

!..111}}1111.}}]}1!!!}1...})1JJJJJ».|A

)

2200A/B

BASIC
Programming

© Wang Laboratories, Inc., 1974

LABORATORIES., INC.

. I ANG 836 NORTH STREET, TEWKSBURY, MASSACHUSETTS 01876 , TEL (617) 851-4111, TWX 710 3436769, TELEX 94 7421

HOW TO USE THIS MANUAL

The System 2200 BASIC Programming Manual is provided with your System 2200 as an instruction
aid in the operations of the System 2200. Itis designed for the user who is only slightly familiar with
BASIC and is not at all familiar with the System 2200.

The manual covers only instructions on the basic components of the System 2200, namely the Central
Processing Unit (2200 CPU), the CRT Executive Display (Model 2216), and the BASIC Keyword
Keyboard (Model 2215). Instruction in the use of the remaining peripherals (i.e., Printers, Qutput
Writers, etc.) is provided under separate cover for each peripheral purchased.

The WANG System 2200 has two operating modes, the Immediate Mode and the Programming Mode.
Part | of this manual introduces the System 2200 using the Immediate Mode, or one-line programming.
All the operational techniques in the Immediate Mode are discussed; i.e., use of single statement lines
and multi-statement lines, how to execute simple and complex calculations, how to format the display,
and how to perform repetitive calculations in a single line (looping).

Once the techniques of the Immediate Mode are mastered, it is then a simple matter to progress to
using the System 2200 as a Programmable Calculator. Part |1 explains the methods for writing programs
and the intricacies of the BASIC language hardwired into the System 2200.

Part 11l discusses additional BASIC language featuers available only with the purchase of a System
2200B. Any of the features mentioned in Part Il can be made available by a field upgrade of a
System 2200A.

In addition to the System 2200 BASIC Programming Manual, a Reference Manual is provided with
your equipment. It is not recommended that the Reference Manual be used for instruction purposes;
use it as a quick refresher once you are familiar with the System 2200, or as a means for familiarizing
yourself with System 2200 BASIC.

In the Appendices of the manual, additional information is provided. On the last page of this volume is
a Customer Comment form to be used by you for comments and suggestions. Please mail the form to
our home offices in Tewksbury, Massachusetts. Your comments will be appreciated.

iii

e]
PREFACE

WANG Laboratories would like to take this opportunity to both congratulate and thank you for
purchasing the WANG System 2200. With its expandable memory (from 4K to 32K), and its powerful
BASIC language, the System 2200 offers the user infinite programming possibilities.

The System 2200 BASIC Programming Manual is an introduction to the System 2200, its BASIC
language, and BASIC programming techniques.

In keeping with Wang's progressive philosophy, the System 2200A is expandable with the following
peripherals: the Model 2215 (or 2222) Keyboard, the Model 2221 (2231) Line Printer, the Model
2261 High Speed Printer, the Model 2201 Output Writer, the Model 2216 CRT Executive Display,
the Model 2217 Tape Cassette Drive, and the Model 2227 Telecommunications options and others.
The System 2200B, in addition, offers the following peripherals: the Model 2202 Plotting Output
Writer, the Model 2203 Punched Paper Tape Reader, the Model 2214 Mark Sense Card Reader, the
Model 2230-1 {or 2230-2, 2230-3) Fixed/Removable Disk Drive, the Model 2240 Dual Removable/
Flexible Disk Drive, the Model 2243 Triple Removable/Flexible Disk Drive, the Model 2212 Analog
Flatbed Plotter, the Model 2207 Telecommunications Interface, the Model 2234 Hopper-Feed
Punched Card Reader, the Model 2244 Hopper-Feed Mark Sense/Punched Card Reader, the Model
2232 Digital Flatbed Plotter and others. Additional peripherals for the system are being developed
and will be announced shortly.

Several options are being developed for the system. Presently, Option |, the Matrix ROM, Option II,
the General 1/0 ROM, and Option |11, Character Editor ROM are available.

iv

Table of Contents
]

PART | USING THE SYSTEM 2200 AS A CALCULATOR. o o o e e e e e e e s e e e 1
CHAPTER 1 EQUIPMENT INSTALLATION AND POWER ON PROCEDURES 3
Section 1-1 Installation . . 3

Section 1-2 Power On Procedures . 5

CHAPTER 2 AN INTRODUCTION — CRT DISPLAY AND BASIC KEYBOARD . 7
Section 2-1 The System 2200 CRT Display 7

Section 2-2 The Model 2215 BASIC Keyboard . 9

CHAPTER 3 CALCULATOR FACTS o o o e o e s e e e e e e e s s e s s s e 19
Section 3-1 Order of Execution and the Use of Parentheses 19

Section 3-2 Using the Keyboard Functions 22

Section 3-3 Floating Point Numberso 25

Section 3-4 Error Detectors oo e e 28

Section 3-5 Using Variables o oo e e e e 29

CHAPTER 4 PERFORMING MORE THAN ONE CALCULATIONPER LINE« .« .« .« .. 35
CHAPTER 5 PRINTING OUT MORE THAN ONE VALUEPER LINE o « .« « .. 37
Section b-1 Whatisa Zoned Format?o 37

Section 5-2 What is a Packed Format? L. .o e 40

Section b-3 Mixing Zoned and Packed Format e e e e e e e e e 42

Section b-4 Using the TAB(Command for Format Control e e e e e e e s s e e 42

CHAPTER 6 EXECUTING A LINE MORE THAN ONCE e e e e e e e s e e e e e e 47
Section 6-1 Looping with the FOR-TO/NEXT Statements . . e e e e e 47

Section 6-2 CRT Plotting Using a FOR-TO/NEXT LOOP and the TAB(Command e e e e e e b4

Table of Contents (Continued)
|

PART Il USING THE SYSTEM 2200 AS APROGRAMMABLE CALCULATOR. 59
CHAPTER 7 THE BASICS OF BASIC PROGRAMMING o o v v e e e e e e e 61
Section 7-1 Writing Programs L L L 0o o s e e e e e e 61

Section 7-2 Clearing Memory L oo e e e e e 64

Section 7-3 EnteringaProgram L . L 0L o Lo s e e e e e e e 65

Section 7-4 ExecutingaProgram L L . . Lo o e 67

Section 7-5 Listing a Program . . . e e e e e e e e e e e e e e e e e e 69

Section 7-6 Changing a Program in Memory e e e e e e e e e e e s e e e e e 70

Section 7-7 Using the BASICSTOP Statement« « v v v v v v . 72

Section 7-8 Using the BASIC END Statement o . ..o 0oL 74

Section7-9 The REM Statement00 e e e e e e e e e 77

CHAPTER 8 BRANCHING IN PROGRAMS 0 e e e e e e e e e e e s s e e e e 79
Section 8-1 The GOTO Statement . . . e e e e e e e e e s e e e e e e 80

Section 8-2 The GOSUB Statement (Subroutmes) e e e e e e e e e e e e e e 82

Section 8-3 The IF/THEN Statement. . . e e e e e e e e e 85

Section 8-4 The FOR-TO/NEXT Statements (Loop) e e e e e e e e s 89

CHAPTER 9 CUSTOMIZING THE SYSTEM 2200 v v v e i e e e e e e d e e e 93
Section 9-1 Customizing the System 2200 Under Program Control (DEFFN Statement) 94

Section 9-2 Using the DEFFN’ Statement and Special FunctionKeys 97

DEFFN’ with commonly used Character Strings 98

DEFFN’ used with Marked Subroutines 100

Argument Passing Capabilities. 103

CHAPTER 10 ADDITIONAL METHODS OF ASSIGNING VALUESTO VARIABLES 107
Section 10-1 DATA and READ Statements. 108

Section 10-2 The INPUT Statement. + « v v « v « v v v v v .. 115

CHAPTER 11 ARRAYS AND ARRAY VARIABLES v v 119
Section 11-1 What are Arrays? . . . e K

Section 11-2 Naming and Dimensioning Arrays e A

Vi

Table of Contents (Continued)
b |

CHAPTER 12 ALPHANUMERICSTRING VARIABLES« 125
Section 12-1 String Variables- Namesand Characters 125
Section 12-2 String Variable Values e 4]
Section 12-3 Using String Variables (Alphanumerlc Partlng) e 2]
Section 12-4 Dimensioning String Variables. 13
Section 12-6 The STR(String Function« .« .« o 132
Section 12-6 The LEN(Length Function. « . « v« o« 134
CHAPTER 13 USE OF THE COM (COMMON) STATEMENT« « v v v v v v v v v 137
Section 13-1 What Does The COM Statement Do? e e
Section 13-2 The COM Statement As Used In Program Chalmng O 0]
Section 13-3 Using the COM Statement With Chained Subroutines 144
Section 13-4 The General Form Of The COM Statement . 148
CHAPTER 14 PRINTUSING AND IMAGE STATEMENTS v« o v v v v o oo .. 149
Section 14-1 Printing of Alpha Fields (Literal Strings) 149
Section 14-2 Printing Alphanumeric String Variables . 162
Section 14-3 Printing Numeric Fields e T
Section 14-4 Including Editing Characters in Numenc Flelds e T 18
Section 14-5 The General Form of the PRINTUSING and IMAGE Statements T 1)
Section 146 ArraysWithPRINTUSING 160
CHAPTER 15 THE HEXADECIMAL FUNCTION [HEX()] 161
Section 15-1 What isa HEX Code? e e
Section 15-2 Format of HEX Function in a BASIC Statement Lme .o T 1 ¢
Section 15-3 Special Characters and Cursor Controls Generated with HEX Codes 183
Section 16-4 PlottingExample. 64
CHAPTER 16 DEBUGGING i v i v i e e i e v i e e i e s s 185
Section 16-1 Hints for Debugginga Program .. 165
Section 16-2 Using HALT/STEP as a Debugging Aid 167
Section 16-3 HALT/STEP Usage with Multi-statement Lines 169
Section 16-4 Other Usesof HALT/STEPKey « .« 170
Section 16-5 Use of Program TRACE T
Section 16-6 Using HALT/STEP and TRACE Together e Y 4
Section 16-7 Renumberinga Program 0. oo 174

vif

Table of Contents (Continued)
||

PART IIl ADDITIONAL PROGRAMMING FEATURES AVAILABLE ON THE SYSTEM2200B 179
CHAPTER 17 COMPUTED BRANCHES o o oo e e e e 13
Section 17-1 General Form of the ON Statement . . e k21
Section 17-2 Using a Computed GOTO or Computed GOSUB ina Program e e e 183
CHAPTER 18 DATAREDUCTION v v 18
Section 18-1 General Form of the PACK Statement .. . 185
Section 18-2 General Form of the UNPACK Statement 186
Section 18-3 Rules for Packing Data . . . T 1S
Section 18-4 Programming Examples of PACK and UNPACK e ke 0]
CHAPTER 19 POSITION AND NUMERIC VERIFICATION FUNCTIONS (POS AND NUM FUNCTIONS)} 193
Section 19-1 The General Form of the POS Function . . . e oK
Section 19-2 Programming Examples using the POS Functlons T R 1)
Section 19-3 The General Form of the NUM Function 19
Section 19-4 Programming Examples using the NUM Function 198
CHAPTER 20 BIT AND BYTE MANIPULATION o . v v v v v s s e e s s 19
Section 20-1 WhatisaBit? WhatisaByte? 19
Section 20-2 What is BINARY? 200

Section 20-3 Bit and Byte Manipulation Statements (ADD AND XOR OR BOOL ROTATE
and INITo s s s e s e s 202
CHAPTER 21 DATA CONVERSION A 4
Section 21-1 The BIN Statement o e e e e e e e e e e, 217
Section 21-2 The VAL Function -
Section 21-3 The HEXPRINT Statement 2240 |
Section 21-4 The CONVERT Statement« « v v v v v v v v v oo 221
CHAPTER 22 DATA GATHERING .44
Section 22-1 The KEYIN Statement « v v v v i v e 22
APPENDIX A WANG SYSTEM 2200 ASCII CHARACTERCODESET 229
APPENDIX B ESTIMATING PROGRAM MEMORY REQUIREMENTS 23
APPENDIX C ERRORCODES X K
APPENDIX D INDEX TO PROBLEMS USED IN THIS MANUAL 2067

Viii

Table of Contents (Continued)

APPENDIX E AVAILABLE PERIPHERALS 270
APPENDIX F DEVICE ADDRESSES FOR SYSTEM 2200 PERIPHERALS 272
INDEX 273

CUSTOMER COMMENT FORM . last page

ix

Part |
Introduction

Part I Part | of this manual covers many of the techniques used with the System 2200 in the
Immediate Mode. By Immediate Mode it is meant all results of problems not entered
with line numbers are obtained immediately and are not repeatable without reentering

USing the SVStem the line into the system. All materials presented in Part | are elementary to the System

2200 whether the System 2200 is used in the Immediate Mode or in the Programming

2200 in the Mode (Parts Il and I11).
Immediate Mode

Chapter 1
Equipment Installation and Power On Procedure

Chapter 1

Equipment Installation Central

Processing

and Unit
Power On Procedure

After unpacking and inspecting your equipment, the
following procedure is used to install and turn on
your WANG System 2200.

Section 1-1
Installation

The basic components of the System 2200 are the
Central Processing Unit (CPU) and the Power Supply
Unit. All other equipment is considered a peripheral
and is attached to the CPU.

The CPU is divided into two main areas, the memory

area and the peripheral attachment area. A connector . ,@; LI
cord from the CPU attaches to the Power Supply

Unit.

Power Supply Unit

The Power Supply Unit is pictured to the right.

Chapter 1
Equipment Installation and Power On Procedure

INSTALL YOUR SYSTEM as follows:

1. Be sure the ON/OFF switch on the power supply
unit is OFF.

2. Plug the main power cord from the Power Supply
Unit into a wall outlet.

3. Attach the power cord from the CPU to the Power
Supply Unit.

4. Plug any peripherals having a power cord (e.g. CRT)
into a wall outlet.

5. Attach all peripherals to the CPU (e.g. Keyboard,
CRT, Tape Cassette).

Be sure the tocking clips at the site of attachment
are fastened when devices are plugged into the
CPU.

POWER CORD
CRT

CRT

KEYBOARD

CASSETTE cpPU
CONNECTOR

CONNECTOR TO
POWER SUPPLY

=N
=N

1o
EXTENDED <
CHASSIS

=

—~ONN

L
PERIPHERAL
CONNECTORS

ON/OFF
MAIN

POWER
SWITCH

TYPICAL INSTALLATION

Chapter 1
Equipment Installation and Power On Procedure
]

Section 1-2
“Power-On’’ Procedures

The Power-On procedure is as follows:

1. Turn the ON/OFF switches on all peripherals to
the ON pasition (including CRT).

2. Move the ON/OFF switch on the Power Supply
Unit to the ON position. READY

NOTE: =

When the main power ON/OFF switch on the
CPU is turned ON the system is automatically
initialized, that is the memory is cleared and the CRT DISPLAY AFTER MASTER INITIALIZATION
display appears as shown to the right. This pro-
cess is called MASTER INITIALIZATION. The
system is then ready to use; if READY does not
appear immediately, leave power ON for 15 sec.;
turn the switch OFF, then ON again. READY
then appears on the CRT screen.

Chapter 2
An Introduction — CRT Display and BASIC Keyboard

Chapter 2

An Introduction-
CRT Display and
BASIC Keyboard

The following sections describe the procedures for
using the CRT display and Model 2215 keyboard to
their best advantage for solving problems.

Section 2-1

The System 2200 CRT Display
CRT DISPLAY CAPACITY

-
The CRT display enables the user to more easily

write programs and review results. The CRT unit 0
is composed of an 8 x 10-1/2 inch screen, and two 1
controls used to set the brightness and contrast of the 2
output as it appears on the screen. The screen has a 2
maximum capacity of 16 lines, each 64 characters in 5
length. If more than sixteen lines are entered at any 16 6
one time, each new line is added at the bottom of the L 7
CRT moving the previously entered lines up. The | 8
line at the top of the CRT display is replaced by the N 9
line directly beneath it. E 10
S 11
12
13
14
15

0123. v v v v v v v ... 862 83

64 SPACES EACH

Chapter 2

An Introduction — CRT Display and BASIC Keyboard

THE RESET KEY

The RESET key is located in the upper right-hand
corner of the keyboard.

Touch the RESET key.

After RESET is touched, the display appears as shown
to the right.

The combination of READY and the COLON tells
the operator that no processing is taking place within
the System 2200, and that the System 2200 is now
READY to accept new information. The colon must
appear on the screen before any information can be
entered into the system.

Next to the colon is a short ““hash’’ mark referred to
as the CRT Cursor. This mark denotes the location
where the next character will be displayed on the
screen.

Touching the RESET effects the system in three ways.

1. Clears the CRT display, and prints READY and a
colon in the display.

2. Terminates any processing taking place in the Sys-
tem 2200.

3. In terminating any processing, the RESET com-
mand unlocks the keyboard, allowing the user to
enter new instructions from the keyboard. While
any processing is taking place the keyboard is
locked.

The RESET command does not alter the memory
in any way. It is used primarily to clear the screen.

READY

A\CRT Cursor

CRT DISPLAY AFTER RESET

Chapter 2
An Introduction — CRT Display and BASIC Keyboard

Section 2-2
The Model 2215 BASIC Keyboard

There are 5 zones on the 2215 BASIC keyboard as
.) ZONE 5
shown in the photo to the right. SIXTEEN USER DEFINED SPECIAL FUNCTION KEYS

NOTE: " i
- Put,
The basic content of this chapter also applies to L e T G) (R YN TY
Systems using the 2222 Alphanumeric Keyboard. N Tl h kR

However, the 2222 Keyboard is designed differ-
ently than the pictured 2215 Keyboard, there-
fore, the zone descriptions and keystroke instruc-
tions differ.

Zone |1 of the 2222 is similar to a typewriter

keyboard and all words (except PRINT) must

be entered with individual keystrokes. Since the ZONE 1 / ZONE 3 ~N
ZONE 4

Manual text is geared to Model 2215 users, when BASIC LANGUAGE KEYBOARD KEYS AND ARITHMETIC
. v ’ ALPHA AND SPECIAL CHARACTERS OPERATORS EDIT AND
the text instructs “Touch NEXT key”, the Model ERROR

. MATH FUNCTIONS,
2222 operator must type the individual letters, ZONE 2 PUNCTUATION EgngCT'ON
NUMERIC ENTRY KEYS SYMBOLS

“N-E-X-T".

Zones 2 and 3 are very similar, zone 4 does not
exist on the 2222 Keyboard. The space bar key,
backspace key, and here erase key are all in
different locations. (See Section I, 2200 Refer-
ence Manual, for a complete discussion of the
Model 2222 Keyboard.)

Operators of both 2215 and 2222 Keyboards
should utilize the problems presented in this
manual. Efficient operation of the System 2200
depends on keyboard proficiency.

Chapter 2

An Introduction — CRT Display and BASIC Keyboard

The keyboard is similar to a typewriter keyboard in
that there are upper case and lower case keys. To
obtain a capital letter on a typewriter you must touch
the SHIFT key, which puts the typewriter into upper
case. To generate a single letter {e.g. A, or B) on the
System 2200, you must SHIFT before touching the
appropriate key, as these letter characters are upper
case. To generate most BASIC keywords (e.g., PRINT,
END) you must be in lower case.

THE SYSTEM 2200 BASIC KEYWORDS

Zone 1 of the keyboard consists of a four row block
of green keys on the left-hand side of the keyboard.
Thisgroup of keys is used to generate alpha characters
(upper case) and BASIC keywords (lower case) with
a single keystroke.

Touch the PRINT key.

Notice the entire word PRINT plus a following space
was generated on the screen with a single keystroke.
Most BASIC words can be generated on the screen
with a single keystroke (see keyboard).

Touch the SHIFT LOCK key.

This locks the keyboard in upper case. Notice the
light under the SHIFT LOCK key is ON. When this
light is ON, it indicates that the keyboard is in upper
case.

Touch keys "ANSWE R”
Touch the SHIFT key.

READY
:PRINT

\CRT Cursor

READY
:PRINT "ANSWER"

K CRT Cursor

10

Chapter 2
An Introduction — CRT Display and BASIC Keyboard

This unlocks the keyboard and returns the keyboard
to lower case. For single keystrokes in upper case
touch the SHIFT key once before the appropriate
key. The SHIFT key is turned off automatically when
the appropriate key is touched.

Touch the CR/LF-EXECUTE' key

When the CR/LF - EXECUTE key is touched, the
line is checked for errors. If correct, the line is
immediately executed, the results displayed, and is
completely cleared.

In order to have the results of a line printed on the
display, the keyword PRINT always must be used. In
the last example the word “"ANSWER' is to be
printed. In order to do this the word PRINT must
precede the word(s) to be printed.

THE NUMERIC KEYBOARD ZONE

Theblock of white keys in the center of the keyboard
(Zone 2) is used to enter all numeric data from the
keyboard.

THE MATH KEYBOARD
AND MATH FUNCTIONS ZONE

The block of green keys (Zone 3) located to the right
of the numeric keys incudes the plus (+), minus (-),
multiply (*), divide (/), and power (1) operations,
left and right parentheses, and math functions.

The following problem is solved using both the numer-
ic keys and math function keys.

1 , . .
CRJ/LF means carriage return/line feed. The RETURN key is
used on the Model 2222 keyboard.

7

READY
:PRINT "ANSWER"
ANSWER

\ CRT Cursor

RESULTS DISPLAYED WHEN CR/LF—EXECUTE TOUCHED

Zone 3

11

Chapter 2

An Introduction — CRT Display and BASIC Keyboard

Find 36 X 8.25 + TAN (35) =?

Touch Keys PRINT 36+« 8.25+

Notice the PRINT key is used first. This must be
done in order to see the results of the calculation
printed.

The math functions are generated when the key-
board is in upper case.

Touch Keys SHIFT TAN (35)

Notice when you touched the TAN(key the left
hand parenthesis was automatically generated. You
must generate the right hand parenthesis with the
right hand parenthesis key. This is true for most of the
functions.

Touch the CR/LF-EXECUTE key.

Once the line is executed the answer appears and the
cursor on the CRT moves to the first space of the
next line. The new colon (:) did not appear until
processing had stopped and all output was displayed.
The processing light,which is on during all processing,
goes out. Also while any processing is taking place the
keyboard is locked. Only the RESET key can stop
processing and unlock the keyboard.

READY
:PRINT 36*8.25*_

\ CRT Cursor

READY
:PRINT 36*8,25+TAN(35)

\CRT Cursor

r READY
:PRINT 36*8,25+TAN(35)
297.4738147203

‘*_ <«— CRT Cursor

12

Chapter 2
An Introduction — CRT Display and BASIC Keyboard

REVIEW

1. The keyboard like any typewriter keyboard has
upper and lower case keys. Most keys on the Model
2215 keyboard can generate two different inputs,
depending on whether used in upper or lower case.

2. There are 4 zones on the Model 2215 keyboard (a
bth zone, Special Function Keys, is discussed in
depth later in this text).

3. The keyword PRINT must precede any calculation
whose results are to be viewed on the CRT.

4. The CR/LF - EXECUTE key is used to initiate all
calculations.

13

Chapter 2
An Introduction — CRT Display and BASIC Keyboard

THE CRT CONTROL KEYS & EDIT KEYS

Zone 4 is located at the far right of the keyboard.
This zone is made up of CRT control keys and edit
keys.

These keysenable the user to edit any information be-
fore the CR/LF - EXECUTE key is touched.

Touch RESET
Touch the SPACE key several times.

—>

The CRT cursor moves one space to the right each
time the space key is touched, enabling the user to
enter spaces in System 2200 BASIC statement lines.
Touching this key at the end of a line causes the cur-
sor to jump to the first space of the next line.

“«

Touch the BACK key several times.
SPACE

The CRT cursor moves one space to the left each time
the Back Space key is touched.

Touch keys PRINT SHIFT A

«—

Touch the BACK key.
SPACE

This deletes only the character “A’” from the CRT
display.

Cursor moves along line to right

e
READY

AR

Cursor moves along line to left

7

READY
:PRINT A_

\ CRT Cursor

rREADY
:PRINT _

\ CRT Cursor

14

Chapter 2

An Introduction — CRT Display and BASIC Keyboard

Touching the Back Space key while entering a line
causes the CRT cursor to backspace a single space to
the left and delete the last keystroke entry from the
CRT.

Touch BACK key again.
SPACE

This time, the entire keyword PRINT is deleted be-
cause the word was entered by a single keystroke.
<«
Backspacing to delete with the BACK key deletes
SPACE
either a character or a whole word, depending upon
how each was generated. The word PRINT, when gen-
erated by the PRINT key, is considered a single
<«
character and is deleted by touching the BACK key
SPACE
only once.

Butif the word PRINT was generated with upper case
<«

letters (e.g., P R | N T), then each time the BACK
SPACE

key is touched only one character at a time is erased.

Touch keys PRINT “ANSWERS ARE AS FOL-
LOWS”

READY

\CRT Cursor

READY

:PRINT "ANSWERS ARE AS FOLLOWS"

15

\ CRT Cursor

Chapter 2

An Introduction — CRT Display and BASIC Keyboard

Touch the LINE key
ERASE

Touching the LINE key erases the entire line at
ERASE
which the cursor is located.

<«
Both the BACK key and the LINE key work
SPACE ERASE

as described in both upper and lower case.

READY

1\CRT Cursor

16

Chapter 2
An Introduction — CRT Display and BASIC Keyboard

EXERCISES

1. Using the System 2200 as a calculator, perform
the following calculations (be sure to touch the
PRINT key each time a new line is entered):

14+ 6
8*6

8 - 12.66

.-18* 455
96/853

53

26+5+ 12+ 10
.7-12.6+8-.002
8*10+6*4
144°

o Te 40 00T

2. Do the following, using the System 2200 as a
calculator.

a. i Print the sum of 86.2 and 155.86
ii Print the result of 85622 minus 1498
iii Print the product of -57 and 16.6
iv Print the quotient of 20 divided by 4.25
v Print the resuit of 17.3 raised to the 1.6

power

b. Find the sum of the 10 integers, 1 thru 10.

¢. Find the product of the twelve integers, 1 thru
12.

d. Assuming 365 days in a year, 24 hours in a day,
find the number of seconds in a year.

ANSWERS
KEYSTROKES

PRINT 14+6 CR/LF—EXECUTE

PRINT 8«6 CR/LF—EXECUTE

PRINT 8-12.66 CR/LF—EXECUTE
PRINT -18x4.55 CR/LF—EXECUTE
PRINT 96/853 CR/LF—EXECUTE

PRINT 513 CR/LF—EXECUTE

PRINT 26+5+12+10 CR/LF—EXECUTE
PRINT 7-12.6+8-.002 CR/LF—EXECUTE
PRINT 8x10+6+«4 CR/LF—EXECUTE
PRINT 1441.5 CR/LF—EXECUTE

PRINT 86.2+155.86 CR/LF—EXECUTE
PRINT 8522-1498 CR/LF—EXECUTE
PRINT -57x16.6 CR/LF—EXECUTE
PRINT 20/4.25 CR/LF—EXECUTE
PRINT 17.311.6 CR/LF—EXECUTE

PRINT 1+2+3+4+5+6+7+8+9+10 CR/LF—EXECUTE
PRINT 1%2x3%4+5%6+«7x8x9+10+11x12 CR/LF—EXECUTE

PRINT 365%24+60+60 CR/LF—EXECUTE

17

ANSWERS

20

48

-4.66

-81.9
.11254396248563
125

53

2.398

104

12

242.06

7024

-946.2
4.70588235294
95.691588717

55
4790016000

31536000

Chapter 3
Calculator Facts

Chapter 3
Calculator Facts

This chapter introduces several important concepts
about the System 2200 as a calculator.

The material in Section 3-1 explains the use of
parentheses and the order of execution of algebraic
expressions. The System 2200 follows all the standard
accepted rules associated with algebra. Even though
you may be familiar with algebraic ordering, it is
recommended that this section be read.

Section 3-1
Order of Execution and the Use of Parentheses

The exercises included at the end of the last chapter
demonstrated the use of the basic five arithmetic
operations: addition, subtraction, multiplication, di-
vision, and raising to a power. In those exercises, for
the most part, there were no questions about the

priority or order of execution of the arithmetic ORDER OF EXECUTION

operators used. As long as the operators are not Operation Symbol Order Of Execution
mixed within an expression, the expression is simply (Priority)
evaluated left to right. Exponentiation 0 Computed 1st

In most cases, however, mathematical expressions Division / Computed 2nd
involve several different operators. For example, con- multiplication *

sider the expression: Subtraction - Computed 3rd

W * X 1\ Y-Z Add|tl0n

How is this expression evaluated? The table at the Using the abovg priorities, all expressions are
right provides the answer. evaluated left to right.

19

Chapter 3
Calculator Facts

Thus the order of execution of W * X 1 Y - Z is:
first, X is raised to the power of Y; second, the re-
sult is then multiplied by W; finally, Z is subtracted
from the product.

Suppose this is not the intended order. In this case,
parentheses must be used to indicate the intended
order of execution. Thus, if the product of W * X is
to be raised to the power of Y, and Z subtracted, the
expression would be written as:

W*X)t vy-2z

Or, if X is to be raised to the power (Y-Z) the
expression would be written as:

W* X1 (Y-2).

Or, if W is to be multiplied by X 1Y - Z, the expres-
sion would be written as:

W*(XtY-2).

Itisevident then, that parentheses are used to alter the
order of execution. Parentheses indicate that the
enclosed quantities are to be evaluated first. When
parentheses are used in an expression, the order of
execution of the expression is altered. See the table
to the right.

20

ORDER OF EXECUTION

Operation Symbol | Order of Execution
{Priority)
Expressions () Computed 1st

within Parentheses

Exponentiation 1 Computed 2nd
Division Computed 3rd
Multiplication *

Subtraction -
Addition +

Computed 4th

Using the above priorities,
evaluated left to right.

all expressions are

Chapter 3
Calculator Facts

Parentheses have an additional use. To calculate 5 :
Touch RESET
Touch keys PRINT 51-3 CR/LF-EXECUTE

ERR 15 tells you that two mathematical operator
symbols cannot appear next to each other, they must
be separated using parentheses.

Touch RESET
Touch keys PRINT 51 (-3)

Multiple sets of parentheses can be used as well. For
example, in the following expression three sets of
nested parentheses are used.

(((7.3+4.2)12+6)1.5+17)/22

An unlimited amount of nesting of parentheses is
allowed on the System 2200. Parentheses can and
should be used whenever there is any question as to
the order of execution of an expression. Their use
assures that the expression is executed exactly as
intended.

However, in using parentheses, there are two rules
which must be followed:

First, parentheses must always be balanced; there must
be an equal number of right and left parentheses.

Second, implied multiplication is not allowed; that is,
the expression X * (Y + Z) is correct, while X (Y +2Z)
is not. When multiplication is intended, the multiply
key (*) must be used.

rREADY
:PRINT 54-3
$ERR 15

READY
:PRINT 54(-3)
8.00000000E-03

3rd set

2nd set
@ \

(((7.3+4.2)2+6)"+17) /22

21

Chapter 3
Calculator Facts

Section 3-2
Using the Keyboard Functions

Zone 3, already mentioned, contains 12 commonly
used math functions (all upper case). All except the
7 and ARC functions have a left hand parenthesis
included and require you to key in the right hand
parenthesis. To generate an arcsine, arccosine, or
arctangent function, the ARC key is touched prior to
the appropriate trigonometric function key. The table
on the next page gives a complete list of these key-
board functions.

Zone 3

22

Chapter 3
Calculator Facts

Keyboard Function

Meaning

Example

1SIN(expression)

'cos(expression)

]TAN(expression)
ARC SIN{ expression)
ARC COS(expression)

2ARC TAN(expression)

7 (Appears as #P| on
CRT display)
RND(expression)

ABS(expression)

INT(expression)

SGN{ expression)

LOG(expression)
EXP(expression)

SQR(expression)

Find the sine of the expression
Find the cosine of the expression
Find the tangent of the expression
Find the arcsine of the expression
Find the arccosine of the expres-
sion

Find the arctangent of the expres-

sion
Assign the value (3.14159265359)

Produce a random number between
Oand 1

Find the absolute value of the
expression

Take the greatest integer value of
the expression not greater than the
expression

Assign the value 1 to any positive
number, O to zero, and -1 to any
negative number

Find the natural logarithm of the
expression

Find the value of e raised to the
value of the expression

Find the square root of the ex-
pression

SIN{7/3)=.8660254037841
C0OS(.69312)=.8868799122686
TAN(12)=-.6358599286636
ARC SIN(.003)=3.00000450E-03
ARC COS (.587)=.943448079441

ARC TAN (3.2)=1.26791145842

4+#P1=12.56637061436

RND(X)=.8392246586193

ABS(7+3.4+2)=25.8
ABS(-6.537)=6.537

INT(3.6)=3
INT({-5.22)=-6
SGN(9.15)=1
SGN({0)=0
SGN(-.124)=-1

LOG(3053)=8.023552392402

EXP(.33%(5-6))=
.7189237334321
SQR(18+6)=SQR(24)=
4.8989794856

]Unless instructed otherwise the function is interpreted in radians. To use degrees, touch SELECT D CR/LF—
EXECUTE once. All following trigonometric expressions are then interpreted as degrees. To use grads, touch
SELECT G CR/LF-EXECUTE. To reset the System 2200 to radian measure, touch SELECT R CR/LF—
EXECUTE, or switch the System 2200 OFF and ON.

The arctangent notation ATN{ is also a recognized function notation, but must be keyed in directly from the

keyboard.

23

Chapter 3
Calculator Facts

Try some of the following examples which illustrate
the use of these keyboard functions.

1. Find the/114.6/53.47 r .
READ
CR/LF-EXECUTE 1.4639869882
2. Find log, 10 4
READY
Touch keys PRINT SHIFT LOG(10) CR/LF-EXE- :PRINT L0G(10)
CUTE 2.302585092994
3. Find the SIN of 3.289 radians. 4
Touch keys PRINT SHIFT SIN(3.289) READY
CR/LF-EXECUTE ¢PRINT SIN(3.289)
-.14687409221

Unless instructed otherwise, trigonometric functions
are interpreted in radians. To use degrees, enter
SELECT D CR/LF-EXECUTE before entering the
problem. All following trigonometric arguments are
then interpreted as degrees. The System 2200 can be
put into gradian mode by SELECT G CR/LF-EXE-
CUTE.

To reset the System 2200 to radian measure from
either degrees or gradians, enter SELECT R CR/LF-
EXECUTE, or switch the System 2200 to OFF then
ON to reinitialize.

24

Chapter 3
Calculator Facts

4. Find the COSINE 48°

Touch keys SELECT SHIFT D CR/LF-EXECUTE (
PRINT SHIFT COS(48) CR/LF-EXECUTE READY
Return the System 2200 to radian mode by touch- *SELECT D
ing keys :PRINT C0S(48)
SELECT SHIFT R CR/LF-EXECUTE -6691306063585
5. Find the absolute value of the expression
1.68° - 46
28.5

Touch keys PRINT SHIFT ABS ((1.6812-46)/

28.5) CR/LF-EXECUTE READY

:PRINT ABS((1.6842-46)/28.5)
1.515003508772

Section 3-3
Floating Point Numbers

Up to this point, entering numbers into the System
2200 has been accomplished via the numeric key-
board by keying digits and decimal point in the
appropriate sequence. Thus, in entering the number
135.68, the required keystrokes are 1 3 5 - 6 8
in that order. Similarly, entering the number —.0095
requires the keystrokes— . 0 0 9 5 .

In cases such as these, the sign (where necessary) and
digits have been entered in a fixed sequence with the
decimal point in its true position. Numbers entered in
this manner are known as fixed point numbers, and
their format is referred to as fixed point format.

25

Chapter 3
Calculator Facts

In fixed point format, numbers with a maximum of
thirteen digits, plus a decimal point and a sign, can
be entered into the 2200. When entering a number
greater than zero, a plus sign is implied, and need not
be entered.

While fixed point format enables the user to enter
numbers as large as 9999999999999., or as small as
.0000000000001, there are obvious limitations.

Not only are 13 digits limiting in size but awkward to
use as well {to be certain there are the correct number
of digits, they all have to be counted).

To alleviate these problems, another format, referred
to as floating point, can be used with System 2200
BASIC. When floating point format is used the
number is represented as a fixed point number, multi-
plied by an integral power of ten. Examples of
numbers represented in floating point format are;

6.02 X 10** 5.1 X 10°
195 X 10'®* .016 X 10°

Notice that in floating point format the decimal point
is optional and as mentioned before, the power of 10
is an integer. Also, for numbers greater than zero a
plus sign is assumed in both the exponent and the
fixed point portion of the number if a sign is not
entered. When a floating point number is written
with the decimal point after the first non-zero digit
(e.g., B.6E3 as opposed to 56.4E2 or .0564ED) it is
said to be in Scientific Notation.

Using floating point format in the System 2200
requires the use of the letter ““E”’ to signify that an
exponent of 10 is being entered. To generate the
letter “E’’, the SHIFT and END® keys are used.

26

Chapter 3
Calculator Facts

PRINT the number 5.675 X 10*
Touch keys PRINT 5.675E4 CR/LF-EXECUTE

PRINT the number 15.9 X 10
Touch keys PRINT 15.9E-8 CR/LF-EXECUTE

Other examples of the correct use of floating point
format are shown to the right.

When entering numbers in floating point notation,
each can include up to thirteen digits, a decimal
point and sign, and a two- digit positive or negative
exponent. However, the keyword PRINT displays
only the first nine digits in scientific notation, though
the remaining digits are kept internally.

The largest exponent which System 2200 BASIC can
accept is E99; the smallest exponent is E-99. The
values of the exponents must always be integers, no
decimals or fractions are allowed. Examples of invalid
numbers are shown to the right.

~
READY
:PRINT 5.675E4
56750
(1
READY
:PRINT 15.9E-8
1.59000000E-07
CORRECT USE OF FLOATING POINT NOTATION
6.02 X 10** entered as 6.02E24 printed as 6.02000000E+24
195 X 10" entered as 195E18 printed as 1.95000000E+20
5.1 X 10° entered as 5.1E-5 printed as 5.10000000E-05
.016 X 10" entered as .016E18 printed as 1.60000000E+16
-1.6683 X 10" entered as -1.5683E40 printed as -1.56830000E+40

.00641 X 10° enteredas .00641E5 which
is equal to 6.41E2 printedas 641

INVALID USE OF FLOATING POINT NOTATION

8.7E5.8 Not valid because of the illegal decimal form of the exponent.

103.2E99 Not valid because in reduced form it is equivalent to 1.032E101,
an exponent greater than E99.

.87E-99 Not valid because it is equivalent to 8.7E-100.

27

Chapter 3
Calculator Facts
|

Section 3-4
Error Detectors

Basic rules must be followed by the user when entering
numbers and formats of numbers into the calculator,
as well as rules for the use of the BASIC language.
The System 2200 is designed to make it easier for the
user to detect when a number or format, etc., has been
entered incorrectly. The system automatically tells
you by displaying an error message on the screen at the
approximate location in a line where the error is found.

Enter the following line.

Touch keys PRINT 3 * SQR(17 CR/LF-

EXECUTE READY

. » *
ERR 05 means missing right parenthesis. The solution Leb UL SQR(”’ERR 05

is to re-enter the problem and add the right hand
parenthesis.

Appendix C contains a list of all the Error messages
and their meanings.

Enter the following line.

Touch keys PRINT PRINT 316.2 CR/LF-

EXECUTE READY
. :PRINT PRINT 346.2
ERR 15 means the system expected to find an ex- AERR 15

pression following PRINT. There are two PRINT
statements in the line. Re-enter the line with only
one PRINT statement.

There are 94 error detectors to heip you detect most
problems in entering a calculation.

28

Chapter 3
Calculator Facts
|

Section 3-5
Using Variables

WHAT IS A VARIABLE?

The use of variables' is a mathematical shorthand
which allows you to assign a numeric value to a
letter (variable) and use this letter in several different
expressions where the variable has the same value in
each expression. It is then an easy matter to change
the value of the variable and recalculate each expres-
sion for different values. In the System 2200 there
are 286 different variable names available. The names
consist of a single letter (A-Z) or a letter and a digit
{0-9). These variables are called numeric scalar vari-

ables. LEGAL VARIABLE NAMES

ASSIGNING VARIABLES VALUES Slngle Letters Letter and a Dlglt
A-2 A0 —Z9

When a numeric variable is given a value,the process

is called assigning it a value. A numeric variable can h —V d
have only onevalue at a time. The format for assigning 256 Variable Names

variables is shown to the right. The variable is always

on the left hand side of the equality sign and the ex-

pression or value assigned to the variable is always on ASSIGNING VARIABLES VALUES
the right hand side. The equality sign always must be

used. X=25

1There are several different types of variables available in the System
2200. The simple numeric scalar variable is discussed in this chapter.
The other types are discussed in Part I1.

29

Chapter 3
Caiculator Facts

A variable can be assigned a simple numeric value or
an expression. Some examples of variables are given
to the right.

In the System 2200 a variable is assumed to have a
value of zero, until assigned a value.

Touch RESET
Touch keys PRINT X CR/LF-EXECUTE

Notice the value zero is printed for X. No value for X
has been assigned. An undefined variable always has
the value zero.

Touch RESET
Touch keys X =5 CR/LF-EXECUTE
Now Touch keys PRINT X CR/LF-EXECUTE

Notice now the value for X is printed. The PRINT
statement had to be used in order to have the value
for X printed.

EXAMPLES OF VARIABLES

30

X =5 The variable X is assigned the value of 5.

