric variables by the presence of a dollar
sicn (*$*) following the wvariable .namee. For examples the

variable name ®*A* represents a floating-point variables while the
variable name *A$"' represents an alpha variables similarlys *N3%X®
is dnteqere while *N3$* {s alphanumerics etce. Note that a
numeric variable and an alphanumeric variable are separate and
independent variableses Data stored- in an alpha variable cannot
be operated on by arithmetic operatorss de€ees +y =9 *9 /9 T or
*x, There aree« howevere a number of Logical operators (discussed
in Section 3.8 1in this <chapter) which can be used to test and
manipulate alphanumeric datae.

Alpha variables are of two types: ‘alpha scalar variables
and alpha array variablese. An alpha scatar variable can store a
single <character string from 1 to 256 characters in lengthe An
alpha array variable consists of one or more array elementss each
of which can store a character string from 1 to 256 characters in
lenathe Array variables are useful because they enable the
programmer to reference a collection of data with a single array
names. (The separate character strings stored in the elements of
an alpha array can be treated together as a single contiguous
character string wusing the STR function. See STR function in
Part 11.)

Alphanumeric array variabless Like numeric arrayse are
further divided 1into two <classes: one-dimensional arrays and
two-dimensional arrayse. One-dimensional arrays (also called
"single-subscripted arrays®) may be conceived as analogous to
Listse with a single row of elementse Two~dimensional arrays
(also calted "double~-subscripted arrays") are analogous to
tablese with both rows and columns of elementse The structure of
arrays is discussed in greater detail in Chapter 2+ Section 2.3

Scalar variables and array variables are regarded by the
system as separate and 4independent types of variabless while
one-dimens ional and two-dimensional array variables are different
but related kinds of arrayse Thus the same name may be used in a
program for both an alpha scalar varifable and an alpha array
variables but the same name cannot be used for a one-dimensional
alpha array and a two-dimensional alpha array in the sanme
proagrame For examplees the variable names A% and A$(5) can both
be used in the same programe but A$(5) and A$(6e6) cannote

37

The DIM and COM statement can be used to define the amount
of memory allocated to a sealar or array variables in a DIM or
COM statementy, the expressions following the array name contain
constants giving the row and column dimensions of the arrayes The
DIM or COM statement must precede the first reference to the
array or any of its elements in the programe or the default size,
10 by 10¢ will be usede.

Examples of DIM and COM statements:

DIM A%(10)e C33(145)9 FT73(244)
COM AS(12)y C53(2+2)9 F13(1e2)

NOTE?

|
|
|
An alpha scalar or alpha array element |
is filled with blanks (HEX(20)) when |
the scalar or array 1is dnitially |
definede. |

1

VS —

Alphanumeric Variable Lenath

An alphanumeric variable {identifies a unique location in
memory reserved for the storage of alphanumeric datae. The systenm
reserves space for each varfable during compilatione at which
time the program 4{s scanned for all variable references. The
“amount of space reserved for each variable can be specified by
the programmer in a DIM or COM statemente The maximum Length of
an alpha scalar variable or of an element in an alpha array is
256 bytess while the minimum lLlength is one byte in each casee. It
the programmer does not explicitly dimension an alpha variable in
a DIM or COM statements the system automatically reserves 16
bytes for the wvariable. Similarlys §f the programmer does not
specify an element Llength when dimensioning an alphanumeric
arrays the system automatically reserves 16 bytes for each
element of the arraye

NOTE:

If a value other than the default (16
bytes) is to be used for a variable,
the DIM or COM statement which
dimensions that variable must appear
before any other reference to the
variablee. ’

et . T ———— —— e

38

The lenagth of an alpha variable or array element specified
in a DIM or COM statement is called its "defined™ Llengthe In
many casese howevers the character string stored in an alpha
variable will not occupy the entire defined lengthe The end of
the value of an alpha variable is normally assumed to be the last
nonblank character (except when the value is all blankse in which
case the value 1is assumed to be one blank)e. Hences trailing
blanks generally are not considered part of the value of an alpha
variablee For example:

100 A$="ABC "
200 PRINT AS$3"DEF"
OQutput: ABCDEF (Note that the trailing
blanks of A% were not
printed.)

The character string stored in an alpha variable is called
the "current value®" of the alpha variables and its lengthe up to
the first trailing blanke s <called ©®the current Length® (or
tactual Length®") of the variable. The length functione LEN

determines the current length of an alpha varfable. For example:

100 A$="ABCD b
200 PRINT LENCAS)
4
Output: (Trailing blanks are not

considered to be part of the
value of an alpha-variable by
LENG)

Most alphanumeric dJnstructions operate on the current
length of an alpha variablee. (That sy they operate on the
current value wup to the first trailing blanke) 1In some casess
howevery the entire defined length of the variable may be usede
It is importante therefores to understand the distinction between
defined lenagth and current lengthe.

NOTE

|

|

|

| If the defined Length of an alpha scalar
| or array element is larger than needed for
| storing a given valuey the scalar or array
| element is filled out with trailing blanks
| (HEX(20)) when the value is storede.

1l

R —

39

3.3 LITERALS

Alphanumeric Literal_Stirings

An alphanumeric Literal string 1s a character string
enclosed in double quotation marks (*). Literal strings can be
specified as constant datae usually in a PRINT statements to
create headings or titlese For example:

100 PRINT "VALUE OF X=%"3X

In line 100y the character string VALUE OF X= is a literal string
which is printed exactly as it appearse.

Literal strings can also be assigned to alphanumeric
varjabless For example: :

100 A$="BOSTONsMASS."
200 PRINT AS

Output: BOSTONeMASSe.

A Literal string may be from 1 up to 255 characters in
lengthe Howevers when a literal string 4s stored 1in an alpha
variables it is truncated to the defined Llength of the alpha
variablee« For example:

100 DIM A$S
200 A3="123456789"
300 PRINT A%

Output: 12345 (Note that the value was
truncated to five <characters
since the defined Length of
A$ is five bytese.)

The minimum Length of a Literal is ones the null string ("")
is not allowed. The double-quote character i1s-not allowed within
a (double-auote) literal stringe.

Alphanumerdic Lliterals can 1n ogeneral be used wherever alpha
variables are alloweds except where the statement requires a
receiver and does not oermit the use of an alphanumeric
constant. (See definitions of alpha-receiver/expressions)

Lowercase Literal Strings

A second type of literal string is available for specifying
lowercase characterse. The Utiteral string 1s entered with
uppercase characters enclosed in single quotes (%), The single
quotes indicate that the uppercase letters are to be converted to
Lowercase by the systeme.

40

@h

{P.

For examples
100 PRINT "J®"S*OHN*S"D"S*OE"

Qutput: John Doe (if device is capable of printing lowercase)
or
JOHN DOE (if device only prints uppercase letters)

NOTE:.

Lowercase strings can be indicated using
single-quotes wjthout setting .the EDITOR to UPLOW
(which allows Llowercase lLetters to be -entered from
the keyboard directly)e Strings enclosed in
single-quotes are entered as uppercases they are

output as lowercasee.

Any character 1is valid in a2 lowercase Lliteral string except
the single-quote character ("), Note that a single-quote
(Lowercase) Lliteral string may contain double quotesy and
vice-versae

Examples of Statements Using Alpha Variables And Literal Sirinas

Alphanumeric string variables can be used 14n the BASIC
statements Listed belowe Literal strings can generally be used
in place of alpha variabless except where a value i1s assigned to
the variablee.

LET LET Ag=8%(2)
A$="ABCD"

IFee o THEN IF A3=B$ THEN 100
IF AS<®DR"™ THEN 200
IF "ABCD">B$ THEN 200

INPUT INPUT A$+8%(4)
READ READ C3eDS+ES(142)

PRINT PRINT AS¢BSe"ABCD"
PRINTUSING PRINTUSING 504A$¢BSe"LAST"
DATA DATA ®ABCD™¢®EFGH" 410

STR ASSSTR(BS(I) 1)

There are two main types of alphanumeric arguments wused
with alpha functions and statements 3in BASIC: alpha-receivers
and alpha-expressionse

41

Alpha-Recedvers

An alpha-receiver is an alphanumeric 1{item which has a
specific memory locatione such as a variable Oor arraye
Alpha-receivers must be used wherever a value is Yreceived",
ee0es On the Lleft side of a LET statementy in the argument List
of a READ statements etce

The follouing are the only legal alpha-receivers in BASIC:

alpha variable (eegee ASe AS(142))
alpha array string (e«ges BS$())

STR function» (eeGes STR(ASe141))
KEY function (see Section 6e.6)

* Only when the first argument is an alpha-receiver.

Alpha-Expressions

Alpha-receivers are a special case of the more general
alpha-expressiope which is a combination of receiverss Literals,
alphanumeric functionss the concatenation operator (8) and
optional parenthesese. Alpha-expressions may be used wherever
variable values are . allowed as "sending®e as opposed to
"receivingTy fieldse €eges on the right side of a LET statemente.
in the arg list of a WRITE statementy etce The maximum length of
an alpha-expression 4s 324767 characterss

The following is a general List of allowed
alpha-expressions:
altpha-receiver (eegeo ASe STR(A9S141))
Literal (eegee "A"¢ HEX(0O0))
alpha exp & alpha exp (eeQeo AS & "XX"™)
(alpha exp) (eeQee (AS))

BIN function

DATE function (see description in Section 3.9)
TIME function

FS function (see Section 6.6)

MASK function (see Section 6.6)

STR function

Note that all alpha-receivers are alpha-expressionse but the
converse 1s not true.

€eQe Alpha-expressions
Receiver Non-receiver
AS (A3)
STR(X$e1) " ITERAL"
KEY (#1) AS & "xx®
X1$¢) DATE

STR (AS()) BIN (XT2e3)

42

Aj

3¢5 CONCATENATION OF STRINGS

The concatenation operator (&) combines two stringss one
string is put directly after anothers without intervening
characterse. The two strings combined by the concatenation

operator are treated as a single stringe

100 AS="WASTE"
200 B$="LAND."
300 C$=A% & B%
400 PRINT Cs$

Output: WASTELAND.

Literal strings expressed as constants can be concatenated with
titeral strings stored as the values of alpha variables. For
example:

100 AS="BY"

200 B$="T.Se.ELIOT"®
300 C$=A$ & " " & Bs
400 PRINT C$

Output: BY TeSeELIOT

Any Legal alphénumeric operandes Jncluding HEX Literal
stringsey can be concatenated with alpha Literals or alpha
variablese For example: '

100 A$ = ™APRIL 1S THE CRUELEST MONTH"
200 C$ = A% & HEX(2C) & "BREEDING"™
300 PRINT C$

Output: APRIL IS THE CRUELEST MONTHes BREEDING

3e6 ALPHA _ARRAY_STRINGS

An entire alpha array can be treated as a single (long)
alpha variable when an alpha variable would be allowede 1In this
case the alpha is referred to by its name followed by "()* (the
same syntax used for alpha array-designators)e. The array 1is
treated as a single contiguous character strings which in memory
is equivalent to a row-by-row path through the elements of the
arraye For example:

100 DIM A$(2+2)3
200 AT(1e1)="1TCA3(162)="272A3(241)=M3P2A8(242)="4"
300 PRINT A$()

Result: 1 2 3 4

(Note that fipal trailing spaces are not
printeds exactly Llike ordinary alpha variablese.)

43

Although alpha array strings and alpha array-designators
Look alikee their usace 1is generally determined by the syntaxe
There are casess howevers in which both scalars and arrays are
alloweds In these casess an argument such as A$(¢() will always be
regarded as an array-desigpatore pever as an array stringe The
statements in which this can occur are:

ACCEPT CALL GET
DISPLAY suB PUT
Disk I/0 Statements

In these cases STR may be used <(eeges STR (AS$())) to
indicate that the variable is to be treated as an array string
and not as a designated arraye.

3¢7 HEXADECIMAL LJITERAL STRINGS

Hexadecimal literal strings are a special form of Literal
string consisting of one or more hexadecimal codes specified in a
HEX functione. (See the discussion of the HEX functione.)
Hexadecimal codes are composed of a pair of hexadecimal digits
(0-9 or A-F)5 they are particularly useful for representing ASCII
characters not found on the workstation keyboard and workstation
control codes (Field Attribute Characters)e. For examples
hexadecimal codes can be used to format the CRT display into
fields (see the discussion of field attribute characters 1n

Chapter 5¢ Section 5e5)e.

HEX Literal strings are legal wherever alphanumeric Lliteral
strings are allowede. In particulare they can be assigned to
alpha variables in an assiaonment statemente For example:

600 A$ = HEX(313233)
700 PRINT A3

Output: 123 (The characters ®123" are
printeds since they are
represented by the hex codes
31¢ 329 and 33.)

Any Legal hexadecimal code may be specified 1in a hex
Literal stringe. The wuser shoulde howevers be aware of the
special use of hex codes 80 to FF - field attribute characterse.

3.8 LOGICAL_EXPRESSIONS

There 4ds a special type of alpha-expressions allowed only
on the right side of a LEI <(assignment) statements which uses
togical operatorse such as ANDes ORs etc. These expressions are
called lLogical expressions and are defined below.

44

8

Logical _expressions (LET statement only)
General form:

Loperator] operand [operator operandl] [operator operandlleeces]

ADDLC]
AND

OR

XOR
BOOLh

where operator

alpha-expression
ALL function

operand

e o — et —— - — — —— e — p—
e — e —— e — — — — e — —

Note that the operand List is virtually the same as that
for alpha-expressionse with the addition of the ALL functions
defined in the next section. Also note that concatenation (8)
and parentheses are not allowed within logical expressionse.

Evaluation of Loglical [xpressiops

A statement of the form: LET receiver = logical expression
is evaluated as follows:

1l If the expression begins with an operande the receiver
is assigned that operand (i.eeae Like a simple LET
statement).

2 From Left to rights the next operator operates on the
operand to 1{its right and the receivere 1In all casess
the defined Lengths of both arguments are useds with
the operation proceeding one byte at a time as follows:

o ANDs ORs XORe BOQOLD

The operation proceeds from Left to pight. If
the operand 4s shorter than the receivers the
remaining characters of the receiver are
unchangede. If the operand 49s Llonger than the
receivers the operation stops when the receiver is
exhaustede.

45

« ADDLC1

The operation proceeds from pjght to Left. 1If
the operand and receiver are not the same Lengths
the shorter one 1s Left-padded with hex zerose The
resutt {s right-justified 4in the receivers with
high-order characters truncated 1f the result is
Longer than the receivere.

3¢ The receiver always gets the result of the operations
then step (2) 1is repeated until all operator-operand
pairs are used upe.

Note that part of an alpha variable can be operated on by
using the STR function to specify a portion of the variable. For
examples :

100 STR(ASe 39 2) = ADD BS

operates only on the 3rd and 4th bytes of A%,

Logical expression operators

(For examplese assume DIM _AS$2)

1. ADD
Adds the binary values of the argumentse one byte at a
time with pno carry propagatione
Eegeeo 100 AS HEX(8123) ADD HEX(OOFF)
Result: AS HEX(€0122)

2. ADDC
Adds the binary values of the argumentse one byte at a
time with carry propagation (like 2 Llong binary
numbers)e.

Eogo' 100 AS
Result: AS

HEX(0123) ADDC MEXCOOFF)
HEX(0222)

3. AND
Logicallty AND's the two argumentse one byte at a timee
Ee«Qes 100 AS HEXCOFFO0) AND HEX(OFOF)
Result: AS HEXC(OFO00)

4. QR :
Like ANDe but Logically OR*s the two argumentse.

EeQes 100 AS HEXC¢OFOF) OR HEX(OFFO)
Result: AS HEXCOFFF)

5 XOR
Like ANDes but Logically exclusive-OR*s the argumentse.
HEX C(OFOF)X OR HEX (OFFQ)

HEXCO0OFF)

EeGee 100 AS
Result: AS

46

(D

6. BOOLD

BOCLD
A generalized Llogical operatores whose function s
determined by the digit ®"h".

Eeges 100 AS HEX(OFF0) BOOL8 (HEX(OFOF)

Result: A$ = HEX(OFQ0O0)

3.9 EUNCIIONS WIIH_ALPHA_ARGUMENIS

Four functions enable a BASIC program to evaluate the
contents of an alpha-expression in predefined wayse ALl four
return an integer valuee.

Function Name Sample Expression ~ Meaning
LEN LENCXS) The Length of the argumente.
NUM NUMCXS) The number of consecutive

characterse starting at the
firste from the argument
which forms a legal BASIC
(ASCII) numbere.

POS POS(X$="¢%) The position within the ar-
gument of a specified char-
actere

VAL VAL(XSeN) The binary numeric value of

the first N characters of X%

LEN

The LEN function requires an alpha-expression as its
arguments and returns an integer value which §s the actual Length
of the argument. The Llength of a string of all blanks is 1.

LENC("ABCDE®™) Returns 5%.

LENCES) Returns the actual Length of
E$e

LENC(STRC(ES)) Returns the defined Length of
Es.

LENCASEBS)=LENCAS)+LEN(BS) This relation is always truee

NUM

The NUM function requires an alpha-expression as an
arguments and returns an integer value equal to the number of
sequential characters in the argument that form a legal BASIC
floating-point constant. Allowable characters are 0 through 9,
Ee <9 +9 -9 and spaces provided that they 'conform to the syntax
for floating-point constantse.

47

The count begins with the first character of the arguments
and ends with the first character that violates the
floating-point syntax. NUM searches the entire (defined) Llength
of the argument: if no characters are found which violate the
floating-point syntaxe NUM returns the defined Length. If.
howevers the argument is entirely blankes NUM returns 0X.

NUM can be used to validate an élphanumeric representation
of a number before attempting to convert it to internal numeric
binary forme.

NUM will not stop 1ts search after finding more than
fifteen digits in the numeric constantes even though subsequent
attempts to evaluate that number will dgnore all digits other
than those belonging to an exponent - after the fifteenth
sfgnificant digite. :

Note that NUM does not check the value of a numbery only
whether it is formatted correctly. Thus NUM(®"1EB88%) returns 4%,
even though 1E88 is ogareater than the Largest altowed
floating=-point constante.

BOS
The POS function requires three components ¥n 1ts argument
(not to be separated by commas): (1) an alpha-expressions

optionally preceded by a minus~signs (2) a2 relational operators
and (3) a second alpha-expression. The relational operator is
taken from the set:

The POS function searches the first string for a character
which satisfies the specified relation with respect to the first
character of the second stringe Thuse POS (E$<="x") searches E$
for a character less than or equal to ®*=x",

Comparisons are based on the ASCII coded values of the
characterses Thuse searching a2 string for a character Less than
or equal to " " means searching a string for a character whose
hexadecimal value is Uless than or equal to HEX (20)e the hex
value of the space (®* %) charactere.

The POS function returns an finteger value .which is the
position 1in the first expression where the comparison first
succeedse The leftmost position 1in the expression is named 1%5
the position to the right of that fs. 2%+ and so one If no
character 4s found within the first expression which satisfies

the relationes POS returns a value of 0%

48

The optional minus sion to the Left of the first
alpha-expression indicates the direction of the searche.
Normallye searches are Lleft-to-rights if the minus sign is
presenty the search will proceed from right-to-lefte. The entire
detined length of the expression is searched until either a match
is found or the expression is exhausted.

POS(ES=" ®) Returns the position of the leftmost

space in E%.
POS(-E$=% @) Returns the position of the rightmost
spaceas
NOTE

When comparing alpha string variables with Literal
strings or other alpha string variables (eeges IF AS
< ™ABCD")e values are compared character by
character. Trailing spaces are considered equivalent
to HEX(20) 1in determining where to place each value
in the collating sequences The variables fall at the
same location in the collating sequence (ia.eces they
are eaual) even if they do not have the same number
of trailing spacess so Llong as all their other
characters are equale.

Example:

100 DIM A344B354C 85 800 GOTO 1000

200 Ag$="ABC" 900 PRINT "A$=CE"3A%,.C3
300 B$=HEX(41424321) 1000 PRINT HEXOF (A$%)
400 C$="ABC © A$=C3$ABC ABC

500 IF A$=B%$ THEN 700 41424320

600 IF A3$=C$ THEN 3500
700 PRINY "AS=BS"3A%+B3%

e — —— . — — — —— — ——— > — — — — — o
e e e e e e e e o e o e e e e e e e e

VAL

The VAL function requires an alpha-expression as an
argumente A digit whose value is 1¢ 24 3¢ or 4 can be supplied
as a second argument: {f it is omitteds a value of 1 is assumed
for the second argumente.

The VAL function extracts 14 29 3¢ or 4 characters from the
alpha-expressions depending on the value of the second argument,
and returns an integer value comprised of the binary value of the
extracted charactert(s).

VALC(AS) or VAL(AS+1) will simply return the binary code for
the first character of A$. For 1instances VAL(®AP41) dJs 65%s
VAL("B%¢1) 1s 66%Xe and so one The value will range between 0%
and 255Xy inclusive. Note that the binary value of characters is
as specified by the ASCII code.

49

VAL(A$42) will return an integer whose value is?
(code for 1st char.)tzés + (code for 2nd chare)

It will be in the range 0% to £€5535%s inclusive.
VAL(A$¢3) returns a value between 0X and 16777215%.

(code for 1st char.)*65536 + (code for 2nd char.)*256 +
(code for 3rd chare.}

VAL(AS94) computes the following value?

(code for 1st char.)*16777216
+ (code for 2nd char«)*65536
+ (code for 3rd char.)*256
+ (code for 4th chare.)

This computation requires all 32 bits of the dintegers
furthermores overflow may occure causing the result to be a
negative integer. The value of the result will range between
=2147483648% and 2147483647Xy inclusive.

The BIN statement can be used to extract characters from an

integer expression which contains their binary valuess reversing
the operation performed by VALe.

Alpbanumeric Functions

Eight BASIC functions return alphanumeric valuese.

Function Name sSample Expression Meaning
ALL ALLCAS) defines a character string

consisting entirely of characters
equal to the first character of
the alpha-expression.

BIN "AS=BINCAed) converts the dnteger value of an
expression to an alphanumeric
string of d characters (le¢ 24 3¢
or 4) which is the binary
equivalent of the expressione.

DATE DATE returns a six-character string
giving the current date 1in the
form YYMMDD.‘

FS FS(#1) returns a two-character code
representing the file status for
the most recent 1/0 operation
involving the specified file.

50

KEY

MASK

STR

TIME

KEY ¢#1) returns. the "key®™ field for the
: last record read from the
specified filee.

MASK (#1) returns the two-character
alternate key mask for the last
record read from the specified
filee

STR (A$¢A¢B) specifies the substring of an
alpha variable or array stringe.

TIME returns an eight-character string
giving time to the hundreth of a
second in form HHMMSShh,

Further discussion of these functions can be found under
thefr respective entries in Part 1l.

3410 SUMM

ARY_OF RULESs FORMATSs AND SYNTAX

Alphapumeric_Lengibh

1. CACTUALJ_LENGTH (in bytes)

(as

determined by LEN functione also <called “current®

Length)

alpha_variable
Does not include trailing blankse.

If all blanke length=1.

alpha _array_string
Like

alpha-expression
Length = sum of actual Lengths of the concatenated
argumentse.

SIR _function
Length is the number of characters extracted,
inctuding trailing blankse.

KEY function
Length is the key length specified in SELECT.

Literal
Length is the number of characters within quotes or
the number of hexdigit pairs in HEX.

ES_function
Length=2.

51

e DAJE function
Length=6.

. TIME_ fupction
Length=8.

. MASK_ funsti
Length=2

o BIN function
Length as specified in BIN (142¢3¢ Or 4; default=1)e.

2e DEFINER_LENGTH

« alpha_ variable
As specified in DIMy COMy or most recent MAT REDIM.

(Default = 16.)

o alpha_ array_siring
Product of 3 dimensions (ee.ge rowe columne element

Length) 3in DIMe COMe or most recent MAT REDIM.
(Default 10 x 10 x 1l6.)

« a2lpha-expressions
Except alpha variables and alpha array stringse.

Same as actual lengthe

o ALL other alpha forms
Same as actual Lengthe

NOTE?

Receiving fields and fields treated as
data buffers (es.ges PUT) always have
their defiped lengths available to the
operatione.

Alphapnumeric_lerms
1. alpha_scalar_yariable: Lletter [digitls

2a alpha_array name: Lletter [digitls

Se alpha_array-desicpator: letter [digitlsO)
4, alpha_array_element: Lletter Ldigitls(expleexp)

5 alpha_variable: {alphé scalar variablel
{alpha array variable 1}

52

6e alpha array string: Lletter [digitls()
(Treated as a gsingle Long alpha variable)

{ 8] 3
Te Lliteral: {"{any - } |{any 3 "3
{ {character}) |{character}|eees 1}

{ {except } |{except 3} 3
{{ = } 4L ¢ 3} }
{ C b | }
{ }
{ C])
{*{any } | {any 3} *}
{ {character) |{character}|eees 1}
{ {except } |{except 3 }
{ ¢ } € ¢ 3 3
{ L] }
{ HEXChh[hhJeee) }
8e h: a hex digit (0sle29ecee99¢A9BsCoDels or F)

e alpha-receiver: {alpha-variable
{STR(alpha receiverlL¢lexplleexpl]l)
{alpha array string
{KEY (file-expression Leexpl)

10. alpha-expression: {alpha-receiver 3
(or alpha-exp) {lLiteral }

{DATE function }

{TIME function }

{BIN function }

{MASK function : }
}

}

3

)

{FS (file-expression)

{alpha-exp & alpha~-exp
{(alpha-expression)

{STR (alpha=-explLelexplLeLexplld)

11. logical _expression:
Loperator] operand [operator operandl Loperator operandl
[‘.‘]

where:
ADDLC]
AND
operator = BOOLh. cperand = alpha-expression
OR ALL function
XOR

Alphanumeric _QOperations
1

e The following applies to alpha values used in any BASIC
functions or operations:

53

N

. Alpha-expressions which are pot receivers are
moved to new Locations before being used or
changeds Note that this 4{ncludes alpha-receivers
enclosed in parenthesese.

. Except in the TRAN statemente described in Part 1II,
alpha-receivers are neyer moveds they are operated
on 1in places This can cause quite distinctive
resultse such as single-character propagation and
boolean operations applied stringwise to a
recetver. The difference 1in results between
alpha-expressions which are not receivers and those
that are is especially noticeable in the following:

ADD
AND
OR
XOR
BOOL
COPY
LET

. In general, any operation requiring character
comparison or movement is done one byte at a time.
This applies to each of the functions Llisted abovee.

2 TRAN always moves the translation alpha to a separate
translate tables inaccessible to the user. Thuse TRAN
may never transtate its own tablee accidentally or
otherwisees

3« Statements which perform multiple assignments always
assign values from Left to righte except the LET
statement {tselfs which operates from pight to Lefte.
This applies particularly to: INPUTe ACCEPTe GOSUB*(),
READe and GETe
This can be an important considerations especially when
receivers in the same Location are specified more than
once in the receiver liste.

Miscellaneous_Jerms
l. file-number: #int
where 1 ¢ int < 64
2. file-expression: #expression
(or file_exp) where 1 expression £ 64
3. Line-number: digitldigitildigitildigitlldigitlldigit]

54

Se

6e

receiver: {alpha receiver 1}
{numeric variablel

array-desianator: <{alpha array-designator 1}
{numeric array-designatorl

d: a2 digit (0sle29eee8 or 9)

55

CHAPTER 4 CONTROL STATEMENTS

41 INIRQDUCTION

In normal processing a VS BASIC program 1is executed 1in
ascending Lline-number sequences with multiple statements on a
Line executed from Left to right. VS BASIC also provides a
number of statementss called control_ _statementse which can be
used to alter the normal sequence of executione VS BASIC control
statements are Listed in Figure 4-1.

| |
| CALL FORe e oNEXT INPUT |
i RETURN IFeeoeTHENeeoELSE ACCEPT |
| END ONee oGO TO STOP |
] GOSUB ONeoeGOSUB Intrinsic Functions |
! GOosuB* GOTO Unusual Condition |
{ FN Exit Clauses |
| |
| L

Figure 4~1« BASIC Control Statements~*

Control statements provide BASIC with the following
facilities:

1. Halting _Execution - ENDe if encountered in a programs
terminates program execution and returns control to the
command processor or the invoking program or procedures
or if encountered 1in a subroutines returns program
control to the calling program (see number 3). STOP
temporarily halts execution wuntil the program user
presses the workstation ENTER keys ore under defined
conditions, one of the program function keyse

*NOTE: A number of other BASIC statements also have error/data
conversion exitse

56

J

2e

Se

INPUT and ACCEPTes Like STOP temporarily halt
executione 1in this case to enable the program user to
supply the program with run-time dataes ore once again
under defined conditionse to press a program function
keye These statements are discussed in Chapter 5 and
under their separate entries in Part Il.

Looping - A powerful feature of BASIC is 1ts ability to
execute repeatedly a defined section of codee. This
section of code 1is called a Loope BASIC provides a
pair of statementss FOR and NEXTe that automatically
mark a loop and determine: the number of times ¥t will
be executede. FOR and NEXT are discussed under their
entries in Part 1l. -

Program__Branching - A number of statements direct

"program execution to a specified section of codee. 60TO

transfers control to the Line number following the GOTO
verbe GOSUBs GOSUB'e and CALL transfer control to
various kinds of subroutiness after the execution of
which control can be returned to the main body of the
program by RETURN or ENDe. GOTO0 1s discussed under its
entry in Part IIS subroutines are discussed in Section
42 and under the entries for the various statements in
Part I1.

Related to subroutines are fupctionse sections of code
whiche when invokeds are given an argument and return a
value. VS BASIC has both ipntrinsiec and wuser-defined
functionse. Intrinsic functions are sections of code
residing 1in the compiler. When an dntrinsic function
name 1is wused 1in the source filey the code for that
function is compiled 1into the object file and is
invoked whenever the function name appearsSe The
intrinsic functions include all the standard
trigonometric functions (SINe COSe TANe etceds a number
of other numeric functions (for roundings random number
generations etce)les a number of alphanumeric functions
(for operation on substrings etce)s and four systenm
functions for disk 1I/0e. Intrinsic functions are
discussed in Section 4.3 and under the entries for the
various functions in Part II.

User-defined functions are defined by a DEFFN statement

and 1invoked by an FN function call. These are
discussed under their entries in Part 1I1le.

57

4« Conditional__Branching - IFeeeTHENesoELSE enables the
program to test a relationship =~ the operand of the IF
clause - and branch according to the result of the
teste If the relationship ¥s truee the THEN clause is
executed and the ELSE <clause 1is note. If the
relationship is not trues the ELSE <clause (or in the
absence of an ELSE clausey the next sequential
executable statement) is executed and the THEN clause
is note The IF statement is discussed under its entry
in Part Il.

Se Unusual Condition Exits - VS BASIC provides a2 number of
exits for data error and end-of-data conditions which
would otherwise result in termination of a programe
These dnclude the DATA, JOERRe and EOCD (end=-of-data)
clauses in the file 1/0 statementse. These clauses in
file I/0 statements are discussed in Chapter &+ Section

Ge7¢ and in the appropriate entries in Part I11.

402 SUBROUTINES

A subroutine is a group of program Lines which can be
invoked from any point 1in a program any number of times to
perform a specific taske When execution of a subroutine is
completede processing normally returns to the point in the
program from which the subroutine was 4invokede. This feature
gives subroutines a distinct value - the same set of instructions
can be accessed from many different points in a programs with
control returning (if desired) to the part of the program that
‘called the subroutine.

VS BASIC provides two main types of subroutines: internal
and externale Internal subroutines are included as part of the
code in the main BASIC source file. They are invoked by a GOSUB
or GOSUB' statement, ors under certain circumstancess by
depressing an appropriate PF key while execution is halted by
INPUT or STOP. Subroutines invoked by GOSUB* or a PF key are
marked in the source file by a DEFFN®* statement. Subroutines
jnvoked by GOSUB are not marked - GOSUB transfers control to a
specific Line number.

External subroutines are written as dindependent filess
beginning with a SUB statement. After compilations they are

linked to the main program via the LINKER utility (see 2200VS
Programmer®s Introductions Chapter 4). The main program invokes
external subroutines by means of the CALL statemente. External

subroutines have the advantage that they can be Linked to any
number of calling programses making them a useful way to code
routines that may be used by more than one programe An external
subroutine has to be coded only once. If it 49s changeds it has
to be changed and recompiled only onces and the calling programs
do not have to be modifiede.

58

(J

4.3 INJERNAL_SUBROUTINES

VS BASIC provides three ways of 1invoking an 4internal
subroutine - GOSUBs GOSUB'e and the execution-time pressing of
program function keyse. A brief summary followss a full
discussion of each statement can be found under the appropriate

entry in Part 11 of this manual.

GOSUB

The GOSUB statement branches to a Line number. For example:
500 GOSUB 2000

When executed this statement transfers control to Lline
2000, The beginning of the subroutine is not specially marked.
Any lLlegal BASIC statement c¢an begin a GOSUB subroutine. For
example?

2000 REM THIS SUBROUTINE PRINTS THE CURRENT VALUE OF A
2100 PRINT ®A="3 A
2200 RETURN

The system stores the Location of the statement which
invoked the subroutine. At the end of the subroutines marked 4n
this case by a RETURN statements execution continues at the
statement following the GOSUB statement on Line 500 If the same
subroutine 1s subseqguently 1invoked from Line 900s execution
cont inues then at the statement following the GOSUB statement on
Line 900. The end of a GOSUB subroutine is marked by a RETURN or
‘RETURN CLEARe RETURN CLEAR causes execution to continue with the
statement following RETURN CLEAR.

GOSuUBe

The GOSUB* statement branches to a subroutine which 1is
marked by a DEFFN®* statemente For example:

500 GOSuUB°*112

This statement will cause control to pass to the statement
DEFFN®*112. The range of allowable DEFFN® numbers is 0 to 255.
(Note thate wunlike with GOSUBe it 4s not necessary for the
programmer to keep track of the Line number when wusing GOSUB®
subroutineses) Following execution of the marked subroutines
control is returned to the statement following the GOSUB® by a
RETURNs or to the statement following the subroutine by a RETURN
CLEAR.

59

The most dmportant difference between GOSUB and GOSUB®
subroutines is that the Latter allow the passing of an araument
List. For example:

S00 GOSUB'112 (A34R)

2000 DEFFN®112 (D$4X)

This pair of statements does the following: implicit
assignment statements are generateds assigning the current value
of A$ to DSe and of B to Xs thus passing these values to the
subroutine.s When the subroutine endss howevers the values of Ds$
and X are not passed back to A$ and Be

Arguments are passed in the exact order in which they
appear in the argument Llists - the first item in the GOSUB? List
to the first item in the DEFFN® Listy the second to the seconde
and so one Arcuments must correspond in types an alphanumeric
argument cannot be passed to a numeric receivers and vice-versae.
Floating-point arguments mays howeverey be passed to integer
receiverss and vice-versae

Proaram Function Keys

The VS workstation hase at the top of the keyboarde 16
Program Function (PF) Keyse each of which can be depressed in
upper- or lowercase for a total of 32 Program Functionse. BASIC
can program any of the PF Keys to invoke marked subroutineses

Subroutines invoked from the keyboards lLike those invoked
with a GOSUB* statements are marked by DEFFN' statementss with
the restriction that the legal range of DEFFN® numbers for PF key
accessible subroutines have numbers 1 to 32 (instead of 0 to
255). A DEFFN* subroutine can be 4nvoked from the keyboard
whenever execution has been temporarily halted by a STOP or INPUT
statemente. At this timese depressing a PF key will cause control
to pass to the DEFFN® subroutine whose number corresponds to the
nurber of that PF keye For example:

500 STOP

2000 DEFFNe1

Depressing PF 1 when execution is halted by the STOP at Line 500
invokes the subroutine marked by DEFFN'l. Keying ENTERe howevers
causes the normal sequence of execution to continue with the

statement following STOP.

&0

D

Keyboard subroutines operate 1in the same manner as GOSUB?®
subroutiness with one exceptione. A RETURN statement passes
control back to the STOP or INPUT statemente 1instead of to the
statement following. Thuse DEFFN® subroutines can be dinvoked
repeatedly from a STOP or INPUT statemente.

4e6 EXTERNAL_SUBROUIINES

Using the GOSUBs GOSUB*e DEFFN®*s and RETURN statements
discussed abovees a program can transfer control to a portion of
the program=--called a subroutine--with the wunderstanding thats
when the subroutine has completed executions control will return
to the statement following the GOSUB or GOSUB®*e A subroutine can
be called from several points 1in the programe with control
returning each time to the point from which it was called on that
occasione. Subroutines defined 1in this manner are wholly
contafned within the source program file and are referred to as
"internal subroutines."®

There 1is a second class of subroutines which are not
contained in the body of the program (the same file)e but instead
reside 1in a separate files Such subroutiness referred to as
"external subroutines®™ or "subprograms® are defined with the SUB
statement and 1invoked with the CALL statement. 1In generaly a
BASIC source file <can contain either a main program or a
subprograme. Subprograms are distinguished by the fact that their
first statementy other than REMe must be the SUB statement.

The reasons why external subroutines might be preferred
over internal GOSUB or GOSUB® subroutines are as follows:

l. A program may be more manageable when broken down 1into
separate subroutines in separate files. Division into
subroutines may reflect the Logical division of
function within a programe.

2. A file containing a subroutine may be Llinked 4n with
several different main programse 1f the subroutine
performs a task common to all the main programse. If
changes are made to the subroutines there is only one
copy of the source file for that subroutine which has
to be updated. None of the source files for the main
programs have to be modifiede

3« BASIC programs may call subroutines written not only in
BASICe but also 4n other Llanguagese Thuse the SUB
subroutine is BASIC?*s primary dnterface to other
languages such as COBOL and Assemblere

External subroutines are the reason for the Linking stage of
program development. If a program is contained in several files
(a main program and several subprograms)e the lLinker must be used
to merge the respective object files produced by each compilation
into a single object file which is executable by the VS.

61

Operation of External Subrouiines

The CALL statement transfers control from one progran
(called the calling program) to the beginning of another program
(the external subroutine)e The point at which the CALL statement
occurs in the main program 4s saveds so that control may Llater
return to that pointe The SUB statement declares a program to be
a subroutinees allowing it to be named in CALL statements. A
subroutine mays itselfs contain one or more CALL statementse by
which it calls other subroutinese A subroutine cannote howevers
call itself.

When control is passed to an external subroutine by a CALL
statements the normal sequence of execution is followed in the
subroutine wuntil an END statement is encountered in the
subroutines Then control returns to the point in the calling
program from which the subroutine was {nvoked on that
occasion-—-i.ees control returns to the statement following the
Ltast CALL statement executede.)

The apparent effect of a CALL statement 1in a calling
program fs to 1invoke an entire sequence of statementse in
whatever order they are contained 1in the subroutines without
affecting the overall flow of control in the calling progranme.

Passing Values to Subroutines

A trivial example of a subroutine is a process which adds
two to a numbere and returns the resulte It 4s clear that a
method mwmust be wused to pass from the calling program to the
"subroutine the number which ¥s to have two added to ite and to
allow the subroutine to pass the result back to the calling
programe In BASICe these numbers are passed in one of two ways:

l1e The numbers may be made arguments or operands of the
subroutine. An operand of a subroutine means simply a
number which may be operated on by action of the
subroutine. These numbers are enclosed in parentheses
following both the CALL and the SUB statementse. The
arguments which follow the CALL statement define the
items which the subroutine will operate one. The
arguments of the SUB statement indicate the names by
which each respective 1tem will be referred to in the
subroutinee. There is a firme one-to-one correspondence
between the CALL arguments and the SUB argumentses based
on thedir position in the argument Lliste.

To overcome the problem which can be created when BASIC

modules call or are called from non-BASIC modulesy two
forms of SUB and CALL are provided.

62

I

20

A« non-ADDR_ form

This 14s the standard .BASIC argument-passing
schemes which passes/accepts the "dope vectors"
constructed for arrays and alpha-expressions/
receivers. Wwith this forme any dimensions/
lengths specific within the SUB program are
ignoreds since they are specified by the dope

vectorse. Only the vector/matrix/scalar
distinction 4s significante.

