(WANG)

edil

ﬁﬁﬁ"é ?L%%-'b:'{g‘@ i t'-'-'r'%':"r.H-'?- T

SR A Wi P LRy A DS RPN SN TR e PSS-S A T

ALPHABETICAL INDEX

ADD ..

AND, OR, XOR

BACKSPACE (Tape Cassettes)
BIN . . . e e
BOOL .

CLEAR

COM

CONSOLE INPUT (Mark Sense Card Reader)

CONTINUE .

CONVERT
CR/LF—EXECUTE Key

DATA

DATALOAD (Tape Cassette)
DATALOAD (Mark Sense Card Reader)
DATALOAD (Paper Tape Reader) .
DATALOAD (Teletype) . .
DATALOAD BT (Tape Cassettes)

DATALOAD BT (Mark Sense Card Reader)

DATALOAD BT (Paper Tape Reader)
DATALOAD BT (Teletype)
DATARESAVE (Tape Cassettes)
DATASAVE (Tape Cassettes) .
DATASAVE (Teletype) . .
DATASAVE BT (Tape Cassettes)
DATASAVE BT (Teletype)
DEFFN . . .
DEFFN' .

DIM.

END

FOR .

GOSUB .

GOSUB’ .

GOTO . . .

HALT/STEP .
HEX (Hexadecimal) Functlon .
HEXPRINT .

IF END THEN

IF...THEN

IMAGE (%) .

INIT .

INPUT .

.12
. 114
141
. 115
. 116

58
73

. 164

58

. 118

17
74

. 142
. 169
. 180
. 188
. 143
171
. 181
. 189
. 144
. 145
. 191
. 146
. 193

75
76
79
80
81
83
85
86
59
39
120
87
88
89

121

90

INPUT (Mark Sense Card Reader)
KEYIN .

LEN (Length) Functlon .

LET. e e

LIST

LOAD (Tape Cassettes)

LOAD (Paper Tape Reader)

LOAD (Teletype) .

LOAD COMMAND (Tape Cassette)

LOAD COMMAND (Paper Tape Reader)

LOAD COMMAND (Teletype)
NEXT
NUM

ON . .

PACK

PLOT (Model 2202)

PLOT (Model 2212)

PLOT (Model 2232)

POS . .

PRINT. . . .
PRINTUSING .

READ .

REM . .

RENUMBER

RESET

RESTORE

RETURN .

REWIND (Tape Cassettes)
ROTATE. ..
RUN . . .

SAVE COMMAI\ID (Tape Cassettes)
SAVE COMMAND (TeIetype)
SELECT . . .
SKIP (Tape Cassettes)
SPECIAL FUNCTION .
STATEMENT NUMBER .
STOP .

STR (String) Functlon
TRACE

UNPACK .

VAL

. 166
. 92

39

. 93

61

. 147
. 182
. 194
. 150
. 184
. 196
. 94
. 122
. 94
. 123
. 156
. 158
. 160
. 124
. 95
. 98
. 101
. 102

62

. 63
. 103
. 104
. 148
. 125

. 151
. 197
. 44
. 149

65
67

. 105

38

. 106
. 126
. 127

o

¥

CCCCCrCCrCCOCCCCrCCCCOCCCCCC O

e

CCCOC 00

2200A/B

Reference
Manual

© Wang Laboratories, Inc., 1974

(WANG)LABDHATDHIES. INC.

836 NORTH STREET, TEWKSBURY, MASSACHUSETTS 01876, TEL.(617) 851-4111,TWX 710 343-6769, TELEX 94-7421

HOW TO USE THIS MANUAL

This manual has been written for the sole purpose of providing quick answers to questions concerning
the operation of the System 2200A/B. It is designed for users who are already quite familiar with the System
2200 and its BASIC language instruction set.

The manual is divided into fifteen sections covering all the operational features of the System 2200A/B.
The BASIC non-programmable commands in Section VI and the BASIC statements in Section VII are
arranged in alphabetical order for ease of locating a desired command or statement.

If you are seeing, reading, and hearing about the System 2200A/B and its BASIC language for the first
time, we strongly recommend you first read the Self-Teaching Programming Manual which discusses in
detail the operational and programming features of the System 2200A/B.

Once you have completed the Self-Teaching Programming Manual, then and only then should you refer
to this manual as a reference guide to individual questions concerning the operation of the System 2200A/B.

i

INTRODUCTION

This manual provides the user with a quick and easy reference guide to questions concerning the operation
of the System 2200A/B. The layout is designed to assist the user in the location of key information.

The manual is divided into fifteen sections, separated by tabs, for ease of section location. The title page
for each section has a listing of the contents of the section. Also, a complete Table of Contents is located in
the front of the book.

Section |

Section Il

Section |11

Section 1V

Section V

Section VI

Section VI

Section VIl

Section IX
Section X

Section XI

Section XII
Section XIII

Section XIV

Section XV

Introduces you to the Mode! 2216 CRT Executive Display; the System 2200 Central
Processing Unit (CPU); the two keyboards, Model 2215 BASIC Keyword Keyboard and
Model 2222 Alpha-Numeric Typewriter Keyboard; along with the Model 2219 1/0 Extended
Chassis. Unpacking, installation and turn-on procedures also are illustrated.

The basic structure and components of the system are covered in this section, such as: line
numbers, spacing, colons, Immediate Mode vs. Programming Mode, and the edit and debug
features.

This section describes the elements of a numeric expression including Numeric Variables,
Arithmetic Symbols, Numeric Constants, Math Functions, Common Variables, Random
Numbers, User Functions and Rational Functions.

Alphanumeric capabilities are covered in this section, such as: Alpha Strings, Variables,
Literal Strings, Alpha Functions, Hexadecimal Literal Strings, Length and String Functions.

I/O Device Selection procedures are illustrated in this section; such things as Device Address
for peripherals, Default Address, Input/Output Parameters.

This section describes, in alphabetical order, the non-programmable commands necessary to
communicate with the system.

All the General BASIC statements needed to effectively utilize the system are covered here,
arranged in alphabetical order.

This section describes the various statements which are used to perform bit and byte, and
data conversion operations. All statements are arranged in alphabetical order.

This section describes the use of tape cassettes, along with file operation techniques.

Describes the various statements needed to effectively operate the plotters in the System
2200A/B.

Describes the general operating instructions, commands, and statements needed to operate
the Mark Sense Card Reader.

This section describes the Paper Tape Reader, used only with the System 2200B.

A description of the various commands and statements used to operate a Teletype interfaced
to a System 2200.

This section illustrates the various errors that can occur in both machine and programming
techniques, and includes one of many ways in which an error can be corrected.

This last section, titled Appendices is divided into four subsections: Appendix A, Specifica-
tions; Appendix B, Peripherals; Appendix C, ASCIlI Codes and what the various codes
generate; and Appendix D, a list of the various error messages by title and code.

SECTION |

SECTION I

SECTION Il

TABLE OF CONTENTS

GENERAL SYSTEM INTRODUCTION .

Unpacking And Inspection .
Installation . .

Turn-On Procedure .

2216 CRT Display

Cleaning the CRT Screen .

2215 BASIC Keyboard .
2222 Alphanumeric Input Keyboard
2200 Central Processing Unit (CPU)
2219 1/0 Extender . Co.

BASIC LANGUAGE STRUCTURE

Introduction

Line Number

BASIC Words . .

BASIC Statement Lines

Spacing

Colon .

Immediate Mode .

Program Mode . .
CR/LF-EXECUTE Key .
Illegal Immediate Mode Statements
Debugging And Editing Features .
Character Erasing

Removing The Current L|ne

Deleting A Line

Replacing A Line.

Renumbering A Program .

Stepping Through A Program . .
Executing A Program At A Given Line
Programmable Trace

Pause

NUMERIC EXPRESSIONS .

Expressions .

Numeric Variables

Common Data .

Arithmetic Symbols

Relational Symbols .

User Functions

Numeric Constants .
Mathematical Functions .
Random Numbers .
Additional Numeric Functlons

vii

NOoOOPADA W

12
15

16
16
16
16
16
16
17
17
17
17
18
18
18
19
19
19
20
20
21
21

25

26
26
27
28
28
28
29
30
31
31

SECTION IV

SECTION V

SECTION VI

SECTION VII

TABLE OF CONTENTS (Cont.)

ALPHANUMERICS

Alphanumeric String Variables

Alphanumeric Literal Strings .
Examples Of Statements Using String Varlables .
STR(String) Function .

LEN(Length) Function .
HEX(Hexadecimal) Function .

Lowercase Literals

1/0 DEVICE SELECTION

Introduction

SELECT . .
Device Address For System 2200 Perlpherals .
Default Device Address Selection

The INPUT And PRINT Parameters

The LIST Parameter

Specifying A PAUSE . .
Specifying DEGREES, RADIANS Or GRADIANS.

NON-PROGRAMMABLE COMMANDS .

Introduction .
BASIC Syntax SpeC|f|cat|on Rules .
General Form Of Terms .

CLEAR .

CONTINUE .

HALT/STEP

LIST

RENUMBER

RESET

RUN . . .

SPECIAL FUNCTION
STATEMENT NUMBER .

GENERAL BASIC STATEMENTS .

BASIC Statements
COM
DATA .
DEFFN .
DEFFN' .
DIM .
END

FOR
GOSuUB
GOSUB’
GOTO .

Viii

35

36
37
37
38
39
39
40

43

43
44
45
46
48
48
49
49

53

54
54
55
57
58
59
61
62
63
64
65
67

71

72
73
74
75
76
79
80
81
83
85
86

SECTION VIl

SECTION IX

TABLE OF CONTENTS (Cont.)

IF END THEN
IF...THEN
IMAGE (%) .
INPUT .
KEYIN
LET. .
NEXT .

ON . .
PRINT . .
PRINTUSING .
READ .

REM
RESTORE
RETURN
STOP

TRACE

DATA MANIPULATION

Introduction
ADD

AND, OR, XOR
BIN . .
BOOL .
CONVERT .
HEXPRINT .
INIT

NUM

PACK .
POS .
ROTATE .
UNPACK .
VAL

TAPE CASSETTES .
The 2217 Single Tape Cassette

Mounting And Removing A Tape Cassette .

Magnetic Tape Head Cleaning .
Tape Format

Program Files . .
Recording Data On Tape .
Reading Data From Tape

Logical Data Records .

Data Files .
Rewriting Data Records . .
Space Requirements On Cassette .
Device Address Specifications .
BACKSPACE

DATALOAD

ix

87
88
89
90
92
93
94
95
96
99
102
103
104
105
106
107

111

111
112
114
115
116
118
120
121
122
123
124
125
126
127

131

132
132
133
134
134
135
136
136
137
139
139
140
141
142

SECTION X

SECTION XI

SECTION XIlI

SECTION XIII

SECTION X1V
SECTION XV

TABLE OF CONTENTS (Cont.)

DATALOAD BT .
DATA RESAVE .
DATASAVE
DATASAVE BT .
LOAD Command
LOAD .
REWIND . .
SAVE Command .
SKIP

PLOTTERS .

PLOT (Model 2202)
PLOT (Model 2212)
PLOT (Model 2232)

MARK SENSE CARD READER .

Introduction
CONSOLE INPUT
INPUT . .
DATALOAD . .
DATALOAD BT .
HEX Codes .
ASCI| Codes

PAPER TAPE READER .

DATALOAD . .
DATALOAD BT .
LOAD Command
LOAD .

TELETYPE .

Introduction

DATALOAD . .
DATALOAD BT .
DATASAVE . .
DATASAVE BT .
LOAD Command
LOAD . .
SAVE Command .

ERROR CODES .
APPENDICES .

A — Specifications . .

B — Available Peripherals

C — ASCII Character Code Set
D — Error Messages .

143
144
145
146
147
148
149
150
151

155

156
158
160

163

163
164
166
169
171
173
175

179

180
181
182
183

187

187
188
189
191
193
194
195
197

201
229

230
232
233
234

SECTION I
GENERAL SYSTEM

INTRODUCTION

NOILINOOHLNI

)

)

)

)J)DDIDDADIDNIIDIDDIIDIDIIIIDDNDIIDIIIIIII)D

section |

General System
Introduction

UNPACKING AND INSPECTION
INSTALLATION

TURN-ON PROCEDURE

2216 CRT DISPLAY

CLEANING THE CRT SCREEN .

2215 BASIC KEYBOARD .

2222 ALPHANUMERIC INPUT KEYBOARD
2200 CENTRAL PROCESSING UNIT (CPU) .
2219 1/0 EXTENDER

© N O O ~ b~ B~

11
12

Section | General System Introduction

UNPACKING AND INSPECTION

Carefully unpack your equipment and inspect all units for shipping damage. |If damage is noticed, do not
proceed. Notify the shipping agency. Check equipment received against the purchase order. Decals specify-
ing model numbers can be found on all Wang equipment, usually on the back of each unit.

After unpacking and verifying the status of your equipment, the following procedures are used to install
and turn on your 2200 System.

The basic component of the 2200 is the Central Processing Unit (CPU). All other additional pieces of
equipment are considered peripherals and are attached to the CPU. The CPU is divided into two parts. The
main CPU chassis houses the processor, memory and peripheral connectors. A smaller power supply unit
contains the power supply and also '‘Power On’ and RESET buttons.

INSTALLATION
To install your 2200 System, use the following procedure:
1. Plug all peripherals into CPU chassis. Each peripheral connector on the CPU is labeled for the approp-
riate device. After each cord is plugged in, make sure the lock clips are snapped in.
2. Plug any peripheral power cords into wall outlets.
3. Plug the main power cord of the CPU chassis into Power Supply Unit, plug the Power Supply Unit
into a wall outlet.
A maximum of 6 peripherals can be attached directly to the standard CPU in this manner.

CPU
CONNECTOR

ON/OFF CONNECTOR TO

POWER SUPPLY
RESET

LIGHT PERIPHERAL CPU CHASSIS
CONNECTORS

TURN-ON PROCEDURE
Use the following procedure to turn ON your 2200 System:
1. Turn power switches ON on all peripherals (including CRT).
2. Move the main power switch on Power Supply Unit to the ON position (light on Power Supply Unit
illuminates). This process Master Initializes the system.
3. The CRT display appears as illustrated below.

READY

Your 2200 system is now ready to use.

If a system failure should occur, try to restore operation by touching the RESET button on the key-
board or Power Supply Unit. If normal operation is not restored, master initialize the system by turning
the power OFF, then ON (power ON/OFF switch on Power Supply Unit). If the system is still non-
functional, repeat the installation procedure before calling your Wang Service Representative.

- Section | General System Introduction

2216 CRT DISPLAY
The CRT display is designed to enable the user to easily write, review, modify, and correct programs. The
~ CRT is composed of an 8 X 10.5 inch screen, and two controls used to set the brightness and contrast of
the output as it appears on the screen. The screen itself has a maximum of 16 lines, each 64 characters in
length. The CRT display functions similar to a teletype type printer except that 16 lines can be displayed
at a time. Lines are displayed sequentially on the screen, each terminated by a carriage return and line
feed character. If more than sixteen lines are given at any one time, each new line is added to the bottom
of the CRT, moving the previously entered lines up; the line at the top of the CRT display is replaced by
the line directly beneath it.

REARY

sL1sT

16 PRINT *AMDUNT BORROWED®, °INTERESY RATE™ *ND. OF YEARS®s
MO, PMNT.®

20 FOR 1 = 875 T0 090 STEP 005 REM INTEREST RATE YARIES

36 FOR N = 20 10 30 STEP 5@ REW YEARS OF REPAYNENT PARIES

e E(1/12) K,
540,060°5 1001342

The following CRT commands are issued by outputting the specified code by a PRINT HEX (code);

statement.
HEX CODE : COMMAND
01 cursor home
03 clear screen & cursor home
07 bell (CRT option)
08 cursor left (<)
09 cursor right (—)
0A cursor down ()
0oC cursor up (1)

For example, PRINT HEX(03); clears the CRT screen.

Section | General System Introduction

s]

Cleaning the CRT Screen

The CRT screen should be cleaned periodically with a mild soap and water using a soft cloth. Do not use
an alcohol pad which might cause damage to the black surface surrounding the screen.

WARNING
Do not attempt to remove the cover for any reason due to the
danger of high voltage. Call a Wang Service Representative if
any maintenance is required.

Section | General System Introduction

2215 BASIC KEYWORD KEYBOARD
The 2215 keyboard permits most BASIC language words to be entered by single keystrokes. For example,

pressing the L | key causes the entire word “PRINT' to be entered.
PRINT
SHIFT Uppercase characters can be entered into the system by touching one of the two SHIFT keys
and then touching the key containing the desired symbol or function. When a SHIFT key is

depressed, a SHIFT light goes on until another key is touched, then it goes off. The SHIFT
LOCK key (upper left corner) causes the SHIFT to remain on while any number of upper
case keys are entered; the SHIFT can be subsequently turned off by touching either SHIFT
key. Alternatively the SHIFT key can be held down as on a typewriter, if several uppercase
characters are to be entered.

The keyboard is divided into 5 zones.

ZONE 5
SIXTEEN USER DEFINED SPECIAL FUNCTION KEYS

Kl
Pocsson,

TR
SEOHS g Sy

ZONE 1 4 \

ZONE 3

BASIC LANGUAGE KEYBOARD KEYS AND ARITHMETIC ZONE 4
ALPHA AND SPECIAL CHARACTERS EDIT AND
OPERATORS ERROR
ZONE 2 'I\,"SJ STZL:\T'%'\]ONS' CORRECTION
NUMERIC ENTRY KEYS KEYS

SYMBOLS

ZONE 1 The first zone contains the alphabetic and special characters, most BASIC language words, and the
statement number generator key.

STMT ... automatically sets the statement number of the next line about to be
NO entered, equal to the highest line number of the user program in the
system +10.
ZONE 2 The second zone consists of the numeric entry keys and the EXECUTE-CR/LF key.
EXECUTE ... causes the line just keyed in to be entered and processed by the system.
(CR/LF)

ZONE 3 Zone three contains the arithmetic operators, mathematical functions and punctuation keys.

Section | General System Introduction

ZONE 4 Zone four consists of the following special keys, used for entry and system control:

RESET ... immediately stops program listing or execution, clears the CRT screen,
and returns control to the user; leaving program text and variables intact.
HALT/ ... causes program to halt or execute one line at a time each time the key
STEP is touched.
LINE ... deletes the line currently being entered.
ERASE
<
(BACK) ... backspace — deletes the result of the last keystroke entered.
—
(SPACE) ... enters a space character.

ZONE 5 Zone five consists of 16 user defined special function keys for access of up to 32 subroutines or
text entry operations.

Section | General System Introduction

MODEL 2222 ALPHA-NUMERIC TYPEWRITER KEYBOARD

The 2222 keyboard is designed for users who are already familiar with a standard selectric typewriter, or
for those users whose applications require large amounts of alpha input.

The 2222 keyboard is divided into four major zones which are, in some respects, similar to the zones of
the 2215; however, the differences lie in the way BASIC words are generated. With the 2222 most BASIC
language words must be keyed in one character at a time (similar to a typewriter). This is compared to the
keyword section of the 2215 where one keystroke can generate an entire word. Either way, however, takes
up the same amount of space in memory.

ALPHA CONTROL ZONE 4
SWITCH SPECIAL FUNCTION KEYS
p A

~— V" 4 h ' 4 —v
ZONE 1 /
ALPHA CHARACTERS /
ZONE 2 ZONE 3
NUMERIC PROGRAM
ENTRY KEYS EXECUTION
AND ARITHMETIC AND CONTROL
OPERATORS KEYS

ZONE 1 Zone 1 of the 2222 keyboard is very similar to a regular selectric typewriter keyboard, which
includes all alpha characters, both upper and lowercase, numbers 0-9, and all of the typical special
characters.

ALPHA CONTROL SWITCH

An integral part of Zone 1 is the addition of an Alpha Control Switch. The reason for this
switch is to more easily write programs in BASIC. This switch acts somewhat similar to a shift
key, however, the switch only conditions alpha characters to always be upper case and in no way
interferes with the other keys on the keyboards.

DOWN POSITION
A/A

@ In the down position the keyboard acts as a standard typewriter keyboard.

Ala

Section | General System Introduction

UP POSITION
A/A

8

Ala

RETURN
(EXEC.)

BACK
SPACE

In the up position the keyboard conditions the system to generate all upper-
case alpha characters regardless of the position of the shift key. This is just
for the 26 alpha keys and in no way does this condition change the input
capabilities of the other keys on the keyboard. For uppercase keys other
than alpha characters, the shift key must be used. This would be the normal
position setting when entering BASIC programs, since BASIC statement
words and variables require uppercase alphabetic characters.

causes the line just keyed in to be entered and processed by the system.

deletes the result of the last keystroke entered.

ZONE 2 Zone 2 contains all the numeric entry keys and arithmetic operators, along with a number of
math functions. Immediate mode calculations can be generated using the PRINT key followed by
alegal calculating expression. This set of 20 keys is generally considered a “’scratch pad’’ calculator
for immediate mode calculations; however, these keys can be used to enter program line numbers,
numbers and functions.

ZONE 3 Zone 3 consists of the following special keys used for entry and system control.

RESET

HALT/
STEP

LINE
ERASE

CON-
TINUE

RUN

immediately stops program listing or execution, clears the CRT screen, and
returns control to the user; leaving program text and variables intact.

causes program to halt or execute one line at a time each time the key is
touched.

deletes the line currently being entered.

continues program execution after a ’STOP’’ verb has been executed, or the
"“HALT/STEP” key has been touched.

initiates execution of the user’s program.

10

Section | General System Introduction

NOTE:
CONTINUE and RUN must be followed by RETURN(EXEC).

ZONE 4 Zone 4 consists of 16 user defined special function keys for access of up to 32 subroutines or text
entry operations.

2200 CENTRAL PROCESSING UNIT (CPU)

The standard 2200-1 Central Processing Unit (CPU) has a user memory (RAM) of 409¢ (4K) bytes (8-bit
words). This can be increased in increments of 4K up to a maximum of 32K, self-contained in the 2200
chassis.

An outstanding feature of the 2200 system is that the BASIC language compiler is hardwired in a separate
section of the calculator, allowing nearly* the entire memory to be accessed by the user.