F = 4/3*#P1x712 The variable F is assigned the value of the expression
4/3*#P1+713.

Y3 = SIN(30) The variable Y3 is assigned the value of the expression
SIN(30).

X = X+1 The variable X is increased (incremented) in value by 1.

V = 1/3##PI*Rt2¥H The variable V is assigned the value of the expression
1/3*#P1*R12+H, where the variables R and H have
been previously defined.

C = SQR(A12+Bt2) The variable C is assigned the value of the expression
SQR(At2+B12), where the variables A and B have
been previously defined.

-
READY
¢PRINT X
0
-

READY

+X=5

¢PRINT X

5

Chapter 3
Calculator Facts

Once a variable is assigned a value it keeps that value
until it is assigned a new vaiue, or until memory is

cleared.
Touch RESET 4
* READY
Touch keys PRINT b * X + 3 CR/LF-EXECUTE <PRINT 5%X+3
X retained the value of b. 28
Touch keys CLEAR CR/LF-EXECUTE 4
CLEAR CR/LF-EXECUTE clears the display and also SEADY
clears the entire memory. -
Touch keys PRINT X CR/LF-EXECUTE (
. . READY
X is now undefined and therefore has the default PRINT X
value of zero. ' 0
ASSIGNING A SINGLE VALUE TO MORE THAN
ONE VARIABLE
A single value can be assigned to more than one vari-
able in a single statement.
Touch RESET
ADY
Touch keys X, Y, Z, =5 CR/LF-EXECUTE Ri Y.7=5
v b bl

31

Chapter 3
Calculator Facts

The three variables X, Y and Z now have the value of
5. The variables must be separated by commas gener-

ated by the lower case | SQR(| key.

’

Touch keys PRINT X CR/LF-EXECUTE (
Touch keys PRINT Y CR/LF-EXECUTE l“ziA[Y)YZ—S
e Negl gf™
Touch keys PRINT Z CR/LF-EXECUTE
:PRINT X
5
:PRINT Y
NOTE: 5
In the BASIC language, the verb LET is often .
used in an assignment statement. Thus the state- :ERI*"[T Z
ment line 0
X=5+9 _
could also be written
LETX=5+19
with the SAME RESULTS. However, the verb
LET is OPTIONAL. This keyword is not includ-
ed in the 2215 BASIC keyword block. To
generate the verb LET, key SHIFT LOCK L E
T SHIFT.
Some illegal variable names are shown to the right. ILLEGAL VARIABLE NAMES
Two letters or a digit and a letter (in that order) or XX WL 5M C75

more than two characters are illegal for variable names.

32

Chapter 3
Calculator Facts

e
EXERCISES

Evaluate the following expressions on the System
2200.

Use the keyboard functions wherever possible.

i 575°
i .00575°
i (-35)°
iv 1_4'2
35
v 3*.5°
vi 7(8% +5.9?%)
. 2 2
vii 5" .5 5
6 6° 62
vii 5 - 62
5 + 6°
ix (2%
X \/ 36
Xi \/1_
36

xii /5 +./8* 9?

xiii Tangent 7/4 radians

xiv Arc Sine .5
xv Logofy/19.5
. 2
Vi Integer 3.8 - 2
37
xvii Absolute value of (18.2 - 16?)
“VI Sign of the expression | Y 145~ 6 _
15.8 - cosine 22 radians

vii

viii

Xii
Xiii

Xiv

XVi

KEYSTROKES

PRINT 57512 CR/LF-EXECUTE
PRINT .0057513 CR/LF-EXECUTE
PRINT (-35)12 CR/LF-EXECUTE
PRINT (1/35)14.2 CR/LF-EXECUTE

PRINT 313«515
PRINT 7+(813 + 5+912) CR/LF-EXECUTE
PRINT 512/6 + 5/612 + 512/612 CR/LF-EXECUTE

PRINT 5+612/(5+612) CR/LF-EXECUTE

PRINT 21514 CR/LF-EXECUTE
PRINT SQR(36) CR/LF-EXECUTE
PRINT SQR(1/36) CR/LF-EXECUTE

PRINT SQR(5 + SQR(8%912)) CR/LF-EXECUTE
PRINT TAN #PI/4 CR/LF-EXECUTE

PRINT ARC SIN (.5)

PRINT LOG(SQR(19.5)) CR/LF-EXECUTE
PRINT INT(3.812-(2/.3%2)%2) CR/LF-EXECUTE

xvii ABS(18.2 - 1612)
xviii SGN((SQR14.5-6)/(15.8*C0OS(22))) CR/LF-EXECUTE

33

ANSWERS

330625
1.90109375E-07
1225
3.27276041E-07

84375
6419
4.999999999999

4.390243902439

1048576
6
16666666667

5.5186813754

1
5235987755982
1.485207232792
-480

237.8
-1

Chapter 3
Calculator Facts

iIXX

XX

XXi

Which of the following are not valid System 2200
BASIC scalar variables?

X, K2,B, Y, M12, PQ, Z2Z, 2K

Which of the following are valid floating point
numbers?

a. 29E144 d. 9849.92571E96
b. -2.8E-3 e. -13E-99
c. .0000987E-10 f. -13E99

Using the keyboard functions where applicable,
write BASIC output (PRINT) statements to
evaluate each of the following:

(Assume that all variables have been previously
defined.)

. X
a. Y = sin=—
2

b. A= COS% - arctan (4X7)

iXX

XX

xXi

M12, PQ, ZZ, 2K

b,c,d e

a. Y =SIN(X/2)
PRINT Y

b. A = COS(X/4)*ATN(4*X1t(-3))
PRINT A

34

Chapter 4
Performing More Than One Calculation Per Line

Chapter 4

Performing More Than
One Calculation Per Line

In the previous chapter the examples used illustrated
how to enter and execute calculations on the System

2200. Each of these calculations is called a BASIC A BASIC STATEMENT =PRINT 52742
STATEMENT.

However, only one statement was entered per line or

per statement line. It is possible to enter and execute DEFINITION - ABASIC STATEMENT LINE

more than one statement per statement line. In doing A BASIC statement line is a line composed of one or
this you can take advantage of the size of the CRT more statements each separated by a colon.

(i.e., 64 characters per line). The concept of a state-

ment line is important as it is used frequently in the EXAMPLES:
remainder of this text. PRINT 15:PRINT SQR(15):PRINT 154(1/3)
Notice each statement in the statement line is separ- X = 2: PRINT X42: PRINT X
I). Th lon i ted with
ated by a colon {:). The colon is generated wi X = 2: Y = 3: PRINT X+Y: PRINT X42: Print Y42
SHIFT and STMT Keys.
NUMBER
The colon denotes the beginning of a new statement. (
Enter the following statement line. READY
:PRINT 15:PRINT SQR(15):PRINT 154(1/3)

Touch keys PRINT 15 :PRINT SQR(15) 15

:PRINT 154(1/3) CR/LF-EXECUTE 3.8729833462
The results of each statement are obtained and 2.4662120743
printed, each on a separate line. A statement line can .
contain any number of statements. The statement —

line is only limited by the actual number of keystrokes
allowed in a BASIC statement line. The maximum
length is 192 keystrokes.

35

Chapter 4
Performing Mcre Than One Calculation Per Line

EXERCISES

1. Write a single statement line to calculate and

printout the following:

5°,5°,5",5°,and 5°. READY
_) :PRINT 582:PRINT 543:PRINT 544:PRINT 545:PRI'T 546
2. Write a single statement line to calculate and 25
printout the following: 125
183.5 +23.6, (183.5 + 23.6)* and/183.5 +23.6. 21225
3. Write a single statement line to calculate and 15625

printout the following:
3’ X 5°, Log of1/19.5, ABS(18.2-16). -

(
READY

:PRINT 133.5+23.6:PRINT (133,5+23.6)42:PRINT SQR(183.5+23.6)
207.1

42390,41

14.390969391

r READY

:PRINT 343*545:PRINT LOG(SQR(19.5)):PRINT ABS(18.2-1642)
84375

1.485207232792

237,83

36

Chapter 5
Printing Out More Than One Value Per Line

Chapter 5

Printing Out More
Than One Value
Per Line

Up to this point, every PRINT statement executed
has resulted in the printing out of each result on a
new line. No more than one value has been printed
on any one line. While this type of formatting satis-
fies many output requirements,System 2200 BASIC
is capable of formatting output in several other ways.
These include zoned format, packed format,and tab
format.

Section 5—1

What is Zoned Format?

The CRT display is divided into four 16-space fields or
zones.

Previously, all output has been printed one value to a
line, generally in the first zone only.

To generate more than one output value per line, with
each value in a separate zone, values are included in a
single PRINT statement with COMMAS separating
the values. This is known as ZONED format.

Touch keys PRINT 1,2,3,4 CR/LF-EXECUTE

A space is left for the implied plus (+) sign, in front of
each positive number.

$PRINT 1,2,3,4
1

37

-
:READY ; ! i
16 Spaces i 16 Spaces f 16 Spaces E 16 Spaces
Zone #1 i Zone #2 | Zone #3] Zone #4
N Y
4 X 16 = 64 = Width of CRT
READY

Chapter 5

Printing Out More Than One Value Per Line

Key in the following line which both generates four
answers and prints out all the answers on a single line
in zoned format.

Touch keys PRINT 512,513,514, 515, CR/LF-
EXECUTE

In these zoned PRINT statements, the printout is
accomplished by printing one value per zone, begin-
ning in the first zone. The comma between values
causes the value to be printed in the next available
zone.

Similarly, zoned format may be used with alpha-
numeric characters enclosed in quotation marks.'

Touch keys PRINT “SQUARE ROOT=",
SQR(729) CR/LF-EXECUTE

In the printing of literal strings in a zoned format, no
space is left preceding the string, as left for an implied
plus sign with numbers.

If the output generated by a PRINT statement over-
faps into the next zone, subsequent zoned output
starts at the beginning of the next available zone.

Touch keys PRINT “THE PROBABILITY 1S,
8/14 CR/LF-EXECUTE

1 . .
Alphanumeric characters enclosed in guotes are usually referred to as
literal strings.

(

38

r READY
:PRINT 542,543,544 ,545 i
25 125 :525 13125
|
’ | :
- [
Zone 1 Zone 2 Zone 3 Zone 4
READY
:PRINT "SQUARE ROOT=",SQR(729)
SQUARE ROOT= 27
READY
:PRINT "THE PROBABILITY IS",8/14
THE PROBABILITY IS 1 «D714285714286 :
[} ' |
| | |
—) | |
Zone 1 Zone 2 Zone 3 Zone 4

Chapter 5
Printing Out More Than One Value Per Line

Because the literal string' “THE PROBABILITY IS”
is 18 characters in length, and extends into the
second zone, the next value to be printed is printed
in zone #3.

If more than four ouput values are requested in a
zoned PRINT statement (as denoted by more than 3
commas), the output continues in the first zone of the
fo!lowing line.

-
Touch keys PRINT 5, 512, 513, 514, 515, READY
516 CR/LF-EXECUTE :PRINT 5,542,543,544,5¢45,546
5 25 125 625
Similarly, multiple and/or leading commas can be 3125 15625
used in a PRINT statement to shift the printout from .
zone to zone. The printout shifts one zone for each —
comma included in the statement as shown to the
right. (There is no limit to the number of commas '
which may be used.) READY
:PRINKT 5,10
5 10
:PRINT ,5,10
5 10
PRINT 5,,10
5 10
:PRINT ,5,,10
5 10

[Literal strings are defined as any set of characters enclosed within
guotation marks. The guotation marks and letters of the alphabet are
generated by touching the SHIFT key and the appropriate {upper
case) keyword key, located on the left-hand section of the keyboard.
Spaces may be included in a literal string, and are generated by touch-
ing the space key.

39

Chapter 5
Printing Out More Than One Value Per Line

Touch keys PRINT 5, :PRINT 10 CR/LF-
EXECUTE

Touch keys PRINT 5 :PRINT 10 CR/LF-
EXECUTE

Compare these two printouts. The difference in the
output is caused by the comma following the first
PRINT statement in first example, but which is not
included in the second example. The comma signifies
that the following PRINT statement is to continue on
the same line but in the beginning of the next zone.
If no punctuation is included at the end of the PRINT
statement, a subsequent PRINT statement prints at
the next new line.

READY
:PRINT 5,:PRINT 10
5 10

:PRINT 5:PRINT 10
5
10

Section 5—2
What is Packed Format?

While a zoned format enables the user to print up to
four values per line, each in a preset location, a
packed format enables the user to print more than 4
values per line.

To generate packed format, SEMICOLONS are used
between each of the values, instead of commas, in the
PRINT statement.

Touch keys PRINT 1;2;3;4,5,6,7:8;9;10
CR/LF-EXECUTE

Touch keys PRINT -1;-2:-3;-4,-5:-6,-7;-8;
-9;-10;: CR/LF-EXECUTE

-
READY
tPRINT 1323334:353637;8;9;10
1 2 3 4 5 6 7 8 9 10

tPRINT =13-23-33-43-5;-63-7;=-8;=9;=-10
-1 -2 -3 -4 -5 -6 -7 -8 -9 =10

40

Chapter 5
Printing Out More Than One Value Per Line

Notice that in packed format zones are ignored, al-
though one space is still reserved for the sign (a
plus sign is assumed, a minus sign is printed) and one
blank space following the numeric when printing out
numeric values.

The actual number of data values and/or literal strings
which can be printed on a line is dependent upon the
length of the alphanumerics variables themselves. How-
ever, the maximum number of characters that can be
printed on the CRT on any one line is 64. Any out-
put exceeding this is continued in the first space of
the following line.

Touch keys PRINT “SQUARE ROOT="; SQR(729)
CR/LF-EXECUTE

Notice a single space is left between the literal print-
out character =", and the numeric value 27. The
space is included as a “place holder’’ for the implied
plus (+) sign of the numeric. No extra spaces are
left after the printout of a literal string as with a
number. The only spaces printed out with literal
strings are those included within the quotation marks.

7

READY
:PRINT “SQUARE ROOT="3;SQR(729)
SQUARE ROOT= 27

11

Chapter b
Printing Out More Than One Value Per Line
L ..__ |

Section 5—3
Mixing Zoned and Packed Format

Zoned and packed formats can be used together to
achieve a wider range of format control.

-
Touch keys PRINT “VALUE=""; 50, , “"NEW READY
VALUE=":5012 CR/LF-EXECUTE +PRINT "VALUE=";50,,"MEV VALUE=";5042

VALUE= 50 NE'Y VALUE= 2500

Notice the use of the two commas caused the ““NEW
VALUE" literal string to be printed out starting .
in zone #3; the use of the semicolons caused the
numbers to be printed in the same zone as the literal
string.

Section 5—4
Using the TAB(Function for Format Control

In addition to using zoned and packed format in
System 2200 BASIC, another formatting tool is
available which is analogous to the "“tab stop” found
on a typewriter. This formatting tool is the TAB(
function found in the keyward block on the left-
hand side of the 2215 BASIC Keyboard.

When the 2200 encounters a TAB(function in a
PRINT statement, the CRT cursor or printing device
spaces over to the column position indicated within
the TAB(parentheses (a righthand parenthesis must

be entered manually) and then proceeds to output (
the next part of the PRINT statement. READY
:PRINT TAB(10);25
Touch keys PRINT TAB(10); 25 CR/LF- 25
EXECUTE

42

Chapter 5
Printing Out More Than One Value Per Line

The System 2200 spaces over 11 spaces to column 10,
leaves a space for the implied plus sign, and prints the
number 25 in columns 11 and 12.

NOTE:

There are 64 columns per line, numbered 0 thru
63. Thus the first column is numbered column
#0 and the 64th column is numbered #63.
Therefore a TAB(10) actually spaces 11 spaces
to column 10, because the Ist column is num-
bered column #0.

Touch keys PRINT TAB (5612-3); “ANSWER=""
SQR (17.3) CR/LF-EXECUTE

In this case, the System 2200 evaluates the TAB(ex-
pression, spaces to the indicated Column (22) prints
out the literal string “ANSWER=", evaluates the
square root function, and prints out the result.

The contents of the parentheses of a TAB(function
can be any algebraic expression. However, only the
integer portion of the resulting evaluation is recog-
nized. When using the CRT as the output device, a
number greater than 63 in a TAB(function always
results in the positioning of the CRT cursor at the
first column of the following line; a number less than
zero is ignored.

If the printing position of the System 2200 is past the
requested tab location at the time the TAB(function
is encountered, the location of the CRT cursor does
not change at all, and the TAB(function is ignored.

Touch keys PRINT TAB(20);20; TAB(10);
10 CR/LF-EXECUTE

r

READY
:PRINT TAB(5#2-3);"ANSHER="3;SQR(17.3)
ANSWER= 4,1593268686

READY
sPRINT TAB(20)320;TAB(10);10
20 10

.o

43

Chapter 5
Printing Out More Than One Value Per Line

In this example, the System 2200 spaces over 21
spaces to column 20, leaves a space for the implied plus
sign, prints the number 20 in columns 21 and 22 and
continues to the next part of the PRINT statement,
another TAB(function. However, the second TAB(
function says to space to column 10. Since the CRT
cursor is already past column 10, this TAB{ function
is ignored, and the System 2200 goes to the next part
of the PRINT statement, which says to print the
number 10. A packed format results.

Thus, to obtain a printout of the number 10 at
column 10, and the number 20, at Column 20 in the
above example, the PRINT statement must be re-

arranged.
Touch keys PRINT TAB(10); 10; TAB(20): f}Ef"*D}f‘ L .
20 CR/LF-EXECUTE :PRINT TAB(}Ig),]O,TABSBO),ZO
{ Ve

NOTE:

When figuring the number to use within the
parentheses of a TAB(function, remember that
the number of spaces actually skipped is equal
to the number in the TAB(function. As a result
a TAB(11) function skips 11 spaces and prints
(if something is to be printed) the output in
column 11 which is actually at the 12th space
onthe CRT line. When printing numbers another
space is left for an implied plus sign. This means
if you use a TAB(20) to print a positive number
the number is actually printed in Column 21].
Column 20 contains the blank for the plus sign.

44

Chapter 5
Printing Out More Than One Value Per Line

EXERCISES

t Using Commas and Semicolons
1) The System 2200 BASIC Statement
A=2.1: B=3.1: C=4.1: PRINT C,B,A CR/LF-
EXECUTE

produces which output line?

a) 3.1 2.1 4.1
b)C B A

c) 4.1 3.1 2.1

d) C=2.1 B=3.1 A=4.1
e) 2.1 3.1 4.1

2)1f W=b write a statement line using a single
PRINT statement and the W variable which
(when raised to various powers) will produce the
following output:

5 25 125 625

! } }

1st Column 17th Column 33rd Column 49th Column

3) How could the statement line in Exercises (1)
be written to produce the following output for-
mat?

a) 2.1
3.1 in Print-Zone #1
4.1

b) 2.1
3.1 in Print-Zone #3
4.1

ANSWERS

1) Output Line #c
4.1 3.1 2.1

2) W=5 :PRINT W,W12, Wt3, Wt4, CR/LF-EXECUTE

3)a) A=2.1: B=3.1: C=4.1: PRINT A: PRINT B: PRINT C CR/LF-EXECUTE
b) A=2.1: B=3.1: C=4.1: PRINT,,A: PRINT,B: PRINT,CCR/LF-EXECUTE

45

Chapter 5
Printing Out More Than One Value Per Line

4) If G=-2, write a statement line using a single 4) G=-2 :PRINT G; G12; G13; G*4; G15; G16; G17; G?8 CR/LF-EXECUTE
PRINT statement and the G variable which will
produce the following output:

-2 4 -8 16 -32 64 128 256
T T T
Oth two one two one two one two

Column spaces space spaces space spaces space spaces

5) Knowing that commas and semicolons can be B) PRINT “X=";18.3, “Y=""; 1.2E-4 CR/LF-EXECUTE
mixed in a PRINT statement, how would a Sys- X=18.3: Y =1.2E-4: PRINT “X="; X, “Y=":Y CR/LF-EXECUTE
tem 2200 BASIC statement line be written
which would produce the following output:
NOTE — Do in two different ways. (HINT:
the statement uses literal strings.)

X=18.3 Y = 1.20000000E—-04

in 1st Column in 17th Column

Il Use TAB(commands instead of commas to complete I 2) PRINT W; TAB(16); W12; TAB(32); W13; TAB(48); Wt4 CR/LF-EXECUTE
Exercises 2 and 5. 5) X=18.3: Y=1.2E-4:PRINT “X=":X:TAB(16): “Y=": Y CR/LF-EXECUTE

46

Chapter 6
Executing A Line More Than Once (Looping)

Chapter 6

Executing a Line
More Than
Once (Looping)

In Chapter b, you practiced entering several different
calculations per line {a multi-statement line). However
you are still unable to repeat the calculations of that
line more than once. To obtain a repeat of a calcu-
lation means re-entering the line and executing it
again. When using the System 2200 as a calculator,
there is another way of repeating a line more than
once without having to rekey the line each time.
Repeating a calculation more than once is called
looping. In System 2200 BASIC, the statements which
allow you to loop are the FOR-TO and NEXT state-
ments.

Section 6-1
Looping With The FOR-TO/NEXT Statements

You would have to write a line as shown to the right. READY
- e . . :PRINT 1,2,3,4,5,6,7,3,9,10,11,12,13,14,15,16,17,13,19,20,21,22,
This is both inefficient and time consuming. What 23,24 25 26,27,28 29 30’3] 32’33,34 35.36.37 33.39,40

happens when you want to print out the integers 1 to
100, or 1 to 1000?

Using the FOR-TO and NEXT statements, a single
BASIC line does the job. The line is written as shown
to the right.

Suppose you want to PRINT the integers 1 to 40.
FOR X=1T0 40:PRINT X,:NEXT X

47

Chapter 6
Executing A Line More Than Once (Looping)

Breaking this line down into individual parts:

FOR X=11t040

This part of the line establishes a Counter. 1t tells the
calculator how many times to repeat the line or to
loop. A variable counter, here X, keeps track of the
number of times the loop is executed.

PRINT X,

Each time the loop is repeated X is printed. X takes
on the values from 1 to 40.

NEXT X

The third part of the statement line increments X by
one and then tests X to see if it has passed the outer
limit of the FOR-TO statement (here 40). If it has,
the calculator stops. If it hasn’t, it processes the
PRINT statement with X set at the current value and
then continues incrementing.

The actual looping in these statements takes place »
between the PRINT and NEXT statement as shown to FOR X=1TO 40:PRINT X,:NEXT X
the right.

48

Chapter 6
Executing A Line More Than Once (Looping)

Enter this statement line.

f
Touch RESET READY
Touch keys FOR SHIFT X=1TO 40 +FOR X=1TO 40:PRINT X,:NEXT X
:PRINT X, :NEXT SHIFT X CR/LF-EXECUTE ; 2 ; g
Notice the keywords PRINT, FOR, TO, and NEXT 9 10 11 12
were generated with a single keystroke. 13 14 15 16
. 17 18 19 20
The comma after PRINT X, is used to create a zoned 21 22 23 24
output. 25 26 27 28
The variable in the FOR-TO statement must be the 29 30 31 32
same variable in the NEXT statement. 33 34 35 36
37 38 39 40
The colon must be used to separate the individual
statements in this line. P
In this example, the counter was incremented by 1.
The FOR-TO/NEXT statements have an added flexi-
bility — you can increment the Counter by any
amount by using the keyword STEP to specify the
increment.
Redoing this same problem, but this time incre-
menting X by .5 and countingonly from 1 to 10, the
statement line would look like that shown to the FOR X=1TO 10STEP ,5:PRINT X,:NEXT X

right.

Notice in the FOR-TO statement you have added the
word STEP and .5 (the increment).

49

Chapter 6

Executing A Line More Than Once (Looping)

If the word STEP' is not included in the FOR-TO
statement, the increment is assumed to be one; if
STEP is added, a number must follow it.

Enter this statement line.
Touch RESET

Touch keys FOR SHIFT X=1TO 10
STEP .5: PRINT X, :NEXT X CR/LF-
EXECUTE

This time the variable X was incremented by .5 and
the loop stopped when X reached 10.

In general practice, the values which define the limits
of the loop can be any legal expression. For example
the limits of the loop can be calculated. See an
example of such a FOR-TO statement to the right.

The general format of the FOR-TO/NEXT statement
is shown to the right.

1
STEP can have a negative value.

r READY
:FOR X=1TO TOSTEP .5:PRINT X,:NEXT X
1 1.5 2
3 3.5 4
5 5.5 6
7 7.5 8
9 9.5 10
FOR X=SQR(2)TO SQR(100):
starting value loop limit
composed of composed of
I] any legal any legal
FOR | variable| = expression TO expression | STEP

50

00 O B> N

L] o L]

[SaN& L e S

increment size

composed of
any legal
expression :NEXT | variable

—V
Optional

If not included Step is
automatically 1

Chapter 6
Executing A Line More Than Once (Looping)

EXAMPLES OF FOR-TO/NEXT STATEMENTS

Some examples of FOR-TO/NEXT statements are

shown to the right. FOR X = 5 TO 500
- X takes on 496 successive values 5,6,7 498,499,500

NEXT X
FOR X=5TO 500 STEP 5 .
NEXT X X takes on 100 successive values 5,10,15....495,500
FOR A = SQR(2)E2 TO SQR(100}+2 A takes on 9 successive values 3.414, 4.414, 5.414,....
NEXT A 9.414, 10.414, 11.414
FORW =100 TO 25 STEP -2 .
NEXT W W takes on 38 successive values 100, 98, 96.,....28,26
FORG=-10TO + 10 STEP .4
- -9. -9.2,...-. +.4,...+9, +
NEXT G G takes on 51 values -10, -9.6, -9.2,...-.4,0,+.4,...+9.6, +10
Some illegal FOR-TO/NEXT statements are shown to ILLEGAL FOR-TO/NEXT STATEMENTS
the right.
g FOR Y6 =52.3TO 100 STEP -1 In the loop, Y6 takes on the single value 52.3: Loop is executed
NEXT Y6 only once.
FORT=10TO1

NEXT T In the loop T takes on a single value 10: Loop is executed only once.

51

Chapter 6
Executing A Line More Than Once (Looping)

In these examples the loops are executed only once
because of the increments defined in the STEP. In the
first example, Y6 = 52.3 is executed, but when -1 READY

is added to 52.3 it decreases the value of Y6 and the tFOR A=1T0 25:Y=Y+X:PRINT Y,:NEXT X

intended limit (100) can never be reached. As a final
example, sum the integers from 1 to 25 printing out
the sum at the end of each loop in a zoned format.
The statement line to accomplish this is shown to the

right.
Enter this line. rRE/\DY
Touch keys FOR SHIFT X = 1TO 25 :FOR X=1T0 25:Y=Y+X:PRIAT Y,:HEXT X
'SHIFT Y =SHIFT Y +SHIFT X :PRINT T 3 6 10
SHIFT Y, :NEXT SHIFT X CR/LF-EXECUTE 15 21 28 3
45 55 66 78
91 105 120 136
153 171 190 210
231 253 276 300
325

52

Chapter 6
Executing A Line More Than Once (Looping)

The format of the output of this statement line can be

changed be either changing the comma to a semicolon (-
or including no punctuation. For example, RCADY
:FOR X=1T0 25:Y=Y+X:PRINT Y:NEXT X
Touch keys FORSHIFT X=1TO0O 25 1
SHIFT Y =SHIFT Y +SHIFT X :PRINT 3
SHIFT Y :NEXT X CR/LF-EXECUTE 6
10
Because there was no punctuation in the PRINT state- 15
ment, each answer isprinted on a separate line. 21
When the line was executed the results were displayed 28
with such rapidity that the output was difiicult to 3§
follow. The System 2200 can be instructed to pause i
. . 33
after each line of output. To instruct the System 66
2200 to pause for n/6 seconds after every line of 3
output the SELECT P option can be used, where n 9]
can be any integer from O to 9. Each n represents a 105
1/6th second pause. 120
Touch keys SELECT SHIFT P 2 CR/LF- e
EXECUTE 2
171
Touch keys FOR SHIFT X =1 TO 25 :SHIFT 190
Y =SHIFT Y + SHIFT X :NEXT X CR/LF- 210
EXECUTE 231
253
To turn a pause off, 276
Touch keys SELECT SHIFT P CR/LF ggg
NOTE: L

For the remainder of this text, the word SHIFT
is no longer used to indicate the upper case char-
acter. It is assumed.

53

Chapter 6
Executing A Line More Than Once (Looping)
. __-_________ |

Section 6-2
CRT Plotting Using A FOR-TO/NEXT Loop And The TAB(Command

Knowing that the TAB(command can be used for
positioning output, a simple CRT plotting routine can
now be written, using a FOR-TO/NEXT loop and a
PRINT statement with a TAB(command.

For example, the following statement line causes
the System 2200 to plot a diagonal line of 11 pluses
(+) down the CRT starting in the first column:

Touch keys FOR X=0TO 10 :PRINT TAB(X);
“+" :NEXT X CR/LF-EXECUTE

Each time the variable X is assigned an integer value,
the PRINT TAB(statement says to tab to the column
denoted by the value of X, and print a ““+", then move
to the next line and continue the process. This happens
a total of eleven times, producing the diagonal line of
eleven “+'" 's on the CRT display.

If a semicolon is included in the PRINT statement
following the “+", the result is different. For exam-

ple,

Touch keys FOR X=0TO 10 :PRINT TAB(X);
“+"; :NEXT X CR/LF-EXECUTE

(
READY

:FOR X=0TO T10:PRINT TAB(X);"+":HEXT X

(

READY
tFOR X=0TO 10:PRINT TAB(X):"+": :NEXT X
R

54

Chapter 6

Executing A Line More Than Once (Looping)

The result is different because the last semicolon in
the PRINT statement signifies that the printout is to
continue on that line, instead of starting on a new
line each time the loop is executed.

Consider now the function f(x) = X12. If graphed on
regular graph paper, the result is a parabola. The same
thing can be accomplished on the System 2200 CRT
in one statement line.

Touch keys FOR X=1TO 8 :PRINT TAB
(X12-1); 0" :NEXT X CR/LF-EXECUTE

The result above is for positive values of X. The num-
ber 8 was chosen because 812 — 1 = 63, which just fits
within the range of the CRT screen.

By changing the range of the value of the FOR-TO/
NEXT loop, a complete parabola can be generated.

Touch keys FOR X = -6 TO 6 :PRINT
TAB(X12);, X12 :NEXT X
CR/LF-EXECUTE

r
READY
:FOR X=1T0 3:PRINT TAB(X42-1);"0":NEXT X
0
0
9
0
0
0
0
0
-
READY
:FOR X==6TO G:PRINT TAB(XA2);XA2:NEXT X
36
25
16
9
4
1
0
1
4
9
16
25
36

55

Chapter 6
Executing A Line More Than Once (Looping)

The PRINT command can be used also to skip lines (READY
t let tiall d lines.
or to complete partially used fines :FOR X=1TO 5:PRINT X:PRINT :NEXT X
Touch keys FOR X =1TO 5 :PRINT X 1
:PRINT: NEXT X CR/LF-EXECUTE 2
Notice the skipped lines in the printout. The statement 3
line has two PRINT statements, the second of which
causes the extra spacing in the printout, as nothing 4
is printed as the result of the second PRINT.
|y
J
Touch keys FOR X =1 TO 5 :PRINT X;
:NEXT X :PRINT “DONE"’ .
CR/LF-EXECUTE T
Touch keys FOR X=1TO 5 :PRINT X;
:NEXT X :PRINT :PRINT “DONE"’
CR/LF-EXECUTE
READY

:FOR X=1T0 5:PRINT X;:NEXT X:PRINT "DONE"

The extra PRINT statement is the reason for the 1 2 3 4 5DONE

difference in the output format. Without the extra
PRINT statement, the literal string “DONE" is printed
on the same line as the digits 1 through 5. (The trailing
semicolon in the PRINT X statement has held the
cursor on that line). The blank PRINT statement
in the second example causes the CRT to skip to the

start of the next line before executing the next PRINT READY

statement (PRINT “DONE"). :FOR X=1TO 5:PRINT X3:NEXT X:PRINT :PRINT "DONE"
1 2 3 4 65
DONE

56

Chapter 6
Executing A Line More Than Once (Looping)

SUMMARY

You have now completed the Introduction to the System 2200 as used in the Immediate
mode. The problems used in Part | are only samples of what can be done in the
Immediate mode and are only used to suggest a starting point for your own applications.

Continue now to Part Il, which introduces the System 2200 as used in the Programming
mode.

57

Part Il

Part “ Using the System 2200 in the Immediate Mode or in the Programming Mode depends
upon the results or calculations you desire. If you wish to obtain one-time results, then
the Immediate Mode should be used. If you wish to be able to repeat calculations, and

USI“g the SVStem be able to program the System 2200, you should use the Programming Mode. The

remainder of this text deals with using the System 2200 in the Programming Mode
2200 as a and explains the differences between entering and executing a line in the Programming
Mode vs. the Immediate Mode. The text then discusses in depth all the programming

PrOgrammable techniques available with the System 2200's BASIC language.
Calculator

59

Chapter 7
The Basics of BASIC Programming

Chapter 7

The Basics of
BASIC Programming

Chapter 7 introduces you to the basic concepts needed
to write, enter and execute a BASIC program on the
System 2200. In most cases, a single program is used
to illustrate the various stages discussed in this chapter.
What is discussed in this chapter is applicable to any
program you write.

Section 7-1

Writing Programs

FLOW CHARTING

When a programmer decides to write a program, he
(or she) does not sit down and immediately enter the
program into the System 2200. Rather, a knowledge-
able programmer begins by thoroughly analyzing the
problem. If careful analysis is done in the beginning,
fewer problems are encountered later. Part of the
analysis process includes a flowchart. Thus the first
step in writing a program is to make a flowchart.

A flowchart is a visual representation of all the steps
required to solve a problem. It helps to crystalize the
programmer’s thoughts. Standard symbols are used in
flowcharting. They are shown to the right.

D
0

-
O
i

——

FLOWCHARTING SYMBOLS
— An oval indicates a starting or stopping operation

— Arrows indicate the direction of flow through the diagram.
Every connecting line should have an arrow on it.

— A rectangular box indicates an operation (i.e., addition,
squaring, etc.).

— A diamond indicates a decision (i.e., if YES; if NO), question
or comparison.

— Acircle indicates where the program continues at some point.
These points are identified by the same letter.

— A printout or display of any type (usually an answer).

— The predefined process symbol, generally used to represent a
subroutine.

Chapter 7
The Basics of BASIC Programming

An example of a flowchart is shown to the right.

Notice each step is represented in the flowchart with
the appropriate type of symbol. Also, the logic or
flow is charted with the use of arrows.

EXAMPLE OF A FLOWCHART

{ START \r‘

PLACE KEY IN
CAR
IGNITION

—

CALL REPAIR
MAN TO FIX

62

TEST
TO SEE IF
STARTS

PARK

STOP

YES

NO

DRIVETO
WORK

4

ENTER
PARKING
LOT

YES

YES

GO TO
STREET

PARK

STOP

TEST
TO FIND A
SPOT

DOUBLE
PARK

STOP

Chapter 7
The Basics of BASIC Programming

Try writing a flowchart showing the solution to the
following problem:

C=y/ A’ +B*
Check your results with the figure shown to the right.
CONVERTING A FLOWCHART TO A PROGRAM

Once the flowchart is written and it represents the
solution to the problem, it is then necessary to write
the corresponding BASIC statement line(s) to accom-
plish the task indicated in each symbol of the flow-
chart.

In Chapters 1 through 6 you have written only a
single line to solve a problem. A program consists of
one or more lines of BASIC statements. In order to
tell the calculator in what order to execute the lines,
and to delineate the beginning of a new statement line,
it is necessary to precede each line with a statement
line number. The numbers can range from 1 to 9999.
Common practice suggests the use of 10,20,30,40,...
etc. as statement line numbers. There is a practical
reason for this, which is explained later.

Write statement lines for your program (C=/A*+B?*)
and check your results with the figure to the right.

Notice each statement is preceded by a line number.

FLOW DIAGRAM PROGRAM

BEGIN

A

ASSIGN
VALUE OF 10 A=10

10TOA

20 B=22
30 C=SQR(At2+B12)
y 40 PRINTA,B,C

ASSIGN
VALUE OF
2270B

A

FIND SQ
ROOT OF
A’ +B?

DISPLAY
RESULT

63

Chapter 7
The Basics of BASIC Programming

NOTE:

One of the major differences between using the
System 2200 as a calculator or a programmable
calculator is the use of statement line numbers.
When a statement line number precedes a line,
it immediately indicates to the System 2200
that it is in Programming Mode. The use of a
line number enables you to execute a line again
and again.

Section 7-2
Clearing Memory

Now that the program is written, the next step is to
enter it into the memory of the System 2200. Before
entering a program the memory should be cleared
(erased) to assure it is free of other programs. As
mentioned earlier in this text, the entire memory is

cleared when the keys CLEAR CR/LF-EXECUTE are CLEAR EXECUTE — Clears memory.
touched and only variables are cleared when keys
CLEAR V CR/LF-EXECUTE are touched. CLEAR V EXECUTE — Clears only variables from memory.

If you wish to save variables already in memory,
there is another CLEAR option which clears only
program text from memory. This is CLEAR P CR/LF- CLEAR P EXECUTE — Clears only program text from memory.

EXECUTE.

Any program recently entered would be cleared from
memory, along with any other program entered
earlier, if you used the CLEAR P option. What
remains in memory is any variables that had been
assigned by the program or any other program.

64

Chapter 7
The Basics of BASIC Programming

As may be evident at this time, the memory is
divided into different storage areas. Program text is
stored in a different area of memory than variables.

Therefore, you can be selective as to what you want
to clear from the memory. However, it is often
necessary to clear the entire memory (CLEAR CR/LF- =
EXECUTE) before entering a new program.

READY

Touch keys CLEAR CR/LF-EXECUTE

Section 7-3
Entering A Program

ENTERING A PROGRAM INTO MEMORY
VIA THE MODEL 2215 KEYBOARD

1. First clear the memory. READY
Touch CLEAR CR/LF-EXECUTE. :

2. Enter a statement line number.

There are two ways to enter a statement line number:

A statement line number can be generated by using
the numeric keyboard, or

A statement line number can be generated by
touching the STMT NO. key, before entering each
statement line.

Touch STMT NO. key

READY
:10

65

Chapter 7
The Basics of BASIC Programming

The statement line number 10 was generated auto-
matically when the key was touched. Each time the
STMT NO. key is touched at the beginning of a new
line, a line number ten more than the highest line
number already in memory is generated.

To generate a line number less than 10 more, you
must use the numeric keyboard.

Touch keys SHIFT A=10 CR/LF-EXECUTE

CR/LF-EXECUTE causes statement line 10 to be
entered in the memory of the System 2200.

Enter the second line of the program.

Touch keys STMT NO. SHIFT B = 22
CR/LF-EXECUTE

Enter the third and fourth lines of the program.

Touch keys STMT NO. SHIFT C = SQR(
SHIFT A 12+ SHIFT B 12) CR/LF-
EXECUTE

STMT NO. PRINT SHIFT A, SHIFT B,
SHIFT C CR/LF-EXECUTE

rREADY
:10 A=10

rﬁREADY
:10 A=10
:20 B=22

ﬁ
READY
:10 A=10
:20 B=22
:30 C=SQR(A42+B42)
:40 PRINT A,B,C

66

Chapter 7
The Basics of BASIC Programming

The entire program is now in memory as shown in
the display. Although each statement was entered in
the correct order (assured when using the STMT. NO.
key) they need not be entered in that order. The
System 2200 automatically reorders a program in the
proper sequence according to statement numbers when

the program is executed. That means you can enter a READY

program in any sequence, but when entering in random +20 B=22

order, you cannot use the STMT. NO. key. You must <40 PRINT A,B,C
use the numeric keyboard to generate statement :10 A=10

numbers. For example, the same program, if entered 130 C=SQR(A42+B42)
as shown to the right, would automatically be ordered
correctly when executed. The numeric keys were

used to enter the statement numbers.

Section 7-4
Executing A Program

EXECUTING A PROGRAM

After an entire program is entered into memory, the (READY
next step is to execute or run the program. :10 A=10
Touch keys RUN CR/LF-EXECUTE gg g;§SR(A12+B+2)
When RUN is touched the System 2200 does the :40 PRINT A,B,C
following: +RUN
10 22 24.,166091947

1. Scans the entire program for variable names, and
sets aside space in memory for each of them.

2. Initializes all variables to zero.

3. Checks to assure that no logic errors have been
made in the program.

4. Once steps 1, 2, and 3 are completed, the program
lines are executed sequentially and all instructions
are carried out.

67

Chapter 7
The Basics of BASIC Programming

NOTE:

Another difference between the Immediate Mode
and Programming Mode is the manner in which
statements are executed. In the Immediate Mode
a line is executed and the result(s) are obtained
immediately when the CR/LF-EXECUTE key
is touched at the end of a line. In the Pro-
gramming Mode it is not until RUN CR/LF-
EXECUTE is keyed that any results are obtained.
All the CRILF-EXECUTE key does at the end of
a program line is to enter the line into the
memory of the System 2200 and to verify that
no syntax errors have been made.

Touch keys RUN CR/LF-EXECUTE again.

Notice the results of the execution of the program
are again printed out. The results can be printed
out as many times as desired in the Programming
Mode by simply touching RUN CR/LF-EXECUTE.

There is an option available with the RUN key which
allows you to execute part of a program. Touching
the RUN key executes the entire program from
beginning to end. If you wish to execute only state-
ments 30 and 40, touch keys RUN 30 EXECUTE.
This instructs the System 2200 to execute the program
from line 30 to the end of the program. (In this
example lines 30 and 40 are executed.) The general
form of the RUN statement is shown to the right.