Be _A_QQ_B !le
This form is generally used when either the
calling progranm or the subprogranm is

non-BASIC. Its effect differs depending on the
statement in which it 1s used:

CALL: ADDR form for CALL causes all argument-
passing to be done via pointers to the
actual valuess dope vectors are not
constructede This method of argument-
passing will properly pass arguments to
non-BASIC (ee.ges COBOL) programse which
always assume that there are pointers
directly to the datae.

suB: ADDR form for SUB causes the program to
assume that argument-passing was done as
described 1n CALL abovey 1Je.eee¢ without
dope vectors. (Such CALLing may bhave
been done frome sayes a COBOL programe)

Howeverse this implies that the
dimensiops and Llengths wused must be

those specified within the suB
subroutines Thuse these dimensions and
lengths (or defaultse {f omitted) are
sfgnificante unlike ¥n the non=-ADDR forme

The fdtems may be made common (or "placed in common®").
The programmer places several variableses which are
usable as any other variables ares in a COM
statement. This statement essentfally declares that
the compiler is to place these variables 4n memory 1n
an area which is accessible to all subroutinese. A COM
statement may appear in a subroutine to 1{indicate that
named variables reside 1in the common area. Thuse 1f a
subroutine changes the value of any variable 1n the
common areas any other subroutine or calling progranm
may detect the change by examining the common areae.

63

There 1s a correspondence similar to the correspondence
in CALL/SUB argumentse since there §s actually only one
cCOmMmMON areae. Although calling programs and subroutines
may use different variable names to refer to variables
in the common area (as specified in each COM
statement)s they will be accessing the same variables.

Here is an examples assuming the first method (passing
arguments) s to be wusede The <calling program calls the
subroutine which will add two to a numbere. The number to be
fncremented=--in this exampley X--is Listed as the argument of the

calls

14400 CALL ®ADDTWO®(X)
Control is transferred to the subroutine called ADDTWO. The SUB
statement in that file declares the name of the subroutines and
indicates that it wiltl call the first argument “I%,.

100 SUB "ADDTWO™<(I)

Thuse on this calle the vartable I refers to what the calling
program calls Xe The statement:

200 LET I=I+2

adds two to the variable called X in the calling programe. When
the END statement in the subroutine s reachede

300 END

control returns to the calling program (specificallys to the
statement following Line 14400).

On a subsequent calls the calling program might give the
subroutine the same or a different variable as the argument.

20600 CALL ®"ADDTWO®"(E)

The subroutine would use the variable name I this time to refer
to the calling program®s Es and would add two teo ite.

The preceding example could have used common 1instead. The
calling program declares that it will use the first Location 1in
the common areas and will access it as the variable Xe.

100 COM X

Later in the calling programe the call to ADDTWO occurse In this
situations no arguments are required.

1440 CALL "ADDTWO"

64

/ﬁ;

(D

The subroutine must declare that 1t too will use the first
Locatfon 1in the common areas and must declare the name 3t will
use to access that Locatione.

100 SUB ®"ADDTWO®
200 COM I

300 I=T+2

400 END

Thuss by adding 2 to Is the subroutine adds 2 ¢to the same
variable which the callino program has called X

Unless linkage between variables in the calling program and
variables in the subroutine is made in one of these two wayse any
variable name may be used in a subroutines independently of any
other usage of {t 1in the calling program or another subroutine.
Likewises Line numbers in a subroutine do not correspond with or
interfere with line numbers {in another filee. The GOTO statement,
for 1instances cannot be used to transfer control from file to
filee Interaction between programs and external subroutines

occurs only in these two wayse

Arogument _JTypes

As the example showeds the name of an argument passed to a
subroutine is not significant in making the connection between
calling-program variables and subroutine variablese. What is
significant 4s the argument®s position din the argument List.
Thuse the variable name Listed first 1in the parentheses in the
SUB statement will be the name used by the subroutine to refer to
the first argument passed by the CALL statement. The second
variable name will be Llinked to the second argument 4n the CALL

statements and so one
15700 CALL "SUBROUW (A 4B4CoeDsE)
100 SUB "SUBROU® (IeJeKeAeB)

In this exampley the varfiable name A in the subroutine refers to
the variable 0 in the calling programe If the subroutine intends
to access the calling program®s variable As it must use the
symbol Ie.

If a receiver 1is placed in the argument lList of a CALL
statements the subroutine may transmit a value back to the
calling program by assigning a value to the corresponding
variable in the argument List of a SUB statement. Howevers an
expression of arbitrary complexity may appear in the argument
list of the CALL statement.s If the expression is not a receivers
the subroutine may not return a modified value for that argument
to the main programe The subroutine may use the correspondino
variable from the SUB statement as- a receivers doing so will
produce the usual effects during the duration of that call to the
subroutines but no detectable effects after the subroutine
returns to the calling program. .

65

For examples constantse literalsy and complex expressions
may occur in the argument Llist of a CALL statemente. This
precludes the possibility of the subroutine returning a value to
the catling program by the use of that particular element.

Whether a receiver or an expression occurs as an argument
fn a CALL statemente 1its type must match the type of the
corresponding argument in the SUB statement it caltlse.

I1f the n=th esethen the n=-th argument of
argument of a SUB any CALL statement that
statement iseee calls it must beeeo

an alpha scalars an alpha-expressione

such as: X$

an integer scalars an integer expressione.
such as: X% ’

a floating=-point a floating=-point expression.

scalar: X

an array an array-designator of the same type
designator: X3(). (integers stringe floating-point)e.

a file-number: #3 a file-expression SELECTed by

the calling program or passed to it as
a parameter.

Note thate contrary to normal proceduress BASIC will not
implicitly convert a numeric quantity in a CALL statement from
integer to floating-point or vice-versas to make 1ts type match
the type in the argument Llist of a SUB statement.

Entire arrays may be passed from a calling program to a
subroutine. Oonly the array-designator--for examples E() or
M$()-~-is wused as an argument 1n the CALL statement. The SUB
statement must containe in the corresponding positions an
array-designator of the same type (floating-pointe 1integers or
string) as the designator in the CALL statemente. The designator
used in the SUB statement declares the name by which that array
will be referenced in the subroutinee. '

66

/ﬂ)

~

~

Notice that an array string cannot be passed to a
subroutine 1in the usual mannere. If the array string #M3()
occurred as an argument iIn a CALL statements 1{t would be
interpreted as an array-designator for the array M$e and not as
the array stringe An array string may be passed to a subroutine

by using the expression

STR(MS$ ())

as an argument in the CALL statemente.

NOTE:

Array strings longer than 256 bytes will be
truncateds)

e - —
I —

The number of subscripts associated with a variable must be
consistent from the calling program to the subroutine. If the
array passed is two-dimensional (a matrix)e 9§t must be used as a
matrix in the subroutine. If 9t is one-dimensional (a vector)s
it must be used as a vector in the subroutinee A DIM statement
should appear in the subroutine to declare each array as efther a
vector or a matrixe. (If an array whose designator appears in the
SUB statement does not appear in a DIM statemente it 1s assumed
"to be a matrixe) In the DIM statementy the supplied dimensions
are irrelevant; the actual wupper lLimits are taken from the array
as dimensioned in the calling programe In facte a MAT REDIM
statement may occur 1in a subroutines and the redimensioning of
the matrix will remain 4n effect when control returns to the

calling progranme

A file-expression may be passed from a calling program to a
subroutine. For 1instances if CALL "SUBROU®™(#2) calls SUB
"SUBROU®(#1)y then the subroutine may perform input and output on
file #1 (eeges READ (#)1 or WRITE (#)1)e The actual file used
will be the file which the calling program refers to as #2.
Howevers wunless Llinkage 4s made 4n this manners any files
SELECTed by the <calling program will be 1naccessible to the
subroutines and any files SELECTed by the subroutine will be
fnaccessible to the calling program. Files may be SELECTed by
the subroutine whether or not a file with the same number has
been SELECTed by the calling program.

67

Proagramming Considerations

The name of the subroutine is defined by the Literal in the
SUB statements not by the name of the source filee. These two
names need not be the samee.

No variable name occurring 1in . the argument Llist of a SUB
statement may occur as another argument of the same suB
statemente nor in a COM statement in that subroutine. Howevers
calling programs may pass common variables to a subroutine as
arguments in a CALL statemente.

The variables 1in the argument List will receive their
aracuments from the calling program when the subroutine 1is
callede. ALL other wvariables (local variables) are initifalized
when the BASIC program s first executede. String variables are
initialized to " =, integer variables are inftialized to 0%s and
floating-point vartfables are 4{initialized to 0. Howevers this
initialization occurs only once 1in the execution of a BASIC
programe Local wvariables are not reinitialized on subsequent
callse One application of this feature is as follows:

100 SUB "ABCDEF"(argeargeecee)

200 REM Let I be a variable which is not in the argument
250 REM List abovee.

300 IF I=0 THEN 700

400 REM Place here statements which are to be

450 REM executed only the first time the subroutine

500 REM 4{s ever callede

600 LET I=1

700 REM The subroutine continuese.

9500 END

68

i

—

CHAPTER 5 WORKSTATION AND PRINTER INPUT/OUTPUT STATEMENTS*

5.1 INIRODUCIION

VS BASIC contains a aroup of statements designed to
facilitate 170 operations to the workstation and printer. These
statements provide the capability to receive and validate
operator-entered data from the workstation and to create
formatted screen output for display at the workstation and
formatted print output for the printerer

The statements intended purely for data output arel=z»

DISPLAY used to output a formatted display to the
workstation, using the entire screene
DISPLAY clears the screen before beginning
data output so that the new display 1is
constructed only of the contents of the
DISPLAY statemente. The output of DISPLAY
is intended only for the workstation
screeny and cannot be directed to the
printer.

PRINT used to print data on the printer or
display data at the workstations one Line
at a time, The output mode is determined
by a8 SELECT statement (see Part 1II). The
data can be directed to specific positions
on the workstation screene but it cannot be
formattede. The screen is not <cleared
before the data is displayede.

* VS BASIC also supports the creation of printer files using
SELECTe OPENe WRITEes and CLOSEe. See Chapter 6+ and the
descriptions of the individual statements in Part II.

s VS BASIC also includes a specialized statement for dealing
with arrayse MATPRINT, which 14s used to print or display
the contents of arrays on the printer or at the workstation
without specifically naming each element.

69

PRINTUSING used to print or display a formatted output
Line on the printer or at the workstatione.
The format to be used is supplied by a FMT
or ¥ (Image) statement. The data cannot be
directed to specific positions on the
workstation screeny and the screen 1is not
cleared before the data is displayede The
output mode is determined by a SELECT
statement (see Part I1l.)

The FMT and X (Image) statements are nonexecutable
statements which contain formatting information for a PRINTUSING
statement. (FMT and X (Image) statements may also be used to
specify a format for input/output with disk filese See REWRITE,
WRITEe READes GETe and PUT in Part II.))

ALL the VS BASIC fdnput statements can also be used to some
extent to output data or messagess None of this outputs howevery
can be: directed to the printere Two statements are capable of
outputting a one-Line messagey as well as receiving data. The
message and data cannot be formatted using these statementss and
the message and data cannot be directed to specific positions on
the workstation screene Both of these statements halt progranm
execution to permit a response by the usere. These statements
arec*

"INPUT used to receive data entered from the
keyboard on a Line-by-Line basise A
message can be inserted before the question
mark which INPUT automatically displayse

STOP used to stop execution of the program until
some user action s taken. A message can
be outpute and data can be entered and
passed to a DEFFN* subroutine.

* VS BASIC also includes a specialized statement for dealing
with arrayss MAT INPUTes which is used to sequentially dnput
the elements of an array without naming each element
separately. See Part II for more information.

10

~

-

One additional input statement is capable of generating
formatted displayse of using FAC®s (see Section 5.5) to affect
the appearance of the displayed datas as well as validating the
input datas and controlling program executione. This statement is:

ACCEPT used to create a formatted display using
the entire screen (the screen {s cleared
when ACCEPT begins execution) and then
receive and validate data entered by the
operator in response to this displaye.
ACCEPT can validate the data according to a
given range ande through the wuse of FAC®s,
can validate according to the data typee.
In additione ACCEPT can:?

l. disable and enable PF Keys and the
ENTER key and use them for Llimited
data entryes or for controlling program
execution,)

2e provide an exit {1f no new data is
entereds

3. display the current values of the data
which are to be altered, and
pseudoblanks 1f there are any blanks
or spaces combined in the datas and

Qe control the appearance of the data
through the use of FAC®se.

ACCEPT nno explicitly access DEFFN?
subroutines or character stringses or direct
cutput to the printer.

The workstation and printer 1/0 statements are summarized
in Table 5-1. :

This chapter will discuss the concepts of the VS
workstation screen and printer before going on to the individual
statements. ’

71

Summary of Workstation/Printer I/0 Statements

Table 5-1.

accepts data input

output only

INPUT ACCEPT DISPLAY PRINT PRINTUSING
Data
verification 0
Displays
pseudoblanks 0
Clears screen
before execution 0 0
PF key data entry
and execution 0
control
Can format
data 0 0 0
Displays data
at a given position 0 0 0
Displays current
values 0 0 0 0
Access fb
0 0

printer

72

J

52 PRINTER OQUTPUT

The PRINT and PRINTUSING statements can output to a printer
as well as to the workstation screene. Either Literals or the
current value of any variable or expression may be outpute using
a wide wvarfety of formatse. Most oprinters have 132 columns,
numbered Lleft to right from column 1 through column 132, The
columns are divided into seven zones:? 2ones begin in columns 1,
19¢ 37+ 55¢ 73¢ 914 and 109. ALL 2z2ones occupy 18 character
positionse except the rightmost zones which s 24 characters wide.

The PRINT and PRINTUSING statements actually move data to a
Line buffer for the printer. The contents of the Line buffer are
printed only when an implied or explicit move to the next .line
occurss eegee via SKIP or via a PRINT statement with no trailing
semicolony or when data overflows the capacity of the Lline
buffere When the buffer has been printedsy it 49s cleared and
enabled for re-loading beginning at the first positione

The BASIC program may conclude a print operation by
printing the contents of the Line buffer with or without
advancing to the next line (line__feed). (No Lline feed allows a
program to overprint one Lline with anothers) The program may
also cause an arbitrary number of blank Lines to be fed from the
printere Howevere data may not be erased from the printer once
it is printeds nor may a Line which has been sent to the printer
be recalled for modificatione

The "wraparound®™ concept (see Section 5.4) 4s valid for the
printer as well as the screene. Normallye 1if the BASIC program
outputs too many characters to fit on the current print Llines as
many characters as possible are placed in the Line bufferes the
contents of the buffer are printeds and the remaining characters
are moved to the start of the buffer for printing on the next
tinee.

Se3 PERINIUSINGs FMIs AND IMAGE STIATEMENTS

The PRINTUSING statement tand a number of disk 170
statements) uses an auxiliary statement to define the format of
the data to be input or outpute The Line number of the auxiliary
statement is written after the USING clausee The statement at
this Line number must be either a FMT statement or a % (Image)
statement. For instance?

15600 PRINTUSING 15700s List of expressions
15700 FMT List of specifications

73

The position of the FMT statement with respect to the
statement with the USING - clause 1is 1{rrelevante PRINTUSING
statements wmay contain a Llist of expressions which are to be
output. FMT and 1Image statements contain (among other things)
"data specifications™ which specify the format for outputting a
single expresstone Starting at the beginning of both Listse
ftems from the List of the PRINTUSING statement must correspond
with the data specifications in the FMT or Image statement: 1If
the FMT or Image statement contains a string specifications the
corresponding {tem in the PRINTUSING statement must be of string
type. For example:

1400 PRINTUSING 15004MgN
1500 FMT PIC (SHHEREN) PIC(HEH#Y)

prints t he current value of M using the specification
PIC(S####%)s and then prints the current value of N using the

specification PIC(#8##).

If there are more items in the PRINTUSING statement than
there are data specifications in the FMT or Image statemente the
FMT or Image statement is reuseds as though it were replicated as
many times as necessary to accommodate the remaining items 4n the
List of the PRINTUSING statemente Note that an error message
will be produced 4f a PRINTUSING statement with a non-null
argument List s wused 1in conjunction with a FMT or Image
statement which contatins no data specificationse 1In PRINTUSING
subsequent output will occur on the next Line down unless the
ftem 1in the PRINTUSING statement which exhausted the FMT or Image
statement was followed by a semicolone

If there are more data specifications in the FMT or Image
statement than there are items 4n the PRINTUSING statements then
the remainder of the FMT or Image statement is ignorede The I/0
operat fon ends at the first data specification without a matching
ftem from PRINTUSINGe This situation can also occur when a FMT
or Image statement is reuseds but contains more data
specificat ions than there are 4{tems remaining in the PRINTUSING
statement.

1100 X-##8## XYZ -###.u8
1400 PRINTUSING 1100+EeF o6

will display the current contents of E using the Image "-#ggHnn,
then the Literal *XYZ", and then the current contents of Fo using
the Image "-###.#4%%". Now G and remains in the PRINTUSING Lists
but the Image statement 4s exhaustede Therefores it is begun
againe and since F and 6 are separated by a comma 4dinstead of a
semicolons subsequent display will occur on the next Line downe
G is output using the Image *®-###" and XYZ is printed on the same
lLine. Printing stops heres since there are no more arguments to
use the next data specificatione.

74

fﬁ)

Se4 THE WORKSTIATION_SCREEN

The workstation display contains 24 rows of 80 characters
eachey for a total of 1920 positions capable of holding
characterse. Each character position 1in the display can be
referred to by its row and column numbere Thuse 1le¢1 is the first
position on the top rows 24¢1 4s the first position on the bottom
rowe ALL the positifons in a row form a Lipe. The PRINT
statement further divides each line into 2gopes which begin at
columns 1le¢ 1%9¢ 37 and 55.

¥raparound

The entire workstation screen can be thought of as one
sequential record containing 1920 bytes (actuallys the record
contains 1924 bytess of which the first 4 .are control characters
normally transparent to the user)e The order of bytes is from
left to right within each Lines and from each Line to the one
belowe Thuses a character position to the right of another
position on the same Line 1s thought of as being "beyond" the
position to 1ts Left. Similarlys a character position on a
physically Lower Line of the screen 4s ®beyond® a character
position on a physically higher tinee. A ®wraparound®™ concept
exists: column 1 of any line 1is thought of as directly following
column 80 of ¢the Line above 1te Thuse 1f a string of characters
is directed to be output to a Line on which there is not enough
space remafning to fit the specified characterss as many as
possible will be displayed on the remainder of the current Line,
and the rest will be displayed on the next Line downe. Notes
howeveres that column 80 of Line 24 (the "end of the screen") does
‘not wrap around to column 1 of Line 1.

Scrotling : ‘

If wraparound occurs when the cursor is at the end of the
screene or if the cursor is explicitly directed to move down one
line when the cursor 4s already on the bottom Line of the screens
all data then displayed on the screen is shifted up one Lines so
that the cursor appears to move down relative to the text on the
screene This operation 4s called an "upward scroll"” or
"roll-upe® 1In Llike manners a command to move the cursor up past
the top Line of the screen will result in all the text displayed
on the screen shifting down one Lline: a ®"downward seé¢roll®™ or
"roll-down.”

In a scrolls 2 new Line filled with spacess HEX(20),
appears on the screens and one Line leaves the screen. The data
on the Line which teaves the screen 4s not recoverable by the
programe

75

5.5 FIELD_ATTRIBUTE CHARACIERS

Any position on the screen may contain any 8-bit binary
codees The codes from HEX(00) to HEXC7F) represent characters
which can be displayed on the workstation screene HEX(20) {1s the
character “®space®™ or "blank"; it occupies a character position,
but causes nothing to be displayed there. HEX(00) also displays
as a blanke.

The codes from HEX(80) to HEX(FF) are Eleld _Attribute
Characters (FAC's)e FAC*s also occupy a character positiones but
do not display a graphic characters« FAC's define the start of a
"field" and contain 4dinformation which will be applied to all
character positions beyond 1t until either another FAC occurs or
the end of the Line is reachede This Ynformation governs the
following decisions: '

1. Whether the fifeld will be displayed brights dims
blinkings or pondisplay (4.ees displayable characters
of the field will be suppressed)e These four options

are mutually exclusivee.

2¢ Whether an upderline will appear , in all character
positions in that fields or in none.

3o Whether the field 4s modifiable by operator inputs or
not modifiable (protected)e.)

4 Whether (a) no restrictions are placed on operator
fnputs (b) Llowercase letters input will be capitalizeds
or (c¢) only digits 0 through 9, decimal points and
minus sign will be allowed as 4{npute. Note that this
affects only jinput: any characters can be cutput in any
field typee This dnformation 4s 4drrelevant 4f the
field has already been declared "protected” by option 3.

Appendix C contains a Llisting of the Field Attribute
Characterse. ’

When BASIC programs are runnings the conditions assumed at
the start of each Line are: (1) dim displays (2) not underlineds
and (3) protected. There {is an "assumed®™ FAC with those
characteristics to the immediate lLeft of column 1 of each Line.

The programmer may output FAC®s at any time by specifying
the correct hexadecimal code 4n any screen 1I/0 statement. For
exampley

300 PRINT HEX(94)3;
places on the screen at the current cursor position a FAC which

causes data cdisplayed to 1ts right to be blinkings protecteds
with no underlinings and all characters displayed.

76

R

The INPUT statement places a FAC (of HEX(81)) in the screen
buffer to the Left of the field where 4dnput 4s designated to
occure thus setting that field to “brighte no-Lines modifiables
uppercase."

The ACCEPT statement causes a FAC to be placed before each
fnput fielde This FAC will normally .specify (1) bright display,
(2) not wunderlineds and (3) modifiablee The setting of option
(4) depends on the type of 1tem to be input ¥n that fielde If a
string 1s to be inpute the setting will be "no restrictions on
input™ (HEX(80))se If a floating-point number ¥s to be inputs the
setting will be "uppercase only"™ (HEX(81))s to allow input of +,
-¢ o9 and Ee. If an integer 1s to be inpute the setting will be
"numeric only® (HEX(82)). Thusey a % sign may not be 4input to
indicate an 4{nteger. The programmer .may override these FAC
values by making an explicit specification 3In the ACCEPT
statements (This is discussed in Section S.7.)

Unless the dnput field is followed immediately by another
input fields the ACCEPT statement places an additional FAC at the
end of the field to revert the display to the default settingse

Se6 DISPLAY

DISPLAY formats the entire workstation screen for data
display. The programmer using DISPLAY should bear in mind that
1) the entire screen is gleared prior to the display of datas and
2) the entire screen is therefore ayallable to be written upon.

Two pofints arise from these considerationse Firste the
programmer has much more reason to control the Line and the
column at which 4individuat data 1items are displayed. As a
results the AT clause (which 4s also available for PRINT) §s a
particularly helpful tool for DISPLAY, For examples the
following statement:

DISPLAY AT (5410)¢ "RESULTS="eA,
AT (7¢10)¢ "EXPECTED RESULTS=",4B

results in a screen with nothing but the data 4dndicated above
displayed 4in the stipulated positionse The user should note the
use of the continuation character ("!"), Because DISPLAY formats
an entire screeny it is often impossible to get all the operands
onto one program Line. In facts it is a good practice to use one
program Line of a DISPLAY statement for each screen Linee

Seconde since DISPLAY works with the entire screeny
line-oriented format statements used with PRINTUSING =-- % and FMT
== cannot be used with DISPLAY. Consequentlys format information
is specified within the DISPLAY statement dtself through PIC and
CH clauseses which work Like those in FMT.

77

Note that with the exceptions of the BELL and COL keywordss
the syntax and functions of. DISPLAY are strictly included in the
syntax and functions of ACCEPT. '

S«7 ACCEPT

The ACCEPT statement formats the entire screen for data
inpute first erasing everything on the screen. The significant
differences between ACCEPT and INPUT are listed in the table
below: -

Table 5-=2,
Differences Between ACCEPT and INPUT
ACCEPT INPUL
Entire screen cleared Screen not cleared
Entire screen utilized Only uses as many lines as
necessary :
Current data values No data values displayed
displayed
Generates pseudo-blanks No pseudoblanks
FAC usage permitted No FAC usage
CH and PIC clauses ' No CH and PIC clauses
Range verification . No range verification
DEFFN®* text strings cannot DEFFN® text strings can be
be explicitly called directly called by striking
through PF key usage PF keys
Data entry key can be Data only entered through ENTER
specified key
Can alter execution §f Cannot determine 1f data has
data 1s not altered. been alterede.

ACCEPT 14s the most <complex of the screen I/0 statements
available ¥n VS BASIC. 1Its various optionse howevers need not
all be wused in any given statement. The following discussion of
ACCEPT breaks the statement down into its three main features --
screen handlings data validatione and PF key usage == and treats
the clauses pertaining to each of them one at a timee.

Screen Handling
AT

As mentioned beforee ACCEPT works with the entire CRT
screen. The programmers consequentlys can position data dtems
where desirede or use default values provided by ACCEPT. Data
items can be explicitly Located through ATe ‘in the same manner as
PRINT or DISPLAYe Literals can be displayed by ACCEPT as well as
variabless one significant difference between INPUT and ACCEPT 1s
that ACCEPT can position any number of Literals anywhere on the
screen through the use of AT clausese. .

78

ﬁ@%

NOTE® .

If a field ¥s placed so that it would overflow
the end of a Uinesy 1t will:- be displayed
entirely beginning at the second byte of the
next Lline. This 4s ¢true for ACCEPT and
DISPLAYe PRINTs howevere will print beginning
at the assigned positione and only the over~
flow will appear on the following Linese.

}———-——-— - gy — —

EAC

.~ ACCEPT allows the use of Field Attribute Characters (FACs)
to modify the way in which data can be displayede The FAC clause
lets the programmer control the display mode of variablese. The
following statement:

100 ACCEPT AT (Sel)e FAC(HEX(8C))eAS !
AT (691)e FACCHEX(SD))eBS

causes A$ to be diéplayed dim and protectede while BS is
displayed blinking and modifiable. This gives the programmer
control over what 1s to be modifiede. '

Further control over Field Attribute Characters comes from
"the ability of FAC to take alpha-expressfons as operandse Thuss
the following legal statement:

100 ACCEPT AT (Sel)e FAC(ZS)4AS

means that the mode 1in which AS$ is displayed depends upon the
value of Z$ at the time of executione.

The default FAC for a recefver field 1is bright and
modifiable; for any other field ¥t is dim and protected. :

In addittione the default FAC for a receiver field s
tabable (1e.ee9s the TAB Keys c¢can be used to arrive at the
beginning of the field)s and non-tabable for any other field.
The protected numeric FACs (see Appendix C) are always tabable
and can be used to create a tabables non-modifiable fielde.

CHe PIC

Like DISPLAYs ACCEPT allows varifables to be formatted
within the statements using CH and PIC clauses in the manner of
FMT.

79

Data_Validation

Like INPUTe ACCEPT performs an dmplicit validation on
entered data based wupon the FAC preceding the field which
receives the datae A numeric field (Ceege a field whose
corresponding receiver is a numeric variable) will not accept
alphabetic datas and so one An attempt to enter {llegal
characters causes the ACCEPT screen to be redisplayeds with the
cursor at the beginning of the first dllegal field.

RANGE

In addition to its tmplicit verificationes ACCEPT allows the
user to set a range of acceptable 9{npute against which the
program validates data before accepting ‘ite. The format 1s as
follows: :

ACCEPT A¢ RANGE (04100)

The operands of RANGE set the Limits of acceptable values of
datae If the user attempts to supply data outside that rangey
the data will not be accepted by the programe and the field will
be set to blinkinge.

RANGE can be set for alpha variables as well as for
numerice In the case of alpha vartabless the program uses the
ASCII collating sequencee

ALTe NOALY

The program can determine 1f the data has been modifiede.
Any keyboard action that is performed on the fields even retyping
the old data or erasing pseudoblankse will dndicate to the
program that the data has been alterede This feature is used ¢to
perform two different functionse.

ALT

Ordinarily all modifiable fields are reade validatede .and
transferred to their receiverses whether or not the fields were
actually changed by the usere. Inclusion of the ALT clause causes
the program to reade validates and transfer only the fields which
actually are modified.

NOALT

The NOALT clause (NOALT GOTO or GOSUB and a Line . number)
specifies that program control be transferred to the indicated
tine number 1f none of the values in the accept .statement are
alterede The functions of ¢the ALT clause are also 1{ncluded in

NOALT.

8o

™

(D

NOTE:

A single ACCEPT statement capnpt dJnclude both
ALT and NOALT.

W —
e e =

BE_Key Conirol

ACCEPT has three <clauses that allow PF key control: KEYs
KEYSe and ON key GOTO. Note that PF keys do not call DEFFN®
subroutines or stringse. :

KEYS

This clause specifies the keys which are valid for a given
ACCEPTSs any others will cause a beeping sound if pressede. KEYS
must be followed by an alpha-expression (normally in the form of
HEX(xxxXXXee))e which 1Js wused as a List of one-byte HEX values
corresponding to the allowed PF keye The ENTER key is identified
by HEX(00)e PF 1 by HEX(01l)e and so on to PF 32¢ which is HEX(20).

Thuse to allow PF 1 and PF 2 as the only acceptable keyss
the KEYS clause would be as follows:

KEYS(HEX(0102))

KEY

The KEY clause assigns the number of the key depressed to a
numeric receivere For exampley

KEY{(N)
means that the value of the key depressed will be assigned to N.
If the ENTER is strucke N equals 05 if PF 1¢ N equals 13 etce.

Note that only keys made legal by the KEYS clause can be used for
KEYe

ON_Key Value

This <clause allows the wuser to exit without changing any
data values if certain PF keys are pressed.

81

CHAPTER 6 DISKe TAPEe AND PRINTER FILE I/0

6.1 INTRODUCTION

~ A VS BASIC program is capable of reading and writing both
consecut ive and indexed (including alternate indexed) filese. The
statements that support this capability are shown in Figurée 6-1.

| |
| SELECT DELETE |
| OPEN SKIP !
| READ PUT |
| WRITE GET |
| REWRITE CLOSE I
1l |

Figure é~1. Disk I1/0 Statements
This chapter coﬁtains a general discussion of the concepts

of file 170 in VS BASIC. A detailed discussion of each of the
statements can be found in Part Il.

82

6.2 FILE HIERARCHY

The creation and maintenance of files is controlled by the
VS Data Management Subsysteme. A "file® 1s a Llogical unit
consisting of one or more recordse A file may contain source
program text €a "source file®™) or object program code (a ®program
filem)s or it may contain data records. Files can be opened and
named by the users Data Management automatically handles the
complex "housekeeping® chores associated with creating and
maintaining an external files Each disk file is located within a
hierarchical structure consisting of two higher Llevels:
Libraries and volumes3 each tape file i1s located within a volume
only (tape volumes do not have Llibraries)e.

The most comprehensive unit 1n the file management
hierarchy 1is the yolumee. A volume is an dndependent physical
storage mediume such as a disketteo disk packe or tapee. The
volume name provides a device-independent means of ddentifying
physical storage unitse. Once a diskette disk pack or tape has
been assfigned a volume namees it can be mounted at any available
drive unit and accessed by names without reference to the address
or physical characteristics of the disk or tape unit itself.

Immediately below the volume 1in the disk hierarchy is the

Librarye. A volume may contain one or more user librariess but a
single Llibrary may not continue onto a second volume. Each
Library contains one or more filese. (Every disk file wmust be

assigned to a Librarye) The VS places o particular restrictions
on the types of files placed in a Llibrarys a single Library may
be used for sources programe and data filesy or special lLibraries
‘"may be designed for each file type. The conventions governing
Library usage are completely determined at each dndividual
installations based on 1ts particular needs and standardse.

Duplicate file names cannot be used within the same
Librarys but they may be used in different lLibrariese. Similarlye
duplicate Library names are not permitted on the same volumes but
may be used on separate volumeses Finallys duplicate volume names
are allowed but not recommended.

To avoid possible ambiguitys each file name must be
qualified with the names of 1its associated Library and volume
when the file is openede. Such qualification 4is pot requireds
howevers when running programs from the system program Librarys
because the system library and volume are used automatically
whenever the named program is not located 1in the user program
librarys or {if no wuser Llibrary 1s suppliede Because all system
utilities are stored in the system program lLibrarye it ¥s never
necessary to specify a Library or volume name when 4nvoking a
system utility program. '

83

Libraries and files have names which can contain up to
eight characterse. Volume names contain up to six characterse.
Each of these names must begin with an uppercase letter or one of
the special characters $¢ #9 or 83 characters after the first may
be any alphameric character 4ncluding the special characterse
(Embedded spaces are not allowede) 1In order to open a new filey
the system requires the name of the file and Librarys or file
sequence number for tape filesyo which will be used in the <future
to refer to the new filey and the name of a volume which 4dse¢ or
can be mades accessible to the VS« The combination of the file
and Llibrary namese or the file sequence numbers must be unique on
that volume. If an old (already-existing) file 4s to be openeds
the names of the files Librarye and volume must correctly
identify the old files that ise they must match the names used to
create that filee« Similarlys an old tape file must be identified
by the file sequence number used when it was createde The volume
name is unimportant for tapee.

In a BASIC programe the names of the files Librarye and
volume are used only onces in the OPEN statemente which enables
input and/or output with that file. (BASIC automatically
assigns a file sequence number of 1s but this can be changed at
run time.) The OPEN statement associates ¢the named file with a
file number (which has nothing at all to do with a file seguence
number)e File numbers are preceded by a pound sign (#)s and can
range from 1 to 64. After a file is OPENedy the file number 1is
used instead of the file®s name to refer to the file. Thuss a
program can be rewritten to access a different file by simply
changing the OPEN statement to associate a different file name
with the same file number. An expression can be used as a file
number (eeges #N)e In this casee the file numbers can be changed
dynamically during executions thus enabling a single statement to
reference several files in the course of program executione. For
exampley #(X+2) refers to file number #3 if X=14 but refers to
file number #1 if X=-14 and so one.

The final Llevel in the disk hierarchy is the record. A
record 1{s analogous to a Line on a piece of papere Information
is read from or written to a file one record at a timee.

Tabé filessy howevere are made up of blocks which in turn
are divided into recordse.

6«3 SELECTING FILE NUMBERS (SELECT)

At the time a program is compileds the compiler must know
how many file numbers will be used in the course of the programs
so that it can include as part of the compiled program a User
File Block (UFB) for each file number usede. For instances in a
program where #ly #2¢ and #3 were going to be useds the compiler
would have to produce an object file containing not only the
programs but also three UFB*s. To indicate this to the compilera
the BASIC programmer must dnclude exactly one SELECT statement in
his program for each file number he intends to use. The SELECT
statement directs the compiler to allocate a UFB.

84

Certain characteristics of a file must be known in order to
set up an aporopriate UFBe These characteristics are specified
in the SELECT statement3 1f a file number will be wused for more
than one file during the course of the BASIC programe all files
must be fdentical with respect to those characteristicse.

A disk file mey be constructed so that the records are
consecutive (sequential), that ise they appear in the order in
which they were writtene in which <case the SELECT statement
contains the word CONSEC. Alternatelye the file may be indexed
so that the records are ordered according to the contents of some
part of the recordse. called a "Key"a In this cases the SELECT
statement contains the word INDEXED and also specifies the
Location and length of the Keye. Indexed files may also have
alternate indicess that 1ises additional keys which can be used to
access the records In the filee

A tape file can only be written consecutively. The SELECT
statement contains the word TAPEes and the size of the BLOCKS into
whieh the tape file is dividede.

The records in a disk or tape file may be of a fixed Length
(in which case the Length must be specified) or variable Length
(in which case the programmer writes VARe and must specify the
maximum Lecal length)e 1If the records are variable Lengthe they
may be "compressed" (in which case the programmer writes VARC).
Compressed records are expanded before being made avatlable to
the B8ASIC programs and recompressed before being rewritten to
diske Using compressed records conserves disk spaces and is
transparent to the usere

Additionallyy 3 PRINTER file may be createde. This special
type of file can only be written to (jieeey records cannot be
read)s and is identified by the word PRINTER.

A file number may be used to refer to a single files or to
several files whose <characteristics are identical over the
course of the program. A file number may be used to refer to
only one file at any aiven time. A file which 1is "open"™ on a
file number (by virtue of having been referenced in an OPEN
statement) must be CLOSEd before another file can be OPENed using
the same file numbere.

When the SELECT statement is writtene a parameter reference
name ("prname") must be assigned to the file numbere. If any OPEN
statement for that file number fails to provide a valid files
Librarys or volume namres or opens a file whose <characteristics
conflict with those specified in the SELECT statemente the VS
Data Manaaement System wille at the time that OPEN statement is
executede 2ask the wuser to specify the information which was not
supplied by the program (the wuscr will always be asked for the
appropriate dinformation at run-time in the case of tapes). Data
Management will use the prnamees nect the

85

file numbers to dndicate to the user which file number needs
additional specification. Note that this will also occur with
valid parameters {f nefther NODISPLAY nor NOGETPARM is included
in the OPEN statement.

This means that a program can be written to operate on the
data in a files but that the name of the file need be known only
at the time the program 1s executede On different executions,
the operator may supply a different file names allowing the
program to operate on different files with no reprogramming at
alle.

6.4 OPENING A FILE COPEN)

The OPEN statement enables {input or output between a BASIC
program and a filee. The CLOSE statement severs this connectione
Thuse input and outpute using the READ and WRITE statementss for
instances may occur only while the file 4s "openo™ The OPEN
statements must specify the mode in which the program will use
the file:

1. It can open for INPUT a file which already existse The
program will then be aole to read from the files but
not modify ite (Does not apply to printer filese)

2. It can open for 170 <(Input and OQutput) a file which
already exists. _The program will then be able to read
and modify the contents of the filee. For an 1indexed
filee 1/0 mode allows the addition of new records (like
EXTEND for consecutive files)e A consecutive file may
do REWRITES 4dn 1I/0 modes but may not create new
recordse (Does not apply to printer or tape files.)

3¢ It can open a new file for OUTPUTe 4dn which case
records may be written out to the files but cannot be
read from that filee. If the file existed previous to
the OPEN the user will be asked to either delete the
old file or specify a new name. Printer files can only

be OPENed in this modee.

4, It <can open a preexisting file (consecutive only) for
EXTENDe The program will then be able to write to the
files but not read from 4t. The first record written
will take tts place directly following the Last record
which was already in the file. (Does not apply to
printer files.)

S5¢ It <can open a preexisting file SHAREDe This mode 1is
similar to 1/0 modes but allows simultaneous access to
the file by other VS userse (SHARED mode is supported
only for INDEXED files and for a special type of
consecutive file called a "Log file",)

86

(

INPUT - Files opened for INPUT may be accessed only through
the READ statement ande for <consecutive filese the SKIP
statemente The READ statement reads .consecutive files from tape
and consecutive or indexed files from the diske

I1/0 = Files opened for I/0 may be accessed through the READ
statement. If the READ statement specifies the HOLD optione the
record read may be subsequently modified using the REWRITE
statement (orey for Jdncdexed filese either the WRITEes REWRITESs or
DELETE statements)a. As with INPUTe the SKIP statement is
available for consecutive filesa

OUTPUT/EXTEND - Files opened for OUTPUTe or for EXTENDe can
be accessed using the WRITE statement onlye. EXTEND mode is
supported only for consecutive disk filese.

SHARED = SHARED mode disk 1/0 is supported only for indexed
files and special Llog filese The file may be accessed using the
READe WRITEe REWRITEe and DELETE statementse. Moreoveres when a
program opens a file SHAREDes the HOLD option is avaitable in the
READ statemente This prevents other users from attempting to
modify or delete the held record until the user has modified or
deleted 1ite has begun processing another recordes or has closed
the file. When that second I/0 operation is completeds the HOLD
is releaseds and other users can again access that record. 1f
the first wuser modified or deleted the recorde that action will
take effect before other users may access the recorde A program
may put a HOLD on only one record at a timee.

65 SUMMARY OF 1/0 STATEMENIS

Associated with each file number is a data buffere which
serves as an intermediate storage Llocation for data transferred
between BASIC variables and the disk or tapes A READ statement
reads one record of the file dinto the buffere and may then
transfer information from there into one or more variables in the
BASIC programe A WRITE (or REWRITE) statement transfers
information from the buffer out to a filey typically after
loading the buffer from one or more variablese

Data may be written to disk or tape either in BASIC®s
internal formate or using explicit formattinge Likewiseos data
appearing on disk in either BASIC®s internal formats or another
format such as decimal ASCII or packed decimale can be read into
receivers in the BASIC programe If explicit formatting is to be
used rather than BASIC*s internal formate the keyword USING s
specified in the file I/0 statements followed by the Ltine number
of a FMT or % (Image) statement which defines the formatting to
be wuseds (The FMT and % (Image) statements are described 1in
Chapter 54 Section 5.3.)