The CPU contains slots for up to 6 1/0O peripheral devices. If more than six peripherals are required, a
2219 1/0 Extension Chassis can be used which provides an additional 5 |I/O peripheral connector slots.

CPU AND PERIPHERALS CONNECTORS

POWER SUPPLY

*Approximately 700 bytes are used for “’housekeeping’’ purposes.

11

Section | General System Introduction

2219 1/0 EXTENDED CHASSIS

The peripheral capacity of the System 2200 can be extended to meet the needs of almost any user. The
basic system is composed of a CRT, Tape Cassette Drive and Keyboard, leaving three peripheral connectors .
for other devices (see Figure 1).

FIG. 1

There are, however, requirements for more than six peripheral devices; when this occurs, the Model 2219
/O Extended Chassis is used. This adds to the system an additional 5 peripheral connectors by providing a
larger CPU chassis. See the illustration below on the installation setup.

FIG. 2

In Fig. 2 the user has the capability of installing 11 peripheral devices. Any system that has more than 6
peripherals must utilize a 2219 |/0O Extended Chassis.

12

~ o
2

G Z
(¢
O
(7p]
<

STRUCTURE

Bl 0 600000 00000000000800000000000

—_—

)

T AIIIY I NN AN

1

AR

]

LI R R AU B RS B B A R

sectionll

BASIC

INTRODUCTION

LINE NUMBER

BASIC WORDS

BASIC STATEMENT LINES .
SPACING

COLON

IMMEDIATE MODE
PROGRAM MODE .
CR/LF-EXECUTE KEY .

ILLEGAL IMMEDIATE MODE STATEMENTS .

DEBUGGING AND EDITING FEATURES
CHARACTER ERASING

REMOVING THE CURRENT LINE

DELETING A LINE

REPLACING A LINE .

RENUMBERING A PROGRAM .

STEPPING THROUGH A PROGRAM
EXECUTING A PROGRAM AT A GIVEN LINE
PROGRAMMABLE TRACE

PAUSE

15

Language Structure

16
16
16
16
16
16
17
17
17
17
18
18
18
19
19
19
20
20
21
21

Section Il BASIC Language Structure

INTRODUCTION

A BASIC program must have a certain structure - simple though it is. The rules are few and easy to follow.
Certain components should be used in the structure of a program. These components include allowable
characters, kinds of symbols, and various functions that can be used in BASIC.

LINE NUMBER

Every program line must begin with a line number. It may be 1 to 4 digits in length. Line numbers
identify the lines and specify the order in which the program lines are to be executed. These lines do not
have to be entered in sequential order; the BASIC system automatically arranges and processes the lines in
order according to the line number. Line numbers should be assigned with a suitable increment between
consecutive lines for the insertion of additional lines. Line numbers can be entered by pressing the STATE-
MENT NUMBER key (2215 keyboard only) which automatically generates a new line number, or by
manually keying in the digits in the line number. Line numbers must not be preceded by spaces.

BASIC WORDS

BASIC words (i.e., PRINT, NEXT, SAVE, TO) can either be entered as single keystroke entries by press-
ing the appropriate key or by typing in each character in the word. In either case only 1 byte of memory is
required to store the word.

BASIC STATEMENT LINES
Each statement lines is comprised of a line number and at least one statement. A series of statements,
separated by colons, may be entered on the same line - with one line number.

Example:

40 X-2:Y-3:PRINTX,Y

There are two types of statements:
1. An executable statement specifies the action to be performed.
Example:
Q=8*Y
2. A nonexecutable statement provides information

Example:

DATA2,-7,5
One statement line cannot exceed 192 keystrokes.

SPACING

Spaces are customarily used between characters in a program line for readability; the system ignores
them. For example, 10 READ A, B, C, D is easier for the programmer to read than T0READA,B,C,D;
both, however, are equally clear to the BASIC system. The condensed format conserves user text area
space.

COLON

The colon (:) is displayed by the system to indicate that the programmer may proceed to enter program
lines. This symbol is also useful for identifying lines in the program listing - those preceded by a colon were
entered by the user; all others were system output.

16

Section Il BASIC Language Structure

IMMEDIATE MODE
The Wang 2200 BASIC system provides for two modes of operation, PROGRAM and IMMEDIATE.
The IMMEDIATE mode allows the 2200 to be used as a powerful one-line calculator. The BASIC
statements are entered with no preceding line numbers. The absence of a line number causes the system to
check the line for grammatical correctness and, if no errors exist, to immediately execute the statements in
the line. The line is not saved and requires only temporary storage space.

Multi-Statement Immediate Mode Lines
When using more than one BASIC statement on a line, a colon (:) must be placed between each statement.
The ability to place several statements on a single line makes the immediate mode a very powerful calculating
tool.
Example:

Key IN FOR I=1 TO 10: PRINT I, LOG(I} :NEXT | CR/LF-EXECUTE

Ten values of | and LOG(l) would be printed immediately.

PROGRAM MODE

The PROGRAM mode requires each line to be preceded by a line number of from 1 to 4 digits. The
presence of the line number causes the system to check the line for grammatical correctness, store the line
and await further instructions from the user. In this way, an entire program can be entered line by line,
checked for syntax errors, and then saved, listed, or executed by the user.

CR/LF-EXECUTE KEY RETURN EXECUTE
EXEC OR CR/LF
2222 2215
Purpose

The CR/LF-EXECUTE key is used in both the immediate mode and the program mode. |t must terminate
every line of input to the system. When entered, it causes the following:

1. IMMEDIATE MODE - If the statement line does not have a line number in front of it, the line is

checked for BASIC grammatical correctness and, if found to be correct, the line is immediately executed.

2. PROGRAM MODE - If the statement line has a line number in front of it, the line is checked for
BASIC grammatical correctness and entered into the 2200 memory.
3. COMMANDS - The command is checked for BASIC grammatical correctness and executed.
NOTE:

If a syntax error is found in either mode the appropriate error
code is displayed along with an up arrow symbol pointing out
the error. The system then returns control to the user by dis-
playing a colon on the CRT display.

ILLEGAL IMMEDIATE MODE STATEMENTS

DATA INPUT RETURN
DEFFN KEYIN STOP
GOSUB PRINTUSING % (IMAGE statement)
IF READ
RESTORE
IF-END THEN
ON

17

Section Il BASIC Language Structure

DEBUGGING AND EDITING FEATURES

Debugging a program on any system can often be a difficult and time-consuming job. The special edit
and debug features of the Wang 2200 combined with the sixteen line visual CRT display help make this task
much easier.

Character Erasing
Single keystroke entries in the current text line can be removed by touching the backspace key while in

BACK «
lowercase |SPACE| or |(BACK)
2222 2215
Example:
1120 X=SQR (2+COS(17
Key BACK

SPACE| 4 Times

:120 X =SQR(2
correct remainder of line

1120 X =SQR(2 - COS(17))

Removing the Current Line
The line currently being entered can be removed from the screen by touching the |LINE key.
ERASE

Example:
:300 PRINT “RESULT"”: A(4 -

Key LINE
ERASE

18

Section Il BASIC Language Structure

Deleting a Line
A previously entered text line can be deleted by keying the line number of that line and the CR/LF-
EXECUTE key.

Example:

READY

:LIST
10A=14

20 PRINTA

Key 20 CR/LF-EXECUTE
Key LIST CR/LF-EXECUTE
:LIST
10A =14

Replacing a Line
An existing line can be replaced by entering the same line number followed by the new line and CR/LF-
EXECUTE.

Renumbering a Program
A program can be renumbered by using the RENUMBER command, so that spaces can be made between
closely numbered lines in order to insert additional lines of text.

Example:

READY

:100 IF 1=4 THEN 102
:101 PRINT X, Y, |
:102 READ A, BS$
:RENUMBER 101, 110 RENUMBER, starting at old
:LIST ; line 101, using 110 as a start-
100 IF I=4 THEN 120 ing statement line number,
110 PRINT X, Y, | using an increment of 10

120 READ A, BS$

19

Section |1

BASIC Language Structure

Stepping Through a Program

Program execution can be halted at any time by touching the HALT/STEP key. Variables can be examined
or modified by immediate execution statements; and execution can be continued by keying CONTINUE
CR/LF-EXECUTE. If, after a program has been halted, the user wishes to step through the program, he
continues touching the HALT/STEP key. Each time the key is touched, the next statement is executed; the
executed statement and any normal printed result of that statement is displayed. Program stepping can be
started at a particular statement line by enteringa GOTO ‘line number’ statement, in the immediate mode.

Example:

Enter the following program in memory:

10 FORI1=1TO10

20 S=S+1
30 PRINTS
40 NEXTI
OPERATING INSTRUCTIONS: CRT DISPLAY
Key GOTO 10 READY
:GOTO 10
Key HALT/STEP :
10 FORI1=1TO 10
Key HALT/STEP :
20 S=S+|
Key HALT/STEP :
30 PRINTS
1
Key HALT/STEP :
40 NEXTI

The system can also be placed in TRACE mode and stepped. This provides both a display of each executed
statement and the calculated results of each statement.

Executing a Program at any Given Line
Program execution can be started at any desired line by entering a RUN ‘line number’ command.

Example:

Key RUN 130 CR/LF-EXECUTE

NOTE:

The user should not begin execution in the middle of a
FOR/NEXT loop or subroutine.

20

Section Il BASIC Language Structure

Programmable Trace

The TRACE statement provides for the tracing of the execution of a BASIC program. TRACE mode is
turned on in a program when a TRACE statement is executed and turned off when TRACE OFF statement
is executed. When in the TRACE mode, printouts will be produced when:

1. Any program variable receives a new value during execution; e.g., in LET, READ, FOR statements.

2. A program transfer is made to another sequence of statements; e.g., in GOTO, GOSUB, IF NEXT
statements.

Example:

READY
10 X=1.2
:20 TRACE
:30 X=2*X
:40 IF X>2 THEN 100
:60 STOP
:100 TRACE OFF
110 Y=X
1120 STOP
:RUN
Trace X=24
Outputs TRANSFER TO 100

STOP

The TRACE statement provides for the tracing of the execution of a BASIC program. TRACE mode is
turned on in a program when a TRACE statement is executed and turned off when TRACE OFF statement
is executed. When in the TRACE mode, printouts will be produced when:

Pause

The output of a program can be slowed down for easier visual inspection by selecting a pause of from
zero to one-and-a-half seconds. A pause is generated whenever a CARRIAGE RETURN is output to the
CRT display or a printer. The pause is turned on and off by executing the appropriate SELECT P "digit’
statement; the digit specifies the number of 6th’s of a second to pause (i.e., P3 =3 X 1/6 = 1/2 sec. pause).
The pause feature is programmable, and can be turned on and off within a program.

Example:

READY

:100 TRACE :SELECT P6
110 FORI1=1TO 20

1120 A(l) =1*COS (32.5)

1130 NEXTI

1132 TRACE OFF :SELECT PO

21

=00
il
OS®»
538
o<
5
LLl

YYD IDND DDA IIDIIIIININNIINIIAIDD DD

section lii

Numeric Expressions

EXPRESSIONS 26
NUMERIC VARIABLES. 26
COMMON DATA« . . o 27
ARITHMETIC SYMBOLS 28
RELATIONALSYMBOLS 28
USER FUNCTIONS 28
NUMERIC CONSTANTS 29
MATHEMATICAL FUNCTIONS 30
RANDOM NUMBERS. 31
ADDITIONAL NUMERIC FUNCTIONS 31

25

Section 111 Numeric Expressions

EXPRESSIONS
An expression may be avariable, a function or a constant or any valid combination of variables, functions,

and constants connected by arithmetic symbols. An expression may be preceded by plus or minus and may
be contained within parentheses. The following examples illustrate BASIC expressions:

X = [A]

X = [B5xY+FNB(X) - LOG(Z)]

J([X2+5] , K)=9

FORI = [3+K2] TO [4«Y] STEP
PRINT SIN(K) -4%J

[These are all expressions |

Operations in an expression are executed in sequence from highest priority level to lowest, as follows:
1. Operations within parentheses

2. Exponentiation (1)

3. Multiplication or division {* or /)

4. Addition or subtraction {+or -)

Quantities within parentheses are evaluated before the parenthesized quantity is used in further compu-
tations. In the absence of parentheses, exponentiation is performed first, then multiplication and division,
and finally addition and subtraction. For example, in the expression 1 + A/B, A is divided by B and then 1
is added to the result. When there are no parentheses in the expression and the operations have the same
priority level, these operations are performed from left to right. For example, in the expression A*B/C; B
is multiplied by A and the product is divided by C.

NUMERIC VARIABLES

A variable name is a string of characters that represents a data value. A variable can be given a new value
in certain executable statements such as READ, LET, INPUT, NEXT, FOR. The value assigned to the vari-
able in a program statement will not change until a second program statement is encountered which assigns
a new value to the variable.

There are two types of numeric variables: scalar and array. A scalar numeric variable is designated by a
letter or a letter followed by a digit: there are 286 legal scalar variable names.

Example:
A,A4

Array variables are used to define the elements of an array. These variables are used when a single sub-
script or a double subscript might ordinarily be used.

(a, Ay Ay, .} or by bij
A numeric array variable consists of a letter or a letter followed by a digit which is the array name, followed

by subscripts in parentheses:

A(3), C3(5), B(2,3), D(N, M-2), E1(5), F3(N,M)

26

Section |11 Numeric Expressions

For all array variables, the DIM statement is used with the array name and the numeric value subscripts
to provide space and specify the dimensions of a complete array of one or two dimensions. The DIM state-
ment must precede the first reference to the variables.

Example:

READY

:20 DIM Q(25) defines the 1-dimensional array Q with 25 elements
:30 READN

40 FORI=1toN

:50 READ Q(l)

:65 PRINT Qf(l)

:60 NEXT I

:70 DATAS

:80 DATAA4,5,19, 37,43

etc.

For cases where an array variable is used as common data, it is specified in a COM (common) statement
instead of a DIM statement to provide storage space.

The following rules apply to the use and assignment of array variables:
1. The numeric value of the subscript for the first array element must be 1; zero is not allowed.
2. The dimension(s) of an array cannot exceed 255.

An array variable and a scalar variable may have the same name; they are independent, unrelated variables.
Single subscripted and double subscripted arrays may not be defined with the same name.

COMMON DATA

The sharing of data common to several programs is possible by using the COM statement. Variables with
data to be used in subsequent programs are defined to be common in a COM statement.

Example:

COM A(2,4),B,C

defines the array A (of dimension 2 by 4) and the scalars B and C to be common data. When a RUN command
is issued, all noncommon variables are removed from the system; common variables are not disturbed. In
addition, common data can be retained when a new program is loaded or overlayed, and thus are passed
onto the next program. Common variables are cleared from memory when a CLEAR or CLEAR V command
is executed.

27

Section 111 Numeric Expressions

The following arithmetic symbols are used in BASIC to write a formula. Operations are executed in
sequence from the highest level to the lowest level: (1) operations within parentheses, (2) raising a number
to a power, (3) multiplication and division, and (4) addition and subtraction.

SYMBOL SAMPLE FORMULA EXPLANATION
1 A1B Raise A to the power of B.
* Ax+B Multiply B by A.
/ A/B Divide A by B.
+ A+B Add B to A
- A-B Subtract B from A

RELATIONAL SYMBOLS
Relational symbols are used with the IF verb when values are to be compared before processing. For
example: 20 IF G < 10 THEN 63 means that if G is less than 10, processing continues at program line 63.
The following relational symbols may be used with BASIC:

SYMBOL SAMPLE RELATION EXPLANATION

= A=B Aisequal to B

< A<B A is less than B

= A<=B A is less than or equal to B

> A>B A is greater than B

= A>=B A is greater than or equal to B
<> A<>B A is not equal to B

USER FUNCTIONS
A user function is a mathematical function of a single variable, which is used several times within a

program. Such a function is defined by a DEFFN statement. The format of the function is a letter or a
digit, a scalar variable in parentheses, an equals sign, and an expression. (i.e., Y(X) =2 * X1 2+ 3 * X - 7).
A function could be used in a program as follows: The function is defined: 30 DEFFN E (Z1) = EXP
(-Z113+5). If the following statement is entered, 40 Q = A/B + FNE(10), the value of 10 is assigned to Z1;
the result, EXP (-1013+5) will be used in place of the referenced FNE(10) in program line 40.

28

Section 111 Numeric Expressions

NUMERIC CONSTANTS
A numeric constant may be positive or negative and may consist of as many as 13 digits. Numbers with

greater than 13 digits result in an illegal number format error. The following are examples of numeric con-
stants in BASIC:

4, -10, 1432443, -.7865, 24.4563
If the exponential notation, E, is used, the value of the constant is equal to the number to the left of the
E multiplied by 10 to the power of the number to the right of the E. For example, 4.5E7 indicates that 4.5
to be multiplied by 107.

The magnitude of a numeric constant can be anywhere between 1079 and 10",

Invalid Use of Scientific Notation

8.7E5.8 Not valid because of the illegal decimal form of the exponent.
-103.2E99 Not valid because in reduced form, it is equivalent to —1.032E101, an exponent greater than
E100.

.87E-99 Not valid because it is equivalent to 8.7E-100, which is less than E-100.

29

Section 111 Numeric Expressions
—

MATHEMATICAL FUNCTIONS

Keyboard Function

Meaning

Example

*SIN(expression)

Find the sine of the expression

SIN(m/3) = .8660254037841

*COS(expression)

Find the cosine of the expression

COS(.69312) = .8868799122686

*TAN(expression)

Find the tangent of the expression

TAN(10) = .6483608274585

*ARC SIN{(expression)

Find the arcsine of the expression

ARC SIN (.003) = 3.00000450E-03

*ARC COS(expression)

Find the arccosine of the expression

ARC COS (.587) = .943448079441

** ARC TAN(expression)

Find the arctangent of the ex-
pression

ARC TAN (3.2) = 1.267911458422

m Appears as #Pl on CRT
display

Assign the value (3.14159265359)
(Displayed and printed as #P1)

4+#P1=12.56637061436

RND(expression)

Produce a random number between
Oand 1

RND (X) = .8392246586193

ABS(expression)

Find the absolute value of the
expression

ABS(7%3.4+2) = 25.8
ABS(-6.537)=6.537

INT(expression)

Take the greatest integer value of

INT (8)=8, INT(3.6)=3

the expression INT(-5.22)=-6
SGN(expression) Assign the value 1 to any positive SGN(9.15)=1

number, O to zero, and -1 to any SGN(0)=0

negative number SGN(-.124)=-1

LOG(expression)

Find the natural logarithm of the
expression

LOG(3052)= 8.023552392402

EXP(expression)

Find the value of e raised to the

EXP(.33*(5-6))=

value of the expression .7189237334321
SQR(expression) Find the square root of the ex- SQR(18+6)=SQR(24)=
pression 4.8989794856

*Unless instructed otherwise, the argument is interpreted in radians. Degrees, grads (360° = 400 grads),
or radians can be selected by entering the following statements:

SELECT D
SELECT R
SELECT G

CR/LF—EXECUTE
CR/LF—EXECUTE
CR/LF—EXECUTE

—selects degrees for all following calculations.
—selects radians for all following calculations.
—selects grads for all following calculations.

**The arctangent notation ATN(is also a recognized function notation.

30

Section 111 Numeric Expressions

RANDOM NUMBERS

Each time the RND function is used, a random number is produced with a value between 0 and 1. If
the argument of the RND function is not zero, the next number in the ‘random number list” is produced.
If the argument is zero, the first random number in the ‘list’ is produced. RND (0) is useful when debugging
programs involving random numbers since the same results can be produced each time the program is
executed.

The example below prints out the first 100 numbers in the ‘random number list’ each time the program
is executed. Deletion of Line 10 produces a different set of random numbers each time the program is
executed.

Example:

READY

:10 X =RND (0)

:20 FOR1=1TO100
:30 PRINT RND (1)
:40 NEXT I

Whenever the system is master initialized (Power On}, the random number generator is initialized; the
next time RND is used, the first random number in the list will be produced.

ADDITIONAL NUMERIC FUNCTIONS The following additional functions can be used in expres-

sions:
NUM Test if a string of characters is a legal BASIC number.
POS Locate first character in a string meeting specified relation.
VAL Binary value of a string character.
LEN Length of a string.

They are described in detail in Section VIII.

31

(]
=8
2 ¢
E£
Q=
N
=]
o
= |
< §

3

)

]

)

)

T YY)

1

]

L

1Y Y)

)

section IV

Alphanumerics

ALPHANUMERIC STRING VARIABLES .

ALPHANUMERIC LITERAL STRINGS .

EXAMPLES OF STATEMENTS USING STRING VARIABLES.
STR(STRING) FUNCTION

LEN{LENGTH) FUNCTION

HEX(HEXADECIMAL) FUNCTION

LOWERCASE LITERALS .

35

36
37
37
38
39
39
40

Section IV Alphanumerics

ALPHANUMERIC STRING VARIABLES

The Wang 2200 provides for an additional form of variable, the alphanumeric string variable. It is
distinguished from numeric variables by the manner in which it is named, a letter or a letter and a digit
followed by a $. String variables permit the user to process alphanumeric strings of characters, (such as
names, addresses and report titles).

Both alphanumeric scalar variables and alphanumeric array variables may be used. The dimensions of
string arrays must be specified in a DIM or COM statement prior to their use in the program.

Formats for alphanumeric string variable names are given below; items enclosed in brackets are optional.

Alphanumeric scalar string variable

‘letter’ [‘digit’] $ (i.e., A$, BS, C19)
One-dimensional alphanumeric string array variable

‘letter’ [‘digit’] $ (d,) (i.e., AS (3), BS (N))
Two-dimensional alphanumeric string array variable

‘letter’ [‘digit’] ($d, ,d,) (i.e., A$ (2,3), BS (N,M))

where d, and d, are expressions whose values are => 1 and less than 256.

Each string variable or string array element is initially assigned a value of 1 blank character. Thereafter,
it can take the value and length of any alphanumeric character string up to its maximum length. The
maximum length of a string variable is assumed to be 16 characters; however, the user may change the
maximum length (up to 64) by using a DIM or COM statement. If a string variable receives a string value
of less than its maximum length, it reflects that shorter length in all subsequent operations until it receives
another value. The end of the alphanumeric value is assumed to be the last nonblank character {except
when the value is all blanks, in which case the value is assumed to be one blank).