-
READY

:10 A=10

120 B=22

130 C=SQR(A42+B42)
:40 PRINT A,B,C
:RUN

10 22
:RUN
10 22

68

24.166091947

24,166091947

GENERAL FORM
RUN [line number]

Chapter 7
The Basics of BASIC Programming

NOTE:

All BASIC statements have a general form which
indicates what the statement can do. In the
remainder of the text, as each statement is
discussed, the general form is also given (the
arguments enclosed in brackets are optional and
arguments enclosed in braces are required for
the statement to work).

Section 7-5
Listing A Program

USING THE LIST KEY

-
On the System 2200, a program can be listed by READY
touching LIST CR/LF-EXECUTE. :LIST
Touch RESET 10 A=10
oue 20 B=22
Touch keys LIST CR/LF-EXECUTE 30 C=SQR(A42+B42)
The listing of the program is displayed. If a program Z}O PRINT A,B,(

was entered out of order, listing the program with the -
LIST key alwaysdisplays the program with the correct
sequence of statements.

USING LIST S TO DISPLAY 15 LINES AT A TIME

For longer programs (longer than 15 lines) which
cannot fit entirely on the CRT display, the use of
LIST S CR/LF-EXECUTE is suggested. LIST S causes
the System 2200 to display the first 15 lines of the
program. To continue listing, key CR/LF-EXECUTE
and the next 15 lines of the program are listed. The
procedure can be continued until the entire program
has been listed.

69

Chapter 7
The Basics of BASIC Programming

LISTING A PARTICULAR SECTION OF A PRO-
GRAM

A particular line or set of lines can be listed by
specifying in the LIST statement which lines are
desired. The general form of the LIST statement is
shown to the right.

Touch RESET

Touch keys LIST 10,30 CR/LF-EXECUTE
Only lines 10 - 30 are listed

Touch RESET

Touch keys LIST 20 CR/LF-EXECUTE

GENERAL FORM
LIST [S] [line number [,line number]]
— N

A

“NO. OF FIRST STMT.

LINE TO BE LISTED

N\

A
“NO. OF LAST STMT.
LINE TO BE LISTED

-
READY

:LIST 10,30

10 A=10

20 B=22

30 C=SQR(AA2+B42)

Only line number 20 is listed. (READY
Another way to list longer programs is to initiate a :LIST 20
pause (SELECT P) prior to listing a program. The 20 B=22
pause allows the user to scan the program, as it is L
slowly displayed on the CRT.

Section 7-6

Changing A Program In Memory

Once the lines of a program are put into memory, the
lines remain there until cleared from the system, or
until they are redefined. New lines can be added at
any time.

REDEFINING A STATEMENT LINE

To redefine a line already in memory, reenter the
same line number followed by the new line and touch
the CR/LF-EXECUTE key. This replaces the old line
with the new line.

70

Chapter 7
The Basics of BASIC Programming

Touch RESET

Touch keys 10 SHIFT A =5 CR/LF-
EXECUTE

The new line has replaced the old line in memory.
Touch RESET
Touch LIST CR/LF-EXECUTE

The listing illustrates the new line has replaced the
old line.
DELETING A LINE FROM MEMORY
Enter the line number of the line to be deleted and
touch CR/LF-EXECUTE.

Touch 20 CR/LF-EXECUTE

Touch LIST EXECUTE

Notice line 20 has been deleted from memory.
INSERTING A NEW LINE

A new line can be entered into memory by entering
an appropriate line number somewhere between the
existing line numbers where the new line is to be
inserted.

Touch RESET
Touch keys 22 SHIFT B = 22 CR/LF

You added a line between lines 10 and 30. You also
could have added several other lines between 10 and
30 as long as the line numbers were unused (i.e., 11,
12,13, 14...21, 23...39).

READY

:LIST

10 A=5

20 B=22

30 C=SQR(A42+B42)
40 PRINT A,B,C

:LIST

10 A=5

30 C=SQR(A42+B42)
40 PRINT A,B,C

71

Chapter 7
The Basics of BASIC Programming

Earlier in this chapter it was mentioned that spaced rREADY

line numbers should be used (i.e., 10, 20, 30, etc). LIST

Spaced line numbers allow room to insert new lines at 10 A=5

a later time. If you used line numbers such as 1, 2, 3, 22 B=22

4, etc., you could not add lines between them (line 30 C=SQR(A42+B42)

numbers can only be integers). 40 PRINT A,B,C
Section 7-7

Using The BASIC STOP Statement

Although the program you are currently working

with is a complete program, an additional statement e
can be included anywhere in the program to signal READY
the System 2200 to stop processing (i.e., the STOP :LIST
statement). This STOP statement consists generally 10 A=5
of a statement line number, followed by the BASIC 22 B=22
keyword STOP. 30 C=SQR(A42+B42)
40 PRINT A,B,C
Touch RESET :50 STOP
Touch keys LIST CR/LF-EXECUTE .
Touch keys 50 STOP CR/LF-EXECUTE
Statement number 50 is now added to the program. '
When the System 2200 executes the STOP statement RE??.T.
during the course of program execution, the word]'0 A=5
STOP is printed in the CRT display. 20 B=22
Touch RUN CR/LF-EXECUTE 30 C=SQR(A42+B42)
40 PRINT A,B,C
One use of the STOP statement is to delineate the end :50 STOP
of one section of a program from another section. If +RUN
a program has three sections and you wish to RUN 5 22 22.561028345
only the first, you cannot unless they are separated in
some way. The STOP statement can be used to do STOP
this. O

72

Chapter 7
The Basics of BASIC Programming

The STOP statement is not required at the end of a
program; the System 2200 automatically stops when
it runs out of statement numbers.

STOP AND CONTINUE

Any number of STOP statements can be used in a

program, allowing the user to halt execution at a GENERAL FORM
predetermined place in the program. If a literal string
is included in the STOP statement, it is printed when
the STOP statement is executed. This capability allows
the programmer to insert messages directly into the
STOP statement, without adding a separate PRINT

STOP [“’character string’’]

statement. -
Touch RESET READY
« 2 Mook ke k Jede sk ok
Touch keys 35 STOP SHIFT LOCK 3o 210 END OF CALCULATION
fxxxx* END OF CALCULATION ***** 10 A=5
SHIFT CR/LF-EXECUTE 22 B=22
Touch keys LIST CR/LF-EXECUTE 30 C=SQR(A42+B42)
35 STOP "****END OF CALCULATIQN****"
Touch keys RUN CR/LF-EXECUTE 40 PRINT A,B,C
The program is executed until the first STOP state- ?(R)UEITOP
ment is encountered. This results in the program ‘
stopping and the word STOP and any literal string STOP ****END OF CALCULAT JON**%%*
within the STOP statement being printed. .

Execution of the STOP statement does not affect
any variables or program text. It simply stops pro-
gram execution.

After program execution has stopped due tc a STOP
statement, the user can:

1. Use the System 2200 as a calculator and immedi-
ately execute statement lines, without statement
line numbers {Immediate Mode).

73

Chapter 7
The Basics of BASIC Programming

2. Print out a variable in the program for inspection.

3. Redefine a variable used in the program and re- e

execute it to see how this affects results. RUN
4. Change the program flow, and instruct the System

2200 to continue execution at a different program STOP ****END OF CALCULATIQON****

line. :CONTINUE

. . 5 22 22.561028345

Continue execution of the program:

Touch keys CONTINUE CR/LF-EXECUTE STOP

Section 7-8

Using the BASIC END Statement In A Program

In addition to the STOP statement, another statement
which terminates program execution is the END state-
ment. The END statement line consists simply of a
BASIC keyword END.

The END statement isoptional in System 2200 BASIC.
If used, the END statement can appear anywhere in a GENERAL FORM
program and performs two functions: END

1. Halts program execution.
2. Displays the total amount of unused memory
remaining at the time the statement was executed.

NOTE:

Program execution stops automatically when all
program statements are executed. Therefore
END, as with STOP, need not be used to
delineate the end of a program.

74

Chapter 7
The Basics of BASIC Programming

Replace tine 50 of the program with 50 END as
follows:

Touch RESET

Touch keys 50 END CR/LF-EXECUTE
Touch keys LIST CR/LF-EXECUTE
Touch RUN CR/LF-EXECUTE

Touch CONTINUE CR/LF-EXECUTE

Executing a program with an END statement results
in the following message being printed:

END PROGRAM
FREE SPACE = number

The Free Space number is an integer representing the
approximate number of bytes' left in memory for
storing additional program text or variables. The
System 2200 requires approximately 700 bytes as a
work area while executing statements. These 700
bytes of the 4096 bytes in a 4K machine are not
available to the user (700 bytes are set aside for a work
area in all System 2200 configurations, regardless of
the amount of memory). Therefore, the above pro-
gram in a 4K system requires 826 bytes of memory
(i.e., 4096-3270=826; 826-700=126 for the program
itself).

Every time a key is touched on the System 2200, a
certain amount of area in memory is required for
storage. See Appendix B for a detailed discussion of
how to determine the approximate number of bytes
required for a program.

1A byte is comparable to a programming step.

(

READY

:50 END

:LIST

10 A=5

22 B=22

30 C=SQR(A!2+B1?2)

35 STOP "****END OF CALCULATIQN®***"
40 PRINT A,B,C

50 END

:RUN

STOP ****END OF CALCULATIQN**#*
¢CONTINUE

5 22 22,561028345
END PROGRAM

FREE SPACE=3270

75

Chapter 7
The Basics of BASIC Programming

OTHER USES OF THE END STATEMENT

Whenever the END statement is used, the System 2200
displays the FREE SPACE available at that time.

Touch keys CLEAR CR/LF-EXECUTE
Touch keys END CR/LF-EXECUTE

If the END statement is keyed after the System 2200
memory area has been cleared, the CRT display shows
the full available memory, since none has been used.

FREE SPACE is always 3398 in a 4K system, as long
as:

1. No variables have been defined and
2. There is no program text in memory.

Touch keys A = 358/41 :PRINT LOG(A)
CR/LF-EXECUTE END CR/LF-EXECUTE

Since the variable (A) requires storage in memory, 12
bytes are lost in the available FREE SPACE.

Touch keys CLEAR CR/LF-EXECUTE
PRINT LOG(358/41) CR/LF-EXECUTE
END CR/LF-EXECUTE

With execution of these statements there is no loss of
FREE SPACE, since no program text was used and
no variables appeared in the statements.

When entering a program into memory, any variables
within the program must be considered, along with the
actual program text, when figuring the total memory
requirements for “running’’ a program (see Appendix
B).

ﬁ
READY
sEND

END PROGRAM
FREE SPACE=3398

-
READY

2.166960919696
:END

END PROGRAM
FREE SPACE=3386

:A=358/41:PRINT LOG(A)

(READY
:PRINT LOG(358/41)
2.,166960919696

:END

END PROGRAM
FREE SPACE=3398

76

Chapter 7
The Basics of BASIC Programming

Section 7-9
The REM Statement

REM (Remark) statements are used to insert explana-
tory notes into a program. Unlike a PRINT or a
FOR-TO/NEXT statement, the REM statement is not
executable; that is, when the System 2200 comes upon
a REM statement during the course of program
execution, it does not execute the statement. The
REM statement serves only as a programming aid; it
does take up available memory space.

Consider the program to the right. It contains three
REM statements. When the program is executed, lines
20, 40 and 60 are not printed and have no effect on
the output; they appear only when the program is
listed. REM statements do not require quotation
marks.

SUMMARY: Chapter 7 has taken you through the
stages of writing, entering, executing, listing and
changing a program. All these steps are basic to under-
standing more complicated programming. You now
should be able to write many programs. These basic
programs are the basis for writing advanced programs.

PROGRAM USING REM STATEMENTS

(>READY
:10 PRINT "THIS PROG., COMPUTES THE AREA OF 3 CIRCLES"

:20 REM STANDARD FORMULA FOR AREA IS USED

:30 PRINT "RADIUS","AREA"

:40 REM FOR /NEXT LOOP USED TO ASSIGN 3 VALUES

:50 FOR R=5T0 15 STEP 5

:60 REM AREA COMPUTED IN STATEMENT 70

:70 A=#PI*R42

:80 PRINT R,A

:90 NEXT R
:100 END
<RUN
THIS PROG. COMPUTES THE AREA OF 3 CIRCLES
RADIUS AREA
5 78.53981633975
10 314,159265359
15 706.8583470578

END PROGRAM
FREE SPACE=3128

77

Chapter 8
Branching In Programs

Chapter 8

Branching In
Programs

An important technique to master and use in pro-
gramming is branching. Branching allows the flow of
program to jump from one place to another within
the program, disregarding the sequential order of
statements.

There are two different types of branching, uncondi-
tional branching and conditional branching. An un-
conditional branch always causes a jump to another
location, independent of any condition being met. A
conditional branch causes a jump only when a certain
condition is met, otherwise the regular program
sequence is followed.

There are two types of conditional branches and two
types of unconditional branches available in System
2200 BASIC. The two unconditional branches are:
(1) the GOTO statement and (2) the GOSUB state-
ment. The two condiitonal branches are: (1) the
IF-THEN statement and (2) the FOR-TO/NEXT
statement. Each is explained in this chapter.

79

Chapter 8
Branching In Programs

Section 8-1
The GOTO Statement

Consider the program and associated flowchart shown
to the right.

Notice in the program the GOTO statement always
causes a branching back to statement number 20. No
condition has to be met in order to have the branch
take place. When this statement is executed by the
System 2200, a branch to statement 20 always occurs.

In the flowchart, the GOTO statement is represented
by connecting lines with an arrow head.

Enter the program. Before running it, SELECT a half
second pause (SELECT P3) then RUN. The results
are shown to the right.

The ERR 03 means a math error. When (27) is
evaluated, the resulting exponent causes an exponent
overflow (> 10E+99). This stops the program.

Remember to deselect the pause by touching keys
SELECT P, CR/LF-EXECUTE.

FLOWCHART

‘ START)

/

SET INITIAL
POWER
TO 1

y

FIND VALUE
OF 2

RAISED TO l
THE POWER

Y
PRINT POWER
AND RESULT
WITH LABELS

Y

INCREMENT
POWER

BY 1

80

PROGRAM

10 P=]
20 Q=24P
30 PRINT "POWER="3;P,"Q="3Q

40 P=P+]
50 GOTO 20
RESULTS
(

+RUN

POWER= 1

POWER= 2

POWER= 3

POWER= 4

POWER= 5

Q=2

0= 4

Q= 8

Q= 16

Q= 32
POWER= 332 Q= 8.74900239E+99
20 Q=24P

AERR 03

Chapter 8
Branching In Programs

The general form of a GOTO statement is shown to
the right.

Consider a second program which uses two GOTO
statements (see the program at the right).

What is the advantage of the GOTO statement? Con-
sider what you would have to do to obtain the results
of either of these programs if you did not use a
GOTO statement. In the first program you would
have to manually key in each different value of P and
execute the program each time for each value. How
would you do the second program?

FLOWCHART

‘ START ’

Y

ASSIGN J=25

ASSIGN K=15

N

FIND SUM OF

]

J+K+L+M

Y

PRINT SUM
AND
AVERAGE

Y

‘ END }

ASSIGN L=80
ASSIGN M=16

GENERAL FORM
GOTO line number

PROGRAM

10 J=25:K=15
20 GOTO 60

30 Z=J+K+L+M
40 PRINT Z,Z/4
50 END

60 L=80:M=16
70 GOTO 30

RESULTS

Vs

81

READY

:10 J=25:K=15

:20 GOTO 60

:30 Z=J+K+L+M

:40 PRINT Z,2/4

:50 END

160 L=80:M=16

:70 GOTO 30

:RUN

136 34

END PROGRAM
FREE SPACE=3251

Chapter 8
Branching In Programs

Section 8-2
The GOSUB Statement (Subroutines)

The GOSUB statement causes a branch to a sub-
routine. No condition has to be met before the branch
is made. A subroutine is a program within a program,
or a group of statements which are to be used over
and over again. Rather than writing these statements MAIN PROGRAM
into the program each time they are used, they can
be written once and called upon each time they are
needed with the GOSUB statement.

The GOSUB statement causes a branch from the main

line of a program to the subroutine. After the sub-

routine is executed, the last line of the subroutine

must be a RETURN statement which directs program

flow back to the main program, namely the statement

immediately following the GOSUB statement. If more

than one GOSUB statement is used in a program, GOsuB
branching back is always to the line immediately

following the last executed GOSUB statement. See the

diaaram to the right.

SUBROUTINE

 J
Statement

-
- e e e . e -

ETURN

———a-=--T

Y /
GOSUB Statement’
R
\
END

The general form of the GOSUB statement is shown

to the right. The line number is the number of the GENERAL FORM

line beginning the subroutine.

9 9 ubroutine GOSUB line number

82

Chapter 8
Branching In Programs

In the partial program shown to the right, statements
2000-2050 represent a subroutine. Notice the program
branches to this subroutine three times by a GOSUB
statement and that control is returned to the state-
ment immediately foliowing the last executed GOSUB
in the main program. The GOSUB statement is not
part of the subroutine, it just causes the branch to the
subroutine.

In a subroutine the RETURN statement must be the
last executable statement on a line, if it is in a multi-
statement line. Non-executable statements (e.g., REM)
can be included on a line after a RETURN.

LEGAL
50 X = 10: RETURN: REM END
ILLEGAL

150 RETURN: C = SQR(10)
170 RETURN: PRINT X

NOTE:

A program cannot have a GOSUB statement as
its last statement. If it does, it causes a hang up
in the System 2200.

Directs program
execution to
subroutine at
line 2000

Directs program
execution to
subroutine at
line 2000

Directs program
execution to
subroutine at
line 2000

Subroutine

83

PROGRAM

100

— > 200

300

800
810
820

— 830

1200
1210
1220
—» 1230

1240

1990
—— 2000
F 2010
2020
2030
2040

——» 2050

A=40,B=30,C=25
GOSUB 2000
PRINT X

A=J+Q

B=P-L

C=(W+X) + 2
GOSUB 2000:PRINTX

A=49

B = SQR (46+W)

C=126
GOSUB 2000
PRINT X

éND
K=(A=B)-C

IF K> 1500 THEN 2040
X=0

GOTO 2050
X=1

RETURN

PROGRAM FLOW

100
200
2000

2050 Returns to statement

300 immediately follow-
ing the GOSUB
which causes the
branch to the sub-

. routine.

800

810

820

830

2000

2050
830

1200
1210
1220
1230
2000

Chapter 8
Branching In Programs

Branching can take place within subroutines; that is,
from within one subroutine you can go to another
subroutine and return back to the original subroutine.
This is called nesting subroutines.

An example is shown to the right.

SUBROUTINE <

(10
20
30
40
50
60
70
80

90
100

NESTED
SUBROUTINE 3

110

(150
160

84

200

EXAMPLE OF A NESTED SUBROUTINE
SHOWING PROGRAM FLOW

GOSUB 30 Transfers to 30

PRINT Q: STOP <—————7‘_}
REM THIS IS A SUBROUTINE <—————

Y

Transfers to 150

GOSUB 150 »
PRINT Q =—

RETURN: REM END OF SUBROUTINE 30»——

REM THIS IS A NESTED SUBROUTINE «—————

Y

RETURN: REM END OF NESTED SUBROUTINE »——
Return to 80

Chapter 8
Branching In Programs

Section 8-3 ¢
The IF-THEN Statement
The IF-THEN statement is a conditional branch which YES—BRANCH
has the ability to test values and branch if a condition
is met, and not branch if the condition is not met.
. N B _ NO BRANCH

In flowcharting, a decision or conditional branch is
represented by a diamond with arrows. START
Look at the flowchart to the right. Notice several
different values are entered for the value of S. Each Y
value is tested to see if itis > 10; if it is, the program
squares the value and prints out S and T. If not, the ENTER VALUE
program cubes the value and prints out S and T. In FOR S
either case, the program then stops.

S? >10

<10
Y
LET LET
T=¢3 T=52
Bl
Y
PRINT
S, T

85

Chapter 8
Branching In Programs

The program corresponding to this flowchart is shown
to the right. The step for entering the different values
for S is shown as a STOP statement for manual entry
of the values. Statement 10 is the statement which
tests the value of S against 10. If the condition is true,
the program branches to statement 40; if not true, it
continues to the next statement {here 30).

Clear the memory, then enter this program into the
System 2200.

Touch keys RUN CR/LF-EXECUTE
The program stops. Enter a value for S
Touch keys S=2 CR/LF-EXECUTE
Touch CONTINUE CR/LF-EXECUTE
Touch keys RUN CR/LF-EXECUTE
The program stops. Enter a value for S
Touch keys S = 156 CR/LF-EXECUTE
Touch CONTINUE CR/LF-EXECUTE

THE PROGRAM

-
READY

:05 STOP

:10 IF SD10 THEN 40

220 T=S43

:30 PRINT S,T

:35 END

140 T=S42

:50 GOTO 30

READY
<RUN

STOP
:S=2

:CONTINUE
2 8

END PROGRAM
FREE SPACE=3299

r :RUN

STOP
:S=15

:CONTINUE
15 225

END PROGRAM
FREE SPACE=3299

86

Chapter 8
Branching In Programs

Touch keys RUN CR/LF-EXECUTE (
:RUN

The program STOPS. Enter a value for S
Touch keys S = 11 CR/LF-EXECUTE STOP

Touch CONTINUE EXECUTE :5=11
You can enter as many values of S as desired and with :CONTINUE 121
each entry the program makes a decision based on 1
whether S > 10 and branches accordingly. (Later in END PROGRAM
this text you will be instructed on how to input data FREE SPACE=3299

in a more efficient way than shown in this example.)

The general form of the IF-THEN statement is shown L
to the right.

GENERAL FORM

<
<=
IF operand ;z operand THEN line number
>
<>
literal string
where operand = < alphanumeric variable
expression

87

Chapter 8
Branching In Programs

The key part of the IF-THEN statement is the con-
dition to be tested. The condition is always composed
of three parts:

1. The “subject” — part to be tested.
2. The ““object”” — part the test is made against.
3. The “relation”” — type of comparison to be made.

The subject and object are expressions and must
appear on opposite sides of the relation.

There are six different relationships that can be used
with an IF-THEN statement (shown to the right).

Some legal and illegal uses of IF-THEN statements are
shown for comparison.

88

EXAMPLE
50 IF W=2 THEN 100

|

line number

the keyword IF

condition to be tested

the keyword THEN

\)
a line number

showing where to
go if the condition
tested is true

Relation Generated by
= equals = key
> greater than > key
< less than < key
> = greater than or equal >and = keys
< = less than or equal <and = keys
< > not equal < and > keys
LEGAL

10 IF X>Y THEN 50

15 IF T6<14 THEN 80

20 IF 16>1,5*T THEN 80

35 IF A4B<>C4D THEN 14

IF SQR(M+7)-L<=0 THEN 100
ILLEGAL
IF W=X GOTO LINE 70

IF Y<7 THEN GOTO 50

Chapter 8

Branching In Programs
'

Section 8-4
FOR-TO/NEXT Statement (Loop)

You have been introduced to the FOR-TO/NEXT FOR-TO/NEXT STATEMENTS
statement in Part | of this mar‘1ua.|. The FOR-TO/NEXT FOR X=1TO 25:PRINT X,X12:NEXT X
statement represents a conditoinal branch in that the A |
branch depends upon the value of the variable in the
FOR statement. As long as the FOR variable is within until value of X is out-
its assigned limits, the NEXT statement causes the side the assigned limit of
program flow to branch back for another iteration oy

{loop). If the assigned limits are exceeded, branching

stops and the next sequential statement is executed.

Branch or loop back

Simple uses of the FOR-TO/NEXT statement already
has been explained in Chapter 6 (i.e., single loop).
There are programming situations where it is necessary
to execute one or more loops completely for each
iteration of another loop. This is called nested loops.

Nested loops can be an efficient means of reducing
unnecessary repetition in program text.

89

Chapter 8
Branching In Programs

The example to the right shows this situation applied
to a mortgage payment calculation. Notice the interest
rate is kept constant where the years of repayment
vary from 20 to 25 to 30 years. Then the interest rate
is changed and kept constant again for the years of
repayment. The outer loop (statement 20) controls
the interest rate while the inner loop (statement 30)
controls the years of repayment.

The key to understanding nested loops is that the
inner loop goes through an entire processing for each
time the outer loop goes through one process. When
the inner loop is finished, the program jumps back to
the outer loop and the process starts again until the
outer loop is completed. There can be any number of
nested loops. The only requirements are that each
loop have a different counter variable (variables | and
N in the previous example), and that the loops do not
overlap, that is the NEXT statement for the inner loop
must come before the NEXT statement for the outer
loop.

SAMPLE PROGRAM — NESTED LOOP

MORTGAGE PAYMENT PROBLEM, letting interest rate and load period vary
|
(P) 15

| -12N
— +
- 12)

GIVEN: M =

where P is the principal or amount borrowed (in dollars).

| is the interest rate which is expressed as a yearly rate; i.e., 6 percent per
annum is equivalent to 0.06.

N is the number of years representing the period of the loan.
M is the amount of the monthly mortgage payment.
IFP = $40,000, then
M = (40000+«1/12)/(1-(1+1/12)1(-N=*12)

If we let interest vary from 7%% to 9% in %% increments and let the number
of years of repayment vary from 20 to 30 yrs. in 5 year increments the prob-
lem becomes

PROGRAM
,
:READY
:10 PRINT "AMOUNT BORROWED","INTEREST RATE","NO., OF YEARS",
"MO., PYMT."

:20 FOR I=,075 TO .090 STEP .NN5:REM INTEREST RATE VARIES

+30 FOR N=20 TO 30 STEP 5:REM YEARS OF REPAYMENT VARIES OVER
EACH INTEREST RATE

140 M=(40000)*(1/12)/(1-(1+1/12) 4(-N*12))

:50 PRINT "$40,000",100%I;"%" N;TAB(45);"$" ;M

:60 NEXT N:NEXT I

:70 STOP

90

Chapter 8
Branching In Programs

Once the program is in memory f‘}UN
Touch RESET and RUN CR/LF-EXECUTE AMOUNT BORROWED INTEREST RATE NO. OF YEARS . MO. PYMT,
. . $40,000 7.5 % 20 322.2372774218
The result is shown to the right. $40.000 775 o o5 § 295.5964711202
$40,000 7.5 % 30 $ 279.6858034216
$40,000 8 % 20 $ 334,5760276139
$40,000 8 % 25 $ 308.726487759
$40,000 8 % 30 $ 293.5058295595
$40,000 8.5 % 20 $ 347,1292933536
$40,000 8.5 % 25 $ 322.0908333922
$40,000 8.5 % 30 $ 307.5653934374
$40,000 9% 20 $ 359,8903823416
$40,000 9% 25 $ 335.6785454527
$40,000 9 % 30 $ 321.849046778
STOP

91

Chapter 9
Customizing the System 2200

Chapter 9

Customizing
the System 2200

The System 2200 is unique in its class of calculators.
In addition to offering a user the programming power
of the BASIC language, with verbs such as DEFFN,
it also enables a user to further customize the calcu-
lator to special needs with the DEFFN’ verbs.

The BASIC verb DEFFN’, uncommon to most BASIC
languages, allows customization either under program
control or directly from the keyboard via the 16
Special Function Keys located across the top of your
keyboard.

The other statement (DEFFN), common to most
BASIC languages, also is used to customize the calcula-
tor under program control.

In either case a user can add any number of special
routines to an already powerful system.

93

Chapter 9
Customizing the System 2200

Section 9-1

Customizing the System 2200 Under Program Control
(DEFFN Statement)

You have several math functions on your keyboard
(i.e., SIN, SQR, TAN, etc.). The DEFFN statement
allows you to define other math function with one
variable, accomplished only under program control.

The general form of the DEFFN statement is shown
to the right. Examples are also shown.

EXPLANATION OF THE DEFFN STATEMENT:

1. When a DEFFN statement is defined it can appear
anywhere in a program.

2. The function name can be any number (0-9) or
letter (A-Z) - a total of 36 function names.

3. The dummy variable can be any numeric variable.
It is solely a place holder, and has no effect on a
variable of its same name used elsewhere in a pro-
gram.

4, The expression is a special math function.

5. Once the function is defined in a program, it can
be used in that program just like any keyboard
function. The function is then referenced in the
program by using the FNa (expression) format,
where a is the name of the function and the
expression is any numeric expression (i.e., 2*SIN
(A+60)).

GENERAL FORM OF DEFFN STATEMENT

DEFFN a (v) = expression
Keyboard Keyed Function Dummy Equals Any expression

DEFFN Name Variable Sign Containing the
Dummy Variable
where ais any letter or digit

v is a numeric variable

EXAMPLES

10 DEFFNF(X)=SQR(X+9)-X
20 DEFFNE(G)=(4*G+6)/G
30 DEFFN8(L)=3*SIN(32)42-L0G(18)
40 DEFFN2$Y;=Y*TAN(Y/2)
50 DEFFN3(A)=A43.6-A42

FNa (expression)

Any numeric expression whose
value is given to the dummy
variable in the DEFFN state-
ment expression

Function Name in
DEFFN Statement

94

Chapter 9
Customizing the System 2200

An example of a DEFFN statement defined in a
program is shown to the right.

In order to reference the DEFFN statement in a
program, the FNa (expression) format is used (also
shown to the right).

6. A function can be referenced as many times as
needed in a program, similar to any keyboard
function.

A function can refer to an already defined function.
(See example to the right.)

7. A function cannot refer to itself nor can two
functions refer back to each other (see examples).

10 DEFFN F(X)=X43-4*X+6
40 Y=FN F(2)

READY

:10 DEFFNT(X
:20 DEFFN2(Y
130 A=2*FN2(3
:40 PRINT FN1(3),FN2(3),A

4*X42+SQR(X+1)
FNT1(Y)+10

N g®
~ I I

sRUN
38 43 96
ILLEGAL DEFFN STATEMENTS
Example 1
10 DEFFN A(B)=5+2*FNX(B)
20 DEFFNX(Y)=FNA(Y)-4
Function A refers to function X and then
function X refers to Function A.
Example 2

10 DEFFNA(B)=FNA(C)

Function A refers to Function A

95

Chapter 9
Customizing the System 2200

As a final example, a program is shown which makes e
use of the DEFFN function in a FOR-TO/NEXT loop. READY

:10 REM LOOP PROGRAM FOR THE AREA OF CIRCLES
:20 DEFFNC(R)=#PI*R42

:30 PRINT "RADIUS","AREA"

:40 FOR I=1 TO 10

:50 PRINT I,FNC(I)

:60 NEXT I
270 END
+RUN
RADIUS AREA
1 3.14159265359
2 12.56637061436
3 28.27433388231
4 50.26548245744
5 78.53981633975
6 113.0973355292
7 153.9380400259
8 201,0619298298
9 254,4690049408
10 314,159265359

END PROGRAM
FREE SPACE=3246

96

Chapter 9
Customizing the System 2200
]

Section 9-2
Using The DEFFN’ Statement And Special Function Keys

In addition to the DEFFN verb used to customize
the System 2200 under program control, another verb,
the DEFFN' verb, is available to customize the System
2200. But with DEFFN’, the special routines are
accessible directly through the keyboard. :

Located across the top of your keyboard are 16
Special Function Keys. These keys, when used in
conjunction with the DEFFN’ verb, enable a pro-
grammer to: (1) write and store in memory commonly
used character strings for text entry and access these
strings with a single keystroke (i.e., touching a Special
Function Key); (2) write and store "“marked” sub-
routines which again can be accessed via a Special
Function Key or under program control; and (3)
provide argument passing capability in “marked”
subroutines directly through the keyboard or under
program control. Each use is explained in this section.

GENERAL FORM DEFFN’ VERB GENERAL FORM DEFFN’ VERB
“‘character string”’

The general form of the DEFFN’ verb is shown to the DEEFN’ integer{[(variable [variable. . .])]}

right.

The integer specified in the DEFFN' statement is
required and must be in the range 0 < integer < 256.
If the integer is less than or equal to 31, it represents
the number of the Special Function Key. There are
256 possible special functions available on the System
2200, of which 32 are directly accessible via the
keyboard (0-31).

The ““character string’’ is optional and can be any
string of characters within double quotes.

97

Chapter 9
Customizing the System 2200

The variable is optional and can be any legal variable
name.

DEFFN’ WITH
COMMONLY USED CHARACTER STRINGS

Often certain strings are used repeatedly in the program
text. If a specific string is special to your applications,
it is convenient to have the string as a key on the
keyboard. With the DEFFN’ statement and the Special
Function Keys, you can design your own additional
keyboard.

As an example, assume a program is written where the
words “CREDIT CARD”, “INTEREST", and “PAY-
MENTS" are used repeatedly. Instead of keying in the
characters over and over, you can write them once,
store them in memory identified with a DEFFN’
integer statement, and access them each time by
simply touching one of the Special Function Keys.

There are 32 Special Function keys on the System
2200 keyboards (0-31), 0-15 functions are lowercase
and 16-31 functions are uppercase. Therefore, you
can add 32 special routines and access them through
the 32 Special Function Keys on your keyboard.

98

Chapter 9
Customizing the System 2200

Using the example just mentioned, assign the specified
character strings to Special Function Keys 0, 1 and 2

respectively, as follows: READY
:10 DEFFN'O"CREDIT CARD"
CLEAR MEMORY: 220 DEFFN'1"INTEREST"

:30 DEFFN'2"PAYMENTS"

Touch keys STMT NO. DEFFN' O
“CREDIT CARD"” CR/LF-EXECUTE

Touch keys STMT NO. DEFFN 1
“INTEREST"” CR/LF-EXECUTE

Touch keys STMT NO. DEFFN' 2
“PAYMENTS"” CR/LF-EXECUTE

Each line is now in the memory.
Clear the display by touching RESET.

Touch Special Function Key C (SF 0) and the SPACE

key twice.
T . . READY
ouch -Spemal Function Key 1 (SF 1) and the SPACE <CREDIT CARD INTEREST PAYMENTS
key twice.
Touch Special Function Key 2 (SF 2).
If a defined key is touched while a program line is
being entered, the "‘character string’” assigned to the
Special Function Key appears on the display, as well
as being entered into memory, just as if you touched READY , "
akey like PRINT. Up to 32 separate ‘‘character strings’ :50 PRINT "THE MORTGAGE AND INTEREST

can be assigned this way.

Touch RESET

Touch keys 50 PRINT “"THE MORTGAGE
AND Touch SF1"" CR/LF-EXECUTE

Notice when SF 1 was touched the word INTEREST
was automatically entered into the program text.

99

Chapter 9
Customizing the System 2200

DEFFN' USED WITH MARKED SUBROUTINES

You already have been introduced to the concept of
subroutines. Subroutines used with the DEFFN’ verb
are called marked subroutines.

When writing a marked subroutine, the first statement
of the subroutine always must be the DEFFN" integer
statement and the last executable statement always
must be a RETURN statement, as with any subroutine.
There is no limit as to the number of lines within the
subroutine.

An example of a marked subroutine is shown to the
right. Enter this program into the memory of the
System 2200.

Notice line number 10 refers to Special Function Key
1 and the last line (number 40) is a RETURN state-
ment.

Touch RESET
Touch Special Function Key 1

The Marked subroutine assigned to Special Function
Key 1 is executed as if it were hardwired into the
calculator.

As mentioned earlier, it is possible to define 256
special functions in a single program. Only the first 32
are directly accessible via the Special Function Keys.
The remaining special functions (also the first 32) can
be called under program control.

READY

:10 DEFFN'1

:20 PRINT "THIS IS A MARKED SUBROUTINE"
:30 PRINT "5 SQUARED =";542

:40 RETURN

.

e

READY

1"HIS IS A MARKED SUBROUTINE
5 SQUARED = 25

100

Chapter 9
Customizing the System 2200

The program to the right is an example of a marked
subroutine which cannot be called directly from the
keyboard because the integer associated with it is
> 31. Any marked subroutine number greater than 31
must be called under program control.

In order to call a marked subroutine in a program,
the GOSUB’ xxx command is used, where xxx is the
same integer used in the DEFFN’ integer statement.

The program to the right calls marked subroutine
100.

Notice the ““100" refers to the DEFFN’ number, not
a line number as with a regular GOSUB statement.

Enter the entire program (i.e., lines 10 to 60}, then
execute it.

The results are shown to the right.

:40 DEFFN'100
:50 PRINT X,X42,X43
160 RETURN

r;10 X=10

:20 GOSUB '100
:30 END

READY
tLIST
10 X=10
20 GOSUB '100
30 END
40 DEFFN'100
50 PRINT X,X42,X43
60 RETURN
¢RUN
10 100

END PROGRAM
FREE SPACE=3322

101

1000

Chapter 9
Customizing the System 2200

Enter the next program shown to the right.

10 DEFFN'5:REM GENERAL QUADRATIC EQUATION SOLUTION

Touch RUN 20 STOP "ASSIGN VALUES TO COEFFICIENTS"
: : 30 D=B42-4*A*C
Touch Special Function Key 5 40 IF D<O THEN 80

50 IF D=0 THEN 70
60 PRINT "“X1=";(-B+SQR(D))/(2*A),"X2=";(-B-SQR(D))/(2*A):RETURN

70 PRINT "X1=X2=";-B/(2*A) :RETURN

When the program stops
Touch A=5:B=6: C=7 CR/LF-EXECUTE

CONTINUE CR/LF-EXECUTE 80 PRINT "X1 AND X2 IMAGINARY
Touch Special Function Key 5 again.

Touch keys A=2: B=15: C=7 CR/LF-EXECUTE s

CONTINUE RUN

STOP ASSIGN VALUES TO COEFFICIENTS

This program also could have been accessed with a
tA==5:B=6:C=7

GOSUB 5 statement, by adding one line to the
program: :CONTINUE

X1=-,7266499161 X2= 1.9266499161
5 GOSUB’' 5

STOP ASSIGN VALUES TO COEFFICIENTS
sA=-2:B=15:C=7

:CONTINUE
X1=-,4407636535 X2= 7,9407636535

102

Chapter 9
Customizing the System 2200

Another example of a marked subroutine is shown to an 't om Y
the right. Notice no RETURN statement is used. A 100 DEFFN'1 "HEX(
RETURN is not required for text entry. Enter this
program and touch Special Function Key 1.

If the word ““HEX("" is frequently needed while enter-
inga program, writing a marked subroutine and calling

it with Special Function Key 1 can save a programmer —
much time since the word is generated with a single READY
key. <HEX(

ARGUMENT PASSING CAPABILITY

The use of variables in the DEFFN’ statement is
reserved for argument passing; that is, the assigning
of values to the variables (s) in the marked subroutine
prior to execution of the marked subroutine. The
variable names to be used in the subroutines are
specified within the DEFFN’ statement. The assign-
ing of values to the variable is done either in the
GOSUB’ statement, calling the marked subroutine, or
by entering the values separated by commas. The
values are entered just before touching the Special
Function Key which calls the marked subroutine
from the keyboard. No where in the actual marked
subroutine are the variables defined.

The example just used for the solution of a general
quadratic equation can be changed so that the variables
are assigned values before the subroutine is called.

103

Chapter 9
Customizing the System 2200

First, the DEFFN’ statement is rewritten as shown to (
the right, statement number 20 is taken out, and all READY

:10 DEFFN'5(A,B,C):REM GENERAL QUADRATIC EQUATION SOLUTION
:20 D=B42-4*A*C
:30 IF DO THEN 70

other statements moved up.

Notice statement number 10 contains the variable
names enclosed within parentheses used in the sub- :40 IF D=0 THEN 60

. P :50 PRINT "X'l"';(-B*'SQR(D);/(Z*A),“X2=”;(-B-SQR(D))/(2*A):RETURN
routine. 160 PRINT “X1=X2=";-B/(2*A):RETURN

¢70 PRINT "X1 AND X2 IMAGINARY":RETURN
Enter this marked subroutine into the System 2200

memory, remembering to clear the memory before
starting.

(READY
15,6,7
X1 AND X2 IMAGINARY

For Special Function Key entry to this subroutine,
arguments (variable values) are passed by keying them
in, separated by commas, just prior to touching the

Special Function Key. For example, .2.15.7
ey 9
Touch RESET X1==.5 X2=-7
Touch keys 5, 6, 7 Special Function
key 5 =
Touch keys 2, 15, 7 Special Function
key b

These arguments have been passed to the marked
subroutine; the subroutine is executed and control is
returned to the keyboard.

104

Chapter 9
Customizing the System 2200

For entry into this subroutine under program control,
the GOSUB’ xxx statement, followed by the variable
values in parentheses, is used. For example, this same
DEFFN’ 5 subroutine is called under program control
by adding statement 5 to the program shown to the
right.

The GOSUB’ 5 statement assigns values to the vari-
ables.

Enter this statement, list the program then execute it.

Touch RESET

Touch key 05 GOSUB’ 5 (5,6,7):STOP
Touch LIST EXECUTE

Touch RUN EXECUTE

The number of the variables entered in the GOSUB’
statement, or keyed in prior to touching the Special
Function Key, must be the same as the number of
variables specified in the DEFFN’ statement. These
values must be separated by commas. The value given
canbe any legal algebraic expression (see example one
to the right). The order in which the values are assigned
is the order in which they are represented in the
DEFFN’ statement.

There is no limit as to the number of arguments that
can be passed.

It is also possible to have nothing following the
DEFFN’ integer. In this case you mark a subroutine
but do not pass arguments. See example two to the
right.