87

The PUT statement transfers data from BASIC variables into
the buffer (or any alpha-receiver). The GFT statement transfers
data from the buffer (or alpha-expression) into BASIC variablese.
In both statementss a conversion between the dnternal BASIC
format and another format may occur. PUT s like WRITEs and GET
is like READe except that neither PUYT nor GET actually does I1/0
to the disk or tapes but only between the program and the buffere.

program data data

variable buffer on disk
READ ({====== (optional)----—--;-) 0 (e=mmmmcccmeccccccee- 0
GET S L EE L PP 0 0
(REDWRITE (======m (optional) ——=—--cm--- >) 0 me-eemmmcm—ceceeeao >0
PUT =eececcmccccmccmcccccceeea > 0 0

Figure 6-2« Information Flow in the File I/0 Statements

By omitting a list of receiverss the programmer may specify
that a READ statement simply brings a record dinto the data
buffere The programmer must then use a GET statement to extract
the data from the buffere. The GET statement allows the
programmer to extract the contents of the same file record more
than once. This might typically be done reading the values in
using different 1Images (formats)s or reading the values into
different variables the second timee.

Similarlys by omitting the arqguments of the WRITE
statemente the programmer causes the data buffer to be written
into the file. The assumption s that previous PUT or WRITE
statements were used to load meaningful information into the data
buffere. Multiple WRITE statements using the same buffer <can be
used to write multiple 4Jdentical records out to the file without
havino to underco a redundant format conversion each timee. :

The remaining file 1I1/0 statements are more specific in
their functione 1In CONSEC filess where records are organized in
sequential ordery the SKIP statement allows the program to move
forward or backward a specified number of recordss or to return
to the beainning of the CONSEC file.

Wwhen a record from a SHARED or I/0 file 4s read and the
HOLD option is specifieds subseauent use of the REWRITE or DELETE
statements allows the procrammer to rewrite or delete recordse.

88

/ﬂ

Gef EILE_I1/0_SYSTEM FUNCTIONS

Four functions may be used in expressions to retrieve
information concerning file I1/0 operations: FSe KEYe MASKe SIZE.

The FS function returns the file status for the most recent
I/0 ocperation on the specified filey as an alpha value two
characters Lonae. FS can assume any of the following values:

CONSECs TAPEs and PRINTER file 1/0

go Successful I/0 operation
*10° End=-of-file encountered
923 Invalid record number
30° Hardware error
34 No more room in the file
*qGe Invalid function or function sequence
197 Invalid record Length
INDEXED file 1/0
*00" Successful 1/0 operation
*10¢ End-of-file encountered
021 Key out of sequence (WRITE statement in OUTPUT mode
only)
22 Duplicate key
*23e No record found matching specified key
0240 Supplied key exceeds any key in the file CINPUT,

I/0¢ or SHARED mode)
No more room in the file (OUTPUT or EXTEND mode)

*30° Hardware error

*gRe Invalid function or function sequence

*g7e Invalid record length
EYt(file-expression)

The KEY function returns the "key®™ field from the specified
file*s data buffere The file-expression given as the arqument of
the KEY function must refer to an INDEXED filee The KEY function
is tyoically read immediately followincg a READ statement (jeces
without any intervening WRITE statement)e.

The KEY function returns an alpha values whose length is
exactly the KEYLEN parameter in the SELECT statement for that
file.

The KEY function may be used as a receiver in order to
write into the "key® field in the data buffere.

3900 LET KEY(#3)="NYC™

89

This use of KEY 4s typfically performed {immediately
preceding a WRITE or REWRITE statemente Note that the use of
arguments 1in the WRITEs REWRITEy and PUT statements causes data
to be Loaded into the data buffer. Depending on the size of the
argument List and the position of the "key" fields loading the
data buffer through arguments to WRITEy REWRITEs or PUT may
overwrite the key written 1dnto the data buffer by the ®"LET KEY=®
constructione.

MASK(file-expression)

The MASK function returns the alternate key access mask for
the Llast record read from the alternate 4ndexed file specified.
The result is a 2-byte alpha HEX value whose component bits (lLeft
to right) correspond to the record®s ‘avatlable alternate keys
{1-16). Bits which are "on®™ (binary 1) specify that the record
may be READ by those alternate key pathse The bit wvalues may be
determined by printing the HEXOFs the result of the MASK functione.

Example: Having read a record with seven alternate keyss

400 DIMAS2
500 A$ = MASK(#1)
600 PRINT HEXOF (AS$)

Result: FEOD

which represents the bfnary string '1111111000000000, which
indicates that the first seven alternate keys are used in this

recorde

S1ZE(file-expression)

The SIZE function returns as an 1integer the size 1n
characters of the record most recently read from the specified

files

6«7 ERROR_RECOVERY

The situations under which an Input/Output 4{nstruction cannot be
successfully completed fall into four categories:

1. Errors handled by _the 2200VYS__Data _Management _System

There is an error or omission in the specification ot a
files Libraryes or volume name: the file was not found,
the voltume 4s not mounteds a name was omitted, etce.

2 TYype EOD__errors There 1s no more data in the file to
reade or an attempt was made to write a record with a
duplicate key to an indexed file. These are errors
corresponding to FS codes *10* through v24¢ (see
Section 6.6).

90

/ﬁ

3. Type DATA _errors The data conversion routines fafled
because a record format was illegals for 1finstances the
program tried to read "ABC" dinto a numeric variable
using a format such as ###.

4, Type _IOERR_errors Other input/output errorse such as
physical errors operatina the devices record-Length
errorsy and file boundary errorse These are errors
corresponding to FS codes *30' through %99°Y,

. The Data Management System attempts to resolve some I/0
errors by means of a dialogue with the workstation operator at
the time of the errore. BASIC allows the wuser to specify the
proaram Line numbers to co to if a type EODes DATAe or IOERR error
occurse Either a GOTO or a GOSUB exit may be usedese If GOSUB ds
usede 3 RETURN statement at the end of the subroutine will return
program execution to the statement following the file I1/0
statement which had the errore.

To specify error servicings the programmer specifies three
things: (1) the type of error situation to be covereds (2) the
type of transfer of control to be performed--ie.ees returning or
nonreturnings and (3) the BASIC Line number to which control is
to be passede For instances to force a returning branch to Line
number 003300 if a data conversion error (whose symbol is DATA)
occursy the programmer writes:

DATA GOSUB 3300
in the selected READ or WRITE statemente.

Service routines for type IOERR errors are specified in the
SELECT statement. Any IOERR errors which occur on a given file
number must transfer control to a single routinee. Service
routines for type DATA errors are specified in the READ or WRITE
statemente. Different statements may transfer to different
service routines 1in the event of a data conversion errore.
Service routines for EOD error conditions may be specified in a
SELECT statements to apply to all reads and writes under that
file numbers or they may be specified in an individual READ or
HRITE statements to apply to errors occurring as a result of that
individual statemente If a READ or WRITE statement has an EOD
exite that exit overrides any transfer of control which may have
been specified in the SELECT statemente.

91

In additions the REWRITEs PUTs and GET statements can
specify an error service routine for DATA type errorse The SKIP
statement can specify an error service routine for EOD type
errors (which would occur if an attempt were made to SKIP past
the Limits of the file).

If an EODs DATAe or IOERR type error occurs and the program
has not specified an error service routines execution of the

program is abortede.

The service routines for EOD and IOERR type errors may
examine the expression FS(#n)e which returns the file status for
the named file numbers to determine the exact cause of the errore.

92

CHAPTER 7 SPECIAL STATEMENTS: MATRIX AND DATA CONVERSION

STATEMENTS
7«1 DATA CONVERSION_STATEMENIS

VS BASIC provides an extensive set of instructions designed
specifically to simplify the task of converting data from one
format to anothere either for the purpose of dnterpreting
information in a forefgn formate or for packing data into a more
efficient format for storage or transmissione The statements
included in this special data conversion 1instruction set are
summarized below:

CONVERT Converts a numeric value to an alphanumeric
character string and vice versae.

HEXPACK HEXPACK converts a character string representing
HEXUNPACK hexadecimal digits 1into the binary equivalent
of the digitse HEXUNPACK does the reversee

ROTATE [C] Rotates the bits of a single character or a
string of characterse.

TRAN Utilizes a table-lookup technique to provide
high-speed character conversione.

These statements are discussed at Llength under thedir
individual entries in Part 1I1l.

In addition to the above statementse other VS BASIC
instructions which may be useful in data conversion operations
include the boolean operations ANDe ORy XORe and BOOL (discussed
in Chapter 3)¢ the alphanumeric functions BIN and VAL (discussed
in Chapter 4)s and the binary arithmetic operation ADD (discussed
in Chapter 3).

93

Te2 MATRIX_STATEMENTS

NOTE:

The VS allows implicit redimensioning of
alpha arrays dn MAT =4 TRNy and Sort State-
mentss the 22007 and the 2200VF do note.
Howevers it is recommended that the matrices
be explicitly (re)dimensioned to the same
dimensions before usina any of these state-
mentss since future extensions may eliminate
or change the dimplicit redimensioning as it
currently existse.

fr — —— e — —— —— T — — —— e —

VS BASIC offers a set of ®"Matrix Statements® which perform
operations upon entire arrayse. The Matrix statements provide
fifteen built-in matrix operationss summarized by function
belowe Detailed discussions of each can be found in Part 1Il.

1/0

MAT INPUT allows run-time input of numeric or alphanumeric
array valuese

¥ MAT PRINT displays or prints one or more arraysSe
Matrices are printed row=-by-rowe

Assignment

¢ MAT CON sets every element of a numerdic array to 1.

MAT= replaces each element of a numeric or
alphanumeric array with the corresponding
element of a second array. The first array is
redimensioned to conform to the seconde.

MAT IDN causes a (square) matrix to assume the form of
the identity matrixe.

MAT READ assigns values <contained in DATA statements to
array variables without referencing each member
of the array individually.

? MAT TRN causes a numeric or alphanumeric array to
be replaced by the transpose of a second
arraye The first array dis redimensioned to
correspond to the transpose of the seconde.

Statements marked with a dagger allow explicit

redimensioning of arrayse

94

¥ MAT ZER sets every element of an array to zero.

Arithmetic

MAT + adds two numeric arrays of the same dimensione

MAT - subtracts numeric arrays of the same dimensione.

MAT ()= multiplies each element of a numeric array by
an expressione.

MAT = stores product of two numeric arrays in a third
arraye

MAT INV replaces one numeric matrix by the fnverse of
anothere. :

' Other

MAY A or D SORT sorts one alphanumeric or numeric array in
ascending or descending order into a second
arraye

MAT REDIM redimensions an arraye

Statements marked with a dagger allow explicit
redimensioning of arrayse '

Operations are performed on numeric arrays according to the
rules of Linear algebra and can be used for the solution -of
systems of non-singular homogenous Linear equationse. Inversion
of matrices can be done in significantly shorter time than {s
possible with ordinary BASIC statementse MAT operations on
alphanumeric arrays can be used for simple and rapid 170
(input/output) and printing of alphanumeric materiale.

Array Dimensioning

Both numerdic and alphanumeric arrays may be manipulated
with MAT statementse. If not dimensioned in a DIM or a COM
statementy arrays are given default dimensions 10 by 10s with a
default alphanumeric length of 16« Each dimension may range from
1 to 324767 with an alpha length 1 to 256

95

The dimensions of an array may be changed explicitly during

the execution of MAT statements by gaiving the new dimensions,

enclosed in parenthesess following the array name 1in any of the
following MAT statements:

MAT CON
MAT IDON
MAT INPUT
MAT READ
MAT REDIM
MAT ZFR

Arrays may also be redimensioned implicitlys as shown in the
following examplee

Example:
100 DIM AC10+410)eB(242)¢eC(242)
200...
400 MAT A=B+C

The array A 1s redimensioned at statement 400 from a 10 x 10
array to a 2 x 2 array.

For alphanumeric arrazyss the maximum lLength of each element
may be chanced by specifying the new length after the dimension

specification.

Example:
MAT REDIM A$(243)10

This statement redimensions the array A$ to be two rows by
three columns with the maximum Length of each element in the
array equal to 10.

NOTE:

With either explicit or implicit
redimensioninges the newly dimensioned
array must not require more space than
was required for jits original dimensions.
For numeric arrays this implies the same
number (or fewer) elementse For alpha-
numeric arrayss there must be the same
number (or fewer) total characterse.

e e e — > v — o —
froe e — — — — e ————

96

™

atrix Statement Rules

Certain rules must be followed in using matrix statementse.:

l.

2e

3e

4o

Se

Each matrix statement must begin with the word MAT.

Multiple matrix operations -are not permitted in a
single MAT statemente For instancee MAT A = B+C-D is
illegale The same result can be achieved by using two
MAT statements: MAT A = B+Cy MAT A = A-De.

Arrays which contain the result of certain MAT
statements are automatically redimensioned?’ other
arrays can be redimensioned explicitly in the MAT REDIM
statement. A redimensioned ° numeric array cannot
contain more elements than given 4dn 1dts original
definitions a redimensioned alphanumeric array cannot
contain more characters than given in 1its original
definitione.

A vector (a singly-subscripted array) cannot be
redimensioned as a matrix (a doubly-subscripted array);
nor can a matrix be redimensioned as a vectore.

The same array variable cannot appear on both sides of
the equation in matrix multiplication, matrix
transpositione or matrix sortinge

MAT C=A+*B and MAT A=TRN(C) are legal MAT statements:
MAT C=C#*B and MAT B=TRN(B) are note

97

PART 1I

BASIC KEYWORD FORMATS

98 -

O

The following rules are used in this manual in the syntax
specifications to describe BASIC program statements and system

g" commandsSe

1.

2e

e

4.

{“‘* Se

6e

Uppercase letters (A through 2)4 digits (0 through 9),
and special characters (%x¢ /o +9 etce.) must be written
exactly as shown in the general forme

Lowercase words represent items which are supplied by
the usere.

Items in square brackets [] indicate that the enclosed
information 4s optionale. For examples the general
form: RESTORE U[expressionl] indicates that the RESTORE
statement can be optionally followed by an expressione

Braces {) enclosing vertically stacked items indicate

alternatives; one of the items 1s requirede. For
examples :
{literal }
operand = {alpha variablel
{expression 3}

indicates that the operand can be either a Literals an
alpha variables or an expressione.

ELLipsis eeee indicates that the preceding item can be
repeated as necessaryo. For examples

INPUT [Literale] receiver [oreceiverJeee

indicates that additional receivers as needed c¢an be
added to the INPUT statemente.

The order of parameters shown in the general form must
be followede.

99

General Form:
ACCEPT List Telistleee
CekKEYSCalpha=-argl)] [eKEY(numeric variable)l

C+ON alpha-arg2 { GOTO)} LlinenumberCeslinenumberleeesl

{ GosuB 1}
CLALT }1
C J
L {NOALT {GOTO 2} t¥ne numberl}]
¢ {GOSUER) }1]
where:

List= (AT (exp2¢ exp3) }
{Literal 3
{CFAC(alpha-arg3)el{num variable [+PIC(image) Il ¢num~specl})
{ C{alpha variable [CeCHC(int) Il salpha-specl))

num-spec = {RANGE {<(POS)) }
{ {(NEG) 3} }
{ {(exp4y exp5) 1 }

alpha-spec ={RANGE (alpha-arg4s alpha-arg6)l

image = a valid numeric fmages as in FMT
int = an int specifying the length of the talpha) field
alpha-arg = literaly alpha variablee BIN functions STR function

l—-———————_—————_——-—_————-————-——————_—-—-—.-——-————

100

The ACCEPT statement allows workstation 4dnput of numeric
and alphanumeric data 9n a field-oriented manners using the
supplied formatting 4informatione. Both single receivers and
arrays may be inpute.

ACCEPT uses the entire screens clearing all unused arease.

Field Descriptions

le Numeric fields may be formatted according to the PICC)
specification. It is interpreted as Jin the FMT
statement (see FMT statement) If PIC() 4s omitteds the
numeric fields are 18 characters. ALL blanks appear on
the screen as pseudoblankse

2¢ Alphanumeric field width is specified by CH(int)y where
int = field widthe If CH is omitteds the field size
defaults to the defined Length of the alpha valuee. ALl

blanks appear as pseudoblanks on the screene

Eield Attribute Characters (FAC's)

le If omitteds the following defaults are assumed:

Alphanumeric - bright modifiables all characters,
tabbable (HEX(80))

Floating=-point - bright modifiabley uppercases tab-
bable (HEX(81))

Integer - bright modifiables numeric onlys tab-
bable (HEX(82))

2« The tirst character of the alpha-expression is used as
the FAC charactere

Field Placement Order

l¢ For single recetiverss the fields are put out one at a
time in order of appearance in the statemente

2¢ For arrayse the fields are put out element-by-element,
in the usual row-by-row order (Like MATPRINT).

Eield Positioning

A field can either be explicitly placed at a specified row
and column on the screens using the AT clause of the ACCEPT
statements or if no AT clause 4s given it will be placed
according to the defaults used by ACCEPTs which are as followse

101

3.

4,

The

they occur

If the field can fit on the same lLine as the preceding
fietde the field will follow directly after the
preceding field with space for one FAC left between the
fields. If the field in question is the first field on
the screen (f.ees there is no preceding field) then the
field is placed by default at row 1 column 24 to Leave
room for a preceding FAC.

Any modifiable field which 4is too long to fit in the
space remaining on the Line which contains the
preceding field will be placed beginning at the second
column of the next Line on the screen. No modifiable
field can be too long to fit on a single Line (79 bytes
maximum Llength)e.

Any non-modifiable field which. 1s too Long to fit in
the space remaining on the Line which has the preceding
field and which is no Llonger than 79 _bytess is placed
beginning at the second position on the following
Line. If it 4{s Llonger than 79 bytess it is placed
immediately following the preceding fields and it will
be continued onto as many lLines as necessarye.

If a non-modifiable fleld is too long to fit completely
on the Line on which it starts it will be continued for
as many Lines as necessarye Each new Lline will begin
with a FAC with the same attributes as the FAC which
comes at the beginning of the fielde except that the
continued sections of the field will not be tabable.

These rules are summed up in Table II-1.

following conditions are considered errorse whether
because the field was placed using an AT clauses or

because the field was placed by the ACCEPT defaultse.

1.

2e

Se

4,

Se

For

If any two fields overlape

If any modifiable field is longer than 79 bytes (too
long to fit on a single Llines)

If any explicitly positioned modifiable field extends
beyond the end of the Lline on which it is placed.

If ahy field 1is explicitly placed so that 1t starts
beyond the boundaries of the screena

If any field extends beyond the end of the lLast Line on
the screene.

arrayss an automatic "new Line"™ (to column 2) is

generated after each rowe

102

TABLE I1-1.

ACCEPT Field Placement Defaults

MODIFIABLE FIELD

LINE LENGTH NON-MODIFIABLE FIELD

LESS THAN 79
CHARACTERS

immediately follows
previous field

will fit
on Line

immediately follows
previous field

on lLine begins on next Lline begins on next Line

MORE THAN 79
CHARACTERS immediately follows

previous field

not allowed

iR ek Y S—

| ! |
1 1 1
| | |
| | |
{ | |
] | |
| | |
| ! |
| won't tit | |
[I |
1 1 1
] ! !
| | |
! | |
1l 1 1

Validation

Both numeric and alphanumeric fields may be validated by
the BASIC program before being acceptede If validation failss
the first incorrect field is set to "blinking™®™ and the user is
reprompted for the valuese validation 1is done via & range
specification as follows:

le Numeric

RANGE: POS pos itive values only
NEG negative values only
exp4e exp5 = lower and upper Limits,
respectivelys for the input
value(s) (inclusive).

2. Alphapumeric

RANGE: alpha exple alpha exp2 = lower and upper
limitse The ASCII ecollating sequence 4s
usede

A second type of validation (specified by the FAC preceding
a receiving field) is distinguished from RANGE wvalidation by not
setting the field to "blinkinge"

103

PE_Key Copirol

(Note: PF keys in ACCEPT statements do pot call DEFFN?
subroutines or stringse.)

The ENTER and PF keys can be controlled by any combination
of three Key control clausese. .

If all_three clauses are omitteds only the ENTER key can be
used to respond to the ACCEPT. If any__one of the clauses is
presente ENTER and all PF Keys are allowed by defaulte subject
only to the restrictions of the KEYS clause {1f presente.

1. KEYS

This clause specifies the keys which are valid for this
ACCEPTS any others will beep if depressede. The alpha-
expression (actual Length) is used as a List of 1-byte
binary values <corresponding to the allowed PF key
(ENTER = 00)e Invalid values are fgnorede. (Note that
PF32 = HEX(20) may be considered to be a trailing blank
if the wuser 1s not careful.) The key order 1is
irrelevant.

2. KEY

This causes the number of the Key (ENTER = 0) depressed
by the user to be placed in the numeric variable. This
is done prior to any field validattion or exit branchinge.
Note the KEYS <clause takes precedence over the KEY
clausee.
3. ON_Key Value

This clause allows the user to exit without changing
any data values if certain PF keys are specifiede.

As tn the KEYS <clauses the alpha-éexpressfion (actual
length) is treated as a PF key Ltistse Each entry in the
list corresponds to a Litne number to which the program
branches if that PF key %s depressede.

The ON clause 1s roughly eqguivalent to the statement

ON POS(alpha-exp=PF Key number){GOSUB)}{GO TO0lline number ..

except that the actual Llength of ¢the alpha-expression
is useds Note that the KEYS <clause takes precedence
over the ON clauses thuse ON will never process 1invalid
key valuese

Note also that the Llast Line number should not be
followed by a commas nor should "omitted™ Line numbers be

specified.

104

r&

1.

2.

Ordinarilys all modifiable fields are read/validated/
transferred to their receiverses whether or not the
fields were actually changed by the usere.

This can be made more efficient via the ALT
specification or NOALT <clausee If efither ALT or the
NOALT exit 1is present in the ACCEPT statements this
will cause only those fields which were altered by the
user (fecee character keystrokes detected at the
workstation) +to be processede. Unaltered fields are
effectively dgnoreds and the <corresponding receivers
are unchangede.

If NOALT 1is specified and no fields were alteredy the
specified exit is takene.)

Execution of ACCEPT

1.

2e

4,

Examples:

100
200
300
400
500

The screen is generated as describedes with the cursor
positioned at the first modi fiable (or numeric
protected) fields ¥f any, ALl fields contain the
current values of the receivers/array elementse.

The user may enter new values.« When ENTER 4s keyeds or
a PF key 1is depressedy the key 1s first checked for
validitye If 4nvalide the workstation emits a beeping
soundsy and the user may continue modifying or he may
depress another keye.

If the key is specified in the ON clausey the specified
branch is taken without any field reads or
verificatione (The KEY wvariable will contain the key
number in any casea)

Otherwises all modififable fields (or only altered
fields if ALT or NOALT is - specified) are
read/validated. Numeric fields are validated for

_proper numeric format independently of RANGE

validatione Note that although any PIC specification
may be usedes special characters (CRyDBy etc.) are not
valid on dinput.

If any field 1s invalide its FAC 1s set to btinking and
the wuser must correct his mistake (and can further
change other fields).

ACCEPT "™YOUR NAME"4A$,4B%

ACCEPT ATC10+10)+"WHY DO YOU NEVER SPEAK?"¢FAC(HEX(S0) 4!
ASoFAC(HEX(S0)4B$

ACCEPT A¢BoCe KEYS(HEX(00010203040510))9 KEY(A)4ON !
HEX(10) GOTO 1000¢ NOALT GOTO 2800

105

I»

0D_L[CJ Operator

General Form:

CLET] Alpha-Receiver = [logical exp] ADDLC] Logical exp

logical exp =~ see Section 3.8

s . - ———— v — oy
o e . — —— o — e

Purpose:

The ADD operator is used to add a binary value to the
binary value of an alpha variablee.

100 A$ = ADD BS

the binary value of B$ 1is added to the binary value of A$,s and
the result is stored in Ase.

If an operand 1s specified before the ADD operator
(operand-1)s 1ts value is stored in the recefver variable prior
to performing the addition. For exampley in the statement

100 As$ = C$ ADD BS$

the value of C$ 1s first stored in A$; thene the value of B$ is
added to A$e and the result stored in AS. The contents of
operand=1 and the operand which follows the ADD operator
(operand=2) are not alterede.

If *C* does NOT follow the ADD operatore the addition is
carried out on a character-by-character basis from right to left,
with no carry propagation between characters. That iss the last
(rightmost) byte of the value of the operand 1is added to the lLast
(rightmost) byte of the receiver variables thens the next-to-last
character of the operand 1is added to the next-to-last character
of the receivers and so forthe For example?

100 DIM AS$2

200 A$=HEX(0123)

300 A$=ADD HEX(OOFF)

400 PRINT ®"RESULT = "3HEXOF(AS)

OUTPUT: RESULT = 0122
If the operand and receiver are not the same lengthe the
shorter one s \eft-padded with hex zerose. The result 1s

right-justified iIn the receiveres with high-order characters
truncated if the result is longer than the receivere.

106

(J

If *C* DOES follow ADDs the value of the operand is treated
as a single binary number and added to the binary value of the
receiver variable with carry propagation between characterse

For example:

100 DIM AS2

200 AS=HEX(0123)

300 A$=ADDC HEXCOOFF)

400 PRINT ®RESULT = ®"SHEXOF(AS)

QUTPUT: RESULT = 0222
Examples of Valid Syntax:

100 A$=ADD HEX(FF)

200 A$=ADDC ALL(FF)

300 STR(AS$49142)=B3s ADDC C$

See Chapter 34 Section 3.8 for more information on Logical
expressions.

107

ALL Funciion

General form:

ALL (alpha-expression)

oo o
el p—

The ALL function has defined lLength equal to that of the
function®s receivere and consists entirely of characters equal to
the first character of the alpha-expressions It 4s used only in
logical expressionse (For exact use of the ALL functione see
Chapter 34 Section 3.8.) '

Examples:?

100 LET AS$=ALL(B%)
200 C$=AND ALL(DS3)

108

(2

@3\

AND Logical Operator

General Form:

CLET] Alpha-Receiver = [lLogical expl AND logical exp

Logical exp - see Section 3.8

o e S . ——— —— —
p o —— — —— — — — e

Purpose:

The AND operator Logically AND*s two or more alphanumeric
argumentse

The operation procedes from Left to righte If the operand
(the Llogical expression) 4s shorter than the receivere the
remaining characters of the receiver are Left unchanged. If the
operand is longer than the receivers the operation stops when the
receiver is exhaustede.
Examples:

100 A$ = AND BsS
which Llogically ANDs AS$ and B$ and places the result in A$.

100 AS = BS AND C$
which Logically ANDs B$ and C$ and places the result in AS.

Examples?

HEX(OFOF) AND HEX(OFOF)=HEXCOFOF)
HEXC(OOFF) AND HEX(OFOF)=HEX(OOFF)

See Chapter 34 Section 3.8 for more information on Ltogical
expressionse.

109

BIN Function

General Form:
BIN(expression [+d])

where: d = 1¢2¢3¢4 (default = 1)

o o - — —
jorun . e — ——

Purpose:

This function converts the integer value of the expression
to a d=~character alphanumeric value which is the binary
equivalent of the expression. BIN s the dinverse of the function
VAL«

For d = 142¢ or 3+ the expression dis converted to a d=byte
unsigned binary numbere. The Limits for the value of the
expression are:

{256 (d=1)
0 £ vale. expression < {65536 (d=2)
{16777216 (d=3)

For d=4¢ the expression is converted ¢to a 4-byte 2's-complemeht
signed binary number (lLike internal integer format)e The range is

=-2147483648 ¢ val of expression € 2147483647
Examples:

100 A$S=BINCA¢4)
200 B$=BIN(A¢3) AND BIN(B+3)

110

BOOLh Logical Operator

General Form:
CLET]) Alpha-Receiver = [Logical exp] BOOLh Logical exp
Logical exp - see Section 3.8

h = a digit from 0 to 9¢ or a letter from A to F

-

e e — ——— —— c— ——
e — — — —— c—

Purpose:

BOOL 4s a generalized Logical operator which performs a
specified operation on the value of the receiver alpha variablee
The operation to be performed is specified by the hexadecimal
digit following BOOL (see Table II-A). BOOL may be used only in
the ‘alpha-expression portion of an assignment statement ({.e.s oON
the right-hand side of the equals (*=*) sign)e The value of the
operand which follows the BOOLh operator (operand-=2) and the
value of the receiver variable are operated upones and the result
§s stored in the receiver variable. For examples the statement

100 AS$ = BOOL7 Bs$

logically not-AND*s the value of B$ with the value of ASe and
stores the result ¥n As.

If an operand (operand-1) precedes the BoolLh operators {ts
value 1s stored in the recetfver-variable prior to performing the
specified Logical operations For examples the statement:

200 AS = C$ BOOL7 BS

‘first stores the current value of C$ 3dinto A%e and then not-AND's
the value of B$ to Ag. Againe the result of the operation is
stored 1in AS. The contents of operand-1 and operand-2 are not
affected by the operatione.

In every <cases the logical operation to be performed 4s
fdentified by the hexdigit following BOOL. A total of 16 logical
operations are available (see the table on the next page)e. The
hexdigit used to identify each operation 4s a kind of mnemonic
which represents the logical result of performing the operation
on the following bit combinations:

receiver-variable? 1100
operand-2: : 1010

For examples the hexdigit *E* dJdentifies the OR operation. When
1100 ¥s OR®ed with 1010 the result is 1110y or hexdigit Ee. Note
that several commonly used BOOL operations are available as

separate operators: BOOLE is equivalent to ORes BOOL6E to XORs and
BOOL8 to ANDe. .

111

Table 1I-B

of BOOL(O)

| BOOL | Logical Operation

| digit | ,

) 1 {Note: _1ff_=_3if _2a2nd only 11f)

| 0 | null (bits always = 6% logical inverse of
| | of BOOL F?

| 1 | not OR (1 $¥ff corresponding bits of both
| | arg 1 and arg 2=0)

| 2 | ¢1 §iff corresponding bits of arg 2=1 and
| | arg 1=0) .

| 3 | binary complement of arg 1 (1 iff bit of

| | arg 1=03) otherwise 0)

| 4 | ¢1 1ff corresponding bits .of arg 2=0 and
| | arg 1=1) :

| 5 | binary complement of arg 2 (1 iff bit of
| | arg 2=0) '

| (3 | exclusive OR (1 iff corresponding bits of
I | arg 1 and arg 2 are different)

| A { | not AND (0 1ff corresponding bits of both
| | arg 1 and arg 2=1)

| B8 | AND (1 iff corresponding bits of both arg 1
| | and arg 2=1)

| 9 | equivalence (1 1ff corresponding bits are the
{ | sames ie.ee9 both = 1 or both = 0)

| A | arg 2 (identical to bits of arg 2}

| B | arg 1 implies arg 2 (1 unltess arg 1=1 and
|] arg 2=0}

| c | arg 1 (identical to bits of arg 1)

| D | arg 2 implies arg 1 (1 unless arg 2=1 and
| | arg 1=0)

| E | OR (1 unless both corresponding bits = 0)
| F | identity (bits atways = 13 Logical inverse of
| |

| 1

Note?

Examples?

BOOL6 is equivalent to XOR
BooL8 1s eaquivalent to AND
BOOLE 1s equtivalent to OR

HEX (OFOF) BOOL1 HEX(OFFO0) = HEX(FO000)
HEX(OFGOF) BOOL5 HEX(OFFQ0) = HEX(FOOF)
HEXC(OFOF) BOOLF HEX(OFFO0) = HEX(FFFF)

112

CALL

{file-expression

! I
| General Form: =
|

| CALL "name™ [[ADDRI(arglearglece)l |
| |
| where: “name®™ = 1-8 alphanumeric characterss (no embedded |

spaces)

| 1st must be alphabetic (including & #e $) |
| = SUB "name®™ of the SUB program being called. |
I I
| Note: Name must be enclosed in quotation markse. |
| ‘ !
| arg = {expression |
| {alpha=-expressions f
| {array~designator |
| !
I |

CALL directs execution to the named subroutines identified
by a SUB statements and passes the argumentss 1f anys to the
subroutine program dummy argumentse The subroutine must be
Linked wusing the LINKER utilitys before the program 1s rune
(This can also be done when a program is compiled from the EDITOR
or EZBASIC.)

The argument List in the CALL statement must correspond
ftem-for-item with the argument U(ist in the SUB statements,
according to Tables II-BR and II-C

Table II=C
| | |
1__CALL argument 1__SUB argument __ |
] | |
| C(alpha-)expression | scalar variable |
| matrix [matrix |
| wvector | wvector |
| file-expression | file~-number |
I | 1
Iable I1I-D
! !
1__CALL argument type | SUB argument type |
] | :]
| alpha | alpha]
| floating=-point I floating-point |
| dinteger | dnteger N
] 1 1

113

A SUB statement with an argument List as follows:
100 SUB™HENRY"™ (A%y Be 12%€)y #1)

must have arguments passed to it by a CALL statement 4in exactly
the same order--in this case alphanumeric scalary floating=-point
variable, integer array-designators file-expressione The
arguments in the CALL statement do not have to be identical to
those in the SUB statemente but each must correspond to the
argument in the same position in the SUB statement®s argument
liste Thuse the following CALL statement s legal:

CALL "HENRY®™ (STRCC1$())s A(1l)e BX()¢ #N)

Note: STR(C13()) 4is wused as a string since C1%() would be
treated as an alpha array-designatore.

Argument passing for the CALL statement proceeds as follows:

le For_non-ADDR ifype

. The file-expression is passed to the SUB program to
replace the dummy fite number. (Specificallys the
UFB address is passed to the SUB programe)

. Arrays and receivers: Current storage addresses
are passed to the SUB routines including pointers
to the dimensions and lengthse.

. Other expressions and alpha-expressions: Since
these are not receiverses they must be computed and
stored 1in temporary Llocationse along with their
dimensions and lengthse.

Otherwisee execution proceeds as 1in arrays and
receiverses except that returned values and lengths
are effectively losty since the Llocations are no
Longer accessible to the calling progranme.

2 For ADDR-type:

. Painters to the storage_addresses _only are passed;
no dimensioning or lLlength specifications are passed

to the subroutine. (For numeric scalers and
file-numbers this is didentical to the non-ADDR
typee)

. Changed values are accessible as in non-ADDR types
except that array dimensions and Llengths may be
changed only within the subroutines Je.eee array
dimensions and Lengths witt return to their
original values after the subroutine returns to the
calling programe.

114

NOTE S

ADDR-type CALL ¥s generally used only when the called
subroutine is non-BASICS otherwisey standard (non-=ADDR)
CALL?*s should be used.

Examples:

100 CALL ™ELIOT"(BeCS$+DX)
200 PRINT ®RETURNED"
300 STOP

100 DIM AS24

200 CALL "EXTRACT®™ ADDR("NA™,AS3)
300 PRINT AS

400 STOP

115

|]
| General Form: CLOSE file-expression |
L 1

This statement closes a file which had previously been
opcned for 1/0 operations by an OPEN statements If the file is
subsequently re-opened 1in the program (by means of another OPEN
statement)e filees Librarye and volume need not be respecified by

the program or the usere.

Attempting to close a file which has not previously .been
opened by an OPEN statement causes a nonrecoverable program error
at run-timee. ’

ALL files are <closed at the start of the programe and
opened files should be closed before the end of the programe

Examples:
100 CLOSE #1

200 CLOSE #A
300 CLOSE #HLEN(AZ)

116

-

[g]
(=]
=

General Form:
COM com element Lecom element Jeee

where:
{numeric scalar variable)
com element = {numeric array name (int [4int]) }
{alpha scalar variable [length-integer])
{alpha array name (int [+intJ)Clength-integerl)}

0 < Length-integer ¢ 256 -
0 < int ¢ 32767

S —
i e ——

The COM statement defines scalar variables or arrays which
are to be used in common by several program segmentse

This statement provides array definition didentical to the
DIM statement for array variables;s the syntax for one COM
statement can be a combination of array variables (feees A(10),
B(3+43)) and scalar variables (feeee C2¢DoeX33,

Common variables nmust be defined before they are usede.
Therefores it may be convenient to define the common varjables at
the beoinning of the program.

If a particular set of common variables is to be used in
each of several sequentially CALL®ed subprogramse the CoM
statement must be dncluded in the main program and 4n each
subprogram in which they are wusede ALL variables $n the COM
statements must be declared in the same orders and with the same
dimensions and lengthse in each separately compiled module.

The COM statement can be used to set the maximum defined
Length of alphanumeric variables (assumed to be 16 if not
specified)e The length integer (<256) following the alpha scalar
(or alpha array) variable specifies the Llength of that alpha
variable (or those array elements).

Examples:

100 COM A(10)+B(3¢3)sC2

200 COM CoD(4414)4FE34F(6) 4+F1(5)
300 COM M13eM3(2¢4)9XeY

400 COM AS10+B$(242)32

117

CONVERY

General Forms:
1., CONVERT alpha-expression TO numeric variable
L +DATA {GOTO } Line number]
{GOSUB}

or

2. CONVERT expression TO alpha-receivers (image)

C{x%} I [ixy 1] {+)

£{o} i €0} - 1] {-1
where: image = [+£ILSILC*) eee JLel{*} cee JITTTTT IC{++2}]

C{B} 1L [(B} 1] {--3

L/} e/} 11 -

C{s2 L C{e) 1]

e . ——— ———— e D — T ey T —— ——— — —— — —— — G a—

where not both a Leading and traiting sign may be usede.

s e T ——— — T T D q— W —— — — — — — qo——

The CONVERT statement 1is wused to convert alphanumeric
representation of numeric data to dinternal numeric formats and
vice-versa. Two forms of the statement are providede.

EForm 15 _Alpha-to-Numeric Conversion

Form 1 of the CONVERT statement converts the number
represented by ASCII1 characters in the alphanumeric expression to
a numeric value and sets the numeric variable equal to that
valuee. For examplee if A3 = ®12347%y CONVERT AS TO X sets X =
1234, An error will result (or the DATA exit will be taken) if
the ASCII characters 1in the specified alphanumeric are not a
Legitimate BASIC representation of a numberes

Alpha=to=-numeric conversion s particularly useful when
numeric data 4s read from a peripheral device in a record format
that is not compatible with normal BASIC statementss or when a
code conversion is first necessary. It also can be useful when
it 14s desirable to validate keyed-in numeric data under program
controle. (Numeric data can be received 1in an alphanumeric
variables and tested with the NUM function before converting it
to numeric.) The alpha-expression may contain blanks anywheres as
with NUMe Ife howevers the alpha-expression 1is entirely blanky
an error will result (or the data exit will be taken).

118

™

Form_2:_ _Numeric-to-Alpha_ Conversion_(Same_as PRINJUSING)

Form 2 of the CONVERT statemeﬁt converts the numeric wvalue
of the specified expression to an ASCII character string
according to the image specifiede.

Numerfec to alpha conversion 1is particularly useful when
numeric data must be formatted ¥in character format in recordse

The image used with this form of CONVERT is used tn the
same way as a format-spec 1n an FMT statemente.

€eGoo 100 CONVERT 10 to A$Se (##i#8)
Result: A = = 1% ’

Examples: (Alpha to Numeric)

100 CONVERT AS$ TO X
200 CONVERT STR(ASs14NUMCAS)) TO X(1)

Examples: (Numeric to Alpha)

100 X = 12.195
200 CONVERT X TO As$,(000)
(result: A% = ®=Q12w)
300 CONVERY X222 TO ASet+8ififitl)
(result: AS$ = "+24,39n)
400 CONVERT X TO STR(ASe3e8) o(=HHTTTT)
(result: STR(A$43¢8) = " 1,2E+01"%)
500 CONVERT X TO ASe (0000 .H#H8##)
(result: AS$ = "0012.19500")

119

coPyY

| 6eneral Form:

COPY [~-] alpha-expression TO [-] alpha~-receiver

pr e e e

|
I
1

COPY transfers the alpha-expression to the alpha-receiver.
one byte at a timey using the defined lengths of bothe

If »=" 4s specified before the alpha-expressions the data
is sent starting from the rightmost byte of the expression,
right-to-left. Similarlys if "-" 45 specified before the alpha-
receivery the data is receivedy starting from the rightmost byte
of the receivers right-to-lefte. :

If ®=-" 4s not specified before the alpha-expressions the
data is sent starting from the leftmost byte of the expressions
left-to-right. Similarlyy if ®"=" §s not specified before the
alpha-receiveres the data 1is receivedy starting from the Leftmost
byte of the receivery left-to-righte.