Example:

READY
110 A$="ABC "
:20 PRINT A$

Execution of these statements would print ““ABC’" with no trailing spaces.

Hence, trailing blanks are not considered part of alphanumeric values.

36

Section IV Alphanumerics

I I —

ALPHANUMERIC LITERAL STRINGS
An alphanumeric literal string is a character string enclosed in double quotation marks. It is used in
conjunction with string variables to provide a string value within a BASIC statement.

Example.

READY

:10 LET A$="ABCD"”

120 IF B$ <“#XYZ" THEN 100
:30 PRINT “NAME=";A$

When inputting data, the literal string need not be enclosed in quotes. In this case, commas and carriage
returns act as string terminators and leading spaces are ignored; hence if commas or leading spaces are to be
included in the literal string, the string must be enclosed in quotes.

Literal strings may be any length that can be expressed on one program line. However, when they are
used to store values in string variables, they will be truncated to the maximum length defined for the
string variable value.

Example.

LET A$=""ABCDEFGHIJKLMNOPQRST"”

In this statement AS$ only receives the first 18 characters of the literal string (i.e., ABCDEFGHIJKL
MNOPQR) if the maximum length of A$ is 18, otherwise it is set to 16 (see DIM; page 79).

EXAMPLES OF STATEMENTS USING STRING VARIABLES
Alphanumeric string variables can be used in the BASIC statements listed below. Literal strings can
generally be used in place of string variables, except where a value is assigned to the string variable.

LET LET A$=B$(2)
AS="ABCD"”
IF IF A$=B$ THEN 100

IF A$<“DR” THEN 200
IF “ABCD"">B$ THEN 300

INPUT INPUT AS, B$(4)

READ READ C$, D$, ES(1,2)

DATALOAD DATALOAD #2,A%,B$

PRINT PRINT A$,BS, “ABCD”

PRINTUSING PRINTUSING 50,A%$,BS, ““LAST"

DATASAVE DATASAVE A$, “GROUP1”

DATA DATA “ABCD", “"EFGH"
NOTE:

When comparing string variables with string literals or other
string variables (ie., IF A$ < “ABCD”), trailing spaces are
ignored and only the values of the strings are compared.

37

Section IV Alphanumerics

I I _J

STR (STRING)FUNCTION

Wang 2200 BASIC provides a function which permits the user to extract, examine, compare or replace
a specified portion of an alphanumeric string. The STR function operates on alphanumeric string variables,
and can be used in any BASIC statement where alphanumeric variables are permissible. It has the following
format; items enclosed in brackets are optional.

STR <string variable, X1 [,X2])
where X, _
X

2

Starting character in sub-string (an expression).

Il

Number of consecutive characters desired (an expression;
the specification of X, is optional).

Example:
STR(A$,3,4)

This statement means take the 3rd, 4th‘, 5th, and 6th characters of A$.

STR(AS,3)

This statement means, starting with the 3rd character, take the remainder of
the string AS$.

In BASIC statements, STR functions can be used wherever string variables are used. They may be used
on either side of an equal sign or relation. The following examples illustrate use of the string function:

Assuming B$=""ABCDEFGH"’
10 A$=STR(B$,2,4) ---A$ is set to “BCDE".

20 STR(AS,4) = B$ ---Characters 4 through 11 of A$
are set to “ABCDEFGH".

30 STR(AS$,3,3)=STR(B$,5,3) ---The 3rd, 4th and 5th characters
of AS$ are set to “EFG"".

40 IF STR(B$,3,2)=""AB”THEN 100 --Characters “CD"’ of B$ are
compared to the literal string "AB".

50 READ STR(A$,9,9) ---Characters 9 through 17 of A$
receive the next data value read.

38

Section |V Alphanumerics

LEN (LENGTH) FUNCTION

Wang 2200 BASIC provides a function, LEN(, which permits the user to determine the number of

characters in a given string variable. The LEN function can be used whenever a math function is permitted.
The format of the length function is:

LEN(string variable)

Example:

A$ =""ABCD"”
LEN(A$) has a value of 4

NOTE:

Trailing blanks are not considered to be part of the value of a
string variable.

Examples:

100 X =LEN(AS$) +2
110 IF LEN A$(3) > 8 THEN 150

HEX (HEXADECIMAL) FUNCTION

The HEX function isa form of literal string that enables a user to use any 8-bit codes in a BASIC program;
it may be used wherever literal strings enclosed in double quotes may be used. The HEX function has the

following format; items in brackets are optional.
HEX (hexdigit hexdigit [{ hexdigit hexdigit } ...])
where hexdigit = a digit 0 - 9 or a letter A - F.

Example:
Executing the following statement clears the CRT display.
:PRINT HEX (03)

Executing the following statement sets the string variable, A$, equal to the 3 characters: 81

16 '
4.

82 and

16"
A$ = HEX (818234).

Any character can be represented by two hexadecimal digits. A complete list of HEX codes pertaining to
the CRT is given in Appendix D.

LOWERCASE LITERALS

A special form of literal string is available for specifying lowercase characters; the literal string is enclosed
in single quotes. For example, the following statement

:PRINT “J""; 'OHN’; “ D""; 'OE’

outputs ‘John Doe’ on peripheral devices capable of printing lowercase letters.

39

Section |V Alphanumerics

The following characters are valid for use in lowercase literals.

Letters: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Digits: 0123456789 _

Special Characters: blank ! “ #%$ % & () * +, -
[<=>7?

40

1/0 DEVICE
SELECTION

>
<
O
-
Q
LLl
7p

sectionV

1/0 Device Selection

INTRODUCTION
SYSTEM 2200A/B DEVICE SELECTION

Each peripheral 1/O device associated with the System 2200 is assigned a unique device address. All
device addresses are composed of three-digit hexadecimal numbers. The first hex digit identifies the device
type. It is used by the system when controlling the 1/O operation. The last two hex digits represent the
actual device address, which is used to electronically select the device for operation.

The device type digit is used by the System 2200 to identify what type device is being selected for an
I/O operation. The various peripheral devices on the System 2200 often require different control procedures
to perform an input/output operation. For example, a type digit of 1 signifies cassettes, a type digit 3
indicates disk. The last two digits correspond to the actual device address which is preset in each device
controller card in the System 2200 CPU. For example, if a System 2200 has three cassette drives, three,
unique addresses are available for cassettes.

When a System 2200 BASIC command or statement which performs an input/output operation is exe-
cuted, the appropriate device can be selected in one of three ways.

1. DEFAULT (Primary Console Device) - If no device address is specified or selected, the System 2200
automatically provides the device address which is most commonly used for that particular operation.

2. SELECT - The System 2200 SELECT statement can be executed. It assigns device addresses for
specified 1/0 operations.

3. SPECIFICATIONS - The device address can be supplied with the BASIC 1/O statement or command,
either absolutely or indirectly.

SELECT o 44
DEVICE ADDRESSES FOR SYSTEM 2200 PERIPHERALS . . 45
DEFAULT DEVICE ADDRESS SELECTION 46
THE INPUT AND PRINT PARAMETERS 48
THE LIST PARAMETER 438
SPECIFYINGAPAUSE 49
SPECIFYING DEGREES, RADIANS OR GRADIANS 49

43

Section V 1/0 Device Selection

SELECT

General Form:

where
select parameter

device address

length

‘file number’

SELECT

(Cl

CcoO
DISK
TAPE

LIST
PRINT
INPUT
PLOT
P

D

R

G

A\

‘file number’

A three hexadecimal digit code specifying the desired
device (see Device Address Table).

An integer < 256 specifying the desired
carriage width.

One of the following:

#1, #2, #3, #4, #5, #6

select parameter [, select parameter . . .]

device address
device address [(length)]
device address
device address

device address

device address [(length)]
device address [(length)]
device address

device address

[digit]

Purpose

The SELECT statement is used for three purposes:

1. To select device addresses for input/output statements or commands.

2. To specify a pause after every printed or displayed line of output
(used mainly with CRT display), and

3. To specify degree, radian, or gradian measure for the trigonometric functions.

44

—

Section V. 1/O Device Selection

A complete list of the System 2200 |/0O devices and addresses is shown in the table below.

DEVICE ADDRESSES FOR SYSTEM 2200 PERIPHERALS
(For further detail, see the individual peripheral manuals.)

1/0 DEVICE CATEGORIES DEVICE ADDRESS (S)*
KEYBOARDS** (2215, 2222) 001, 002, 003, 004
CRT UNITS** (2216) 005, 006, 007, 008
CASSETTE DRIVES (2217, 2218) 10A, 10B, 10C, 10D, 10E, 10F
HIGH-SPEED PRINTERS (2221, 2231) | 215,216
OUTPUT WRITERS (2201) 211,212
THERMAL PRINTER (2241) 211,212
PLOTTERS (2202, 2212, 2232) 413, 414
DISK DRIVES (2230-1, -2, -3) 310, 320, 330
(2240-1, -2)
CARD READERS (2214) 517
HIGH-SPEED
PAPER TAPE READER (2203) 618
TELETYPES (2207) 019, 01A,01B INPUT
01D, O1E, O1F OUTPUT
TELETYPE TAPE UNITS 41D, 41E, 41F PUNCH/
READER
TELECOMMUNICATIONS (2227) 219, 21A,21B INPUT
21D, 21E, 21F OUTPUT

In some cases, more than one device address is listed for each device category. Unless otherwise
noted, each peripheral device is assigned a unique address; device addresses are assigned sequentially.
Therefore is a System 2200 has only one device of a particular category, such as a cassette, it is
set up with the first device address listed (10A in the case of the cassette). If it has two cassettes,
they are set up with device addresses 10A and 10B. Each device address is printed on the interface
card which controls that device.

All peripherals in this category are assigned to lowest device address shown. They may, however, be
assigned unique addresses by customer request.

45

Section V 1/0O Device Selection

DEFAULT DEVICE ADDRESS SELECTION

Each System 2200 has five 1/0 devices designated as the Primary Console Devices for the system. The
device addresses of these peripherals are built into the system such that whenever Master Initialization occurs
(i.e., power is turned off and then on again), the system automatically is set to those device addresses for
I/0 operations. The Primary Console Devices normally are:

1. Primary Console INPUT Device: Keyboard (address 001) (Model 2215 or 2222)

2. Primary Console QUTPUT Device: CRT (address 005) (Model 2216)

3. Primary Console TAPE Device: The Primary Cassette (address 10A) (Model 2217)

4. Primary Console DISK Device: The Primary Disk (address 310)

5. Primary Console PLOTTER Device: The Primary Plotter (address 413) (Mode! 2202,
2212, 2232)

If a System 2200 does not contain additional input/output devices, then device addresses need not be
specified or selected in the BASIC commands and statements which perform input/output. If additional
devices are present in the system, device address specification or selection is required. Device selection is
described in the remainder of this section.

When Master Initialization occurs, the Primary Console Device addresses are assigned to all input and
output operations. That is, all commands, statements, and other information keyed into the System 2200
are done from the Primary Console Input Device, while all system output is sent to the Primary Console
Output Device. All BASIC statements involving cassette operations automatically access the Primary
Console Tape Device unless the statements contain either of the two optional parameters, #n, or /xxx,
which supply the device address.

Similarly, disk operations reference the Primary Disk Device and PLOT statements reference the primary
plotter. '

The console device addresses for input/output operations can be changed from the Primary Console Device
addresses by using SELECT statements containing the parameters Cl (console input), CO (console output),
TAPE (console tape cassette drive), DISK (console disk drive) and PLOT (console plotter). Before these
parameters can be used, however, the device addresses of the new console devices must be known (see Device
Address Table).

To change the console device from the Primary Output Device address (CRT device address = 005) to
another output device, a statement having the following format can be used:

SELECT CO device address [(length)]

Example:
SELECT CO 215 (80)

This statement selects a line printer {device address = 215) as the new Console Output Device. The maximum
line length to be used on the printer is set at 80 columns.

NOTE:

If a carriage width is not specified for console output, PRINT
or LIST, the last carriage widths selected for these operations
are used. Master Initialization sets these carriage widths to 64
characters.

Section V 1/O Device Selection

Example:
SELECT CO 005 (64)

This statement reselects the CRT as the Console Qutput Device. The line length is reset to 64 characters.

Example:

SELECT TAPE 10B

This statement selects the second cassette tape unit (device address = 10B) as the Console Tape Cassette
unit. All statements involving cassette operations will access the second cassette drive uniess the statements
contain either of the two optional parameters, #n or /xxx which supply the device address.

The System 2200 provides two other methods for selecting tape cassette drives or other devices for
input and output operations. The individual BASIC statements that execute 1/O operations (LOAD,
DATASAVE, SKIP, etc.) each contain two optional parameters designated #n and /xxx. The /xxx parameter
allows the actual device address of a cassette drive to be placed directly in the statement. The xxx represents
the three-character device address of the desired device. This method of selecting tape devices is independent
of the SELECT statement.

Example:

DATASAVE /10B, OPEN “DATFILE"”

This statement writes a data file header record on the cassette whose device address is 10B.

The #n parameter permits cassette or other device addresses to be assigned indirectly using the SELECT
statement. #n is called a file number and must be one of the following: #1, #2, #3, #4, #5, #6. A
particular device address can be assigned to a file number by a SELECT statement in a program. Thereafter
in the program, BASIC Input/Output statements which contain that file number automatically use the
previously assigned device address.

Example:
10 SELECT #2 10C, #3 10A

This statement assigns the cassette device address 10C to file #2, and the cassette device address 10A to
file #3. In subsequent program statements which perform input/output operations, the file then can be
used to supply the device address.

Example:

50 REWIND #2
60 DATALOAD #3, A(), B$()

The indirect assignment of device addresses in a program using file numbers offers several advantages.
Subroutines can be written to perform a sequence of 1/0 operations for several devices. All device address
assignments in a program can be changed by modifying a single statement. For instance, in the following
example addresses can be assigned by changing statement 10.

47

Section V 1/O Device Selection

Example:

10 SELECT #2 10C, #3 10A
20 SKIP #2, 2F

100 REWIND #3
110 DATASAVE #2, OPEN "DATFILE"”

The INPUT and PRINT parameters

The INPUT and PRINT parameters are used to select device addresses for the INPUT, KEYIN, PRINT,
PRINTUSING, and HEXPRINT statements executed in a user’s program. The INPUT select parameter
specifies the device address to be used to enter in data for INPUT and KEYIN statements.

Example:

100 SELECT INPUT 002
110 INPUT “VALUE OF X, Y", X, Y

The message “VALUE OF X, Y?” appears on the console output device, while the values of X and Y are
keyed in on the keyboard whose device address is 002.

The PRINT parameter specifies the output device on which all program output from PRINT, HEXPRINT,
and PRINTUSING statements are displayed.

Example:

100 SELECT PRINT 213(100)

110 PRINT”X=";X,”"NAME="";N$

120 PRINTUSING 121, V

121 %TOTAL VALUE RECEIVED:$# ###.##

The SELECT PRINT statement in line 100 directs all printed output to a Model 2201 Output Writer (device
address 213); the carriage width is specified as 100 characters.

Example:

SELECT PRINT 005(64)

This statement reselects the CRT as the device to which all PRINT and PRINTUSING output is directed.
The maximum line length is reset to 64 characters.

NOTE:

The output from PRINT statements entered in the immediate
mode always appears on the Console Output Device.

The LIST Parameter

The LIST select parameter specifies which output device is to be used for all program listings and disk
catalog listings.

Example:

SELECT LIST 212(70)

48

Section V 1/O Device Selection

This statement specifies that a line printer (device address = 212) is to be used for program listings. The
maximum line length is specified as 70 columns.

NOTE:

All SELECT statement formats are legal in either program

mode or immediate mode. Device selections remain in force

until:

1. They are changed by the execution of another SELECT
statement, or

2. They are reset to the currently selected console devices by
the execution of a CLEAR command with no parameter, or

3. They are reset to the Primary Console Devices by a Master
Initialization.

A CLEAR command with no parameters and Master Initiali-
zation (power on) clears all file number assignments. All file
numbers then must be initialized by re-executing the SELECT
statements. Reference to an unassigned or cleared file number
causes an error output.

WARNING: Selecting an illegal device address for Cl or CO
causes the system to become locked out; it can be reset only
by Master Initializing,i.e., by turning the power off then on
again. All programs and variables will be lost.

Specifying a Pause:

The ‘P’ select parameter causes the system to pause each time a carriage return character is output to a
CRT so the user can scan the output rather than programming the system to halt execution whenever the
CRT screen is full. The optional digit following the pause specifies the length of the pause in increments of
1/6 seconds. For example, the following statements generated the indicated pauses:

100 SELECT P1 pause = 1/6 seconds
SELECT P6 pause 1 second
SELECT P (or PO) pause null (i.e., no pause)

Again, a pause remains in effect until Master Initialization occurs or until a different pause is selected.
Selecting P or PO removes the current pause.

Specifying DEGREES, RADIANS, or GRADS:

Degree, radian, or gradian measure may be selected for the trig function arguments by using the ‘D’, ‘R’
or ‘G’ parameters, respectively. For example:

SELECT D

causes the system to use degree measure for the trigonmetric functions. The unit of measure can be changed
by executing another SELECT command or by Master Initialization, which automatically selects radians.

49

SECTION VI
NON-PROGRAMMABLE
COMMANDS

section Vi

Non-Programmable
Ccommands

INTRODUCTION 54
BASIC SYNTAX SPECIFICATION RULES 54
GENERAL FORM OF TERMS 55
CLEARo 57
CONTINUE.« . . . o o 0. 58
HALT/STEP 59
I 61
RENUMBER 62
RESET 63
RUN o o o s 64
SPECIAL FUNCTION. 65
STATEMENT NUMBER 67

53

Section VI Non-Programmable Commands

INTRODUCTION

A BASIC command provides the user with a means for communicating with the system. A BASIC
command facilitates the running or modification of a program but is not part of the program itself.

For example, the RUN command initiates the execution of a program in 2200 memory; the SAVE
command instructs the system that all program text is to be recorded on a cassette tape, or some other
device.

BASIC commands are entered one line at a time. They differ from BASIC statements in that they are
not preceded by line numbers, and only one command can be entered on one line; multiple commands
separated by colons on one line are not allowed. BASIC program statements are saved in memory for
later execution; BASIC commands cause action and are not saved.

All the 2200 BASIC commands are described on the following pages.

BASIC SYNTAX SPECIFICATION RULES
The following editorial rules are used in this manual to define and illustrate the components of BASIC
program statements and system commands.
1. Uppercase letters (A through Z), digits (O through 9) and special characters (*, /, +, etc.) must always
be used for program entry exactly as they are shown in the general form.
2. Information in lowercase letters is to be supplied by the user; for example, in the statement GOSUB
‘line number’, the line number must be entered by the user.

3. Square brackets, [], indicate that the enclosed information is optional. For example,
RESTORE [expression]
means that the RESTORE statement verb can be optionally followed by an expression:

RESTORE
or RESTORE 2xX

are both legal forms.
4, Braces,{ } enclosing vertically stacked items indicate that one of the items is required. For example,

scalar variable
COM

array variable
means that the COM statement elements can be:

a scalar variable (i.e., C2)
OR
an array variable (i.e., D(4,8))

5. Ellipsis, . . . , indicate that the preceding item may occur once or many times in succession. For
example,

INPUT variable, variable, . . .

6. Except within double quotation marks, BASIC syntax ignores blanks.

7. When one or more items appear in sequence, these items or their replacements must appear in the
specified order.

54

Section VI

Non-Programmable Commands

GENERAL FORM OF TERMS
The list below defines the language syntax elements used in the command and statement syntax

specifications.

alpha array designator :: =

alpha array variable :: =

alpha scalar variable :: =

alpha variable :: =

array designator ::

builtin ::

character string :: =

device address :: =

digit ::

exponent

expression ::

fraction ::

function ::

hexdigit ::

integer ::

letter ::

line number ::

literal string ::

number ::

letter [digit] $()
letter [digit] $(expression [, expression])
letter [digit] $

alpha array variable
alpha scalar variable
STR function

{alpha array designator }
numeric array designator

one of the following function names: SIN, COS, TAN, ARCSIN,
ARCCOS, ARCTAN, ATN, EXP, LOG, SQR, ABS, INT, SGN,
RND, LEN.

any string of letters, digits, or symbols not including carriage return,
backspace, etc.

hexdigit hexdigit hexdigit
0,1,223,45,6,7,8,0r9
E[{+}] digit [digit]
[{+}] term

. integer

letter } .
{ FN {digit } (expression)
builtin

{ digit }

A B, C D,E orF

digit [digit ...]
A,B,C,D,E,F,GH,IJ,K,LMN,OPQR,S,TUVW,X,Y,orZ
digit [digit] [digit] [digit]

“’character string not including quotes”’
‘character string not including single quotes’
HEX ({ hexdigit hexdigit }- -)

integer
fraction
integer fraction

[exponent]

55

Section VI Non-Programmable Commands

numeric array designator ::

numeric array variable ::

numeric scalar variable ::

numeric variable ::

STR function ::

term ::

variable ::

letter [digit]()

letter [digit] (expression [, expression])

letter [digit]

_ { numeric scalar variable }

numeric array variable

STR(alpha variable , expression [, expression])

(expression)
number *

I+

term

~

function
numeric variable

—

{ numeric variable
alpha variable

56

Section VI Non-Programmable Commands C LEAR

General Form; CLEAR

[line number [, line number]]

z< DO

Purpose

The CLEAR command reinitializes the user program text and variable areas. CLEAR with no parameters
removes all program text and variables from the system. The current console devices are selected for all I/0O
operations (see SELECT). Also, pause and trace are turned off.

CLEAR V removes all variables (hoth common and noncommon) from memory.

CLEAR N removes all noncommon variables from the system; but names, attributes, and values of com-
mon variables are not changed.

CLEAR P removes program text from the system; variables are not disturbed. CLEAR P with no line
numbers deletes all user program text from the system. CLEAR P with one line number deletes all user
program lines from the indicated line through the highest numbered program line. If two line numbers are
entered, all text from the first through the second line numbers, inclusive, is deleted.

Example:

CLEAR

CLEAR YV
CLEARN
CLEARP 10, 20
CLEARP 10
CLEARP

57

Section VI Non-Programmable Commands CON T I N U E

General Form: CONTINUE

Purpose

This command continues program execution whenever the program has been stopped either by a STOP
verb or the touching of the HALT/STEP key. The program continues with the program statement immedi-
ately following the last executed program statement.