READY

105 GOSUB'5(5,6,7):STOP

:LIST

5 GOSUB *5(5,6,7):STOP

10 DEFFN'5(A,B,C):REM GENERAL QUADRATIC EQUATION SOLUTION

20 D=B42-4*A*C

30 IF DCO THEN 70

40 IF D=0 THEN 60

50 PRINT "X1=";(=B+SQR(D))/(2*A),"X2=";(=B=SQR(D))/(2*A) :RETURN

60 PRINT "X1=X2=";-B/(2*A):RETURN
70 PRINT "X1 AND X2 IMAGINARY":RETURN

¢RUN
X1 AND X2 IMAGINARY

STOP
EXAMPLE 1
10 GOSUB' 20(SQR(10),5+6-SQR(6),SIN(.5))

90 DEFFN' 20 (A,B,C)

EXAMPLE 2

100 DEFFN' 16

110 PRINT "COL#1";TAB(15);"COL#2";TAB(35);"COL#3"
120 PRINT:PRINT

130 RETURN

105

Chapter 10
Additional Methods Of Assigning Values To Variables

Chapter 10

Additional Methods
of Assigning Values
to Variables

In Part I, the assignment statement was introduced.
Thus far, it has been the only method used in this
manual for assigning values to variables. The assign-
ment statement is limited as it must be changed and
re-entered if you want to change the value of the
variable in the program. Two additional methods are
available in System 2200 BASIC which make it
possible to vary the value of variables without having
to change BASIC statement lines. The two methods
are (1) the READ and DATA statements and (2)
the INPUT statement. Each is discussed with examples
in this chapter.

107

Examples of Assignment Statements

1.10 LET A=17.3

2. 20 B=23,9:C=-11,4:D=1,3E4

3. 30 LET E=SQR(A*2+B42+C42+D42)
4. 40 PRINT "E=";E

Chapter 10
Additional Methods Of Assigning Values To Variables

Section 10-1
DATA And READ Statements

The DATA statement (general form shown to the GENERAL FORM

right) is used to store data in a program. The state-

ment can be used only in the Program Mode, and DATAn [in. .]

consists of the BASIC keyword DATA, followed by where n = number or a character string enclosed
one or more values separated by commas (see example in quotation marks.

to the right).
100 DATA 17.3,23.9,-11.4,1.3E4

The system automatically sets a data pointer to the

location of the first value in the DATA statement. ~ ~ g
It uses the pointer to keep track of the next value to STMT KEYWORD DATA

be used in the program. No. SEPARATED BY COMMAS
It does not matter whether all the data is included in

one DATA statement or several. The statements 100

to 120 to the right are equivalent to the single state-

ment 100 in the previous example.

The order in which the data appears, however, is 100 DATA 17.3

important. When the values are stored, they are 110 DATA 23.9,-11.4
stored in sequential order as they appear in the DATA 120 DATA 1.3E4
statements. The data pointer is always initially set to

the first value stored.

In order to use. the va}Iues that have been stored, it is GENERAL FORM
necessary to assign variable names to each value before

they are used. This is the function of the READ state- READ [,variable. . .]

ment (general form shown to the right). The READ
statement is composed of the BASIC keyword READ,
followed by one or more variable names separated by
commas.

108

Chapter 10

Additional Methods Of Assigning Values To Variables

The READ statement in line 20 (example at the right)
sequentially assigns the four values in the DATA
statement to the variables in the READ statement.
Thus, A=17.3,B =239, C=-11.4,and D = 1.3E4;
these values now may be used in subsequent calcula-
tions. All the data does not need to be read at one
time with a single READ statement. |f fewer values
are read than have been stored, the data pointer
automatically keeps track of the last value read.

In the program to the right, only two data values are
read by each READ statement (lines 30 and 50
respectively).

In this second example, exactly the same number of
values stored are called for by the READ statement
(line 10).

EXAMPLES OF READ AND DATA STATEMENTS

10 DATA 17.3,23.9,-11.4,1,3E4
20 READ A,B,C,D

-

READY

:10 DATA 17.3,23.9,-11.4
:20 DATA 1.3E4

:30 READ A,B

:40 PRINT "A=";A,"B=";B

:50 READ X.Y

:60 PRINT "X=";X,"Y="3Y

:RUN

A= 17.3 B= 23.9

X==11.4 Y= 13000
-

READY

<10 READ A,B,C,D

220 E=SQR(A42+BA2+C42+D42)

:30 PRINT "E="3E

:40 DATA 17.3,23.9,-11,4,1,3E4
+RUN

E= 13000.03848

109

Chapter 10
Additional Methods Of Assigning Values To Variables

If you have fewer values in a DATA statement (s)
than are called for by the READ statement (s), the
program stops when it runs out of data and prints
out an error message (ERR 17) indicating that there
was not enough data. You can request less data with
a READ statement than there is in a DATA statement
without obtaining an error. If you have only DATA
statements without any READ statements, no error
message is printed out, but there is no way of accessing
the data.

DATA statements can appear anywhere in a program,
before or after the READ statement(s). This is possible
since the program is first scanned for all DATA
statements, and any data is stored before the actual
execution of the program is begun. A data pointer is
set up to keep track of the data so that when a READ
statement is executed, the proper data is used.

The flowchart and program on the next few pages
represent the solution to the problem of determining
which of three different given numbers is the largest.
The values are inputted via READ and DATA state-
ments. Notice in the program a common use of
IF-THEN decision to test when the last piece of data
is read. A value of 9999 is used as the last piece of
data in the example and as each piece of data is read,
it is tested to see if it equals 9999. When a data value
of 9999 is read, the program ends; if not, the program
continues.

110

Chapter 10
Additional Methods Of Assigning Values To Variables

(Assume A B #C | BEGIN)

COMPARE
A =9999

NO A #9999

COMPARE
A AND B
B>A
COMPARE
B AND C
cC>B

Tl
+

PRINT
L,AB,C

LET
L=A

LET c

11

Chapter 10
Additional Methods Of Assigning Values To Variables

r
READY

:10 READ A,B,C

:15 IF A=9999 THEN 125
:20 IF ADB THEN 90

:30 IF B)C THEN 70

:40 L=C

:50 PRINT L,A,B,D

:60 GOTO 10

:70 L=B

:80 GOTO 50

:90 IF A)C THEN 110

:100 GOTO 40

:110 L=A

:120 GOTO 50

:125 END

»8
,9999,9999,9999

W N0 W

— NNO W
PN OYOO N —
Lo B

END PROGRAM
FREE SPACE=3214

THE RESTORE STATEMENT

The previous examples show the READ statement(s)
reading DATA values sequentially from DATA state-
ments. Once the programs are executed, the data in
the DATA statements cannot be re-used unless the
programs are run again.

112

Chapter 10

Additional Methods Of Assigning Values To Variables

A method is available to allow the same data to be
read more than once within a program. This is
accomplished with the RESTORE statement.

The RESTORE statement resets the pointer, allowing
the data in the DATA statements to be re-used with-
out having to run the program again. The general
form of the RESTORE statement is shown to the
right.

The expression in the RESTORE statement is evaluated
by the System 2200 and truncated to an integer. The
value of the integer represents the position of the
next data value to be retrieved by the READ state-
ment. For example, if the value of the expression is
3, the next READ statement retrieves data beginning
with the third data item stored. If the expression is
omitted, the next READ statement retrieves data,
starting with the first data item stored.

Consider the first program shown to the right. State-
ment line 10 reads the first four data values in state-
ment 40 (i.e., 100, 200, 300, and 400). Statement line
20 restores the data pointer or sets it back to the
first value (line 40). Statement 30 requests five values
and the first five values in statement 40 are assigned
to the variables (i.e., 100, 200, 300, 400 and 500).
Then compare this program to the next program.
Line 10 requests four values from data statement
40 (i.e., 100, 200, 300 and 400). Line 20 restores the
data pointer to the third value (line 40). Line 30
requests five values and five values from statement 40,
beginning with the third, are assigned to the variables
(i.e., 300, 400, 500, 600, and 700).

GENERAL FORM
RESTORE [expression]

PROGRAM 1

p
READY

:10 READ M,N,O0,P

:20 RESTORE

:30 READ Q,R,S,T,U

:40 DATA 100,200,300,400,500,600,700

:50 PRINT M3N;0;P;Q;R;S;:T3U

<RUN

100 200 300 400 100 200 300 400 500

PROGRAM 2

(-READY

:10 READ M,N,0,P

:20 RESTORE 3

:30 READ Q,R,S,T,U

+40 DATA 100,200,300,400,500,600,700

:50 PRINT M;3;N;03P;Q3R;3S;TsU

<RUN

100 200 300 400 300 400 500 600 700

113

Chapter 10

Additional Methods Of Assigning Values To Variables

The RESTORE statement also can be used to skip
over values in a DATA statement. Consider the
program to the right. Notice the execution of state-
ment line 20, RESTORE b, causes the System 2200
to skip to the fifth data value for the subsequent .
READ statement in line 30.

The RESTORE statement thus can be used to reset
the data pointer to any item in the stored data. In
situations where there are multiple data statements,
data values are stored sequentially, beginning with the
first value in the lowest numbered DATA statement
line. Any attempt to RESTORE to a non-existent
data value (i.e., RESTORE 8 or higher in the last
example program) results in an error message and
termination of the program execution (see example).

/7

s

READY

:10 READ M,N

:20 RESTORE 5

:30 READ 0,P

:40 DATA 100,200,300,400,500,600,700
:50 PRINT M;N;0;P

+RUN

100 200 500 600

READY

:10 READ M,N

:20 RESTORE 8

:30 READ 0,P

:40 DATA 100, 200, 300, 400, 500, 600, 700
:50 PRINT M;N;03P

*RUN

30 READ 0,P
}ERR 27

114

Chapter 10
Additional Methods Of Assigning Values To Variables

Section 10-2
The INPUT Statement

With both the assignment and READ/DATA state-
ments, all variable values are entered prior to running
the program; that is, all variable values are contained
within the program itself. Changing the values, in
either case, means changing the program text. This is
a valid approach for storing constants which may
remain the same each time the program is executed.
The INPUT statement allows a programmer to enter
data after program execution has begun. The data
inputted does not become a part of the program

text.
Enter the program shown at the right into the System
2200 memory. READY
. :10 INPUT X,Y
Line number 10 asks for two values (X and Y) to be <20 PRINT X,X’Z,Y,Y*Z
inputted. Notice the variables names are separated by <30 END
commas. .

Touch RESET
Touch RUN CR/LF-EXECUTE

When a program with an INPUT statement is executed, READY
the System 2200 continues executing the program :RUN

line by line until program flow reaches the INPUT
statement. The System 2200 then stops execution
and prints out a question mark, ‘‘?"’. The user is then
expected to enter data values, one for each variable
named in the INPUT statement, separated by commas.

115

Chapter 10

Additional Methods Of Assigning Values To Variables

Touch keys 3, 4 CR/LF-EXECUTE

When the CR/LF key is touched, program execution
continues.

If fewer than the required number of values (which
in this case is two) are given before the CR/LF-
EXECUTE key is touched, the System 2200 will
continue printing “?"”’s in the display until all the
requested values have been entered. If more values
are entered than required, the additionai values are
ignored.

The general form of the INPUT statement is shown to
the right.

INPUT WITH AN INCLUDED TEXT STRING

The general form of the INPUT statement allows
inclusion of a literal string in quotation marks before
the INPUT variable(s). When the statement is executed,
the literal string is printed out followed by a question
mark. This feature allows the programmer to output
a message to the user before the required data is
keyed in.

There is no limit to the number of characters that
may appear in the string, as long as the maximum line
length does not exceed 192 strokes.

Enter the program shown to the right.

READY
:RUN
? 3,4
3 9 4 16

END PROGRAM
FREE SPACE=3340

GENERAL FORM

INPUT [‘“character string’’,] variable [,variable . . .]

10 INPUT “NEXT VALUE", S
20 REM TEST FOR NEG. VALUE
30 IF S<0 THEN 60

~ 40 PRINT "SQUARE ROOTS OF"3;S;"ARE + AND=";SQR(S)

50 GOTO 10
60 PRINT "NO REAL ROOTS OF";S
70 GOTO 10

116

Chapter 10
Additional Methods Of Assigning Values To Variables

Line number 10 is an INPUT statement with a literal
string. The program is set up as an infinite loop
because the GOTO statements at lines 60 and 70
alwaysdirect program flow back to the first statement
line.

Touch keys RUN CR/LF-EXECUTE

The program prints the literal string used to identify
the input data.

Enter any value and continue execution of the pro- e
gram to see what happens. READY

:10 INPUT "NEXT VALUE", S

+20 REM TEST FOR NEG., VALUE

:30 IF S<O THEN 60

:40 PRINT “SQUARE ROOTS OF";S;"ARE + AND=-";SQR(S)
+50 GOTO 10

:60 PRINT “NO REAL ROOTS OF";S

:70 GOTO 10

+RUN

NEXT VALUE? _

117

Chapter 11
Arrays, And Array Variables

Chapter 11

Arrays, and Array
variables

System 2200 BASIC allows for the definition of
several types of variables. Up to now, you have
been using only simple numeric variables called numeric
scalar variables. Another type of variable that can be
defined in the System 2200 is called the array variable.

Section 11-1
What Are Arrays?

An array is simply a set of numbers arranged in a table
such that each number is uniquely identified by its
position. In System 2200 BASIC, arrays can have
either one or two dimensions. In two dimensional
arrays, each element is identified by its numerical row
and co/umn position.

119

Chapter 11
Arrays, And Array Variables

The table to the right represents a square array of 5
columns and 5 rows. A square array has the same
number of rows as columns.

The array is called R(), where the value in the paren-
theses denotes the size of the array.

Notice each element of the R() array is associated
with a subscripted letter in the table below it. The
circled number 9 is in row 2 and also in column
2. Standard mathematical subscript notation indicates
this by My -

In System 2200 BASIC a statement assigning the value
of 9 to the element in the second row and second
column in this R() array is:

R(2,2) =9

Likewise, the circled number 10 is in row 5, column
2, and is identified as rs, - In System 2200 BASIC
the notation is simply:

R(5,2)

The first subscript denotes the row, and the second
subscript denotes the column, in which the element
appears.

An array can consist of either a single row or single
column, as shown to the right.

120

COLUMNS
7 6 5 4 9
R 1 @ 2 2 3
R()
o) 6 2 1 4 10 ARRAY
w 5 1 4 9 5
s | o -
r11 I’12 r13 r14 r15
r21 @ r23 r24 r25
31 r32 r33 r34 r35
I’41 r42 r43 44 r45
r51 @ r53 r54 rSS
r r, 7
r2
s, S,.
i
Column Array Row Array

Chapter 11
Arrays, And Array Variables

Section 11-2
Naming And Dimensioning Arrays

In System 2200 BASIC, array variable names are the
same as simple (scalar) variable names except for the
appropriate subscripts enclosed in parentheses. There
are, therefore, 286 array names available (A-Z and
AO0-Z0). The subscripts contained in the parentheses
describe a particular element position in the array EXAMPLES OF LEGAL ARRAY NAMES
{see examples to the right). A(5) M(20)
X4(8,6) - P3{(10, 10)

Before an array or any of its elements can be used,
space must be set aside in memory for the entire
array. This is accomplished using a DIM (dimension)
statement. The maximum size of either dimension
(i.e., number of rows or number of columns) is 255.

The general form of the DIM statement is shown to GENERAL FORM
the right.
¢ DIM dim element [{ .dim element} .

numeric array variable
where dim element = <{ alpha array variablel [integer] 0 < integer < 65
alpha scalar variable [integer]

Examples of dimensioned numeric array variables are DIM A(5,2) Reserves space for a 2 dimensional array of 10 elements
shown to the right. (6 X2)
DIM A(5,2), B(3,1) Reserves space for two, 2 dimensional arrays of 10

(6 X 2) and 3 (3 X 1) elements respectively.

DIM B(6,1}, C(3,2), E{5,1) Reserves space for three, 2 dimensional arrays of 6,
6, and 5 elements respectively.

DIM E1(5) Reserves space of a single dimension array of 5 elements.

1Aly:)hanurneric variables are discussed in Chapter 12.

121

Chapter 11
Arrays, And Array Variables

Space can be reserved for more than one array in a
single DIM statement by separating the entries for
array names with commas. The DIM statement must
appear before any use of the array variables in a
program, and the space to be reserved for the array
must be explicitly indicated. Subscripts cannot be
variables or variable expressions, but must be integer
values (1 to 255). The numeric value of the subscript
cannot be a zero.

Once a numeric array is dimensioned, the initial value
of each element is 0, and each element can be used
like a regular variable, as shown in the program to the
right.

Except in the DIM statement, array subscripts can be
any variable or variable expression with a value
greater than 0 and less than 256. Thus, the subscript
can be computed. The program to the right is an
example of a program which computes the position
in the array and assigns the value of b to each element.
In this example, a FOR/NEXT loop is used to change
the subscript in the array.

Analysis of Problem:

Statement 10 - sets aside enough memory for the 100
values in array X().

Statement 20 - sets up a counter where | goes from 1
to 100. | is a variable used as a subscript in array X{).
Statement 30 - assigns the value 5 to every element in
the array X() where | goes from 1 to 100 (x], X

I SR T

27

Statement 40 - increments the counter variable |, by
one each time the program loops.

READY

:10 DIM X(5,5),W(8,10)
:20 X(1,3)=25%6.342

:100 IF W(8,5)<13 THEN 50
1120 Y=W(2,3)*X(3,2)
READY

:10 DIM X(100)

:20 FOR I=1T0 100

:30 X(I)=5

140 NEXT I

122

Chapter 11
Arrays, And Array Variables

USING NESTED LOOPS TO DEFINE THE
ELEMENTS OF A TWO-DIMENSIONAL ARRAY

Observe the program to the right. When the program e

is executed, the X() array is dimensioned asa5 X 3 READY

array and enough memory is set aside for the array. 210 DIM X(5,3)
Statement 20 sets up a FOR-TO/NEXT LOOP where :20 FOR B=1 TO 5
the row position is given the name B, and a counter is 28 ;?g 5;1213-0 3
set up from 1 to 5. Statement 30 sets up a FOR- :50 NEX'I" C
TO/NEXT LOOP where the column position is given ;60 NEXT B

the name C and a counter is set up from 1 to 3. <70 END

Execution of both these statements the first time .

results in the subscripts of array X() being assigned
the values B=1 and C=1. Therefore, when statement
40is executed, X, (or X,) is set equal to 23. State-
ment 50 then is executed, which results in C being
incremented by 1 and tested to see if the limit of the
inner loop is satisfied. If not, statement 40 is executed
and X, . (now X) is set to 23. This continues
until the inner loop is satisfied {i.e., Xpe =X 13) then
statement 60 is executed. Since this is part of the
outer loop, B is incremented by 1. The inner loop is
processed completely each time the outer loop is
processed once. In this way, each element, row by
;?W (i.e., Xll ’ x12 ' Xl3’ X21 ¢ X22 ! x23' X31 ’

5, and X,) is assigned the value of 23.

123

Chapter 12
Alphanumeric String Variables

Chapter 12

Alphanumeric
String Variables

A third type of variable can be defined in System
2200 BASIC, namely the alphanumeric string variable.
An alphanumeric string variable is a variable with a
value made up of a group of alphanumeric characters.
An alphanumeric character in BASIC is any numeric
digit, letter, and special character, such as +, —, 1, (,
), <, >, %, $, etc. (i.e., any printable character). In
the System 2200 there are non-printable command
codes associated with the various peripherals. These
command codes can be a part of the value of alpha-
numeric string variables.

Section 12-1
String Variable - Names and Characteristics

NAMES

String variables are distinguished from numeric vari-
ablesin two ways. First, string variables have different
names than numeric variables. A string variable is LEGAL STRING VARIABLE NAMES
denoted by a letter or a letter and a digit, followed

by a “$" (dollar sign). There are a total of 286 A4S w3s$

possible string variable names. X$ Z6$

Second, unlike numeric variables which can only
represent numbers, string variables can represent any
string of symbols, letters, or digits.

125

Chapter 12
Alphanumeric String Variables

Until a string variable is assigned a value, it is assumed
to consist of one space. This compares to numeric
variables, which assume a value of O before they are
assigned some other value. Unless specified in a DIM
statement, the maximum number of alphanumeric
characters a string variable can assume is 16; if
specified, the size can range from 1 to 64. This
compares to the maximum number of 13 digits a
numeric variable can assume. If an attempt is made
to assign a literal string of greater length than 16 to a
string variable, without dimensioning it, the additional
characters are simply ignored.

Section 12-2
Assigning Values To String Variables

String variables, like numeric variables are assigned
values by assignment statements, READ/DATA state-
ments, and INPUT statements. Except for the INPUT
statement, the characters and spaces all must be
enclosed in double quotes.

Some examples of using string variables with assign-
ment statements and READ/DATA statements are
given to the right.

ASSIGNMENT STATEMENT
V$="JOE SMITH"
F$="MAPLE STREET"
X4$="G542H-16#"
W$="152,760"

READ AND DATA STATEMENTS

10 READ A$,B$,C$

80 DATA "OHIO","MISSOURI","INDIANA","NEW YORK", .

126

Chapter 12
Alphanumeric String Variables

The situation with the INPUT statement is somewhat
different. Alpha characters need not be included in
guotation marks. However, if they are not, commas
and carriage returns act as string terminators and
leading spaces are ignored. Thus, if commas or leading
spaces are to be included as part of the literal string
in the INPUT statement, the string must be included
in double quotes.

The example to the right shows the results of respond-
ing to an INPUT request with quotes and without
guotes. Notice in the case without quotes, only the
first two parts, as denoted by commas, are picked
up. The rest of the data is ignored.

WITH QUOTATION MARKS

f

READY

:10 INPUT Y$,2%

220 PRINT Y$:PRINT 2%

:RUN

? "PARK,MARY J.","JONES,STANLEY F,"
PARK,MARY J.

JONES,STANLEY F,

WITHOUT QUOTATION MARKS

r

READY

:10 INPUT Y$,2$

:20 PRINT Y$:PRINT Z$

<RUN

? PARK,MARY J.,JONES,STANLEY F.
PARK

MARY J.

127

Chapter 12
Alphanumeric String Variables

Section 12-3
Using String Variables

Once a string variable is given a value, it may be used EXAMPLES OF USING STRING VARIABLES WITH RELATIONAL OPERATORS

with all the relational operators (=, >, <, =2, <, and
<>). GE ADY
+80 IF Z$="ABC" THEN 200 IF/THEN STATEMENT
190 W$=A$ ASSIGNMENT STATEMENT
:130 IF BCA THEN 150 IF/THEN STATEMENT
However, string variables and strings cannot be used ILLEGAL USE OF STRINGS

with arithmetic operators {i.e., +, -, *, /, 1).
PRINT C$, C$ 2 — Strings cannot be raised to a power

W$ ="123" — Literal strings assigned are numeric which is O.K. However,
V$ = "456" since they are in quotes and are assigned to a string variable,
they cannot be arithmetically manipulated.

Y$=WS$+V$ — Strings cannot be added numerically regardless of what
characters they represent.

128

Chapter 12
Alphanumeric String Variables

ALPHANUMERIC ORDERING

Two string variables are compared by the relative
alphanumeric characters composing them. The order-
ing is given in the table to the right.

Notice the letters of the alphabet are ordered as
expected (A <B <C...Z). Also notice the numerals
0 thru 9 are as expected, and numerous symbols fall
throughout. A space has the lowest order and the *
has the highest order. When a comparison of strings is
made, the strings are compared on a character-by-
character basis.

Short strings are filled out with trailing spaces to
allow for comparisons with longer strings. These
trailing spaces have no effect otherwise in subsequent
operations.

ALPHANUMERIC ORDERING TABLE
(LOWEST ORDER) SPACE 0 A P
| " 1 B Q
N # 2 C R
C $ 3 D S
R % 4 E T
E ’ 5 F u
A (6 G \V}
S) 7 H W
| * 8 | X
N + 9 J Y
G , : K Z
R - ; L * (HIGHEST ORDER)
< M
A
N / = N
K > 0]

EXAMPLES OF ALPHANUMERIC COMPARISONS

“JOHN SMITH" <"“WILLIAM JONES” — comparison stops after first character:
J<W

“SMITH, JOHN" > “JONES, WILLIAM" — comparison stops after first character:
S>J

“ABC" <''CBA" — comparison stops after first character:

A<C

“ABC" > ""~ABC" because of leading space, string comparison stops after first charac-
ter: A> -

“1921 PARK DRIVE"” <“'A” because 1 < A
“1921 PARK DRIVE"” > "“~A" because 1> (space)
"X >"-X"" because X > -

=" > ""X'" because — > (space) ("X is filled out with trailing spaces).

129

Chapter 12
Alphanumeric String Variables

The program to the right shows a commonly used
programming technique, in which string variables aid
in the creation of conversational programming. State-
ment 10 is an INPUT statement with a literal string
and is used to indicate to the user that a number is
required. The inputted data is then assigned to a
numeric variable. Statement line 20 asks whether the
user desired the SQUARE or the CUBE of the number
previously entered, and assigns the response to a
string variable. Statement line 30 checks to see if the
request is for a SQUARED number which, if true,
causes program flow to go to statement line 50, setting
the power to 2. If the request of the second INPUT
statement is not squared, program flow after statement
line 30 continues to line 40, where the response is
checked against CUBED. If this condition is met,
program flow goes to statement line 60, where the
power is set to 3. If the request of the second INPUT
statement is neither SQUARED nor CUBED, program
flow goes to the second statement in statement line
40, which causes a printing of the statement BE
MORE SPECIFIC, after which program flow is directed
back to the second INPUT statement. This allows the
program to handle virtually any response to the
second INPUT statement. A recognizable response
(here SQUARED or CUBED) causes the program
flow eventually to loop back and continue requesting.

Enter the program on the previous page:
Touch RUN CR/LF-EXECUTE
Touch 5 CR/LF-EXECUTE

Touch keys SHIFT LOCK SQUARED
SHIFT CR/LF-EXECUTE

EXAMPLE OF STRING VARIABLES IN A CONVERSATIONAL PROGRAM

10 INPUT “WHAT NUMBER DO YOU WANT TO WORK WITH", X
20 INPUT “DO YOU WANT IT SQUARED OR CUBED"”, N$
30 IF N$="SQUARED"” THEN 50
40 |IF N$="CUBED"” THEN 60: PRINT “BE MORE SPECIFIC”: GOTO 20
50 P=2:GOTO70
60 P=3
70 PRINT X; N§; “="; X1P: PRINT
80 GOTO 10
—
READY

10 INPUT "WHAT NUMBER DO YOU WANT TO WORK WITH",X
20 INPUT "DO YOU WANT IT SQUARED OR CUBED",N$

:30 IF N$="SQUARED" THEN 50

:40 IF N$="CUBED" THEN 60:PRINT "BE MORE SPECIFIC":GOTO 20
:50 P=2:G0TO 70

160 P=3

:70 PRINT X;N$;"=";X4P:PRINT

:80 GOTO 10

WHAT NUMBER DO YOU WANT TO WORK WITH? 5
DO YOU WANT IT SQUARED OR CUBED? SQUARED

5 SQUARED= 25

WHAT NUMBER DO YOU WANT TO WORK WITH? _

130

Chapter 12
Alphanumeric String Variables

Section 124
Dimensioning String Variables

In Section 12-1, it was mentioned that the standard
size of a System 2200 string variable is 16 characters.
If a string variable is shorter than 16 characters, the
remaining positions are considered to be trailing
spaces. If more than 16 characters are assigned to a
string variable, the excess characters beyond 16 are
ignored unless specified in a DIM statement.

System 2200 BASIC, however, allows a user to change
the size of a string variable from 16 characters to any
number of characters from 1 to 64. The result is a
compacted or extended string variable. This is accom-
plished using the DIM statement. The maximum
number of characters desired is given, following the
string variable name without parentheses.

In the line to the right A$ is set to a maximum length
of 36 characters, B$ to a maximum of 64, and C$ to a
maximum of 7.

The use of the DIM statement with string variables
differs from its use as described in chapter 11, in
that the string variable still only represents a single
“value”'. In this case, however, the “‘value’”’ in terms of
absolute size is changed.

The statements to the right show the results of using
a DIM statement to alter the maximum length of a
string variable.

Without the DIM statement, assigning a string of 26
characters to a string variable (here A$) results in its
picking up only the first 16 characters. However,
by changing the length (here B$ to 5, and C$ to 20)
results in the string variable picking up its respective
specified number of characters.

DIM A$36, B$64, C$7

-
READY
:A$="ABCDEFGHIJKLMNOPQRSTUVWXYZ"

:PRINT A$
ABCDEFGHIJKLMNOP

:DIM B$5,C$20
:B$,C$="1234567890ABCDEFGHIJKLMN"

:PRINT B$,C$
12345 1234567890ABCDEFGHIJ

.
.

131

Chapter 12
Alphanumeric String Variables

STRING ARRAYS

Arrays of string variables also can be dimensioned, just
as numeric variables can. The maximum subscript is
again 255. The maximum number of characters which
each string array element can assume is 16 characters,
unless the size of the string variable is set at another
value. Elements of string arrays can be dimensioned
from one to sixty-four characters in length.

DIM A$(5,5), B$(25)

DIM X3$(5,5)50
In the first DIM statement to the right, the string

array A$() is defined as a two dimensioned array

having 5 rows and 5 columns. The string array B$()

isdefined as a one-dimensional array with 25 elements.

The maximum length of the individual string elements

in A$() and B$() is sixteen. The second DIM state-

ment defines a two-dimensional string array (X3$())

of five rows and five columns, in which each element

can assume up to fifty characters.

Section 12-5
The STR(Function

Although string variables cannot be added, ' subtracted,
etc., they can be manipulated. There are two functions
which allow the user to analyze the length of string
variables and to access the characters which compose GENERAL FORM
them. One of these functions is the STR{ function.
The general form of the STR(function is shown to
the right.

STR (string variable name, expression [,expression])

Where 1st expression = starting character in string
2nd expression = number of consecutive characters.
(The specification of 2nd expression is optional.)

1
System 2200B language features enable a user to add string variables
with the ADD statement.

132

Chapter 12
Alphanumeric String Variables

The STR{ function enables the user to extract, examine
and/or replace portions of string variables. The
function is generated by touching keysS T R (.

STR(AS$,3,4) means

starting with the third character of A$, take four
characters (i.e., the 3rd, 4th, 5th and 6th characters).

STR(A$,3) means

starting with the third character, take remainder of the
string A$.

The program shown to the right is a programming
example using the STR(function. As the REM
statements indicate, the credit card number entered
via the INPUT statement in line 50 is checked for
membership year and credit rating. Both pieces of
information are “‘imbedded’’ in the credit card number.

22277 is entered as the last name processed. The
22277 is test data, checked by the IF/THEN state-
ment in statement line 60. The variable S serves as a
counter, to check the number of transactions pro-
cessed.

Examples using the STR(function

Assuming B$ = “ABCDEFGH"
10 A$=STR(B$,2,4)
20 STR(A$,4)=B$

— AS isset to “BCDE".

— Characters 4 through 16 of A$ are
set to “ABCDEFGH".

— The 3rd, 4th, and 5th characters of A$
are set to "EFG"".

40 IF STR(B$,3,2)="AB" THEN 100 — Characters “CD’’ of B$ are compared
to the literal string “AB"’.

— Characters 9 through 16 of AS re-
ceive the next data value.

30 STR(A$,3,3)=STR(B$,5,3)

50 READ STR(A$,9,8)

EXAMPLE OF PROGRAM USING THE STR(FUNCTION

10 REM CREDIT CARD MEMBERSHIP AMD CREDIT CHECK
20 REM DATA TAKEN IN VIA INPUT STATEMENT

30 S=0:PRINT

40 INPUT "NAME",N$

50 IF N$="Z7777Z" THEN 110:S=S+]

60 INPUT “CREDIT CARD #",C$

70 PRINT "CUSTOMER'S NAME","CARD NO."," MEMBER SINCE","CREDIT R
ATING"

80 REM CHAR 16 IS CREDIT RATING

90 PRINT N$,C$," 19";STR(C$,9,2),STR(CS,16)
100 GOTO 40

110 PRINT "ALL CARDS PROCESSED",S;"TRANSACTIONS"
120 END

133

Chapter 12
Alphanumeric String Variables

Enter this program.

Touch RESET RUN CR/LF-EXECUTE

Touch keys SHIFT LOCK “DOE SHIFT,
SHIFT LOCK JOHN" SHIFT CR/LF-EXECUTE

Touch keys 8 X 36-41-68379A-8
CR/LF-EXECUTE

Continue to enter the names and credit card numbers
as shown in the output. Enter ZZZZZ when you wish
to end the program.

The STR{ function can be used anywhere a string
variable is needed and it can be used with string
arrays.

Section 12-6

READY
:RUN

NAME? "DOE,JOHN"

CREDIT CARD #? 8X36-41-68379A-8

CUSTOMER'S NAME CARD NO. MEMBER SINCE CREDIT RATING
DOE, JOHN 8X36=-41-68379A-8 1968 8

NAME? “SMITH,W.C."

CREDIT CARD #? 4X52-61-72594C-5

CUSTOMER'S NAME CARD NO. MEMBER SINCE CREDIT RATING
SMITH,W.C, 4X52-61-72594C~5 1972 5

NAME? "JONES,ROBERT"

CREDIT CARD #? 5X19-71-60127L-1

CUSTOMER'S NAME CARD NO, MEMBER SINCE CREDIT RATING
JONES, ROBERT 5X19-71-60127L~1 1960 1

NAME? "ZZ7777"

ALL CARDS PROCESSED 3 TRANSACTIONS
END PROGRAM

FREE SPACE=2976

The LEN(Function

The LEN(function is used to determine the length
of an alphanumeric string, excluding trailing blanks.
This ability to determine the number of significant
characters in a string becomes useful when working
with alphanumeric computations.

The function is generated by touching keys L E N ().
The general form is shown to the right.

GENERAL FORM
LEN (string variable)

134

Chapter 12
Alphanumeric String Variables

The LEN(function gives a numeric value and as such
can be used whenever a numeric variable is legal.

Several examples of the LEN(function are shown to
the right.

NOTE:

When a string is defined to contain all spaces,
requesting the LEN() of the string always gives
a value of one. You might expect the value to be
zero, since the string is “empty,” but by defini-
tion the LEN() function counts all characters
until a trailing space is found. In this instance,
the first space is considered a character and the
next space is considered a trailing space, there-
fore the value of one.

7

READY

210 DIM B$(5)49

:20 B$(1)="LAST NAME,FIRST INITIAL,CITY AND STATE,ZIP CODE"
:30 PRINT LEN(B$(1))

<RUN

47

r
READY

:10 LET A$="ABCDEF"
:20 PRINT LEN(A$)
:RUN

READY

:10 INPUT J%

:20 A=5*SQR(LEN(J$)+2)
:30 PRINT "A="3;A

:RUN

? ABCDEFG

A= 15

(-READY

:10 INPUT "WHAT IS YOUR NAME",N$

:20 IF LEN(N$)=4 THEN 50

+30 PRINT N$;" IS A VERY SHORT NAME,"
:40 GOTO 10

:50 PRINT N$;" IS A LONG NAME,"

:60 GOTO 10

<RUN

WHAT IS YOUR NAME? MICHAEL

MICHAEL IS A LONG NAME,

WHAT IS YOUR NAME?

135

Chapter 13
Use Of The COM (Common) Statement

Chapter 15

Use Of The COM
(Common) Statement

Situations exist where programs too long for memory
are segmented and stored on some external storage
device (e.g., Tape Cassettes). They are then loaded
into memory one segment at a time and executed.
This is called program chaining and is a commonly
used programming technique.

Ordinarily, as one segment is loaded any data or
program text from the previous segment is lost.
Variableswhich are common to two or more segments
of the program must be retained from one segment of
the program to the next. It would be extremely
inefficient, for example, to generate data in segment
one, needed in segments three and four, and have to
manually re-enter this data as segments three and four
are run. It is the COM (Common) statement which
allows a programmer to designate data in one segment
of a program as common which, in effect, keeps the
data intact for subsequent program segments while
program chaining occurs.

137

Chapter 13
Use Of The COM (Common) Statement

NOTE:

An in .depth discussion of Tape Cassette opera-
tions and the BASIC statements associated with
the cassette can be found in the System 2200
Reference Manual and the Model 2217/2218 Tape
Cassette Reference Manual. Statements are used
in this chapter which have not been previously
discussed in this text (e.q., LOAD). Please refer
to the above mentioned manuals if you have
questions.

Another programming technique associated with the
use of the COM statement is the loading of subroutines
from a cassette into a program resident in memory.
Here data from the main program may be needed
when the subroutine is executed, or data generated
by the execution of a subroutine may be needed by
the main program. In either case, the COM statement
is used to keep the data intact as the subroutines are
loaded and cleared from memory.

Both of these programming techniques, as used with
the COM statement, are illustrated in this chapter.

138

Chapter 13
Use Of The COM (Common) Statement
e]

Section 13-1
What Does The COM Statement Do?

The COM statement sets aside a segment of memory
and stores in this section of memory any variables
designated as common. As a result, the variables remain
intact as programs and non-common variables are
cleared from memory. Common variables are cleared
from memory only when one of the following pro-
cedures are followed:

1) The operator executes a CLEAR CR/LF-EXECUTE
command. This clears the entire memory.'

2) The operator executes a CLEAR V CR/LF-EXE-
CUTE command. This clears a// variables from
memory (common and non-common variables).'

3) The operator Master Initializes the system. This
clears the entire memory."

1 .
Common variables cannot be cleared under program control as none
of these statements are programmable.

139

Chapter 13
Use Of The COM (Common) Statement

The introduction to this chapter described the COM
statement being used in conjunction with Tape
Cassette operations. In general, any information which
is stored on a Tape Cassette is read back into memory
via a LOAD! statement. When a LOAD statement
is executed several things occur:

1) All program execution stops.

2) All program text and non-common variables (those
variables not designated as common) are cleared
from memory.

3) The previously recorded program, is loaded into
memory.

4) The new program is executed.

Any data designated as Common remains intact at the
end of this procedure.

Section 13-2
The COM Statement As Used In Program Chaining

An example is used to illustrate the use of the COM
statement with program chaining. In this example, a
single program is broken down into three segments
and stored on a Tape Cassette. Each segment is
uniquely identified with a name, e.g., “Part #1”,

“Part #2'* and '‘Part #3''. These names are used to PART #1
locate the segment desired on the tape. The program 10 COM X,Y,A(10),N$25
segments are shown to the right. 20 INPUT “X,Y=",X,Y
EXPLANATION OF PROGRAM 30 FOR I=1 TO 10
40 A(I)=X*I
Statement 10 of "Part #1"* is a COM statement which 50 NEXT I
designates the variables X, Y and A(10) as common. 60 INPUT "NAME=",N$
This statement serves to keep the specified variables 70 Y=LEN(NS)
in memory when statement 90 of ‘“‘Part #1' is 80 PRINT : PRINT "LOADING NEXT SEGMENT"
executed. 90 LOAD "PART #2"

1The LOAD statement is described in the System 2200 Reference
Manual and Model 2217/2218 Tape Cassette Reference Manual.

140

Chapter 13
Use Of The COM (Common) Statement

Statement 90, when executed, stops all program
execution, clears all program text and non-common
variables from memory, loads in “Part #2'' and exe-
cutes this second segment.

Statement 15 of segment two is another COM state-
ment which adds the array A(} to the common data
already in memory.

When statement 75 is executed, all common data from
segments 1 and 2 are available to segment 3.

Key this program into memory, store it on a cassette,
load it back into memory and execute it. The necessary
steps are as follows:

. TO ENTER AND STORE THE PROGRAM:

a. Clear memory with a CLEAR CR/LF-EXE-
CUTE.

b. Insert a Tape Cassette into the tape drive.

. Rewind the tape. Touch the REWIND button.

d. Key in statements 10-90 of Part 1 exactly as
shown.

e. Save this on tape. Touch keys SAVE “PART
#1" CR/LF-EXECUTE.

f. The first segment is now on tape. DO NOT
REWIND THE TAPE.