Transfer stops when:

le The receiver is filleds
or

2 The expression 1is exhausteds 1in "which case the
remainder of the receiver is filled with blankse.

NOTE:

If the alpha-expression is a receivers
it is copied from the memory locations
otherwisey the alpha-expression is
constructed in a separate location and
confed from theree Thuse COPY®*ing a
receiver onto {itself c¢can result in
desirable or undesirable single-
character propagation or other
position-dependent resultse.

D r—— — T — — — —— —— chumn ———
—— L T W cmy T — R —— ——

Examples?

100 COPY A% TO B%
200 COPY = STR(A$(1)«345) TO C%

120

o
i)-
-4
>

General Form:

DATA {constant)} le{constantl}|
{fliteral 3 | {literal }|lees

|
, !
|
[] . !
|
|
C] |

I

The DATA statement provides the values to be assigned to
the variables in a READ statemente The READ and DATA statements
thus provide a means of storing tables of constants within a
proarame

Each time a READ statement is executed in a programs the
next sequential value(s) Listed in the DATA statements of the
program are obtajned and stored 1in the receivers Listed {in the
READ statements The values entered with the DATA statement must
be in the order in which they are to be used: 4dtems in the DATA
list are separated by commase If several ODATA statements are
enteredy they are used in order of statement numbere Numeric
variables in READ statements must reference numeric values:
alphanumeric receivers must reference literalse.

The RESTORE statement provides a means to reset the current
DATA statement pointer and reuse the DATA statement values (see
RESTORE).

Example?

100 FOR I=1 70 5

200 READ W

300 PRINT WaelT2

400 NEXT I

500 DATA 5S¢ 8269 14.8¢ =-6879 22

Qutput: 5 25
" Be26 6Be2276
14,8 219.04
-687 471969
22 484

In the above examples the five values listed in the DATA
statement are sequentially used by the READ statement and printede.

Examples:

400 DATA 44345¢64HEXCTA)
500 DATA EeS56FE+45¢ =6444543

121

DATE Function

General Form:

DATE

fr s e

Purpose:

DATE returns a 6-character string giving the current date
in the form YYMMDDe The DATE function takes no arguments.

Example:
100 AS=DATE
200 PRINT STR(AS9362)3"/"3STR(AS9542)3%/%; 4
300 STR(AS$¢142) :

Qutput: 08/710/78

122

‘J

General Form:
DEFFNal%1(v) = expression
where a = the identifiere a letter or digit which

jdentifies the function
v = the dummy variables a numeric scalar variable

1f *%* 4s presents the result is an integere.

e ey s s A e e
e — — . — — — —— —— —

The "define function® statemente DEFFN, enables the
programmer to define a sinale-valued numeric function within the
programe Once definede this function can be used in expressions
in any other part of the programe The function provides one
dummy variable whose value {s supplied when the function is
referencede. Defined functions can reference other defined
functionse but recursion is not al lowed (feeee a function cannot
refer to 1{itselfe nor can a function refer to another function
which refers to the first)e The following program dllustrates
how DEFFN is usede

Examples
100 X=3
200 DEFFN A(2) = Z12-2
300 PRINT X + FNA(2xX)

400 END
Output: 33

Processing of FNA(2xX) in the above example proceeds in the
following order:

le Evaluate the FN expression for the scalar varitable
(1eCee 22X=6).

2 Find the DEFFN with the matching identifier (feces Ade

3 Set the dummy variable (Line 200) equal to the value of
the evaluated expression (f1eeee Z=6).

4e FEvaluate the DEFFN expression and return the calculated
value (ieees Z712-2).

The above example prints the value 33y since 3 + (672 - 6)=
336

123

The DEFFN statement may be entered from any place 1in a
programes but is not executed unless referenced by the programe
The expression may be any valid numeric expressione The
following restrictions apply:

le A DEFFN function may not refer to itselfs for examples
NEFFN A(X) = X + FNA(X)
is fllegale.

2 Two DEFFN functions may not refer to each othere. For
examples the following combination of statements is

illegal.
DEFFNACAY = FNB(A)
DEFFN3 (A) = FNA(A)

Neither of the above restrictions 4d4s checked for during
compilations but both will cause endless lLloops resulting 1in

"stack overflow®™ during execution.

The dummy scalar variable in the DEFFN statement can have a
name {dentical to that of a variable used elsewhere 1in the
program or in other DEFFN statementss current values of the
variables are not affected during FN evaluatione. DEFFN
statements may also use other variablese whose current values at
callinag time are usede

A total of 72 wuser-defined functions may exist in one
program (A-Ze 0-9¢ AX=-2%Xe 0%X-9%).

Examples:

600 DEFFN A(C) (3*A) - 82C + FNB(2-A)

700 DEFFN B(A) (3xA) ~ 9/C
800 DEFFN&4(C) = FNB(CI2FNA(2)

(LI 1]

124

/ﬁ

General Form:

DEFFN®* int {[(receiverlereceiverlees) 1}
{literal [iliterallees)

where int = {1 to 32 for program function key
{ entries
{0 to 255 for internal program references

e o —
e — —— —— —— e ——

The DEFFN® statement has two purposes:

l¢ To define a LlLiteral to be supplied when a Program
Function (PF) Key is used for keyboard text entrye.

2« To define Procram Function Key or program entry points
for subroutines with argument passing capability.

Repeated subroutine calls executed without RETURN or RETURN
CLEAR statements may cause memory overflowe (See RETURN and
RETURN CLEARe)

Keyboard Text Entry Defipition

To be used for keyboard entry, the dinteger 1in the
DEFFN®* statement must be a number from 1 to 32 representing the
number of a Program Function Key (PF Key)e When the
corresponding PF Key is pressed while execution 4s halted by an
INPUT or STOP statements the user®s Literal(s) is displayed and
becomes part of the currently entered text linee

The Literal may be represented by a character string in
quotess a HEX function or a combination of those elementse.

NOTE

|
|
I
The Program Function Keys can be |
defined to output characters that do |
not appear on the keyboard by wusing |
HEX Literals to specify the codes |
for these characterse |

1

R

125

Examples:

100 DEFFN®31 "April Is The Cruelest Monthe"
200 DEFFN'02 HEX(94); HEX(22)s"Mistah Kurtz~-He Dead.™3sHEX(22)

Pressing PF 31 at a STOP or INPUT will cause
April 4s the cruelest month.
to be displayedes while pressing PF 2 will cause
"Mistah Kurtz - he dead."®

to appears blinking and protected because of the HEX(94)s. The
quotation marks are produced by HEX(22)e which is an example of
how 1t is possible to display characters which otherwise would be
difficult to displaye.

Marked Subroutine Entry Definition

The DEFFN' statemente followed by an dinteger and an
optional receifver List enclosed in parenthesess 1indicates the
beginning of a marked subroutine. The subroutine may be entered
from the program via a GOSUB®* statement (see GOSUB*)s or from the
keyboard by pressing the appropriate Program Function Key while
execution is halted by an INPUT or STOP statement. 1f subroutine
entry 4s to be made via a GOSUB®* statementy the integer in the
DEFFN®* statement can be any integer from 0 to 2553 1f the
subroutine entry 1s to be made from a Program Function Keye the
integer can be from 1 to 32. When a Program Function Key 1is
"depressed or a GOSUBY statement is executede the execution of the
BASIC program transfers to the DEFFN® statement with an 1{integer
corresponding to the number of the Program Function Key or the
integer 1in the GOSUB® statement (f.ee.s 1f Program Function Key 2
i1s presseds execution branches to the DEFFN®'2 statement)e.

When a RETURN statement 9Js encountered in the subroutine,
control is passed to the program statement 1immediately following
the Llast executed GOSUB®* statements or back to the INPUT or STOP
statement if entry was made by depressing a Program Function Keye.

The DEFFN®* statement may optionally {include a receiver
List. The receivers in the Llist receive the values of arguments
being passed to the subroutinee.

In a GOSUB* subroutine call made 1internally from the
programe arguments are Llisted (enclosed 1n parentheses and
separated by commas) 1in the GOSUB® statement (see GOSUB®*). If
the number of arguments to be passed 1is not equal to the number
of receivers in the Lists a compilation error resultse.

126

~

Example:

100 GOSUB®2 (124342 * Xo "JOHN®)

200 STOP
300 DEFFN'2 (A+sB(3)+C3)

400 RETURN

For Program Function Key entry to a subroutines arguments
are passed by keying them ine separated by commase dimmediately
before the program function key {s depressede (See INPUT and
SIQP«) 1If the wrong numbere or the wrong type of data is givens
the entries will be refuseds the cursor will be returned to the
beginning of the fields and the program will wait for further

operator actione.
Example:

When the previous program is run?
STOP 1e2¢ 3e24¢ "JOHN"™ (now deoress PF Key 2)

The DEFFN* statement need not specify a receiver List. 1In
some cases 1t may be more convenient to request data from a
keyboard in a prompted fashione.

Example:

100 DEFFN?*4

200 INPUT ®“RATE® 4R
300 C = 100 » R - 50
400 PRINT "COST="3C
500 RETURN

When a DEFFN® subroutine is executed via keyboard Program
Function Keys while the system is awaiting data to.be entered
into an INPUT statements or in STOP modes the INPUT or STOP
statement will be repeated in ¥ts entiretyes upon return from the
subroutinee.

Example?

100 INPUT ®ENTER AMOUNT",A

200 DEFFN®t1
210 INPUT ®ENTER NEW RATE" 4R
220 RETURN

127

Disptay: ENTER AMOUNT?
(Depress PF Key 1)
ENTER NEW RATE? 7.5
ENTER AMOUNT?

DEFFN* subroutines may be nested (ieees call other
subroutines from within a subroutine)de A RETURN statement
encountered in a nested subroutine will return execution to the
subroutine which called the nested subroutinee.

128

J

DELETE

| i
| General Form: DELETE file-expression |
1 - _— 1

The DELETE command deletes the last record reades which must
have been read with the HOLD optione It 1s only valid for
INBEXED filess CONSEC records cannot be deleted.

129

o
[
=
|
172
r
If’,
o]
=2
]
(]
I+

General Form:
DIM dim-elt [odim-eltJ...

where dim-elt = {numeric array name (intlle+int2])
{atpha array name (intlLe+int2J30int31]
{atpha scalar variable [int31

where: {int1
{int2
{int3

row dimensions 1<int1<32767
column dimensione 1€int2<£32767
string lengths 1<¥int3<256

e e e e e e > s e —

The DIM statement reserves space for arrays and sets the
length for alpha scalars or array variablese .

The DIM statement must appear before use of any of the
dimensioned elementse.

If not dimensioned {in a DIM statemente the following
defaults hold:

1l The string Length of alpha scalar or array variables
defaults to 16 This is also true if int3 is omitted
in a DIM statemente.

2« Arrays are defaulted to 10 by 10 matricese

3¢ Arrays or variables dimensioned in a COM statement may
not be respecified in a DIMe (See COMe)

A variable or array may occur in only ope DIM or COM in
each program or subprograme.

Arrays may be redimensioned by using TMAT] REDIM.
Examples?
100 DIM A%100

200 DIM AS(4e4)eB3(12912)204B(347)
300 DIM AC10)+B%€20210

130

DIM Funetion

General Form:

|

|

!

) DIM (array-designators {1})
| {2}
1

row (1) or column (2) dimension of th
column dimension of a vector is 1X%Xe.

The DIM function returnse as an intege
e

valuee
specified arrays The

! |
NOTE:
The Length of an alpha scalar or array
variable may be obtained using
LEN(STR(variable)).
1 1

Examples:

100 A=DIM(A()o1)
200 B=DIMCA()2)

131

the

current

o
—
2}
By
-
hg

General Form:

|

}

|

]

] DISPLAY list Lelistleee

|

| where:

{

| List = { CcoL ¢int))
| { AT(exp2e« exp3))
| { expression [«PICCimage)])
| { alpha-exp L[sCH (int)l)
| { BELL }
| ‘

| image = a valid numeric images as in FMT

| int = an int specifying the Length of the (alpha) fielde.
|

]|

e — — T —— —— — — T — —— — ——

DISPLAY allows the output of numeric and alphanumeric data
values via the workstation in a field-oriented manners using the
supplied formatting informatione.

Both single values and arrays may be output.

DISPLAY works in generally the same way as ACCEPTy with the
following exceptions:

le Values are written onlys no new values are accepted.
(Thus there are no PF key clauses or FAC characterse)

2« Pseudoblanks are not usede.
Otherwisee see ACCEPTe Note that the screen s cleared

prior to DISPLAYe and that a STOF statement should be wused 1in
orger to halt execution for viewing (if desired) tfollowing

DISPLAY.

See Chapter 5 for more information on secreen 1/0.

Examples:

100 DISPLAY COLC10)sASsCH(20)eAT(20020)9A PIC(HELHN)
200 DISPLAY Bs$eBELL

132

™
=2
o

[!
| General Form: END Cexpression] |

1 -1

This statement is required to terminate the program prior
to its physical end or to pass a program-supoplied return code to
the operating systeme It may be used anywhere and any number of
times in the programe It is not required at the physical end of
the programe where an implied END is automatically generated.

When the END statement s executede program execution
terminates ore 3f din a subroutinees execution returns to the

calling programe 1f END is followed by an expressions the value
of the expression (truncated if not an integer) is passed to the

operating system as a vreturn code. If %expression® is omitted,
the return code is 0.

eege 100 END
999 END A

The second example passes the current (truncated) value of A to
the system as a return code.

Return codes are often useful in writing procedurese (See

Chapters 7 and 8 of the VS__Programmer®s __Introduction for
procedures and for the use of return codese)

133

General form:

FMT {form-spec} [+ {form=spec) Jleeea

where?

form=-gspec = {[rep-intxJdata-specl
{Crep-intxJliteral 1}
{ control-spec }

rep=-int = int specifying the number of times to

repeat the data-spec or Literale.

s . —— T s — — ————— e T iy, oy ——

e e . = e e e e

FMYT 4s used to format data vatues for PRINTUSING and disk
170 statementse It may be used wherever Image(%) 4s alloweds
subject to the following restrictions:

1« BIs FLe and PD are not displayable formatse and thus
are Legal only for disk 1/0 statementse.

2. For PRINTUSINGe the FMT statement may be re-used for

lLong argument Listse. This is exactly like Images and 1is
described in the PRINTUSING section.

Control=-Spec
1« XX _[Cipt)]
Skip int positions (input) or write n blanks (output)e.
Omitted int=1.

2. COL_(int) _or POS_(int)

Next form=-spec to start at position int in record or
output Llinee.

(For disk I/0e 1dnt € record sizee. For PRINTUSING,

coL>80 or current printer width causes the next
form-spec to begin at column 1 of the next Line.)

3. IAB_(int)

Like COLs but all skipped-over characters are set to
blanke

4. SKIP_[€int)l]

Sk¥p int Lines (default=1). Like PRINT SKIP. (Not for
disk 1/0.)

134

'

Data=Spec (Note: w and d are int valuesa)

2e BI[(Hll

Binary internal formats w bytes.
1<w<4s default=4.

3¢ FLL(W)]

Floating=-point internal formate w bytes
w=4 or Be default=8e.

4q PD(wCedl)
VS packed decimaley w digitse d digits to the right of

the (implied) decimal point (Default d=0). Number of
bytes required is:

1+INT(Ww/2)
C{#} BIGE S D 11 {+ 3
C{ol it £{o02 11 {- 2
Se PIC([:][SJ[{*) eoee JLel{*} eee]J[TTTTJ[{*’}J)
£{gl L C{B) 1] {-=3
({7} 0 [{/1} ‘13
L{sd L C{ed 1]

Editing Characters

% Digit posfition - plank if leading zero
. Decimal point
11 Exponent Exxx for exponential outpute If present,

the digit positions will be filled with significant
digits (no leading zeros) and the exponent scaled
accordingly.

* Replace Lleadino 0 with =*

0 Retain leadina 0

. If right of a numeric digity insert *9* 53 other-
wises blank

/ If right of a numeric digite insert */* § other-
wises blank

B Insert btank

135

Trailing { + *+? > 0y *-* §f C O

{ - blank if > 0e *=* if C O

{ ++ 2 blanks 1f > 0e *CR* 1f C 0

{ -- 2 blanks if > 0e *DB* if C O

| : |
| 1« A Leading sign and a training |
| sign cannot both be specified. |
| !
| 2« I1f no signs are presents the |
{ ahsolute value of the number |
| is printed. |
|]

Leading '+ §f > Do *-* 4f <C O

blank if > 0 *=* §f < O

{
{
{ *$* precedes the number

L2 K J

(The above three characters float to the Lleftmost nonzero
digit Locatione.)

Examples?

100 FMT PIC(H&.#2TTTT)
200 FMT SKIP(10)¢CH(S0)9eSKIP(=5)¢COL(20)4PIC(S*x*,#¥)

General Form: FN a [X] texpression)

where: a [%¥]) is a2 function identifier defined in a DEFFN
statement

fre e —— e ——
e — e — e — —

FN 14s wused to call a function defined by the DEFFN
statement which contains the same fdentifier. The variable
identifiers in the FN expression need not be the same as the
dummy variable identifiers in the associated DEFFN statement (see

DEFFN) e
Examples:

100 DEFFN ACA) = 3*A
200 J = FNA (B) + K

137

FOR

General Form:

FOR numeric scalar variable = expl TO exp2 [STEP exp3]

e =

l
l
l
|
1

The FOR statement and the NEXT statement are used to
specify a Loope The FOR statement marks the beginning of the
loop and defines the Loop parameters. The NEXT statement marks
the end of the Loop (see NEXT)e The program Lines in the range
of the FOR statement are executed repeatedlys beginning with
variable = exple and thereafter 4dncremented by the STEP
expression value until the variable value exceeds the value of
exple ‘

The three expressions may take on any value. If STEP is
omitteds 1 is assumede

STEP and exp2 are evaluated only onces if STEP is 0 or 4n
the wrong directions the loop ¥s executed only oncee.

After termination of the Lloops the variable has the last
value usedy ie€es without the final incremente.

There are no restrictions on branching in or out of the
"loop range®" (if indeed such a range may be specified)s provided
that a NEXT without an open FOR is not encountered; this event
will cause an errore.

NOTE®S

If the Lloop variable dis an dipteger
variables exply exp2 and the step exp
will be truncated to integers and all
loop calculations will be integer type.

jr e e ~—— o — —
e e > i e —

Examples:
100 FOR A=1 TO 10 STEP 3

200 PRINT A
300 NEXT A

138

™

—~

FS_Fupction

|
l
!
|
1

General Form:

FS (file expression)

f e e

FS returns the file status item for the Last 10 operation

on the
values a

Ch

specified filea
re.

aracter

Its Llength 1is 2 characters. Possible

Error

NN O

N

WO 0VOWW

[o “Iv-Je B e =T]

NN = ooy

-

O~NOND & O

Successful completion of 1/0 operatio
End of file reached

Key out of sequence (OUTPUT mode)e.
Duplicate Key :

|Record not found (CONSEC files)

|Key not found (INDEXED file)

Key greater than highest key in file
(IND/READ)

No more room in the file (IND/OUTPUT
mode)

I1/0 hardware error

No more room in file (other than 24).
Invalid function request/sequencee.
Invalid data addresse.

Invalid length C(WRITE/REWRITE)
Invalid block format»

Shared mode 1/0 errors:

£WNN -

Invalid Key area (STARTs READ KEYED)*

Invalid READ NODATAx

Label update errorx .

Sharing task was terminateds

Invalid record size/record areax
(Record size > 2048)

*not normally encountered by BASIC user

139

Ne

g}
m
(]

Gencral Form:?

GET {file-exp } [[e] USING Line numberls arg [sargleece
{alpha=-expl

Ce DATA {GOTO)} Line number?y
{GOSUR})

where arg = {recetver }
{array=designator)

fe e e e o = s
’—-—————-——————

GET allows extraction of data from the record area 4in a
tile or from an alpha-expression USING the referenced Image (%)

or FMT statemente or using standard formate

Data in the record area referenced by the file-expression
is that read with the Last READ statements this data s available
to GET until overwritten by another READ from the same files or
by a PUTe HRITEe or REWRITE for that filee.

The DATA exit 1is taken 4f data conversion fails (eeges
character string moved to numeric variables alpha-expression too
short to fill all the argse etco)e

Examples:

100 GET#A USING 300¢Bo¢DATA GOTC 500
300 FMT PIC(#34##)

140

| 6eneral Form: GOSUB Lline number !
1 1

The GOSUB statement is used to transfer program execution
to the first program Line of 2 subroutinee The program Line may
be any BASIC statements including a2 REM statemente The Logical
end of the subroutine is a RETURN or RETURN CLEAR statemente. A
RETURN statement directs execution to the statement following the
Llast executed GOSUBS a RETURN CLEAR statement clears the
subroutine d{information but causes no branche The RETURN
statement must be the Llast executable - statement on a Lines but
may be followed by nonexecutable statements as shown below:

120 X = 20:GOSUB 200:PRINT X
125

200 REM SUBROUTINE BEGINS

210 RETURNIREM SUBROUTINE ENDS

The GOSUB statement may be used to perform a subroutine
within a subroutines this technique 1is <called "nesting®™ of
subroutinese.

Repeated entries to subroutines without executing a RETURN
or RETURN CLEAR should not be madee Failure to execute a RETURN
or RETURN CLEAR causes 1information to be accumulated in a table
which eventually causes a memory stack overflow errore

141

GosuBse

General Form: GOSUB*intL (arglearglese)]
Where: 0<int<256

{expressionl
arg = {alpha exoressionl}

b———_-—_
e e e — e — o ——

The GOSUB* statement specifies a transfer to a marked
subroutine rather than to a particular program lines as with the
GOSUB statement. A subroutine is marked by a DEFFN*' statement
(see DEFFN®). When a GOSUB* statement 1{s executede program
execution transfers to the DEFFN®* statement having an 1integer
fdentical to that of the GOSUB* statement (je.eee GOSUB'6 would
transfer execution to the DEFFN®*6 statement)e. Subroutine
execution continues until a2 subroutine RETURN or RETURN CLEAR
statement 1is executede The rules applying to GOSUB wusage also
apply to the GOSUB®* statement. UnLike a normal GOSUBe howevers a
GOSUB* statement can contain arguments whose values can be passed
to vartfables in the marked subroutine.

The values of the expressionsy Literal stringses or
atphanumeric variables are passed to the variables in the DEFFN?*
statement (see DEFFN®) Lleft to righte. Elements of arrays must be
explicitly referenced (1.ee¢ they cannot be referenced by the
array-designator or array name alone)e. The arguments of the
‘GO0SUB* must be passed to variables of the same type (i.ess alpha
expressions must be passed to alpha variablese and numeric
expressions must be passed to numeric variables)e.

Repetitive entries to subroutines without executing a
RETURN or RETURN CLEAR should not be mades Faflure to execute a
RETURN or RETURN CLEAR causes return information to accumulate in
a tablees which could eventually cause a stack overflow error.

Example:
100 GOSUB®*7
150 END
200 DEFFN'7:SELECT PRINTER (80)
210 RETURN

Example?

100 GOSUB'12 ("JOHN"912+493%xX+Y)
200 END

300 DEFFN*12(AS$eBeC(2))

400 PRINT A$4BeC(2)

500 RETURN

142

GOTO0

| General Form:

1

GOTO Lline number

I
|
1

This

statement

transfers execution

to

the specified Lline

numbers execution continues at the specified Llinee.

Examplesl

Qutput:

100
200
300
400
500
600
700
800
300

136

J=25

K=15

GO0TO 700
Z=J+K+L +M
PRINT 2eZ2/4
END

L=80

M=16

GOTO 400

34

143

HEX Literal Siring

|

| General Form: HEX¢{hh[hhlees) |
| where: h = hexdigit (0 to 9 or A to F) |
1 : 1l

The hexadecimal functions HEXe is a form of Literal string
that enables any 8-bit code to be used in a BASIC programe Each
character ¥n the Literal string is represented by two hexadecimal
digitse If the HEX function contatns an odd number of hexdigits
or if it contains any characters other than hexdigitsey an error
resultse. .

Examples:
100 A$=HEX(OCOAORA)

200 IF A% > HEX(7F) THEN 100
300 PRINT HEX(8001)SI"TITLE"®

144

General Form:
HEXPACK alpha-receiver FROM alpha-expression

Ce DATA {GOTO } Lline number]
{GosuB)

e —— ——— ——— ——
e o i et e e e

The HEXPACK statement converts an ASCII character string
which represents a string of bhexadecimal digits into the binary
equivalent of those hex digitse Hexadecimal digits entered fronm
the keyboard may be entered as ASCII characterss they may then be
converted from ASCII <code to their true binary equivalent with
HEXPACKe For examplee the hex digit ®*A* has a binary value of
1010 Howevere this digit 1is represented by an ASCII character
*A*y, which has a binary value of 01000001, The HEXPACK statement
can be used to convert the binary value of ASCII character *A*
into the binary value of the hexadecimal digit ®*A®y and to store
this value in the specified alpha=-receivere.

The alpha-expression (actual Length) contains the ASCII
character string which represents a string of hexadecimal
digitse Each pair of ASCII characters is converted to one byte
of the corresponding binary value. Only certain ASCII characters

constitute legal representations of hexadecimal digitse. These
include ¢the <characters 0-2 and A-Fe as well as the special
characters ":% %3%, ¢C?y tc-t, ¢3¢, and v?¢, These characters

are converted to the following binary values:?
ASCII Character Binary Value

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

BB NPP W=

or
or
or
or
or
or

MTMOoOO M >»
DV Il A\ s e

145

If the alpha-expression (actual Length) contains any
characters other than those Listed aboves 4ncluding embedded
spaces (f.eeeo any character which is not a Llegal representation
in ASCII of a hexadecimal digitd)sy an error occurs ore if the DATA
exit is specifieds it s takene.

1f the alpha-expression contains an odd number of legal hex
digits it 4s padded on the right with one hex zero.

The alpha-receiver receives the converted binary valuee.
Since each pair of characters in the value of the
alpha-expression is converted to a one-byte binary value in the
alpha-receiver. the alpha-receiver should have at least half as
many bytes (defined lLength) as the alpha-expression. If the
alpha-receiver is too short to contain. the entire converted
binary valuee an error occurs and program execution haltse. 1¢
the alpha-receiver is longer than the converted binary values the
binary value 1is left-justifieds and the remaining bytes of the
alpha-receiver are not modified. :

Example 1:

100 DIM P$2, US4

200 INPUT °®VALUE 70 BE PACKED®.US
300 HEXPACK P$ FROM US

400 PRINT HEXOF (P$)

Output:
VALUE T0 BE PACKED?12C9
12C9

The avaflability of the special characters *2* (HEX (3A))
through *?2¢ (HEX (3F)) to represent hex digits A-F (1010-1111)
means that HEXPACK will recognize any ASCII code with a
high-order *3°% digit (hex 30 through hex 3F) as a legitimate
representation of a hexadecimal digit. This fact makes 1t easy
to transform any code into an acceptable representation of a hex
digite and hence to perform operations such as packing the
Low-order digits (low-order four bits) from a string of
hexadecimal digitse The technique s fllustrated in Example 2.

146

-

Example 2:

100 DIM P$2e V34

200 Vs
300 Vs

= HEX (01020C09)
= OR ALL (HEX(30))

400 HEXPACK P$ FROM Vs
500 PRINT HEXOF(PS)

Output:
12C9
Examples of valid
HEXPACK
HEXPACK

HEXPACK
HEXPACK

Syntax:

A$ FROM B$

STR(A$91¢3) FROM STR(BS$+7)
A$() FROM B$()

A$ FROM "3AFC282C"

147

HEXUNPACK

General Form:

HEXUNPACK alpha-expression T0 alpha-receiver

e —— —— — —
f e — — ——

The HEXUNPACK statement converts the binary value of an
alpha-expression (defiped length) to a string of ASCII <characters
representing the hexadecimal egquivalent of ¢that valuee. The
resulting characters are stored in the alpha-receivere. .

HEXUNPACK Js effectively the Llogical inverse of HEXPACK,
with the exception that characters 3A-3F are .not wusedi the
characters produced are in the range ®"0®-%"9% and "AR-WFe,,

If the alpha-receiver is not at Least twice as Long as the
alpha-expression (defined Llength)e an error occurse If it is
tonaere the result is left-justified and unused characters remain
unchanged (as with HEXPACK).

Example:

100 DIM Ps$2y US4
200 P$ = HEX (12CS)
300 HEXUNPACK P$ TO US
400 PRINT U3

OUTPUT : 12C9

Examples of Valid Syntax:
HEXUNPACK AS$ TO BS

HEXUNPACK STR(ASe S) TO STR(BSe 14 &)
HEXUNPACK A$() TO Bs$()

148

~

JFeseTHENe o oELSE

General Form:

|

| |
| |
| . 3 |
IF relation THEN {line number})	JELSE {line number}	
{executable 3}	{executable 1}	
{ statements*}	{ statement*}	
C] |

: rexcept another IF !
| |
|where relation = {alpha exp operator alpha exp } |
| ¢ :) [
| {expression operator expression 1} |
| <) |
| { {AND) 3} I
| { relation {OR 3} relation) |
| { {XOR}) |
| { } |
1 {NOT relation) |
| {trelation) 3 |
| i
| {< |
| {<=) I
| where operator = o} [
| >=) |
I {<>) |
I =12 |
1 1

The IF statement causes conditional transfer or statement
executione The following may occure depending on the value of
the relation:

1« Relation true:

. If "THEN tine number® 4Js specifiede execution
continues at the specified Line numbere.

. If "THEN executable statement®™ {s specifiedsy the
statement 4{s executede. Program execution then
continues at the next executable statemente.

In either casey the ELSE clause is ignorede.

149

2. Relation false:

e If the ELSE clause 1is not specifieds execution
continues at the next executable statemente.

. It the ELSE clause {is specifieds it s used like
THEN in 1 and 2 above.

In either cases the THEN clause is fgnorede.

Two expressions are compared using standard numerical
order3 1integers are converted to floating-point before being
compared with floating-point valuese.

Two alpha-expressions are compared using their ASCII
hexcodess with the shorter expression -right-padded with blanks
(HEX(20)).

The hierarchy of execution of the retlational expression is
as follows: o

1« Parentheses

2¢ <CeC=gded=e¢<Ds=

3. NOT ’

4« ANDs ORs¢ XOR

5S¢ Otherwises Left-to-right execution

! |

: NOTE: :

| Nested IF statements are not allowede. |

1 1
Examples:

100 IF A > <5 THEN 1000

200 IF AS>BS AND B$>C$ THEN B=5 ELSE B=0

300 IF NOT A=B THEN 1000

400 IF ES<=F$ AND (NOT N>I) THEN 1000 ELSE 800

150

General Form:
% {character string } eee
{format specification}

| I
| |
| |
| |
| |
] where? |
| |
| Character string = {any character } eee |
| {except %8¢) |
| |
| Format specification = =
|

| C] - [L+ 21 |
| 1{*}|[SI8aceloIltlocel9o]lecele l#aaelLTTTTI|{(~- 3| |
| 14-2] | (e} |
| C] L{==3}1] I
1 1

IMAGE (X) 4ds used to format output from PRINTUSINGe disk
I/0 and GET and PUT statements. One format specification 1s used
per numerdic or alpha valueo left to righte

For alphanumeric valuesy the format specification 1s filled
from Left to righte regardless of the editing characterse. The
output value 1s right-padded with blanks or truncated to fit the
format spece

For numeric valuess the editing characters 4in the format
spec are interpreted depending upon the value to be formatted:

Editipg Characters

Leading { + °+* {f 504 *=* {1f <O
{ - blank 1f >0 *-* 4f <O
{ s *$' precedes the number

(The above three <characters float to Just before the leftmost
nonzero digit locatione)

digit position - pblank if Leading zero

. decimal point

’ comma if at least 1 significant digit is positioned
to the immediate lefts3 otherwise blanke

TT1T? exponent E+xx for exponential outpute. If

presents the digit positions will be filled with
significant digits (no lLleading zeros) and the
exponent scaled accordinglye. '

151

Trailing

1.

2e

Se

4o

Se..
Examples:
100

100
200
300
400
500
600

{ ¢ et §f 506 *=-* §f <0

{ - blank §f 204 *=-* §f <O

{ «¢+ 2 blanks if >0e °CR* §f <O
{ == 2 blanks 1f >04*DB* if <0

l1e¢ If a Leading sign is presente
the tratiling sign is ignoreds,
feeeo 1t becomes (part of) the
next character stringe.

N
[

If no signs are presents the
absolute value of the number
is printed.

et e ———— — e —

Note that there must be at least a single *#* 1in a
format specificatione and that the output field width
is always the same length as the <format specification,
whether the output is numeric or alphanumerice.

For numeric output:
. Fractions are truncatede.

. It the format i4s dnsufficient for the integer part
of the numbers the format specification itself is
outpute with the correct Lleading signe 1f the
Leading sign character is presente.

If all format specifications are not useds everything
up to the first unused format 1{s useds including a
final character stringe.

A trailing character string in an IMAGE statement is
considered to extend to the last nonblank character.

A continued Image Line is used up to the *!* charactere.

XFEAR IN A HANDFUL OF DUST <+#ftftolittotitist o HiHl

ACCEPT Ae¢BoC

PRINTUSING 300e AeBsC
XSHH e HUB it 4+ HHHHHB== —HBHKJHBITTTT
STOP

G0TO 100

DEFFN®* 16

152

ﬂﬁ

—_

-
=
I
-

T

General Form: I
|

INIT (alpha-exp) alpha-receiver [salpha-receiverle... |
i

i

-———

pr e e — e

The INIT statement dinitializes the specified alphanumeric
receiverse Each character in the defined Llength of the
alpha=-receiver¢(s) is set equal to the first character of the

alpha-expressione
For examples
INITC("?")AS48%

sets both alpha variables A$ and BS$ to contain all question mark
characterse.

153

I

General Form: |
INPUT [Cliterals] receiver [sreceiverleeso |
1l

This statement allows the user to supply data during the
execution of a programe If the user wants to supply the wvalues
for A and B while running the programe he enterss for exampleos

400 INPUT AesB
or
400 INPUT "VALUE OF A¢BR"4A¢B

before the first program Lline which requires etther of these
values (A9B)e HWhen the system encounters this INPUT statement,
it outputs the fnput messages VALUE OF AesBs followed by a
question mark (?) and waits for the user to supply the two
numberse Once the values have been supplieds program execution
continuess Note that the program assigns values left to rights
one at a timee. The device wused for INPUTting data 1s the
workstation.

Each value must be entered 3in the order in which it 1is
Listed in the INPUT statement and values entered must be
compatible with receifvers in the INPUT "statemente. If several
values are enteredes they must be separated by commas or entered
on separate liness As many Lines as necessary may be used to
enter the required INPUT datae To 4include Leading blanks or
commas as part of an alpha valuees enclose the value in double or
single quotes (" or *); for examples "BOSTONe MASS.".

Variables in the INPUT List which the user does not wish to
change may be skipped over by entering a null valuee 1fe€es a
comma not immediately preceded by a data item.

€eQe
Program: Value of AeBoeCeD?
User : 4e392e0993e5
Result Variable C will not be changeds AeBe and D

get new valuese.

154

™

™

A user may terminate an input sequence without supplying
any additional input values by simply keying ENTER with no other
information preceding it on the Line. This causes the program to
jmmediately proceed to the next program statemente. The INPUT
list receivers which have not received values remain unchangede.

¥hen inputting alphanumeric datae the Literal string need
not be enclosed 4n quotes. Howevers Lleading blanks are ignored
and commas act as string terminatorse (This applies to
subroutine parameters also - see PF key section.)

Example 12

100 INPUT X

Output: 712.2 (ENTER)
(underlined portion supplied by user)

Example 2:

200 INPUT "HMORE INFORMATION®oAS
300 IF A$S="NO"™ THEN END

400 INPUT ®ADDRESS"¢BS

500 60TO 200

Output?: MORE INFORMATION? YES (ENTER)

ADDRESS? BOSIONs MASS C(ENTER)
MORE INFORMATION? NO (ENTER)

PROGRAM FUNCTION KEYS IN INPUT MODE

Program Function (PF) Keys may be used in conjunction with
INPUTe If the PF key has been defined for text entry (see
DEFFN®) and an INPUT statement 1s executeds pressing the PF key
causes the character string 1in the DEFFN®* statement to be
displayed on the CRT. The displayed value 4s stored in the
variable which occurs in the INPUT statement when the ENTER key
is touchede.

For exampte:

100 DEFFN®01%"COLOR TeVe"™
200 INPUT AS
Output: ?
Nowe pressing PF 1
will cause "COLOR ToVe™ to appear on the CRT.
?2COLOR TeVe_
CRT Cursor

155

If the PF key s defined to call a marked subroutines (see
DEFFN®*) and the system 4s awaiting inpute pressing the PF key
will cause the specified subroutine to be executed.
Specifically: No agsignment ogcurse and the values keyed before
hitting the PF key are dgnoredsy unless the subroutine has an
argument Liste. If soe as many values as are required are taken,
starting from the Leftmost value keyed; those left over are
ignorede The workstation beeps if there are too few values or if
they do not correspond correctly to the recetvers in the GOSUB®
argument Liste An illegal PF key also causes a beep. When the
subroutine RETURN 1s encountereds a branch will be made back to
the INPUT statement and the INPUT statement will be executed
againe Repeated subroutine entries via PF keys should not be
made unless a RETURN or RETURN CLEAR statement is executed;
otherwise return dinformation accumulates in a table and
eventually causes a stack overflow errore ’

Example:

The program below enters and stores a series of numberse.
when PF Key 02 is depresseds they are totaled and printed.

100 DIM A(30)

200 N=1

300 INPUT "AMOUNT™eA(N)
400 N=N+1260TO 300
500 DEFFN®*02

600 T=0

700 FOR I=1 TO N

800 T=T+AC(I)

900 NEXT I

1000 PRINT "TOTAL="3T
1100 N=1

1200 RETURN

Run Program

Output: AMOUNT? (ENTER)
AMOUNT? (ENTER)
AMOUNT? 11 (ENTER)
. AMOUNT? (Depress PF 2)
TOTAL = 23
AMOUNT?

1
3

156

™

KEY

| |
| General Form: -]
| KEY (file expression [sexpl) |
1 1

KEY returns the primary key (or an alternate key) of the
last record read from the specified files If exp 1ds 0 or
omitteds the primary key is returnede. Otheruwisees the alternate
key with key number = exp (from SELECT) 4is returnedo (For

alternate-indexed files onlyle.

The Length of the result s the (primary or alternate) key
length as specified in SELECT.

KEY may also be wused as a pseudo-receiver to set the
(primary or alternate) key field in the record oprior to WRITE or
REWRITE.

157

LEN Function

General Form:
LEN Calpha-expression)

o — — —
pr s

LEN determines the actual Llengthe 1n bytess of the
alpha-expressione It can be used wherever a numeric expression
is permittede The result of LEN 4s an integer value.

Example:

100 As$ = "ABCD"
200 PRINT LEN (AS)

These program Lines give the value 4 at execution time.
Example?
300 X = LEN(A3)+2

Combined with Ulines 100 and 200 aboves this Line assigns the
value 6 to X at execution timee.

Example:

100 A$ = "ABCD"
200 PRINT LEN(STR(A$42))

These Llines give the value 15 at execution time. Since AS$ is not
explicitly dimensioned the default value for 1{ts length 1s 16
bytese The STR function extracts the bytes from A$,e starting at
the second bytes to TIts ende The Llength of such a value is 15,

Example:

100 DIM A%64
200 A$S = ®“ABCD"
300 PRINT LEN(STR(AS4POS(AS=HEX(20))))

These lLines give the value 60 at execution time. The lLength of
the alpha scalar is 1initially 643 the value of the P0OS function
is first determinedy giving the position of the first blank
character in A% equal to S. The STR function then extracts the
number of bytes from the first blank character to the end of the
scalare.