NOTE:

An error message is displayed and execution does not contin-
ue if the user enters a CONTINUE command after:
1. A text or table overflow error has occured.
2. A variable has been entered that has not previously been
defined.
3. ACLEAR Vor CLEAR N command has been executed.
4. Program text has been modified by a CLEAR, CLEAR P,
or RENUMBER command having been executed, or a
new program line having been entered.
5. The RESET key has been pressed.

Example:
CONTINUE

58

Section VI Non-Programmable Commands HALT/STE P

General Form: HALT/STEP

Purpose

1. If a program is executing, the HALT/STEP key stops execution after the completion of the current
statement. Program execution, beginning with the next statement, can be continued by entering the
CONTINUE command.

2. If a program is being listed, the HALT/STEP key stops the listing after the current statement has been
listed.

3. The HALT/STEP key can be used to step through the execution of a program. If program execution has
terminated due to the execution of a STOP verb or the depressing of the HALT/STEP key, depressing the
HALT/STEP key again causes the next program statement to be listed and executed; execution then
terminates. In multiple statement lines, those statements which have already been executed are not
listed; however the colons separating these statements are always displayed. The GOTO statement
can be used in the immediate mode to begin stepping execution at a particular line number (see GOTO).
However, protected programs may not be stepped.

NOTE:

An error message is printed out and execution does NOT

continue if the user attempts to STEP program execution

after:

1. A text or table overflow error has occured.

2. A variable has been entered that has not previously been
defined.

3. A CLEAR V or CLEAR N command has been executed.

4. Program text has been modified by a CLEAR, CLEAR P,
or RENUMBER command having been executed, or a new
program line having been entered.

5. The RESET key has been pressed.

Suppose the following program is in memory:

Example:

:90 GOSUB 200
1100 PRINT “CALCULATE X, Y”
1110 X=1.2: Y=b+Z+X: GOTO 30

and we wish to step through the program from line 100 on. TRACE is turned on so that variables receiving
new values are displayed.

59

Section VI Non-Programmable Commands HALT/STEP

Example:
Turn TRACE mode on :TRACE
Start stepping at line 100 :GOTO 100

Touch HALT/STEP key :
. 100 PRINT“CALCULATE X, Y"”
CALCULATE X, Y

Touch HALT/STEP key :
110 X=1.2: Y=b6*Z+X: GOTO 30
X=1.2

Touch HALT/STEP key :
110: Y=5*Z+X: GOTO 30
Y=21.6

HALT/STEP key :
110: : GOTO 30
TRANSFER TO 30

60

Section VI Non-Programmable Commands LIST

General Form: LIST [S] [line number [, line number] |

Purpose

The LIST command instructs the system to display the entire program text in line number sequence. |f
one line number follows the command, then one program line is listed. If two line numbers follow the
command, all text from the first through the second line numbers inclusive are listed.

The ‘S’ parameter is a special feature for the CRT terminal. It permits the listing of the program in steps
of 15 lines (the maximum capacity of the CRT screen). After 15 lines have been generated, the listing can
be continued. To continue listing (up to the limit specified in the LIST command), the CR/LF-EXECUTE
key is pressed.

Pressing HALT/STEP during the listing of a program stops the listing after the current statement line has
been finished.

Alternatively, the user may slow down listing on the CRT by selecting a pause of from 1/6 to 1 1/2
seconds by executing a SELECT P statement. A pause will occur after each line is listed.

When the 2200 is Master Initialized (Power off, Power on), the CRT is initially selected for LIST oper-
ations. Other printing devices may be selected for listing by using a SELECT LIST command. (See
SELECT)

Examples:

:LIST
30 READ A,B,C, M

990 END

or :LIST 30, 50
30 READ A, B,C, M
40 LET G=A*D-B*C
50 IF G=0 THEN 60

or :LIST 30
30 READ A,B,C,M

:SELECT P3 =——Select a pause of 1/2 sec.
:LIST

:LIST S

First 15 lines appear on the
CRT,; depressing the CR/LF-
EXECUTE key lists the next
15 lines, and so on until the
entire program has been
listed.

61

Section VI Non-Programmable Commands R E N U M B E R

General Form: RENUMBER [line number] [,line number] [,integer]
where 0 < integer < 100

Purpose

The RENUMBER command renumbers the user program. The first line number is the starting number
and specifies the first line to be renumbered in the program. All program lines with line numbers greater than
or equal to the starting line number are renumbered. If no starting line number is specified, the entire
program is renumbered. The second line number in a RENUMBER command is the new line number which
is assigned to the first line to be renumbered; note that the new line number must be greater than the
highest line number preceding that line in the program. For example, if we are to renumber the following
program starting with line 12, the new number assigned to line 12 must be > 10 since line 10 precedes line
12 in the program.

Examples:

READY

110 INPUT X

112 FOR1=1TO 10
:14 PRINT Xx|

:16 IF 1> 100 THEN 20
:18 NEXT I

:20 STOP

:RENUMBER 12, 20

:LIST

10 INPUT X

20 FORI=1TO10

30 PRINT X*I

40 IF1>100 THEN 60
50 NEXTI

60 STOP

The integer specified in the RENUMBER command is the increment between line numbers; if no integer
is specified, the increment is assumed to be 10. If no new starting line number is specified, the new starting
line number equals the increment.

NOTE:

All references to line numbers within the program, e.q., in
GOTO, GOSUB, or PRINTUSING statements are modified.

Examples:

RENUMBER
RENUMBER 100, 5
RENUMBER 100, 150, 5
RENUMBER b5
RENUMBER ,,5

62

Section VI Non-Programmable Commands R E S E T

General Form: RESET

Purpose

The RESET button immediately stops program listing or execution, clears the CRT screen, resets all
I/0 devices and returns control to the user. The program text is not lost; all program variables are maintained
with their current values. |f the TRACE mode was on, it is turned off.

Normally, program execution is terminated by the HALT/STEP command after which a program can be
continued. RESET, on the other hand, terminates immediate execution statements or commands and restores
the system after a temporary malfunction. RESET can be used to terminate program execution, but the
program cannot be continued. The program can be rerun by touching the RUN key.

NOTE:

RESET should only be used to terminate program execution
if HALT/STEP fails.

If the system has undergone a temporary malfunction which cannot be corrected by RESET, master
initialize the system by turning the power switch on the Power Supply Unit off, then on again. This, however,
erases programs and data previously in the system.

Example:

RESET

63

Section VI Non-Programmable Commands RU N

General Form: RUN [line number]

Purpose

The RUN command initiates the execution of the user’s program. The system verifies the currently
loaded program; variables are scanned and new (not previously entered) common variables and all non-
common variables are reset to zero. The pointer to the next data value (to be used in a READ statement)
is reset to the first data value in the program. The program statements are then executed in line number
sequence.

If a line number is specified, program execution begins at the specified line number without reinitializing
program variables to zero; the variables are maintained at the last calculated values. This enables the user to
continue a halted program. Program execution must not be started in the middle of a FOR/NEXT loop
or a subroutine.

Examples:

RUN
RUN 30

NOTE:

After a program has been entered or loaded, execution should
be initiated by a RUN command to ensure that space is
reserved for program variables. Once a program has been
RUN, program execution may be restarted by pressing a
special function key.

64

Section VI ggrr:]-gr:ngé?mmable SPECIAL FU NCTION

General Form: Special Function Key

Purpose

There are 16 special function keys available on the 2215 (or 2222) keyboard. Depressing them in
conjunction with the SHIFT key provides up to 32 entry points for the currently loaded BASIC program.
The entry points are defined by the BASIC statement DEFFN’ XX (where XX = 00 to 31). Thus, depressing
special function key 2 causes an entry and execution of a line or subroutine beginning with a DEFFN’ 2

statement. With this special entry, text strings can be entered or multi-argument subroutines can be
executed.

If a special function key is defined for text entry, pressing the key causes the character string defined by
the special function entry to be displayed and become part of the current text line (see DEFFN’).
For example, if special function key 2 is defined by the following statement:

100 DEFFN’ 2 “HEX("”
pressing the special function key 2 after the following has been keyed in:
:20 PRINT

results in

:20 PRINT HEX(_
cursor

If a special function key is defined for marked subroutine entry (see DEFFN’'), the subroutine can
be executed either manually by touching the indicated special function key, or by using a GOSUB’ state-
ment (see GOSUB') within a program. Arguments are passed to the subroutine either by keying them in,
separated by commas, immediately before the special function key is pressed, or by indicating them as
parameters in the GOSUB’ statement. The number of arguments passed must equal the number of variables
in the DEFFN’ statement marking the subroutine. When a RETURN statement is finally executed, control
is passed back to the keyboard or to the program statement immediately following the GOSUB' statement.

Example.
112.3, 3.24, “JOHN" (Depress special function key 3.)
causes the following subroutine to be executed:
:100 DEFFN’ 2 (A, B, C$)

:110. ..
1120 ...

:200 RETURN
where Aissetto 12.3

B is set to 3.24
C$ is set to ““JOHN"

65

Section VI g(c)):{;;(:‘g(;?mmable S PE C l A L F U N CT I O N

Example:

Define the special function key O to execute the following:

Z=7X*+14Y? -7

READY

:10 DEFFN’ 0 (X, Y)
20Z2=7+*X12+14»Y 12-7
:30 PRINT “"X="";X

:40 PRINT “Y=";Y

:50 PRINT “2=";Z

:60 RETURN

Execute the subroutine for
X=.092 and Y=-.32

Solution: (A) MANUAL ENTRY
Key .092, -.32
Touch special function key 0.
CRT Display:
1.092, -.32
X=9.20000000E-02
Y=-.32
Z=5.507152

(B) PROGRAM ENTRY
READY
:100 GOSUB’ 0 (.092, -.32)
1110 STOP
:RUN 100
X =9.20000000E-02
Y =-.32
Z =5.507162

STOP

66

Commands

Section VI Non-Programmable STAT E M E N T N U M B E R

General Form: STATEMENT NUMBER KEY

Purpose
This key automatically sets the line number of the next line to be entered. The line number generated is

10 more than the highest existing line number.

The statement number can also be keyed in manually, using the numeric entry keys. Statement numbers
can be any integer from 1 to 4 digits.

Statements may be entered in any order; however, they are usually numbered in increments of five or ten
so additional statements can be easily inserted. The system keeps them in numerical order regardless of how

they are entered.

Example:

READY
110X,Y,Z2=0

{:20 INPUT “ENTER VALUES”, A, B
:30 2= A*B+Bt2

Depressing STMT NUMBER key :40_

Currently Entered Program

67

COMMANDS

= 0O
> 0
2 <
o o
—

<
D o
o W
Z
L
O

‘2000 .wrw;m_axwgﬂ - _
1880000000000 000 sessnsse .
01 ssssssnse

-

1

section Vii
General

BASIC Statements

BASIC STATEMENTS

COM
DATA .
DEFFN
DEFFN" .
DIM .

END

FOR
GOSUB
GOSUB’ .
GOTO .

IF END THEN
IF ... THEN
IMAGE (%) .
INPUT .
KEYIN
LET.
NEXT .

ON

PRINT .

PRINTUSING .

READ .
REM
RESTORE
RETURN
STOP
TRACE

71

72
73
74
75
76
79
80
81
83
85
86
87
88
89
90
92
93
94
95
96
99
102
103
104
105
106
107

Section VIl General BASIC Statements

BASIC STATEMENTS
A BASIC statement is a special verb or word followed by an expression, variable, or numbers. For example:

READ A, B A statement: verb followed by variables
DATA 1,4 A statement: verb followed by values
LET A=6*B A statement: verb followed by a variable (A),
: an equals sign, and an expression (6*B).

BASIC statement lines in a program must always begin with a line number; statement lines in the immedi-
ate mode do not require line numbers.

There are two types of BASIC statements: executable and non-executable. An executable statement
specifies program action:

:10 READ A, B
20 A =6*B

A nor-executable statement provides information for program execution:

:10 DATA1,4

or for the programmer:

:20 REM THIS ISPROGRAM 1

A series of statements, separated by colons, may be entered on one line.

Example:

:20 FOR 1=1TO 10 :PRINT I, X(I)*Y :NEXT I

or:

:FORJ=1TO 3 :PRINT J,Jt2, J13 :NEXT J
1 1 1

2 4 8

3 9 27

The remainder of this section defines the general BASIC statements available in the System 2200 for
programming and the formats in which they can be used.

72

Section VIl General BASIC Statements COM

— General Form: COM com element [, comelement ...]

where numeric scalar variabie
numeric array variable

alpha scalar variable [integer]
alpha array variable [integer]
0 <integer < 64

- com element =

- Purpose
The COM statement allows a programmer to store information in memory in an area which can be saved
for use in a subsequent program. When a program is run, previously existing common variables and their
values are not disturbed. However, all non-common variables are cleared from memory. Common variables
- are only removed from the system when a CLEAR or CLEARYV command is executed or the system is master
initialized (i.e., turned on). The COM statement also provides array definition identical to the DIM state-
ment for array variables; the syntax for one COM statement can be a combination of array variables (A(10),
B(3.3)) and scalar variables (C2, D, X$). Integers must be used for array dimensions.
The common area variables must be defined before any other variable in the program is defined. Therefore,
COM statements should be assigned the lowest executable line numbers in the program.

The following general rules apply to the COM statement:

1. Common variables must be named with identical attributes in a previous program.

2. Common variables must be defined before any noncommon variables are defined, or referred to in the
program.

3. The number of array elements must not exceed 4096 in any one array.

The COM statement can be used to set the maximum length of alphanumeric variables (the maximum
length is assumed to be 16 if not specified). The integer (< 64) following the alpha scalar {or alpha array)
variable specifes the maximum length of that alpha variable (or those array elements).

If a particular set of common variables are to be used in several sequentially run programs, the COM
statements do not have to appear in any program other than the first. The variables will remain defined as
a common variables with the originally defined dimensions, lengths and values in subsequent programs. The

COM statements may however, be included in subsequent programs (with identical dimensions and lengths)
and new common variables may be defined.

Examples:

10 COM A(10),B(3,3), C2

20 COMC, D(4,14), E3, F(6), F1(5)
30 COM M1$, M$(2,4), X,Y

40 COM A$10, B$(2,2) 32

73

Section VIl General BASIC Statements DATA

General Form: DATANn[,n ...]
where n = number or a character string enclosed
in quotation marks.

Purpose

The DATA statement provides the values to be used by the variables in a READ statement. In effect,
the READ and DATA statements provide a means of storing tables of constants within a program. Each
time a READ statement is executed in a program the next sequential value(s) listed in the DATA statements
of the program are obtained and stored in the variable(s) listed in the READ statement. The values entered
with the DATA statement are in the order in which they are to be used: items in the DATA list are separated
by commas. If several DATA statements are entered, they are used in order of statement number. Numeric
variables in READ statements must reference numbers; alphanumeric variables must reference literal strings,
which must be enclosed in quotation marks.

The RESTORE statement provides a means of reseting the current DATA statement pointer (i.e., reusing
the DATA statement values) (see RESTORE).

The DATA statement may not be used in the immediate mode.

Example:

:10 READ W

:20 PRINT W, wWt2

:30 GOTO 10

:40 DATANb, 8.26, 14.8, -687, 22

:RUN

5 25

8.26 68.2276
14.8 219.04
-687 471969
22 484

10 READ W
tERR27 (insufficient data)

In the above example the 5 values listed in the DATA statement are sequentially used by the READ
statement and printed. When a 6th value is requested, an error is displayed since all DATA statement values
have been used.

Examples:

40 DATA4,3,5,6
50 DATA 6.56E + 45, -644.543
60 DATA “BOSTON, MASS”, “SMITH", 12.2

NOTE:

On the 2200A, statements following DATA statements on
multiple statement lines are not executed.

74

Section VII General BASIC Statements DE FF N

General Form: DEFFN a(v) = expression

I

where a a letter or digit which identifies the function

v a numeric scalar variable

Purpose

The DEFFN statement defines a user’s unique functions. The DEFFN statement is used to define functions
which can be used in expressions from any other part of the program. The function provides one dummy
variable whose value is supplied when the function is referenced. The following program lines illustrate how
DEFFN is used.

10 X=3

:20 DEFFN A{Z)=212-2
:30 PRINT X + FNA (2*X)
:40 END

:RUN

33

Processing of Line 30:

1. Evaluate the expression for the scalar variable (i.e., 2* X).
2. Find the DEFFN with the matching identifier (i.e., A).
3. Set the scalar variable equal to the evaluated expression value (i.e., Z=2*X =6, since X=3).
4. Evaluate the FN expression and return the calculated value (i.e., Z12 - Z).
The above example prints the value 33, 3 + (612 - 6).

The DEFFN statement may be entered any place in a program, and the expression may be any formula
which can be entered on one line. A function cannot refer to itself; it can refer to other functions. Up to
five levels of function nesting are permitted. Two functions cannot refer to each other (an endless loop).
A reference cannot be made to a DEFFN statement from an immediate mode statement. The scalar variable
used in a DEFFN statement is called a dummy variable. It may have a variable name identical to a real
variable used elsewhere in the program or in other DEFFN statements; current values of these variables are
not affected during FN evaluation.

Examples:

60 DEFFN A (C)=(3*A) -8C + FNB (2-A)
70 DEFFN B (A) =(3*A) -9/C
80 DEFFN4(C) = FNB(C) * FNA(2)

75

Section VIl General BASIC Statements D E F F N 3

‘

. ‘character string”
General Form: D t .
eneral Form EFFN’ integer I:(variable [variable . . -]):]

Where integer =J0 to 31 for keyboard special function key entries
0 to 255 for internal program references

Purpose
The DEFFN’ statement has two purposes:

1. To define a character string to be supplied when a special function key is used for keyboard text entry.

2. Todefine keyboard special function key or program entry points for subroutines with argument passing
capability.

The DEFFN’ statement must be the first statement on a line (i.e., it must immediately follow the line
number). DEFFN’ may not be used in immediate mode.

KEYBOARD TEXTENTRY DEFINITION: The integer in the DEFFN' statement must be a number from
0 to 31, representing the number of a special function key. When the corresponding special function key is
pressed, the user’s ‘‘character string’’ is displayed and becomes part of the currently entered text line. The
character string is all characters included between the double quotation marks.
For example, statement 100 defines special function key number 12 as the character string “"HEX("':
:100 DEFFN’ 12 “HEX("”
Pressing special function key number 12 after the following has been keyed in

:200 PRINT

results in the following line being displayed
:200 PRINT HEX(

Example:

500 DEFFN’ 1 “REWIND”

76

Section VIl General BASIC Statements DEFFN!

MARKED SUBROUTINE ENTRY DEFINITION

The DEFFN’ statement, followed by an integer and an optional variable list enclosed in parentheses,
indicates the beginning of a marked subroutine. The subroutine may be entered from the program via a
GOSUB’ statement {see GOSUB’), or from the keyboard by pressing the appropriate special function key.
If subroutine entry is to be made via a GOSUB’ statement, the integer in the DEFFN’ statement can be any
integer from 0 to 255; if the subroutine entry is to be made from a special function key, the integer can be
from 0 to 31. When a special function key is depressed or a GOSUB’ statement is executed, the BASIC
program is scanned for a DEFFN’ statement with an integer corresponding to the number of the special
function key or the integer in the GOSUB’ statement. Execution of the program then begins at that state-
ment (i.e., if special function key 2 is pressed, execution begins at the DEFFN’ 2 statement).

When a RETURN statement is encountered in the subroutine, control is passed to the program statement
immediately following the last executed GOSUB’ statement, or back to keyboard entry mode if entry was
made by touching a special function key. The DEFFN’ statement may optionally include a variable list. The
variables in the variable list receive the values of arguments being passed to the subroutine; if the number
of arguments to be passed is not equal to the number of variables in the list, an error results. In a GOSUB’
subroutine call made internally from the program, arguments are listed (enclosed in parentheses and separ-
ated by commas) in the GOSUB’ statement (see GOSUB’).

Example:

:100 GOSUB’ 2 (1.2, 3+2 * X, “JOHN")

1150 STOP
:200 DEFFN’ 2 (A, B(3), C$)

:290 RETURN

For special function key entry to a subroutine, arguments are passed by keying them in, separated by
commas, immediately before the special function key is depressed.

Example:

:1.2, 3.24, "JOHN" (now depress special function key 2)

The DEFFN’ statement need not specify a variable list. In some cases it may be more convenient to
request data from a keyboard in a prompted fashion.

Example:

100 DEFFN’ 4

110 INPUT “RATE”, R
120 C=100* R-50
130 PRINT “COST="; C
140 RETURN

When a DEFFN’ subroutine is executed via keyboard special function keys while the system is awaiting
data to be entered into an INPUT statement, the INPUT statement will be repeated in its entirety, upon
return from the subroutine.

77

Section VIl General BASIC Statements DEFFNI

Example:

100 INPUT “ENTER AMOUNT" A

200 DEFFN’ 1 |
210 INPUT “ENTER NEW RATE",R
220 RETURN

DISPLAY: ENTER AMOUNT?
(Depress Special Function Key 1)
ENTER NEW RATE? 7.5
ENTER AMOUNT?

DEFFN’ subroutines may be nested (i.e., call other subroutines from within a subroutine).

NOTE:
The DEFFN’ statement may be used in conjunction with the
special function keys to provide a number of entry points to
run a program. Because, however, the system stores DEFFN’
return information in a table, this should not be done repeti-
tively unless:
1. The RESET key is depressed prior to the special function
key.
2. Program operation terminates with a RETURN state-
ment (back to keyboard mode).
Failure to do this will eventually cause a table overflow error
(ERROR 02).

78

Section VII General BASIC Statements DI M

General Form: DIM dimelement [, dimelement ...]
where numeric array variable
dim element = {alpha array variable [integer] }
alpha scalar variable [integer]
0 < integer < 64

Purpose

The DIM statement reserves space for one or two dimensional array variables which are referenced in the
program. Space may be reserved for more than one array with a single DIM statement by separating the
entries for array names with commas as shown in line 40 of the example below.

DIM statements must appear before any use of the variables in the program, and the space to be
reserved must be explicitly indicated — expressions are not allowed.

The following rules apply to the use and assignment of array variables in a DIM statement.