(2]

PART #2

15 COM A(10)

25 PRINT "DATA FROM FIRST SEGMENT":PRINT
35 PRINT "X=";X,"Y=";Y

45 PRINT "N$=";N$

55 FOR I=1 TO 10:PRINT A(I);sNEXT I:PRINT
65 REM A() PASSED TO NEXT SEGMENT

75 LOAD "PART #3"

PART #3

100 DIM B(10)

110 FOR I=1 TO 10

120 B(I)=A(I)+1

130 PRINT "A()="3A(I),"B()=";B(I)
140 NEXT I

150 END

r

CLEAR

READY

:10 COM X,Y,A(10),N$25
:20 INPUT "X,Y=",X,Y
:30 FOR I=1 TO 10

:40 A(I)=X*I

¢50 NEXT I

160 INPUT "NAME=",N$
270 Y=LEN(N$)

:80 PRINT: PRINT "LOADING NEXT SEGMENT"
:90 LOAD "PART #2"
:SAVE "PART #1"

141

Chapter 13
Use Of The COM (Common) Statement

g. Clear memory with a CLEAR CR/LF-EXE- r
CUTE. CLEAR
h. Key in statements 15-75 of Part 2 exactly as
shown. READY
" SoE s On s Touch keys SAVE TPART % PoINT DATA FROM FIRST SEGNENT®:PRINT
42" CR/LF-EXECUTE. : :
:35 PRINT "X=";X,"Y="3Y
The second segment is now on tape. DO NOT :45 PRINT "N$=";N$
REWIND THE TAPE. :55 FOR I=1 TO TO:PRINT A(I);:NEXT I:PRINT
i. Clear memory with a CLEAR CR/LF-EXE- 33'2 ESXDA'('I)’A%S%E TO NEXT SEGMENT
CUTE. : ’
k. Key instatements 100-150 of Part 3 exactly as :SAVE "PART #2
shown.
l. Save this on tape. Touch keys SAVE “PART d
#3" CR/LF-EXECUTE. :CLEAR
Segment 3 is now on tape. READY
m.REWIND THE TAPE. Touch the REWIND oo ok %g %o 10
BUTTON. . 2120 B(1)=A(1)+]
n. CLEAR memory with a CLEAR CR/LF-EXE- 2130 PRINT "A()=";A(I),"B()="3B(I)
CUTE. :140 NEXT I
: <150 END

:SAVE "PART #3"

142

Chapter 13
Use Of The COM (Common) Statement

{l. TO EXECUTE THIS PROGRAM: e
1) Load back into memory the first segment. CLEAR
Touch LOAD “PART #1"” CR/LF-EXECUTE. READY
The first segment is now in memory. :LOAD "PART #1"
:RUN
2) Execute this segment. Touch RUN CR/LF- X,Y=? 5,3
EXECUTE. NAME=? HARVEY SMITH
3) Input the values for X and Y. Touch keys 5,
3 CR/LF-EXECUTE. LOADING NEXT SEGMENT
4) Input a name. Touch keys HARVEY SMITH DATA FROM FIRST SEGMENT
CR/LF-EXECUTE.
.) X=5 Y= 12
Once the first segment is loaded and run, the N$=HARVEY SMITH
remaining segments are automatically loaded by 5 10 15 20 25 30 35 40 45 50
the program. A()= 5 B()= 6
The results of the program are shown to the ﬁ()f 10 g()f }g
right. Data common to all three segments of the Agg; ;g BE;; 21
program is retained from segment to segment due A()= 25 B()= 26
to the COM statement. A()= 30 B()= 31
A()= 35 B()= 36
A()= 40 B()= 41
A()= 45 B()= 46
A()= 50 B()= 51

END PROGRAM
FREE SPACE=3070

143

Chapter 13
Use Of The COM (Common) Statement
L |

Section 13-3
Using The COM Statement With Chained Subroutines

An example also is used in this section to illustrate the
second major use of the COM statement; the COM

statement with subroutines. In this example, three Program Resident in Memory
subroutines are recorded on tape and are loaded from

the cassette into memory in the midst of a program 10 COM L1,L2,L3,N

already resident in memory. In order to do this, the 20 INPUT "LENGTH=",L1

LOAD statements must specify exactly where in the 30 INPUT "WIDTH=",L2

resident program the subroutine is to be placed; that 40 INPUT "HEIGHT=",L3

is, what part of the resident program text (if any) is 45 N=1

to be cleared when the LOAD statement is executed. 50 LOAD "VOLUME" 500,700

As mentioned earlier, the LOAD statement, when 60 REWIND

executed, clears memory of all program text. But an 65 N=2

option of the LOAD statement can be used to specify 70 LOAD "AREA" 500,700

only a portion of the program text is to be cleared. 80 REWIND

This is illustrated in the following example. gg E(_)/?;D "DIAGONAL" 500,700
A listing of resident program is shown to the right.]IOO REWIND

Since the LOAD statement clears memory of all 52)8 Ega DIAGONAL OF RECTANGULAR SOLID
non-common variables, all variables to be used after 550 D=SQR(L142+L242+L342)
the first LOAD statement is executed must be speci- 600 PRINT TAB(10);"DIAGONAL=",D
fied as common data (see statement 10). Statement 650 PRINT

50 instructs the system to remove from memory all 700 REM END OF SUBROUTINE
program text from lines 500 through 700. The 1000 IF N=1 THEN 60

remainder of the program remains intact. The system 1010 IF N=2 THEN 80

then locates the program named “VOLUME" on the 1020 IF N=3 THEN 100

cassette and loads it into memory.

144

Chapter 13
Use Of The COM (Common) Statement

The first line number (500) specified in the LOAD
statement must be present in the subroutine, since it
is at this line number that execution of the subroutine
begins. The second line number in the LOAD state-
ment (700) is necessary to limit the amount of text
that is removed from the main program prior to the
loading of the subroutine. Statements 70 and 90 in
the main program are used to load in the second and
third subroutines and again clear memory of state-
ments 500 through 700 inclusive.

The three subroutines to be stored on the cassette are
shown to the right. Enter the first subroutine into
memory and store it on a Tape Cassette.

1. Clear Memory witha CLEAR CR/LF-EXECUTE.

2. Place a cassette in the tape drive.

3. Rewind the cassette. Touch the REWIND button.

4. Key in the first subroutine.

5. Save this on tape. Use the name “VOLUME" to
identify the subroutine.

Touch SAVE “VOLUME" CR/LF-EXECUTE

The first subroutine is now on tape. DO NOT
REWIND THE TAPE.

Subroutine #1

CLEAR

READY

:500 REM VOLUME OF RECTANGULAR SOLID

:510 V=L1*L2*L3

:520 PRINT: PRINT "LENGTH=";L1,"WIDTH=";L2,"HEIGHT=";L3
:530 PRINT

:540 PRINT TAB (10);"VOLUME=",V

2700 REM END OF SUBROUTINE

:SAVE "VOLUME"

145

Chapter 13
Use Of The COM (Common) Statement

6. Clear Memory with a CLEAR CR/LF-EXECUTE. Subroutine #2
7. Key in the second subroutine. (
8. Save this on tape with the name "AREA" CLEAR
Touch SAVE “AREA’ CR/LF-EXECUTE READY
The second subroutine “AREA” is now on tape. :500 REM SURFACE AREA OF RECTANGULAR SOLID
DO NOT REWIND THE TAPE :515 A=2*(L1*L2+L2*3+L1*L3)
) :525 PRINT TAB(10);"SURFACE AREA=",A
9. Clear Memory - CLEAR CR/LF-EXECUTE. +700 REM END OF SUBROUTINE
10. Key in the third subroutine. sSAVE "AREA"

11. Save this on tape with the name “DIAGONAL"
Touch SAVE “"DIAGONAL" CR/LF-EXECUTE

The third subroutine is now on tape. CLEAR
12. Rewind the tape. Touch the REWIND button.

Subroutine #3

READY

+500 REM DIAGONAL OF RECTANGULAR SOLID
1550 D=SQR(L142+L242+L342)

:600 PRINT TAB(10);"DIAGONAL=",D

1650 PRINT

1700 REM END OF SUBROUTINE

:SAVE "DIAGONAL"

146

Chapter 13
Use Of The COM (Common) Statement

Now key in the resident program.

1. Clear Memory
2. Key in program

This program, when run, will automatically load
in the three subroutines from the cassette.

. Touch RESET

. Touch RUN CR/LF-EXECUTE

. Enter a value for length. Touch keys 24 CR/LF-
EXECUTE.

4. Enter a value for width. Touch keys 20 CR/LF-

EXECUTE.
B. Enter a value for height. Touch keys 8 CR/LF-
EXECUTE.

After each subroutine is loaded and executed, program
statement 1000 in the resident program is the next
statement to be executed. Statements 1000, 1010,
and 1020 direct program flow to the correct statement
in the resident program.

—

wnN

CLEAR

READY

:10 COM L1,L2,L3,N

:20 INPUT "LENGTH=",L1

+30 INPUT "WIDTH=",L2

+40 INPUT "HEIGHT=",L3

:45 N=1

:50 LOAD "VOLUME" 500,700

+60 REWIND

165 N=2

¢70 LOAD "AREA" 500,700

+80 REWIND

:85 N=3

:90 LOAD “DIAGONAL" 500,700
2100 REWIND

<110 END

:500 REM START OF SUBROUTINE AREA
+700 REM END OF SUBROUTINE AREA
+1000 IF N=1 THEN 60

21010 IF N=2 THEN 80

¢1020 IF N=3 THEN 100

READY

tRUN

LENGTH=? 24

WIDTH=? 20

HEIGHT=? 8

LENGTH= 24 WIDTH= 20 HEIGHT= 8
VOLUME= 3840
SURFACE AREA= 1664
DIAGONAL= 32.249030993

END PROGRAM
FREE SPACE=2962

147

Chapter 13
Use Of The COM (Common) Statement
]

Section 13-4
The General Form Of The COM Statement

The general from of the COM statement is shown to GENERAL FORM

the right. COM com element [,com element . ..]

The COM statement allows any type of variable to be _ _

defined as common, as well as any number of variables. numeric scalar variable same
Some examples of the COM statement also are shown where com element = numeric array variable same
to the right. alpha scalar variable [integer] same

alpha array variable [integer] same
0 <integer < 65

SOME EXAMPLES OF COM STATEMENTS:

EXAMPLE 1:
10 COM A(10), B(3,3), C2

numeric numeric numeric

array array scalar

variable variable variable
EXAMPLE 2:

10 COM C, M1$, B$(2,2)32

numeric alpha alpha array
scalar scalar variable
variable variable

148

Chapter 14
PRINTUSING and IMAGE Statements

-_———— —
Chapter 14

PRINTUSING And
IMAGE Statements |

The PRINT statement, in conjunction with commas,
semicolons and the TAB(function, has been used to
control the format (spacing) within a printed line. An
additional two statements are available in System 2200 I
BASIC which allow a programmer more control over

the spacing within a printed line, and also enable a
programmer to pre-determine the exact image of the
individual elements printed within a line. The state-
mentsare PRINTUSING and IMAGE. They always are
used together.

Section 14-1
Printing Of Alpha Fields (Literal Strings)

In order to print strictly alpha fields with a PRINT

statement, alpha fields must be enclosed with quotes. (READY

Spacing within quotes is followed exactly. Any spacing :10 PRINT, “ALPHA OUTPUT"
preceding or following the alpha fields is controlled <RUN

with punctuation marks. An example is shown to the ALPHA OUTPUT
right.

149

Chapter 14 v
PRINTUSING and IMAGE Statements

The same output can be generated without using
guotes or punctuation marks with the PRINTUSING/
IMAGE statements, as illustrated to the right.

Notice the PRINTUSING statement works in con-

junction with a referenced IMAGE statement. The
IMAGE statement contains the exact image and
format of what is to be printed. No quotes or
punctuation marks are used.

The IMAGE statement is referenced in the PRINT-
USING statement by placing the line number of the
IMAGE statement directly after the PRINTUSING
verb.

The IMAGE statement consists of a line number,
(must be the same referenced in the PRINTUSING
statement), a % sign, which marks it as an IMAGE
statement, and the image of the elements and spacing
to be followed. When alpha fields are included in the
IMAGE statement, they are printed exactly as shown.

Generally, this method is used to label output or to
display only alphanumerics. Some other examples are
shown to the right.

-

READY

<10 PRINTUSING 20

:20% ALPHA OUTPUT

:RUN

ALPHA OUTPUT
10 PRINTUSING 20
reference to Image statement

line 20 % ALPHA OUTPU]‘
number s
same as % \actual image of output
in PRINTUSING sign
statement (Identifies statement as an image statement)

[reno

:100 PRINTUSING 110

:110% PROFIT AND LOSS STATEMENT
:RUN

PROFIT AND LOSS STATEMENT

(READY
:20 PRINTUSING 30
+30% INTEREST YEAR
:RUN
INTEREST YEAR

TOTAL TO DATE
TOTAL TO DATE

150

Chapter 14
PRINTUSING and IMAGE Statements

An alternative method exists for printing literal strings
with the PRINTUSING/IMAGE combination. The
method places the literal string in the same line as
the PRINTUSING statement and uses symbols in the
IMAGE statement to represent the characters in the
literal string. The # symbol is primarily used to
represent each character, but certain editing characters
{i.e., $ -+, and .) also can be used in the image to
represent a character. The symbols are mainly place
holders and the system replaces each symbol in the
image with an alpha character when a printout is

generated.
The statements used to print the words a/pha output (
by this second method are shown to the right READY
’ :20 PRINTUSING 30, "ALPHA OUTPUT"
Notice the literal string is enclosed in quotes in 130 Z#####HAES S
statement 20, and a comma is used to separate the ¢RUN
elements to be printed from the beginning of the ALPHA OUTPUT
line. Quotes are required when the literal string is
contained within the PRINTUSING statement. State- O
ment 30 (the IMAGE statement) contains a symbolic
representation of how the literal string should be
printed out. Each symbol represents a character. There
are 12 characters and 12 symbols, therefore all
characters in the literal string are printed.
If fewer symbols are included in the IMAGE statement s
than are in the literal string, the string is truncated on READY
the right and only the number of characters as +20 PRINTUSING 30, "ALPHA OQUTPUT"
specified by the image are printed. See the example to :30 % #####
the right. In this example only five characters are <RUN
printed as the image only calls for five characters. ALPHA

151

Chapter 14
PRINTUSING and IMAGE Statements

If the image has more symbols than characters in the
literal string, the printout is left justified and filled
out with blanks. See the example to the right. In this
example 12 characters plus two trailing spaces are
printed as the image calls for 14 characters.

When the PRINT command is used to print a literal
string, there is no way of truncating or lengthening
the printout without actually changing the literal
string. The PRINTUSING and IMAGE statements,
however, can truncate or lengthen a printout by simply
overformatting or under formatting the image.

—
READY
:20 PRINTUSING 30, "ALPHA OUTPUT"
:30% #it####d#d##A
+RUN

ALPHA OQUTPUT_ _
—

2 Trailing Spaces

Section 14-2
Printing Alphanumeric String Variables

Alphanumeric String Variables are printed with the
PRINT statement as shown to the right. This string
cannot be truncated or lengthened without actually
defining a new value for AS.

The PRINTUSING/IMAGE statements, however, allow
a programmer to shorten or lengthen (add spaces) the
string variable by specifying the desired image in the
IMAGE statement. See the example to the right.

Notice four characters are printed for A$ the first
time, and five characters are printed the second time.
The # symbol specifies how many characters are to be
printed; any spacing entered into the image line is
followed exactly. No punctuation is used.

rREADY

:10A$ = "ABCDEFG"

:20 PRINT A$,A$

¢RUN

ABCDEFG ABCDEFG

READY

:10A$ = "ABCDEFG"

:20 PRINTUSING 30, A$,A$
:30% #### #it###

:RUN

ABCD ABCDE

152

Chapter 14
PRINTUSING and IMAGE Statements

REUSING AN IMAGE

A single image in the IMAGE statement can be reused
for each element in the PRINTUSING statement
(example to the right).

The image in line 30 is used to print AS three times.
The comma used in the PRINTUSING statement causes
the output to appear on a new line each time the
IMAGE statement is reused.

If semicolons are used to separate the elements in the
PRINTUSING statement, the output continues on the
same line (see example).

-
READY

:10A$ = "ABCDEFG"

:20 PRINTUSING 30, A$,A$,AS

:30% ####

<RUN

ABCD

ABCD

ABCD

-
READY

:10A$ = "ABCDEFG"

:20 PRINTUSING 30, A$;A$;AS

:30% ####

:RUN

ABCD ABCD ABCD

153

Chapter 14
PRINTUSING and IMAGE Statements

An example is shown to the right which combines the
printing of string variables and literal strings with the
PRINTUSING/IMAGE statement.

Notice the second and third image results in the
second and third elements being truncated when
printed.

This same example could be written differently by
including the literal string in the IMAGE statement
(see example).

Either way is correct, but by including the literal
string in the IMAGE statement, you cannot edit the
string as you did in the first example.

rREADY

:10 A$="ABCDEFG"

+20 PRINTUSING 30, A$,A$, "STUVWXYZ"
130 Z####H#H #H##H #H##

:RUN

ABCDEFG ABCDE STUY

—
READY
:10A$ = "ABCDEFG"
:20 PRINTUSING 30, A$,A$
:30% ######4 S#.## STUV
+RUN
ABCDEFG ABCDE STUV

Section 14-3
Printing Numeric Fields

When printing numerics with the PRINTUSING/
IMAGE statements, only the # symbol can be used to
represent a digit. A period is used to represent a deci-
mal point. In the example to the right, the number
123.45 is printed four times, each with a different
image.

The first image (###) calls for three digits. The print-
out of 123.45 is therefore truncated to fit the image.
Extra digits to the right of the decimal point not
called for in the image are truncated.

-
READY

+10 PRINTUSING 20, 123.45, 123,45, 123.45, 123,45
:20% ### #EER EAHLHE #RAL RS

:RUN

123 123.4 123.45 123.450

123.45 in the image ### ——— 123

154

Chapter 14
PRINTUSING and IMAGE Statements

The second image (###.#) calls for three digits, a
decimal point and two more digits. The printout of
123.45 is exactly as shown.

The third image (###.##) calls for three digits, a
decimal point and two more digits. The printout of
123.45 is exactly as shown.

The fourth image (###.###) calls for three digits, a
decimal point and three more digits. Images which
contain more # symbols to the right of the decimal
than are present in the data in the PRINTUSING
statement cause the output to be filled out with
zeros.

As can be seen from this example, data formats in the
IMAGE statement are read sequentailly and matched
to the data supplied in the PRINTUSING statement.

OVERFORMATTING AN IMAGE

If an IMAGE contains more # symbols to the left of
the ‘decimal than digits to the /eft of the decimal in
the data, the unnecessary leftmost # signs are ignored
and leading blanks are inserted (see example). .

Here the data (627.6) is formatted in the image
####.#, which calls for more digits to the left of the
decimal than are in the data. As a result the leftmost
sign is ignored.

123.45 in the image ###.# —123.4

123.45 in the image ###.## ———=123.45

123.45 in the image ###.### —123.450
added on

OVERFORMATTING

(
READY
:10 PRINTUSING 20, 627.6
1207% ###HH
:RUN
627.6

Lone leading blank inserted

627.6 in the image (%) ###.# ——627.6

ignored

165

Chapter 14
PRINTUSING and IMAGE Statements

UNDERFORMATTING AN IMAGE

If an image contains fewer # symbols than there are

UNDERFORMATTING

digits to the /eft of the decimal in the data, the # (READY
signs are printed instead of the data (see example). :10 PRINTUSING 30, 958.2
This indicates you do not have a sufficiently large :30% ##.#
image to express the value of the numbers. <RUN
When the exact size of a number is not known, it is LA
best to overformat the image. .
Section 14-4

Including Editing Characters In Numeric Fields

When printing numeric fields, it is understood that #
symbols are always used to represent digits and a
period is used to represent the placement of a decimal
point. Several other characters can be entered into
numeric fields via the IMAGE statement. These
characters are the comma, a plus or minus sign, a $
sign and an E for Scientific Notation. Certain rules
apply when using these characters and are explained
in this section.

COMMAS IN THE IMAGE STATEMENT

A comma is often edited into a printout to improve
its readability. An example is shown to the right
which includes commas in the IMAGE statement.

There is no way of editing a comma into a numeric
field with a PRINT statement.

(READY
:100 PRINTUSING 150, 1362594, 3726.59

2150 %# 444, #4444 # 4t A
¢RUN
1,362,594,00 3,726.59

156

Chapter 14
PRINTUSING and IMAGE Statements

USING PLUS OR MINUS SIGNS IN AN IMAGE
STATEMENT

If a plus sign is placed at the beginning of an image,
the correct sign (plus or minus) is always edited into
the output preceding the first significant digit in the
output (see example).

In this example the image is reused for each element
in the PRINTUSING statement. The image calls for a
plus or minus sign to be edited into the output. Notice
the appropriate sign is edited into the output just
preceding the first significant digit. Notice also, the
decimal points are lined up one above the other, due
to an image being used which overformats most of the
numbers both to the left and right of the decimal
point. Recalling the rules, any image which overformats
to the left of the decimal results in the insertion of
leading blanks; any which overformats to the right of
decimal results in the filling out with zeros. The
number -4.10 fits both cases: two leading blanks and
one trailing zero are edited into the output.

If an image begins with a minus sign, the minus
sign for a negative expression is edited into the out-
put just preceding the first significant digit. No sign is
included if the number is positive (see example).

READY
:10 PRINTUSING 20, 15,62, -158.936, 352, -4,1
220% +##4.#4
<RUN

+15.62

-158.93

+352.00

-4,10

READY
¢30 PRINTUSING 40, 15,62, -158.936, 352, -4.1
240% -#3H A
tRUN
15.62
-158,93
352,00
-4,.10

157

Chapter 14
PRINTUSING and IMAGE Statements

If no sign is used in the image, no problem results if
all the numbers are positive. However, if negative
numbers are to be outputted the minus sign is entered
into the printout and the entire number is shifted to
the right (see example).

It is recommended if negative numbers are to be
printed out using the PRINTUSING/IMAGE state-
ments, a sign (plus or minus) must be used in the
image line.

USING $ IN AN IMAGE STATEMENT

When a $ (dollar sign) is used at the beginning of an
image, the dollar sign is printed in the output:

1) immediately preceding the first significant digit if
the number is positive (see example), or

2) immediately preceding the minus sign if the number
is negative (see example).

ﬁ
READY :
:10 PRINTUSING 20, 57.25, -57.25, 326.1, -326.1, -859
:20% #4444
:RUN
57.25
- 57.25
326,10
-326.10
-859.00

FREADY

:140 PRINTUSING 150, 98,42, 764,27, 2.523, -5.75, =300
:150% SH##H# . ##
:RUN

$98,42

$764,27

$2.52

$-5.75

$-300.00

158

Chapter 14
PRINTUSING and IMAGE Statements

SCIENTIFIC NOTATION IN THE IMAGE
STATEMENT

Four 1 symbols {(1111) are used in the IMAGE state-
ment to represent the image of the exponent field.
The exponent value in the output is adjusted to
align the decimal point in the value with the decimal
point in the image. The four 1’'s are assigned as
shown to the right.

The example to the right illustrates the use of this
field in printing modified Scientific Notation. Notice
the automatic adjustment of the exponent according
to the placement of the decimal in the image.

i t 1 1
_—v—-/
E Sign Exponent

(READY

:100 PRINTUSING 150, 5.376E8, 2,13E-5, 2.6E-9
2150% #.### 000 JHEF Y I

< RUN

5.376E+08 ,213E-04 26E-10

Section 14-5
The General Form Of The PRINTUSING And IMAGE Statements

Due to the complexity and the many operations
available with the PRINTUSING/IMAGE statements,
the discussion of the general form of these statements
has been left to the end of the chapter.

At the right is the general form of the PRINTUSING
statement. The PRINTUSING statement always con-
sists of the PRINTUSING verbs plus the line number
of the corresponding IMAGE statement. The remainder
of the statement is optional and can consist of one or
more or acombination of the following print elements:

1) alphanumeric variables,
2) literal string in quotes,
3) numeric variables,

4) numerics.

GENERAL FORM PRINTUSING STATEMENT

PRINTUSING ‘line number’ [, ‘printelement't ...} ;]
where ‘line number’ = line number of the corresponding IMAGE statement
‘print element’” = alphanumeric variable
literal string in quotes
t = comma or semicolon

159

Chapter 14
PRINTUSING and IMAGE Statements

A comma must be used to separate the print elements
from the preceding part of the line, and a comma or
semicolon must be used to separate each print element.

The general form of the IMAGE statement is shown
to the right.

The IMAGE statement is designated by the % sign.
It can contain a literal string without quotes (t), an
alphanumeric image made of # symbols or any of the
editing symbols, or the format image of a numeric
variable or numeric (f).

f

GENERAL FORM IMAGE STATEMENT

%t[{ft}....]

where t = aliteral string {not containing # character) or blank
= format specification =[+ #0,]...0.#...]] [1M11]
$

Section 14-6
Arrays With PRINTUSING

The PRINTUSING format can be used to generate
the output in an array. The program at the right and
resulting output is an example of a program which
both'defines and prints out a 4 x 4 array with each
element in the array printed to a pre-set image (state-
ments 60 and 70). Statement 90 causes just a carriage
return without anything being printed.

SUMMARY

As you can see from this chapter, the PRINTUSING
format is a powerful tool for producing output in
almost any desired image. The examples in this
chapter illustrate individual features of PRINTUSING,
but any of the features can be combined in a single
PRINTUSING/IMAGE statement.

:10

:90

GEADY

DIM F2(4,4)

N=,005

FOR I=1T0 4

FOR J=1T0 4:N=N+1
F2(1,J)=N

PRINTUSING 70,F2(1,J);
% HHH HHE

NEXT J

PRINT

:100 NEXT I
:105 PRINT
:110 STOP
<RUN
+1.,005 +2,005 +3,005 +4,005
+5,005 +6,005 +7,005 +8,005
+9,005 +10,005 +11.,005 +12,005
+13.005 +14,005 +15,005 +16,005

STOP

160

Chapter 15
The Hexadecimal Function [HEX()]

Chapter 15

The Hexadecimal
Function (HEX())

The HEX function allows the user to output hexa-
decimal codes to any peripheral on the System 2200.
Each character or command related to a peripheral
is expressed as a unique two-digit HEX code. The
HEX function gives the user the capability to control
any feature of a peripheral, such as moving the CRT
cursor around for plotting or outputting characters
that do not appear on the keyboard (e.qg., @ or ?).

Section 15-1
What Is A HEX Code? ~

A HEX code is based upon the hexadecimal counting HEXADECIMAL DECIMAL
system. The hexadecimal system, unlike the decimal 0o —C o 12
system (base 10), is to the base 16. In the decimal 1 D 1 13
system the digits used are 0-9, while in the hexadecimal 2 E 2 14
system the digits used are 0-9 and A-F. The numbers 3 F 3 15
in the hexadecimal system are: 0, 1, 2, 3, 4, 5, 6, 7, 4 10 4 16
8, 9, A B, C, D, E, and F. Combinations of these 5 11 5 17
digits, as with combinations of 0-9 in the decimal 6 12 6 18
system, are used to represent all numbers. The table to / 13 / 19
the. right shows how counting is done in the hexa- g 1; g g?
decimal system as compared to the decimal system. A 16 10 29

B 11

/ N\

161

Chapter 15
The Hexadecimal Function [HEX()]

The hexadecimal system is used in the internal design HEX CODES

of many computers. On the Syst?m 2200 all characters 00 20 40 60 80 A0 CO EO
or commands outputted to a peripheral are represented 01 21 41 61 81 A1 C1 E1
by a two-digit HEX code. There are 256 such codes. 02 22 42 62 82 A2 C2 E2

The table to the right lists these codes.

09 29 49 69 89 A9 C9 E9
0OA 2A 4A 6A 8A AA CA EA
OF 2F 4F 6F 8F AF CF EF
10 30 50 70 90 BO DO FO
11 31 51 71 91 B1 D1 F1

19 39 59 79 99 B9 D9 F9
1A 3A 5A 7A 9A BA DA FA

1F 3F 5F 7F 9F BF DF FF

Section 15-2
Format Of HEX Function In A BASIC Statement Line

The two-digit code used in the HEX function consists
either of a two digit number, each digit from 0-9, a
letter and a digit, or two letters, where the digit is
from 0-9 and the letter is from A-F. ‘

10 PRINT HEX(0909);"ABC"

A BASIC statement line can contain any number of 10 PRINT HEX(09);HEX(09);"ABC"

HEX codes. If more than one HEX code is used in a
line in sequence, there are two ways of writing the
line (see example).

162

Chapter 15
The Hexadecimal Function [HEX()]

The code HEX (09) causes the CRT cursor to move 1
space to the right. In the two examples given you
want to produce two spaces in the line before the
letters “ABC’ are printed. Both examples do this.
In the first example, the codes are combined in one
set of parentheses. In the second example the codes
are written separately [HEX (09); HEX (09)]. Either
way is correct. A comma or semicolon is used as
punctuation to separate the codes for a zoned or
packed format.

Section 15-3

Special Characters And Cursor Controls Generated With HEX Codes

As already mentioned, every letter, digit and symbol
on the keyboard has a corresponding HE X code. The
movement of the cursor, right or left, up or down, for
example, can be programmed using HEX codes. The
table to the right shows a list of the special characters
and cursor movement codes.

The complete list of HEX codes for the CRT (Model
2276) is given in Appendix A.

Each peripheral available for the System 2200 has a
corresponding set of HEX codes.

Some of these codes produce the same results on all
peripherals, while others either have no effect or
generate a different character. For the listing of the
codes for a specific peripheral, see the Reference
Manual provided with the purchase of the equipment.

CHARACTER/ HEX CODE | CHARACTER/ HEX CODE
CURSOR DIRECTION CURSOR DIRECTION
Cursor home HEX (01) 1 . HEX (5D)
Clears screen and T HEX (5E)
Cursor home HEX (03) <« HEX (5F)
Bell HEX (07) # . HEX (23)
Cursor left HEX (08) % HEX (25)
Cursor right HEX (09) * (Apostrophe) HEX (27)
Cursor down | L. HEX (2A)
(Line Feed) HEX (0OA) , (Comma) HEX (2C)
Cursor up * /. HEX (2F)
(Reverse Index) HEX (0C) s HEX (3A)
CR/LF HEX (0D) . HEX (3B)
! HEX (21) <. HE X (3C)
"o HEX (22) =, HEX (3D)
& . HEX (26) > HEX (3E)
? . HEX (3F) (. HEX (28)
@ . HEX (40)) . HE X (29)
[. HEX (5B)
AN HEX (5C)

163

Chapter 15
The Hexadecimal Function [HEX()]

Section 15-4
Plotting Example

The example to the right prints a running account of
the variable I. The HEX function in line 30 is used to (
return the cursor to the same line after each printout. READY

: :10 I=0
HEX (0OC) is a CURSOR UP command. :20 PRINT "COUNT=";I

:30 PRINT HEX(OC) ;:REM CURSOR UP
40 I=1+1

:50 GOTO 20

:RUN

COUNT=329

164

Chapter 16
Debugging

Chapter 16

Debugging

As discussed earlier in this text, the System 2200
error diagnostics are capable of detecting syntax and
execution errors in a program. Programming errors,
those in which the program does not do what it should,
are the responsibility of the programmer. A program
error is commonly known as a bug. Several methods
are available on the System 2200 to help a programmer
debug a program. This chapter discusses the various
techniques a programmer can draw upon as an aid to
debugging programs.

Section 16-1
Hints For Debugging A Program

The following suggests several rules which, if followed,
could save a programmer much time in getting a
program to run.

Rule 1 Debugging begins before a program is even
written:

1. Make sure you know how to solve the
problem.

2. “Play computer’” — go through a hand
calculation first.

3. Trace through the flowchart before con-
verting to a program.

165

Chapter 16
Debugging

Rule 2 Prevent problems before they happen:

1. Break program down into logical blocks.

2. Make sure all lines are entered correctly,
and in the proper sequence.

3. After all blocks of the program are work-
ing well, then go back and economize.

4, Test out the program by running through
it with ‘“test’’ data; i.e., both data for which
the answer is known, and a representative
sample of real data, where possible.

Rule 3 If a problem does exist, be logical in your
approach - debugging is as logical as pro-
gramming:

1. a. Quite often, the values which variables
assume at the end of a program can tell
you where to look for the problem.

b. By using simple PRINT statements in the
Immediate Mode, check the values of all
variables after the program has run.

c. Compare these values to what the ex-
pected value should be.

2. Check all equations - be sure they have been
entered correctly with proper constants,
variables, operators, and parentheses.

3. If the program uses subscripted varaibles,
be sure that proper subscripts are used, and
that rows and columns have not been con-
fused.

4. Be sure GOTO, GOSUB, and IF/THEN
statements branch to the correct locations.

166

Chapter 16
Debugging

5. Re-check IF/THEN statements for proper
tests and proper arguments. Quite often, the
variable or expression tested against a criti-
cal (decision) value never attains that value.
The result is that the branch is never exe-
cuted.

6. In programs which use several subroutines
or user functions, check to see that the
proper subroutine or function is called, and
that the proper arguments are passed.

OTHER APPROACHES

1. Print out intermediate results at various key
locations, to check for correct variable
values.

2. Use the HALT/STEP key to step through
the execution of a program.

3. Use the TRACE feature to trace the variable
values and branching in the program.

4. Include STOP’s in the program; when a
problem is discovered, re-execute problem
section with trace.

Section 16-2
Using HALT/STEP As A Debugging Aid

The HALT/STEP key enables a System 2200 user to
execute a program statement by statement. There are
two ways of stepping through a program. The first
way is to touch the HALT/STEP key during the exe-
cution of a program. This causes the System 2200
to finish executing the statement it is presently at,
display the line, its results, and stop executing the
program. Touching HALT/STEP again causes the next
statement in the program flow to be displayed and

167

Chapter 16
Debugging

executed. Thus, you can step through a program state-
ment by statement. The second way is to step through
aprogram from a preselected line number by executing
aGOTO line number’ command followed by touching
the HALT/STEP key one or more times.

Enter the program shown to the right into the System
2200 memory.

Touch RESET

Touch keys GOTO 10 CR/LF-EXECUTE
Touch HALT/STEP

Touch HALT/STEP

Touch HALT/STEP

Touch HALT/STEP

Touch HALT/STEP

Touch HALT/STEP

Notice in the above procedure as the HALT/STEP
key is touched, the next line is displayed along with
the results {if any) of executing that line (e.g., lines
40 and 50). The next line that is displayed is always
the next line to be logically executed in the program.

(

READY

:10 J=25

:20 K=15

:30 GOTO 60

:40 PRINT J+K+L
150 END

:60 L=80

170 GOTO 40

ﬁ

READY
:GOTO 10

1:0 J=25
éO K=15
;0 GOTO 60
€:SO L=80
;0 GOTO 40

40 PRINT J+K+L
120

50 END

END PROGRAM
FREE SPACE=3386

168

Chapter 16

Debugging
|

Section 16-3
HALT/STEP Usage With Multi-Statement Lines

Mu lti-statement lines are executed one statement at a
time, each time the HALT/STEP key is touched.
Statements not yet executed are displayed with the
executed statement.

PROGRAM
10 X=5:Y=10:Z=15
20 PRINT X*Y-Z:STOP

Enter the program shown to the right into the System -
2200 memory. READY

Touch RESET +60T0 10
Touch keys GOTO 10 CR/LF-EXECUTE
Touch HALT/STEP
Touch HALT/STEP
Touch HALT/STEP
Touch HALT/STEP
Touch HALT/STEP

When the HALT/STEP key is used with multi-state- : *

ment lines, the first time the key is touched, the ngpRINT X*Y-2:5TOP
entire line is displayed, showing only the execution of
the first statement. The next time the HALT/STEP

10 X=5:Y=10:2=15
10:Y=10:2=15

10::7=15

key is touched, the first statement of the line is éO -STOP
eliminated and the execution of the second statement
is shown; this continues until all statements are shown STOP

and executed.

READY
:100 TRACE

:200 TRACE OFF

169

Chapter 16
Debugging
|

Section 16-4
Other Uses Of HALT/STEP Key

(1) Afterthe HALT/STEP key is touched, the System
2200 can be used as a calculator to perform
side calculations, to check the value of any
variables already defined in the program, or to
redefine any variable(s) previously defined in
the program.

(2) After the HALT/STEP key is touched as many
times as required to check program flow, normal
execution can be continued by touching

CONTINUE CR/LF-EXECUTE

(3) If the operator attempts to HALT/STEP through
a program after (a) a text or table overflow
error has occurred, (b) a variable is defined
which has not previously been defined, (c) any
CLEAR command has been used, (d) program
text has been added to, deleted, altered, or
renumbered, or (e) the RESET key is touched,
an error message is printed out, and execution
does not continue.

(4) HALT/STEP, rather than RESET, should always
be used to interrupt program execution. Use
RESET to stop execution only if HALT/STEP
fails. '

170

Chapter 16
Debugging
S

Section 16-5
Use Of Program Trace

While the HALT/STEP command gives the program f
flow statement by statement, the TRACE command READY
allows the programmer to expand the output of a :100 TRACE

program. The TRACE command can be initiated
either from the keyboard or from a program. To turn
off a TRACE, key TRACE OFF CR/LF (OFF is
keyed with uppercase letters). In program text, TRACE
is turned ON and OFF as shown to the right
(i.e., TRACE and TRACE OFF can be used as ordi-
nary program statements).

Once the TRACE is turned ON it remains ON through-

1200 TRACE OFF

out the program execution until turned off by a
TRACE OFF command. When the TRACE is ON, TRACE EXAMPLES
(1) any variable which receives a new value during EXAMPLE #1 30 X=52+SQR(81)

execution (e.g., with LET, READ, or FOR) is printed
out and (2) TRANSFER TO xxxx is printed out
when a program transfer is made to another sequence
of statements as a result of a GOTO, GOSUB, IF/ EXAMPLE #2 70 READ A,B,X(22)
THEN, NEXT and RETURN statement.

X =61

Assume in the examples shown that each is from a
separate program where the variables are already EXAMPLE #3 100 GOTO 200
defined. The printout shown is therefore for only
the individual statements.
EXAMPLE #4 30 GOSUB 80
110 FOR I1=1TO 25

190 RETURN

EXAMPLE #5 50 IF A>BTHEN 90

171

Chapter 16

Debugging
TRACE can be used as part of a program. Enter the TOGRAM
program shown to the right and RUN the program. 10 TRACE
Compare your results with the results at the right. 20 Y=21.5
30 IF X=86 THEN 60
40 X=4*Y
50 GOTO 30
60 TRACE OFF
70 STOP

RESULTING PRINTOUT

: RUN

Y= 21.5

X= 386
TRANSFER TO 30
TRANSFER TO 60

STOP

Section 16-6
Using HALT/STEP And TRACE Together

You can trace a program one step at a time by

combining the HALT/STEP procedure with TRACE (READY
Mode. 10 READ X,Y:Z=X*Y
Enter the program to the right. :20 IF Z>100 THEN 40
:30 GOTO 10
:40 PRINT Z
:50 STOP

:60 DATA 5,10,15,20,25,30

172

Chapter 16
Debugging

Touch RESET
Touch TRACE CR/LF
Touch keys GOTO 10 CR/LF

Touch HALT/STEP

Touch HALT/STEP

Touch HALT/STEP

Touch HALT/STEP

Touch HALT/STEP

Touch HALT/STEP

Touch HALT/STEP

Touch HALT/STEP

Touch HALT/STEP

READY
:TRACE

:GOTO 10
10 READ X,Y:Z=X*Y

X=5
Y=10

10:Z=X*Y
7= 50
20 IF 7>100 THEN 40

30 6OTO 10
TRANSFER TO 10

10 READ X,Y:7=X*Y
X= 15
Y= 20

10:7=X*Y
7= 300

20 IF 7>100 THEN 40
TRANSFER TO 40

40 PRINT Z
300

50 STOP
STOP

173

Chapter 16
Debugging

Section 16-7
Renumbering A Program

Often when debugging a program or even in entering
a program, statements need to be inserted between
other statements. Statements are easily inserted if
they are numbered 10,20,30 etc., where you can
insert additional statements between 10 and 20
(e.g., 11, 12 etc). However, when statements are
numbered close together, there may be no room for
inserting additional statements.

With the RENUMBER key, you can have the System
2200 automatically renumber program statements.
Not only are the statement lines renumbered, but all
references to statement numbers within the program
are renumbered automatically. Another reason you
may wish to renumber a program is to clear up a
listing for appearance sake.

The RENUMBER statement has several options (see
general form).

RENUMBER [line number]

where 0 < integer < 100
1st 'line number’
specifies at which line

to start renumbering.
All lines = to this line
number are renumbered.
If no line number is
specified, all program
lines are renumbered.

174

GENERAL FORM

[,line number]

This ‘line number’
specifies what the
new starting line
number should be.
If none is specified,
it will equal the
increment between
line numbers.

[integer]

The integer specifies what
the increment between line
numbers should be. If no
increment is used, lines are
automatically incremented
by 10.

Chapter 16
Debugging

Enter the program shown to the right in the System
2200 memory.

This same program is used to illustrate the several
different ways you can renumber a program, using
the options mentioned above.

Touch RESET
Touch RENUMBER CR/LF-EXECUTE
Touch LIST CR/LF-EXECUTE

Comment: All program lines are renumbered in
increments of 10. The first line number of the
resulting program is 10. The line number referenced
in the GOTO statement is altered to reflect renum-
bering.

Touch RESET

Touch RENUMBER 20, 12, 10 CR/LF-EXECUTE

Comment: All program lines beginning with line 20
are numbered in increments of 10. The new line
number for 20 is 12.

’
READY

:1 FOR X=1T0 10

:2 PRINT X,X#2,X43
:3 NEXT X

:4 GOTO 1

:5 END

RESULT

—
READY

- RENUMBER

:LIST

10 FOR X=1T0 10

20 PRINT X,X42,X43
30 NEXT X

40 GOTO 10

50 END

RESULT

(

READY

:RENUMBER 20,12,10
:LIST

10 FOR X=1T0 10

12 PRINT X,X42,X43
22 NEXT X

32 GOTO 10

42 END

175

Chapter 16
Debugging

Touch RESET
Touch RENUMBER, 5, 5, CR/LF-EXECUTE

Comment: All program line numbers are renumbered
since the first parameter is omitted. The new starting
line number is 5 and the increment is 5. The line
number in the GOTO statement is altered to reflect
the renumbering.

Touch RESET
Touch RENUMBER, , 15 CR/LF-EXECUTE

Comment: All program line numbers are renumbered
because the first parameter is omitted. The increment
is 15 and the new starting line number equals the
increment.

RESULT

rREADY

:RENUMBER ,5,5
:LIST

5 FOR X=1T0 10

10 PRINT X,X42,X43
15 NEXT X

20 GOTO 5

25 END

RESULT

FREADY

+RENUMBER ,,15
«LIST

15 FOR X=1T0 10

30 PRINT X,X42,X43
45 NEXT X

60 GOTO 15

75 END

176

SUMMARY TO PART Il

Chapter 16 completes Part |1 of this manual. You now have been instructed in the use
of every statement and common programming technique executable on the System
2200A. If you own a System 2200A, the material covered in Part Il1 /s not applicable
to a System 2200A. However, if you are interested in the features described in Part |11,
your System 2200A can be field upgraded to a System 2200B.