158

[
™
=

General Form:

CLET] numeric variable [ynumeric variableleee = expression
or

[LLET] alpha-recefver [ealpha-receiverlsoce = alpha-expression
or

[LET) alpha-receiver = logical expression

e e e e . e e e

The LET statement directs the system to evaluate the
expression following the equal sign and to assign the result to
the receiver(s) soecified preceding the equal sign. If more than
one receiver appears before ¢the equal signe they must be
separated by commase If the right-hand side of "the statement 1is
a logical expressions then only one receiver may appear on the
Lefte

The word LET is optionale If it is omitteds its purpose 1s
assumede

An error results if a numeric wvalue 1{s assigned to an
alphanumeric receiver or if an alphanumeric value is assigned to
a numeric variable. '

Example 1:
400 LET X(3)929Y=P+15/2+SIN(P=2.0)
Example 22
500 LET J=3
Example 32
tIn this examples LET ¥s assumed)
100 X=A*E=Z»Y
200 A$=BS$
300 C3$¢D3(2)="ABCDE"

Example 4:

100 C$ = °*ABCDE"*
200 A% = %w123456"
300 D3 = STR(A$,2)
400 ES = HEX(41)

500 PRINT A3SoCSeDS4ES

159

This routine produces the following output at execution time:

123456 ABCDE 23456 A
The execution of: CLET] recle rec2eseees recn = value
is equivalent to: CLET) recn = value

CLET] reen-1 = value

CLET] recl = value

for both alpha and numeric assignmentes . Note that assignment fis
r"gh!-;O"LQ!io '

| |

| NOTE: |

| |

| Logical expressions are described in Chapter 3. |

| Section 3.8 |

1 1

160

MASK_Function

Generat Form: .
MASK (file expression)

e e c—— —
fn T — ca

MASK returns the alternate key access mask (alternate
indexed file) for the tast record read from the specified filee.

The result 4s a 2-byte (16 bit) alpha value whose bits
(left to right) correspond to available alternate keys (1-16).

Bits which are ®on" (binary 1) specify that the record may
be accesseds via READ KEYEDe by those alternate key pathse.

le1

MAT_+_ (MAT addition)

General Form: MAT ¢ = a + b

where cy a9 and b are numeric array namese

he e — —

This statement adds two matrices or vectors of the same
ifn array ce« Any two or all of a
arraye

dimensions as arrays a and be

dimensione The sum 1{s stored
be and ¢ may be the same
redimensioned to have the same

An error occurs and

Example 1:

execution
dimensions of a and b are not the same.

Array ¢ 1s implicitliy

is terminated 1f the

100 DIM A(S595)eD(5e¢5)eE(TIeF(5)¢G(5)

200 MAT A=A+D
300 MAT E=F+6
400 MAT A=A+A

Example 2:

The program provided adds the corresponding elements of the

3 by 3 arrays D and E to

give
automatically redimensioned as 2 3 by 3 arraye.

the-

100 DIM D(3e3)eE(3¢43)eF(542)
200 PRINT *ENTER ELEMENTS OF ARRAY D"

300 MAT INPUT D

new array Fe Array F is ‘@%

N

400 PRINT “ENTER ELEMENTS OF ARRAY E*

500 MAT INPUT E
600 MAT F=D<E

700 PRINT ®ELEMENTS OF ARRAY F®IPRINT

800 MAT PRINT F3

11 1 1]
Let D= 11 1 1]
12 2 2
C 1

LR N
(2]

When the program is executedsy array F is displayed:

ELEMENTS_OF ARRAY_F

4
4
S

Iy
4
5

162

4
4
5

MAT_ASORI/ZDSQRI

General Form:

MAT numeric array namel = {ASORT) (numeric array name2)
{DSORT}

MAT alpha array namel = {ASORT) (alpha array name2)
{DSORT}

o e T —— o —

!
|
I
|
!
|
I
1

Array 2 {s sorted dn ascending (ASORT) or descending
(DSORT) order into array 1.

Array 1 1is redimensioned to correspond to array 2 as
follows:

Array 2 Array 1 &sﬂim:nsinn:ﬂ.;n
(nxm)CL1] (pxgq)Lk] (nxm)CL]
(nxm)LL] (p)Ck] (nm)CL]

(ndCL1] (oxq)lk] (nx1)CL]

(n)CL] tpiCk] (n)CL]

An error occurs if array 1 as originally dimensdoned is not
2as large (in bytes) as array 2.

The sorted values are placed in array 1 row=by-rowse
starting with the first array variable. 1f array 1 1s larger
than array 2+ remaining locations are unchangede.

As sorting is done directly 4dnto array 1+ the two arrays
may not be the samees 1eee9 sort-in-place is not supportede.

NOTE:

Alphanumeric sorting uses the usual
ASCII collating sequencee.

e e s o
oo v o —— — —

Examples:
100 MAT A=ASORT(B)

200 MAT AS=DSORT(BS)
300 MAT C$=ASORT(BS)

163

;E

6eneral Form:

MAT ¢=CON [C(dll«d21)]

where ¢ s a numeric array name and dled2 are expressions
specifying new dimensfionse (1£d1e¢d2<¢32767)

P — e ——— —— ——

This statement sets all elements of the specified array to
one (1)e. Using (dled2) causes the matrix to be redimensioned.

If (dled2) are not useds the matrix dimensions are as specified

in a previous COMey DIM or MAT statements or are the default
valuese

Exanples of MAT CON syntax:
100 MAT A=CON(10)

200 MAT C=CON(Se7)
300 MAT B=CON(52QeS)

400 MAT A=CON
Examples showing usage in a program?

100 MAT A = CON(242)
200 MAT PRINT A3

When this program is executede the CRT displays the result
in packed format:

1 1
1 1

164

I

MAT= (MAT assignment)

General Form: MAT ac=b

|
|
|
where a2 and b are both numeric or both |
alphanumeric array namese. |

1l

e v w——

This statement replaces each element of array a with the
corresponding element of array be Array a is implicitly
redimensioned to conform to the dimensions of array be

Examples showing statement syntax:

100 DIM A(3+45)9eB(3+5)
200 MAT A=B

300 DIM C(4462e0(244)
400 MAT C=D

500 DIM E(6)eF(7)

600 MAT F=E

Example showing use in a program:

C 3 C

B! 1 1] |9 8 71
Let A = |1 1 1] B = le ~ S 4]

Il 1 11 C 3

C 3

Program:

100 DIM A(3¢33eB(243)
200 MAT A=CON

300 MAT PRINT A

400 MAT INPUT B

500 MAT A=B

600 MAT PRINT A

Hhén this program 1s executeds the constant 3 by 3 array A
is displayed as:

1 1
1 1
1 1

Y

in 2oned formats the array B 4s dinput via the keyboardf and the
new array A 1s displayed as: .

9 8 7
) 5 4

in zoned formate.

165

MAT_IDN (MAT ideptity)

General Form: MAT ¢ = IDN [(d1s[d21)]

where ¢ s a numeric array name and diled2
are expressions specifying new dimensionse.
(1<d1+d2€32767)

b——-—

This statement causes the specified matrix to assume the
form of the identity matrixe. If the specified matrix 4s not a
square matrixe an error occurs and execution is terminated.

Using (dled2) causes the mratrix to be redimensionede. 1f
(dled2) are not wuseds the matrix has the dimensions specified 1n
a previous COMe DIM or MAT statemente.)

Example showing statement syntax:

100 MAT A = IDN(4.4)
200 MAT B = IDN
300 MAT C =_IDN(XeY)

Example in which the identity matrix is displayed:

100 DIM A(444)
200 MAT A = IDN
300 MAT PRINT A

When this program 1s executedy the matrix A 1s displayed in zoned
format as:

[-0 -
[— I - O~]
orroo
o000

166

MAT_INPUT

General form:

MAT INPUT [Lliteralsl

{numerdic array name [(dl[+d21)1 }
{ } ['...J

{alpha array name [(d1[+d21)Clengthll}

expression specifying a new dimension
(1<d1¢d2€<32767)

where: d

expression specifying maximum Llength of each

length
alpha array element (1<lengthg€256)

e —— e e e S ey e, G e —
o e — —— ——— — ——— — ——— —— —

The MAT INPUT statement allows the user to supply values
from the keyboard for an array during the running of a programe
Mhen the system encounters a MAT INPUT statemente it displays the
Literaly if givens and a question mark (?) and waits for the wuser
to supply values for the arrays specified n the MAT INPUT
statement. The dimensions of the array(s) are as Llast specified
in the program (by a COMe DIM or MAT statement)s unless the user
redimensions the array(s) by specifying the new dimension(s)
after the array name(s)e The maximum ‘Length for alphanumeric
array elements can be specified by including the length after the
dimensions specifications 1f no Llength 1s specifieds a default
value of 16 1s usede.

The values which are input are assigned to an array row by
rou unt it the array is fillede If more than one value is entered
on a Liney the values must be separated by commase. Alphanumeric
data with Lleading spaces or commas in it can be entered by
entering a quotation character (%) before and after the data
value. Several Lines can be used to enter the required data.
Excess data are ignorede I1If there is a system detected error in
the entered datay the data must be reentered beginning with the
erroneous valuee. The data which preceded the error are used as
previously enterede Input data must be compatible with the array
(fteeee numeric data for numeric arrayses alphanumeric Literal
strings for alphanumeric arrays)e Entering no data on an input
Line (f.ees only keying ENTER to enter a carriage return) causes
:he rzuaining elements of the array currently being filled to be

gnorede

167

Example 1¢ with numeric variables?

100 DIM A(2)9B(3)¢C(344)
200 MAT INPUT AeB(2)9C(244)

When this program is rune key 4n on the keyboard the
valuese separated by commase .

=39 =5s 6120 41

Key the ENTER key to enter these values for array elements A(1l),
A(2)s B(1) and B(2)e Enter the values

-Gely '5.69 S8
separated by commass key ENTER to enter these values for the
array elements C(lel)9y C(1e2)s and C(1e3)e Touch the ENTER key

without entering further values to enter a carriage return and
fignore the rest of the possible values for the array C.

Example 24 with alphanumeric string variables:

100 DIM CS(2)4AS(4)44B(3)
200 MAT INPUT A$(4)3+8(2)+CS

Enter RADeDEGoMINOSEC92¢595¢66¢LAST RESULT+"ROTATE XoY"
and Key ENTERe.

l68

MAT_INV (MAT jinverse)

General Form: MAT ¢ = INV(a)ledl

where ¢ and a are numeric array namese
d = numeric variables the value of the
determinant of the array ae.

poy TS S g e c— o
o S o c— —

This statement causes the inverse of matrix a to be placed
in matrix ce Matrix ¢ 1s redimensioned to ‘have the same
dimensions as matrix a. Matrix a must be a square matrixs matrix
¢ must be a floating-point matrix. I¥ matrix a 1is gingular
(1eees non-invertible) and d 4s specifieds then d will equal zero
after MAT INV is encounterede If d is not specifiede an error
oCCUrSe In eifther coses ¢ 1s destroyede. A matrix can be
replaced with the inverse of {itself. -

After 1inversione the variable d (if specified) equals the
value of the determinant of matrix ae.

This statement uses the Gauss-Jordan Elimination Method
done din-place; as with any matrix dinversion techniques results
can be inaccurate if the determinant (or normalized determinant)
of the matrix 1s close to zeroe. It is therefore good practice to
check the determinant after any inversione. ‘

The Gauss-Jordan Elimination Method also works best when
values on the main diagonal are in the same range as other values
in the matrixs in particulary numbers with Llarge negative
exponents on the main diagonal should be avoided when other
values are not ¥n this range. When 4in doubtse it 4s a good plan
to check your data before 1inversion and adjust or rearrange it
accordingly (for exampley zero elements that are close to zeros
or rearrange data so that elements on the main diagonal are as
Large as possible). ’

Example 14 {llustration of statement syntax:
100 MAT A=INV(B)
200 MAT Z1=INV(P) ¢X2

300 MAT F=INV(C)eJ3
400 MAT C=INV(C)

169

Example 23

The following program takes . the 4x4 matrix A from the
keyboard dinputes calculates the inverse of its and prints both the
result and the value of the determinant of A.

100
200
300
400
500
600
700

If array A=|0
jo
i1
ja

an& the value

DIM A(444)

PRINT "ENTER ELEMENTS OF A 4x4 MATRIX"

MAT INPUT A

MAT B=INV(A)+D

MAT PRINT B '

REM B IS THE INVERSE OF Ae D IS THE DETERMINANT OF A
PRINT ®VALUE OF DET.A=%3D

2 4 8| then array B=| =1 o 0 25|
0 1 o] =35 =2 =4 1)
1] 0 1 | 0 1 0 0}
8 16 321] 1 0 1 -e25]}

of the determinant of A = -8

If the input matrix 1s singular ({.eey non=invertibleds D=0.

170

73

(J

MAT » (MAT muttiplication)

General Form: MAT c=axb

where: co ae and b are numeric array names

e e e
P—-——

The product of arrays a and b is stored ¥n array ce Array
¢ cannot appear on both sides of the equation but a and b may be
identicale 1f the number of columns 1n matrix a does not equal
the number of rows 4{n matrix be an error occurs and execution 1is
terminatede The resulting dimension of ¢ 1s determined by the
number of rows in a and the number of columns in be

Example of statement syntax:

100 DIM A(S42)¢B(2e3)9C(497)
200 DIM E(3¢4)oF(A49T7)eG(3e7)
300 MAT G = E = F
400 MAT C = A = B

Example of usage in a program:

100 DIM A(2¢3)eB(3e4)
200 MAT INPUT AeB

300 MAT C = A = B

400 MAT PRINT C

' C 3 C
Let A = [0 1 Af + B = |5 1 0 a|
17 7 71 la 1 0 4l
C] 13 4 3 4]
C 3

When the program ¥s executed and arrays A and B are entereds
array C 1s displayed as:

16 17 12 20
84 42 21 84 '

171

MAT _PRINT

General Form: MAT PRINT array name [t array namel eee [t1]

I
:
where: t 1s a comma or semicolon . |
1

e cane —— — —

The MAT PRINT statement prints arrays in the order given in
the statement. Each matrix 1s printed row by rowe ALL elements
of a row are printed on as many Lines as required. A carriage
return/line feed (CR/LF) occurs before each row (except the
first) 1s printedy and the last Line of the matrix is followed by
a CR/LFe A multiple MAT PRINT 1s treated Like several single MAT
PRINT®*s. Numeric arrays are printed 4n zoned format unless the
array name is followed by a semicolons in which case the array is
printed ¥in packed formate. For alphanumertic arrays the zone
Length ¥s set equal to the maximum length defined for each array
element (not atways 16)e A vector (a one~dimensional array) is

printed as a column vector.
Examples of statement syntax:

100 DIM A(4)¢B(244)¢BS(10)4CS(6)
200 MAT PRINT A3BeCS
300 MAT PRINT AeBS

Examples of usage in a program?

This program takes as input nine alphanumeric quantitiess each wup
to 16 characters longs and prints them as a 3x3 array in packed

formate

100 DIM 23(343)
200 MAT INPUT 2s ‘
300 MAT PRINT 2%3

172

™

General Form:

MAT READ {numeric array name [(d1[+d21)1] } Coeeel
{alpha array name [(dl1[+d2Y)[lengthll}
where: d = expression specifying a new dimension
(1<d1+d2<32767)
Length = expression specifying maximum Length of each

alpha array element
t1<lenath<256)

T

The MAT READ statement is used to assign values contained
in DATA statements to array variables without referencing each
member of the array individually. The MAT READ statement causes
the referenced arrays to be filled sequentially with the values
available from the DATA statement(s). Each array is filled row
by rowe Values are retrieved from a DATA statement in the order
they occur on that program Lline. If a MAT READ statement
references beyond the Limit of existing values in a DATA
statements the system wuses the next sequential DATA statemente.
If no more DATA statements are in the programe an error occurs
and execution is terminated. '

Alphanumeric string variable arrays can also be used in the
lListe The 4dnformation entered in the data statement must be
compatible with the array (i.ee.s numeric values for numeric
arrayss alphanumeric Lliterals for alphanumeric arrays)e.

The dimensions of the array(s) are as last specified in the
program (by a COMe DIMe or MAT statementds unless the user
redimensions the array(s) by specifying new dimension(s) after
the array name(s) in the MAT READ statement. The maximum Length
for alphanumeric array elements can be specified by including the
length .after the dimension specifications if no Llength is
specifiede a default of 16 is usede.

Example 1:
100 DIM A(1)eB(3+3)
200 MAT READ AeB(243)

300 DATA le =e2e315¢ =e398¢ 64219 0a O
400 MAT PRINT Ae.B

173

Example 22

100
200
300
400
500
600
700

DIM A(242)9B3(392)

DIM C(3)¢D3%(48)7

MAT READ A9B%e¢C(2)4D2(4)6

DATA 142¢3e-34E12

DATA TABCP o"DEFGY o"HI Mg " U oK "e"L"

DATA «2345¢1E-=12¢"AB o "CD o "EFGH" ¢ "I JK"
MAT PRINT AeB3eCeDS

174

(J

AT_REDIM

General

Forms

MAT REDIM redim-eltloredim-eltJeece

| |
I I
| |
| !
| where: redim-elt = {numeric array name (explLeexp2]) |
1 {alpha array name (explleexp2])lexp3] |
| |
| where: {1 ¢ expl £ 32767 |
| {1 ¢ exp2 < 32767 |
] {1 < exp3 < 256 |
| |
The MAT REDIM statement redimensions the specified arrays
to the dimensions specified by the expressionse The rules are
tike DIM except as follows:

1. As indjcateds alpha scalars may pot be REDIM'd.

2 MAT REDIM may occur anywhere in the program or
subprograme. Its only effect 1is to change the
dimensions and lengths of the specified arrays it does
not affect the values currently assigned to array
elementse.

3. The total (byte) space required for the array must be
no greater than that dinitially allotted to it by DIM or
default (10x10e len=16 for alpha arrays)e.

4, If exp3 is omittedy it is set to 16+ regardless of the
previous Llengthe

5« A matrix may not be redimensioned as a vectors and

Examples:

100
200

vice-versae.

MAT REDIM A(C10)¢B3(10+20)10
MAT REDIM A(20630)

175

MATC()* (MAT scalar _multiplication)

General Form: MAT ¢ = (k) * 3

where: ¢ and a are numeric array names and k is an expression

Each element of the array a 1is multiplied by the value of
expression k and the product is stored in array ce. Array c can
appear on both sides of the equation. Array c¢ is redimensioned
to the same dimenstions as array ae

Example of statement usage:

100 MAT C = (SIN(X))=*A
200 MAT D = (X+Y*2)*A
300 MAT A = (5)=*A

Example of program:

This program dinputs a 3 by 3 array and a scalar. It then
performs scalar multiplication and displays the resulte.

100 PRINT "ENTER DATA FOR A 3x3 ARRAYY
200 MAT INPUT C(33) .
300 PRINT "ENTER SCALAR" : 'ﬁ%
400 INPUT K

500 MAT A = (K)*C
600 MAT PRINT A3

Let C = |5 3 1} s K =5 then A = |25 15 5§
12 2 21 |10 10 10|
11 1 1] | 5 5 51

176

MAT-_(MAT subtraction)

General Form: MAT ¢ = a - b

where: ae be and ¢ are numeric array namese

This statement subtracts numeric arrays

of the same

dimensione The difference of each pair of elements is stored in
the corresponding element of ce« Any 2 or all of as be and ¢ may
be the samee An error occurs and execution is terminated if the

dimensions of a and b are not the same. Array c¢ is
to have the same dimensions as arrays a and be

Example of statement syntax:

100 DIM A(693)eB(693)eC(693)eD(a)eE(4)

200 MAT C = A - B
300 MAT C = A - C
400 MAT D = D - E

Example of program:

100 DIM D(3¢3)e E(3e3)
200 MAT INPUT D

300 MAT INPUT E

400 MAT F = D - L

500 MAT PRINT F

If you let D=]1 1 1| ¢ Ex|3 3 3| Then F=|-2 =2
11 1 1] 13 3 3 |-2 =2
12 2 2| I3 3 3} -1 -1

177

redimensioned

-2‘
-2'
-ll

MAT_IRN (trapspose)

]
| General Form: MAT ¢ = TRN(a))
| |
| where: a and ¢ are array names (both numeric or both |
| alphanumeric)e. |
1 l

This statement causes array ¢ to be replaced by the
transpose of array ae. Array ¢ 1s redimensioned to the same
dimensions as the transpose of array a« Array c cannot appear on
both sides of the equatione.

Example of statement syntax:
100 MAT C = TRN(A)
Example of program usage?
100 DIM A(3,3)
200 MAT INPUT A
300 MAT C = TRN(A)
400 MAT PRINT C
Let A = [9 8 71
: le 5 4]
13 2 1]

When the program is executeds C is displayed as:

19 6 3|
18 5 2]
17 & 1}

178

MAT_ZER (MAT_ZERO)

General Form: MAT ¢ = ZER [(dil+d21)1

where: ¢ is a numeric array name and dled2 are expressions
specifying new dimensionse (1 £ dled2 £ 32767)

o o —

This statement sets all elements of the specified array
equal to zeroe. Using (dle d2) causes the matrix to be
redimensioned. I1f (dled2) are not useds the matrix retains the
dimensions specified in a previous COMs DIMe or MAT statement.

Example:
100 MAT C = ZER(S5+2)
200 MAT B = ZER
300 MAT A = ZER(F¢T+2)
400 MAT D = ZER(20)

179

Mathematical Functions

The following General Form 1 applies to most mathematical
functionse The general forms for the remainder are lListed belowe

General Form 1:
function (exp)
where:

function = SIN
cos
TAN
ARCSIN
ARCCOS
ARCTAN
ATN
ABS
EXP
INT
LGT
LOG
SGN
SE@R

)—-—————————————————————_

Jriocopnometric Functions

The stnes cosines tangent, arcsine, arccosines and
arctangent functions are available in BASICe. Other trigorometric
functions can be easily expressed using these functions {in
expressionse

Eupction Name Sample Expression Meaning
SIN SIN(X) the sine of the argument
cos - COoS(X) the cosine of the argument
TAN TANCX) the tangent of the argument
ARCSIN ARCSIN(X) the inverse sine of the argument
ARCCOS ARCCOS(X) the inverse cosine of the argument
ARCTAN ARCTAN(X) the inverse tangent of the argument
ATN ATNCX) sames ATN 4s a synonym for ARCTAN.

180

(J

B

Other Numerical Functions

The remaining
belowe

Function Name

ABS

SQR

EXP

INT

LGT

LOG

SGN

twelve numerical

Sample _Expression
ABS(X) '

SQR(X)
EXP(X)
INT(X)
LGT(X)
LOG(X)

SGNEX)

181

functions are described

Meaping

The absolute value of the
argument: =X if X < 0§ X
Jf X > = De

The square root of the
arguments X raised to the
«5 powere

The exponential function;
%e® (2.718eee) raised to
the X-th powere.

The greatest-integer
functions the greatest
integer less than or
eaqual to the argument.

Common (base 10)
logarithme.

Natural (base "e")
Ltogarithms inverse
function of EXPe.

The signum functions -1
i1f the argument is
negatives 0 §f the
argument 1s zeros +1

if the argument is
positivee.

General Form 2:

function (expleexpleece)

e e o e ——— — < —

e . — T —— c— —

where?!
function = MA X
MIN
Eunction Name Sample Expression Meaning
MAX MAX(XeYe2) The value of the largest
element in the argument
Liste
MIN - MIN(XeYe2) The value of the smallest
element in the argument
l“st.
| |
| General Form 32 |
| |
{ MOD(expeexp) |
1l 1
MOD MOD(XeY) The modulus functions
the remainder of the
division of the first
element by the seconde.
| |
| General Form &: |
| ‘ |
| #PI |
1 1
#P1 #P1 The value 3.14159265358979323«

See Section 2.6 for more information on Numerfic Functionse.

182

(J

NEXT

General Form:

|
|
| NEXT numeric scalar variable [enumeric scalar variablelees|
1 1

The NEXT statement defines the end of a FOR/NEXT Loops it
must contain the same index variable(s) as a previously executed
FOR statement. A multiple NEXT 4s executed left to righte feees

NEXT IsJeK

s equivalent to

NEXT I
NEXT J
NEXT K

When a FOR/NEXT lLoop 1s encountereds the index variable
takes the value initially assignedes When the NEXT statement is
executeds the STEP value 1s added to the value of the index. (If
no STEP value is givens +1 is usede) If the result is within the
range specified in the FOR statements the result (index + STEP)
is assigned to the 1index variable and execution continues at the
statement following the FOR statement. TIf the result is outside
the range specified 4n the FOR statementy the dJndex variable is
unaltered and execution passes to the statement following the
‘NEXT statement. The FOReeoNEXT Loop is then considered
completede. A subsequent NEXT with the same index variable which
is encountered without first encountering a FOR with the same
index variable will produce a runtime errore.

183

NUM_Function

General Form:

|
I .
| NUM (alpha=-expression)

1 .

The NUM function determines the number of sequential ASCII
characters in the specified - alpha-expression that represents a
legal BASIC number. (*%* 4is not a legal numeric characters) A
numeric character is defined to be one of the following: digits
0 through 9 and special characters Ee¢ o (decimal pointd)e +9 . -
spacee Numeric characters are counted starting with the first
character of the specified vartable or STR function. The count
is ended efther by the occurrence of a non-numeric charactery or
when the sequence of numeric characters fails to conform to
standard BASIC number formate Leading and trailing spaces are
included 1in the counte Thuse NUM can be wused to verify that an
alphanumeric value 1s a Llegitimate BASIC representation of a
numeric valuee or to determine the length of a numeric portion of
an alphanumeric value. NUM can be wused wherever numeric
functions are normally usede. NUM 4s particularly useful 1in
applications where it is desirable to numerically validate dnput
data under program controle. Note: If AS = “1E88"%, then
NUMCAS$)=16 even though 1E88 is an illegal valuees since it exceeds
the Llegal size for a floating point constant,. This occurs
because NUM checks only formate not valuee.

The result of the NUM function is an integere.
Examples:

100 A$ = ¥98,7+53.6" NOTE: X=4 since the se-

200 X=NUM(AS) quence of numeric
characters fails to
conform to standard
BASIC number format
when the ®*+* char-
acterAis encounterede.

100 INPUT AS NOTE: The program fllus-
200 IF NUMCA$)=16 THEN 500 trates how numeric
300 PRINT"NON=-NUMERICGENTER AGAIN" information can be
400 GOTO 100 entered as a charac-
500 CONVERT A% TO X ter stringe numeri-
600 PRINT ®X="3X cally validatedes and
Run program: then converted to an
? 123AS internal number.
NON-NUMERICe ENTER AGAIN

? 12345

X=12345

184

2

e o e e " —— — —

]

| General Form:

|

| ON expression {GOTO)} entry [eentryleece

| {GOosSuB}

|

| where: entry = {line number

! {null

| .

! The Last entry must be a Line number (No trailing commas)

1l
The ON statement is a computed GOTO or GOSUB statement.
I1f I is the truncated value of the expressions transfer is

determined by the Ith entry:

le.
2e
e

In 2
statement.,

If a Line numbers the transfer is made to that Line.
If nullse no transfer 1s madee
If I<1 or > number of entriese no transfer is made.

or 3 aboves execution continues at the next executable

€e0e9 ON X GOTO9wel00¢2009¢300¢e9400

Value of X Jransfer

-2 none
-1 none
none
none
none
100

200

none
300

none
none
400

none
none

HOUO-NON L WN =D

-

185

General Form:

{INPUT

{10 1}
OPEN L[+JC{NODISPLAY} ¢1] file-expls] {SHARED}
{NOGETPARM} {EXTEND)
{OUTPUT]

L+SPACE = expl] L[+DPACK = exp2] [+IPACK = exp3]
CeFILE = alpha=-expl] [+LIBRARY = alpha-exp2l]

[L¢yVOLUME = alpha=-exp3] [+BLOCKS = exp4]

where?

alpha-exple2¢3 = files Librarys and volume names
must be alphabetic or numerice
enclosed in quotation markse
1st character alphabetice.

Filename = at most 8 characters (remainder ignored)
Library = at most 8 characters (remainder ignored)
Volume = at most 6 characters (remainder ignored)

BLOCKS = size of 170 buffer (4n blocks of 2048 bytes)e.
default = 1 block

(use of other parameters explained below)

P ey T e T VI ey T D S T ey SUSD et A D e D D s S e U G N G — D G ——— D — c—
b e T G S S S T — S — — D — — T Gy T e —— — VR w— D D wv— D s D ey Gy — G w—

OPEN 4s used to open an existing disk file or create a new
ffles The file number (provided by file-exp) must have appeared
in a SELECT statement (see SELECT). BLOCKS 4s optionals but
files Llibrarys and volume names will be requested by the system
(using the SELECT prname) even if dncluded in OPENs unless the
file was OPEN*ed previously or NOGETPARM or NODISPLAY was
specified.

The various OPEN modes for old and new fileses and the
allowed I70 operations are Listed in Table Il-1.

Attempting to OPEN a file that has already been OPEN*ed and
not yet CLOSE*d causes a nonrecoverable error at run-time.

186

J

(J

Use of the SPACE. DPACK. IPACKe NODISPLAYe and NOGETPARM
fields is explained belowe

NODISPLAYs NQOGETPARM

When OPEN*ing a file in the programe OPEN will normally
jssue a GETPARM (see the discussion of the GETPARM SVC din the

2200VS __Programmer®s___Introduction) to the workstation or
procedure. requesting the FILEs LIBRARYy and VOLUME parameters.

The prompt at the workstation can be suppressed by
specifying "NODISPLAY". This should only be done if the correct
FILEy LIBRARYe and VOLUME have been specified in this or a
previous OPENe or in a procedures or if SET defaults are in use.
(For a discussion of SET usage constantse see 2200VS _Programmer®s

Introductiopns Chapter 2.)

Both the workstation prompt and the procedure file prompt
may be suppressed by specifying "NOGETPARM®". This should not be
done if the file parameters are to be accessible/modifiable from
a user proceduree. (For a discussion of proceduress see Chapter 7

of the 2200VS _Programmer®s Introduction.)

The remaining parameters differ in wusage depending on
whether the file is being OPEN'ed in QUTPUT or non-QUTPUT mode.

SPACE

OUTPUT: specifies the approximate number of records to
be put din the new file. If OUTPUT 1is not
specifiede a GETPARM will be displayede.

non-0UTPUT: If a variable (f.ees a receiverds it will

conta¥n the number of records currently in the
file after OPEN.

DRACKs IPACK

OUTPUT: specifies the block packing densities (integer)
for the records/keyses respectivelys for a new

INDEXED file onlye.

non=-0UTPUT: Ignored
Further use of FILEs LIBRARYes VOLUME:

In any modes §f FILE/LIBRARY/VOLUME are alpha-receiverss
the actual names will be returned to the receivers after OPEN.

187

)

pu3 3144 juUAJLJINI
ay} je bupjJeys

PU3d 3)}4 3UIJIND
ayy) e bugjaeys
04£13AL3NIBSUOI ¢A13AL3N33SU0D
SpJ023J4 S3jLdJf SPJ03aJd SIAJLJN

Q3R0TIV 1ON QG3R0I1IV 10N Q3A071V 1ON 3114M :SdO 3114M :isdo

(Ajuo
Salts PI1OY

ON31X3

s*Ja3pJo BUFPU3II
-3% up agq 3Isnu
SA3) (Aaewiad)
- 3144 M3U e 0}

*31L4 Rau e 0}
A13Ap3naasuod

*3114 Mau € 03
AYaAL3IN23suod

*31L4 A3u € 0}
A13AL3N23ISUO

*314) M3u e 0}
A13aAL3N2asuod

(P33313p S3144 P10)

{Ajuo
531t} MIu)

SPJ023J4 S3JJ4N SPpJ0Jd3J SI}LJNM SPJ033J SIJLJM SPJ023J4 S3}LJA SPJ033J S3}LJA 1ndino
31IY¥A :sdo J1IY¥A :sdo 311y¥m :sdo I1Iym :SdQ J1IYm :sdo
*uot3}dajoud (S3143 J3ISNOD
’ Q10H *4A33uap A3u Jo pjo
-uadapu} ¢ssadae *331¢3 BOY $£S31t4
ajdi3jnu smojyje (4y3ibuay ajqe G3IX3ANI P10O)
Ing ¢Q1 se Juwes -tJeA) Joj pasn Q34VHS
3SY33¥ ¢Q0H
313713031 T¥A3Y 3ISv3N3y ¢070H
a3mR01V LON Q3n01vY 10N ¢31TYACOVIY :Sd0 ¢31I¥m :sdo g3M017V LON %
4
*uoijdo uogjdo
uo ¢3do 313730/7341 43y 31I3R3¥/070H *uoi3}do 3JILIYAIY
GI0H Y3Ith 34 /7QT70H Y3gm ¢34 Ygn 63144 JQI0H YR ¢33
ay} 30 Bupuuibaq (A33) 30 BupuuLb jo 6upuuibaq 40 bupuugbaq
9y} wodj dINS -3q @oJ4} 3JLI UM woJdj dINs Jo wodyj dINS JO (Aj1uo
JO QV3y 3AL3IeIIJ Jo QV3y pakay gviy 3ALIeqad av3y 8AL3jIeYad $31¢) P10)
Jo 3AL3IN23ISUO] 4O 3aAL}IN33SU0) JO 3AL3INIISU0Y JO 9AL3INI3SUO] 1}
3137304311303y ISR T K} dINS
03A077VY 10N dIMse*0v3iy :sdo ¢31TYASQVIY :5d0 s4INSOQVIY¥ :Sd0 %31IymM3Y¥*Qv3y¥ :SAQ
*peaJ pJyoaad *3t3
°31¢4 jo }se) J33je *3143 Jo ayy jo bHutuuibaq
6ujpuubaq wody 40 Buguuibaq buguuibaq wod}y wo4y bHuplaels (Ajuo
Bug3Jeys dINS woJdj Bupjaels 6uipidels dINS s 4INS JO Sa1Ls
Jo QV3Y 3Aagyelaq sQv3y Pakay Jo QVIY IAL}IeN3d gv3y 9AL3Ie]3d P19)
40 3AL3N235U0) 40 3AL3INIASUO) 40 3AL3INI3SUO) JO 3AL3N23SUO) 1ndNI
03R011Y LON dINSeQVvI¥ :Sd0 Qv3y :sdo dINS*Qv3y :sdO dINS*aviy :s5do
¥3ILNINd 3dv1 { GQ3IX3ANI ¥VA) J3ISNOJD YYA J3SNOD 300H
{ G3X30NI } ‘ 3dAl

SU0} 3dL 4353 pue $3Sanbay uogjaund 1eba

*3-11 aiqey}

*To

le
2e
3.
4q

Examples:

100
200
300

write records in Random Key orders do the following:

OPEN OUTPUT
CLOSE

OPEN IO

WRITE RECORDS

OPEN NODISPLAY #14JOsFILE="THOMAS" oLIBRARY="STEARNS" 4!
VOLUME="ELIOT"®
OPEN #240UTPUT

189

OR_Logical Operator

General Form:

CLET] Alpha-Receiver = [logical expl OR logical exp

Logical exp - see Sectioh 3.8

e e v v v —r— —
e o e ———y oo — oo

Purpose:

The OR operator Llogically OR*s two or more alphanumeric
argumentse :

Example:

100 A$= "SAINT®
200 BS$= *®S§S "
300 C$= A% OR B%
400 PRINT Cs3

Output:
Saint

Capital A is HEX(41) or 0100 0001 in binarys a blank space
is HEX(20) or 0010 0000 in binarye When two characters are OR%ds
'a binary one in either becomes a binary one in the results Thusy
OR*ing "A® with ®* ® produces binary 0110 0001 or HEX(61)se which

s the ASCII "ma%".

The operation proceeds from Left to pight. If the operand
(Logical expression) is shorter than the receivere the remaining
characters of the receiver are unchangede. If the operand fis
longer than the receivers the operation stops when the receiver

is exhaustede.

See Chapter 34 Section 3.8 for more dinformation on logical
expressionse

190

¢

POS Function

General Form:

{C)
{<=)
{> 1)
POS (C~-] alpha-expression {>=)} alpha=-exp)
{<>}
{= 1}

o . —— ———— ——

The POS function searches the first alpha-expression for a
character that s <e<=eded=9<>s or = the first character of the
second alpha-expression and outputs the location (leftmost=1) of
the first such character founde (The basis of comparison {s the
ASCII codes of the characterses) POS searches the entire
(defined) Length of the alpha-expressione '

If no '-°* is presents the search executes from left to
righte thus outputting the position of the Lleftmost such
charactere If *=* is presente the search executes from right to
Lefts thus outputting the position of the righitmost charactere.

1f no character satisfies the condjtion' P0OS=0.

(The output of POS is an jinteger)

Examples:

100 A%=POS(-ASCSTR(BS+¢2+2))
200 FOR A=1 TO 10 STEP POS(C$=BS)

191

|

| General Form: ‘
| |
I PRINT L[prt-eltllt [prt~eltlJeselt] {
| |
| where: t = comma or semicolon |
!]
| prt-elt = {character prt-elt |
| {control prt-elt |
| |
| character prt-elt = {expression } |
| {alpha-expression:) |
] {HEXOF (alpha-expression)} |
| !
| control prt-ett = {BELL } |
| {PAGE A) |
| {SKIPL (exp)1 } |
| {TAB (exp) 3 |
| { COLCexp) } |
| {ATC exp ¢ exp [olexpl1)) |
| |
1 1

The

PRINT statement routes output to the currently selected

PRINT device (printer or workstation) - see SELECT statement.

For
zones of
zones and
(maximum)
the linee.

PRINT outpute the output Line is divided into as many
18 characters as possibles thus the printer has seven
the workstation has four. Note that the Last zone

may be Longer than the resty extending to the end of

PRINT executes as follows:

l.

Character print elements are printed starting at the
next unused print position and ending at the lLast used

.. print positione If too longs the prt-elt d9s continued

2e

3.

from the beginning of the next Line(s).

Control print elements are output based on the current
print positions and end at the new positione.

A comma anywhere except dimmediately after a control
prt-elt moves the print position from its current zone
to the start of the next available zone (if in zone 79
moves to column 1 of the next line)e A comma after a
control prt-elt is treated like a semicolone.

192

‘J

4, A semicolon causes no change in print ﬁosition. Note
that at Lleast one comma or semicolon {s required

between any two prt-eltse.

5¢ A PRINT ending in a commaes semicolons or control
prt-elt causes the cursor to remain at the next
available print positions any other PRINT (including an
empty PRINT) is followed by a CR/LFe.

Note that a line is not sent to the printer until efther
the print position 1s moved beyond the Line or until a

SKIP(0) 1s encounterede.

Print Elements

1. expression
-1 15
. If |lexp|<10 or |exp| 210 o the format is
exponential: ‘
SMDMMMMMMMMMME {+}XXb
where: S = minus sign 1f negativees blank otherwise -
M = mantissa digit
D = decimal point
XX = exponent digits
b = blank
€eges PRINT T46e793%
b7.4679000000E+02b
start end
-1 15
. If 10 € lexp| <10 o+ the format is fixed-point:
S[Z...J[DF...]b
where: S = minus sign if negatives blank otherwise
Z = digit
D = decimal point
F = digit
b = trailing blank

and total Z*s + total F*s ¢ 15
Leading zeros and trailing (decimal) zeros are not

printed (but zero is printed as *b0b*). Up to 15
digits plus a decimal points if anys are printede.

193

2e

Se

4.

56

6e

alpha-expression

The actual length of the alpha-expression 1s printede.
"Actual®™ implies that trailing blanks of an alpha
variable or array string are not printed.

HEXQOF _(Calpha-expression)

The hex value (defined length) of the alpha-expression
is printed. {Note that this includes trailing blanks -
HEX(20)).

€eJde 100 A% = ®ABC™
200 PRINT "HEX VALUE OF A$ ="SHEXOF (AS)

Result: HEX VALUE OF A$ = 414243202020202020206202020202020

PAGE

Printer: Advances to Lline 14 column 1 of a new pagee.
Workstation: Clears the screen and homes the cursore.

BELL

Printer: 1Ignored
Workstation: Beeps the CRTs screen and cursor
unaffectede. ‘

SKIP_[n)1

Printer: Advances the print position to column 1 of
the nth Line after the current Line (default n=1).

If n=0e the current Line 1s printed with a carriage
return but no Linefeeds thus causing the next Line to
overprinte.

If n<0y SKIP 4s ignorede.