1. The numeric value of the subscript of the first element must be 1; zero is not allowed.

2. The dimension(s) of an array cannot exceed 255; the dimensions must be integers.

3. The number of array elements must not exceed 4096 in any one array.

The DIM statement can also be used to set the maximum length of alphanumeric variables (the maximum
length is assumed to be 16 if not specified). The integer (< 64) following the alphanumeric variable or alpha
array variable specifies the maximum length of that alpha variable (or those alpha array elements).

Examples:
20 DIM I(45) Reserves space for a 1-dimensional array of 45 elements.
30 DIMJ (8, 10) Reserves space for a 2-dimensional array of 8 rows and 10 columns.

40 DIM K(35), L(3), M(8,7) Reserves space for two 1-dimensional and one 2-dimensional array.
50 DIM A$32 Sets the maximum length of the variable A$ = 32 characters.

60 DIM B$(4,4) 10 Reserves space for the 2-dimensional alpha array with the maximum
length of each array element = 10 characters.

79

Section VIl General BASIC Statements END

General Form: END

Purpose

This is an optional program statement indicating the end of a BASIC program. It need not be the last
executable statement in a program. More than one END statement may be used in a program.

When the system executes an END statement, the following message is printed out.

END PROGRAM
FREE SPACE = xxxxXx

and program execution terminates. ""xxxxx'’ is the approximate amount of memory (in bytes) not used by
this program.

In addition, when a program is being keyed into the system, an END statement may be entered without a
line number (immediate mode) to obtain the FREE SPACE available at any particular time in the system.

Example:

1100 X=24 - 2*4
:110 PRINT Y., X
:END

END PROGRAM
FREE SPACE = 2379

The amount of free space displayed when END is executed is determined in two different ways:

1. When program is keyed in or loaded from a tape or other peripheral device following a CLEAR
command, the free space displayed after entering an END statement in immediate mode reflects only
the space occupied by the program.

2. After the program has been executed once, the free space displayed after either an immediate mode
END or a program executed END reflects both the space taken up by the program and variables.

Example:
999 END

80

Section VIl General BASIC Statements FOR

General Form: FOR v = expression TO expression [STEP expression]
where v = a numeric scalar variable

Purpose

The FOR statement, and the NEXT statement, are used to specify a loop. The FOR statement is used at
the beginning of the loop; the NEXT statement at the end. The program lines in the range of the FOR
statement are executed repeatedly, beginning with v = "1st expression’; thereafter, v is incremented by
the value specified in the STEP expression until the value of v passes the limit specified by the TO expression.
The STEP portion of the statement may be positive or negative or may be omitted. If omitted, a step size of
+1 is assumed. Loops may be nested with no limit.

If illegal values are assigned to the parameters in a loop (i.e., if the increment designated by STEP is in the
wrong direction or 0), the loop is executed once only and program execution continues. Examples of
invalid values are:

FORR=1TO 10 STEP -1 Wrong Direction of STEP Expression.
FORR=-1TO-10 STEP 1 Wrong Direction of STEP Expression.
FORR=1TO 10 STEPO STEP Expression equals 0.

A loop is executed to completion only if the values assigned the parameters are valid. The following
restrictions apply to the use of FOR loops:

1. Branching into the range of a FOR loop from the loop is not permissible (GOTO, GOSUB, IF-THEN).

2. Branching out of range of a FOR loop is permissible; however, to conserve memory, it should not be
done repeatedly unless a subsequent normal termination of an outer loop occurs or unless the loop is
completely contained in a GOSUB routine. If repetative branches are made out of FOR loops, without
terminating the loops, the FOR loop information is accumulated in an internal compiler table. This
will eventually cause a table overflow condition (ERROR 02). See examples illustrating legal branches
out of a loop .

3. Branching out of a FOR loop with a RETURN statement is legal but the loop is considered to be
complete (i.e., branching back into the loop is illegal and an error message will be issued when the
NEXT statement is encountered).

81

Section VIl General BASIC Statements FOR

FOR Loop
within a
GOSUB

routine

-

Example:

READY

:20 FOR 23 = A(K) TO -COS(J) STEP -8 + INT(P(2))
:30 R(Z3) = A(K) + A(Z3)

:40 FOR Z4 = R(Z3) TO A(K) : Q(Z4) = 2+Z4+R(Z3)
:50 PRINT Q(z4), “VALUE"”,FN6(Q(Z4))

:60 NEXT Z24: NEXT Z3

Example:
READY]
:50 GOTO 70
:60 FOR1=1T0O 10 STEP 2 — lllegal branch into a FOR loop
:70 LET (21) = FNA(I)-LOG(I)
90 NEXT | |
:100 FORJ=1TO 4]
1T10 FORK=1TO6
1120 IF Z(K) > 10 THEN 160
150 NEXT K \
:160 NEXT J
1200 GOSUB 300 Proper branches
' — out of a

""" FOR loop

:300 FOR X=.1TO Z STEP .05
:340 IF A(l) < 3.25 THEN 400
:390 NEXT X
:400 RETURN —

Example:
:100FOR I1=1TO X
:110 IF A(l) > 100 THEN 130
120 I=X :NEXT | : GOTO 200———7 Legal branch out of FOR loop which
130 M =M + A(l) - B(l) properly terminates loop to avoid
1140 NEXT | accumulation of FOR loop information

in internal compiler stack.

:200 C = M+*100/I -

Example:
READY

:20 FOR X =1 TO 50
:30 PRINT X, SQR(X)
140 NEXT X

82

Section VIl General BASIC Statements GOSU B

General Form: GOSUB line number

Purpose

The GOSUB statement is used to specify a transfer to the first program line of a subroutine. The program
line may be any BASIC statement, including a REM statement. The logical end of the subroutine is a RE-
TURN statement which directs execution of the system to the statement following the last executed GOSUB.
The RETURN statement must be the last executable statement on a line, but may be followed by non-
executable statements as shown below:

READY
2120 X = 20:GOSUB 200: PRINT X
1125

:200 REM SUBROUTINE BEGINS

:210 RETURN: REM SUBROUTINE ENDS

The GOSUB statement may be used to perform a subroutine within a subroutine (i.e., a nested GOSUB).
This statement may not, however, be used to branch a program within a FOR loop where a NEXT state-
ment will be encountered before a RETURN statement is encountered. Use of GOSUB is not permitted in
the immediate mode; a GOSUB statement may not be the last statement in a program.

Repetitive entries to subroutines without executing a RETURN should not be made. Failure to RETURN
causes RETURN information to be accumulated in a table which will eventually cause a table overflow error,

(ERROR 02).

Example.

READY
:10 GOSUB 30

—> :20 PRINT X: STOP -

:30 REM THIS IS A SUBROUTINE The

:40 -- subroutine

:60 --

L |:90 RETURN: REM END OF SUBROUTINE |

83

Section VII

General BASIC Statements

GOSUB

NESTED SUBROUTINES

READY
:10 GOSUB 30
—»:20 READ Q: STOP
—:30 REM THIS IS A SUBROUTINE
:40
:50
:70 GOSUB 150

»:80 PRINT Q
190 --

:100 RETURN: REM END OF SUBROUTINE 30
:110

:150 REM THIS IS A NESTED SUBROUTINE

A nested-subroutine

—

t:ZOO RETURN: REM END OF NESTED SUBROUTIN

lllegal GOSUB Transfer into FOR Loop

FOR
Loop

READY
:500 GOSUB 750

—_—

| —subroutine

—————

————

E--

:700 FOR 1 =20 TO 50

:750 LET A(l) = LOG(12*A) — Z(l) =
1760 NEXT I
1770 RETURN

84

» Next statement occurs before RETURN

Section VIl General BASIC Statements GOSU B'

General Form: GOSUB’ integer [(subroutine argument [, subroutine argument ...])]
where 0 <<integer < 256
subroutine argument ={ alphanumeric variable
expression

{ character string in quotes}

Purpose

The GOSUB’ statement specifies a transfer to a marked subroutine rather than to a particular program
line as with the GOSUB statement; a subroutine is marked by a DEFFN’ statement (see DEFFN’). When a
GOSUB’ statement is executed, program execution transfers to the DEFFN’ statement having an integer
identical to that of the GOSUB’ statement (i.e., GOSUB’ 6 would transfer execution to the DEFFN’ 6 state-
ment). Execution continues until a subroutine RETURN statement is executed. The rules applying to
GOSUB usage also apply to the GOSUB’ statement. Unlike a normal GOSUB, however, a GOSUB’ statement
can contain arguments whose values can be passed to variables in the marked subroutine.

The values of the expressions, literal strings, or alphanumeric variables are passed to the variables in the
DEFFN' statement (see DEFFN’).

Use of GOSUB’ is not permitted in immediate execution mode; GOSUB’ may not be the last statement
in a program.

Repetative entries to subroutines without executing a RETURN should not be made. Failure to return

causes return information to accumulate in a table which could eventually cause table overflow error,
(ERROR 02).

Example:

READY

:100 GOSUB’ 7

1150 END

:200 DEFFN’ 7 :SELECT PRINT 211 (80)
:210 RETURN

Example:

READY

:25 GOSUB' 12 (""JOHN", 12.4, 3*X+Y)
:30 END

:100 DEFFN’ 12 (A$,B,C(2))

:110 PRINT A$,B,C(2)

1120 RETURN

85

Section VIl General BASIC Statements GOTO

General Form: GOTO line number

Purpose

This statement transfers execution to another area of the program. The GOTO statement directs the
system to the line number where execution is to continue.

The GOTO statement can also be used in the immediate mode to permit the user to begin stepping
through program execution from a particular line number. The GOTO statement sets the system at the
specified line; execution does not take place until the user touches the HALT/STEP key.

Example.

READY
:10J=25

:20 K=15

:30 GOTO 70
140 Z=J+K+L+M
:60PRINT Z, Z/4
:60 END

:70 L=80

:80 M=16

:90 GO TO 40
:RUN

136 34

END PROGRAM
FREE SPACE = 3841

86

Section VIl General BASIC Statements IF END TH EN

General Form: IF END THEN line number

Purpose

This statement is used to sense an end of file (i.e., trailer record) when reading data files. If an end of file
(trailer record) has been encountered during the last data file read operation (DATALOAD), a transfer is
made to the specified line number. The end-of-file condition is reset by the IF END statement, any subse-
quent DATALOAD operation, or when program execution is initiated. When a trailer record is read,
during a DATALOAD statement, it causes the end-of-file indicator to be set and variables in the DATA-
LOAD argument list to remain unchanged.

Example:

READY

:100 DATALOAD A, B, C$
:110 IF END THEN 130
1120 GOTO 100

:130 PRINT A, B, C$

87

Section VIl General BASIC Statements I F T H E N

General Form: <

IF operand operand THEN line number

<>

literal string
where operand = ¢ alphanumeric variable

expression

Purpose

The IF statement causes the system to skip the normal sequence of program lines and go to the line
number following THEN, provided certain conditions are met. This may be described as a conditional GOTO
statement, which compares two items.

If the value of the first item in the |F statement is in the specified relationship to the second item, program
execution goes to the line number following THEN. If the specified relationship is not met, the program
execution continues with the next statement.

If two alphanumeric values are being compared, the *<'* relational operator is interpreted as “‘earlier in
alphabetic order”’. Actually, the ASCII codes of the characters in the strings (see Appendix D) are compared;
1 is less than A since the ASCII code for 1 is 31 and the ASCII code for A is 41. In any comparison, trailing
blanks are ignored, thus, “YES'' ="YES . An error results if numeric values are compared to alphanumeric
values.

The |F statement cannot be used in the immediate mode.

Examples:

40 IF A<B THEN 35

50 IF A$ = "“YES” THEN 100

60 IF A$=HEX(8082) THEN 200

70 IF X(1) <> .001 THEN 350

80 IF STR(AS, I, 3) < B$(1) THEN 500

88

Section VIl General BASIC Statements Image (%)

General Form: %tl{ft}...]
where t = aliteral string (not containing # characters) or blank
+
f, format specification = |:—] (#[,]...1 [.# ..1] [t+t11]
$
[
Purpose

This statement is used in conjunction with a PRINTUSING statement to provide an image line for
formatted output. The Image statement contains text to be printed, along with the format specifications used

to format print elements contained in the PRINTUSING statement.
The Image statement may have any printable characters of text inserted before and after print element

format specifications. All text characters in the Image statement are printed as long as the final format
specification is used. Each format specification in an Image statement is identified by at least one #
character. The format specification may begin with the following characters ($, +, —, ., #). Commas (,) may
be embedded in the integer portion of the format specification (after the first # character but before the
decimal point (.) or up arrow symbols (1111)).

The Image statement must be the only statement on the statement line.

Example:

READY
:140% CODE NO. = #### COMPOSITION = ## ###

:670% #### UNITS AT $# ###.## PER UNIT
:800% +#.##1 111

89

Section VIl General BASIC Statements IN P U T

General Form: INPUT [““character string’’,] variable [, variable ...]

Purpose
This statement allows the user to supply data during the execution of a program already stored in memory.
If the user wants to supply the values for A and B while running the program, he enters, for example,

:40 INPUT A,B
or
:40 INPUT “VALUE OF AB",AB

before the first program line which requires either of these values (A, B). When the system encounters this
INPUT statement, it types the optional input required message, VALUE OF A, B, and a question mark (?)
and waits for the user to supply the two numbers. Program execution then continues. The input request
message is always printed on the console output device. The device used for inputting data is the console
input device unless another device has been specified by using the SELECT INPUT statement (see SELECT).

Each value must be entered in the order in which it is listed in the INPUT statement. If more than one
value is entered on a line, they may be separated by commas or entered on separate lines. Several lines may
be used to enter the required INPUT data.

If there is a system-detected error in the entered data, the value must be reentered, beginning with the
erroneous value. The values which precede the error are accepted.

A user may terminate an input sequence without supplying all the required input values by simply
entering a carriage return with no other information preceding it on the line. This causes the system to
immediately proceed to the next program statement. The INPUT list variables which have not received
values remain unchanged.

When inputting alphanumeric data, the literal string need not be enclosed in quotes. However, leading
blanks are ignored and commas act as string terminators. If leading blanks or commas are to be included,
enclose the string in quotes.

Example 1:

:10 INPUT X
'RUN
?12.2 CR/LF

Example 2:
:20 INPUT “X,Y", X,Y
:RUN
X,Y? 1.1, 2.3 CR/LF

Example 3:
:20 INPUT “MORE INFORMATION", AS$
:30 IF A$=""NO” THEN 50
:40 INPUT “ADDRESS”,B$
:RUN
MORE INFORMATION? YES CR/LF
ADDRESS? “BOSTON, MASS"” CR/LF

Example 4:
110 INPUT “ENTER X", X
:RUN
ENTER X? 1.2734 CR/LF

90

Section VII General BASIC Statements INPUT

SPECIAL FUNCTION KEYS IN INPUT MODE

Special function keys may be used in conjunction with INPUT. If the special function key has been
defined for text entry (see DEFFN’) and the system is awaiting input, pressing the special function key
will cause the character string associated with that key to be entered.

For example: :10 DEFFN’ 01 “COLOR T.V.”
:20 INPUT AS$

:RUN
?

Now, pressing special function key ‘01
will cause “COLOR T.V.” to be entered.

?COLORT.V._
CRT Cursor

If the special function key is defined to call a marked subroutine (see DEFFN’) and the system is awaiting
input, pressing the special function key will cause the specified subroutine to be executed. When the sub-
routine RETURN is encountered, a branch will be made back to the INPUT statement and the INPUT
statement will be executed again. Repetitive subroutine entries via special function keys should not be made
unless the subroutine RETURN is always executed. Failure to return from these entries will cause return
information to accumulate in a table and eventually cause a table overflow error (ERROR 02).

For example The program illustrated below enters and stores a series of

numbers. Upon depressing special function key ‘02, they are
totaled and printed.

:10 DIM A(30)

20N =1

:30 INPUT “AMOUNT", A(N)
40 N = N+1 :GOTO 30

:50 DEFFN’' 02

60T=0

70 FORI=1TON

:80 T = T+A(l)

:90 NEXT |

:100 PRINT “TOTAL="":T
110N =1
:120 RETURN
:RUN
AMOUNT? 7
AMOUNT? 5
AMOUNT? 11
AMOUNT?
TOTAL =23
AMOUNT?

(Depress special function key 2)

91

Section VII General BASIC Statements KEYIN

SYSTEM 22008 ONLY

General Form: KEYIN alpha variable, line number, line number

Purpose

This statement checks if there is a character ready to come in from the input device buffer and, if one is
ready, it reads the character into the system. For example, in the case of a keyboard, when a key is pressed,
that character is stored in a buffer and the device is set to ready (i.e., a character is ready to come in). The
following actions take place depending upon input conditions.

1. NOT READY - execution continues at the next statement.

2. READY WITH CHARACTER - the character is stored as the first character of the specified alpha-
numeric variable and execution continues at the 1st line number.

3. READY WITH SPECIAL FUNCTION KEY - the code representing the special function key (hex 00 -
1F) is stored as the 1st character of the specified alphanumeric variable and execution continues at the
second line number.

The device used is that device currently selected for INPUT (Console Input device unless selected
otherwise, see SELECT).

The KEYIN statement provides a convenient way to scan several input devices or to receive and edit keyed
in information on a character by character basis. KEYIN may not be used in the immediate execution mode.

Example:

10 KEYIN A$, 100, 200

20 KEYIN A$(1), 100, 100

30 GOTO 20

40 KEYIN STR(AS$,1,1), 100, 200

92

Section VIl General BASIC Statements L E T

General Form: [LET] variable [,variable ...] =expression

Purpose

The LET statement directs the system to evaluate the expression following the equal sign and to assign
the result to the variable or variables specified preceding the equal sign. If more than one variable appears
before the equal sign, they must be separated by commas.

The word LET is, however, optional. If it is omitted, its purpose is assumed.

An error results if a numeric value is assigned to an alphanumeric variable or if an alphanumeric value is
assigned to a numeric value.

Example 1:
40 LET X(3), Z, Y=P+15/2+SIN(P-2.0)
Example 2:
50 LETJ=3
Example 3:
READY
10 X=A*E-Z*Y Here, LET is assumed.
:20 A$ =B$

:30 C$, D$(2) = “ABCDE"”

93

Section VII General BASIC Statements N E XT

General Form: NEXT numeric scalar variable

Purpose

The NEXT statement signals the end of a loop begun by a FOR statement. The variable in the FOR state-
ment and in its related NEXT statement must be the same.

During execution NEXT causes the index variable to be incremented. If the limit is not exceeded, transfer
is made to the statement following the referenced FOR statement. If the limit is exceeded, the statement
following the NEXT statement is executed.

In immediate execution mode, the NEXT statement and its corresponding FOR statement must both be
in the same statement line.

Example:

30 FOR M=2 TO N-1 STEP 30: J(M)=1{(M)12
40 NEXTM

50 FOR X=8TO 16 STEP 4
60 FORA=2TOG6STEP2

65 LET B(A,X)=B(X,A) —» Nested Loops
70 NEXTA
80 NEXT X

94

Section VII General BASIC Statements ON

SYSTEM 2200B ONLY

General Form: ON expression{GOSUB

GOTO } line number [,line number] . ..

Purpose

The ON statement is a computed or conditional GOTO or GOSUB statement (see GOTO, GOSUB).
Transfer is made to the Ith line specified in the list of line numbers if the truncated integer value of the
expression is |. For example, if | = 2,

ON | GOTO 100, 200, 300
would cause a transfer to be made to line 200 in the program. If | is less than 1 or greater than the number

of line numbers in the statement, no transfer is made; that is, the next sequential statement is executed. The
ON statement may not be used in immediate mode.

Example:

10 ON 1 GOTO 10, 15, 100, 900
20 ON 3*J-1 GOSUB 100, 200, 300, 400

95

Section VIl General BASIC Statements P RI N T

General Form: PRINT print element [t printelement ..] [t
where t = acomma or a semicolon
print element = an expression, TAB (expression), an alphanumeric
variable, literal string, or null.

Purpose

The PRINT statement causes the values of the listed variables, expressions, or literal strings to be printed
on the output device currently selected for PRINT (see SELECT).

Printing may be done in zoned format which is signaled by a comma, or packed format, which is
signaled by a semicolon separating each print element.

ZONE-FORM: PRINT print element [, printelement...] [,]

The output line is divided into as many zones of 16 characters as possible; the four CRT terminal zones
are columns 0-15, 16-31, 32-47, and 48-63.

A comma signals that the next print element is to be printed starting in the next print zone, or if the
final print zone is filled then the first print zone of the next line. For example

READY

110 X=214.230 :Y=3564: Z2=-.2379
:20 PRINT X, Y, Z

:RUN

214.23 3564 -.2379
PACKED FORMAT: PRINT print element [; printelement...] [;]

A semicolon signals that the next print element is to be printed immediately following the last print
element, unless the last print element is an expression, in which case a space is inserted between the value of
the expression and the next print element. For example, the statement

READY
110 X=2:Y=-3.4
:20 PRINT “X=";X;"Y=";Y
:RUN
in the following output:
X= 2 =-3.4

A PRINT statement can contain both comma and semicolon element separators. Each separator
explicitly determines the amount of space between elements.

A semicolon causes 1 or no spaces to be skipped depending upon whether the previous element was an
expression or text string. For example:

READY
:10X=2 :Y=3 :2=-4.2

:20 PRINT “X=";X,"Y=":Y,"Z2=";Z
:RUN

96

Section VIl General BASIC Statements PRINT

results in the following printout:
X= 2 Y= 3 Z=-42

The end of a PRINT line signals a new line for output, unless the last symbol is a comma or semi-colon.
A comma signals that the next print element encountered in the program is to be printed in the next zone
of the current line. A semicolon signals that the next print element is to be printed in the next available
space, skipping 1 space if the last print element was an expression. For example, the statements

READY

:10 PRINT ““X="";
:20 PRINT 3.2970,
:30 PRINT “Y=":64
:RUN

causes the following printout:
X= 3.297 Y= 64

A PRINT statement with no PRINT element advances the paper or the CRT cursor one line, or it causes
the completion of a partially filled line.
Values of expressions are printed in one of two formats depending upon the value:

FORMAT 1: SM.MMMMMMMME+XX 10" > VALUE = 10""?
FORMAT 2: SZZZZZZ.FFFFFFF 10! < VALUE< 10'!3

where M = mantissa digits
X = exponent digits
F = fractional digits
Z = integer digits
S = minus sign if value < 0, or blank if value = 0.