177

Part |11
Introduction

|ntrOdUCtiOn The System 2200B provides an extensive set of built-in data manipulation operations

that enable the System 2200 to easily scan, analyze, convert, reduce, and gather data
in most any format. Essentially, the operations give the user much of the power and

Part III flexibility of an assembler language (lower level language) without requiring a user to
fearn difficult assemble language in programming. The operations are classified into the

following categories:

Additional 1. Bit and Byte Maniulation

2. Position and Numeric Verification Statements

PrOgramming 3. Data Conversion

- 4, Data Reduction
Features Avallable 5. Data Gathering

on the All of the statements associated with the categories, plus others, are described in Part

System 2200B of this manual.

179

Chapter 17
Computed Branches

Chapter 17

Computed
Branches

You already have been introduced in Part Il to both
the GOTO and GOSUB statements which direct a
program to branch to a specified line number (e.g.,
GOTO 20, GOSUB 200). These are unconditional
branches. The ON statement allows a programmer to
choose (compute) one of several line numbers to
which program execution branches. The branch then
becomes conditional upon the result of the computa-
tion.

Section 17-1
The General Form Of The ON Statement

The general form of the ON statement is shown to
the right.

The expression in the ON statement is evaluated and
truncated to produce an integer. The integer deter-
mines the line number to which program execution
transfers. If the integer is 1, execution is transferred
to the first line number in the ON statement. Likewise,
if the integer is 2, 3, 4 etc., execution is transferred
to the second, third, fourth, etc. line number in the
statement. |f the value of the expression is less than 1
or greater than the actual number of line numbers in
the ON statement, no branch occurs. Instead, the
next sequential statement in the program is executed.

ON expression {

181

GOTO
GOSUB

GENERAL FORM

Chapter 17
Computed Branches

Some examples of ON statements are shown to the
right.

Result of Example 1: Execution of statement 25
causes a branch to statement 90, the second line
number in the ON statement (because | = 2).

Result of Example 2: Statement 25 is not executed
(i.e., no branch) because the value of | exceeds the
number of line numbers in the ON statement. As a
result the next statement in the program is executed.

Result of Example 3: Execution of statement 30
results in a branch to line number 200, the third line
number in the ON statement (because the truncated
integer value of the expression = 3).

EXAMPLE 1:

EXAMPLE 2:

EXAMPLE 3:

182

:20
25

220 [=2
:25 ON 1 GOTO 70, 90, 200

[=5
ON I GOTO 70, 99, 200

120 T=1/7
:30 ON T*21 GOSuB 50, 90, 200, 75

Chapter 17
Computed Branches
L .__ |

Section 17-2
Using A Computed GOTO Or Computed GOSUB In A Program

Enter and run the program shown to the right. (The (

BASIC word ON is entered with individual letters in READY

uppercase.) This program uses the GOSUB parameter <10 FOR A=1 TO 3

with the ON statement. Notice after each subroutine :20 ON A G0OSUB 100, 209, 300
is executed, the program returns to the next state- :30 PRINT "NEXT"

ment in sequence after the last executed ON state- <40 NEXT A

ment. :50 STOP

1100 PRINT "SUBROUTINE AT 10n0,A=";A
:110 RETURN

:200 PRINT "SUBROUTINE AT 200,A=";A
:210 RETURN

:300 PRINT "SUBROUTINE AT 300,A=";A
:310 RETURN

:RUN

SUBROUTINE AT 100,A= 1

NEXT

SUBRQUTINE AT 200,A= 2

NEXT

SUBROUTINE AT 300,A= 3

NEXT

STOP

183

Chapter 17
Computed Branches

The second program shown on this page is an example
of the GOTO parameter with an ON statement. Enter
this program and run it.

In general, the ON statement used with the GOTO
and GOSUB parameters allows a programmer much
more flexibility in that one statement (ON) can cause
the program flow to branch to any number of
different places in a program, as compared to the
regular GOTO or GOSUB statement, which allows
a program to branch to one specified line (uncon-
ditional branch vs. conditional branch).

[RenoY

:10 FOR S=1 TO 4

:20 ON S GOTO 30, 40, 50, 60
:30 PRINT $42:G0TO 70
:40 PRINT S43:G0TO 70
:50 PRINT S44:G0TO 70
:60 PRINT $45:60T0 70
:70 NEXT S

:80 STOP

:RUN

1

8

81

1024

STOP

Computed
-«—1 GOTO or GOSUB}——>
ON Statement

N\

Several Branches

Regular
GOTO or GOSUB
Statement

[

One Branch

184

Chapter 18
Data Reduction

Chapter 18

Data Reduction

Many program applications require large amounts of
data storage. The System 2200 stores each numeric
value of data in 8 bytes of memory. When only a few
significant digits are required, this method of storage
becomes inefficient. The System 2200 allows a pro-
grammer to pack numeric values into an alphanumeric
variable with the PACK statement. Once packed, the
data cannot be used directly in calculations, as it is
not is standard System 2200 form (i.e., 13 digits). it
must therefore be “‘unpacked’ before using, accom-
plished with the UNPACK statement.

Section 18-1
General Form Of The PACK Statement

Thhe ge;eral form of the PACK statement is shown to GENERAL FORM
the right.
. Alpha Variable Numeric Array Designator
In the general form of the PACK statement, the image PACK (image) {Alpha Array Designator} FROM { Expression pe

specifies the decimal format of the numbers to be
packed. The image is composed of # characters to
signify digits and optionally +, -, ., and 1 characters
to specify sign, decimal point position and expo-
nential form. The number of pound (#) signs that
can be used is 0 < #'s < 16.

where: image = [+] [#....JL]1[# ...] []

185

Chapter 18
Data Reduction
|

Section 18-2
The General Form Of The UNPACK Statement

The UNPACK statement is used to UNPACK data GENERAL FORM

packed by the PACK statement. The general form is . _ .

shown to the right. UNPACK (image) Alpha Arrgy Designator TO Numer!c Arrz_ay Designator, .
. Alpha Variable Numeric Variable

The same image used to pack the data must be used

to UNPACK the data. An error results if more data is where image: = [+] [#....] [.] {#. ..] [1111]

attempted to be unpacked than the amount already
existing in the alphanumeric variable or array. How-
ever, less data can be unpacked than was packed.

The alpha array designator or alpha variable in the
UNPACK statement refers to the name assigned to
the packed data.

The numeric array designator or numeric variable
designates the name which is assigned to the data as
it is unpacked. This name does not have to be the
same name used when the original data was packed.

Images can have two types of formats:

1) Format 1 - Fixed point e.g., ##.##
2) Format 2 - Exponential e.g., #.##1111

The alpha variable (A$) or alpha array designator
(B$()) designates the name assigned to the packed
data. All data is stored sequentially into the specified
alphanumeric variable or array. Arrays are filled start-
ing with the first array element and ending with the
last numeric data to be stored. An error results if the
alphanumeric variable or array is not large enough to
store all numeric values to be packed.

186

Chapter 18
Data Reduction

The numeric array designator or expression in the
PACK statement represents the data to be packed.

Some examples of PACK statements are shown to the
right.

Explanation of Example 1: Scalar variable Xis packed
into the alphanumeric variable A$ in fixed point
format.

Explanation of Example 2: Scalar varaibles X, Y and
Z are packed, starting with X, into the alphanumeric
variable A$ in fixed point format.

Explanation of Example 3: The scalar array N() is
packed into the alphanumeric array A$() in expo-
nential format.

Unpacking begins at the beginning of the specified
alphanumeric variable or array. The unpacked data is
converted to internal floating point values, and stored
in the specified scalar array or variable. Some examples
of UNPACK statements are shown to the right.

Explanation of Example 1: The packed data in
alphanumeric variable (A$) is unpacked and stored
in scalar variables X, Y and Z, respectively.

Explanation of Example 2: The packed data in
alphanumeric array (AS$()}) is unpacked and stored
in the scalar array B(), except for the last value which
is stored in the scalar variable Y.

EXAMPLE 1:

EXAMPLE 2:

EXAMPLE 3:

EXAMPLE 1:

EXAMPLE 2:

187

:10 PACK(####)A$ FROM X

:12 PACK(##.##)A$ FROM X,Y,Z

. 215 PACK(+#.## 4444)A$() FROM N()

:10 UNPACK(####)A$ TO X,Y,Z

112 UNPACK(####)A$() TO B(),Y

Chapter 18
Data Reduction

When considering how many values can be packed per
alphanumeric variable or alphanumeric array, first
determine (by the image) how many bytes are re-
quired for the number. As an example, values are to
be packed in the image (##.##) which requires 2
bytes. This image is packed into the alphanumeric
variable BS.

As already discussed in this manual (Chapter 12),an
alpha variable is assumed to be 16 characters in length
if not dimensioned otherwise. The length can vary
from 1 to 64 characters if dimensioned. If the alpha
variable is not dimensioned (16 characters), eight two-
byte values can be packed into B$. If B$ is dimen-
sioned (e.g., B$64) then 32 2-byte values can be
packed.

What is true for alpha variables is also true of alpha-
numeric arrays. Each element of the array is assumed
to be 16 characters in length if not dimensioned.
When dimensioned, each element can range from 1 to
64 characters.

For example, assume you have an alpha array of
A$(5,4)64. You can pack 5x4x64 = 1280 bytes into
this array. Values having the packing image of ##.##
(2 bytes) result in 640 data values being stored in this
array.

The length of an alpha variable or alphanumeric array,
if other than 16 characters, must be dimensioned in a
DIM statement prior to use in a PACK statement.

Packing data in this fashion results in a great saving
of storage space, either in memory, on cassette tapes,
or on a disk.

188

Chapter 18
Data Reduction
|

Section 18-3
Rules For Packing Data

In order to estimate how many values can be packed
per alphanumeric variable or array, it is necessary to
understand how much storage space is taken up by
packed data. The following rules are useful for deter-
mining storage space:

1) Every two digits in an image requires one byte of
memory. A pound (#) sign represents one digit in the
image.

2) If a sign (+ or —) is specified, it occupies 1/2 byte
of memory. This byte contains the sign of the number
and the sign of the exponent for exponential images.
3) If no sign is specified, the absolute value of the
number is stored and the sign of the exponent is
assumed to be plus (+).

4) The decimal point is not stored in memory. When
unpacking data, the decimal point position is specified
in the image.

B) The packed numeric value occupies a whole number
of bytes of memory, e.g., the image (###) indicates
1-1/2 bytes are required for storage, however, 2 bytes
are used, because only a whole number of bytes are
used.

B) If the image has format 1, the value is edited as a
fixed point number, truncating or extending with
zeros any fraction, and inserting leading zeros for
insignificant integer digits according to the image
specification.

7) If the image has format 2, the value is edited as a IMAGE STORAGE
floating number. The value is scaled as specified by HHHH 2 bytes
the image (there are no leading zeros). The exponent #H## 2 bytes
occupies one byte. HiH BHH 3 bytes

+H# #H 3 bytes

The Table to the right indicates storage requirements
for various images.

189

Chapter 18
Data Reduction
|

Section 18-4
Programming Examples Of PACK And UNPACK

The first program at the right packs 100 pieces of data
into alpha array A$(10)45. This data represents 10
purchases for each of 10 suppliers, therefore 100
purchases. The data from each supplier is packed into

-
READY

:5 DIM X(10),A$(10)45

:10 REM ENTER AND STORE 10 PURCHASES FROM 10

one element of alpha array A$(10)45. Each element : . ,

is dimensioned to be 45 bytes (A$(10)45). Since the gg EEE gggilé[l)EESRhI’INIé ;25552 i!j}PHA_NUMRIC ARRAY
packing image is ######.##, 4 bytes are required for ;40 FOR I=1 TO 10 e

each piece of data. That means the data for each :50 PRINT "SUPPLIER NO.";I

supplier requires at maximum 40 bytes. The elements <60 FOR J=1 TO 10

in the alpha array are dimensioned slightly larger :70 INPUT X(J)

than the maximum 40, namely 45. :80 NEXT J

The data is inputted by the operator as seen in ;?gopﬁgﬁ##?###,m);\f,(l) FROMX()

statement 70.

Enter this program into the System 2200 memory.

Touch RESET e
Touch RUN CR/LF-EXECUTE REGBY
When the program stops, input the first purchase, i.e., SUPPLIER NO, 1
?
Touch keys 56332 1.59 CR/LF- ! 563321.59
EXECUTE ?
The program stops for additional values. Input 9 ?
other values. :
{)
?
?
?
SUPPLIER NO. 2
?

190

Chapter 18
Data Reduction

After all the values are inputted for the first supplier,
the program loops back and requests the data for the
second supplier.

Continue entering any values until you have inputted
10 x 10 = 100 values. Once all the data is entered, the
program then packs the data away in alpha array AS.

The second program to the right calculates the total
purchase from the 10 suppliers. Before this calculation
can take place, the data must be unpacked. Statement
80 unpacks the data in the same image that it was
packed, and assigns the values to Array X.

Enter the program in the System 2200 memory.

RUN the program by touching keys RUN 110 CR/LF-
EXECUTE.

The sum of the purchases is printed upon completion
of the program.

—
READY
:110 DIM X(10),A$(10)45
:120 T=0
:130 REM COMPUTE THE TOTAL PURCHASES FROM
:140 REM THE 10 SUPPLIERS WHOSE PURCHASES
:150 REM WERE PREVIOUSLY PACKED IN AS() IN THE
1160 REM FORM #####4, ##
:170 FOR I=1 TO 10
1180 UNPACK(######.,##)AS(1) TO X()
:190 FOR J=1 T0 10
1200 T=T+X(J)
:210 NEXT J
:220 NEXT I
:230 PRINT T

191

Chapter 19
Position and Numeric Verification Functions
(POS and NUM Functions)

Chapter 19

Position and Numeric
Verification Functions
(POS and

NUM Functions)

Section 19-1
General Form Of The POS Function

The POS (Position) function allows the programmer,

with a single statement, to scan an entire alphanumeric

variable and locate the numerical position of a certain

character (i.e., whether the character is in the second,

or tenth, twentieth, etc. position in the alphanumeric GENERAL FORM
string). The POS function sets up a comparison and

tests each character in the string (from the beginning)

against another character. “Character”)

e XX

where: XX = hexadecimal digit (0-9 or A-F)

. I i
The first character in the string to satisfy the compari- POS (A pha Variable ﬁ

son results in the System 2200 indicating the actual
numeric position of that character in the string.

ANV NV AN

>

The general form of the POS function is shown to the
right.

The alpha variable in the POS function specifies the
name of the alpha variable to be scanned.

There are six relational operators that can be used for
making comparisons (<, <, =, =2, >, <> (not equal)).

193

Chapter 19
Position and Numeric Verification Functions
(POS and NUM Functions)

The character used for comparison is specified as:

(1) A single character in quotes (e.g., '9") or (2)
the equivalent HEX code for that character (e.g., HEX
(39)).

Some examples of POS functions are shown to the
right.

Explanation of Example 1: The variable X is set equal
to the number specifying the numeric position of the
$ in the alpha variable A$.

Explanation of Example 2: This statement scans the
alphavariable (A$) from the fourth to eighth character
and tests each character to see if it equals HEX (20),
which is a space. The numeric position of the first
character to equal a space is printed out. If none of the
characters equal a space, then POS is set equal to
zero, and a zero is printed out.

Explanation of Example 3: This statement scans the
alphanumeric variable A$ to find the first character
that is < A. Once found, the position of the character
is then tested to see if it is < 16. If the position of
“A" < 16, then program flow goes to statement num-
ber 60; if the position of “A” = 16, program flow
goes to the next sequential statement in the program.

As can be seen from these examples, the POS function
can be used wherever numeric functions are normally
used in BASIC. If no character in the alpha string
satisfies the specified condition, then POS is set equal
to zero (POS=0).

EXAMPLE 1:

EXAMPLE 2:

EXAMPLE 3:

194

10 X=P0S(A$="$")

20 PRINT POS(STR(A%,4,5)=20)

30 IF POS(A$<"A")<16 THEN 60

Chapter 19

Position and Numeric Verification Functions

(POS and NUM Functions)

[e e]

Section 19-2
Programming Examples Using The POS Function

The program at the right illustrates the use of the
POS function. In this example, a credit card company
has a very extensive customer list, which requires that

the list constantly be scanned for expired cards. The (
program is written to scan the data, and printout only
the names and expiration date for cards no longer

:10 DIM A$64

:20 READ A$

+30 IF A$="ZZZZ" THEN 150

:40 CONVERT STR(A$,POS(A$="*")+1,4) TO A

valid. The data in this example is written into the :50 IF A[1975 THEN 70

program; in actual practice, however, the data would <60 GOTO 20

be stored on some external storage device (e.g., tape 270 PRINT "NAME","YR.EXP."

cassette or disk) and “called” into the program as :80 PRINT STR(A$,1,P0S(A$=" ")),STR(AS,POS(A$="*")+1,4)
needed. :90 GOTO 20

:100 DATA "JOHN-SMITH 002544211 *1974 GEORGIA"
:110 DATA "BETSY-LOOKNER 116423596 *1975 MASS."

Enter the program and run it.

Explanation: statement 20 assigns the alphanumeric :120 DATA "JESSIE-BELL 211190421 *1973 ALABAMA"

variable (A$) to the data in statement 100. :130 DATA "RICHARD-BATES 116423596 *1972 WISCONSIN"
L . . :140 DATA "z7z77"

Statement 40 uses the STR(function in conjunction =150 STOP

with the POS function, to locate the position of four RUN

characters preceded by an ““*" (i.e., the year). The NAME YR.EXP.

year is pulled out of the string and converted to a JOHN=-SMITH 1974

numeric and set equal to A (see Chapter 21) fora NAME YR.EXP.

detailed discussion of the CONVERT statement). JESSIE~BELL 1973

If the date is < 1975, program flow jumps to state- EII\PSEARD-BATES ?g}gxp'
ment 70 where only name and date are printed. {f

the date is = 1975 program flow goes to statement STOP

60 which transfers the program to statement 20. The .
entire process is then repeated. The program stops
running when it reaches the text data “Z2ZZZ".

195

Chapter 19

Position and Numeric Verification Functions

(POS and NUM Functions)
|

Section 19-3
The General Form Of The NUM Function

The NUM (numeric) function allows the programmer
to scan an alphanumeric variable from the first char-
acter in a string, or from any character in a string if
used in conjunction with the STR(function, and count
the number of sequential valid numeric characters from
that point until a non-numeric character is found or
until the sequence of numeric characters fails to
conform to standard BASIC number format. Valid
numeric characters include the digits 0-9, spaces, +,
-, ., and E. The NUM function is used to determine
either the length of a numeric portion of an alpha-
numeric variable, or to verify whether an alphanumeric
variable is a legitimate BASIC representation of a
numeric value.

The general form of the NUM function is shown to the GENERAL FORM
right. NUM (Alpha Variable)

The alpha variable in the NUM function specifies the
name of the alphanumeric variable which is scanned
by the NUM statement.

Some examples of the NUM function are shown to

the right.

Explanation of Example 1: The variable X is assigned EXAMPLE 1: " "
. ="y

a value equal to the number of the first group of :?0A§=NUM%2219]2” NAME ,ADDRESS

sequential numeric characters in the alpha string AS. :]5 PRINT X

In this example X = 12, because leading and trailing ;RUN

spaces are included in the count, as well as the plus 12

sign. The count is terminated when a non-numeric
character is encountered (in this case the letter ’N"’).

196

Chapter 19
Position and Numeric Verification Functions
(POS and NUM Functions)

Explanation of Example 2: The third through the 8th EXAMPLE 2:
character in string A$ is scanned and the first sequen- :10 A$="+ 265191211 NAME,ADDRESS"
tial group of valid numeric characters is counted. If 120 IF NUM(STR(A$,3,6))<{>8 THEN 100

this number is not equal (< >) to 8, then the program
branches to Statement 100. If the number is equal to
8, the next sequential statement in the program is
executed. [n this example the number equals 6,
therefore the program branches to statement 100.

Explanation of Example 3: Statement 20 defines M$ EXAMPLE 3:
- . . . :10 A$="21.523 NAME"
as being equal to the valid numeric characters in the : - ’ _ugn
string A$, which are 21.523. :238 ggI§¥R&/§$’POS(A$< 9") ,NUM(AS))
In order to determine what characters are valid :RUN
numerics, the STR(function is used to pick out part 21.523

of the string. The POS statement is used to determine
the starting position of the numeric characters (A$ <
9"’} and the NUM statement is used to determine how
many sequential characters there are from the starting
position so that the correct part of the string is
assigned to M$.

Explanation of Example 4: Statement 20 defines X EXAMPLE 4: . _n "
as being equal to the number of valid numeric charac- ;8 QE&U;%%A;;S&B
ters in AS. X is equal to 4 as the sequence of valid :30 PRINT X
numeric characters fails to conform to a standard <RUN

BASIC number when the + character is encountered. q

197

Chapter 19
Position and Numeric Verification Functions
(POS and NUM Functions) _
- e
Section 19-4
Programming Example Using The NUM Function

The program to the right shows a typical example of
how the NUM function can be used.

An investment company has a record of all its clients

and the amount of the money being handled by the (

firm per client. At the end of each month a tally of SEADY

the number of clients and the total funds contributed :5 DULII f\$§4 _

by all clients is taken. 10 A_O’M:O'X_O

:20 FOR S=1 TO 50

The key to this program is statement 50. Again the 28 ?EAR$/}§9999" THEN 90

CONVERT statement is used (Chapter 21) to set the : . Cnen Cwen
amount of each client’s contribution equal to M. ;150 CONVERT STR(A$,POS(A$="$")+1,NUM(STR(A$,POS(A$="$")+1))) TO
Both the POS and NUM functions are used in con- 60 A=A+M
junction with the STR(function so that each DATA ;70 X=X+]

statement is scanned and the amount of each client’s -80 NEXT S
contribution is pICkEd out of the string and assigned :90 PRINT "NUM. OF VALUES","SUM","MONTH"

to variable M. The first POS function in the STR(:100 PRINT X,"$":A,"JUNE"

function is used to determine the numeric position of :110 DATA "BETTY WHITE 026-30-3191 $1000500 *1932"
the first character in the DATA statement representing :120 DATA "J.C.JONES 511-61-7236 $1005.00 *1947"
the amount (i.e., POS(A$ = S”) +1). In DATA :130 DATA "ANDREA LAPOINT 001-42-6109 $2052.56 *1953"
statement 110 this is 26(25 + 1). The NUM function :140 DATA "JOSHUA KING 781-91-4136 $633.92 *1948"

is then used to determine how many numbers :150 DATA "KENNETH P. WILBUR 467-77-5841 $400000.25 *1909"
(characters) there are in the amount after the position :160 DATA "9999"

of the amount is determined. NUM(STR(A$, POS(A$,= 3;68 END

S, NUM. OF VALUES SUM MONTH

In DATA statement 110 this is 8. Therefore, STR(5 $ 1404191,73 JUNE

AS$, 26, 8) = 1000500 = M. Each DATA statement is

unique due to the number of characters in the name END PROGRAM
as well as the different amounts contributed. State- FREE SPACE=2801

ment 50 is general enough to enable the program to

pick out the required part of a string in each DATA

statement.

198

Chapter 20
Bit and Byte Manipulation

Chapter 20

Bit and Byte
Manipulation

There are several statements in the System 2200 which
allow a programmer to look at an 8-bit word and
change one or more bits. In effect, a programmer can
manipulate any one bit in memory. This capability is
extremely useful in many programming applications
such as data conversion, code conversion, editing of
BASIC programs by a program, program translation,
and preparation of specially formatted output data.

In order to fully understand how this bit and byte
manipulation occurs it is necessary to discuss what a
bit is, what a byte is and what the binary numbering
system is before a discussion is begun on what state-
ments are involved.

Section 20-1
What Is A Bit? What Is A Byte?

Every character (or keyword) in an alphanumeric

variable requires one byte of memory. A byte consists

of 8 bits. Therefore every character in an alphanumeric BIT8|BIT7 BIT6|BIT5|BIT4|BIT3|BIT2|BIT1
variable is actually represented in memory as 8 bits W

(see diagram). 1 byte

199

Chapter 20
Bit and Byte Manipulation

All characters or keywords in the System 2200 are
represented in memory with different combinations
of these 8-bits being used or more accurately being

“turned on”. If a bit is “turned on’ this is repre- ’70| 0
sented with a 0. The diagram to the right illustrates

how a byte looks in memory when representing a SAMPLE CHARACTER IN MEMORY
sample character. Several of the bits are "ON'* (1) and

several of the bits are “OFF'’ (0).

111/0(0(0(1

Section 20-2
What Does Binary Mean?

The use of 1 to represent an ON bit and a O to repre-
sent an OFF bit in the design of computer memories
is more than coincidental. The numbering is used
because O and 1 are the digits used in the Binary

numbering system. BINARY DECIMAL HEXADECIMAL
The literal definition of Binary is “‘consisting of two"". 0000 0 0
The Binary numbering system thus consists of various 0001 1 1
combinations of two digits; 0 and 1. The decimal 0010 2 2
system (“’consisting of ten”’) consists of various com- 0011 3 3
binations of the digits 0-9. The table to the right 0100 4 4
shows several Binary numbers and their decimal 0101 5 5
equivalents. The table also shows the hexadecimal' 0110 6 6
equivalent of these same binary numbers. The reason 0111 7 7
hexadecimal is included in this table shall become 1000 8 8
apparent later. 1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

lSee Chapter 15 for a discussion of the hexadecimal numbering system.

200

Chapter 20
Bit and Byte Manipulation

HOW ARE BINARY NUMBERS GENERATED?

Each digit position in a Binary number represents an
increasing power of two. If a zero is used you do not
take the value of the position, if a one is used you do
take the value of the position (see illustration).

In a byte of memory, the 8-bit configuration is two
binary numbers. What do these two binary numbers
represent? They represent the two digits of a Hexa-
decimal code. Recalling the discussion in Chapter 15
every key in the System 2200 generates a unique
two digit HEX Code when it is used. This code is
then converted to two 4 digit binary numbers and
stored in memory as 8 bits or one byte (see example).
Bits 1-4 represent the second digit of the hex code,
bits 5-8 represent the first digit of the HEX Code.’

Because of the simplicity of the Binary numbering
system (i.e., 0 and 1), many computer memories are
designed this way.

Some other examples are shown to the right.

Each of the bit and byte manipulation statements
performs adifferent mathematical or logical operation
on the bit structure of one or more characters in an
alphanumeric variable. The remainder of this Chapter
discusses these individual statements.

1AII alphanumeric characters in the System 2200 are stored internally
in ASCIl. Hex codes are a subset of ASCIl codes. For example,
Hex (41) is the ASCII code for A. See Appendix A.

Power 2%) (2% (2°) 2y (2" (29
Value of Position 32 16 8 4 2 1
Binary Digit 0 1 0 0 1 0
N __/
%
16+2=18
BINARY DECIMAL
010010 =
Touch A Key

l generates

HEX(41)

stored in memory as

BIT8 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1

201

0 1 0 0 0 0 0 1 ABYTE
AN N ____/
4 1
generates
stored 8-BIT CONFIGURATION IN
KEY”~ ™HEXCODE—"_ a _—™MEMORY (one byte)
$ 24 00100100
N 4E 01001100
? 3F 00111111

Chapter 20
Bit and Byte Manipulation
L.

Section 20-3
Bit And Byte Manipulation Statements

The statements ADD, AND, OR, XOR, BOOL,
ROTATE, and INIT are similar to instructions avail-
able on most mini-computers. They perform logical
and arithmetic operations on the characters in the
value of an alphanumeric variable. The entire value of
the variable is operated on /ncl/uding trailing spaces.
The alphanumeric variable can be considered a register
or acollection of one byte registers that the operation
is performed on. The length of this register may be
set by defining the length of the alphanumeric vari-
able in a DIM or COM statement (default length =
16 characters). Part of an alphanumeric variable may
be operated on by using the STR{(function to specify
a portion of the variable.

ADD STATEMENT

The ADD statement is used to add a value to any

alphanumeric variable. The addition is done in GENERAL FORM

BINARY. The general form of the ADD statement is) XX

shown to the right. ADD [C] [Alpha variable, Alpha variable

In the ADD statement the [C] is optional. If not where: xx = hexadecimal digit (i.e., 0-9 or A-F)
included the specified character (xx) is added to each)

character of the first alpha variable or the second ¢ = add with carry

alpha variable is added to the first alpha variable on
a character by character basis.

If included the characters to be added are added to the
entire string as if the string were a single character.

In the ADD statement the first a/lpha variable speci-
fies the name of the alpha variable to be worked on.

202

Chapter 20
Bit and Byte Manipulation

Two types of addition can be done with the ADD
statement. They are:

(1) Immediate Addition
(2) String to String Addition

The type of addition to be done is indicated
by the second term in the ADD statement.

If two hex digits (xx) are used this indicates imme-
diate addition and the character specified by the hex
digit is added to the first alpha variable.

If an alpha variable is used as the second term this
indicates string to string addition and the value of the
second string is added to the first.

The addition whether Immediate or String to String
is done in binary.

See Example 1 to the right.

Explanation of Example 1: AS$ is first defined as
being two characters long (or 2 bytes long). This is
dore in order to operate on only two characters
instead of two characters and 14 trailing spaces as
would happen if A$ was undefined and had a default
length of 16 characters. This is then an example of
Immediate Addition where the hex digits (02) are
added to each character (byte) of the alphanumeric
string (A$). The addition is in binary as shown to the
right. There is no carrier between bytes.

EXAMPLE 1:

:5 DIM A$2
:10 A$=HEX(0123)
:20 ADD(A$,02)

SETS A$ = HEX(0323)

A$ = 00000001 00100011
+
02 = 00000010 00000010
00000011 00100101
03 25

203

(i.e., 01 23)

{i.e., 02 02)

no carrier between bytes

Chapter 20
Bit and Byte Manipulation

Explanation of Example 2: A$ is defined as 2 charac- EXAMPLE 2:

ters long for the same reason used in Example 1. This

is then an example of Immediate Addition when the 5 DIM A$2

hex digits (02) are added to the entire string as if the 110 AS=HEX(0123)
string were a single character (specified by the [C] :20 ADD C(A$,02)

option in the ADD statement). The addition is in
binary as shown to the right and there is carrier be-

tween bytes. SETS AS = HEX(0125)
-
NOTE: AS = 0000000100100011 (i.e., 01 23)
The difference between ADD and ADD C is)
simply ADD does not have carrier between bytes 02 = 00000010 lie, 02)
and ADD C does. ADD C is used primarily for 0000000100100101
string to string binary addition. ? \7%_/

Explanation of Example 3: A$ and BS are both de-
fined as two characters long. This is an example of carrier between bytes
String to String Addition where the addition is done

onacharacter by character basis; i.e., the last character

of the second value is added to the last character of EXAMPLE 3:

the first value, the next to the last character of the
second value is added to the next to the last character
of the first value and so forth. The binary addition of
these two alphanumerics is shown to the right. There
is no carrier between bytes.

:5 DIM A$2,BS2
210 A$=HEX(0123):B$=HEX(0OFF)
:20 ADD (AS,B$)

SETS A$ = HEX(0122)

A$ = 00000001 00100011 (i.e., 01 23)
+

BS = 00000000 1111111 (i.e., 00 FF)
00000001 00100010
T N e’
1 22

no carrier between bytes

204

Chapter 20
Bit and Byte Manipulation

Explanation of Example 4: A$ and BS are both defined
as 2 characters long. This is an example of String to
String Addition where both strings are treated as
single characters and added since [C] is specified in
the ADD statement. There is carrier between bytes.

Explanation of Example 5: This is an example of
using the STR(function to work on part of an alpha-
numeric string with the ADD statement. The ADD
statement is Immediate addition where the two hex
digits (81) are added only to the third and fourth
characters of the string A$ (STR(AS 3,2)). The
Binary addition is shown to the right.

EXAMPLE 4:

:5 DIM A$2,B$2
:10 A$=HEX(0123):B$=HEX (OOFF)
:20 ADD C(AS$,BS)

SETS A$ = HEX(0222)

A$ = 0000000100100011 (i.e., 0123)
+ 0000000011111111 (i.e., OOFF)
0000001000100010
0 2 T 2 2
carrier between bytes
EXAMPLE 5:

110 AS=HEX(01234567)
:20 ADD(STR(A$,3,2),81)

SETS A$ = HEX(01A44567)
only change in AS$

A$ (....23....) = 0010 0011 (i.e., 23)

+
81 = 1000 0001 (i.e., 81)

1010, 0100

A 4

205

Chapter 20
Bit and Byte Manipulation

If an alphanumeric has a variable with a length less
than the maximum length specified for that variable,
the remaining characters are all set equal to space.
(Normally trailing spaces are not considered part of
the value.) Therefore, be sure to define the length of
the variable with a DIM or COM statement otherwise
the bytes for trailing spaces are operated on with the
ADD statement.

When two alphanumeric variables are added and they
are not of the same defined length the following rules

apply:
1) The addition is right adjusted with lead charac-

ters of zero binary value being assumed for the
variable of shorter length (see example 6).

:10 DIM A$10
120 A$=HEX(0123)

therefore AS = 01232020202020202020
Y
filled out with trailing spaces

(HEX (20)) because A$ was
fess than the defined length of 16

EXAMPLE 6:

:5 DIM A$3,BS2
110 A$=HEX(012345) :B$=HEX(OOFF)
:20 ADD (A$,BS)

SETS AS = HEX(012344)

lead character

added to AS = 0000 0001 0010 0011 0100 0101 (i.e., 012345)
adjust length B$ =(0000 000 0000 0000 1111 1111 {(i.e., 00 00 FF)
0000 0001 0010 0011 0100 0100
— — M
01 23 44

206

Chapter 20
Bit and Byte Manipulation

2) The answer is stored right adjusted in the
receiving variable. If the total answer is longer
than the receiving variable the lower order por-
tion of the answer is stored (see example 7).

~ NOTE:

The INIT statement can be used to initialize all
characters of an alphanumeric variable to any
character code including zero. This can be done
prior to moving a value into part of the variable
with a STR function to eliminate trailing spaces.

AND, OR, XOR STATEMENTS

The AND, OR and XOR statements perform the
specified logical function (AND, OR, or EXCLU-
SIVE OR) on the characters of a specified alphanu-
meric variable. The general form of these statements
are shown to the right.

EXAMPLE 7:

AS |0000 0000 0100 0101

BS

AND
OR
XOR

5 DIM A$1,B$2
10 A$=HEX(45):B$=HEX(0OFF)
:20 ADD(AS$,B$)

filled in with binary zeros to equalize the length

0000 0000 11111111

0000 0000 0100 0100
-~ —

00 44

dropped in final answer as length
of A$ is defined only as one.

GENERAL FORM

_ XX
(alpha variable, {alpha Variable})

where: XX = hexadecimal digit (i.e., 0-9 or A-F)

207

Chapter 20
Bit and Byte Manipulation

The AND statement performs the logical AND
operation on alphanumeric variables. It compares bit
for bit two alphanumeric variables. If both bits are
ON (a one) the result is ON (a one), otherwise the
result is a zero (OFF). (See Example 1 to the right.)

Explanation of Example 1: The logical AND opera-
tion is performed on two alphanumeric variables.
After the comparison is made bit for bit, only those
bits compared which were both “ON" (i.e., 1) stay
“ON" (assume a value of 1), the others are OFF (0).

The OR statement performs the logical OR operation
on alphanumeric values. It compares bit for bit two
alphanumeric variables. If both bits are OFF, the
result is OFF (a zero), otherwise the result is ON (a
one). (See Example 2 to the right.)

Explanation of Example 2: The logical OR operation
is performed on two alphanumeric variables after the
comparison is made bit for bit, only those bits
compared which were both OFF (a zero) stay OFF
(a zero), all others are ON (a one).

EXAMPLE 1:

SETS A$ = HEX(08)

AS

00001100

AND B$ = 00001000

00001000
\q(-’\.\/d

RESULT 0 8 =

EXAMPLE 2:

110 AS=HEX(OC):B$=HEX(08)
:20 AND(AS$,BS)

(i.e., 0C)
(i.e., 08)

HEX(08)

OR B$

SETS AS = HEX(0C)

00001100
00001000

00001100

A3

RESULT 0 C

208

110 A$=HEX(0C):B$=HEX(08)
:20 OR(A$,BY)

(i.e., OC)
{i.e., 08)

HEX(OC)

Chapter 20
Bit and Byte Manipulation

The XOR statement performs the logical EXCLUSIVE
OR operation on alphanumeric values. It compares
bit for bit two alphanumeric variables. If both bits
are the same (both ON or both OFF) the result is OFF
(a zero), if different the result is ON {a one). (See
Example 3.)

Explanation of Example 3: Both variables are defined
as one character long to eliminate any trailing spaces.
The logical EXCLUSIVE OR operation is performed
on two alphanumeric variables. After the comparison
is made if both bits are ON or both OFF the result is
OFF, otherwise the result is ON.

Programming examples of each of these statements
are shown to the right.

Explanation of Program I: A$ has hexadecimal code
of 25’ and a byte configuration of 00100101. It is
desired to change A$ to hexadecimal ‘20°. This is
accomplished by using AND with hexadecimal ‘FO’
whose bit configuration is 11110000. The rule for
AND is - if both bits ON then the resultant bit is ON,
otherwise the resultant bit is OFF,

Explanation of Program IlI: It is desired to change A$
hexadecimal code ‘48" whose bit donfiguration is
01001000 to hexadecimal code ‘49" whose bit con-
figuration is 01001001. This can be done by using
OR and the hexadecimal code ‘01’ whose bit con-
figuration is 00000001. The rule for OR is - if at
feast one bit is ON then the resultant bit is ON,
otherwise the resultant bit is OFF.

EXAMPLE 3:

:5 DIM A$1,B$1
:10 A$=HEX(0C):B$=HEX(08)
:20 XOR(A$,B$%)

SETS A$ = HEX(04)

A$ = 00001100 (i.e., OC)
B$ = 00001000 (i.e., 08)

00000100
RESULT o 4 HEX(04)
PROGRAM | AND
READY
:1 DIM A$1

:5 A$=HEX(25)
:10 AND(A$,FO)

PROGRAM I1 OR

READY

:10 DIM A$1
:20 A$=HEX(48)
:30 OR(A$,01)

209

Chapter 20
Bit and Byte Manipulation

Explanation of Program [l1: It is desired to change A$
hexadecimal ‘29" whose bit configuration is 00101001
to hexadecimal ‘BE’ whose bit configuration is
01011110. This can be done by using XOR and the
hexadecimal code ‘77" whose bit configuration is
01110111, The rule for XOR is - if both bits are ON
or both OFF, the resultant bit is OFF, otherwise the
resultant bit is ON.

INIT (INITIAL) STATEMENT

The INIT statement initializes alphanumeric variables
to any character the user specifies {sets the alpha
variable to zero or spaces, etc.). It is very useful and
often necessary to initialize variables to all zeros be-
fore performing Binary operations, i.e., ADD, XOR,
etc.

The general form of the INIT statement is shown to
the right.

Each character in the variable or array is set equal to
the character specified inside the parentheses. This
character can be represented by two hex digits. If an
alphanumeric variable is enclosed in the parentheses,
the 1st character of the value of the alphanumeric
variable is used.

PROGRAM I11 XOR

:10 DIM AS1
120 A$=HEX(29)
:30 XOR(A$,77)

GENERAL FORM

XX . alpha variable
' p alpha variable

INIT character loha arrav desianat , <alpha array
alpba variable aipha array designator designator

where: XX = hexadecimal digit (i.e., 0-9 or A-F)
alpha array designator = alpha array name() e.g., A$()

210

Chapter 20
Bit and Byte Manipulation

Some examples are shown to the right.

Explanation of Example 1: This statement sets every
byte of the variable B$ and array X$() to zeros. Hex
digits (00) are used to make this change.

Explanation of Example 2: This statement sets every
byte of array 15 A13() and B$() to a space. The
character “‘space’’ (i.e., HEX20) is used to make this
change.

Explanation of Example 3: This statement sets every
byte of array B$() to a one. The first character of
alphanumeric variable A$ is used which is a one.

ROTATE STATEMENT

The ROTATE statement rotates the bits of each
character (i.e., in each byte) in the value of the
specified alphanumeric variable to the left from 1 to
7 places; the high order bits replace the low order bits.
Atl characters are operated on including trailing
spaces.

If an alphanumeric variable has a value with a length
less than the maximum length of the variable, the
remaining characters are all set equal to spaces.

The general form of the ROTATE statement is
shown to the right.

See the example to the right.

EXAMPLE 1: $10 INIT(00)B$,X$()

EXAMPLE 2: 120 INIT(" ")A1$(),B$()

EXAMPLE 3: :10 A$="102A7"
220 INIT(A$),B$()

GENERAL FORM
ROTATE (alpha variable, d)
where: d = digit from 1-7

EXAMPLE:

:10 A$=HEX(0132EF)
:20 ROTATE(AS$,4)

SETS A$ = HEX(0132FE)

211

Chapter 20
Bit and Byte Manipulation

Explanation: Each byte is rotated 4 places to the left.
The byte structure of A$ is shown to the right. Each
of the bytes are rotated to the left 4 places as shown.