Workstation: Advances the cursor print pos{tion to
column 1 of the nth Line after the current LUine
(default=1), '

. If n>0s the cursor moves down n Lines.
Instances where this would theoretically move
to a Lline off the screen (iseee current Line +
N >24) cause a roll-up insteade The cursor is
positioned at the beginning of the Llast Line
moved to (the bottom Line of the screen if one
or more roll=-ups occurred)e.

. I1f n=0e the cursor returns to the beginning of
the current Linee.

194

Tﬁ

Te

8e

9e

. I1f n<0ys the cursor moves up n Lines. A move to
a Line off (above) the screen causes a
roll-down instead. The cursor is positioned at
the beginning of the Llast Line moved to (the
top Line of the screen if 1 or more roll-downs

occurrede

TAB(n)

Printer: (n>0)e The print position is advanced to column
n of the current line. If the column has already
been passeds the TAB 1s dgnorede.

Workstation: (n>0)e. The cursor 1s moved to column n of
the current Lines erasing (HEX(20)) passed=over
characterse If the column has been passed the TAB
is ignorede.

- In either casey if the tab position 4s greater than the
SELECT®%ed Line lengths the print position is advanced
to column 1 of the next Llinee If N is negative or
zeros the TAB 1s ignored.

100 LET A = 3
200 PRINT TAB(30),
A will be printed in the 30th columne.

coL(n)

Like TABe but does not erase any passed-over characterse.

(TAB and COL are equivalent for the printer since no

characters can be erasedes)

ATCry _cly [eld)

Printer: Ignored

Workstation: AT(recLeleld) moves the cursor tb row
re column ¢ of the screens and optionally erases e
characters starting at (rec)e The following 'rules
hold:

° 15"5_24.
. 1<c<80.

. e203 if too larges only characters to the end
of the screen are erased.

If e and the preceding comma are omitted no
erasure OCCUPSe If e s omitted but the
preceding comma 1is Jncludeds the rest of the
screen is erasedy starting from (recde.

Note that ATe Like COLs has no effect on passed-
over charactersa
’ 1S5

RINTUSING

General Form:

PRINTUSING Line number [sprt-eltl{esdprt-eltlees 131
{3}

where prt elt = {expression
{alpha-expression

Line number = tine number of IMAGE or FMT.

e s ——— — — —
e e e e e — ey ey

PRINTUSING routes formatted output to the currently
selected PRINT devicey using the referenced IMAGE or FMT

statement.

PRINTUSING starts at the current print position and ends
with the cursor either at the next print position (§f final *3¢
present) or at the beginning of the next Line (1f no final ¢53°),

The IMAGE or FMT may be reused if there are more elts than
format-specse If the delimiter following the Llast displayed
value is a commae the cursor moves to the beginning of the next
Line before re-use. if the delimiter 1s a semicolons the cursor

is not movede.
Examble:

100 PRINTUSING 2004 N
200 X HHJHETTTT

196

0
c
ol

General Form:

PUT {file-exp) [L+IJUSING Line. numberleargleargleece
{alpha-recefiverl}

L+DATA {GOTO } Line numberl
{GOSUB)

where: arg = {expression
{alpha-expression
{array~-designator

e w— e e E— —— — . — —— — —
o e e —— —— —— —— — —— — —

PUT 4dnserts data 4into the referenced record area or
alpha-receiver USING the referenced Image or FMTe if specifieds
or using standard formate.)

PUT does not destroy values not explicitly overwritten.
Data PUT 4nto a record area may be written to the file by a
subsequent WRITE or REWRITE statemente.

The DATA exit 4s taken if a data conversion error occurse
EXAMPLE:
SELECT #1 “EXAMPLE®™ CONSECe RECSIZE=16

OPEN #1 EXTENDe FILE="EXAMPLE"s LIBRARY="DATA™¢VOLUME="VOL444"
PUT#1.B$

197

READ

l , | |
| General Form: READ receiver [ereceiverJeece |
1 1l

A READ statement causes the next available elements in a
DATA List (values listed in DATA statements in the program) to be
assigned sequentially to the receivers 1in the READ liste This
process continues until all receivers in the READ List have
received values or until the elements 4in the DATA List have been
used upe Each receiver must reference the corresponding type of
data or an error will resulte.

The READ statements and DATA statements must be used
togethere If a READ statement 1s referenced beyond the Limit of
values 1in a DATA statements the system uses the next DATA
statement 1in statement number sequencee. If there are no more
DATA statements in the programe an error occurs and the program
is terminatede.

The RESTORE statement can be used to reset the DATA List
pointere thus allowing values ¥n a DATA List to be re-used (see
RESTORE) .

NOTE?

DATA statements may be entered any
place ¥n the program as long as they
provide values in the correct order
for the READ statementse.

oo —v— — — — ——
e — — —— —— —

Examples:

100 READ A¢BeC
200 DATA 4¢43159-3.98

100 READ AS9Ne¢B12(3)
200 DATA ®"ABCDE®+27e¢%XY2"

100 FOR I=1 TO 10

110 READ A(I)

120 NEXT I

200 DATA 7e24 459 6921y 8¢ 4
210 DATA 11¢2¢ 9ely be4e Be52e 27

198

e e —— . — —— c— — — —— — —— —— —— —— T ———_— —— . T T cm— T —————— T —— — —— — W——— —

General Form:

READ file-exp [[+JHOLDI|L+J{KEYCexpll{>=)alpha-expl

CCC¢ JUSING Line numberleargleargleecel

L +EOD{GOTO }Line number]l [9DATA{GOfO }Line numberl
{GOosSuB) {6oSuB}

where:

HOLD

expl

alpha-expl

exp2

USING Line#

arg

EOD

DATA

C
{ IO

| { {=)
| {RECORD=exp2
[

W Y
) == v e)

hold record for REWRITE or DELETEe. The
record is held exclusively 1f in SHARED
modes 1eee9 No other user may access the
record until REWRITEe« DELETEes or another
‘READ HOLD Js executede.

Alternate key number for keyed READ on
alternate indexed file (PRIMARY key used 1f
expl = 0 or omitted)e.

indexed file key specifier3 the first record
whose key satisfies the condition is reade.
Only as many characters as specified in KEYLEN
are compareds i1f the alpha-exp is shorter
(defined Length) than KEYLENe only as many
characters as its Length are compared.

record number (from 1) for CONSEC files only.

Line number of FMT or Image statement.
describing the input data formate.

{receiver
{array-designator

Data is moved (and optionally converted) into
consecutive receiverse.

end-of-data or invalid key exite overriding
the SELECT EOD.

data conversion error exite.

h——————-———_————————

199

The READ (file) statement causes a record in a disk file to
be reade The file must have already been opened with an OPEN
statement (see OPEN).

I1f neither KEY nor -RECORD ds specifieds. the next
consecut fve record 1s read (using the established "Key of
Reference®™ in the case of ALTERNATE INDEXED filese fo€es the Llast

used in READ KEY).

If no arg Llist 1s presente the data is Left unconverted 4n
the buffers and is accessible only through GETe.

If USING 1s omitteds data 1s assumed to be in internal
formate.)

Example:

SELECT #1 "EXAMPLE®" CONSECe RECSIZE=16
OPEN #1 INPUTs FILE="EXAMPLE®+LIBRARY="DATA"™ VOLUME="VOLUME"

READ #1.B8$

200

T%

=
m
=

] |
| General Form: REM- [text stringl |
| where: text string = any characters or blanks (except colonss$|
{ a colon indicates the end of the |
| statement) I
1 1

The REM statement 1is used at the discretion of the
programmer to insert comments or. explanatory remarks din his
programe When the system encounters a REM statements it ignores
the remainder of the statement - but not necessarily the rest of
the Liney as the following examples (Lines 210 and 300) showe

Examples:
100 REM SUBROUTINE
210 REM FACTOR: F=Y/Z(X*1)
220 REM THE NUMBER MUST BE LESS THAN 1
300 REM ==== IPRINT “ERROR®“IREM STOP:STOP

The statements after the <colon in Line 210 and after the
first and third coltons in Lline 300 wilt be executede.

201

RESTORE

™

General Form:

RESTORE {fexpressionl
{LINE = Line numberl, expressionl}

where:

Line number = lLine number of a DATA statement 3in the programe
If omitteds the first DATA statement s usede.

1 € expression ¢ total number of DATA items in the programe
beginning at the given Lines if specified. If omitted,
default = 1.

|
!
|
|
|
|
!
|
]
I
|
I
|
|
I
]

e — ey, — — — — —— v =—

The RESTORE statement allows the repetitive use of DATA
statement values by READ statementse. When RESTORE s
encountereds the system resets the DATA pointer to the specified
DATA value. A subsequent READ statement will read data values
beginning with the specified valuee.

When a RESTORE statement is encountereds the system resets
the DATA pointer to the (expression)th data value in the programs
beginning either at the first DATA statement (if P*LINE =v {s
omitted) or at the DATA statement at the specified line numbere.

If *expression® is omitteds the pointer is set to the first
data value in the program or 4n (or beyond) the specified DATA
statemente.

Examples of valid syntax:

100 RESTORE

200 RESTORE 5

300 RESTORE (X=Y)/2

400 RESTORE LINE = 100
500 RESTORE LINE = 100¢ 3

The following programs for exampley

. 100 DATA 14243
200 DIM A(1410)
300 FOR I=1 TO 10
400 IF I > =6 THEN RESTORE LINE=700, 3
500 READ A(l141)
600 NEXT 1
700 DATA 44546
800 MAT PRINT A3

produces the following output: -
1 2 3 ¢4 5 6 6 6 6 6

202

| | |
| General Form: RETURN |
1 1

The RETURN statement 14s used Iin a subroutine to return
processing of the program to the statement following the Llast
executed GOSUB or GOSUB* statement.

If entry was made to a marked subroutine via a special
function key on the keybocarde the RETURN statement will return
control to the interrupted INPUT or STOP.statement.

Repetitive entries to subroutines without executing a
RETURN should not be done« Failure to return from these entries
causes return information to be accumulated which can eventually
cause a stack overflowe (Also see RETURN CLEAR.):

Examples:

100 60SUB 300

200 PRINT X:SSTOP

300 REM THIS IS A SUBROUTINE
400 -

500 -

900 RETURNIREM END OF SUBROUTINE

100 GOSUB'03(AeB%)

200 END

300 DEFFN®03(XeNS)

400 PRINTUSING 500eXeNS

500 X COST = SH#otétfio#88 .44 CODE = HH##
600 RETURN

203

RETURN CLEAR

| I
| General Form: RETURN CLEAR -CALL] I

1 _— 1

Clears subroutine return-address informationes generated by
the Last or all executed subroutine callse from memorye.

The RETURN CLEAR statement is a dummy RETURN statemente.
With the RETURN CLEAR statements subroutine return address
information from the last previously executed subroutine call {s
removed from the 1internal tabless the program then continues at
the statement following the RETURN CLEAR."

It RETURN CLEAR ALL s specifiede all subroutine return
information s removed from the program stacke Thuse no RETURN
or RETURN CLEAR may be executed before a subsequent GOSUB or
GOSUB*.

The RETURN CLEAR statement is used to avoid memory overflow
when a program continually exits from subroutines without
executing a RETURN. This is particularly useful when using the
Program Function Keys to control program execution (from either
STOP or INPUT)e When a Program Function Key 1is wused 1in this
mannere a subroutine branch 4{s made to the appropriate DEFFN®
statement to continue executione '

A subsequently executed RETURN statement causes the STOP or
INPUT statement to be repeated automatically. Howevere the user
may wish to continue a program without returning to the STOP or
INPUT. In this casey the RETURN CLEAR statement should be used
to exit from the DEFFN® subroutinee. Executing a RETURN CLEAR
statement when not inside a subroutine will result in an errore.

Example:

100 DEFFN'15
.. 200 RETURN CLEAR

NOTE:

If a program repeatedly exits from a
subroutine without executing a RETURN
or RETURN CLEAR statements an error
may result.

204

pe
m
=
o
=
=

General Form:

REWRITE file-exp [[¢1SIZE = explL[+IMASK = alpha-expl]
CLC»JUSING tLine numberlearglearglecs]

LeDATA {GOTO 3} Lline number]l
{GOSUE)

where:

USING Line# = Line number of FMT or. Image describing
the output formate.

arg = {expression)
{alpha-expression }
{array-designator)}

DATA data conversion error exit

e o — —— —— T —— — — —— — . o < e
e e — —— — — —— — ——— — s w— v

REWRITE is used to overwrite an existing records which must
have been read with the HOLD option.

If the arg list is omitteds the record is assumed to have
already been formatted in the record area with a PUT statemente.

If the arg Llist is presenty it ¥s converted value-by-value
using the 1Image or FMTy if specifiede Otherwises standard format
is used.

If the file is not an INDEXED VARLC] files the rewritten
record size will be the same as that of the overwritten record;
SIZE and the implicit aro~List size are ignorede.

If the file is an INDEXED VARIC] filee- the size of the
rewritten record is determined in one of the following ways:

1. Record size = SIZE expressiony if includeds.

2« Record size = resultant size of the formatted arg Lists
if specified (see WRITE),

Sd¢ If arg List omitteds the rewritten record will be the
same size as the record it overwritese.

REWRITE s not allowed for CONSEC_VARC filese

205

MASK is used to set the alternate Key mask for alternate
indexed filese. See the explanation of the MASK system function
for more 1{informatione 1If MASK is omitteds the alternate-key mask

for the record is rewritten unchangede.

Examples:

100 REWRITE #1¢SIZE=A¢MASK=MASK(#2)s USING 3009AS9BeCX !

200 DATA GOTO 1000
300 FMT CH(20)e PIC(H#H.#)e PD(3)

206

el
E

General Form:

RND(exp)

I——

Purpose:

The RND (random number) function is wused to produce a
pseudorandom number between 0 and 1. The term *"pseudorandom"
refers to the fact that BASIC cannot produce truly randonm
numberse Insteade it relies on an internal algorithm which uses
the Last random number to generate the next one. The resulting
sequence ("list") of valuess though obviously not truly random,
is scattered about in the range zero to one in such a manner as
to appear randoms3 thus the term “pseudorandom."®

There are three ways to use RND(exp)e based on the value of
the argument:

le exp <0 or exp 21
This produces the next pseudorandom number in the
®liste® as described abovee. If this 1s the first use

of RND in the programe the "previous™ value is set by
the compiler at compilation.

2e 0<exp <1

This simply returns exp as the result and resets the
"List”® to this value.

3¢ exp =0
This 1s similar to option 24 but produces a number
whose value is computed from the time of day when the
RND 1s executeds rather than from a user or compliler
specified valuee.

See Section 2.6 for more information on RND.

Examples?

100 A=RND(.5)

200 B=RND(2)

300 C=RND(1)

400 PRINT PA=PJAL"B=¥3Be¢"C="3C

Result: A=,5 B=.259780899273209 Se298807370711264

207

ROTATE

| General Form: ROTATE [CJ] (alpha=-receivers expressfon)

| where -8 ¢ expression ¢ 8
1

=

This statement rotates bits in the given alpha-receiver. 1If
exp < O0s¢ rotation is Left to right |exp| bitse If exp > D0,
rotation {s right to Lleft. Bits which are moved past one end of
the recefver will be moved to the other end of the receiver.

If C is not specifieds rotation occurs for each byte in the
receivers If C is specifieds the entire receiver is rotated.

ROTATE operates on the defined Length of the alpha-receivere

CeQJes 100 DIM AS$S
200 A$ = HEX(345678AD)
300 ROTATE (AS+4)
400 PRINT HEXOF(AS)
(Result: 436587DA02)

500 ROTATE C (ASy-8)

600 PRINT HEXOF (AS) _
(Result: 02436587DAy assuming the previous result)

208

ROUND

General Form:

ROUND(expeexp)

e e e e e
e e e — e

ROUND(XeN) is equivalent to the expression:
SGN(X)* (INT(ABS(X)*10TN+0.5)/10TN)

Its effect 1s to round off the value of X to the precision
spectfied by Ne If N is positives X 1is - rounded off to N decimal
placese If N is negativee X s rounded off to the Nth place to
the right of the decimal pointe. If N is not an integer it is
truncatede For example:

ROUND(123.4567+44) = 12344567
ROUND(123.4567¢3) = 123.4570
ROUND(123.4567¢2) = 12344600
ROUND(123.4567+41) = 123.5000
ROUND(123+4567+40) = 123.0000
ROUND(123¢45679=1) = 120.0000
ROUND(123+456¢7-2) = 1000000
ROUND(12364567¢=3) = 0 etce

Note that “rounding upward®" occurse unlike the INT function; if
ROUND 1is told to round 4.7 to 0 decimal placesy it will produce
5S¢ not 4.

209

i
>
(=]
lg

General Form:
{<)
{<=}
SEARCH [~1 alpha=-expl {> } alpha-exp2
{>=)}
{<>)
{= 3}

T0 {numeric array-designator} [STEP expressionl]
alpha-receiver ’

e e S S — — . ———v— V> w——— —
P o D A E— — ———— To— — e w—

SEARCH searches alpha-expl (defined Llength) for substrings
of the same length as alpha-exp2 (actual length) satisfying the
given relatione.

If ©®-" 4s not specifieds the SEARCH begins with the
substring starting at the Leftmost byte (byte 1) of
alpha~expl: each subsequent substring checked has starting byte
p bytes to the right of the previous substringe where n i1s the
value of the STEP expressione

It "-" §s specifieds the SEARCH begins with the rightmpost
substringes 1eees starting at the (defined Length alpha-expl minus
‘actual Ltength alpha-exp2 +1)th byte of alpha-exple. Subsequent
substrings have starting byte n bytes to the Left of that of the
previous substringe. ‘

If STEP 1s omitteds n=1 and all substrings will be checkede.

SEARCH terminates when 1t runs out of substrings of the
proper Length or reaches the Limit of the "TO0" argument. If expl
1s ipjtially too shorte no substring is checkede

Upon completione the T0 argument will contain the starting
positions of the substrings found (from 1) 1in one of the
following formats: '

le If *®numeric array-designator®"s the array will contain
the (numeric) starting positions 1n the order in which
they were founde The first wunused array element (if
any) will contain O. Any other unused elements remain
unchangede

210

I

(vg

2e

If #alpha-receiver®s each pajr of bytes will contain
the 2-byte binary representation of the starting
positionse as with (1)e The first unused pair of bytes
(if any) will contain binary Oe. Any other unused bytes
remain unchangede.

In etther case (1) or (2)e 1f the array or receiver is too short
to contain all positions founds remaining ones are lost.

Example:

Qutput:

100 DIM A$40y N(1e8)

200 A$S="SESSIONS OF SWEET SILENT THOUGHT"
300 SEARCH AS=STR(A$¢41e1) TO N(}

400 SEARCH -=AS=STR(A%$+¢1+1) TO BS

500 PRINT HEXOF(BS)

600 MAT PRINT N

0013000D000800040003000100002020
1 3 4 8
13 19 0 0

211

N
(na]
E

where PLd]

R}
D}
G}

PRINTER)
CRY }

POOL

BLOCKS

int

General Form:
SELECT select~elt [eselect=eltlleesl

wherée: select-elt = {PL[d]

}
{rR }
{D }
{6 : 3
{PRINTER [(exp)] }
{CRT }
{POOL file numberfLofile numberlesssBLOCKS=1ntl}

d/10 second execution pause after each write to the work-
station. If d=0 or omitteds no pause. System default = no
pausee

trig arguments/results in radianse degrees or gradse
respectivelye (360 degrees = 2 radians = 400 gradse)
System default = radians

= route PRINT®*ed output (PRINTe PRINTUSINGs etce.) to the
Line printer or workstationes as specifiede If no SELECT
has been executede such output §s routed to the work-
station by defaulte. :

exp may be used following printer to specify non-standard
printer Line widthe where

1 ¢ exp € 132
(if omitted or invalide default = 132)

a buffer pool for the specified filese (Files must be
indexed.? .

the number of 2048 byte buffers in the pool.

‘H

an integer from 1 to 255.

’——-————-—-——————-—_-———————————-—————————-—————

A POOL specification can only appear after the SELECT File

statements

for the pooled filess and a particular file-number can

only be dncluded in a single POOL. Only indexed files OPENed in

INPUT or IO

modes can be POOLeds Otherwises this statement may

be used anywhere and as often as desirede The select-elt®s are
processed one at a times Lleft to righte.

Example?

100 SELECT P(9) PRINTER 9D oPOOL#1 o#H24BLOCKS=2

212

J

J

(

SELECT

SELECT file-number [¢] "prname®L¢3 { Consecutive } [+I0OERR exitl
{ Indexed}
{ Tape . }
{ Printerl}

File=number = #ne where n is an integer from 1 to 64

alphabetic or de#e%)
Consecutive = [VARLCIL+1] CONSECe RECSIZE = intl[;EOp exitl
Indexed = [VARLCIL +]] INDEXEDe RECSIZE = intle KEYPOS = int2,
{ALT }

alt-spec‘= KEY dnt4e KEYPOS = int5e¢ KEYLEN = int6 L[+DUP1]
int4 = 1 to 164 may not be repeated

tape = [VARLCIL+]1 TAPEe NLe RECSIZE = int7es BLKSIZE = int8,

DENSITY = { B00)L +EOD exitl
{16002}

printer = PRINTERe RECSIZE = intlo0

exit = {GOTO0)} Line number
{GOSUB}

prname = 1-8 characters (alphanumerice including Fe#+$5 first must be

KEYLEN = ¥nt3 [+{ALTERNATE)} alt-speclsalt-speceecel]] L[+EOD exitl

S e — — o S D . — g T o S— — D — — T om— T — S qo— D S S w— " w—

Purpose:

SELECT file specifies the characteristics of a file which
is to be opened (see the OPEN statement) and read from and/or
written to (see READe WRITEs REWRITEe GETe PUTe DELETEe and SKIP)e.

SELECT can specify four types of files:

. Consecutive disk files - files which can only be read
or written to sequentiallye READes WRITEe REWRITEe GETs
PUTe and SKIP may be usede.

. Indexed disk files = file indexed via a key fielde The
key Llength and position must be specifiede. . ALlternate
keys may also be specifiede. Records c¢an be accessed
sequentifally or by a specific keye. READe WRITES
REWRITEs GETe PUTy DELETEs and SKIP may be usede.

213

. Tape - a file may be read from or written to a tapee.
Only the first file on the tape can be read without
changing the file sequence number given in the OPEN
GETPARMy and only non-lLabeled tapes can be usede. READo
WRITEes GETe PUTs and SKIP may be used.

- printer - files may be written for use by the printere
The first two bytes in each record must be oprinter
control characters (see 2200ys___Principles___of
Operation?e. Only WRITE and PUT may be useds and only
OUTPUT mode can be used in the .OPEN statement.

The SELECT statement sets up a user file block (UFB) of
file information and a record area for the specified consecutive,
indexedy tapes or printer filey referenced by the file numbers
with the supplied parameters used to set {nitial values in the
UFBe.

A file number may appear in at most one SELECT statement.
ALL SELECT®s must appear before any file 1/0 statements in the

programne

file-number pound-sign (#) followed by an integer from 1 to
32 (inclusive). This file-number 1is used in
all other 1/0 statements to refer to the file
specified by this SELECT statement.

prname Literal string consisting of 1-8 alphabetic or
numeric characters: the first must be
alphabetic (alphabetic includes 3¢ #¢ and a)e.

This is the external name used by the operating
system to access the file and to prompt the
user for file informatione.

VARLC3] variable-Length [optionally comﬁressed] recordse

Neither VAR nor C need be set for any existing
files but they must be set for a file to be
created (OUTPUT Mode) with variable-lLength (or
compressed) recordse '

RECSIZE = record size for fixed Ltength filess maximum
record size for variable-length files.,

Limits:
{CONSEE 1<int1<2048}
'S 3
{VAR CONSEC 1<int1<2024)
'S)
CINDEXED 1<int1€2040)
'S 3
{VAR INDEXED 1<int1£20242

214

ﬂ

~

KEPOS

KEYLEN

IOERR

EOD =

ALTERNATE

allowed)

~

~ Examples:

Key position 1in record (from 1) for indexed
filese.

Key Length (maximum = 255) for indexed filese.

branch taken 4f 170 error occurs on the disk
fileeo

branch taken 1f end-of-datas 1invalid key or
duplicate key on an I/0 operation not having an
EOD exft of its owuwne

KEYs KEYPOSe KEYLENe DUP (Duplicate Key values

Key numbers positiones and Llength for 1
alternate keye. This applies to Indexed files
which allow (up to 16) alternate key access
pathse '

For an existing files the ALTERNATE key Llist
may be ejther omitted or a subset of the
existing alternate key structuree. The key
numbers specified must be ddentical to those
used when creating the file. Alternate keys
which are not 1ncluded are pot accessible by
efther READ or the KEY() functione.

100 SELECT #14"HEAP"9¢VAReCONSEC4RECSIZE=100oE0D GOTO 1000 !
200 IOERR GOsSuB 200

300 SELECT#24"0F " ¢CONSEC.RECSIZE=50

400 SELECT#3+"BROKEN"4INDEXEDeRECSIZE=200¢KEYPOS=14KEYLEN !
500 10¢ALT KEY14KEYPOS=11¢KEYLEN=10eKEY2eKEYPOS=21eKEYLEN=10

600 SELECT#4"IMAGES™eVARsTAPEGNLRECSIZE=15BLKSIZE=1000 !
700 DENSITY=16004E0D 60SUB 1000 ‘

800 SELECTH#S¢*WHERE"¢PRINTERRECSIZE=134

215

{7,]
(=
[o]

I1ZE Functio

General Form:

SIZE (file

h—-—.-——

expression)

frn — —— o——

SI2E returns the size of the Llast

specified files

The result is an integere.

216

record

read from the

3

w»
X
s

o

General Form:

SKIP file-exp{[+1BEG} [+EOD{GOTO } Line number]

{eexp) {GOSUB}
where:
exp = number of records to skips forward if n>0;
backward if n ¢ O
BEG = skip to beginning of file

e S s T ey — o —— —— ——

SKIP positions a CQNSEC file forward or backward a number
of records or to the beginning (BEG) of the filee The EOD exit
§s taken 1f a SKIP results in a position before the beginning or
past the end of the filee.

For examplees 1f record 1 was just reade SKIP#Nnes2 will cause
the next record read to be record 4.

SKIP #ne¢-1 causes the same record to be re-read by the next
READ or GET statemente.

A SKIP value of 0 is effectively ignorede.

Examples:

100 SKIP #A+BEG
200 SKIP #14BoEOD GOTO 1000

217

STOP

| General Form: STOP [alpha-expressionl] |
| 1

The STOP statement interrupts program executione When STOP
is encountereds the word STOP followed by the given
alpha-expression §s printed at the workstatione.

Execution may be continued in etther of two ways:

le¢ ENTER continues execution at the next executable
statement following the STOP statemente.

2¢« Depressing a PF key corresponding to a marked
subroutine causes the program to continue at the entry
point of ¢the subroutines A corresponding RETURN will
cause the STOP to re-executed. .

Note that the executfon of STOP is exactly Like that of
INPUT with no arguments. This applies to the use of PF keys for
DEFFN* strings and subroutine entrye. Atthough data cannot be
" entered directly Iinto a variable from STOPs data may be passed to
the arguments of a DEFFN?' subroutinee.

Examples:
100 STOP As

200 STOP
300 STOP*THE SUN BEATESe AND THE DEAD TREE GIVES NO SHELTER™

218

-

SIR Functiop

General Form:

STR({alpha expression 2} [e s [onlD)
‘{alpha array stringl

o — e ——— —— u— — — — —
fr o —— — —— ———— —

where s = starting character in sub-string (an
expression) (1 if omitted)
n = number of consecutive characters desired
tan expression)
s . cannot be zero or negative
n cannot be zero or negative
Purpose-:

The string functions STRe specifies a substring of an alpha
variable or array stringe. With 1ite a portion of an alpha value
can be examineds extracted or changede For examples

100 BS = STR(AS4344)

sets BS equal to the thirde fourthe fifth and sixth characters of
ASe

If *n* 4s omitteds the remainder of the alpha value is
useds including tratling spaces. For examples

100 AS = “ABCDE"
200 PRINT STR(A$+3)
produces CDE at execution time.

Examples of Syntax:

STR(AS¢3+¢4) Takes the thirds fourthe
fifth and sixth characters
of AS.

STR(AS+3) Starting with the: third

character {in A3$e takes the
remaining characters of AS,

STR(®THE CRICKET NO RELIEF%"913¢2) Returns NOe.

219

Example:

100 DIM As20

200 B$ = "ABCODEFGH" Assigns the value ABCDEFGH
. to BS%Se
300 A$=STR(B$424¢4) Assigns the value BCDE to
As..
400 STR(AS4)=BS Assigns the value ABCDEFGH
to characters 4 through 11
of ASe.

500 STR(AS¢393)=STR(B345¢3) Assigns the value EFG to

.the thirde fourth and fifth
characters of AS.

600 IF STR(BS$e3e2)="AB" Compares the third and

THEN 100 fourth characters of B$
(CD) to the Literal ABe.

700 READ STR(A$¢949) Assigns the next data wvalue

read to characters 9

800 DATA "A1B2C3D4ESFE67HB19"

If the STR function 1s used
assignment (LET) statementey and the
shorter than the specified substringe
with trailing spacese. In this casee
STR function must be an alpha receiver,

100 A$ = "123456789"
200 STR(A3¢3¢5) = WABC™
300 PRINT AS
output at execution time: 12ABC 89

Examples?

100 A$ = STR(B3e2+4)
200 STR(D1%,14J) = B$

through 17 of ASe.

on the left side of an
value to be received 1is
the substring 1s filled
the first argument of the
For exampleo

300 IF STR(A$¢3¢5)>STR(BSe3+5) THEN 100

400 READ STR(A$4%¢9)

500 PRINT STR(CS$e3)

600 DIM L$(5)

700 LET M$ = STR(LS()e3420)

220

D

General Form:

SUB "name®™ [[ADDRICargleargleeas)]
statements in subroutine

.

where: "name" = name of subroutine (1-8 alphabetic or
numeric characterss 1st alphabetice

including ae#e and %)

arg = {alpha scalar variable
{numeric scalar variable
{array-designator
{file number

'—-—_—_—_—-———-———————-—-——

[
!
l
|
|
|
!
!
|
!
I
|
|
|
I
|
|
|
!
|

SUB defines a subroutine with (or without) an argument
Liste Its logical end 1s signalled by an END statements just as
in a main progranme. The optional return code is ignored by the
BASIC <calling programe SUB must be the first statements other
than REMs in the progranm.

SUB "name"™ need not be the same as the object file name.
Subroutines must be Llinked to their calling program prior to
run-time$ a CALL statement in the <calling program initiates a
branch to the subprogram addresse

The optional "ADDR™ syntax specifies the type of address
List which the SUB routine expects to be passed to it to locate
the passed argse This 1is explained in more detail in the
description of argument passing in Chapter 4.

Generallye when dealing entirely with BASIC
programs/subprogramse ADDR should not be useds it should usually
be used {f the BASIC SUBroutine is being called from @ non-BASIC
(eege COBOL) subroutinee.

Variables and arrays local to the subroutine (i.ee. not in
the arg Llist) obey the wusual rulese. Howevers they are
initjalized only on the first subroutine call3 on subsequent
callsy they retain their previous values and dimensions.

221

The file number argumente used In file 1I/0 statementss s
(Logically) replaced by the passed file number or ~file-expression
when CALL 1s executedes The file number thus refers to SELECT and
other I/0 operations executed in the main program: dummy file
numbers may pote therefores appear 1in SELECT statements in the
SUBroutine; f.ece¢ when a file number 1is received as a parameter,
a SELECT statement for that file number in the subroutine is not
permitted.

Howevere Local file numbers may be used to set up (SELECT)
an I1/0 area local to the subroutines fYndependent of and
inaccessible to the calling programe.

Other arguments are passed as follows:

1« npon-ADDR Form

. AlLL array args must be specified as to type
(matrixs vector) for proper argument passing to
occure This may be done in either of 2 ways:

le¢e In one or more DIM statements occurring before
the wuse of any of ¢the dummy arrayse The
dimensions specified are of no significances
only the vector - matrix distinction ¥s noted
by the programe.

2¢ If not in a DIM statemente the array is assumed
to be a matrix.

. Arrays and receivers are not physfcally moved; the
SUBroutine receives pointers to their locations and
dimensionse. Thus changed values and array
dimensions (MAT REDIM) may be returned to the
calling programe

. Expressions and alpha-expressions that are not
receivers must be created 1in temporary locations by
the calling programs otherwisee pointers to their
locations (and lLengthse for alphas) are passed to
the SUB routine as in (A)e Although values may be
changed 4n the SUB routiney these new values are
not accessible by the calling programe.

. In either casee the defined dimensions and \lengths
recefived by the SUBroutine specify the maximum
areas as 1In a DIM or COM. MAT REDIM may change
these dimensions subject to the usual rules andes as
indicateds these new dimensions are retained upon
return to the calling program.

222

ﬂﬂ%

(J

. SUB {s passed pointers to the locations of the
passed argumentse. AlLL array __dimensjions and
alphanumeric Lenaths are as specified in_the _SUB
program (or default values).

. Otherwises ADDR works the same as the non-ADDR
forme Specificallys any changes to the data are
reflected in the <calting program upon return from
the subrouttinee. If the data is in a
user~accessible (non-temporary) Locationys he may
access the changed valuese.

Howevere note that MAT REDIM has no effect outside
the subroutines since the dimensioning information
from the calling program 1is 1inaccessible to the
called subprograme

No SUBroutine dummy argument may have the same name as
either another dummy argument of the same type (scalar/array) or
a COM argument specified in the SUBroutine.

SUBroutines may call other SUBroutiness but may not be
called recursivelye.

A source file may contafn exactly one moduleey either a
program or a SUBroutine. '

Examples:

500 sSuB®"AND®

600 A$=STR("THE DRY STONE NO"¢54¢3)
700 PRINT AS$3"SOUND OF WATER®

800 END

100 SUB®"ONLY"ADDR(AS+BeB()o#N_

200 IF A% AND "THERE IS A SHADOW®™ THEN B=20
300 END

223

TIME Funegtion

General Form:

e o — ——

}
i
|
| TIME
1

Purpose:

TIME returns an 8-character.string containing the current
time Caccurate to hundreths of a second) in the form HHMMSShh
(24-hour clock=-midnight 4s 0:003 3 PM 4is 15:00¢ and so forth)e.
The TIME function takes no argument. .

Example:

100 PRINT "THE TIME IS "SSTR(TIMEe192)3® "3STR(TIMEs3+2)3%2"3
200 STRCTIME¢Se2)3 ™ O®CLOCK" '

300 PRINT SKIP(-1)

400 GOTO 100

224

K

IRACE

|
| General Form: TRACE LOFF1 |
1 1

The TRACE statement provides debugging information useful
for "tracking” the execution of a BASIC programe. TRACE mode 1is
turned on in a program when a TRACE statement is executed and
turned off when a TRACE OFF statement 1is executede. When the
TRACE mode is ons output on the printer is produced when:

l. Any program receiver is assigned a new value during
executifon (LETe READy FOR statementss etcede

format: receiver = received value

2« A program transfer 1is made to another sequence of
statements (GOTOes GOSUBe GOSUB®e IFe NEXT).

format: TRANSFER TO Line number

Example 12

50 TRACE.
100 DIM 2(5)
200 Ae4BsC=2
300 LET XeYeZ(S5)=A+SIN(B)/C

Qutput:

«4546487134284
«4546487134284
= 2.45646487134284

N <X O m >

~ HHununt

w DN NDNDN

Example 2
300 TRACE

400 READ Ae¢BeCoD
500 DATA TFelb4e 64e27s 137492.1E84 99.4

Output: A=9.4
B=64427
C=137492100E+13
D=99 .4

Example 3:
100 GOTO 200

Output: TRANSFER TO 200

225

Example 4

Output:

Example 52

Qutput:

Example 6

Qutput:

‘Example 7

Output:

300 GOsSUB 10

TRANSFER T0 10

1
2
3
4

O = O

50
0o
00
00
00

=1

>N

R

=3

TRACE

DIM X(3)

FOR I=1 70 3
PRINT X(I)3§
NEXT I

NSFER TO0 200

1]

TRANSFER T0 200

]
I

=

(end=-of~Loop indicator)

100 AS=HEX(414243)

AS="ABC®

1
2
3
4
5
3

> X X X

00
00
00
00
0o
00

HH

DIM AC4)
AC1)=24022A02)=25362A(3)=48.0012A(4)=14.759
FOR I=1 TO 4

TRACE

X = X+A(I)

TRACE OFF

NEXT I

24,2
49 .56
97.561
112,32

226

TRAN

General Form:

pre o —— —

|
{
| TRAN Calpha-receivers alpha-expression) [R1]
L

TRAN translates (in place) the alpha-receiveres using the
alpha-expressfon as a translate table or Liste.

The defiped Llength of the alpha-receiver is translated
left-to-rights one byte at a timees as follows:

1« The alpha-expression (translate table) 1{s moved to a
separate locations thus it cannot be affected by the

translatione.
2. Each byte is translateds in one of the following ways:

. R specified: The alpha-expression is treated as a
List of consecutive byte pairse ending either at a
HEX(2020) pair or at the end (lLast full byte pair)
of the alpha-expressions The second byte of each
pafr 1{is a ®"translate from®™ bytes and the first a
®"translate to" byte.

The alpha-expression is searched from Lleft-to-right
until a *translate from®™ matching the subject byte
is founde If soe the subject byte is <changed to
the corresponding "translate~-to® <charactere. If a
matching byte is not founds the subject byte is not
changede.

. R not specified: The alpha-expression {s treated
as a table of consecutive “translate to®"™ bytese.
The subject byte is changed to the (n+l)st byte in
the tables where n 1s the hex wvalue of the subject
bytee If the alpha-expression has fewer than n+1
bytese the subject byte is not changede. '

Program example?

100 A$ = "JOHN"®

200 BS$ HEX(000106203)

300 TRAN (AS$s "MJAORHYN¥")R
400 TRAN (B$e ®ABCDEF®)
500 PRINT A$.BS$

produces
MARY ABCD

2217

VAL ' -

]
| General Form: VAL(alpha=~-expled])

|
| where: d = 1429344 (default = 1)

1

.

This function converts the first d characters of the
specified alphanumeric value to an integer. The VAL function 1is
the 1inverse of the BIN Function. VAL can be used wherever
numeric functions normally are usede

VAL ¥s particularly useful for code conversion and table
Lookupss since the converted number can be used as a subscript to
retrieve the corresponding code or data from an arraye or codes
or information from DATA statementse :

Examples of Syntax:
100 X = VAL(AS)
200 PRINT VAL(C("A™)
300 IF VAL(STR(A$43,1))<80 then 100
400 2 = VAL(AS$)I%1Q0=Y

(See BIN in Chapter 3 for the formats for var1ous values of d.) ﬁjf-
Note that VAL returns an integere. -

228

i

General Form:
WRITE file-expl[¢]SIZE=explll+]) MASK = alpha-exp 1
1

[LL+JUSING Line numberleargleargleecel

[EOD{GOTO YLine numberJL +DATA{GOTO 2l4ne numberl

{G0SuB} .{GOSUB)
where?

SIZE = record size for VAR filés

MASK =

only 1 bytes right-padded with HEX(00))

Line number of Image or FMT describing the
formatting to be used on the output datae.

USING Lines

|
|
I
|
I
|
|
|
|
|
|
|
|
2 byte mask for alternate indexed filese (If |
|
|
|
=
If USING 1s omitteds internal format is used. |
I

|

|

|

|

|

|

|

arg = {expression }
{alpha-expressionl
{array-designatorl
EOD = duplicate~-key exits overrides the SELECT EOD
DATA = data conversion error exit (formatting error)

o T . — T cy — — —— T — —— — T o — co— T —— — — T o— ———

. |

WRITE writes the next sequential record to a CONSEC file
(OUTPUT e EXTENDe or SHARED mode) or a keyed record to an INDEXED
file (I0e OUTPUT or SHARED mode)e.

If an arg list 1s presents the data is moved one value at a
timey using the Images FMTe or internal formattings If an arg
list is not presents the data 4s taken directly from the buffers
where it has already (presumably) been formatted with a PUT
statement.

For non-VARLC] filessy the record size 1s as specified in
OPEN; the SIZE parameter §s ignorede.

For VARLC] filess the record size 1is determined in one of
the following ways:

le Record size = SIZE expressions 1f specified.