In format 2, the decimal point is inserted at the proper position or omitted if the value is an integer.
Leading integer digit zeros and trailing fractional digit zeros are omitted.
The following are examples of the printing of variables in the two formats:

FORMAT 1: 2.34762145E-09
-1.64721000E+22
FORMAT 2: 23.47954890123
-.6374
0
-421

TAB (expression): This function permits the user to specify tabulated formatting. For example, TAB
(17) would cause the typewriter or the CRT to move to column 17,

Positions are numbered O to 64 on the CRT, and 0 to 155 (Selectric). The value of the expression in the
TAB function is computed, and the integer part is taken. The typewriter is then moved to this position. If
it has already passed this position, the TAB is ignored. If the value of the expression is greater than maximum
values, the output device moves to the beginning of the next line. Values of TAB expressions greater than
255 are illegal. For example:

97

Section VIl General BASIC Statements PRINT

READY

10 FOR I=1 TO5

:20 PRINT TAB(I);1 causes the following output:
:30 NEXT |

:RUN

In the 2200 system, a built-in carriage width of 64 characters is initially available. If more than 64 charac-
ters are printed without a carriage return, an automatic carriage return is generated. This carriage width can
be changed to any value (0 < value < 256) by a SELECT statement, in conjunction with selecting the device
address for PRINT.

98

Section VII General BASIC Statements P RI N T Us I N G

General Form: PRINTUSING line number [, printelement t...] [;]
where line number = Line number of the corresponding
IMAGE statement.

expression
print element = alphanumeric variable
literal string in double quotes

t = comma or semicolon.,

Purpose

The PRINTUSING statement permits numeric and alphanumeric values to be printed in a formatted
fashion on the output device currently selected for PRINT (see SELECT).

PRINTUSING operates in conjunction with a referenced IMAGE statement. Print elements in the
PRINTUSING statement are edited into the print line as directed by the IMAGE statement. Each print
element is edited, in the order in the PRINTUSING statement, into a corresponding format in the IMAGE
statement. The IMAGE statement provides both alphanumeric text to be printed between the inserted
print elements, and the format specifications for the inserted print element. The format for each numerical
print element is composed of # characters to specify digits and optionally +, —, ., T, , and $ characters to
specify sign, decimal point, exponent and edit characters. If the number of print elements exceeds the
number of formats in the IMAGE statement, a carriage return/line-feed occurs, and the IMAGE statement is
reused from the beginning for the remaining print elements. The carriage return/line-feed may be suppressed
by replacing the comma, delimiting the print elements with a semicolon. A carriage return/line-feed normally
occurs at the end of the execution of a PRINTUSING statement. This carriage return/line-feed can also be
suppressed by placing a semicolon at the end of the PRINTUSING statement. PRINTUSING may not be
used in the immediate mode.

Example 1:

:10 X=2.3 :Y=27.123

:20 PRINTUSING 30, X, Y

:30 % ANGLE - ##.## LENGTH = +##.#
:RUN

(PRINTOUT) ANGLE = 2.30 LENGTH =+27.1
Example 2:

:10 X=1: Y=2: Z2=3

:20 PRINTUSING 30, X, VY, Z
:30 % #.#

:RUN

(PRINTOUT) 1.0
2.0
3.0

Example 3:
110 X=1: Y=2: Z=3
:20 PRINTUSING 30, X:Y:; Z
30 % #.H#
:RUN

(PRINTOUT) 1.0 2.0 3.0

99

Section VIl General BASIC Statements PRINTUSING

Each IMAGE statement format specification has the following general format:

+ (#[1 ...1 LI#.1] (]

$
The IMAGE statement variable formats can be classified into three general formats:
FORMAT 1 — Integer e.q., ###
FORMAT 2 — Fixed Point e.q., ##.##
Number

FORMAT 3 — Exponential e.g., #.##M111
Print elements are formatted according to the following rules:

1. Numeric expression print elements:

a) If the format specification is not started with a plus (+), minus (=), or dollar sign ($) (i.e., the first
format character is a number sign (#) or decimal point (.) } and the expression is negative, a minus
(-) sign is edited into the print line and the length of the format increased by one.

b) If the format specification is started with a plus {+) sign, the sign of the expression (+ or -) is edited
into the print line immediately preceding the first significant digit.

c) If the format specification is started with a minus (=) sign, a blank for positive expressions and a minus
(=) sign for negative expressions is edited into the print line immediately preceding the first significant
digit.

d) If the format specification is started with a dollar ($) sign, a dollar ($) sign is edited into the print
line immediately preceding the first significant digit.

e) Commas {,) in the integer portion of the format are edited into the print line as they occur, if a
significant digit has been edited prior to their occurrence; otherwise a blank is inserted.

f) If the length of the value to be printed is less than the length of the format specification (overfor-
matted) the value is right adjusted. |f the length of the value to be printed is greater than the length of
the format specification (underformatted) the format specification is edited into the print line (i.e., #'s
are printed instead of a number).

g) The expression value is edited according to the format specified in the image statement.

FORMAT 1 — The integer part of the value is printed truncating any fractions. Leading blanks
are inserted.

FORMAT 2 — The value is printed as a fixed point number, truncating or extending any
fraction with zeros and inserting leading blanks according to the format specifi-
cation.

FORMAT 3 — The value of the expression is printed as a floating point number. The value is
scaled as specified by the format and printed as in formats 1 or 2. (There are,
however, no leading blanks.) The exponent is always printed in the 4 character
form: E£XX.

100

Section VII General BASIC Statements PRINTUSING

2. Alphanumeric string variables or literal string print elements:
The value of a string variable or a literal string in quotation marks is edited into the print line by
replacing each character in the format specification with characters in the text string. The text string
is left-justified. If the text string is shorter than the format specifications, blanks are inserted on the right.
The text string is truncated on the right if it is longer than the format specifications.

(PRINTOUT)

(PRINTOUT)

(PRINTOUT)

(PRINTOUT)

(PRINTOUT)

Example 1:

:100 PRINTUSING 200, 1242.3, 73694.23
1200 %TOTAL SALES = #### VALUE $### ### ##
:RUN

TOTAL SALES = 1242 VALUE $73,694.23
Example 2:

:100 PRINTUSING 200, 2.13E-5, 2.3E-9
:200 % COEFF = +###1111 ERROR = -##1111
:RUN

COEFF = +.213E-04 ERROR = 23E-10
Example 3:

:100 PRINTUSING 200, 317.23
:200 % +#H.H##
:RUN

+#t ## (Value too large for format)
Example 4:

:100 PRINTUSING 200
:200 $ PROFIT AND LOSS STATEMENT
:RUN

PROFIT AND LOSS STATEMENT
Example 5:

:100 PRINTUSING 200, A$, T

:200 % SALESMAN #####4#4#4# TOTAL SALES $## ### ##
:RUN

SALESMAN J. SMITH TOTAL SALES $9,237.51

101

Section VII General Basic Statements RE AD

General Form: READ variable [,variable ...]

Purpose

A READ statement causes the next available elements in a DATA list {values listed in DATA statements
in the program) to be assigned sequentially to the variables in the READ list. This process continues until all
variables in the READ list have received values or until the elements in the DATA list have been used up.
The variable list can include both numeric and alphanumeric variable names. However, each variable must
reference the corresponding type of data or an error will result.

The READ statements and DATA statements must be used together. If a READ statement is referenced
beyond the limit of values in a DATA statement, the system looks for another DATA statement in state-
ment number sequence. If there are no more DATA statements in the program, an error message is written
and the program is terminated. DATA statements may not be used in the immediate mode.

The RESTORE statement can be used to reset the DATA list pointer, thus allowing values in a DATA
list to be re-used (see RESTORE).

NOTE:

DATA statements may be entered any place in the program as
long as they provide values in the correct order for the READ
Statements.

Example:

:100 READ A, B, C
:200 DATA 4, 315, -3.98

:100 READ AS$, N, B1$ (3)
:200 DATA "ABCDE", 27, "XYZ2"

:100 FOR1=1TO 10

:110 READ A(l)

120 NEXT |

200 DATA7.2,45,6.921, 8,4
210 DATA 11.2,9.1, 6.4, 8.52, 27

102

Section VIl General BASIC Statements REM

General Form: REM text string
where text string = any characters or blanks (except colons;
colons indicate the end of the statement)

Purpose
The REM statement is used at the discretion of the programmer to insert comments or explanatory
remarks in his program. When the system encounters a REM statement, it ignores the remainder of the line.

Examples:

20 REM SUBROUTINE
210 REM FACTOR
220 REM THE NUMBER MUST BE LESS THAN 1

103

Section VIl General BASIC Statements RESTOR E

General Form: RESTORE [expression]
where 1< value of expression < 256

Purpose

The RESTORE statement allows the repetitive use of DATA statement values by READ statements.
When RESTORE is encountered, the system returns to the nth DATA value, where n is the truncated value
of the expression if one is included in the RESTORE statement; otherwise, it is assumed to be the first
DATA statement. Then, when a subsequent READ statement occurs, the data is read and used, beginning
with the nth DATA element.

Example:

100 RESTORE
This statement causes the next READ statement to begin with the first data element.
The statement 100 RESTORE 11
causes the next READ statement to begin with the 11th data element.
The statement 100 RESTORE X12+7

causes the expression Xt2+7 to be evaluated and truncated to an integer. The next READ statement
begins with the corresponding data element.

104

Section VII

General BASIC Statements

General Form:

RETURN

Purpose

The RETURN statement is used in a subroutine to return processing of the program to the statement

following the last executed GOSUB or GOSUB’ statement.

If entry was made to a marked subroutine via a special function key on the keyboard, the RETURN
statement will terminate program execution and return control back to the keyboard, or to an interrupted
INPUT statement.

Repetative entries to subroutines without executing a RETURN should not be done. Failure to return
from these entries causes return information to be accumulated in a table which could eventually cause the

table overflow error (ERROR 02).

Example:
10 GOSUB 30
20 PRINT X :STOP
30 REM THIS IS A SUBROUTINE
40
50

90 RETURN :REM END OF SUBROUTINE

10 GOSUB’ 03 (A,B$)

20 END

100 DEFFN’ 03 (X,N$)

110 PRINTUSING 111, X, N$

111 % COST = $# ### ###.## CODE = ####
120 RETURN

105

RETURN

Section VII Genera‘ BASIC Statements ST OP

General Form: STOP [“character string”’]

Purpose

The STOP statement terminates program execution. A program can have several STOP statements in it.

When a STOP statement is encountered, the system types STOP followed by the specified character
string if one is entered.

To continue program execution at the statement immediately following the STOP statement, a CON-
TINUE command must be entered.

Example:

100 STOP
100 STOP “MOUNT DATA CASSETTE"

106

Section VII General BASIC Statements T RACE

General Form: TRACE [OFF] ‘

Purpose

The TRACE statement provides for the tracing of the execution of a BASIC program. TRACE mode is
turned on in a program when a TRACE statement is executed and turned off when a TRACE OFF state-
ment is executed. TRACE also is turned off when a CLEAR command is entered, the system is RESET, or
the system is turned on. To trace an entire program, TRACE may be turned on by entering a TRACE
immediate mode statement prior to execution, and similarly turned off by entering an immediate mode
TRACE OFF after execution. When the TRACE mode is on, printouts are produced when:

1. Any program variable receives a new value during execution (LET, READ, FOR statements, etc.).
Printout format: variable = recieved value

2. A program transfer is made to another sequence of statements (GOTO, GOSUB, IF, NEXT).
Printout format: TRANSFER TO ‘line number’

Example 1:
30 LET X, Y, Z(5)=A+SIN(B)/C
produces the TRACE printout:
X =
Y =
Z()=29.631
Example 2:
:40 READ A, B, C(22),D
produces A=94
B =64.27
C () =1.37492100E+11
D=994
Example 3:
:100 GOTO 200

produces TRANSFER TO 200

Example 4:
30 GOSUB 10

produces TRANSFER TO 10

Example 5:

IO FORI=1TO 3
:15 PRINT X(lI);
:20 NEXT |

produces 1=1
1=2
TRANSFER TO 15
1=3
TRANSFER TO 15
I==> (end-of-loop indicator)

107

Section VIl General BASIC Statements TR ACE

Example 6:
110 A$=HEX(414243)
produces A$=HEX (414243

Example 7:
:10 STR(AS,1,4)= “ABCD"”’

produces STR(
A$=ABCD

Example 8:
10 AND (A$, 00)
produces A$=HEX (00000000000000000000000000000000

Example 9:

100 FOR1=1TO 4
:110 TRACE
1120 X = X+A(l)
:130 TRACE OFF
1140 NEXT |

RUN

X=24.2

X =49.56
X =97.561
X=112.32

produces

108

DATA

SECTION VIII
MANIPULATION

R E LR " EESEREEEESRREE R R B

3

)

I

1

TN

)

3

3

LI B B

1

- section Vil

- Data Manipulation

INTRODUCTION
- DATA MANIPULATION

The System 2200B utilizes a number of statements which perform bit and byte manipulation and data
- conversion. In most cases, the operations are performed on the data values contained in alphanumeric
string variables and arrays. When used in this manner, the characters or bytes contained in alphanumeric
variables are used in a fashion similar to registers in a computer. With this capability, the System 2200B
provides a powerful system for the conversion, editing, and efficient use of data.
Specifically, the statements provide the following capabilities:

1. For data processing, the ability to receive and validate keyed-in numeric data under program control.

2. The ability to receive, convert and process data received in any format from peripheral devices,

especially useful when processing data generated by other computer systems or special instrumentation.

—~ 3. The ability to store numeric data in an efficient packed format which saves storage space in memory
or on cassettes, disks, etc., and reduces the time required to retrieve it.

4. The ability to scan, edit and convert actual System 2200 BASIC programs which are processed as

data. Utilities are available to perform a number of program editing and compression functions. For

example, blanks and REM statements can be removed from a program to reduce memory storage

requirements.

- 5. The general ability to perform binary, logical and arithmetic operations and built-in conversion oper-
— ations can save memory and storage, and increase operating speeds.
— I 1 112
AND,OR,XORo 114
BIN o oo 115
BOOL Lo 116
- CONVERT 118
. HEXPRINT 0. 120
. N 121
. NUM . o o e 122
' PACK . . . v v o e 123
‘ POS. . v o i e i e o 124
A ROTATE. . . . o o i i i i i i it it i i oo 125
N UNPACK. . . .« « . o o o o o o s s e s 126
VAL o oo s e s e 127

111

Section VIII Data Manipulation ADD

SYSTEM 2200B ONLY
General Form: ADD [C] alpha variable, XX .
alpha variable

hexadecimal digit (i.e., 0-9 or A-F)

where:

x
Il

O
It

add with carry

Purpose

The ADD statement is used to add (in binary) the value specified by the second argument (an alpha-
numeric variable or two hex digits) to the value specified by the first argument, an alphanumeric variable.
The entire defined lengths of both alphanumeric variables are used in the addition, including trailing spaces.
(Note: For most alphanumeric operations in the System 2200, if an alphanumeric variable receives a value
with a length less than the maximum length of the variable, the remaining characters are all set equal to
spaces. These trailing spaces normally are not considered to be part of the value.) Part of an alphanumeric
variable can be operated on by using the STR function to specify a portion of the variable. For example,

ADD (STR(AS, 3, 2), 80)

Two types of adding may be done:

1.Immediate. Indicated by the second argument in the statement being two hex digits.

2. String-to-String. Specified by the second argument being a variable.

Immediate ADD

The immediate ADD statement adds (in binary) the character specified by the two hex digits to the
entire value (each character in the define length) of the specified alphanumeric variable. If ‘C’ is not speci-
fied, the character is added independently to each character in the receiving alphanumeric variable with no
carry propagation. If ‘C’ is specified, the character is added to the low order (last) character of the receiving
alphanumeric variable and a carry, if present, is propagated to high order characters.

Example:

If A$ = HEX (0123), ADD (AS$, 02)
sets A$ = HEX (0325)

If A$ = HEX (0123), ADDC (A%, 02)
sets A$ = HEX (0125)

[f AS = HEX (02FFFE), ADDC (AS$, 02)
sets A$ = HEX (030000)

String-to-String ADD

The String-to-String ADD statement adds (in binary) the entire value of the second alphanumeric variable
to the entire value of the first alphanumeric variable. If ‘C’ is not specified, the add is on a character by
character basis with no carry propagation. That is, the last character of the second value is added to the last
character of the first value; then, the next to last character of the second value is added to the next to last
character of the first value; and so forth. If ‘C’ is specified, the second value is treated as a single binary
number and is added to the first value with carry propagation between characters.

112

Section VIII Data Manipulation

ADD

If the two alphanumeric variables specified are not of the same defined length, the following rules apply:

1. The addition will be right adjusted, with lead characters of zero binary value being assumed for the

variable of shorter length.

2. The answer will be stored right adjusted in the receiving variable. If the total answer is longer than the
receiving variable the lower order portion of the answer will be stored.

Example:

If A$ = HEX (0123) and B$ = HEX (0OFF),
ADD (A$, B$) sets A$ = HEX (0122)

If A$ = HEX (0123) and B$ = HEX (OOFF)
ADDC (AS, BS) sets A$ = HEX (0222)

The INIT statement can be used to initialize all characters of
an alphanumeric variable to any character code including
zero. This can be done prior to moving a value into part of
the variable with a STR function to eliminate trailing spaces.

The LEN function is also useful in determining the length of
an alphanumeric variable value in conjunction with ADD

NOTE:

operations.
Examples:
10 ADD (AS$, FF)
20 ADDC (STR(AS, 3, 1), 81)
30 ADD (AS$, BS)
40 ADDC (STR(AS, 3, 2), STR(BS, 4, 2))
50 ADD (A$(1,J), 1%)

113

Section VIII Data Manipulation AND OR XOR
Y Y
SYSTEM 2200B ONLY
AND XX
OR alpha variable, {alpha variable}
XOR

where: x = hexadecimal digit (i.e., 0-9 or A - F)

General Form:

Purpose

These statements perform the specified logical function (AND, OR or EXCLUSIVE OR) on the charac-
ters of the value of the first alphanumeric variable. All characters in this value are operated on including
trailing spaces. {Note: for most alphanumeric operation in the System 2200, if an alphanumeric variable
receives a value with a length less than the maximum defined length of the variable, the remaining charac-
ters are all set equal to spaces. The trailing spaces normally are not considered to be part of the value.)

Part of an alphanumeric variable can be operated on by using the STR function to specify a portion of the
variable. For example,

AND (STR(AS, 3, 2), 80)

Two types of logical functions may be performed:
1. Immediate. Indicated by the second argument in the statement being two hex digits.
2. String-to-String. Specified by the second argument being a variable.

Immediate Logical Functions

The immediate logical functions form the logical AND, OR, or EXCLUSIVE OR of the characters
specified by the two hex digits and each character in the defined length of the alphanumeric variable {(or

portion of alphanumeric variable if a STR function is used). The result becomes the new value of the alpha
variable.

Example:

if A$ = HEX (41424320), OR(AS, 80)
or’s the character ‘80’ with each character
in A$; thus, A$ would equal HEX{C1C2C3A0).

String-to-String Logical Functions

The String-to-String logical functions form the logical AND, OR, or EXCLUSIVE OR of the characters
in the first alphanumeric variable with the characters in the second alphanumeric variable on a character by
character basis starting with the first character of each variable. The first variable receives the result. If the
second alphanumeric variable is shorter than the first, the remaining characters of the first alphanumeric

variable are unchanged. If the second alphanumeric variable is longer than the first, the remaining characters
are ignored.

Example:

if A$ =HEX (010203) and
B$ = HEX (4151), OR (A$, B$)
sets A$ = HEX (415303).

Examples:

10 AND (AS$, 7F)

20 OR (A$(1), BS)

30 XOR (STR(AS, 2, 3), F0O)
40 AND (AS, STR(BS, 1))

114

Section VIII Data Manipulation BIN

SYSTEM 2200B ONLY

General Form: BIN (alpha variable) = expression

where: 0 < value of expression < 2566

Purpose

This statement converts the integer value of the expression to a character (i.e., to a 1 byte-binary
number) and sets the first character of the value of the specified alphanumeric variable equal to the
character. BIN is the inverse of the function VAL.

BIN can be especially useful for code conversion or for conversion of numbers from internal decimal
to binary.

Examples:

10 BIN(AS) =64 sets A$ = HEX(40) (HEX(40) has
20 BIN(STR(AS, 1,1))= X*T/2 a decimal value of 64)

115

Section VIII Data Manipulation BOOL

SYSTEM 2200B ONLY

General Form: BOOL x [alpha variable, 4 ** .
alpha variable

where: x = hexadecimal digit (i.e., 0-9, or A - F)

Purpose

The statement BOOL is a generalized logical function that operates on the characters of the entire value
of the first alphanumeric variable. All characters in the value are operated on including trailing spaces. (Note:
For most System 2200 alphanumeric operations if an alphanumeric variable receives a value with a length
less than the maximum defined length of the variable, the remaining characters are all set to spaces. These
spaces normally are not considered to be part of the value.) Part of an alphanumeric variable can be operated
on by using the STR function to specify a portion of the variable. For example,

BOOL 9 (STR(AS, 2, 2) A7)

The hex digit following ‘BOOL’ defines which of the 16 possible logical functions is to be performed
(see chart below). The hex digit represents the desired logical result of the following bit combinations:

value #1: 1 1 0O O
value #2: 1 0 1 0

For example, the hex digit ‘E’ (1110} defines the OR function since (1100) OR’ed with (1010) is (1110).
Note, BOOL 6 is equivalent to XOR; BOOL 8 is equivalent to AND; and BOOL E is equivalent to OR. The
16 possible logical functions are listed below.

HEX BIT

DIGIT REPRESENTATION LOGICAL FUNCTION
0 0000 null
1 0001 not OR
2 0010
3 0011 complement of value #1
4 0100
5 0101 complement of value #2
6 0110 exclusive OR
7 0111 not AND
8 1000 AND
9 1001 equivalence
A 1010 value #2
B 1011 value #1 implies value #2
C 1100 value #1
D 1101 value #2 implies value#1
E 1110 OR
F 1111 indentity

116

Section VIII Data Manipulation BOOL

Two types of logical functions may be performed:
1. Immediate. Indicated by the second argument in the statement being two digits.
2. String-to-String. Specified by the second argument in the statement being a variable.