BOOL (BOOLIAN) STATEMENT

The BOOL statement allows the user to perform any
of sixteen possible logical operations on the bit
structure of two alphanumeric values. All characters
of the alphanumerics are operated on including trailing
spaces. If the alphanumerics are less than the specified
maximum length trailing spaces are added. Parts of the
alphanumerics can be operated on using the STR(
function.

The general form of the BOOL statement is shown to
the right.

The hex digit following BOOL specifies which of
sixteen logical operations is to be used.

AS requires 0000 0001 01

3 bytes
0010 0011 23
11111110 FE
RESULT
0001 0000 10
0011 0010 32 HEX(1032EF)
1110 1111 EF

GENERAL FORM

BOOL Ipha variabl XX
X (ap a variable, {alpha variable})

where: x = hexadecimal digit (i.e., 0-9 or A-F)

212

Chapter 20
Bit and Byte Manipulation

The characters of the first alpha variable are operated
on and changed by the second value.

There are Immediate and String to String logical
functions. Immediate Addition is specified if the
second value in the BOOL statement is a hex digit.
String to String Addition is specified if the second
value in the BOOL statement is an alphanumeric
value.

For those users who are familiar with symbolic logic
and know in advance what type of logical operation
is to be performed, the table to the right lists the
hex digit (Column 2) to use in the BOOL statement
to generate the specified logical function in Column 1.
For example BOOL 5 (A$, B$) causes A$ to be set
equal to the complement of BS. The hex digit 5
specifies which of the sixteen logical functions is to be
used (i.e., complement of value #2).

For those users who are not familiar with symbolic
logic, using one of the hex digits in the BOOL state-
ment is valueless until what is happening is understood.
Therefore an example is used here as a suggested
approach to learning about symbolic logic and how it
is used.

Suppose you have a one byte variable A$ with a
bit configuration as shown to the right. You want
to use the BOOL function to test the 7th, 5th, 3rd
and 2nd bits to see if they are all ON.

A way to do this is to create a 1-byte mask (B$) with
the 7th, 5th, 3rd and 2nd bits turned ON to mark
the bits to be tested in A$.

213

IF

BITS

HEX 11|00

LOGICAL FUNCTION DIGIT 11010
RESULT

null 0 0j0(0|0
not OR 1 0/0|0|1
2 o|0(1(0

complement of value #1 3 0[0[1]1
4 0(1)0|0

complement of value #2 5 0(10]1
exclusive OR 6 0|1]1|0
not AND 7 o111
AND 8 110100
equivalence 9 110(0]1
value #2 A 110(1]|0
value #1 implies value #2 B 110(1]1
value #1 C 111]0|0
value #2 implies value #3 D 111101
OR E 111(1(0
identity F 111111
8th bit 1st bit

A =1 1 0 0 0 1 0 1«

} } f 4

7th 5th 3rd 2nd
B =0 1 o 1 0 1 1T 0
b oA
7th 5th 3rd 2nd
N N /
all ON

Chapter 20
Bit and Byte Manipulation

You must then formulate a rule(s) for comparing A$
with B$. For example:

1. A zero bit in BS gives a zero bit no matter what the
corresponding bit on A$ is as you are not con-
cerned with testing these bits (i.e., 1st, 4th, 6th
and 8th).

2. Aone-bit in BS gives a zero bit if the corresponding
bitin A$ is OFF (0).

3. A one-bit in B$ gives a one bit if the corresponding
bit in A$ is ON.

The result of this comparison based upon these rules
is shown to the right.

If the bits to be tested in A$ were all ON (that which
you are testing for) the result would exactly look
like B$ (01010110). If the bits to be tested were not
all ON (as in this example) the result would be
different from B$.

To find the BOOL function which duplicates this
rule, you must apply these same rules to two
hypothetical values. These hypothetical values are
given to you and are shown to the right. They are
obtained as the result of comparing any two bits (one
form each value). In this comparison four possible
combinations can exist. Either both bits are ON (1)
or both bits are OFF (2); or the first bit is ON and the
second bit is OFF (3); or vice versa (4).

Now compare these two hypothetical values based
upon your rules. The results are shown to the right.

If you look at Column 3 in the table (Page 213) you
will find your results (1000). Match this result with a
hex digit from Column 2. As you can see this is hex
digit 8 and the logical operation AND.

AS =11000101
B =01010110
Resut =01000100

Bit from Value 1 1101
Bit from Value 2 1010

Hypothetical
Value 1 11 00

Hypothetical
Value 2 10 10

Rulesgve——= 10 00

214

——hypothetical value 1
—hypothetical value 2

Chapter 20
Bit and Byte Manipulation

The BOOL statement that would be used to perform
the logical AND operation on your values is shown to
the right.

Column 3 in the table was arrived at by applying the
rules for each logical operation listed in Column 1 to
the two hypothetical values shown at the top of
Column 3. Therefore to determine which logical
operation (hex digit) is to be used in the BOOL
statement, you must apply any rules you use to these
two hypothetical values, and match the resuits with
those in Column 3. Then looking across the table you
can determine the appropriate hex digit to use.

Some additional examples are used to help illustrate
uses of other logical operations.

Explanation of Example 1: In Example 1 an alpha-
numeric value (A$) is compared to Hex (00) on a
character by character basis. The BOOL statement
asks that logical operation (3) be performed on these
two values. This means that when comparing the two
hypothetical values at the top of Column 3'in the
table, the results are 0011 (the complement of Value
#1). Todevelop a set of rules for this you would have:

1) If the first bit is ON, the result is OFF no matter
what the second bit is.

2) If the first bit is OFF the result is ON no matter
what the second bit is.

Applying these rules to the bit structure of the values
in Example 1, you obtain the results as shown to the
right.

:20 BOOL 8 (AS$,BS)

EXAMPLE 1:

Result

110 AS=HEX(5432)
:20 BOOL 3(A$,00)

SETS AS$ = HEX(ABCD)

Hypothetical Value 1 1
Hypothetical Value 2 1
Results of Logical—0
Operation 3

1]

AS
00

01010100 00110010 (i.,e., 54 32)
00000000 00000000 (i.,e., 00 00)
~ 10101017 11001101

A B cC D HEX(ABCD)

215

Chapter 20
Bit and Byte Manipulation

Explanation of Example 2: In Example 2 Value 1
(AS$) is compared to value 2 (B$) on a character by
character basis.

The BOOL statement asks that logical operation (7)
be performed on these two values. This means that
when the two hypothetical values at the top of
Column 3 are compared, the resultsare 0111 (a NOT
AND operation).

To develop a set of rules for this you would have:

1) If both bits are ON, the result is OFF.
2) All other combinations result in an ON bit.

Applying these rules to the bit structure of the values
in Example 2, you obtain the results as shown to the
right.

If the second value is shorter in a String to String
logical function the remaining characters in the first
value are unchanged.

EXAMPLE 2:

:10 A$=HEX(4145).B$=HEX(2185)
:20 BOOL 7(A$,BS)

Hypothetical Value 1 17100
Hypothetical Value 2 1010
0111
A$ = 01000001 01000101 (i.e., 41 45)
Resul BS = 00100001 10000101 (i.,e., 21 85)
esult 11111110 11111010
of N . S— St o
NOT AND F E F A HEX(FEFA)

216

Chapter 21
Data Conversion

Chapter 21
Data Conversion

There are several statements in the System 2200B
which are used for DATA conversion. These state-
ments are CONVERT, VAL, BIN and HEXPRINT.
Each is explained in this chapter.

Section 21-1
The BIN Statement

The BIN statement converts the integer portion of a

numeric expression {must be < 256) to a binary

number. The first character of an alphanumeric value GENERAL FORM
is then sgt equal to t_he gharacter with a bit configura- BIN (alpha variable) = expression
tion equivalent to this binary number.

The general form of the BIN statement is shown to the where: 0 < value of expression < 256

right (see example 1).

Explanation of Example 1: 64 is converted to its EXAMPLE 1:

binary equivalent {01000000), which is equivalent to

HEX Code 40, which represents the character @. The 10 A$="ABCDEFG"

first character in A$ is therefore converted to @. :20 BIN(A$)=64
:30 PRINT A$
:RUN
@BCDEFG

217

Chapter 21
Data Conversion

Parts of strings can be operated on using the STR({
function (see Example 2).

Explanation of Example 2: 64 is converted to its
binary equivalent (01000000) which is equivalent to
HEX Code 40 or the character @. The third character
of A$ is converted to @.

An example of a program using the BIN statement is
shown to the right.

EXAMPLE 2:

:10 AS="ABCDEFG"

:20 BIN(STR(A%,3,1))=64

:30 PRINT AS
:RUN

AB@DEFG

Section 21-2
The VAL Function

The VAL function performs a binary conversion of the
value of the first character of an alphanumeric or
literal string (must be < 1111111) to a numeric. The
VAL function can be used wherever numeric functions
are normally used. It is the inverse of the BIN function.

The general form of the VAL statement is shown to
the right (see examples).

REM TO PACK TODAYS DATE. DATE IS IN
REM THE FORM MM/DD/YY WHERE C1=MM,

REM C2=DD,C3=YY
DIM D$3

INPUT "MONTH, DAY, YEAR",C1,C2,C3
BIN(STR(DS,1,1))=C1
BIN(STR(D$,2,1))=C2
BIN(STR(DS$,3,1))=C3

218

GENERAL FORM

alpha variable
literal string

Chapter 21
Data Conversion

Explanation of Example 1: A binary conversion is
performed on the first character of A$. A’ equals
010000001 in binary or the numeric 65. Therefore, X
is set equal to the numeric equivalent of character “A"’,
which is 65.

Explanation of Example 2: The VAL statement is used
with a literal string. The numeric equivalent of the
character A"’ is printed, namely 65.

The VAL function can also be used with the STR(
function (see example).

Explanation of Example 3: A binary conversion is per-
formed on the third character of A$ to a numeric
equivalent (C=01000011 = 67). If this is less than 80,
the value is printed.

The BIN and VAL functions are often used together.
They are especially useful in code conversion. The
program to the right illustrates a typical use of both
functions.

In this program the character to be converted is input
in line 10. The character is converted in line 20 to a
numeric and this number is then used to set the data
pointer to a particualr piece of data read by statement
30.

The new value (read in line 30) is then converted to a
binary number and the first character in BS is set equal
to the character with a bit configuration equivalent to
this binary number. The data in lines 100, 110,
etc., would be selected so the number read into X and
converted to BS would be the equivalent of the input
character in another code system.

EXAMPLE 1:

210 AS="ABC"

220 X=VAL(AS)
:30 PRINT "X="3X
:RUN

X= 65

EXAMPLE 2:

210 PRINT VAL("A")
:RUN
65

EXAMPLE 3:

—
:10 AS="ABCDEF"
:20 IF VAL(STR(AS,3,1))<80 THEN 40

:40 PRINT VAL(STR(A$,3,1))

PROGRAM

—
:10 INPUT AS$

:20 RESTORE VAL(AS$)+1
:30 READ X

140 BIN(B$)=X

.

2100 DATA 10,99,8,255,1,17,26,2

:110 DATA 31,59,48,62,112,7,213

219

Chapter 21
Data Conversion

Section 21-3
The HEXPRINT Statement

The HEXPRINT statement prints the hexadecimal
codes of an alpha variable or alpha array. Trailing
spaces in the variables are not ignored and are there-
fore printed (e.g., HEX(20)). Arrays are printed one
element at a time in sequence with no separation. A
carriage return is outputted after the printingofeach
alphaarray or alpha variable unless a semicolon is used
to separate the arguments.

The general form of the HEXPRINT statement is
shown to the right (see examples).

Explanation of Example 1: A$ consists of the char-
acters 1, 2 and 3. Using the HEXPRINT statement,
these characters are converted to their equivalent hex
codes, and then the codes are printed.

Explanation of Example 2: A$ equals three characters
plus 13 trailing spaces. (Default dimension 16 char-
acters.) The HEXPRINT statement converts all these
characters to their equivalent hex codes and prints
the codes.

Explanation of Example 3: Alpha variable (A$) and
alpha array (B$) are both dimensioned as five char-
acters. Each are assigned values in statement 20. The
results of the conversion to hex codes are printed on
two separate lines, due to the comma separating the
arguments in the HEXPRINT statement.

GENERAL FORM
HEXPRINT alpha variable f alpha variable ,
alpha array designator([};{ \alpha array designator(~ "' :

where: alpha array designator = alphaarray name () (i.e., A$())

EXAMPLE 1:

:5 DIM A$3

210 Ag="123"

:20 HEXPRINT A%

:RUN

313233 (the hex codes for
characters 1, 2 and 3)

EXAMPLE 2:

r:10 A$="ABC"

:20 PRINT "HEX VALUE OF A$=";

:30 HEXPRINT AS

:RUN

HEX VALUE OF A%$=41424320202020202020202020202020

EXAMPLE 3:

-
:10 DIM A%$5,B$(1,2)5

:20 A$="ABCDE":B$(1,1)="ABCDE":B$(1,2)="FGHIJ"

:30 HEXPRINT A$,BS()

+RUN

4142434445

4142434445464748494A

220

Chapter 21
Data Conversion
|

Section 21-4
The CONVERT Statement

The CONVERT statement is used to convert alpha-
numeric information to numeric form and vice versa.
Therefore two formats are provided for the CONVERT
statement. Each is explained in this section.

CONVERTING ALPHA TO NUMERICS

The CONVERT statement converts the value of an
alphanumeric variable to a numeric value and then

sets a numeric variable equal to that value.
GENERAL FORM
Part of the general form of this statement is shown to
the right. CONVERT alpha variable TO numeric variable

The only restriction is that the original alphanumeric
value must be a true representation of a valid BASIC
number, otherwise an error results. For example A$ =
“1234"" or B$ = “6.5EQ7"’ are in legitimate numeric
format, but C$ = “12A56" or L$ = “LMO05"’ are not.
However, the STR{(function can be used with the
CONVERT statement to isolate these portions of the
alphanumeric which are in the correct format.

Some examples of the CONVERT statement are

shown to the right. EXAMPLE 1:

Explanation of Example 1: The CONVERT statement

converts the entire alpha variable A$ to its numeric :10 A$="1234"

equivalent and sets the variable X equal to that value. :20 CONVERT A$ TO X
:30 PRINT "X=";X
:RUN
X= 1234

221

Chapter 21
Data Conversion

Explanation of Example 2: The CONVERT statement
converts the eighth to the 16th characters of A$ to its
numeric equivalent and sets the variable X equal to
that value. The STR{(function is used to isolate the
portion of the string to be converted.

An example of the CONVERT function used in a
program is shown to the right. This program is suffi-
ciently documented with REM statements to explain
its purpose.

NOTE:

One of the major values of being able to convert
alpha to numeric is that it allows a program to
be written (1) which gives the operator the
ability to enter numeric data into an array (2) test
if the data in the array is numeric with the NUM
statement, (3) convert the array (i.e., alpha to
numeric) and (4) use the numeric data in the
program. In the process of doing this the data is
validated as being correct before is is used (i.e.,
corrected).

CONVERTING NUMERICS TO ALPHA

The CONVERT statement also converts the numeric
value of an expression to a character string and sets an
alphanumeric variable equal to that character string.
The image the numeric is to take on in the character
string must be specified in the CONVERT statement.

Some of the major uses for this function are to form
alphanumeric keys for data records (alphanumeric
sorting) and for formatting output for plotting, etc.

The general form of the CONVERT statement is
shown to the right.

EXAMPLE 2:

:10 A$="1234ABC4216,0543"
:20 CONVERT STR(A$,8,9) TO X
:30 PRINT "X=";X

<RUN

X= 4216.0543

:10 S=0

:15 DIM A$20

:20 A$="4,507.655.417.679,79"

:30 REM FIVE VALUES HAVE BEEN STORED IN A$ FOR
:40 REM SPACE SAVING PURPOSES. IT IS NOW DESIRED
:50 REM TO COMPUTE THE TOTAL OF THE FIVE VALUES.
:60 REM EACH OF THE FIVE VALUES IS MADE UP OF
:70 REM THREE DIGITS OF THE FORM #,##

:80 FOR I=1 T0 5

190 CONVERT STR(A$,4*1-3,4) TO X

1100 S=S+X

:110 REM S IS THE TOTAL OF THE VALUES STORED IN A$
2120 NEXT 1

:130 PRINT "THE TOTAL =";S

:RUN

THE TOTAL = 35,02

GENERAL FORM
CONVERT expression TO alpha variable, (image)

where: image = [+] [#....] [.] [#....] [1T11]

222

Chapter 21
Data Conversion

The image specifies the format of the converted
expression. The image can have two possible formats:

FORMAT 1 = FIXED POINT (e.q., ##.##)
FORMAT 2 = FLOATING POINT
(e.g., #H##TTT)

Each character in the image specifies one byte in the
resultant alphanumeric variable. These characters are
characters to specify digits, and +, —, ., and 1 to
specify sign, decimal point, and exponent characters.

Several rules are to be followed when formatting

numerics:

1. If the image starts with a plus (+) sign, the sign of ;8 é;&\]/g&%?)x*z TO A, (+##,##)
the value (+ or -} is edited into the character string ;30 PRINT A$ ’ o
(see example). :RUN
The expression (X*2) is evaluated {-30.46) and the -30.46

numeric is converted to a character string in the
format of +##.## and set equal to AS$. Notice the
appropriate sign is edited into the character string.

:10 X=15,23:A$="ABCDEFGHIJKLMN"
:20 CONVERT X TO STR(A$,3,6),(-##.##)
:30 PRINT A$

2. If the image starts with a minus (-) sign a blank
for positive values and a minus (=) for negative
values is edited into the character string (see

example). :RUN
AB 15.23T1JKLMN
X is converted to a portion of a character string in AN blank for the plus sian
the format of —##.## and inserted into the appro- P g
riate place of the string AS$. Notice a blank is left
for the plus sign in the resultant string AS.
3. If no sign is specified in the image, no sign is _

included in the character string (see example). :10 X=-450

_ - :20 CONVERT X TO A$,(###)
X is converted to a character string in the format :30 PRINT A$
and set equal to AS. Notice the minus (-) :RUN
sign is not edited into the character string as the 450

image does not call for it.

223

Chapter 21
Data Conversion

4. If the image has format 1, the value is edited into

the character string as a fixed point number, trun- :10 X=12.345

cating or extending with zeros any fraction and 120 CONVERT X TO AS$, (####.####)
inserting leading zeros according to the image :30 PRINT A$

specification. The decimal point is edited in at the :RUN

proper position. An error results if the numeric value 0012.3450

exceeds the image specification (see example).

The value for X is converted to a character string
in the format of ####.##### and the character
string is set equal to A$. Notice leading and trailing
zeros are added to maintain the correct position of
the decimal point.

5. If the image has format 2, the value is edited into

the character string as a floating point number. The 210 X=12

value is scaled as specified by the image (there are no :20 CONVERT X TO A$,(-#.#4444)
leading zeros). The exponent is always edited in the :30 PRINT A$

form E£XX (see example). :$UgE+O1

Thevalue X is converted to a character string in the
form (—#.#1111). This character string is then set
equal to A$. Notice the decimal point is edited
into the character string in the appropriate place
and the exponent is determined correctly. Also, a
leading blank is inserted into the image for the plus
sign.

blank for the plus sign

224

Chapter 22
Data Gathering

Chapter 22
Data Gathering

Several statements in System 2200 BASIC allow data
to be loaded into memory from exterior peripheral
devices. An in depth discussion of these statements
can be found in the individual reference manuals for
each peripheral. The only statement covered in this
manual is the KEYIN statement.

Section 22-1
The KEYIN Statement

The KEYIN statement is used to receive information,
one character at a time, from an input device. KEYIN
assigns a value to the first character of an alphanumeric
variable only, whereas the INPUT statement can assign
avalue(s) to either a numeric variable or alphanumeric
variable. No CR/LF-EXECUTE is required to complete
the data input with KEYIN, as is required with the
INPUT statement.

225

Chapter 22
Data Gathering

The input can come from any one of several input
devices (e.g., Model 2215 or 2222 Keyboards, Paper
Tape Readers, Punched Card Readers, etc.). The
input device is determined by which device has been
selected for input. In all the examples in this manual,
input is from the Model 2215 Keyboard, the default
input device. (For users owning a Model 2222 Key-
board, the Model 2222 is the default device.} IF any
other device is used for input, it must be selected
with the SELECT statement. (See System 2200
Reference Manual and/or individual peripheral refer-
ence manuals for a further discussion of the SELECT
statement.)

Another difference between the INPUT statement
and the KEYIN statement is the INPUT statement
requires the use of the CR/LF-EXECUTE key to
process the input. The KEYIN statement, on the
other hand, checks to see if a character is ready to
come in from the input device. If a character is ready,
it is received and put into the first character of the
specified alphanumeric variable. (See general form of
the KEYIN statement to the right.) Transfer then is
made to the second line number in the KEYIN state-
ment. If no character is ready to come in, no transfer
is made and the next sequential statement in the pro-
gram isexecuted. At no time is the CR/LF-EXECUTE
key used to process the input; it is automatically
processed once received.

226

GENERAL FORM

KEYIN alpha variable, line number, line number

Chapter 22
Data Gathering

Some examples of the KEYIN statement are shown
to the right.

Explanation of Example 1: Execution of statement 10
causes the system to check if a character is ready to
come in from the input device. If ready, the input
is received and assigned to the first character of AS$,
then transfer is made to statement 100. If no charac-
ter is ready, the next statement in the program is exe-
cuted (i.e., GOTO 10). If a Special Function Key is
touched, transfer goes to statement 200. Therefore,
execution cycles through the KEYIN statement until
a character or Special Function Key is touched.

Explanation of Example 2: Execution of statement
10 results in the system transferring to line 100 after
input is received or a Special Function Key is touched.
If acharacter was not ready, the next statement in the
program is executed.

The program to the right illustrates the use of the
KEYIN statement. The documentation within the
program explains the purpose of the program.

EXAMPLE 1: :10 KEYIN A$, 100, 200:GOTO 10

EXAMPLE 2: :10 KEYIN A$(1),100,100
:20 PRINT "CHARACTER NOT READY"

:10 A$="BOB BONES"

:20 REM AS WAS INCORRECTLY ENTERED AS

:30 REM "BOB BONES". THE 5TH CHARACTER

:40 REM SHOULD HAVE BEEN A "J" INSTEAD OF

:50 REM A "B",

:60 INPUT "ENTER POSITION OF INCORRECT CHARACTER",X
:80 KEYIN STR(A$,X,1),90,80

:85 GOTO 80

:90 PRINT A$

227

Chapter 22
Data Gathering

Enter this program.
Touch RESET.
Touch RUN CR/LF-EXECUTE
Touch 5 CR/LF-EXECUTE
Touch J

As soon as the requested input is received by the
system, processing of the program continues and the
new value of AS$ is printed out.

Run the program, again substituting any letter you
desire for the fifth character. You also can alter what
character is to be changed by inputting another value
for X in statement 60.

The KEYIN statement is executed so fast that state-
ment 85 is used to loop back to statement 80 so that
an operator can manually enter the correct character.
Once the character is received, program execution
continues automatically.

The major uses of the KEYIN statement are:

1) Editing capability.
2) Sampling the system with several low speed
instruments and different keyboards.

3) In telecommunication systems where input comes
in over telecommunication lines. The system can
immediately process information as it is received
over the lines without having to wait until the
CR/LF-EXECUTE key is touched manually by
an operator or continue processing if no character
is ready.

f
:RUN

ENTER POSITION OF INCORRECT CHARACTER? 5
BOB JONES

:RUN
ENTER POSITION OF INCORRECT CHARACTER? 5
BOB TONES

:RUN

ENTER POSITION OF INCORRECT CHARACTER? 5
BOB AONES

228

Appendix A

Appendix A HIGH ORDER HEXADECIMAL DIGIT OF CODE

0 1 2 3 4 5 6 7
0o NULL SPACE | 0 @ P
WANG SYSTEM 2200 ASCII CHARACTER —_— e P
CODE SET 1 HOME (CRT) X-ON ! 1 A Q a q
The following chart shows the ASCII codes (or H 2 ; 2 ° A i
e following chart shows the codes (or Hex
: X-OFF |
Codes) used by the System 2200. Each peripheral 3 ?CL:%R SCREEN 0 # 3 ¢ S ¢ s
may not use all these codes. See the appropriate 4 & 2 5 T FI
peripheral reference manual for the codes pertaining
. . . [+}] L
to a particular device. Codes not legal for certain 3 5 o % 5 E Y ¢ u
devices may default to other characters. o 6 o & 6 F v folv
& 7 BELL ‘ 7 G W g | w
=y (apos)
5 i
) 8 BACKSPACE (8 H X h X
= (CRT CURSOR <)
§ 9 HT (TAB)or CLEAR |) 9 | Y i |y
% (CRT CURSOR —) TAB
$ A LINEFEED SET | * : J Z R
£ (CRT CURSOR) TAB :
$ B VT (VERTICAL o+ ; K k
g TAB) ! L
2z C FORMFEEDOR i Co<or[] L \ |
3 REV INDEX ‘ (comma) ’
(CRTCURSOR 1) ! ; ; |
D CR(CARRIAGE . P VIR m 1
RETURN) ; T |
E so ¢ . >or] N ftor orl | n . _ |
(SHIFT UP) ; ' ; ’
F Sl P / P O <«or_ ' o
(SHIFT DOWN) * (degree) ‘ : ;

*Example: 1= ASCII 31 or HEX(31)

229

Appendix B

Appendix B

ESTIMATING PROGRAM MEMORY
REQUIREMENTS

STEP 1:

STEP 2:

Estimate Program Text Size

Estimate Array Variable Storage
Requirements

Each BASIC program line requires the following amount of storage space {in STEPS or
BYTES).

a. Line number =5
b. Each BASIC word 1
c. Each referenced line number 3

1 per keystroke

I

d. Remaining text material
(including CR/LF-EXECUTE)

Rather than counting the requirements for each individual text line, you can estimate
the average length of groups of lines, or use the following guidelines:

1. Simple, single statement lines : approximately 18 bytes per line

2. Multi-statement lines . approximately 27 bytes per line

Look for COM and DIM statements in the program. Estimate storage for numeric arrays
and string arrays separately.

a. Numeric arrays: Calculate the total number of elements in each numeric array.
For one-dimensional arrays, this is the dimensioned subscript; for two dimensional-
arrays, it is the product of the two subscripts.

EXAMPLE: Given the statement DIM A(5), B(6,3) (or COM A(5), B(6,3)), the
array A() has five elements and the array B{) has 18.

Each element requires eight bytes of storage. Therefore, the arrays A() and B()
require 40 bytes and 144 bytes respectively.

b. String arrays: Each string array element requires sixteen bytes of storage unless
otherwise specified in COM or DIM statements. If a maximum length is specified
(in DIM or COM) for a string array, each element in that array requires the speci-
fied number of bytes (or steps) of memory.

EXAMPLE: Given the statement DIM N$(30), P$(6,4), R$(7,10)4, TR(6)24, the
arrays require the following amounts of storage:

NS() 30 elements X 16 bytes/element = 480 bytes
P$() = 6 X 4 elements X 16 bytes/element = 384 bytes
RS() = 7 X 10 elements X 4 bytes/element 380 bytes
TS() 6 elements X 24 bytes/element 144 bytes

il

1l

230

Appendix B

a. Numeric scalar variables: Each numeric scalar variable requires four bytes for the
variable name plus eight bytes for the value of the variables.

b. String scalar variables: Each string scalar variable requires five bytes for the name
plus sixteen bytes for the value, if a maximum size is not specified in a DIM or
COM statement. If a maximum size is specified, the variable requires five bytes for
the name plus the specified number of bytes (or steps).

STEP 3: Estimate Scalar Variable Storage

EXAMPLE: Given the statements

10 DIM B$3 (or 10 COM B$3)
20 LET C$="NAME, ADDRESS"

The variable B$ requires 5 bytes for the name plus 3 bytes for the value. The
variable requires b bytes for the name plus 16 bytes for the value.

STEP 4: Total Memory Used By The Program Add the results of STEPS 1 - 3.

Add the results in STEP 4 to the number of bytes used in the BASIC system scratch area

STEP5: Total Memory Required For Execution
(approximately 700 bytes).

231

Appendix B

PROGRAM MEMORY REQUIREMENTS
(WORKSHEET) PROGRAM TITLE

STEP 1: Program Text Storage

a. Number of program lines =
b. Average number of bytes per line =
c. APPROXIMATE NUMBER OF TEXT BYTES (a*b) =

STEP 2: Array Variable Storage

d. Total number of numeric array elements =
e. Total number of bytes required (8 X ‘d’) =
f. Total bytes required for all string arrays =
g. TOTAL MEMORY FOR ARRAYS (etf)

STEP 3: Scalar Variable Storage

h. Total number of numeric variables =
i. Total storage required (12 bytes X ‘h’) =
j. Total storage for string variables =
k. TOTAL MEMORY FOR SCALAR VARIABLES (itj) =

STEP 4: Program Storage
l. ‘¢’ +g" +'k' -

STEP 5: Total Program Execution Requirements

I

700

m. BASIC system scratch area

H

TOTAL MEMORY REQUIRED (‘I" + ‘m’) bytes

232

Appendix C

Appendix C

The Wang System 2200 BASIC checks for and displays
syntax errors as each line is entered. The user may
then correct the error before proceeding with his
program. When any error is detected, the line being
scanned by the system is displayed and on the next
line, an ““t" symbol is placed at the point of the
error followed by the error message number.

The example to the right shows the format of the
System 2200 error pointer:

The user may then refer to the listing of error messages
to identify the error code number. The list contains a
description of each and a suggested method for
correcting the error.

NOTE:

An error message can only indicate one possible
type of error.

in Example: 1 the system has interpreted ‘P’ as a
variable and thus expects an equal sign following ‘P’;
whereas, the user may have meant:

The system assumes the statement is correct until
illegal syntax is discovered.

The error message, SYSTEM ERROR!, is displayed
if certain hardware failures occur. The user should
RESET or MASTER INITIALIZE (Power Off, Power
On) the system and re-enter the sequence of events
that produced this error.

NOTE:
Certain combinations of illegal or meaningless
operations may also result ina SYSTEM ERROR
message.

233

:10 DIM A(P)
tERR 13

Example 1:

PXINT X

t+ ERR 06 (expected equal sign)

:PRINT X

Appendix C

THREE TYPES OF ERRORS CAN OCCUR

A Syntax Error (Example: 2)

Results when the required format of a System 2200
BASIC statement is violated. Pressing a sequence of
keys not recognized as an accepted combination
results in this type of error. Syntax errors in a state-
ment are recognized and noted, as soon as the execute
key is touched to enter a statement. Examples of this
type of error include misspelling verbs, illegal formats
for numbers, operators, parentheses, and the improp-
er use of punctuation.

An Error of Execution (Example: 3)

Results when an illegal arithmetic operation is per-
formed, or the execution of an illegal statement or
programming procedure is attempted when a program
is executed. This type of error differs from a Syntax
Error. The statement itself uses the proper syntax.
However, the execution of the statement is impos-
sible to perform and leads to an error condition.
Typical errors of this type include illegal branches,
arithmetic overflow or underflow, illegal “FOR"”
loops, etc.

A Programming Error

The System 2200 executes the statements entered
properly, but the results obtained are not correct,
because the wrong information or logic is used in
writing a program. Although there is no way for the
System 2200 to identify a programming error, de-

bugging features such as TRACE, HALT/STEP, CON-

TINUE, can significantly speed up the process of
debugging a program.

234

Example 2:

:10 DEFFN. (X) =3*X12 -2*X13
TERR 21

Example 3.

(Branch to non-existant statement number)
:100 GOTO 110
:105 PRINT “VALUES =" A, B, C
:120 END
:RUN
100 GOTO 110
tERR 11

Appendix C

CODE 01

Error: Text Overflow

Cause: All available space for BASIC statements and system commands has been used.

Action: Shorten and/or chain program by using COM statements, and continue. The compiler automatically removes the current
and highest-numbered statement.

E xample: 10 FORI = 1TO 10
20 LET X = SIN(l)
:30 NEXT I
:820IFZ = A-BTHEN 900
TERR 01
(the number of characters in the program exceeded the available space in memory for program text when line 820 was
entered)
User must shorten or segment program.

CODE 02

Error: Table Overflow

Cause: All available space for internal operating system tables and variables has been used up (storage of variables, values, etc.)
or a repetative program loop which illegally allows system tables to fill up was encountered. An example of the latter
would be jumping out of FOR loops or subroutines without completing them.

Action: Shorten or correct and/or chain the program by using COM statements and continue.

Example: :10 DIM A(10), B(10, 10), C(10, 10)
:RUN
TERR 02

(the table space required for variables exceeded the table limit for variable storage as line 10 was processed)
User must compress program and variable storage requirements.

235

Appendix C
b .__]

CODE 06
Error: Missing Equal Sign
Cause: An equal sign (=) was expected.
Action: Correct statement text.
Example: :10 DEFFNC(V)-V +2
tERR 06

:10 DEFFNC(V) = V+2 (Possible Correction)
CODE 07
Error: Missing Quotation Marks
Cause: Quotation marks were expected.
Action: Reenter the DATASAVE OPEN statement correctly.
Example: :DATASAVE OPEN TTTT”

tERR 07

:DATASAVE OPEN "TTTT" (Possible Correction)
CODE 08
Error: Undefined FN Function
Cause: An undefined FN function was referenced.
Action: Correct program to define or reference the function correctly.
Example: 110 X=FNC(2)

:20 PRINT “X""; X

:30 END

:RUN

10 X=FNC(2)

TERR 08
:05 DEFFNC(V)=C0S(2*V) {(Possible Correction)

236

Appendix C
- ___}

CODE 03
Error: Math Error
Cause: 1. EXPONENT OVERFLOW.. The resulting magnitude of the number calculated was greater than or equal to 10'®
(+, -, =, /, 1, TAN, EXP).

2. DIVISION BY ZERO.

3. NEGATIVE OR ZERO LOG FUNCTION ARGUMENT.

4. NEGATIVE SQR FUNCTION ARGUMENT.

5. INVALID EXPONENTIATION. An exponentiation, {(X1Y) was attempted where X was negative and Y was not an

integer, producing an imaginary result, or X and Y were both zero.

6. ILLEGAL SIN, COS, OR TAN ARGUMENT. The function argument exceeds 27 X 10"! radians.
Action: Correct the program or program data.
Example: PRINT (2E +64) / (2E - 41)

+ERR 03 (exponent overflow)
CODE 04
Error: Missing Left Parenthesis
Cause: A left parenthesis (() was expected.
Action: Correct statement text.
Example: :10 DEF FNA V) = SIN(3*V-1)
TERR 04

:10 DEF FNA(V) + SIN (3*V-1) (Possible Correction)
CODE 05
Error: Missing Right Parenthesis
Cause: A Right ()) parenthesis was expected.
Action: Correct statement text.
Example: :10Y = INT(1.215

TERR 05
:10Y = INT(1.215) (Possible Correction)

237

Appendix C
.- |

CODE 09
Error: lllegal FN Usage
Cause: More than five levels of nesting were encountered when evaluating an FN function.
Action: Reduce the number of nested functions.
Example: :10 DEF FN1(X)=1+X :DEF FN2(X)=1+FN1(X)

:20 DEF FN3(X)=1+FN2(X) :DEF FN4(X)=1+FN3(X)

:30 DEF FN5(X)=1+FN4(X) :DEF FN6(X)=1+FN5(X)

:40 PRINT FN6(2)

:RUN

10 DEF FN1(X)=1+X :DEF FN2(X)=1+FN1(X)

TERR 09
:40 PRINT 1+FN5(2) (Possible Correction)
- CODE 10
Error: Incomplete Statement
Cause: The end of the statement was expected.
Action: Complete the statement text.
Example: 10 PRINT X"
tERR 10
:10 PRINT “X”
OR

110 PRINT X (Possible Correction)
CODE 11
Error: Missing Line Number or Continue Illegal
Cause: The line number is missing or a referenced line number is undefined; or the user is attempting to continue program execu-

tion after one of the following conditions: a text or table overflow error, a new variable has been entered, a CLEAR
command has been entered, the user program text has been modified, or the RESET key has been pressed.
Action: Correct statement text.

Example: :10 GOSUB 200
*ERR 11
:10 GOSUB 100 (Possible Correction)

238

Appendix C
L]

CODE 12
Error: Missing Statement Text
Cause: The required statement text is missing (THEN, STEP, etc.).
Action: Correct statement text.
Example: (10 IF 1=12+X,45
TERR 12
10 IF 1=12+xX THEN 45 {Possible Correction)
CODE 13
Error: Missing or lllegal Integer
Cause: A positive integer was expected or an integer was found which exceeded the allowed limit.
Action: Correct statement text.
Example: :10 COM D(P)
TERR 13
:10 COM D(8) (Possible Correction)
CODE 14
Error: Missing Relation Operator
Cause: A relational operator (<, =, >, <=, >=, < >) was expected.
Action: Correct statement text.
Example: :10 IF A-B THEN 100
TERR 14
:10 IF A=B THEN 100 {Possible Correction)
CODE 15
Error: Missing Expression
Cause: A variable, or number, or a function was expected.
Action: Correct statement text.
Example: 10 FOR I=, TO 2
TERR 15
10 FOR I=1TO 2 (Possible Correction)

239

Appendix C
L ___]

CODE 16
Error: Missing Scalar
Cause: A scalar variable was expected.
Action: Correct statement text.
Example: :10 FOR A(3)=1TO 2
tERR 16

:10 FORB=1TO 2 (Possible Correction)
CODE 17
Error: Missing Array
Cause: An array variable was expected.
Action: Correct statement text.
Example: :10 DIM A2

tERR 17

:10 DIM A(2) (Possible Correction)
CODE 18
Error: lllegal Value for Array Dimension
Cause: The value exceeds the allowable limit. For example, a dimension is greater than 255 or an array variable subscript exceeds

the defined dimension.
Action: Correct the program.
Example: :10 DIM A(2,3)

120 A(1,4) =1

:RUN

20 A(1,4) =1

TERR 18
:10 DIM A(2,4) {Possible Correction)

240

Appendix C
]

CODE 19
Error: Missing Number
Cause: A number was expected.
Action: Correct statement text.
Example: :10 DATA +
tERR 19

:10 DATA 1 (Possible Correction)
CODE 20
Error: lllegal Number Format
Cause: A number format is illegal.
Action: Correct statement text.
Example: 110 A=12345678.234567 (More than 13 digits of mantissa)

1ERR 20

110 A=12345678.23456 (Possible Correction)
CODE 21
Error: Missing Letter or Digit
Cause: A letter or digit was expected.
Action: Correct statement text.
Example: :10 DEF FN.(X)=X15-1

TERR 21
:10 DEF FN1(X)=X15-1 (Possible Correction)

241

Appendix C

CODE 22
Error: Undefined Array Variable
Cause: An array variable is referenced in the program which was not defined properly in a DIM or COM statement (i.e., an array

variable was not defined in a DIM or COM statement or has been referenced both as a 1-dimensional and as a 2-dimensional

array).
Action: Correct statement text.
Example: 110 A(2,2) =123

:RUN

10 A(2,2) =123
TERR 22

:1 DIM A(4,4) (Possible Correction)
CODE 23
Error: No Program Statements
Cause: A RUN command was entered but there are no program statements.
Action: Enter program statements.
Example: :RUN

TERR 23
CODE 24
Error: lllegal Immediate Mode Statement
Cause: An illegal verb or transfer in an immediate execution statement was encountered.
Action: Reenter a corrected immediate execution statement.
Example: IF A=1THEN 100

TERR 24

242

Appendix C
-

CODE 25
Error: lllegal GOSUB/RETURN Usage
Cause: There is no companion GOSUB statement for a RETURN statement, or a branch was made into the middle of a subroutine.
Action: Correct the program.
Example: 10 FOR I=1TO 20

:20 X=1*SIN{I=4)

:25 GOTO 100

:30 NEXT I: END

1100 PRINT “X="";X

:110 RETURN

:RUN

X=-.7568025

110 RETURN

TERR 25

:25 GOSUB 100 (Possible Correction)
CODE 26
Error: Illegal FOR/NEXT Usage
Cause: There is no companion FOR statement for a NEXT statement, or a branch was made into the middle of a FOR loop.
Action: Correct the program.
Example: :10 PRINT “1="";1

:20 NEXT |

:30 END

:RUN

1=0

20 NEXT I
tERR 26
:5 FOR I=1 TO 10 (Possible Correction)

243

Appendix C
L |

CODE 27
Error: Insufficient Data
Cause: There is insufficient data for READ statement requirements.
Action: Correct program to supply additional data.
Example: 110 DATA 2

:20 READ XY

:30 END

:RUN

20 READ XY

TERR 27

:11 DATA 3 {Possible Correction)
CODE 28
Error: Data Referenced Beyond Limits
Cause: The data reference in a RESTORE statement is beyond the existing data limits.
Action: Correct the RESTORE statement.
Example: :10 DATA 1,2,3

:20 READ X,Y,Z

:30 RESTORE 5

190 END
:RUN
30 RESTORE 5
1ERR 28
:30 RESTORE 2 (Possible Correction)

244

Appendix C
- ___ |

CODE 29
Error: Illegal Data Format
Cause: The data format for an INPUT statement is illegal (format error).
Action: Reenter data in the correct format starting with erroneous number or terminate run with the RESET key and run again.
Example: :10 INPUT X,Y

:90 END

:RUN

(INPUT

?1A,2E-30 (Key in values and touch EXECUTE)

TERR 29

?12,2E-30 (Possible Correction)
CODE 30
Error: [llegal Common Assignment
Cause: A COM statement variable definition was preceded by a non-common variable definition.
Action: Correct program, making all COM statements the first numbered lines.)
Example: 110 A=1:B=2

:20COM A,B

:99 END

:RUN

20 COM A,B

TERR 30
:10[CR/LF-EXECUTE] (Possible Correction)
:30 A=1: B=2

245

Appendix C
L

CODE 31
Error: Iflegal Line Number
Cause: The ‘statement number’ key was pressed producing a line number greater than 9999; or in renumbering a program with the

RENUMBER command a line number was generated which was greater than 9999.
Action: Correct the program.
Example: :995 PRINT X,Y

: [line number key]

TERR 31
CODE 33
Error: Missing HEX Digit
Cause: A digit or a letter from A - F was expected.
Action: Correct the program text.
Example: :10 SELECT PRINT 00P

TERR 33

:10 SELECT PRINT 005 (Possible Correction)
CODE 34
Error: Tape Read Error
Cause: The system was unable to read the next record on the tape; the tape is positioned after the bad record.
CODE 35
Error: Missing Comma or Semicolon
Cause: A comma or semicolon was expected.
Action: Correct statement text.
Example: :10 DATASAVE #2 X)Y,Z

TERR 35
:10 DATASAVE #2,X,Y,2 (Possible Correction)

246

Appendix C

CODE 36
Error: Illegal Image Statement
Cause: No format (e.g., #.##) in image statement.
Action: Correct the statement text.
Example: :10 PRINTUSING 20, 1.23

:20% AMOUNT =

:RUN

AMOUNT =

:10 PRINTUSING 20, 1.23

TERR 36

:20% AMOUNT = ##### (Possible Correction)
CODE 37
Error: Statement Not Image Statement
Cause: The statement referenced by the PRINTUSING statement is not an image statement.
Action: Correct the statement text.
Example: :T0 PRINTUSING 20,X

:20 PRINT X

:RUN

:10 PRINTUSING 20,X

TERR 37

:20% AMOUNT = $# ###.## (Possible Correction)
CODE 38
Error: Illegal Floating Point Format
Cause: Fewer than 4 up arrows were specified in the floating point format in an image statement.
Action: Correct the statement text.
Example: :10% ## #7111

TERR 38
:10% ##. #7111

247

Appendix C

CODE 39
Error: Missing Literal String
Cause: A literal string was expected.
Action: Correct the text.
Example: :10 READ A$

:20 DATA 123

:RUN

20 DATA 123

TERR 39

20 DATA 123" (Possible Correction)
CODE 40
Error: Missing Alphanumeric Variable
Cause: An alphanumeric variable was expected.
Action: Correct the statement text.
Example: 110 A$, X = “JOHN"

TERR 40

:10 A$, X$ = “JOHN"
CODF 41
Error: lllegal STR{ Arguments
Cause: The STR{ function arguments exceed the maximum length of the string variable.
Example: :10 AS = ""123456789ABCDEFG”

:20 B$ = STR(AS, 10, 8)

RUN

:20 B$ = STR(AS, 10, 8)

tERR 41
:10 B$ = STR(AS, 10, 6) (Possible Correction)

248

Appendix C
L]

CODE 42
Error: File Name Too Long
Cause: The program name specified is too long (a maximum of 8 characters is allowed).
Action: Correct the program text.
Example: :SAVE “PROGRAM#1”
tERR 42

:SAVE “PROGRAM1” (Possible Correction)
CODE 43
Error: Wrong Variable Type
Cause: During a DATALOAD operation a numeric (or alphanumeric) value was expected but an alphanumeric (or numeric) value

was read. ‘
Action: Correct the program or make sure proper tape is mounted.
Example: :DATALOAD XY

tERR 43

:DATALOAD X$,Y$ {Possible Correction)
CODE 44
Error: Program Protected
Cause: A program loaded was protected and, hence, cannot be SAVED or LISTED.
Action: Execute a CLEAR command to remove protect mode (but, program will be scratched).
CODE 45
Error: Statement Line Too Long
Cause: A statement line may not exceed 192 keystrokes.
Action: Shorten the statement line being entered.