229

2 If an arg-list 4is presente record size = resulting
formatted record size. If USING 1s omitteds the data
is Left 4n internal formate with record size = sum of
individual sizes:

{floating-point = 8 bytes)
{integer = 4 bytes 2
{alphanumeric = defined Llengthl

3. If no arg-liste then record size is 4identical to that
of the Last record read or writtene 4f anye or to the
maximum RECSIZE.

For alternate 4ndexed filese MASK 1s wused to set the

alternate key mask for the record (see description of the MASK
function in Section 6e.6)e If omitteds the current MASK s used.

Example:

100 WRITE#NeSIZE=1004MASK=AS+EOD GOTO 1000+ DATA GOTO 1200

230

Aﬁ%

2

>
o
20

General Form:

[LET] Alpha=-Receiver = [lLogical expl XOR logical exp

e e — T e w—

Logical exp - see Section 3.8

s v > q— - c— o

Purpose:

The XOR operator Llogically exclusive OR*s two or more
alphanumeric argumentse.)

I1f the operand (logical expression) 1s shorter than the
receivers the remaining characters of the receiver are left
unchangede If the operand is Llonger than the receivers the
operation stops when the receiver is filled. '

See Chapter 3¢ Section 3.8 for more information on logical
expressions,

Examples:

HEX(OFOF)XOR HEX(OFOF)=HEX(0000)
HEXC(OOFF)XOR HEX(OFOF)=HEXCFOFO0)

231

APPENDIX A

SLOSSARY

alpha: Short for "alphanumeric®”. One of the three BASIC data
types: capable of containing a sequence of characters from the
ASCII character sete.

argument: An item provided as $nput to a function or subroutine.
The type of argument generally must conform to rules set by the
called function or subroutine .

array: A oroup of variables referred to by the same names with
one or two numeric expressions (subscripts) selecting particular
variables telements). See Section 2.3.

array-desianator: An dtem in the BASIC language which stands for
all elements of an arrays taken in subscript or row=-by-row order.
Denoted by the array name followed by opening and closing
parenthesess but with no subscripts inside the parenthesess such
as? E()e MIT()e WX()o

array string: A string formed by concatenating the defined
Lenaths of all the elements of an alpha arraye Like
array-designatorss array strings are denoted by the array name
followed by opening and closing parenthesess but with no
subscriptse such ast M93()y W3()e AS()e See Section 3.6

ASCII: The American Standard Code for Information Interchanges
which pairs numhers to displayable characters. The ASCII code is
used to represent string data in VS BASIC where applicablee.

Boolean: A function which operates on a value on the basis of
its individual bits. The ANDs BOOLe ORs and XOR statements
discussed in Chapter 3 perform Boolean functionse.

character: A numbery Letters or symbol: the -elementary unit of
information in the BASIC "alpha® data typee.

compiler: The utility program which takes as input a source file
containing BASIC statementss and may produce as output an object
file executable by the VS processores The operation of the BASIC
Compiler is discussed in Section 1.5

concatenate: Combine two (or more) BASIC alpha-expressions to
form a Llong stringe with the Llast character from the first
expression preceding the first character from the second
expressione. Represented in BASIC by the & operator; see Section
3.50

232

constant: An ditenm in the BASIC language " whose value s
sel f-defining and not subject to changee. In this manualys
constants are classified by typee.

Floating=-point constants: See Section 2.2
Intecer constants: See Section 2.2
Alpha constants (literals): See Section 3.3

EDITOR: The utility program which generates a source file from
keyboard dnpute. The operation of the EDITOR s discussed 1in
Section 1.49 and in the 2200VS Programmer®s_Introductione.

element: An element of an array is one of the dndividual
variables which comprise that arrayes The word "element®” is also
used to refer to an item 1in the BASIC lLanguage which may appear
in a particular situatione.

expression: A general term for an item in the BASIC Llanguage
constructed from operandss operatorse and functions according to
proper syntaxe In this manuales expressions are classified by
typee. .
Floating-point expressions: see Section 2.4
Integer expressions: see Section 2.4
Alpha-expressions: see Section 3.4

FAC: Field Attribute Character. If a character greater than
HEX(7F) is displayed on the screens it will affect the display
mode (intensitys blinkinge underlininges etc.) and -data entry mode
of all characters rightward to efther the next FAC or the end of
the Linee whichever comes firste See Section S5.2.

file: A set of data on disks the unit of data by which a BASIC
program gains access to data on diske See Section 6.2

floating=point: One of the three BASIC data typess <capable of
representing a numbers with fraction and exponente. See Section
2.1

function: An item in the BASIC lLanguage which takes as input one
or more expressions and produces a value which can be wused in
further computations by the programe such as ARCTAN(x) o
ROUND(xaey) s and VAL(x)s where x and y are appropriate
expressionse. The BASIC function repertoire 1s Llisted in Section
4456

integer: One of the three BASIC data typess capable of
representing a whole (nonfractional) number. See Section 2.1.

233

keyword: A seaquence of Letters which are interpreted as a unit
by the BASIC compiler. Examples of keywords are: LETe IFe THENs
ARCTAN.

Leading: Instances of a character occurring to the Left of all
instances of any other character. There are two Leading zeros in
"003320%,

Length: The "defined Length® of an alpha value is the number of
characters it contains. For variables and array stringss this 1is
defined in the COMe DIMe or MAT REDIM statements. The "actual
length™ of an alpha variable or array string s the length of the
string excluding trafling blankse An all blank stringe howevers
has an actual length of ones See Section 3J.2.

Library: A collection of files on diske Either the BASIC
proaram or the operator at execute-time must specify the name of
the Library 1in order to access a file from that Librarye. See
Sectione. .

Literal: An alpha constants typically a sequence of characters
enclosed in single- or double-quotese or using the HEX notatione.
"hello®y °*ABCDEF®*y and HEX(6162CFOF) are Lliteralse See Section

Je3e

matrix: A two-dimensional arrays an array for which two numeric
expressions are required to uniquely identify an elemente. Arrays
are discussed in Section 2.3.

numeric: Integer or floating=-point; as opposed to alphae

object file: A file containing code which <c¢an be executed
directly by the 2200 VS processore The BASIC compiler produces
an object file.

operand: A constant or varifablees or any expression "operated
on®"-~ taken as input~--by a statements operators or functione

operator: A symbol which combines two expressionss dndicating
thate at execute-times their values should be combined using a
particular functione + is an operator signifying the addition
functions A+B is an example of that operator with A and B as {ts
operandse. See Section 1l.11.

receiver: An jtem whichy in a given situations 1is capable of
receiving and storing a new value. Variables and STR expressions
(where the argument to the STR is a receiver) are examples of
valid receiverse.

scalar: A variable which is not an array or ‘array element.
source file: A file which contains texts for examples a file

which contains statements in the BASIC Llanguage. The format of a
BASIC source file is discussed in Section 1.3.

234

/ﬁ)

™

statement: The smallest unit in the BASIC Llanguage capable of
invoking a complete actions an item in the BASIC language which
may occur in a source file on its ouwne The correspondence
between statements and source-file Lines is discussed 1in Section
1,103 the repertoire of BASIC statements is completely given in

Part Ile.

string: A sequence of characterse String data is contained in a
BASIC alpha variable. See Chapter 3.

subscripte A numeric expression used to select one of the
elements of an array. Depending on the arrays either one or two
subscripts may be required uniquely to select an element.

substring: A portion of an alpha variablee defined by the
relative starting position and Llengthe using @ STR expression.
For examples STR(A394+3): The substring consisting of three
characters from A$ beginning at the 4the See discussion of STR
in Part II. :

trailing: 1Instances of a character in a string to the right of
all instances of any other characterse There are two trailing
blanks in "ABC ", The zeros 1in the number ®"200" would not be
called trailing zeross in numberse ®trailing® also d{mplies
occurring to the right of a2 decimal pointe.

type: The three ' BASIC data types are alphat(numeric),
floating-pointe and integere. A variable®s type indicates the
type of values it may containe.

value? The value of an expression {s the string or number
obtained when the \Llisted operands are combined wusing the
specified operators and functionss the value of a variable is the
current contents of that variable (the string or number which
that variable stands for at the present time)e which is the wvalue
most recently assigned to i{t.

variable: A named area of memory whose value may change during
the execution of a programe In this manuals variables are
classified by type:

Floating=-point variablesi see Section 2.1

Integer variables: see Section 2.1

Alpha variables: see Section 3.2

variable name: An item in the BASIC Llanguage which stands for
the current value of a particular variablee.

vector: An array which requires only one subscript to uniquely
select an elemente.

volume: A physical disk or tape on the VS systems or the name
used by the system to refer to that disk or tapee. A BASIC
programe or the operator at execute-times must specify the name
of the volume 1n order to access a file on that volume.

235

APFENDIX B

2200T AND 2200VP CONSIDERATIONS
ADDITIONAL_STATEMENTS

HEXPRINT

|General Form:

|
I {alpha variable } L {s}{alpha variable 31

|HEXPRINT {alpha array designator} [{3)}{alpha.array designator}l.;.til

1 _ .

e e —

Purpose

This statement prints the value of the alpha variable or
the wvalues of the alpha array 49n hexadecimal notatione. The
printing or disolay is done on the device currently selected for
PRINT operations (see SELECT). Defined Length of the alpha
values are printedes Arrays are printed one element after another
with no separation <characterse A carriage return occurs after
the value(s) of each alpha variable (or array) 1in the argument
Listse unless the argument is followed by a semi-colone If the
printed value of the argument exceeds one lLine on the ~ workstation
or printere it will be continued on the next Line or Linese.
Since the carriage width for PRINT operations can be set to any
desired width by the SELECT statemente this could be wused to
format the output from arqguments which are lLlengthye.

Example:
10 A$S=m"ABC"

20 PRINT ®"HEX VALUE OF As$="%;
30 HEXPRINT A%

Output: HEX VALUE OF A%$=41424320202020202020202020202020
Examples:
100 HEXPRINT A%eB3C1)¢e STR(CE43¢4)

110 HEXPRINT A$3B$;
120 HEXPRINT X$()

236

3

O
b
)

General Form:

PACK (image) alpha-receiver FROM

L ']
{numeric array-designator) |e{numeric array-designatorl}|.e..
{ expression b R § expression }

L]

where: dmage = [*1] [#...][.J[#..;][TTTTJ tat Least 1 *8")

e T c— v — — — — — — — e—
e e e R ——

The PACK statement packs numeric values into an
alphanumeric receivers reducing the storage requirements for
Large amounts of numeric data where only a few significant digits
are requirede The specified numeric values are formatted 1into
packed decimal form (two digits per byte) according to the format
specified by the 1{mages and stored sequentially 1into the
specified alphanumeric receivere. Receivers are filled from the
first byte until all numeric data has been storede An entire
numeric array can be packed by specifying the array with a
numeric array-designator (esgee N())e An error will result ¥f
the receiver is not Large enough to store atl the numeric values
to be packede. '

The image 4is composed of # characters to signify digits
ande optionallye +¢ =-¢ 4«9 and T characters to specify signe
decimal point positionsy and exponential formate The image can be
classified into two general formatse

2317

Eormat . Example

Fixed Point 3 % 31
Exponent fal . ReHATTTT

Numeric values are packed according to the following rules:

1.

2.

3.

4.

5.

6e

Te

Two digits are packed per bytee A digit 1is stored
for each # 1n the imagee.

If a sfgn (+ or =) 1is specifieds ¥t occupies the
high-order 1/2 bytee A single hex digit is used to
represent both the sign of the number and the sign
of the exponent for exponential 4Jmages. The four
bits of this hex digit are set as follows:

Bit 1 (leftmost) set to 1% {f exponent negativee.
Bit 2 OFF ("Q%),
Bit 3 OFF ("0™).
8it 4 (rightmost) set to *1" if number negative.

If no sign is specifieds the absolute value of the
number is storede and the sign of the exponent is
assumed to be plus (+),

The decimal point §s not storede When unpacking
the data (see UNPATK)s the decimal point position
is specified in the imagee

The packed numeric value 1s left-justified in the
alpha-recetvere with the sign digit (if specified)
occupying the high-order half-bytes followed by the
number in packed decimal format (two digits per
byte)e The exponent occupies the two low-order
half-bytes (if specified)e The packed value always
requires a whole number of bytese even 1f the dimage
calls for other than a whole numbere. For example,
the image °*###° calls for 1 172 bytese but 2 bytes
are requirede. In such casese the wvalue of the
unused half-byte (the low-order half-byte) 4s not
altered by the PACK operatione. ‘

If the image has format 1¢ the value is edited as a
fixed point numberes truncating or extending with
zeros any fraction and inserting Leading zeros for

nonsignificant 4{integer digits according to the
image specificatione. An error results {f the

number of integer digits exceeds the format
specificatione.

If the image has format 24 the value is edited as
an exponential numbere. The value 1s scaled as
specified by the 4image (there are no Lleading
zeros)e The exponent occupies one bytey and s
stored as the two Llow-order hex digits 4in the
packed valuee. ' .

238

(-\ Examples of storage requirements:

333 = 2 bytes
#in = 2 bytes
+HR HNH = 3 bytes
+#HHTTTT = 3 bytes

Examples of syntax:
000010 PACK (###8)AS FROM X

000040 PACK (#RE¥#)STR(ASe44+2)FROM N(1)
000070 PACK (##.#8) ALS() FROM XeYeN()eM()

239

E

General Form:

UNPACK (image) alpha-expres&ion TO

C ’]
{numeric array-designator} |e{numeric array-designatorl)|eece
{numeric variable } | {numeric variable 3

L. .]

where: fimage = [+1[feeellellfeeeLTTTT] (at Least 1 "#%)

e — S . — — —— T —— ———
—:——————-——-——

The UNPACK statement {s used to unpack numeric data that
was packed by a PACK statemente Starting at the beginning of the
specified alphanumeric expressiones packed numeric data is
unpacked and converted ¢to 4internal floating-point valuess and
stored iInto the specified numeric variables or arrayse The
format of the packed data 1s specified by the image (see PACK);
thuse the same image that was wused to pack the data should be
used in the UNPACK statement. An error results if more numeric
values are attempted to be wunpacked than can exist in the
alphanumeric expression (defined length used)e.

Examples of syntax:

000010 UNPACK C(88##)AS TO XeYeZ

000020 UNPACK (+#.#8)STR(ASe492) TO X
000030 UNPACK (+##E8TTTTIASC) TO NO)
000040 UNPACK (#H#88#)ASC) TO XoYoN()oM()

Examples

000010 X=24:DIM As3

000020 PACK (#8ua)AS FROM X
000030 PRINT X

000040 PRINT HEXOF (AS)
000050 UNPACK(####)AS TO Y
000060 PRINT ASeY

Output: 24

002420
3 24

240

‘D

$SPACK/SUNPACK

pun — —— — . — — — ——— T —— . — — S — — S T —— —— . —

General Forms:

C])
SPACK| ([{D=}]Jalpha-exp)l|alpha-recetiver FROM arglsargleee
| C{F=}1] |
C]
CeDATA {GOTO 2} Line numberl
{Gosus}
where: Lline number = line number of data conversion error
exite. :

SUNPACK [([{D=)Jalpha-exp)|alpha-expression TO arglsargleece

ihere: arg = {recefvers EXCEPT alpha array string

arg = {expression
{alpha-expressione EXCEPT alpha array string
{array-designator

C b |

| C{F=31 |
L]

L «DATA {GOTO } Line numberl
{GOSUB}

{array-designator

L————————-—————————————-—_————_—

datas
alpha

$PACK and SUNPACK pack and unpack numeric and character
in any of several formats specified by the users into the
receiver or from the alpha-expressions respectivelye.

Concerning the operation of $PACK and $SUNPACK in general:

l.. Note that an arg of the form "names()"™ 4s always
recognized as an array of elementss never as an alpha
array stringe Use a STR to get that resulte.

2. Array elements are generally considered as individual
consecutive values or receivers (row-by-row)e. The
exception is F formats where a single format applies to
all of the array elementse.

3e S$PACK generates an error (or exit) if the alpha
recetver is not Llong enough to store all of the args in
the specified formate This 4ds true with any of the
formatse.

241

4.

SUNPACK generates an error (or exit) 41f the unpacked
data 18 not the same type (alphae numeric) as the

receiveres

Delimiter Format

Indicated by the presence of "D = alpha-expression®,
The format of the SPACK®ed Data is:

|
1

|
| data | DEL | data | DEL | eee | data | DEL |

1 1| - | l i | l

where DEL 18 the user-gpecified delimiter.

The alpha-expression following *D=" must contain at least 2

(DEL) delimiter character

conversion codee This §s used only by SUNPACK,

but wmust have one of the four lLegal values for
gither SPACK or SUNPACK:

by tes:
byte 2 =
byte 1 =
Hex _¥Yalue
00 A
{
{ B)
{
01 { A
{
{
{ B)
{
02 {)
{ B
03 L}
{B®
1 SPACK: -

JUNPACK) Result

Error if insufficient data in the
buffer.

Skip a recetiver (or array element) for
each ¢extra delimiter encountered.

No error i1f insuffictent data in the
buffer = remaining receivers are left
unchangede.

Skip a recelver for each extra
delimiter.

Error 1f insufficient buffer data.
Ignore extra delimiterse.

No error 1f insufficient buffer data.
Ignore extra delimiters.

The general form 4s as diagrammed abovee. The structure
of the data entries 1s as follows:

. Numeric - exactly Like PRINTy without the trailing

blanke

. Alphanumeric - defined ltength 1s stored

242

,

2e

SUNPACK:

Extra delimiters may be presenty as described in the
conversion code abovee. A missing final delimiter
causes the Llast data value to be considered as
extending to the (defined) end of the buffer
(alpha-expression). Specific data entries allowed:

. Numerdic - allows any numeric constant which would
be allowed on a program Linee including Leadings
traitinge and dntervening blankse Exception: As
with CONVERTe *2X* 1s pnot recognized as a Llegal
charactere.

. Alphanumeric - anythinge any lengthe. It will be
right-padded or truncated to fit the receilver.

NOTE:

SUNPACK condition code may be set not
to cause an error if there are not
enough data values in the buffer3 this
is true gonly of delimiter (D) formate.
Any of the other formats yill cause an
error (or DATA exit) if the buffer has
insufficient datae '

s e - e e — e — —
P e e e S, T ey e ——

NOTE?

Any errors incurred n executing SPACK
and SUNPACK do not affect yalues
already packed or unpacked in the same
statements 1.e¢es the error occurs only
when the first erroneous conversion is
encounteredes This 1s like the regular
PACK and UNPACK statementse.

f S - —— —— — —
s S . —— S S . —— —

243

SPACK/SUNPACK
Field Format

Indicated by the presence of "F = alpha-expression®. The
format of the $PACK®ed data is:

| | | ! | | |
| field | field | field | coe | field | field]|
1l 1l 1 | 1 1 1
where field = {a skip field.

{a formatted data value

The alpha-expression following "F=®" must contain at ngg;
as pany pajirs of bytes as there are grgs in the arg lListe. (Note:
each pair corresponds to an arge whether 1t 4s a ggalar or array
arge))

~ From left to righte each arg has a corresponding byte paire
in which:

byte 2 = field width (bytes) in hex >0
byte 1 = field type
= {00 (skip field)
{i0 (free-format)
{2h (ASCII integer format)
{ »p
{3h (1BM display format)
{ »p
{4h (MANG dispnlay format)
{ »p
{Sh (1BM packed decimal format)
{ p
{A0 Calphanumeric field)
Eleld 1vpes
l« 00 skip

In”either $PACK or SUNPACKe skips the specified number of
bytes in the buffer: skipped characters are unchangede.

2. A0 Alphapumeric

For alphanumeric data; 1in efther SPACK or SUNPACKs the
value is padded or truncated on the right to fit the field
or receivers respectivelye.

244

3e

10 Free=-format ASCII numeric

SPACK: Same as delimiter formate Veee.s same as
right-padded or truncated to fit the fielde.

Ge

S5e

SUNPACK: Same as delimiter SUNPACK fieldse

2h ASCII Implied decimal

! ! i (I
|l s | djd]d]l
1 1 1 j —

e e —
' a
a

d
S

(ASCII) digit 0-9
sjon byte

$PACK: format as showns sign byte is ASCII
(P+" = HEX(2B)e "=" = HEX(2D)).

PRINT

but

SUNPACK: format as showns all the zone half-bytes are

fgnored and thus may have any value.

3h IBM _numeric display format

h = hexdigit 0-9 only
h = sign digit
$PACK: format as shoun

h = {C (+)
s {D (=)

$SUNPACK: format as showns F%s are

jagnorede h may be {AeCoE+F (+)
s {BeD (=)

245

6. 4h WANG VS display format.

|
| 3h | 3h | 3h | eee | 3h | 3h | h h |
1 1 1 1 ! 11 s 1

h = hexdigit 0-9 only
h = sign digit
s

$PACK: format as shown

h = {F (+)
s {0 (=)

SUNPACK: format as shown; 3%s ignored

h = {D (=)
s {all else (+#)

T« 5Sh IBM _packed decimal format

p

Forme
| | | | | | | |
| hh | hh | hh | eee | hh | hh | hh | ﬁ“
| L i | 1] | [| s | o
h = hexdigit 0-9 only
h = sign digit

s
$PACK: format as showns h = {C (+)
S {0 (=)
SUNPACK: format as showns h = {AeCeEsF (+)‘

s {BeD (=)

Field types 2-5 have the following characteristics more or
less - in common:

. In SPACKe an overflow causes an errore but the field is
filled with zeros and the gorrect signe. '

. In 2h ¢ 3h ¢ and 4h 2zoned formate zones are not checked

p p P
when SUNPACK'eds and thus may take on any valuese This

includes the zone of the sign byte in 2h formate.

246

One consequence of this is that blanks are interpreted
as zoned zerces in 2h ¢ 3h o 4h .
P P. P

h 4in the format specification denotes the number of
p
digits to the right of the implied decimal pointe.

1t may take on any hexdigit values and may be Llarger
than the number of digits in the field (in which case
Leading decimal zeroes are implied).

In S$PACKe an underflow causes no error and fills the
field with zeros and a "+® signs regardless of the sign
of the expression itself.)

$PACK dnserts Leading and trailing zeros where
necessarye

$SUNPACK allows any number of digitss only the first 15
significant digits are wused3 the rest only serve to
position the decimal pointe.

2200 Disk Storage Format
Indicated by the absence of both D and Fe.
Form:
(- | | | | | |
1 | | sov | data | SOV | data | ees | SOV | data | EOB |
1.1 | 1 1 1 1 1 1 | 1
control
wheres
CONTROL = Pseudo=-2200 control bytes (2)

where S

SOV = 2200 Start-of-value byte for the next data value

124471 1 1 1 1 1l | 1

S (mmmmmmm———e———e- T >
{0 = numeric L = Length ¥n bytes (binary)
{1 = alpha
data numeric or alpha value

EOB = end-of=-block byte
= HEX(FD)

247

$PACK Data Format

1.

26

3.

3 AC

1.

Numerjc
Form: .
Ih h [h h [hh Jh h [hbh}hh}h h |h h |
l.s.ul t 1] 2 31 4 .51 6 71 .8 91 10 1211 12 131
Value is decimal floating|point
h = sign indicator

S .
= {0y number ¢4 exponent +
{1¢ number -¢ exponent +
{8¢ number ¢4 exponent -
{9¢ number -4 exponent -

h h = exponent (units hefore tens)

ut
h to h = mantissas In the usual orderes with the
1 13 decimal point assumed between h and h .
1 2
Lpha
Form?

lc il cl c | e00 | ¢ | ¢]
The defined length is stored.

Control byteg: HEX(8001)
mat
Numeric
Same as $PACKe but allows any sign digit:
$PACK SUNPACK
0 Oe2e496
1 1¢3¢5e7
8 BeAeCoL
9 J9BeDoF

This occurs because the 2 middle bits of the hexdigit
are ignorede.

248

2e

e

Alphanumeric

Any Lengthe padded or truncated on the right to fit the
receivere

Control bytes: Ignored

249

APPENDIX C

VS Field Attribute

BRIGHT
BRIGHT
BRIGHT
BRIGHT
BRIGHT
BRIGHT
BRIGHT
BRIGHT
BRIGHT
BRIGHT
BRIGHT
BRIGHT
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
BLINK
BL INK
BLINK
BL INK
BLINK
BLINK
BL INK
BLINK
BLINK
BLINK
BLINK
BL INK
BLANK
BL ANK
BLANK
BLANK
BLANK
BLANK
- BLANK
BL ANK
BLANK
BLANK
BLANK
BLANK

MODIFY
MODIFY
MODIFY
MODIFY
MODIFY
MODIFY
PROTECT
PROTECT
PROTECT
PROTECT
PROTECT
PROTECT
MODIFY
MODIFY
MODIFY
MODIFY
MODIFY
MODIFY
PROTECT
PROTECT
PROTECT
PROTECTY
PROTECT
PROTECT
MODIFY
MODIFY
MODIFY
MODIFY
MODIFY
MODIFY
PROTECT
PROTECT
PROTECT
PROTECT
PROTECT
PROTECT
MODIFY
MODIFY
MODIFY
MODIFY
MODIFY
MODIFY
PROTECT
PROTECT
PROTECT
PROTECT
PROTECT
PROTECT

Characters

ALL

ALL
UPPERCASE
UPPERCASE
NUMERIC
NUMERIC
ALL

ALL
UPPERCASE
UPPERCASE
NUMERIC
NUMERIC
ALL

ALL
UPPERCASE
UPPERCASE
NUMERIC
NUMERIC
ALL

ALL
UPPERCASE
UPPERCASE
NUMERIC
NUMERIC
ALL

ALL
UPPERCASE
UPPERCASE

NUMERIC
NUMERIC

ALL

ALL
UPPERCASE
UPPERCASE
NUMERIC
NUMERIC
ALL

ALL
UPPERCASE
UPPERCASE
NUMERIC
NUMERIC
ALL

ALL
URPERCASE
UPPERCASE
NUMERIC
NUMERIC

250

NOLINE
LINE
NOL INE
LINE
NOLINE
LINE
NOLINE
LINE
NOLINE
LINE
NOL INE
LINE
NOLINE
LINE
NOLINE
LINE
NOL INE
LINE
NOLINE
LINE
NOLINE
LINE
NOL INE
LINE
NOLINE
LINE
NOLINE
LINE
NOLINE
LINE
NOL INE
LINE
NOLINE
LINE
NOLINE
LINE
NOLINE
LINE
NOL INE
LINE
NOLINE
LINE
NOLINE
LINE
NOLINE
LINE
NOL INE
LINE

80
AO
81
Al
82
A2
84
A4
85
AS
86
A6
88
A8
8%
A9
8A
AA
8C
AC
8D
AD
8E
AE
90
BO
91
B1
92
B2
94
B4
95
BS
96
Bé
98
B8
99
B9
9A
8A
9C
BC
20
BD
9t
BF

(J

APPENDIX D

BASIC_COMPILER_QPIIQNS

The following options are provided by the VS BASIC compiler:
SOURCE

If SOURCE = YESe the compiler produces a source Listing of the
compiled programe with accompanying diagnosticse If SOURCE = NOo

no source Listing 1s producede. (Diagnostics are produced if
efther SOURCEes PMAPy XREFe or ERRLIST 1s specified.)

PHAP

If PMAP = VYESe the compiler produces a PMAP (program map) for the
compiled programe A PMAP contains the machine 4{nstructions
generated by each BASIC verbs with the address of each
instructione If PMAP = STATICe a complete PMAP- 1s produceds as
well as a map of the static area showuing the values and locations
of all data itemse A PMAP consists of five basic columns:

column 1 - BASIC verbs and Line numberse.

column 2 - Address and object codee

column 3 - Assembler instructionse.

colusn 4 - Operands for instructionse hex codes for Literalse.
column 5 - Commentse.

I1f the program contains common variables (fe.cee listed Iin a COM
statement)e a map of the common area will follow the PMAP (if
"PMAP = STATIC)e beginning with «COMMON on a new pagees In the
common area map the columns serve the same purposes as in the
PMAPe with the exception of the first columne which will contain
only *COMMON at the beaginning of the mape.

If there 1s no common areas a map of the static area (PMAP =
STATIC) immedfately follows the PMAPe beginning with the word
STATIC in column 1 on a new pagee.

In the static area map the columns serve the same purposes as 1in
the PMAPy with the exception of the first columne which contains
either *STATICe indicating the address of the contents of the
Static section follows or #PGT (Program Global Table) d{ndicating
the addresses of the 4information in that table followe The
Static section contains variabless while the PGT contains
subroutine addresses. miscellaneous constantse and the Llikee

XREF
The XREF (cross reference) Listing consists of five parts:
1¢ A listing of Line number references (column one) and

the tine numbers where they are referenced (following
columns)e.

251

2« A listing of the variable namess thelr lengths (alpha
only)e ande for arrayse their dimensions (all in column
one)e Each variable is followed by the location of the
variable®s storage area (ore for arrayse the descriptor
and data area) on the same Linees and the Line numbers
which reference the variable (on succeeding Lines)e.

3« A Llisting of user-defined' functions and the Line
numbers which reference theme

4¢ A Listing of BASIC. functions referenceds and the Line
numbers where they are referencede

S¢ A Listing of DEFFN* subroutines contained within_ the
proaram and the Line numbers which reference theme

LOAD

If LOAD = YESe the compiler creates an object program 4in VS
object program formate. and stores it in an output file. 1If LOAD
= NOs no object program is producede (In this cases the compiler
does not display an output definition screen to name the output
file)e

SYMB

If SYMB = YESe the compiler inserts symbolic debug information in
the object prograne. If SYMB = NOs this finformation ¥s not
fnsertedsy and the symbolic debug facility cannot be used to debug
the object program at run time.

ERRLIST

If ERRLIST = VYESey a Llisting of the compiler diagnostics {is
producede

SUBCHK

If SUBCHK = YESe the compiler generates special code which checks
the ranges of subscripts during program executions and causes a
program check (execution interruption) §f a subscript exceeds its
defined Llimite Otherwises no check 1s performed on subscripts
during executione.

FLAG

FLAG specifies the Lowest Level of error severity which will
cause the compiler to print a diagnostic message. Any error with
a severity code greater than or equal to the specified FLAG value
will cause the compiler to print a diagnotic message.

252

)

STOP

STOP specifies the lowest level of error severity which will
cause the compiler to abort the compilatione Any error with a
severity code greater than or equal to the specified STOP wvalue
will terminate the compiltation (no object program is producedl.

LINES

LINES sets the number of Lines per page for all compiler produced
printoutse.

253

APPENDIX E VS CHARACTER_SEI

NOTE: bg —=[0 |0 [0 (O (1
b, always. bs —»| 0|0 1 1 0
equals zero .
b,—| O 1| 0] 1] 0
High-Order Digit —| O [1°| 2 3 4
by P2 B1 | Bo Low-Order Digit
ARIRAR '
oloj| oo 0 2|sP|[o]e@
oo} ofn 1 efle |1 [1|A
olo| 1]o0 2 » [T || 2]8
ol of 11 3 «| 8| =2[3]C
o[1] 0fo0 4 -|d|s|[a|D
ol 1] of 1 5 —|%|% |5 | E
ol 1| 1]o0 6 |l |e | &6 |F
ol 1] 1] 1 7 cfi .17 |G
1o o]0 8 s |lo | (|8 |H
1{o]| o1 9 Ntu oy]e |
tfof 1]o0 A ~la | . J
1o 1|1 B m(e | + K
111 0|0 C 1l <L
11 o] D t|A|l-1=|m
11| 1]o0 E 8|0 > | N
11 1] 1] F elu |/ |2 |o

*Bit combinations 16000000 through 11111111 are field attribute characters.

254

APPENDIX F ASCII COLLATING SEGUENCE

This appendix Llists all displayable characters in the Wang
VS character sete with hexadecimal equivalentse The List 1is
arranged in the order of the machine®s collating sequence.

order in Order in
ASCII ASCII

Collating ASCII Hexadecimal Collating ASCII Hexadecimal

Sequence Character Equivalent Sequence Character Equivalent
01 @(pseudoblank) 0B 47 M 4D
02 space 20 48 N 4E
03 ! 21 49 (o] 4F
04 " 22 50 P 50
05 # 23 51 Q 51
06 $ 24 52 R 52
07 4 25 53 S 53
08 & 26 54 T 54
09 *(quote) 27 5% v 55
10 (28 56 v 56
11) 29 57 W 57
12 * 2A 58 X 58
13 + 28 59 Y 59
14 * 2C 60 b 4 5A
15 -(minus) 20 61 o 58
16 . 2E 62 N SC
17 / 2F 63 J 5D
18 0 30 64 * SE
19 1 31 65 - SF
20 2 32 66 °Cdegree) 60
21 3 33 67 a 61
22 4 34 68 b 62
23 5 35 69 c 63
24 6 36 70 d 64
25 7 37 71 e 65
26 8 38 T2 f 66
27 9 39 73 g 67
28 . 3A T4 h 68
29 H 3B 75 1 69
30 < 3C 76 b] 6A
31 = 3D 77 k 6B
32 > 3E 78 L 6C
33 ? 3F 79 m 6D
34) 40 80 n 6E
35 A 41 81 o 6F
36 B 42 82 p 70
37 (o 43 83 q 71
38 D 44 84 r 72
39 E 45 85 S 73
40 F '3 86 t 74
41 G 47 87 u 75
42 H 48 88 v 76
43 I 49 89 "] 17
44 J 4A 90 X 78
45 K 4B 91 y 79
46 L 4C 92 b 4 TA

255

APPENDIX G

BASIC KEYWORDS

The following is a partial glossary of BASIC keywords,.
including all verbs, functions, and operators.

ABS
function:

ACCEPT:

ADD:

ADDC:

ALL
function:

ARCCOS
function:

ARCSIN
function:

ARCTAN
function:

ATN
function:

returns the absolute value of an expression.

allows formatted input of data from the
workstation, with field verification and/or range
checking.

adds binary values of two arguments in a logical
expression, one byte at a time, and places result
in alpha-receiver.

like ADD, but treats the two arguments as

multi-byte binary numbers.

used in logical expressions to generate an argument
consisting entirely of the same specified character
(similar to INIT).

1. logically AND's two arguments, one byte at a
time.

2. AND of two boolean subexpressions in an IF

statement.
returns the arccosine of an expression.
returns the arcsine of an expression.
returns the arctangent of an expression.

same as ARCTAN.

256

BIN
function:

BOOLh:

CALL:

CLOSE:

COM:

Concatenation
operation (&):

CONVERT:

COPY:

C0S
function:

DATA:

DATE
function:

DEFFN:

DEFFN':

converts integer value of an expression to an
alphanumeric value which is the binary equivalent
of the expression. - Inverse of BIN function.

does one of 16 possible logical (boolean)

operations, depending upon the value of h.

calls external subroutine marked by SUB, which must
have been linked to main program.

closes file previously opened by OPEN.

establishes common storage area. for variables used
by more than one program. Like DIM, it reserves
space for arrays and sets length for alpha
variables.

combines two strings, the second being put
directly after the first without intervening
characters. The result is treated as a single
string.

1. converts number represented by ASCII characters
in alphanumeric expression to a numeric value,
and sets a numeric variable equal to that value.

2. converts numeric value to an ASCII character
string representing it, and places string in an
alpha-receiver in a specified format.

transfers an alpha-expression to an alpha receiver,
one byte at a time.

returns the cosine of an expression.

provides data values which can be used by variables
in a READ statement, enabling constants to be
stored within program.

returns a six-character alpha string giving the
current date.

defines a single-valued wuser-written numeric

function, referenced by FN.

1. defines PF key or program entry point for
subroutine with argument-passing capability.

2. defines literal to be supplied for text entry
when PF key is used. '

257

DELETE:
DIM:

DIM
function:
DISPLAY:

END:

EXP
function:

FMT:

FN
function:
FOR:

FS
system
function:

GET:
GOSUB:
GOSUB':
GOTO:
HEX

literal
string:

HEXPACK :

HEXPRINT:

in disk I/0, deletes last record READ.
for indexed files.

Valid only

reserves space for arrays and seﬁs length for alpha
variables,

returns, as integer value, the
column dimension of an array.

current row or

allows formatted output of data values on screen.

terminates program prior to physical end; can pass
program—-supplied return code to system for use in
Procedures.

finds the value of e raised to the value of the
expression. .

specifies data formats for PRINTUSING and File I1/0
statements.

calls a function previously defined in a DEFFN
statement.

initiates a loop ending with a NEXT statement.

returns file status for the previous 1/0 operation

on the specified file.

extracts data from an I/0 buffer or from an alpha-
expression.
transfers control to first program line of an
internal subroutine.

transfers control to an internal subroutine (marked
by DEFFN'); unlike GOSUB, can pass arguments.

transfers control to specified line number.

allows the user to supply ASCII code for characters
for which no keyboard characters exist, including
field attribute characters.

converts an ASCII character string representing a
string of HEX digits into the binary equivalent of
those digits.

prints the value of an alpha variable or the values
of an alpha array in hexadecimal notation. The
same effect as PRINT HEXOF. Supported in VS BASIC

~only for compatibility with the 2200T.

258

HEXUNPACK :

IF...THEN...

ELSE
Image(%):

INIT:

INPUT:

INT
function:

KEY
system
function:

LEN
function:

LET:

LGT
function:

LOG
function:

MASK
system
function:

MAT +:
MAT ASORT:

MAT CON:

MAT DSORT:

converts the binary value of an alpha-expression to
a string of ASCII characters representing the
hexadecimal equivalent of that value.

tests relation and causes conditional transfer or
statement execution based on result of test.

used with PRINTUSING or Disk 1/0 to format output.

. sets all characters in one or more alpha-receivers

equal to first character of an alpha—expression.

1. allows user to

supply data during program
execution. ‘

2. in conjunction with DEFFN' statement, allows
user to enter defined text or branch to marked
subroutine by means of PF keys.

returns the largest integer less than or equal to
the value of an expression.

returns the primary (or alternate) key of the last
record read in disk I/0.

determines actual length, in bytes, of

alpha-expression.

assigns the value of an expression to one or more
receivers.

returns the logarithm base ten of an expression.
returns the natural logarithm of an expression.

returns the alternate-key mask for the last record
read in disk 1/0.
adds two arrays of the same dimension.

sorts array in ascending order.

sets all elements of
redimension array.

array to 1. Can also

sorts array in descending order.

259

MAT IDN
(MAT
identity):

MAT INPUT:

MAT INV
(MAT
inverse):

MAT *:

MAT PRINT:

MAT READ:

[MAT] REDIM:

MAT ()*

(MAT scalar

multipli-
cation):

MAT -
(MAT

replaces each element of one array with
corresponding element of another array.
Redimensions first array to conform to second array.

causes specified matrix to assume form of matrix
identity.

allows user to supply values for an array from the
workstation during program execution.

causes one matrix to be replaced by inverse of
another matrix. .

stores product of two arrays in a third array.
prints arrays.

assigns values contained in DATA statements to
array variables without referencing each member of
the array individually.

redimensions an array.

multiplies each element in an array by an expres—

sion. Result is stored in second array or in same
array.

subtracts numeric arrays of same dimension.

subtraction):

MAT TRN
(MAT
transpose):

MAT ZER:

MAX
function:

MIN
function:

MOD
function:

causes one array to be replaced by transpose of
another array. g

'sets all elements of array to zero. Can
redimension array.

returns maximum value in numeric list.
returns minimum value in numeric list.

returns value of first expression modulo second
expression,

260

()

NEXT:

NOT:

NUM
function:

ON...GOTO
or GOSUB:

OPEN:

OR:

PACK:

#P1
function:

POS
function:

PRINT:

PRINTUSING:

PUT:

READ:

marks end of loop initiated by FOR.

inverts value

of boolean subexpression in an IF
statement. :

counts number of sequential ASCII characters in an
alpha-expression that represent a legal BASIC
number,

computed GOTO or GOSUB statement. Branches to one
of a number of lines depending upon the value of
expression following ON clause.

opens disk file for 1/0 Must be
preceded by SELECT.

operation,

1. logically OR's two arguments in a logical
expression.
2. OR of two boolean subexpressions in an IF

statement.

packs numeric values into an alphanumeric receiver,
reducing storage requirements. Included in VS
BASIC for compatibility with the 2200T. '

assigns the value 3.14159265358979323.

searches an alpha-expression for a character that
fits a defined relationship to another alpha
expression, and outputs this character's position.