Immediate Logical Functions

The logical function specified by the hex digit after ‘BOOL’ is performed using the character specified
by the two hex digits and each character in the entire value of the alphanumeric variable (or portion of

alphanumeric variable if the STR function is used). The result becomes the new value of the alphanumeric
variable.

Example:

BOOL 3 (AS, 00) complements each character in the value of AS.

String-to-String Logical Functions

The logical function specified by the hex digit following ‘BOOL’ is performed on the characters in the first
alphanumeric variable with the characters of the second alphanumeric variable on a character by character
basis starting with the first character of each variable. The first variable receives the result. If the second
variable is shorter than the first variable, the remaining characters in the first value are unchanged. If
the second variable is longer than the first the remaining characters are ignored.

Example:

if A$ = HEX (4145) and B$ = HEX (2185),
BOOL 7 (A$, B$) sets A$ = HEX (FEFA).

Examples:

10 BOOL1 (AS, FO)
20 BOOL7 (A$, B$)
30 BOOLE (STR(AS$, I, 2), A5)
40 BOOLS (AS$, STR(BS, 2, 3)

117

Section VIII Data Manipulation CONVERT

SYSTEM 2200B ONLY

General Form: 1. CONVERT alpha variable TO numeric variable
or
2. CONVERT expression TO alpha variable, (image)

where: image = [+] [#...] [.] [#...] [t111]
0 < number of #s < 14

Purpose
Alpha-to-Numeric Conversion

The CONVERT statement used with format 1 converts the number represented by ASCII characters in
the alphanumeric variable to a numeric value and sets the numeric variable equal to that value. For example,
if A$ = '"1234”", CONVERT A$ TO X sets X = 1234. An error will result if the ASCII characters in the
specified alphanumeric variable are not a legitimate BASIC representation of a number. Part of an alpha-
numeric value can be converted to numeric by using the STR function. For example,

CONVERT STR(AS$, 1,8) TO X

Alpha-to-numeric conversion is particularly useful when numeric data is read from a peripheral device in a
record format that is not compatible with normal BASIC DATALOAD statements, or when a code
conversion is first necessary. It also can be useful when it is desirable to validate keyed-in numeric data
under program control. (Numeric data can be received in an alphanumeric variable, and tested with the
NUM function before converting it to numeric.)

Numeric-to-Alpha Conversion

The CONVERT statement used with format 2 converts the numeric value of the expression to an ASCI|
character string according to the image specified; the alphanumeric variable is set equal to that character
string. The image specifies precisely how the numeric vlaue is to be converted. Each character in the image
specifies a character in the resultant character string. The image is composed of # characters to signify
digits and optionally +, -, ., and characters to specify sign, decimal point, and exponent characters

The image can be classified into two general formats:

Format 1 - Fixed Point e.q., ##.##
Format 2 - Exponential e.qg., #.##M111

Numeric values are formatted according to the following rules:

1. If the image starts with a plus (+) sign, the sign of the value (+ or -) is edited into the character string.

2. If the image starts with a minus (=) sign, a blank for positive values and a minus (-) for negative values
is edited into the character string.

3. If no sign is specified in the image, no sign is included in the character string.

4. If the image has format 1, the value is edited into the character string as a fixed point number,
truncating or extending with zeroes any fraction, and inserting leading zeroes according to the image
specification. The decimal point is edited in at the proper position. An error will result if the numeric
value exceeds the image specification.

5. If the image has format 2, the value is edited into the character string as a floating point number. The
value is scaled as specified by the image (there are no leading zeroes). The exponent is always edited in
the form: E £ XX.

118

Section VIII Data Manipulation CONVERT

SYSTEM 2200B ONLY

Numeric to Alpha conversion is particularly useful when numeric data must be formatted in character
format in records (especially for alphanumeric sorting).

10
20

10

20

30

40

Examples:

CONVERT A$ TO X
CONVERT STR(AS, 1, NUM(A$)) TO X(1)

Examples:
(numeric to alpha)

CONVERT X TO AS, (###)

(result: A$="012") where: X = 12.195
CONVERT X*2 TO AS, (+##.##)

(result: A$ = ""+24.39")

CONVERT X TO STR(AS, 3, 8), (-#.#1111)
(result: STR(AS, 3,8) =" 1.2E+01")
CONVERT X TO AS, (#### ##H###)

(result: A$="0012.195000")

119

Section VIII Data Manipulation | HEXPRINT

SYSTEM 2200B ONLY
General Form: HEXPRINT alpha variable _ , alpha variable . A
alpha array designator ; alpha array designator

where:
alpha array designator = alpha array name () e.g., AS()

Purpose

This statement prints the value of the alpha variable or the values of the alpha array in hexadecimal
notation. The printing or display is done on the device currently selected for PRINT operations (see
SELECT). Trailing spaces, HEX(20), in the alpha values are printed. Arrays are printed one element after
another with no separation characters. The carriage return is printed after the value(s) of each alpha variable
(or array) in the argument list, unless the argument is followed by a semi-colon. If the printed value of the
argument exceeds one line on the CRT display or printer, it will be continued on the next line or lines. Since
the carriage width for PRINT operations can be set to any desired width by the SELECT statement, this
could be used to format the output from arguments which are lengthy.

Example:

:10 A$="ABC”

:20 PRINT “HEX VALUE OF A$="";
:30 HEXPRINT A$

:RUN

HEX VALUE OF A$=41424320202020202020202020202020

Examples:

:100 HEXPRINT A$, B$(1), STR(CS, 3, 4)
:110 HEXPRINT A$; BS;
1120 HEXPRINT X$()

120

Section VIII Data Manipulation ‘ lNIT

SYSTEM 2200B ONLY

General Form: .)
' or ,)fx " alpha variable alpha variable
INIT character . . -
e alpha array designator{ |, |alpha array designator

alpha variabl

where: x = hexadecimal digit (i.e., 0-9or A-F)
alpha array designator = alpha array name () e.g., AS()

Purpose

The INIT statement initializes the specified alphanumeric variable(s) and/or array(s). Each character in
the variable or array is set equal to the character specified inside the parentheses. The character may be
represented by two hex digits, a single character literal or an alphanumeric variable. If an alphanumeric
variable is enclosed in the parentheses, the first character of the value of the alphanumeric variable will be
used.

The INIT statement is particularly useful when used in conjunction with other byte manipulation and
conversion statements. It permits the user to initialize every character of the defined length of an alpha-
numeric variable to a known value such as zero.

Examples:

10 INIT (00) AS$, B$(), C$

20 INIT(“ ") A1$(), BS()

30 INIT (FF) X$, STR(BS, 3, 8)
40 INIT (A$) BS()

121

Section VIII Data Manipulation

FUNCTION
SYSTEM 2200B ONLY

General Form: NUM (alpha variable)

Purpose

The NUM function determines the number of sequential ASCII characters in the specified alphanumeric
variable that represents a legal BASIC number. A numeric character is defined to be one of the following:
digits O through 9, and special characters E, ., +, —, space. Numeric characters are counted starting with the
first character of the specified variable or STR function. The count is ended either by the occurrence of a
non-numeric character, or when the sequence of numeric characters fails to conform to standard BASIC
number format. Leading and trailing spaces are included in the count. Thus, NUM can be used to verify
that an alphanumeric value is a legitimate BASIC representation of a numeric value, or to determine the
length of a numeric portion of an alphanumeric value. Note: the BASIC representation of a number cannot
have more than 13 mantissa digits. NUM can be used wherever numeric functions are normally used. NUM
is particularly useful in applications where it is desirable to numerically validate input data under program
control,

Examples:
10 A$ = “+24.37#JK” NOTE: X =6 since there are six numeric
20 X =NUM(AS$) characters before the first non-
numeric character, #.
10 A$="98.7+563.6" NOTE: X =4 since the sequence of numeric
20 X =NUM(AS) characters fails to conform to standard
BASIC number format when the '+’
character is encountered.
10 INPUT A$ NOTE: The program illustrates how numeric
20 IF NUM(A$)=16 THEN 50 information can be entered as a
30 PRINT “NON-NUMERIC, ENTER AGAIN" character string, numerically validated,
40 GOTO 10 and then converted to an internal
50 CONVERT A$TO X number. In this example the variable
60 PRINT “X="; X AS$ receives a keyed in value (alpha-
:RUN numeric ASCII characters). If the value
? 123A5 represents a legal BASIC number,
NON-NUMERIC, ENTER AGAIN NUM{AS$) equals 16, the number of
? 12345 characters in the string variable A$.
X=12345

122

i Section VIII Data Manipulation PACK

SYSTEM 22008 ONLY

- General Form: Ipha variable numeric array designator
PACK (image) alpna varl . FROM . Y P
alpha array designator expression

- where: image = [*][#...]J[L1[#...][t 11 1]
0 < number of #'s < 14
array designator = alpha array name () e.g., AS({), N()

Purpose

The PACK statement packs numeric values into an alphanumeric variable or array, reducing the storage
requirements for large amounts of numeric data where only a few significant digits are required. The specified
numeric values are formatted into packed decimal form (two digits per byte) according to the format
specified by the image, and stored sequentially into the specified alphanumeric variable or array. Arrays are
filled from the beginning of the first array element until all numeric data has been stored. An entire numeric
array can be packed by specifying the array with a numeric array designator {(e.g., N(}). An error will result
if the alphanumeric variable or array is not large enough to store all the numeric values to be packed.

The image is composed of # characters to signify digits and, optionally, +, —, ., and * characters to
specify sign, decimal point position, and exponential format. The image can be classified into two general
formats:

Format 1 — Fixed Point e.g., ####
Format 2 — Exponential e.g., ###MM

Numeric values are packed according to the following rules:

1. Two digits are packed per byte. A digit is stored for each # in the image.

- 2. If a sign {+ or -) is specified, it occupies 1/2 byte and contains the sign of the number and the sign of
the exponent for exponential images.

3. If nosign is specified, the absolute value of the number is stored and the sign of the exponent is assumed
to be plus (+).

4. The decimal point is not stored. When unpacking the data (see UNPACK), the decimal point position
is specified in the image.

5. The packed numeric value occupies a whole number of bytes. For example, the image ### indicates

— that 1-1/2 bytes are required for storage; however, 2 bytes will be used.

6. If the image has format 1, the value is edited as a fixed point number, truncating or extending with
zeroes any fraction and inserting leading zeroes for nonsignificant integer digits according to the image
specification.

7. If the image has format 2, the value is edited as a floating point number. The value is scaled as specified
by the image {there are no leading zeroes). The exponent occupies one byte.

Examples of storage requirements:

#H#H## = 2 bytes
Hitt = 2 bytes
+## ### = 3 bytes
+# ## 11T = 3 bytes

Examples:

10 PACK(####)A$ FROM X
20 PACK(##.##)A$ FROM X, Y, 2
30 PACK(+#.##)STR(AS, 4, 2) FROM N(1)
40 PACK (+#.##M111)AS$() FROM N{)
B0 PACK (####.4##) A$() FROM X, Y, N(), M()
60 PACK (###.#) A1$(1) FROM X()

123

Section VIII Data Manipulation POS

FUNCTION
SYSTEM 2200B ONLY

General Form:

"character’’
XX

POS (alpha variable

AV YV AN
Il

V

where: x = hexadecimal digit (0 -9 or A - F)

Purpose
The POS function finds the position of the first character in the specified alphanumeric value that is <,

<, =, 2, >, or < > the character specified following the relation operation. The character to be compared can
be specified either by enclosing the character in quotes or by representing the character by two hex digits.
If no character in the alphanumeric value satisfies the specified condition, POS = 0. POS can be used
wherever numeric functions normally are used.

Examples:

10 X =POS (A$="$")
20 PRINT POS(STR(AS, 4, 5)=0D)
30 IF POS (A$<"A") <16 THEN 100

124

Section VIII Data Manipulation ROTATE

SYSTEM 2200B ONLY

General Form: ROTATE (alpha variable, d)

where: d = digit from 1-7

Purpose

This statement rotates the bits of each character in the value of the specified alphanumeric variable to the
left from one to seven places; the high order bits replace the low order bits. All characters in the value are
operated on including trailing spaces. (Note: for most alphanumeric operation in the System 2200, if an
alphanumeric variable receives a value with a length less than the maximum length of the variable, the
remaining characters are all set equal to spaces. The trailing spaces normally are not considered to be part
of the value.)

Example:

if A$ = HEX(0123FE), ROTATE (AS$, 4)
sets A$ = HEX (1032EF)

Part of an alphanumeric variable can be operated on by using the STR function to specify a portion of the
variable. For example,

ROTATE (STR(AS, 2, 3), 3)

Examples:

10 ROTATE(AS, 4)
20 ROTATE(STR(AS,I), 7)

125

Section VIII Data Manipulation UNPACK

SYSTEM 22008 ONLY

General Form: UNPACK (image) {alpha array demgnator} TO {numenc array demgnator} o

alpha variable numeric variable

where: image = [] [#...10L1[#...]1[1111]

0 < number of #'s < 14
array designator = alpha array name () e.g., AS(), N()

Purpose

The UNPACK statement is used to unpack numeric data that was packed by a PACK statement. Starting
at the beginning of the specified alphanumeric variable or array, packed numeric data is unpacked and
converted to internal floating point values, and stored into the specified numeric variables or arrays. The
format of the packed data is specified by the image (see PACK); thus, the same image that was used to pack
the data should be used in the UNPACK statement. An error results if more numeric values are attempted to
be unpacked than can exist in the alphanumeric variable or array.

Examples:

10 UNPACK (####)A$TO X, Y, Z

20 UNPACK (+#.##) STR(AS, 4,2) TO X

30 UNPACK (+#.##1111) AS() TON()

40 UNPACK (######) AS() TO X, Y, N(), M()

126

Section VIII Data Manipulation

FUNCTION
SYSTEM 2200B ONLY

General Form: VAL a!Ipha varilab|e
literal string

Purpose

This function converts the binary value of the first character of the specified alphanumeric value to a
floating point number. The VAL function is the inverse of the BIN statement. VAL can be used wherever
numeric functions normally are used.

VAL is particularly useful for code conversion and table lookups, since the converted number then can
be used either as a subscript to retrieve an equivalent code or data from an array, or with the RESTORE
statement to retrieve codes or information from DATA statements.

Examples:

10 X =VAL(AS$)

20 PRINT VAL(”A")

30 IF VAL(STR(AS, 3, 1)) <80 THEN 100
40 Z=VAL(A$)*10-Y

127

TAPE
CASSETTES

SECTION IX

BN 0 0 N0 N NEIENN0INNNRRERIRDEE

(

—

_—

-—

Section IX

Tape Cassettes

THE 2217 SINGLE TAPE CASSETTE 132
MOUNTING AND REMOVING A TAPE CASSETTE 132
MAGNETIC TAPE HEAD CLEANING 133
TAPE FORMAT« .« . .. 134
PROGRAMFILES 134
RECORDING DATAONTAPE 135
READING DATAFROMTAPE 136
LOGICALDATARECORDS 136
DATAFILES 137
REWRITING DATARECORDS 139
SPACE REQUIREMENTS ON CASSETTE. 139
DEVICE ADDRESS SPECIFICATIONS 140
BACKSPACE 141
DATALOADo 142
DATALOADBT« . .« .« . o o 143
DATARESAVE 144
DATASAVE 145
DATASAVEBT« 146
LOAD COMMAND« o o o oo 147
LOAD oo o e e 148
REWIND0 149
SAVECOMMAND o .. 150
SKIP oo oL s e e 151

131

Section IX Tape Cassettes

THE 2217 SINGLE TAPE CASSETTE

The 2217 Single Magnetic Tape Cassette Recorder is contained within the housing of the CRT. It is
located in the right-hand corner of this housing. The 2217 is a peripheral and therefore is connected to the
CPU with a connector cord (at back of the CRT housing). A separate cord is provided with the 2217
which goes to any wall outlet.

Operation
Light (Yellow)

.4—’/
O \ Door Release

J Rewind

MOUNTING AND REMOVING A TAPE CASSETTE

The tape drive is opened by pressing the white push button to the right of the tape. A cassette is
loaded into the tape drive with the label facing you.

Once the cassette is in place, the door should be closed.
Before using a tape, it should be rewound. This can be done in two ways: 1) touching the REWIND
button on the CRT housing, or 2) keying REWIND CR/LF EXECUTE from the 2215 (or 2222) keyboard.

HIFT CR/LF
For example, key SL}SI(;F REWIND S EXECUTE

The second method enables you to rewind a tape under program control.

A tape is removed from the tape drive by opening the tape drive door. Should this door not open, it is
due to a double lock activated to prevent a tape from being removed which is not completely rewound.

Whenever the tape drive is in motion the yellow operating light next to the drive is on. Do not try to
remove a tape when this light is on.

132

—

Section IX Tape Cassettes

MAGNETIC TAPE HEAD CLEANING

The magnetic tape cassette requires much the same care as required for cassettes used with home
cassette recorders. The cassettes should be kept as free as possible from dust and dirt, and the magnetic
heads should be periodically cleaned. The cleaning process is as follows:

The tape reading head is located in the top center of the magnetic tape unit (Figure 1). The head can be
lowered to the cleaning position as follows: select the tape unit by keying LOAD, CR/LF. The head will
be lowered into the position as shown in Figure 2 (disregard the error).

Tape
Head
Assembly

Q)

¢
Figure 1 Figure 2

Tear open the foil packet containing the cleaning pad and rub the magnetic tape head gently for a few
moments (Figure 3). After cleaning, dispose of the pad in the foil packet, exercising care that it does not
touch any painted, shellacked, or plastic surface.

The 2200 can be restored to service by depressing the rewind button. The rewind process restores
each head to its normal position (Figure 4).

Figure 3 Figure 4

The cleaning operation should be performed every three weeks under normal conditions. In the event
that your tapes have become heavily contaminated with dust or dirt, or if the 2200 is operating with the
room humidity below 20%, then more frequent cleaning is required because of possible electrostatic
attraction of dust and dirt to the tape mechanism.

Cleaning pads can be obtained from your Wang Serviceman.

PROTECTING A PROGRAM ON TAPE

With the System 2200 a new program simply writes over an old program; there is no need to erase the
tape. To insure that a good program stored on tape is not written over or lost accidently, the tape can be
protected.

To protect a program on tape, flip the orange plastic tab on the bottom right of the tape cassette 180°.
When the tab is flipped over, an opening in the tape cassette indicates that the tape is protected.

If you need to write over the data (unprotect the tape) at a later date, flip the orange tab back 180° to
cover the opening in the tape cassette.

133

Section IX Tape Cassettes

TAPE FORMAT

The 2200 provides the capability to record both programs and data onto cassette tape. Both programs and
data are recorded on tape in 256 byte physical records. A 2200 user, however, need not worry about for-
matting a tape since the 2200 does this automatically. For example, if you wish to save a program
currently in memory into cassette tape, key:

SAVE CR/LF-EXECUTE

The program is automatically recorded onto cassette tape; as many 256 byte physical records as are necessary
are written.
To read back the program, rewind the tape and key:

CLEAR CR/LF-EXECUTE (Clears 2200 memory.)
LOAD CR/LF-EXECUTE (Loads the program from cassette.)

To insure data exactness, each physical record is recorded twice on tape. Dual recording and read-back is
done automatically by the system, and requires no special user considerations.

PROGRAM FILES

When programs are recorded on cassette tape, it is not sufficient to merely record the program lines. It
is important for the 2200 system to tell where the beginning and ending records of a program are. Therefore,
every time a program is recorded, the 2200 system automatically records a header record before the program,
and a trailer record after the program. Each recorded program thus becomes a program file. The figure
below illustrates a program file.

HEADER 1st PROGRAM 2nd PROGRAM Nth PROGRAM TRAILER

RECORD RECORD RECORD RECORD RECORD

Header Record

This is a physical record (256 bytes) which contains a control byte identifying it as a header (or
beginning record) of a program. It also contains 8 bytes which can be used to store the name of the program,
if the program is named when saved. 7he remainder of the record is blank.

Program Record

Each program record is a 256 byte physical record containing a portion of the saved program. It also
contains a control byte identifying it as a physical record which contains part of a program (i.e., a program
record).

134

Section IX Tape Cassettes

Trailer Record

The trailer record is similar to a program record except that the trailer record has a control byte
identifying it as the final physical record of the current program file (i.e., the trailer record).

There are a number of advantages associated with having program files. A program name can be stored
in the header record. Thus, on a tape containing a number of programs, a particular program can be
searched for by name. For example, a program is saved and named as follows,

SAVE “EVAL1”
it can be automatically searched and loaded by reference to the name of the program:
LOAD “"EVAL1"

Program files can also be skipped and backspaced over by simple commands:

SKIP 2F (skip forward over 2 files)
BACKSPACE 3F {backspace over 3 files)

For example, if a user wants to add a 4th program to a cassette tape that already has three, he follows
this sequence:

1. Mount the tape in the drive.

2. Depress the manual rewind button, or enter “REWIND"".

3. Key SKIP 3F (skip the 3 current program files).

4. Key SAVE “PROG4" (save the program in memory on tape
and name it “PROG4").

5. Rewind and remove the tape.

RECORDING DATA ON TAPE

Data is recorded onto a cassette tape by means of a DATASAVE statement. For example, the following

statement in a program would record the values of the variables A, B, C$ and the 3rd element of 1-dimensional
array D:

100 DATASAVE A, B, C$, D(3)

In addition, the 2200 offers the ability to record and read entire arrays by simply listing the array name
followed by a left and right parenthesis, (). For example, values of all elements of the arrays A, B, and C$
can be written by:

10 DIM A(40), B(10,10), C$(10)

100 DATASAVE A(), B(), CS$()

135

Section IX Tape Cassettes

READING DATA FROM TAPE
Data is read back from tape using a DATALOAD statement. For example:

100 DATALOAD A, B, C$, D(3)
200 DATALOAD A(), B(), C$()

With the DATALOAD statement, the tape is read and the read values are sequentially assigned to the
scalar and array variables listed in the program.