249

Appendix C
L.___

CODE 46
Error: New Starting Statement Number Too Low
Cause: The new starting statement number in a RENUMBER command is not greater than the next lowest statement number.
Action: Reenter the RENUMBER command correctly.
Example: 50 REM — PROGRAM 1

62 PRINT X, Y

73 GOSUB 500

:RENUMBER 62, 20, 5

TERR 46

:RENUMBER 62, 60, 5 (Possible Correction)
CODE 47
Error: lllegal Or Undefined Device Specification
Cause: The #n device specification in a program statement is undefined.
Action: Define the specified device numbers.
Example: :SAVE #2

tERR 47

:SELECT #2 10A

:SAVE #2 (Possible Correction)
CODE 48
Error: Undefined Keyboard Function
Cause: There is no mark (DEFFN’) in a user’s program corresponding to the keyboard function key depressed.
Action: Correct the program.
Example: :[keyboard function key #2]

TERR 48

250

Appendix C
L __|

CODE 49
Error: End of Tape
Cause: The end of tape was encountered during a tape operation.
Action: Correct the program or make sure the tape is correctly positioned.
Example: 100 DATALOAD X, Y, Z
TERR 49
CODE 50
Error: Protected Tape
Cause: A tape operation is attempting to write on a tape cassette that has been protected (by tab on bottom of cassette tape).
Action: Mount another cassette or ““unprotect’’ the tape cassette by covering the punched hole on the bottom of the cassette with
the tab.
Example: SAVE /103
TERR 50
CODE 51
Error: lllegal Statement
Cause: The System 2200 does not have the capability to process this BASIC statement.
Action: Do not use this statement.
CODE 52
Error: Expected Data (Nonheader) Record
Cause: A DATALOAD operation was attempted but the device was not positioned at a data record.
Action: Make sure the correct device is positioned correctly.

251

Appendix C

CODE 53
Error: lllegal Use of HEX Function
Cause: The HEX(function is being used in an illegal situation. The HEX function may not be used in a PRINTUSING statement.
Action: Do not use HEX function in this situation.
Example: :10 PRINTUSING 200, HEX(F4F5)

1200 % ### H#H#

:RUN

:10 PRINTUSING 200, HEX(F4F5)

TERR 53

:10 AS = HEX (F4F5)

:20 PRINTUSING 200,A$% (Possible Correction)
CODE 54
Error: ltlegal Plot Argument
Cause: An argument in the PLOT statement is illegal.
Action: Correct the PLOT statement.
Example: 100 PLOT <5,,H>

TERR 54

100 PLOT <5, ,C> (Possible Correction)
CODE 55
Error: Illegal BT Argument
Cause: An argument in a DATALOAD BT or DATASAVE BT statement is illegal.
Action: Correct the statement in error.
Example: 100 DATALOAD BT (M=50) A$

TERR 55
100 DATALOAD BT (N=50) AS$ (Possible Correction)

252

Appendix C
... "

CODE 56
Error: Number Exceeds Image Format
Cause: The value of the number being packed or converted is greater than the number integer digits provided for in the pack or
convert image.
Action: Change the image specification.
Example: 100 PACK (##) A$ FROM 1234
tERR 56
100 PACK (####) A$S FROM 1234 (Possible Correction)
CODE 57
Error: Illegal Disk Sector Address
Cause: Illegal disk sector address specified; value is negative or greater than 32767. (The System 2200 cannot store a sector address
greater than 32767.)
Action: Correct the program statement in error.
Example: 100 DATASAVE DAF (42000 ,X) A,B,C
TERR 57
100 DATASAVE DAF (4200 ,X) A,B,C (Possible Correction)
CODE 58
Error: Expected Data Record
Cause: A program record or header record was read when a data record was expected.
Action: Correct the program.
Example: 100 DATALOAD DAF(0,X) A, B,C
TERR 58
CODE 59
Error: lllegal Alpha Variable For Sector Address
Cause: Alphanumeric receiver for the next available address in the disk DA instruction is not at least 2 bytes long.
Action: Dimension the alpha variable to be at least two characters long.
Example: 10 DIM A$1
100 DATASAVE DAR() ,A$) X, Y, Z
TERR 59
10 DIM A$2 (Possible Correction)

253

Appendix C

CODE 60

Error: Array Too Small

Cause: The alphanumeric array does not contain enough space to store the block of information being read from disk or tape or
being packed into it. For cassette tape and disk records, the array must contain at least 256 bytes (100 bytes for 100 byte
cassette blocks).

Action: Increase the size of the array.

Example: 10 DIM A$(15)
20 DATALOAD BT AS()

TERR 60

10 DIM A$(16) (Possible Correction)

CODE 61

Error: Disk Hardware Error

Cause: The disk did not recognize or properly respond back to the System 2200 during read or write operation in the proper
amount of time.

Action: Run program again. If error persists, re-initialize the disk; contact WANG Service Representative.

Example: 100 DATASAVE DCF X,Y, 2

TERR 61

CODE 62

Error: File Full

Cause: The disk sector being addressed is not located within the catalogued specified file. When writing the file is full, for other
operations, a SKIP or BACKSPACE has set the sector address beyond the limits of the file.

Action: Correct the program.

Example: 100 DATASAVE DCT#2, AS(), B$(), CS()

TERR 62

254

Appendix C
-]

CODE 63

Error: Missing Alpha Array Designator

Cause: An alpha array designator (e.g., AS()) was expected. (Block operations for cassette and disk require an alpha array
argument.)

Action: Correct the statement in error.

Example: 100 DATALOAD BT A$

TERR 63
100 DATALOAD BT AS$() {Possible Correction)

CODE 64

Error: Sector Not On Disk

Cause: The disk sector being addressed is not on the disk. (Maximum legal sector address depends upon the model of disk used.)

Action: Correct the program statement in error.

Example: 100 MOVEEND F = 10000

TERR 64
100 MOVEEND F = 9791 (Possible Correction)

CODE 65

Error: Disk Hardware Malfunction

Cause: A disk hardware error occurred (i.e., the disk is not in file ready position. This could occur, for example, if the disk is in
LOAD mode or power is not turned on).

Action: Insure disk is turned on and properly setup for operation. Set the disk into LOAD mode and then back into RUN mode,
with the RUN/LOAD selection switch. The check light should then go out. If error persists call your WANG Service Represen-
tative.

{Note, the disk should never be left in LOAD mode when running.)

Example: 100 DATALOAD DCF A$,B$

TERR 65

255

Appendix C
e e]

CODE 66
Error: Format Key Engaged
Cause: The disk format key is engaged. (The key is normally engaged only when formatting a disk pack.)
Action: Turn off the format key.
Example: 100 DATASAVE DCF X,Y,Z2
TERR 66
CODE 67
Error: Disk Format Error
Cause: A disk format error was detected on disk read or write. The disk is not properly formatted such that sector addresses can
be read.
Action: Format the disk again.
Example: 100 DATALOAD DCF X,Y,2
TERR 67
CODE 68
Error: LRC Error
Cause: A disk longitudinal‘redundancy check error occurred when reading a sector. The data may have been written incorrectly,
or the System 2200/Disk Controller could be malfunctioning.
Action: Run program again. If error persists, re-write the bad sector. |f error still persists, call WANG Service Representative.
Example: 100 DATALOAD DCF A$()
TERR 68

256

Appendix C
]

CODE 71
Error: Cannot Find Sector
Cause: A disk seek error occurred; the specified sector could not be found on the disk.
Action: Run program again. If error persists, re-initialize (reformat) the disk pack. If error still occurs call WANG Service Representative.
Example: 100 DATALOAD DCF A$()
TERR 71
CODE 72
Error: Cyclic Read Error
Cause: A cyclic redundancy check disk read error occurred; the sector being addressed has never been written to or subsequently
the sector was incorrectly written on disk (i.e., the disk pack was never initially formatted).
Action: Format the disk if it was not done. If the disk was formatted, re-write the bad sector, or reformat the disk. If error persists
call WANG Service Representative.
Example: 100 MOVEEND F =8000
tERR 72
CODE 73
Error: 1llegal Altering Of A File
Cause: The user is attempting to rename or write over an existing scratched file, but is not using the proper syntax. The scratched
file name must be referenced.
Action: Use the proper form of the statement.
Example: SAVE DCF “SAM1”
TERR 73
SAVE SCF (“SAM1"") “SAM1" (Possible Correction)

257

Appendix C

CODE 74
Error: Catalog End Error
Cause: The end of catalog area falls within the library index area or has been changed by MOVEEND to fall within the area

already used by the catalog; or there is no room left in the catalog area to store more information.
Example: SCRATCH DISK F LS=100, END=50

TERR 74

SCRATCH DISK F LS=100, END 500 (Possible Correction)
CODE 75
Error: Command Only (Not Programmable)
Cause: A command is being used within a BASIC program. Commands are not programmable.
Action: Do not use commands as program statements.
Example: 10 LIST

TERR 75
CODE 76
Error: Missing << or > (Plot Enclosures)
Cause: The required PLOT enclosures are not in the PLOT statement.
Action: Correct the statement in error.
Example: 100 PLOT A, B “*”
TERR 76
100 PLOT <A, B, “*'"> (Possible Correction)

258

Appendix C
S

CODE 77
Error: Starting Sector Greater Than Ending Sector
Cause: The starting sector address specified is greater than the ending sector address specified.
Action: Correct the statement in error.
Example: 10 COPY FR{1000, 100)
TERR 77

10 COPY FR(100, 1000) (Possible Correction)
CODE 78
Error: File Not Scratched
Cause: A file is being renamed that has not been scratched.
Action: Scratch the file before renaming it.
Example: SAVE DCF (“LINREG”) “LINREG2"

TERR 78

SCRATCH F “LINREG” (Possible Correction)

SAVE DCF (“LINREG") “LINREG2"”
CODE 79
Error: File Already Catalogued
Cause: An attempt was made to catalogue a file with a name that already exists in the catalogue index.
Action: Use a different name.
Example: SAVE DCF “MATLIB"”

tERR 79
SAVE DCF “MATLIB1” (Possible Correction)

259

Appendix C

CODE 80
Error: File Not In Catalog
Cause: The error may occur if one attempts to address a non-existing file name or to load a data file as a program or open a pro-

gram file as a data file.
Action: Make sure you are using the correct file name; make sure the proper disk pack is mounted.
Example: LOAD DCR ““PRES”

TERR 80

LOAD DCF "“"PRES” {Possible Correction)
CODE 81
Error: /XXX Device Specification lllegal
Cause: The /XXX device specification may not be used in this statement.
Action: Correct the statement in error.
Example: 100 DATASAVE DC /310, X

tERR 81

100 DATASAVE DC #1, X (Possible Correction)
CODE 82
Error: No End Of File
Cause: No end of file record was recorded on file and therefore could not be found in a SKIP END operation.
Action: Correct the file.
Example: 100D SKIP END

TERR 82

260

Appendix C
X

CODE 83
Error: Disk Hardware Failure
Cause: A disk address cannot be properly transferred from the System 2200 to the disk when processing MOVE or COPY.
Action: Run program again. If error persists, call WANG Service Representative.
Example: COPY FR(100,500)
TERR 83
CODE 84
Error: Not Enough System 2200 Memory Available For MOVE or COPY
Cause: A 1K buffer is required in memory for MOVE or COPY operation (i.e., 1000 bytes should be available and not occupied
by program and variables).
Action: Clear out all or part of program or program variables before MOVE or COPY.
Example: COPY FR(0, 9000)
TERR 84
CODE 85
Error: Read After Write Error
Cause: The comparison of read after write to a disk sector failed. The information was not written properly.
Action: Write the information again. If error persists, call WANG Service Representative.
Example: 100 DATASAVE DCF$ X, Y, Z
tERR 85
CODE 86
Error: File Not Open
Cause: The file was not opened.
Action: Open the file before reading from it.
Example: 100 DATALOAD DC A3
TERR 86
10 DATALOAD DC OPEN F "DATFIL"” (Possible Correction)

261

Appendix C

CODE 87
Error: Common Variable Required
Cause: Thevariable in the LOAD DA statement, used to receive the sector address of the next available sector after the load, is not

a common variable.
Action: Define the variable to be common.
Example: 10 LOAD DAR (100,L)

tERR 87

5 COML (Possible Correction)
CODE 88
Error: Library Index Full
Cause: There is no more room in the index for a new name.
Action: Scratch any unwanted files and compress the catalog using a MOVE statement or mount a new disk platter.
Example: SAVE DCF ““PRGM"”

tERR 88

CODE 89
Error: Matrix Not Square
Cause: The dimensions of the operand in a MAT inversion or identity are not equal.
Action: Correct the array dimensions.
Example: :10 MAT A=IDN(3,4)

:RUN

10 MAT A=IDN(3,4)

tERR 89
:10 MAT A=IDN(3,3) (Possible Correction)

262

Appendix C
L |

CODE 90
Error: Matrix Operands Not Compatible
Cause: The dimensions of the operands in a MAT statement are not compatible; the operation cannot be performed.
Action: Correct the dimensions of the arrays.
Example: :10 MAT A=CON(2,6)

:20 MAT B=IDN(2,2)

:30 MAT C=A+B

:RUN

30 MAT C=A+B

tERR 90

:10 MAT A=CON(2,2) (Possible Correction)
CODE 91
Error: lllegal Matrix Operand
Cause: The same array name appears on both sides of the equal sign in a MAT multiplication or transposition statement.
Action: Correct the statement.
Example: :10 MAT A=A*B

tERR 91
:10 MAT C=A*B (Possible Correction)

263

Appendix C

CODE 92
Error: lllegal Redimensioning Of Array
Cause: The space required to redimension the array is greater than the space initially reserved for the array.
Action: Reserve more space for array in DIM or COM statement.
Example: :10 DIM(3,4)

:20 MAT A=CON(5,6)

:RUN

20 MAT A=CON(5,6)

TERR 92

:10 DIM A(5,6) (Possible Correction)
CODE 93
Error: Singular Matrix
Cause: The operand in a MAT inversion statement is singular and cannot be inverted.
Action: Correct the program.
Example: :10 MAT A=ZER(3,3)

:20 MAT B = INV(A)

:RUN

20 MAT B=INV(A)

tERR 93
CODE 94
Error: Missing Asterisk
Cause: An asterisk (*) was expected.
Action: Correct statement text.
Example: :10 MAT C=(3)B
TERR 94
:10 MAT C=(3)*B (Possible Correction)

264

Appendix C
. __]

LISTING OF ERROR MESSAGES

CODE 01
CODE 02
CODE 03
CODE 04
CODE 05
CODE 06
CODE 07
CODE 08
CODE 09
CODE 10
CODE 11
CODE 12
CODE 13
CODE 14
CODE 15
CODE 16
CODE 17
CODE 18
CODE 19
CODE 20
CODE 21
CODE 22
CODE 23
CODE 24
CODE 25
CODE 26
CODE 27
CODE 28
CODE 29
CODE 30
CODE 31
CODE 33
CODE 34
CODE 35
CODE 36

TEXT OVERFLOW

TABLE OVERFLOW

MATH ERROR
MISSING LEFT PARENTHESIS
MISSING RIGHT PARENTHESIS
MISSING EQUAL SIGN

MISSING QUOTATION MARKS
UNDEFINED FN FUNCTION
ILLEGAL FN USAGE
INCOMPLETE STATEMENT
MISSING LINE NUMBER OF CONTINUE ILLEGAL
MISSING STATEMENT TEXT
MISSING OR ILLEGAL INTEGER
MISSING RELATION OPERATOR
MISSING EXPRESSION

MISSING SCALAR

MISSING ARRAY

ILLEGAL VALUE

MISSING NUMBER

ILLEGAL NUMBER FORMAT
MISSING LETTER OR DIGIT
UNDEFINED ARRAY VARIABLE
NO PROGRAM STATEMENTS
ILLEGAL IMMEDIATE MODE STATEMENT
ILLEGAL GOSUB/RETURN USAGE
ILLEGAL FOR/NEXT USAGE
INSUFFICIENT DATA

DATA REFERENCE BEYOND LIMITS
ILLEGAL DATA FORMAT
ILLEGAL COMMON ASSIGNMENT
ILLEGAL LINE NUMBER
MISSING HEX DIGIT

TAPE READ ERROR

MISSING COMMA OR SEMICOLON
ILLEGAL IMAGE STATEMENT

265

CODE 37
CODE 38
CODE 39
CODE 40
CODE 41
CODE 42
CODE 43
CODE 44
CODE 45
CODE 46

CODE 47
CODE 48

CODE 49
CODE 50
CODE 51
CODE 52
CODE 53
CODE 54
CODE 55
CODE 56
CODE 57
CODE 58
CODE 59
CODE 60
CODE 61
CODE 62
CODE 63
CODE 64
CODE 65
CODE 66
CODE 67
CODE 68
CODE 71
CODE 72
CODE 73
CODE 74
CODE 75

STATEMENT NOT IMAGE STATEMENT

ILLEGAL FLOATING POINT FORMAT

MISSING LITERAL STRING

MISSING ALPHANUMERIC VARIABLE

ILLEGAL STR{ ARGUMENTS

FILE NAME TOO LONG

WRONG VARIABLE TYPE

PROGRAM PROTECTED

STATEMENT LINE TOO LONG

NEW STARTING STATEMENT NUMBER TOO LOW

ILLEGAL OR UNDEFINED DEVICE SPECIFICATION
UNDEFINED KEYBOARD FUNCTION

END OF TAPE

PROTECTED TAPE

ILLEGAL STATEMENT

EXPECTED DATA (NONHEADER) RECORD
ILLEGAL USE OF HEX FUNCTION
ILLEGAL PLOT ARGUMENT

ILLEGAL BT ARGUMENT

NUMBER EXCEEDS IMAGE FORMAT
ILLEGAL SECTOR ADDRESS

EXPECTED DATA RECORD

ILLEGAL ALPHA VARIABLE FOR SECTOR ADDRESS
ARRAY TOO SMALL

DISK HARDWARE ERROR

FILE FULL

MISSING ALPHA ARRAY DESIGNATOR
SECTOR NOT ON DISK

DISK HARDWARE MALFUNCTION
FORMAT KEY ENGAGED

DISK FORMAT ERROR

LRC ERROR

CANNOT FIND SECTOR

CYCLIC READ ERROR

ILLEGAL ALTERING OF A FiLE
CATALOG END ERROR

COMMAND ONLY (NOT PROGRAMMABLE)

Appendix C
L ___]

CODE 76 MISSING < OR > (PLOT ENCLOSURES)

CODE 77 STARTING SECTOR > ENDING SECTOR
CODE 78 FILE NOT SCRATCHED

CODE 79 FILE ALREADY CATALOGED

CODE 80 FILE NOT IN CATALOG

CODE 81 /XXX DEVICE SPECIFICATION ILLEGAL
CODE 82 NO END OF FILE

CODE 83 DISK HARDWARE FAILURE

CODE 84 NOT ENOUGH MEMORY FOR MOVE OR COPY
CODE 85 READ AFTER WRITE ERROR

CODE 86 FILE NOT OPEN

CODE 87 COMMON VARIABLE REQUIRED

CODE 88 LIBRARY INDEX FULL

CODE 89 MATRIX NOT SQUARE

CODE 90 MATRIX OPERANDS NOT COMPATIBLE
CODE 91 ILLEGAL MATRIX OPERAND

CODE 92 ILLEGAL REDIMENSIONING OF ARRAY
CODE 93 SINGULAR MATRIX

CODE 94 MISSING ASTERISK ‘

266

Appendix D

Appendix D

INDEX TO PROGRAMS (PROBLEMS) IN THIS
MANUAL

12.

13.
14.
15.

Program/Problem

Printing Solution to
36 X 8.25 + TAN(35)

Printing Solution to
51(-3)

Printing Solution to
\/114.6/53.47

Printing Solution to
log, 10

Printing Solution to
SIN of 3.289 radians

Printing Solution to
COSINE 48°

Printing Solution to abosolute value of the expression
1.68% - 46

28.5
Printing the integers 1 to 40 via a loop
Printing the integers 1 to 10 in steps of .5 via a loop

Sum and print integers from 1 to 25 via a loop in a zoned
format

Sum and print the integers from 1 to 25 via a loop, each
answer on a separate line

Program to solve

Program to compute the area of three circles
Program to calculate 2 raised to increasing powers

Program to calculate the sum of the averages of four
numbers

267

12

21

24

24

24

25

28
49
50

52

53

63
77
80

81

Page

Appendix D

INDEX TO PROGRAMS (PROBLEMS) IN THIS

MANUAL (Continued) 16.

17.
18.
19.
20.

21.
22.

23.
24,
25.

26.
27.
28.
29.

30.

Program/Problem

Program to list whether a value entered is greater than 10,
if so it is squared, if not it is cubed

Program to calculate mortgage payment
Program to calculate the area of circles
Program to solve General Quadratic Equation

Program to determine which of three given numbers
is the largest

Program to calculate the square root of positive values

Program to define an array and assign each element a
value of zero

Program to define a one-dimensional array of 100 elements
and assign each element a value of 5

Program to define a 2-dimensional array (5,3) and assign
each element a value of 23

Program to illustrate conversational programming in which
a number is squared or cubed

Program to check credit card membership and credit check
Program Chaining
Program with chained subroutines

Program to dimension a 4 x 4 array and assign a value to
each element, printing out the elements of the array in a pre-
defined image

Program to print a running account of a variable keeping
the cursor stationary

268

Page
86
90,91
96

102,104,105

111,112
116,117

122

122

123

130

133,134
140,141,142,143
144,145,146,147

160

164

Appendix D

INDEX TO PROGRAMS (PROBLEMS) IN THIS
MANUAL (Continued)

31.
32.
33.

34.

35.
36.
37.
38.

39.

Program/Problem

Program to pack an alphanumeric array
Program to unpack an alphanumeric array

Program to scan a list of credit cards and printout
invalid cards

Program to scan a list of investment clients and calculate
the total investments

Program to pack a date in form mm/dd/yy
Code Conversion Program
Program to convert an alphanumeric variable to a numeric

Program to convert an alphanumeric variable packed with
several numerics into the individual numerics to sum them

Program to correct an incorrectly entered character in an
alphanumeric variable

269

Page
190
192

195

198
218
219
221,222

222

227

Appendix E

Appendix E Model Number

2201
2202*
2203~
2207~
2212*
2214
2215
2216
2217

AVAILABLE PERIPHERALS

2216/2217

2218
2219
2221
2222
2227
2230-1*
2230-2*
2230-3*
2231
2232~
2234~
2240-1*
2240-2*
2241
2243*

270

Product Name

Output Writer

Plotting Output Writer

Punched Tape Reader

I/0 Interface Controller (RS-232-C)

Analog Flatbed Plotter (10" x 15”")

Mark Sense Card Reader

BASIC Keyword Keyboard

CRT Executive Display

Single Tape Cassette Drive

Combined CRT Executive Display/Single Tape Cassette Drive
Dual Tape Cassette Drive

[/O Extended Chassis

Line Printer (132 Column)

Alpha-Numeric Typewriter Keyboard
Telecommunications Controller -
Fixed/Removable Disk Drive (1,228,800 bytes)
Fixed/Removable Disk Drive (2,457,600 bytes)
Fixed/Removable Disk Drive (5,013,504 bytes)
Line Printer (80 Column)

Digital Flatbed Plotter (31" x 42")

Hopper-Feed Punched Card Reader

Dual Removable Flexible Disk Drive

Dual Removable Flexible Disk Drive

Thermal Printer (80 Column)

Triple Removable Flexible Disk Drive

Appendix E

AVAILABLE PERIPHERALS (Continued) Model Number Product Name
2244* Hopper-Feed Mark Sense/Punched Card Reader
2250 /0O Interface Controller (8-Bit-Parallel)
2252 Input Interface Controller (BCD 10-Digit-Parallel)
2261 High Speed Printer (132 Column)
2290 CPU/Peripheral Stand

*Peripheral used with the System 2200B only. A System 2200A can be upgraded to a
System 2200B upon request at a nominal charge.

271

Appendix F

A nd' F DEVICE ADDRESSES FOR SYSTEM 2200 PERIPHERALS
ppe Ix (For further detail, see the individual peripheral manuals.)
DEVICE ADDRESSES FOR SYSTEM 2200
PERIPHERALS I/0 DEVICE CATEGORIES DEVICE ADDRESS (S)*
A complete list of the System 2200 I/O devices and KEYBOARDS** (2215, 2222) 001, 002, 003, 004
addresses is shown in the table to the right. CRT UNITS** (2216) 005, 006, 007, 008
CASSETTE DRIVES (2217, 2218) 10A, 10B, 10C, 10D, 10E, 10F
LINE PRINTERS (2221, 2218) 215, 216
OUTPUT WRITER (2201) 211,212
THERMAL PRINTER (2241) 211, 212
PLOTTERS (2202, 2212, 2232) 413, 414
DISK DRIVES (2230-1, -2, -3) 310, 320, 330
(2240-1, -2)
CARD READERS (2214) 517
PUNCHED PAPER TAPE
READER (2203) 618
TELETYPES (2207) 019, 01A,01B INPUT
01D, 01E, 01F OUTPUT
TELETYPE TAPE UNITS 41D, 41E, 41F PUNCH/
READER
TELECOMMUNICATIONS (2227) 219, 21A,21B INPUT
21D, 21E,21F OUTPUT

* In some cases, more than one device address is listed for each device category. Unless otherwise noted, each
peripheral device is assigned a unique address; device addresses are assigned sequentially. Therefore if a System
2200 has only one device of a particular category, such as a cassette, it is set up with the first device address
listed {(10A in the case of the cassette). If it has two cassettes, they are set up with device addresses 10A and 10B.
Each device address is printed on the interface card which controls that device.

** All peripherals in this category are assigned to lowest device address shown. They may, however, be assigned
unique addresses by customer request.

272

Index

N —

ADD C .
ADD Statement

Additional Methods for Assngnlng Values to Varlables

Alphanumeric Ordering
Alphanumeric String Variables
AND Statement

Array Variables

Arrays
Arrays with PRINTUSING .

Assigning a Single Value to More Than One Varlable .
Assigning Values to String Variables .

Assigning Variables .

BASIC Keywords .
Basics of BASIC Language
BIN Statement

Binary Definition ..
Binary Number Generation .
Bit and Byte Manipulation .
Bit Definition .

BOOL (Boolian) Statement
Branching in Programs .
Byte

Byte Deflnltlon

Calculator Facts .

Changing Programs in Memory

Chapter 2 Exercises .
Chapter 3 Exercises .
Chapter b Exercises .
Chapter 6 Summary
Chapter 7 Summary
CLEARP

CLEAR YV

Clearing Memory .
Column Array . .
COM Statement Review .
COM Statement Use

204
202
107
129
125
207
119
119
160

31
126

29

10
61
217
200
201
199
199
212
79
75
199

19
70
17
33
45
57
77
64
64
64
120
148
139

273

COM Statement with Chained Subroutines .
COM Statement with Program Chaining .
Commas in IMAGE Statement

Common Statement

Computed Branches

Computed GOSUB .

Computed GOTO

Conditional Branching .

CONTINUE Statement

Converting Flowcharts to Programs
CONVERT Statement .

Converting Numerics to Alpha

CPU.

CRT Control Keys

CRT Cursor .

CRT Plot with FOR- TO/NEXT Statement and TAB Functlon.

CRT Screen Capacity .
CRT Display .
Customizing the System 2200

Data Conversion .

Data Gathering

Data Reduction

Data Statement

Debugging

Debugging - Other Approaches
DEFFN Example . .
DEFFN General Form .

DEFFN Statement . .

DEFFN with FOR- TO/NEXT Loop
DEFFN’ Argument Passing Capability .
DEFFN’ with Character Strings
DEFFN’ with Marked Subroutines .
DEFFN’ with Special Function Keys .
Deleting a Line From a Program .
DIM Statement

Dimensioning Arrays

144
140
156
137
181
183
183

79

73

63
221
222

14

54

93

217
225
185
108
165
167
95
97
94
96
103
98
100
97
71
121
121

Index

Dimensioning String Variables .
Dollar Sign in an IMAGE Statement

EDIT Keys .

END Statement .
Entering a Program into IVIemory
Equipment Installation

Error Detectors

Error Messages .

Examples - Floating Pomt Notatlon
EXCLUSIVE OR Statement .
Executing a Line More Than Once .
Executing a Program

Fixed Point Format .
Floating Point Numbers .
Flowcharting . . .
FOR-TO/NEXT Statement .
Free Space

General Form . .
GOSUB Statement .
GOSUB’ Command .
GOTO Statement

HALT/STEP and TRACE Used Together
HALT/STEP as Debugging Aid
HALT/STEP - Other Uses

HALT/STEP with Multi-Statement Lmes
HEX Code

HEX Codes with SpeCIaI Characters and Cursor Control .

HEX Function Format
Hexadecimal Function
HEXPRINT Statement
Hints for Debugging

IF-THEN Statement

IMAGE Statement

Immediate Mode . .

Including Editing Characters in Numerlc Fleld

131
158

14
74
65
3,4
28
28
27
207
47
67

25
25
61
47 89
75

69
82
101
80

172
167
170
169
161
163
162
161
220
165

85
149

156

274

INITIAL Statement .
INPUT Statement .
INPUT with Text String .
Insert Line in Program .

Keyboard Functions
Keyboard Review
KEYIN Statement

LEN(Function

LEN(Function Examples
LET Verb

LIST Key

LISTS.

Listing a Section of a Program
Literal Strings .

Looping

Master Initialization

Math Functions Zone . .
Mixing Zoned and Packed Formats .
Model 2215 Keyboard .

Model 2222 Keyboard .

Naming Arrays
Nested Loops .

Nested Loops to Deflne EIements in 2 Dlmens;lonal Arrays .

Nested Loops Sample Programs
Nesting Subroutines

NUM Function .
NUM Function Program Examples .
Numeric Scalar Variables .

Numeric Verification

Numeric Zones . ,.

ON Statement .

OR Statement .

Order of Execution .
Overformatting an Image .

210
115
116

71

23
13
225

134
135
32
69
69
70
39
47

11
42

121
89
123
90
84
196
198
119
193
11

181
207

19
155

Index

PACK and UNPACK Program Examples .

PACK Statement .
Packed Format
Packing Data Rules .

Performing More Than One Calculatlon Per Llne
Plus or Minus Signs in IMAGE Statement

POS Function .

POS Function Program Examples
Position Verification

Power On Procedures .

Power Supply . . .
PRINT Command to Skrp Lmes .

Printing More Than One Value Per Line .

Printing Alphanumeric String Variables
Printing Literal Strings

Printing Numeric Fields

PRINTUSING Statement
PRINTUSING/IMAGE Review.
PRINTUSING/IMAGE Statements .
Program Trace

Programming Mode .

Quotation Marks with String Variables

READ Statement
READY and Colon .
Redefining a Statement
REM Statement
Renumbering a Program .
RESET Key . .
RESTORE Statement .
RETURN Statement
Reusing an Image
ROTATE Statement
ROW Array .

Scientific Notation in IMAGE Statement

SELECT Degrees, Radians, Gradians

190
185

40
188

35
157
193
195
193

56

37
152
149
154
149
159
150
171

64

127
108

70
77
174

112

82
153
211
120

159
24

275

SELECT P (Pause)

SHIFT Key .

SHIFT LOCK Key

STEP . . .

STMT NO Key

STOP Statement .

STR(Function

STR(Function Examples

String Arrays .
String Variables with Relatronal Operators .
String Variable Characteristics .

String Variable Names .

String Variables with Conversatlonal Programmlng .

System 2200 as Programmable Calculator
System 2200B (Part 111) .

TAB(Function for Formatting

Tape Cassette Operation .

TRACE and HALT/STEP Used Together
TRACE Uses G

Unconditional Branching .
Underformatting an Image .
UNPACK Statement

Use of Parentheses . .
Using Keyboard Functions .
Using String Variables .

VAL Function .
Variables .

Writing Programs .
XOR Statement

Zone 1.
Zone 2.
Zone 3.
Zone 4 . .
Zoned Format .

53
10
10
50
65

. 72,86

132
133
132
128
125
125
130

59
179

42
138
172
171

79
156
186

21

22
128

218
29

61
207

10
1"
11
14
37

("sajde1s 40 asn ayl 11q1yosd suoilenbas |e1sod "adel aseald)

plo4

piod

‘SINIWINOD

SIVANVIN 40 31111

‘pa1e1dasdde s1 uonesadood ANo A "SSaUPPE pue awueu
JnoA apnjsul 01 ains aq ‘Ajdal e u1o4 ‘dou| ‘sanolesoge] buepy jo Aladoud ayr awooag suonssbbns pue
SIUBWWOD || SN O1 |Iew pue paso|d adel ‘plo} ‘Yoe1ap uay] "Mo|ag w40} 3yl uo uoliedljgnd siyl butuiaduod
suol1sabbns pue sjuawwos JnoA axew ases|d ‘s|qissod sjenuew 15aq ayl yim noA apraoid 01 sn djay o]

- s S mn e TE = S W G G T S S W M G D GD G e WD SR G W SR G R Gh D D D G G Gp G G GED IS D G GED M WP R G W N T N AR M WE G N WP T ED NS TR A M M T S G — .

Cut along dotted line.

(WANG)

Fold

FIRST CLASS
PERMIT NO. 16
Tewksbury, Mass.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

— POSTAGE WILL BE PAID BY —

WANG LABORATORIES, INC.
836 NORTH STREET
TEWKSBURY, MASSACHUSETTS 01876

Attention: Marketing Department

Fold

Printed in U.S.A.

1“ i Ay
9
/
i O
>
‘ @)
'
/ (7}
I
(D
(D
Y
<)
'
N
i ‘)
WANG LABORATORIES WANG SKANDINAVISKA AB WANG COMPUTER PTY. L'ID)
(CANADA) LTD. Fredsgaten 17 25 Bridge Street £y
180 Duncan Mill Road S-172-23 Pymble, NSW 2073
Don Mills, Ontario M3B 126 Sundbyberg 1, Sweden Australia)
TELEPHONE (416) 449-7890 TELEPHONE 08-98-12-45 TELEPHONE 449-6388 '
TELEX 06-966546 O
WANG EUROPE, S.A. WAI\JG NEDERLAND B.V.
Buurtweg 13 Damstraat 2 7
9412 Ottergem Utrecht, Netherlands WANG INTERNAT'ONAL .‘—)
Belgium TELEPHONE 030-930947
TELEPHONE: 053/74514 33:2ADhEs e N
TELEX: 26077 orth Street N
' WANG PACIFIC LTD. Tewksbury, Massachusetts 01876 D
WANG ELECTRONICS LTD. 61, King Yip Street, 1st Floor TELEPHONE (617) 851-4111 D
1, Olympic Way, 4th Floor Kwun Tong Kowloon, Hong Kong TWX 710-343-6769)
Wembley Park, TELEPHONE 3-434231/2 TELEX 94-7421)
Middlesex, England .
TELEPHONE: 01/903/6755 WANG INDUSTRIAL CO., LTD.)
TELEX: 923498 118118 KuangFu N. Rd.
uang-Fu N, . -
WANG FRANCE SARL Taipei, Taiwan WANG COMPUTER SERVICES)
47, Rue.de la Chapelle Republic of China 836 North Street R
Paris 18, France TELEPHONE 7841813 Tewksbury, Massachusetts 01876)
TELEPHONE 203.27.94 or 203.25.94 " TELEPHONE (617) 851-4111 3
TWX 710-343-
WANG LABORATORIES GMBH WANG GESELLSCHAFT MBH TELEX 947421 .
Moselstrasse No. 4 Grinzinger Allee 16 ’ :)
6000 Frankfurt am Main 1190 Vienna 19 24 Mill Street -
West Germany Austria Arlington, Massachusetts 02174)
TELEPHONE (0611} 252061-64 TELEPHONE (0222) 32.42.43 TELEPHONE (617) 648-8550 -

LABORATORIES,

INC.

_J

(' ' ANG) 836 NORTH STREET, TEWKSBURY, MASSACHUSETTS 01876, TEL (617) 851-4111, TWX 710 343-6769. TELEX 947421

Printed in U.S.A. -
700-3231
2-74-2.5M © _}

Price $10.00
AN

«

	Cover
	Preface
	Table of Contents
	Part I: Using the System 2200 in the Immediate Mode
	Chapter 1: Equipment Installation and Power On Procedure
	Chapter 2: An Introduction - CRT Display and BASIC Keyboard
	Chapter 3: Calculator Facts
	Chapter 4: Performing More Than One Calculation Per Line
	Chapter 5: Printing Out More Than One Value Per Line
	Chapter 6: Executing a Line More Than Once (Looping)

	Part II: Using the System 2200 as a Programmable Calculator
	Chapter 7: The Basics of BASIC Programming
	Chapter 8: Branching In Programs
	Chapter 9: Customizing the System 2200
	Chapter 10: Additional Methods of Assigning Values to Variables
	Chapter 11: Arrays, and Array Variables
	Chapter 12: Alphanumeric String Variables
	Chapter 13: Use Of The COM (Common) Statement
	Chapter 14: PRINTUSING And IMAGE Statements
	Chapter 15: The Hexadecimal Function [HEX()]
	Chapter 16: Debugging

	Part III: Additional Programming Features Available on the System 2200B
	Chapter 17: Computed Branches
	Chapter 18: Data Reduction
	Chapter 19: Positon and Numeric Verification Functions (POS and NUM Functions)
	Chapter 20: Bit and Byte Manipulation
	Chapter 21: Data Conversion
	Chapter 22: Data Gathering

	Appendix A: Wang System 2200 ASCII Character Code Set
	Appendix B: Estimating Program Memory Requirements
	Appendix C: Error Codes
	Appendix D: Index to Programs (Problems) In This Manual
	Appendix E: Available Peripherals
	Appendix F: Device Addresses For System 2200 Peripherals
	Index