1. sends output to printer or workstation (as

chosen by SELECT).

2. controls printer position, workstation display
location, and workstation bell.

sends formatted output to workstation or printer;
format determined by referenced IMAGE or FMT
statement.

inserts data into I/0 data buffer or alpha-receiver.

in conjunction with DATA, assigns elements in DATA
list to receivers in READ list.

261

READ
disk file:

REM:

RESTORE:

RETURN:

RETURN CLEAR:

REWRITE:

RND function:

ROTATE [C]:
ROUND

function:

SEARCH:

SELECT:

causes one record from disk file to be read, either
into record area, or, with an argument list, into
both record area and arguments.

denotes comment; remainder of statement is ignored
by system.

allows repetitive use of DATA statement values by
READ statements, by setting DATA pointer back to
specified DATA value.

used in a subroutine to return processing of
program to the statement following the last

executed GOSUB or GOSUB' statement.

used in a subroutine to clear subroutine return
address information from memory. Execution
continues with statement following RETURN CLEAR.

used to rewrite an existing record, which must have
already been read with the HOLD option.

produces a pseudorandom number between O and 1.

rotates bits in an alpha-receiver.

rounds an expression to a specified number of

decimal places.

searches alpha-expression for strings of the same

length as a second alpha-expression which satisfy
one of the following relations:

02
{>=1} '
{< 3
{<=1}
{= 12
{<>)3

and places starting positions of substrings
satisfying the relationship into numeric array or
alpha receiver.

1. routes output to printer or workstation.
2. specifies whether arguments and results of trig

functions are to be in degrees, radians, or
gradians.

262

SELECT
disk file:

SGN
function:

SIN
function:

SIZE
system
function:

SKIP:

SQR

function:

STOP:

STR
function:

SUB:

TAN
function:

TIME
function:

TRACE:

3. specifies execution pause after each write to
workstation. :

4. specifies the size of a program's buffer pool
and allows the pool to be shared by several

files.

sets up file information and record area for a
file, which can later be opened for input or output
by an OPEN statement.

returns the value 1 if the argument is any positive
number, 0 if the argument is zero, and -1 if the
argument is any negative number.

returns the sine of an expression.

returns, as an integer, the size of the last record
read from a specified file.

positions a consecutive file forward or backward a
given number of positions.

finds the square root of an expression.

interrupts program execution, until 1) ENTER is
keyed, or 2) a PF key corresponding to a subroutine
marked by a DEFFN' causes program to continue at
the entry point of subroutine.

specifies a substring of an alpha variable or alpha
array string. With it, a portion of an alpha value
can be examined, extracted, or changed.

defines an external subroutine, called from a
separate BASIC (or other) program, and which must
be linked to the calling program before being run.

returns the tangent of an expression.

returns an eight-character alpha string giving time
of day.

traces execution,

printer.

program - producing output on

263

TRAN:

UNPACK ¢

VAL
function:

WRITE:

XOR:

translates (in place) the characters in an
alpha-receiver, via an alpha-expression which is
used as a translate table or list.

unpacks data that was packed by the PACK
statement. UNPACK is supported in VS BASIC for
compatibility with the 2200T.

converts alphanumeric expression to integer value
which is the binary equivalent of the expression.
Inverse of BIN function.

writes the next sequential record to a file, using
data in record area, or, if argument list 1is
present, argument list. :

1. logically exclusive OR's two arguments in a
logical expression.

2. exclusive OR of two boolean subexpressions 1in
an IF statement.

264

INDEX

ABS (absolute value) function

ACCEPT statement . « ¢ « o « o o o o o & . .

abp[c] ¢ o e e e s e e s e s
ADDR-type subroutlnes e e e e e e e e e e
addition ¢ . 0 0 ..
array
priority of 0.
addition array statement
ALL . . & v vt e e e e e e e e e e e
alphanumeric
array
defining
length of elements
Naming a8n . . . « + ¢ o o ¢ o o .
array StTIngs . .« o+ ¢ « ¢ ¢ ¢ o o o
CONSLANLS . + & o « s « « o o o o o o &
data
in
in

FMT statement « . ¢« ¢ « &
Image statement
in INPUT statement . . . e
in PRINT statement ., . .
in scalar assignment statement (LET)
in array assignment statement . . .
logical operator with
relational operators with
eXpressions ¢ s e 0 0. e . .
functions 4 . 4 0 4 e e e e e
literal strings . .
operators (see also alphanumeric data,
logical operators with)
variables ¢ ¢ ¢ ¢ 0 0 .
AND logical operator
ARCCOS (arc cosine) function
ARCSIN (arc sine) function
ARCTAN (arc tangent) function
argument
in user~defined functions
-arithmetic . ¢« ¢ ¢ ¢« ¢ ¢ ¢ ¢ v e e e e o

265

.(see

109,

111,

Page

29 ,180
. 78
... 46
114, 223
... 15
95, 162
. 15
162
108

95,
50,

. 37
. 38

.« .« . 38

. 37
. o« . 43
strings)

73, 135
74, 151
. . 154

. 192

. 159
94, 165
190, 231
. . 149
41
A

. . 40

. 43, 44
... 37
45, 109
28, 180
28, 180
28, 180

123, 137
numeric)

array assignment statement
operations with

addition

identity function . .

.

inverse function

matrix multiplication

sort

INDEX (cont.)

o o

ascending sort . .

descending sort

subtraction . . .
transpose function
redimensioning arrays with

arrays . . .

alphanumeric .

comparison between
default dimensions

defining

COM Statememt

DIM statement .

elements of

. o

expressions in .
initial value of .

input values for, through INPUT statement

naming . .
numeric .

output values from

.

with ACCEPT statement .

with DISPLAY statement

with MATPRINT statement

with PRINT statement

redimensioning .
subscripts
ASORT statement .

assignment statement

.

array (see MAT=) . .

scalar (see LET) .

ATN (arc tangent) function

B, insertion character in FMT
BASIC character set . .
BASIC statements

BIN function

one- and tw

o-dimensional

266

. .

. o

* o

Page

94, 165
94, 177
94, 166
94, 169
94, 171
94, 163
94, 163
94, 177
94, 178
. . . 9
. 22, 37
. . . 37
.« . . 23
. . 23

. 25

. 117

. 130

. 21, 37
. 26, 41
. 21, 37
. . 167
. 21, 41
. .21
78, 100
77, 132
.. 172
.. 192
. . 9%

. . 21
. . 163
. 165
. . 159
28, 180
. 134
. . 254
. . 12
110

INDEX (cont.)

Page

binary operators « « « « « + s + « « . . .(8ee operators)

blank lines, printing « 73, 194
blanks
as digit specifier in FMT statement 134
ignored by BASIC . . . + & ¢ ¢ « ¢ ¢ o o o s o & I 1
in Image statement . . . « « o« o o o o o+ o o o o o o o o o 151
in literal strings . . . e e e e e e e e .« .« . 39
initial value of alphanumerlc array 38

null delimiter (see comma, used as null delimeter)

BOOLh logical operator . . . « « « o o o & o « o« &
branching

45, 111

PrOZYam . . « « o o o « o o o o o o o o o o 51, 143, 149, 185
subroutine . . . &« « « « o « « . 58, 133, 141, 142, 203, 221

built-in functions (see functions) ¢ . ¢ 27, 47
CALL StaCement . . o « « « o o o o o s o o o o o o o s o o+ 113
CH(w) data specification . . . « « « ¢« ¢« « « « « . . 134
character . . . &« « e e e v e v e e e+ .+ . (see alphanumeric)
character set, BASIC e e e e e e e e e s e e e e . 254
ASCII collating sequence of 255
CLOSE statement C e e e e e e e ... 82,116
closing files (see CLOSE statement) T § X
colon (:), to separate statements + 14
COM statement . . « « o o o o o s o o o o o o o o o o . 117
comma (,)
as a data separator . . . e e e e e e v e .. o 121, 154
as an insertion character in FMT statement D I 74
to specify full print zones ¢ « ¢ ¢ 192
use in INPUT statement . . « « o « o « o o o« o « o « o« « o 154
use in PRINT Statement . . . « « o o« o o o o o o o« o o « o 192
used as null delimiter during input 154
comment
in * gtatement « . .« .« ¢ &+ ¢ o o o 0 s 4 e o . e s . . o .. 13
in REM statement . . o« « ¢ o o o o o o o o s . . 201
computed GOSUB statement . . . « « « ¢ ¢ « « o « « & 185
computed GOTO statement . .« . « « « o« o« + o o o o o « = . . 185
concatenation (&) ¢ ¢ 4 ¢ 4 e 4 e e e e e 43
consecutive files . . . « ¢ 4 ¢ ¢« o 0 s e e e s e e e o . . 85
constants
alphanumeric literal strings « « « + « .+ 40
internal . . +« + « 4« 4t ¢ vt e e e e e e o . (see #PI and e)
numeric« . . e e s e e e e . . 20
continuation character, use of exclamat1on point as . . . o 17
control specification, in FMT statement 134
(see also POS, SKIP, and X) :
control variable, in FOR statement (see index variable) . 138, 183

267

INDEX (cont.)

Page

CONVERT Statement . « « o o o o o o o o o o o o o o o & o s 118
COPY SCALEMENL .« « « o « o o o o o o o o s o o o o o o o o o 120
coS (cosine) function . . . « « ¢ ¢ 4 o o e e e e e e . 28, 180

d3E3 .+ + + + v v e s e« « + + o+ . (see alphanumeric and numeric)

data form specification, in FMT and ACCEPT statements

(see also CH and PIC) . . . « « ¢ « ¢ o o « & 73, 78, 100, 134
DATA statement . . . « o O A |

relationship to READ statement S &1

relationship to RESTORE statement « « « « o ¢ « = 202
DATE fUNCLION . « o « o & o o o o o o o = o o o o o & o o o = 122
decimal point (.)

in Image Statement . . . « o o « o o o o o o o ¢ o o o . o 151

in PRINT statement . . « « « o s o o o o o o o s o o o o o 192

insertion character in FMT statement « « « « o . 134
default values

of alphanumeric variables « ¢ « ¢ ¢ o o o . e 0. 38

of numeric variables . . « « « « o o o o o e 00 000 oo 21
DEFFN SCAtement . . o o o o « o o o o o o o o o o o o o « o o 123
DEFFN' StAtement .« « « « « « o o o o o o o o o o o « « « 60,125
DELETE statement . . o &2

restriction with consecutlve files « « « ¢ ¢ « 129, 212
delimiters « . » o « o « « « « o o « « « + + + (see PRINT,INPUT)
descending sort function array assignment statement . (see DSORT)
digit specifiers

in FMT SCALEMENE . + o « o o o o o « o o+ o « o o o o « o » 134

in Image statement « ¢ « & ¢ o o o o s e e e e 151
DIM FUNCELION o « v o o o o o o o o o o o o o o o o o o oo 131
DIM Statement . . « o « o o o« o o o o o o o o o o s s o o s 130

defining alphanumeric data with 38, 117, 130

defining arrays with ¢ ¢« o o o 0 o0 o 25, 38
dimensions, Oof arrays . . « « « « o o o o« o o o 25, 38, 117, 130
DISPLAY StAtement . « « « o « o o o o o & o o o o o o o o 17,132
iVISION « v v v 4 o o 4 b e e e e e e e e e e e e e e e W 15

PrioTity 0f « v ¢ v ¢ v o 4 o 0 e e e s e e e e e e e e o 1D
dollar sign ($)

floating character in FMT « . « 134

to name alphanumeric variables ¢ ¢ o o o .. 37
DSORT SLALEMENE - o« « o o o o « o o o o o s o o o o o o « o « 163

268

INDEX (cont.)

Page

dummy variable . . . « « ¢ ¢ 4+ o e o 4 s e . o e o . . 123, 137
relationship to argument « « ¢« « ¢« ¢« ¢« o o . . 137

E as an exponential specifier oo .. 20
ELSE keyword in IF Statement . . « « « « « ¢ + « o o« + o« o o 149
end of file exit
in GET statement . . . « « « « « « o o « « o« o« « « « o 90, 140
in READ file statement . . . « « « « &« « o « « « « « o 90, 198
in SELECT statement . . . « « « o« o o « o o« « o « « o 90, 212
END Statement . o o « o « « « « o o o o« + o o o o o o« o« o « o 133
EOD keyword
in GET Statement . . . « « « « « o o « « s+ « « « « « o« 90, 140
in PUT statement . . « « « « « o « o o o o o« « o « o o 90, 197
in READ file statement « « « « « « « « o » « o 90, 198
in REWRITE file statement . . « « « « « o « « « « « o 90, 205
in WRITE file statement . . « « « o« ¢ o« « « « « « « o 90, 229
error conditions
in GET statements . . « « « o o o « o o o o » o o o« « 90, 140
in PUT statementS .« « « « « o« o o o o o o o « o o « o 90, 197
in READ file statement . . « « « « « « « o« « « « « o o 90, 198
in REWRITE file statement . . . o« « &+ « o « « « « « o 90, 205
in WRITE file statement . . . « « « « « « « « « « « » 90, 229
evaluation '
of logical expressions and subexpressions 45
of numeric expressions + « « ¢ o « s o o+ o o . 15,26
executable statements (see nonexecutable statements)
EXP (natural exponential) function 29, 180
explicit declaration
of array dimensions+« ¢ 4 ¢ e o e 0 o e o oo . o 37
of alpha variable length « ¢ 38
exponent specifier
in FMT Statement . . + « « « « o + o o o o o o o o o « « o 134
in Image statement . . « . « « « « o o o o o+ o o o o o o o 151
exponentiation
OPETALOY . + o « « & « o o o o o o o o o o o o o o o o o o 15
priority of 4 4 e o e e et et e e e e e . s 15
expressions
alphanumeric . . « « ¢ ¢« ¢+ 4 o o o e e 0 e e e e 0. .. b2
logical & v v ¢ 4 b e e e e e e e e e e e e e e e e b4
NUMETIC & v o o o o o o o o o o s o o o o o o o o o o o « o 26
evaluation of . . . « ¢« . « ¢« ¢« ¢ 4 ¢ o & « o « . . 15,26, 45
testing in IF statement + ¢ « + ¢« « o « « . . . 149

269

INDEX (cont.)

false value, in IF statement
file input/output statements . . e e e e
CLOSE file . . . ¢« ¢ ¢ ¢ ¢ ¢« ¢ o ¢ o o o o =
DELETE file « ¢ v ¢ ¢« ¢ ¢ ¢ o o o &
OPEN file ¢« ¢« o « ¢« ¢ &
READ file . . . ¢ ¢ v ¢ ¢« o o o o o o o o
REWRITE file . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o5 o
WRITE file e e s 4 e v s s e e e e
filename, definition of e e e s e e e e e e e
files e h e e e e s e
naming conventlons for
final value, in FOR statement
FL[(w)] format specification .
floating characters in PIC
floating-point constant (E-format)
FMT statement . ., . e s e e o e o o o e e
used with PRINTUSING e e e e e e e e e e e
used with files . . . ¢« e e e
FN, to identify user-deflned functlons
FOR statement« .
format control specifications in FMT statement
(see also X, POS, SKIP) « +« . .
FS function . . .
functions . . . v ¢ 4w e e e e e e e e e e
user—-defined . . . e e e e e e
DEFFN statement to define . . .

GET statement e e o s s e e e e s e s
error handling w1th e e e s e e e e e
GOSUB statement . . « « ¢ « o o o o « o o o o

computed GOSUB« « ¢« « ¢« v ¢ o o o« &
GOSUB' statement . « + « o « « « o o « o o
GOTO keyword in IF statement . . .
GOTO statement e e e e s
computed. GOTO (see ON statement) e e e e
used with IF statement . . .

HEX digit

HEX literal string e e e e e e
hexadecimal ¢ ¢ ¢« o« o o o o o o o o o
HEXPACK statement

HEXUNPACK statement . . .
HOLD keyword in OPEN f1le statement .

identity function, array statement

IDN identity array statement

IF statement . . . ¢ ¢ ¢ o« o o s o o o
logical operators in . . .« « « .+ .+ & o o

270

. . .

. . 197,

(see ON

73,
73,
205,

. 89,

Page

149

. 82
116
129
186
198
205
229

. 84

. 82

. 84
138
134
100

. 20
134
196
229
137
138

134
139

. 27, 47

92,
59,

137
123

140
140
141

statement)
59, 142

149
143
185
149

. 44
144
. 44
145

148
186

166
166
149
149

‘D

INDEX (cont.)

Image (%) statement . .
general format of
implicit declaration
increment value, in FOR statement . .
index variable in FOR statement .
indexed files « .+ « .+ . .
keys in . .« v o ¢ 0 v e 0 e e .
reading records from
writing records into
rules for ¢ ¢ . 0

INIT statement« e e e
initial value, in FOR statement .
INPUT statement e

compared to workstatlon I/O statements
delimiters . . . « & & ¢ ¢ « o o« o o &
use with arrays « . .
input /output statements

ACCEPT . « ¢ ¢« o o o o o o s o o o o o
DISPLAY . « « ¢ « o « o o o o o o o o
INPUT & . v 4 ¢ o o o o o o o o o
PRINT o o e .

file-oriented (see also entries for the 1nd1v1dua1

statements listed below)
CLOSE file . . ¢« ¢ ¢ v ¢ &« o o o &
DELETE file . « ¢« ¢ ¢ o ¢« ¢ ¢ o o o
OPEN file . . . « ¢« ¢« o « o« « o &
READ file . . . « . « + « o « &
REWRITE file « ¢ « ¢ « &
WRITE file . . « « « ¢« « o o o« &
insertion character
in FMT specification
in PIC specification
INT (integer) function . e e e e e
INV inverse array statement (see MAT INV)
IOERR keyword « e e e s e e
in DELETE file statement e e e e e e e
in GET statement . . . « « « o o o o
in PUT statement . e e e
in READ file statement
in REWRITE file statement
in WRITE file statement . . . « . .+ .

271

Page

e« .« . 73, 151

e o o o« « o 151
(see default values)
. . . 138, 183

. . . . 138, 183

.85 89

« « « . . 85, 89

.« e e . . . 87, 199
. . .. 87, 205, 229
e« « « « « . 89

e o e o o 153

e+ e « o « o o 138
e o o « o« o 10, 154
R ¥ 3
« o e e e e 154
. . (see MAT INPUT)

. 178,100
C e e e e .. 132

. e e ... 154
R €}

B 8 ()
. 2
e+ s e« . . . 186
e e s e e . . . 198
e+ e+ e« . . 205
e e e e e .. 229
B K 24
e+ e e e« . . 100
« « « « % . 30, 180
e e e e e . . 169
B) |
e e e e ... 129
B 1]
B X
e« v e . . 198
e e e e e . . 205
e e e e e .. 229

INDEX (cont.)

key, indexed

KEY clause
in DELETE file statement
in READ file statement
in REWRITE file statement . . .
key-sequenced files

KEY (key position) function

LEN (length of character string) function

LET statement
LGT (logarithm to base 10) function
line numbers
line skipping, in printed lines . .
LOG (logarithm to base e) function

logical expressions

logical operators . . . « « « o+ .« &
loops

FOR and NEXT statements

MASK Function . . . « « ¢ « « & &« &
MAT + . v v &« ¢ e e ¢ o o o o o o @
MAT ASSORT/DSORT . . ¢ « o« « o« o &
MAT CON . . & v ¢ ¢ ¢ &+ o o o o o @

MAT = L] L] L] . . L] . .

MAT
MAT
MAT INV ¢ ¢ v ¢« & o o o« &
MAT ® . & & v ¢ ¢ ¢ o o o o o o o @
MAT PRINT
MAT READ . ¢ ¢ ¢ ¢ ¢ o o o o o« o &
MAT REDIM . . . ¢« ¢ ¢ ¢ o o o o o

MAT ()* .
MAT = ¢ & ¢ v ¢ ¢ o o o o o o s o
MAT TRN . ¢ ¢ ¢ ¢ ¢ o o ¢ o o o o @
MAT ZER . . .« ¢ ¢ ¢ o o « o &
matrix inverse (see MAT INV) . . .
matrix multiplication (see MAT¥)

MAX (maximum value) function . . .

IDN . L] . . . L4 L . .

. ¢ o e o ¢« o o e o o o

272

e e o o o o o o

INPUT . . ¢ ¢ ¢ ¢ o o o o o o o o o

Page
. . .(see indexed files)
o« o . o e .« « 129
. e e e e e « o o . 198
e e e e e e o e o o . 205
. . .(see indexed files)
1 Y
e « o« « » 158
e s e o o o o « 159
. . e s+ e o « + « o+ 30
. . e e e e o & o o 17
C e e e e e e e e e s 192
e e e 30, 180
P Y
. 46, 109, 111, 190, 231
- ¥
..... « « . . 138, 183
e o s e e s s e ¢ s« l6l
C . . . 95, 162
. . . .« « « 95, 163
: . . 94, 164
. e . . .« o« « 94, 165
e e e e e e e . 94, 166
. e e e e . .. 9, 167
e e s e e e e o« . 95, 169
.« e e e e « . . 95, 171
R TS | /)
I TAR S &
.. . .. 95 175
. . . . 95, 176
. e e e ... 95 177 .
C e e e e e e .. 94, 178
s e e e e e e .. 95 179
s e e e e e e .. 95, 169
e e e e e e .. 95, 171
e e e e e« ... 30,180

member, array .

INDEX (cont.)

MIN (minimum value) functlon e e e e e

minus sign (-)

as a binary operator .

in FMT .
in PIC .
multiplication

array (see MAT¥) .

operator . . .
priority of

names
array
file .
variable . .

negative 1ncrements, in FOR statement .

nested function references

nested loops
NEXT statement

nonexecutable statements

null literal string .

null delimiter

consecutive commas durlng 1nput o .

NUM (number of numeric characters in a character

function .
number sign . .
numeric

array . . o o

constants

expressions

evaluation of . .
relational operators in

functions . .
operators
signs, in FMT
variables
numeric conversion
numeric data

.

273

(see

Page

array, element of)

string)

. .

118

30,

180

. 15
134
100

. 16
171

. 15

. 15

22, 37

. 83

. 21 37

134,

138
123
138
183
. 13
. 40

154

184
151
. 19
. 22
. 20
. 26
. 27
. 16
. 27

15
134

21
158

19

INDEX (cont.)

ON statement . . . « « + ¢ « &
one-dimensional array
compared to two-dimensional array

restrictions in redimensioning . . .
OPEN statement . « « « o o « o s o o &
opening files+
operators

alphanumeric + ¢« « ¢« o ¢ .

logical (also see individual operators)

NUMETIC .« . o v o o o o o o o o o
in PRINT statement . . « « « o« « + &
priority of o o . .
relational« . . .
OR logical operator . . . « « « « « « &
output
formatting printed
DISPLAY statement . « « ¢ ¢ o « & &
FMT statement ¢ ¢ o « o o o
Image (%) statement . . . +.
PRINT statement . . . « ¢ « o o o &
PRINTUSING statement « « o &
output files ¢ o ¢ . .
output list
syntax definitionof

parentheses

in arithmetic operations

to define arrays ¢ . .

to enclose array expressions

to enclose PIC specifications . . .
Percent sign (%)

to identify Image statement

to identify integers
PIC . & & ¢ i v 6 6 e s o o s e e e e
plus sign (+)

48 8N OPerator « + « o+ + o« o o o o o

in FMT & o ¢ ¢ v v v o o o o o o o

InPIC . & v v o v o o 4o o o o 0 0 s
POS function . « + ¢ o ¢ o o o o o o
pound sign (#)

in FMT statement « « « « o

in Image statement « ¢ o &
print files ¢« ¢ . o .. .

274

Page

e+ ¢ 4+ o . 185
e e e ... 23,37
o« e e e e .. 24
B 1t
. . . 86, 186
.. ... 86, 186
. .(see logical)
B /1
P &
o e i e . 192
. . e . . 15

. e o s e . 16
e« e« « o+« 190
69, 134, 151, 196
o e e 77, 132

e e ... T3, 134
e o« o o o 713, 151
. . 73, 192

. . . 73, 196
(see print files)
. 192
B 1
.22, 38

c e e ... 24, 37
. v e . . 100
. e o+« o o 151
. . e o s o o 21
. . e . 100
. e e o+ o o 15
e e e e e 134
. . . 100

o o e s . 191

o e 134

e e e e . 151
O - 1

INDEX (cont.)

Page

PRINT statement « . . . e e e e e e . . 69, 192
compared to workstation and pr1nter I/O statements 72

delimiters « v v o « o o o o o o o o s o o o o e s e s e 192
PRINTUSING Statement . . « « « o o s o o o o o o o o o o o = 196

PrifNt ZOME = « & o o o o o o o o o o o s o o o s e e e e e . 73

pr1nt1ng a line . . . S A T & A
priority of arlthmetlc operators Y &
program e e e et e e e e e e &

entering, runn1ng, and sav1ng T T B
program termination)

END SCALEMENT .« « o o o o o o o o o o o o o o o o o « « o 133

STOP Statemenl . « « o« o « o o o o o o o o o o o o o o« o o 218
prompting input e e e e e e e oo 69, 78, 100, 154
PUT StAtement o « « o « o o o o o« o o o o o o o o o o o o o 197

question mark (?)
to prompt INPUL . « . 4 ¢ e e e e e e e e e e e e e e 69, 154
in INPUT Statement . . « « « « « « o o o o o« o o « « o 069, 154
quotation marks (", ')
to delimit alphanumeric data . . . « « « « o ¢ « o ¢ o o . 40
to indicate lOWEICASE .« « « « « « o o s+ o o o o« o o o « o o 40

READ statement 81
relationship to DATA statement e e e 4 e s e e e e . . 121, 198
relationship to RESTORE statement . . . « .« « « ¢ « « « & 202
using with arrays (see MAT READ) « « « « «. o « « . 173

READ file SCAteMeNnt . . « « « « o o o o o o o o o o o « o o o 198

record, definition of « + ¢ o 0 e e e e e e e e e e 83

redimensioning arrays « « o 4 o e e e e e e e e e e e 94

relational Operators . « « « + ¢ ¢ o o s s s e e e e s e e oo 16

REM SCACEMENE « « « o+« 201

remarks in Program . . « « « ¢ ¢ ¢ & o o o e o s e e e e o 201

RESTORE StACEMENL . « « o« o o o o o o o o s o o o o o o o . 202

RETURN sStatement . .« o « o o o o o o o o o o o o o o o o 56 203
used With GOSUB « & + ¢ o o o o o o o s o o o o o o o o« o l4l

RETURN CLEAR « « &+ v & o o o o o o o o o o o o o o o o o . 204
REWRITE SCALEMENE .« o « o « o o o o o o o o o o o o o o o « o« 205
reStriction ON USE .« « + « « o« o « o « o o o « o« « o . 186, 205
RND (random number) function « 30, 207
ROTATE Statement . « « o « o o o o o s o o o o o o o o « o« . 208
ROUND Statement . . . o « « « « o o o o « o o« o o o « « - 30, 209

scalar assignment statement (see LET statement) 159
scalar multiplication . . . « « « « « « ¢ & (see multiplication)
SEARCH Statement . .+ « « « &+ o s o s o o o o o o o o o o o o 210
SELECT SCAtemeNt « « « o« o o o o o s o o o s o o o o o o o o 212
SELECT file statement . . .« « « « & « o s o o o o o o o o o o 213

275

INDEX (cont.)

Page

semicolon (;)

as null delimiter . . « « « ¢ ¢ ¢ o o o o o o0 e o e e e 193

in PRINT statement . . . e Sk

used to suppress line feed e e e e e e e e e e e e . 14, 193
sequential access

of records in key-sequenced files ¢ ¢ o ¢ o . 200
sequential files . . « o ¢ .+ ¢ o o o .. (see consecutive files)
SGN (Signum) function . . . « « ¢ ¢ o e e e e e e e e e e e e 31
SIN (sine) FUNCEion « « o « o o o o o o o o s s o o o o oo oo 28
SIZE function e e e e e e e e e e e .. 90, 216
SKIP printer control Spec1f1cat1on e e e e e e e e e e . 134,19
SKIP file control statement . . . « « o o &« ¢ o o o o o o o o 217
slash (/)

in FMT as an insertion character« .+ . 135
SOTt SLALEMENES .+ « « o « o o o o o o o o o o (see ASORT, DSORT)
spacing of printed values e e e e e e e e e e e e e e e e 192
SQR (square root) fumction . . ¢ ¢ & o 0 o e e e e e e 29
square array needed for identity functlon e e 4 e e s s e . . 166
STEP keyword

in FOR statement . . « « « « o o o o = o s o o o o o o o o 138
STOP statement . . . e e e e e s e e e e e e e . . . 218
STR (portion of strlng) functlon e e s e e e e e hl 51, 219
SUB Statement . « « « o s o o s o o o o o o o o s o o o o 62, 221
subroutines

definition of + + ¢ ¢« ¢ ¢ 4 ¢ e e e e e e e e e e e e e e 58

external . ¢ .+ 4 . .+ 4 e e e e 4 e s e e e e e e e e e 58, 61

internal . . . - 1 - 1

(also see CALL, GOSUB GOSUB')
SUDSCTAPE ¢ o o o o o o o o o o o o o o o o o o e oo w000 25
SUDSEYING o « « « o o o o o o o o o o e e s e e e e e e e 0. 219
SUDETACELION « « o o o o o o o o o o o o o s o s s o o o v e e 15
syntax, rules of . .« « ¢ ¢ o o o e e oo e e e e e e e e e 16

TAN (tangent) function . . . « ¢ ¢ v ¢ o o o oo o0 e e e 28
test value, .in FOR statement . . « « ¢ « ¢ « & o o ¢ o o o o 138
THEN keyword in IF statement . . . « « « o ¢ o o o o o o o o 149
TIME fUNCELION « &« « ¢ & o o o o o o o s o o o o s o o o = o o 224
TRACE SCAtement . . o o « o o o o o o o o o o o o o o o o o o 225
TRAN statement > X
trailing signs, in FMT statement O & 1
transfer of control

general discussion W e e e e e e e e e e s . 56-58

(see also ACCEPT, CALL, FOR, IF, END, INPUT, GOSUB, GOSUB')
transpose function o ¢ e e e e e e e e (see MAT TRN)
truncation of literal strlng . . e s e e e e « o . &40
two-dimensional arrays . . . ¢ ¢+ s e e e e s e (see arrays)

restriction in redimensioning . . « « + o + o o« o . . 96, 97

276

INDEX (cont.)

user-written functions (FN)
DEFFN statement to define

maximum number permitted
USING clause to relate to FMT or

Image statement « (see

VAL funCtion .« « « o o o o o o o o o o o o @
variable
alphanumeric . . . « ¢« « o ¢ ¢« o o o o o .
dummy . . . « .« .« . .
naming conventions for

NUMETLIC « o o o o o o o s o o o o s o o o
VS Character Set « « + o« o &

WRITE file statement. . « « « « « « o« o« o o &
XOR logical operator « .« . .
Zero, as initial value of numeric variable
zero suppression

in FMT statement . . . o+ « « « o o o o o &
zones, Print . . . ¢ ¢ v e e e e e e s e e

277

. .

Page

137
123
124

PUT, REWRITE, WRITE)

. . . . 31, 49, 228

.

37

123, 137
. 22, 37
. 22

88,

46,

254
229
231

21

135
192

(9

To help us to provide you with the best manuals possible, please make your comments and suggestions
concerning this publication on the form below. Then detach, fold, tape closed and mail to us. All
comments and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to
include your name and address. Your cooperation is appreciated.

800-1202BA-01
TITLE OF MANUAL VA BASIC REFERENCE MANUAL
COMMENTS:
Fold
Fold

{Please tape, Postal regulations prohibit the use of staples.)

(WANG)

Fold

FIRST CLASS
PERMIT NO. 16
| Tewksbury, Mass.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

— POSTAGE WILL BE PAID BY —

WANG LABORATORIES, INC.
ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851

||l1

Attention: Technical erting Degartment

Fold

Printed in U.S.A.
13-1019

Cut along dotted line.

J

i

North America:

~

Alabama District of Louisiana New Hampshire Oregon Virginia
Birmingham Columbia Baton Rouge East Derry Beaverton Newport News
Mobile Washington Metairie Manchester Eugene Richmond
Alaska Florida Maryland New Jersey :I::‘rtl:xrllvania \éVas:\ington
Anchorage Jacksonville Rockville Howell Camo Hil eattle
Miami Towson Mountainside E:a P Hil Spokane
Arizona Orlando New Mexico Philadelphia Wisconsin
Phoenix Tampa I:Iatssachusetts Albuquerque Pittsburgh Brookfield
Tucson . oston Madison
Georgia Burlington New York Wayne Milwaukee
California Atlanta‘ tg‘tllz:'?n Q:;bf?f,:lz g::::nlsland
Fresno Hawaii Tewksbury Lake Success
Inglewood Honolulu Worcester New York City South Carolina
Los Angeles . . Rochester Charleston
Sacramento lllinois Michigan Syracuse Columbia
San Diego Chicago Grand Rapids
San Francisco Morton Okemos North Carolina Tennessee
San Mateo Park Ridge Southfield Charlotte Chattanooga Canada
Sunnyvale Rock Island Greensboro Knoxville Wang Laboratories
Tustin Indi Minnesota Raleigh Memphis (Canada) Ltd.
Ventura “': di;:::olis Eden Prairie Ohio Nashville goln MilIsAl(l))ntario
) L algary, Alberta
Colorado South Bend Missouri (élnlclnrl;an I:;:]s Edmonton, Alberta
Denver K Creve Coeur olumbus . Winnipeg, Manitoba
ansas Middleburg Heights Dallas Ottawa, Ontari
Connecticut Overland Park Nebraska Toledo Houston M al 218 t(:
Wichita Omaha San Antonio ontreal, Yuebec
New Haven Oklahoma Burnaby, B.C.
Stamford Kentucky Nevada Oklahoma City Utah
Wethersfield Louisville Reno Tulsa Salt Lake City
International Subsidiaries:
Australia _Great Britain Republic of South Africa International Representatives:
Wang Computer Pty. Ltd. \wang Electronics Ltd. Wang Compgters h
Sydney, NSW Northwood Hills, Middlesex (South Africa) (Pty.) Ltd.)
Melbourne, Vic. Northwood, Middlesex Bordeaux, Transvaal Arqeu_'ltma Kenya
Canberra, A.C.T. Harrogate, Yorkshire Durban Bolivia Korea
Brisbane, Qld. Glasgow, Scotland Capetown g:fllary Islands Lebanon
Adelaide, S.A. i i e Liberia
Perth, WA, Uxbridge, Middlesex Sweden o Colombia Malaysia
Darwin, N.T. Hong Kong \glalng Skandinaviska AB Costa Rica Mexico
o olna Cyprus Moroc
Austria w::g::sg'c Ld. Gothenburg Denmark Nicara«_c;ga
V\{ang Geselischaft M.B.H. Arloev Dominican Republic Nigeria
Vienna Japan Vasteras Ecuador Norway
Belgium Wang Computer Ltd. Switzerland 2:'8“‘1 Pakistan
Wang Europe, S.A. Tokyo Wang S.A./A.G. ana Peru
Brussels Zurich g'me Philippines
Erpe-Mere Netherlands Bern | “f‘e'“““’ Portugal
i Wang Nederland B.V Pully celand Saudi Arabia
Brazil /vang I Ve India Spain
Wang do Brasil lisselstein West Germany Indonesia Sri Lanka
Computadores Ltda. Wang Laboratories GmbH Iran Syria
Rio de Janeiro New Zealand Berlin Ireland Thailand
Sao Paulo Wang Computer Ltd. Cologne Israel Tunisia
China Grey Lynn, Auckland E:"‘::::ld""f laly Turkey
Wang Industrial Co., Ltd. panama Frankfurt/M jamauca United Arab Emirates
Taipei, Taiwan W Frei y apan Venezuel§
ang de Panama reiburg/Brsg. Jordan Yugoslavia
France (CPEC) S.A. Hamburg
Wang France S.A.R.L. Panama Hannover
Bagnolet Kassel
Ecully Republic of Singapore Munich
Nantes Wang Computer Pte., Ltd. Nuernberg
Toulouse Singapore Stuttgart

(WANG)LABOHATDHIES. INC. J

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 851-4111, TWX 710 343-6769, TELEX 94-7421 . .
Printed in U.S.A.

800-1202BA-01
1-79-1.5M
Price: see current list

	Cover
	Table of Contents
	How to Use This Manual
	Part I: Introduction to BASIC
	Chapter 1: Introductory Concepts
	1.1: An Overview: BASIC on the Wang 2200VS
	1.2: Hardware Configuration
	1.3: Entering and Compling A BASIC Program on the VS
	1.4: Running the BASIC Object Program
	1.5: File Types Supported on the 2200VS
	1.6: Program Development
	1.7: Source File Format
	1.8: BASIC Language Structure
	1.9: Rules of Syntax

	Chapter 2: Numerics
	2.1: Introduction
	2.2: Numeric Constants
	2.3: Numeric Variables
	2.4: Expressions
	2.5: Mixed Mode
	2.6: Numeric Functions
	2.7: Summary of Rules, Formats, and Syntax

	Chapter 3: Alphanumerics
	3.1: Alphanumeric Character Strings
	3.2: Alphanumeric String Variables
	3.3: Literals
	3.4: Alpha-Receivers and Alpha-Expressions
	3.5; Concatenation of Strings
	3.6: Alpha Array Strings
	3.7: Hexadecimal Literal Strings
	3.8: Logical Expressions
	3.9: Functions with Alpha Arguments
	3.10: Summary of Rules, Formats, and Syntax

	Chapter 4: Control Statements
	4.1: Introduction
	4.2: Subroutines
	4.3: Internal Subroutines
	4.4: External Subroutines

	Chapter 5: Workstation and Printer Input/Output Statements
	5.1: Introduction
	5.2: Printer Output
	5.3: PRINTUSING, FMT, and Image Statements
	5.4: The Workstation Screen
	5.5: Field Attribute Characters
	5.6: DISPLAY
	5.7: ACCEPT

	Chapter 6: Disk, Tape, and Printer File I/O
	6.1: Introduction
	6.2: File Hierarchy
	6.3: Selecting File Numbers (SELECT)
	6.4: Opening a File (OPEN)
	6.5: Summary of I/O Statements
	6.6: File I/O System Functions
	6.7: Error Recovery

	Chapter 7: Special Statements: Matrix and Data Conversion Statements
	7.1: Data Conversion Statements
	7.2: Matrix Statements

	Part II: BASIC Keyword Statements
	ACCEPT
	ADD[C] Operator
	ALL Function
	AND Logical Operator
	BIN Function
	BOOLh Logical Operator
	CALL
	CLOSE
	COM
	CONVERT
	COPY
	DATA
	DATE
	DEFFN
	DEFFN'
	DELETE
	DIM Statement
	DIM Function
	DISPLAY
	END
	FMT
	FN Function
	FOR
	FS Function
	GET
	GOSUB
	GOSUB'
	GOTO
	HEX Literal String
	HEXPACK
	HEXUNPACK
	IF ... THEN ... ELSE
	Image (%)
	INIT
	INPUT
	KEY
	LEN Function
	LET
	MASK Function
	MAT + (MAT addition)
	MAT ASORT/DSORT
	MAT CON (MAT CONstant)
	MAT = (MAT assignment)
	MAT IDN (MAT identity)
	MAT INPUT
	MAT INV (MAT inverse)
	MAT * (MAT multiplication)
	MAT PRINT
	MAT READ
	MAT REDIM
	MAT ()* (MAT scalar multiplication)
	MAT - (MAT subtraction)
	MAT TRN (MAT transpose)
	MAT ZER (MAT zero)
	NEXT
	NUM Function
	ON
	OPEN
	OR Logical Operator
	POS Function
	PRINT
	PRINTUSING
	PUT
	READ
	READ Disk File
	REM
	RESTORE
	RETURN
	RETURN CLEAR
	REWRITE
	RND
	ROTATE
	ROUND
	SEARCH
	SELECT
	SELECT File
	SIZE Function
	SKIP
	STOP
	STR Function
	SUB
	TIME Function
	TRACE
	TRAN
	VAL
	WRITE
	XOR

	Appendix A: Glossary
	Appendix B: 2200T and 2200VP Considerations
	Appendix C: VS Field Attribute Characters
	Appendix D: BASIC Compiler Options
	Appendix E: VS Character Set
	Appendix F: ASCII Collating Sequence
	Appendix G: BASIC Keywords
	Index