LOGICAL DATA RECORDS

Since all programs and data are recorded on cassette in 256 byte physical records, it is possible for the
values of the variable list of a DATASAVE statement to exceed 256 bytes. In this case, two or more
physical records are written. The one or more physical records written by the execution of one DATASAVE
statement is called a LOGICAL RECORD. When data is read back by a DATALOAD statement, the entire
logical record is read, reading physical records sequentially one at a time. If there are more values on a
logical record than are called for in avariable list of a DATALOAD statement, the unused values are bypassed,
and the tape is positioned at the beginning of the next logical record. For example, 50 logical records
consisting of the current values of the arrays A and B could be written with the following program sequence:

READY
90 FOR1=1TO50
1100 DATASAVE A(), B()

1200 NEXTI

The logical records can be read back after rewinding the tape, with only the array A specified. In the
following example,

READY

:400 REWIND

:410 FORI1=1TO50
:420 DATALOAD A()

:600 NEXTI

the values of array B on each logical record are bypassed when read.
If more data is required in a variable list of a DATALOAD statement than is found in a logical record,

another logical record is read to complete the list. For example, the arrays A and B can be written on
separate logical records:

100 DATASAVE A()
110 DATASAVE B()

and both logical records can be read back in one DATALOAD statement:
200 REWIND
210 DATALOAD A(), B()

136

Section IX Tape Cassettes

It is generally better, however, to read back data with a variable list identical in format to the DATASAVE
statement which wrote that data.
Logical data records can be skipped and backspaced over. For example,

100 SKIP 3 Skip forward over 3 logical records
110 BACKSPACE 2+N Backspace over 2*N logical records

DATA FILES

A series of logical data records on cassette can be made into a data file, similar to a program file, by
preceding the records with a header record and following the records with a trailer record. Unlike program
files however, the header and trailer record are not automatically generated by the 2200 system. They must
be generated by the user’s program using special forms of the DATASAVE statement.

DATASAVE OPEN “FILE1” (Write a data file header record on tape
and name the file “FILE1"; data files
must be named.)

DATASAVE END (Write a data file trailer record on tape.)

Therefore, a data file constructed by a series of DATASAVE statements would be as follows:

HEADER 1st DATA 2nd DATA 3rd DATA 1st DATA 2nd DATA
RECORD RECORD RECORD RECORD RECORD RECORD
N ~~ J N ~ S/
1st LOGICAL RECORD 2nd LOGICAL RECORD
1st DATA 2nd DATA TRAILER
RECORD RECORD RECORD
N S/
'

Nth LOGICAL RECORD

The header, data records, and trailer record are similar to those in a program file except that the control
information in the records identifies them as data file records.
Therefore, a typical sequence for creating a data file could be:

:100 DATASAVE OPEN ““STATFILE” (Write header record.)

:150 FORI=1TON

:160 DATASAVE A, B, C$, D() (Write data records.)
:220 NEXT |
:300 DATASAVE END (Write a trailer record)

137

Section IX Tape Cassettes

Formatting a series of logical records into data files offers the same flexibility as program files. Data files
can be searched on a tape by name using a special form of the DATALOAD statement. For example:

:100 DATALOAD “SAM”

This statement causes the system to search forward on the cassette tape until a data header record with the
name “SAM" is found, and leaves the tape positioned to read the first logical record. If the data file to be
searched could be either prior to or after the current tape position, a high speed rewind statement can be
executed prior to the search:

1100 REWIND
:110 DATALOAD “FILES"”

Data files and program files can be recorded together on the same tape. The file SKIP and BACKSPACE
statements apply to either kind of file. For example:

:100 SKIP 3F (SKIP over the next 3 data or program files.)
:200 BACKSPACE 2F (BACKSPACE over the last two program or
data files.)

When logical data records are organized as files, record skipping and backspacing have additional features.
For example:

:300 SKIP END (SKIP to end of file.)
:400 BACKSPACE BEG (BACKSPACE to beginning of file.)

In addition, because header and trailer records are present, the system prevents skipping over the

beginning or end of file when skipping or backspacing logical records. (If more records are specified to be
skipped or backspaced than exist in the remainder of the file, the tape stops at the trailer or header record.)

138

Section IX Tape Cassettes

A final, and very important feature of data files is the ability to test for the end of file. In many cases
when a data file is read, it is not always known how many records a file contains. When the trailer record is
encountered while reading data records, an end of file condition is set and it can be tested by an IF END
statement.

:200 DATALOAD A, B, C(10,2), D()
:210 IF END THEN 300

In the above example, a transfer is made to statement 300 when a trailer record is read. The tape is
repositioned back to the beginning of the trailer record. The end of file condition remains set until a
subsequent DATALOAD statement is executed.

REWRITING DATA RECORDS

The 2200 provides a special capability to rewrite individual logical data records within a file. The 2200
system records timing bits in front of all records to insure proper alignment of a record before it is written.
A special statement, DATARESAVE, is used to rewrite records. For example, a typical program sequence
for rewriting a record might be:

:100 DATALOAD “COSTFILE” (Search to beginning of file.)
:150 DATALOAD A, B, C(), D$() (Read next record.)

:160 IF A= X THEN 200 (Test if record to be rewritten.)
:200 B=C:C(1)=D (Modify record.)

:210 BACKSPACE 1 (Reposition before record.)

:220 DATARESAVE A, B, C(),D$() (Rewrite record.)

NOTE:

The tape must be positioned directly in front of the old
record to be rewritten. It is also important, when a record is
rewritten, that the argument list be identical in format to
that of the old record (i.e., the same number and type of
variables, in the same order). Although the main requirement
is that the rewritten logical record produces the same number
of physical records as the old one did, miscalculations and
tape formatting errors can be avoided if the argument lists
are identical in format. Under no circumstances should
records be rewritten using just the DATASAVE statement.
Tape errors will result.

SPACE REQUIREMENTS ON CASSETTE

Numeric and alphanumeric data are stored on a cassette in the following format. Each numeric value
occupies 9 bytes in the record. Literal string values occupy the length of the string plus 1 byte. Each alpha-
numeric variable value occupies either the default length (16 bytes) plus 1 additional byte, or the dimen-
sioned length of the variable plus 1 byte. A total of 253 bytes is available for storing data in each physical
record. Partial values are not written in a physical block; if a value of a scalar variable or array element to be
recorded does not fit into the current physical block, the value is recorded in the next physical block.

139

Section IX Tape Cassettes

DEVICE ADDRESS SPECIFICATIONS
Up to this point, examples have been presented for recording and reading of cassette tapes without a
specification of a device address. Since 2200 systems can be purchased with a number of cassette drives, the
user may specify what drive he wishes. The following rules apply to device address selection.
1. If no address is specified with Input/Output statements (i.e., LOAD, SAVE, DATALOAD, DATASAVE,
SKIP, etc.), the system assumes a cassette tape is implied, and uses the default tape address. Therefore,
a System 2200 with just one cassette does not require a cassette device address to be specified.
2. The tape default address is set to 10A when the system is master initialized {(power is turned ON). It
may, however, be changed by the SELECT statement. For example:

:SELECT TAPE 10B

would change the default tape address to 10B. It then remains set to 10B until the system is master
initialized (power turned OFF, then ON), or when the address is changed by another SELECT state-
ment.
3. There are two ways of specifying an 1/O device address within an |/O statement: (These apply to other
devices as well as cassettes.)
a. Absolute Device Specification
A three character device address, preceded by a slash (/) character, can be entered in the statement
after the statement verb and is followed by a comma(,).

Example:

:LOAD/10B, “LINPROG"
:100 DATASAVE/10C, A(), B()
:110 SKIP/10D, 2F

b. Indirect Device Address Specification (File Numbers)
Six storage locations are available in the 2200 system for the assignment of device addresses. They
are called file numbers and are referenced as follows: #1, #2, #3, #4, #5, #6.
File numbers are assigned addresses in a SELECT statement. For example, the following statement

:100 SELECT #1, 10B, #2 10C

assigns the device address 10B to #1 and 10C to #2. Thereafter the file number can be used in the
1/0 statements:

:LOAD #1
:DATASAVE #2, A, B, C$
:BACKSPACE #2, 1

The device address assigned to the specified file number is used in the 1/0O statements. File numbers
for cassette operations allow the user to reassign cassette drives for all the 1/0 operations in a pro-
gram by changing just the SELECT statement.
4. The legal cassette addresses are 10A, 10B, 10D, 10E and 10F. The cassette drive addresses are marked
next to the 2217 cassette drive controller plugs on the CPU chassis.

140

Section IX Tape Cassettes BACKSPAEE

CASSETTE STATEMENT

General Form: #n, BEG
BACKSPACE n
/XXX, nF
Where #n = File number to which the device address has been assigned.

(#n = #1, #2, #3, #4, #5, or #6)

XXX = Device address of cassette

If neither of the above is specified, the default device
address (the device address currently assigned to TAPE
[see SELECT]) is used.

BEG = Backspace to beginning of file. (After header record.)
n = Backspace n logical records
nF = Backspace n files (Note, if n=1 backspace to beginning of

current file before header record.)

n = Expression (the integer portion of the value of the
expression is used and must always be = 1)

Purpose

The BACKSPACE statement allows the user to reposition the indicated cassette tape backwards to the
start of any program or data file, or backward a specified number of logical records within a data file.
The 'BEG’ parameter positions the tape at the beginning of the current file immediately after the header
record. The ‘n’ parameter is for data files only; it allows the user to backspace the tape over n logical
records to the start of any desired logical record. The ‘nF’ parameter backspaces the tape n files; the tape
is positioned before the header record.

Example:

100 BACKSPACE /10A, BEG
220 BACKSPACE #2, 4F
150 BACKSPACE (5-3+X)

141

Section IX Tape Cassettes DAT_ALOAD

CASSETTE STATEMENT

General Form: [#n, J {“name” }
DATALOAD /xxx , - argument list

#n = File number to which device is currently assigned (n is an integer from 1-6)
xxx = Device address of device to load from.

If neither of the above is specified the default device
address (the device address currently assigned to TAPE
(see SELECT) } is used.

“name” = The name of the data file to be searched.
““name’’ is from 1 to 8 characters.
alphanumeric variable
argument list = numeric variable
alpha or numeric array designator

array designator = array name ()} e.g.,, A(), B(), C2(), AS$()

Purpose

The DATALOAD statement reads a logical record from the designated tape and assigns the data values
read to the variables and/or arrays in the argument list, sequentially. Arrays are filled row by row. If the
variable list is not complete, another logical record is read. Data in the logical record, not used by the DATA-
LOAD statement, is ignored. If the end of file (trailer record) is encountered while executing a DATA
LOAD statement, the tape remains positioned at the end of file trailer record and the values of remaining
variables in the argument list remain at their current values. An I[F END THEN statement will then cause a
valid transfer.

The ‘“name’ parameter permits a data file to be searched out. Upon execution of a DATALOAD
“‘name’’ statement, the tape is positioned just after the header record of the specified file..

Example:

DATALOAD “PROGRAM1”

DATALOAD A, B, C(10)

DATALOAD #1, A, B(), C$

DATALOAD /10B, A, B, X1, STR(AS, 3,5)

142

Section IX Tape Cassettes D ATALO AD BT

CASSETTE STATEMENT SYSTEM 22008 ONLY

General Form:

#n
DATALOAD BT [{N=expression)] alpha array designator
/XXX,
Where: N = 100 or 256 (size of block to read)
#n = File number to which device is currently assigned.
(nis an integer from 1-6)
xxx = Device address of device to load from.

If neither of the above is specified the default device
address (the device address currently assigned to
TAPE (see SELECT)) is used.

array name() e.g., AS(), B1$()

Il

alpha array designator

Purpose

This statement reads the next block of 100 or 256 bytes from cassette tape and stores the information
in the specified alphanumeric array. If the N parameter is not specified, the block is assumed to be 256
bytes. An error will result if the array is not large enough to hold the entire block to be read.

The DATALOAD BT statement permits 2200 programs to be read as data. Thus, tape duplication,
program conversion, and program packing programs can be written. In addition, Wang 1200 cassettes
which have a block size of 100 characters can be read.

Example:

DATALOAD BT A$()
DATALOAD BT (N=100) A$()
DATALOAD BT /10B, B1$()
DATALOAD BT (N=100) #5, Q$()

143

Section IX Tape Cassettes DATARES AV_E

CASSETTE STATEMENT

General Form: #n, OPEN ““name’’
DATA RESAVE { }
/xxx ,| Largument list
where #n = File number to which the device is currently assigned.
(n is an integer from 1 to 6)
xxx = Device address of device to save on.

If neither of the above is specified, the default device
address (the device address currently assigned to
TAPE (see SELECT)) will be used.

OPEN = Rewrite a data file header record with the name
““name’’. Name is from 1 to 8 characters.

literal string
alphanumeric variable
expression pe e
array designator

argument list =

array designator = array name() e.g., AS(), B(), C2(), DS$()

Purpose

The DATA RESAVE statement allows the user to rewrite (i.e. update) any complete logical record
including the header record, of an existing data file. Rewriting the header record permits the user to rename
a file.

REWRITING A DATA RECORD
Rewriting (updating) a logical data record within a file generally involves 3 steps:

1. Locating the beginning of the file with a DATALOAD ‘‘name’’ statement (see DATALOAD).

2. Locating the particular logical record to be updated using the DATALOAD, SKIP or BACKSPACE
statements.

3. Re-recording the logical record using the DATARESAVE statement.

When executing the DATARESAVE statement, the tape must be positioned just before the record to
be updated. The DATARESAVE statement must be used for updating; if an update is performed using a
DATASAVE statement, there is no assurance that the new record will be written in the proper place —
extraneous information may be left over from the old record. The user must be sure that the number of
physical records in the logical record created by the DATARESAVE statement is the same as the number of
physical records in the logical record being updated. This situation is assured if the ‘argument list’ in the
DATARESAVE statement is identical to the ‘argument list’ in ‘the original DATASAVE statement.

Example:

DATARESAVE /10B, A, BS, C

DATARESAVE #1, OPEN “DATAFILE”

DATARESAVE AS$()

DATARESAVE STR(AS, 5, 1), HEX (010203), “WANG LABS.”
DATARESAVE R*SIN(X)

144

section IX Tape Cassettes DATAS AV E

General Form: #n, OPEN ""name”’
DATASAVE END }

CASSETTE STATEMENT

/XXX, argument list
where #n = File number to which the device is currently assigned.
(n is an integer from 1 to 6)
xxx = Device Address of cassette on which data is written.

I'f neither of the above is used, the default device

address (the device address currently assigned to
TAPE [see SELECT]) will be used.

OPEN = Write a Data file header record with the name
“name’’. The name is from 1 to 8 characters.

END = Write a Data file trailer record.

literal string
alphanumeric variable
expression

array designator

argument list =

array designator = array name() e.g., A(), B(), C2()

Purpose

The DATASAVE statement causes the values of variables, expressions, and array elements to be written
sequentially onto the specified tape. Arrays are written row by row. Each DATASAVE statement produces
one logical record. Each numeric value occupies 9 characters in a record; each literal occupies the number
of characters in the value +1; each value of an alpha variable string occupies the maximum defined length of
the variable +1.

The OPEN and END parameters are used to write header and trailer records at the beginning and end of a
data file. However, data files can be created without the need for header and trailer records. If a single data
file is to be written on a cassette, it can be done simply by using one or more DATASAVE statements with
argument lists. The data in the file can be retrieved using DATALOAD statements with argument lists. If
more than one data file is to be written on a cassette, it is common practice to place a header record at the
start of each file and a trailer record at the end of each file. In this way the user can search out any file by
using the assigned ‘name’ in the header record (see DATALOAD) and can test for the end of a file using the
trailer record (see |IF END THEN). The header and trailer records can also be used in backspacing over and
skipping records and files (see BACKSPACE, SKIP).

Example:

DATASAVE A, B, C, D(4,2)

DATASAVE #2, A, B, C()

DATASAVE /10A, A$, B, C, D()

DATASAVE OPEN “PROGRAM 1

DATASAVE #5, END

DATASAVE STR(A$,3,5), HEX(0102), “WANG LABS.”
DATASAVE Y*SIN(R)

145

Section IX Tape Cassettes D ATAS AVE BT

CASSETTE STATEMENT SYSTEM 2200B ONLY

General Form: #n,
DATASAVE BT [R] [{[N=expression] ,* [H])] [:| alpha array designator
/XXX,
Where: N = 100 or 256 (size of block to record)
H = record header block (0’s timing mark)
#n = File number to which the device is currently assigned.
(n is an integer from 1 to 6)
xxx = Device Address of cassette on which data is written.

If neither of the above is used, the default device
address (the device address currently assigned to
TAPE [see SELECT]) will be used.

alpha array designator = array name () e.g., AS()
R = resave

*A comma must separate the N and H parameters if both are specifed.

Purpose

This statement records a block of data (100 or 256 bytes) on cassette tape with no control information.
If the array is greater than 100 (or 256) bytes, the first 100 (or 256) bytes of the array are recorded. If the
array is smaller than the specified block size, the block is filled with unpredictable characters. If the ‘N’
parameter is not specified, the block is assumed to be 256 bytes.

If a header record is being recorded, the ‘H’ parameter is used; this causes a special timing mark to be
written on the cassette indicating that this block is a header block. This timing mark is used by the system
when backspacing files.

The ‘R’ parameter is used to rewrite a block on cassette using DATASAVE BT. Before the record is
written, the tape is automatically backspaced one block.

The DATASAVE BT statement permits tapes containing a number of Program and/or Data Files to be
copied and BASIC programs to be generated by conversion programs.

Example:

DATASAVE BT A$()

DATASAVE BT (N = 100) A1$()
DATASAVE BT (N=100,H) /10C, AS$()
DATASAVE BT (H) #6, Q$()

146

Section IX Tape Cassettes LOAD

CASSETTE COMMAND

General Form:

LOAD

Where #n

XXX

“name”’

#n,
[““name’’]
/XXX,

File number to which a device address is currently assigned.
{n = an integer from 1 to 6)

Device address of device to load from.

If neither of the above is specified, the default device
address (the device address currently assigned to TAPE,
see SELECT) is used.

Is the name assigned to the program on tape. ““name” is from
one to eight characters.

Purpose

When the LOAD command is entered, the specified program on the selected tape will be appended to
the current program in memory. If no program name is specified, the next program file on the selected
tape is loaded. This command permits an additional program to be loaded and appended to a program
currently in the 2200, or if entered after a CLEAR command, the entry of a new program.

LOAD can also be used as a program statement; this is described on the next page.

Example:

LOAD

LOAD “LINREGR"”
LOAD#1, “PROGRAM1”
LOAD/10B

LOAD#4

147

Section IX Tape Cassettes LOAD

CASSETTE STATEMENT

General Form:

#n,
LOAD [] ["name"jl [line number 1] [, line number 2]
/XXX,
where #n = file number to which the device is currently assigned.
(n is an integer from 1 to 6)
XXX = device address of cassette.

If neither of the above is specified, the default device
address (the device address currently assigned to TAPE
(see SELECT)) is used.

““name’” = Is the name of the program to be searched and loaded;
it is from 1 to 8 characters. Searching is always forward.
{If a program is stored prior to current tape position,
the user should give a REWIND command first.)

The line number of the first line to be deleted from a
currently loaded program prior to loading the new
program. After loading, execution continues at the
line whose number is equal to line number 1. An
error will result if there is no line number = ‘line
number 1’ in the new program.

line number 1

line number 2 = The line number of the last line to be deleted from the
program currently in memory, before loading the new
program.
Purpose
This is a BASIC program statement which in effect produces an automatic combination of the following:
STOP {(stop current program execution)
CLEARP [line number 1 [, line number 2]] (delete current program text)
CLEAR N (remove noncommon variables only)
LOAD [‘name’’] (load new program)
RUN [line number 1] {run new program)

If only ‘line number 1’ is specified, the remainder of the current program is deleted starting with that line
number. If no line numbers are specified, the entire current program is deleted, and the newly loaded
program is executed from the lowest line number.

This permits segmented jobs to be run automatically without normal user intervention. Common
variables are passed between program segments. LOAD must be the last statement on a statement line. The
LOAD statement must not be within a FOR/NEXT Loop or subroutine; an error results when the NEXT or

RETURN statement is encountered.
In the immediate execution mode, LOAD is interpreted as a command (see LOAD command).

Example:
100 LOAD
100 LOAD #2
100 LOAD ‘““‘SAM”
100 LOAD /10A
100 LOAD /10B, “PROG#7", 500
100 LOAD #2, “SAM’* 400, 1000

148

Section IX Tape Cassettes R E W I N D

CASSETTE STATEMENT

General Form: #n
REWIND /XXX

where #n = logical file number to which a device address
has been assigned (n is integer from 1 to 6).

i

XXX device address of cassette

If neither of the above is specified, the default
device address (the device address currently assigned
to TAPE (see SELECT)) is used.

Purpose
The REWIND statement causes the indicated cassette to be rewound.

Example:

REWIND

100 SELECT #2 10B
110 REWIND #2

30 REWIND

40 REWIND /10C

149

Section IX Tape Cassettes SAVE

——
CASSETTE COMMAND

General Form: #n,
SAVE [P] “name’’ line number , line number
/Xxx,

where #n = File number to which device address is assigned (#1 — #6).
xxx = Device address of desired output tape.

If neither of the above is specified, the default device address
(the device address currently assigned to TAPE, see SELECT)
is used.

P = Sets the protection bit on the program file to be saved.

“‘name”’ Is the name assigned to the program on tape. ‘‘name’’ is from
one to eight characters.
1st ‘line number’ Starting line number to be saved.

2nd ‘line number’ = Ending line number to be saved.

Purpose

The SAVE command causes BASIC programs (or portions of BASIC programs) to be written onto the
selected tape. The program may be named by using the ‘““name’’ parameter so the user can address this
program file in subsequent LOAD commands.

If no line numbers are specified, the entire user program text is written onto the specified tape. SAVE
with one line number causes all user program lines from the indicated line through the highest numbered
program line to be written onto tape. If two line numbers are entered, all text from the first through the
second line number, inclusive, is written.

The ‘P’ parameter permits the user to protect saved programs. That is, if a program that has been saved
by a SAVE P command is loaded, it may not be listed or saved again. Note, in order to list or save ANY
program after a protected program has been loaded, the user must enter a CLEAR command (with no
parameters) or MASTER INITIALIZE the system, (i.e., turn power off and then on).

SAVE is a command and may not be used within a BASIC program. ‘

Examples:

SAVE

SAVE #3

SAVE/10B

SAVE “MAT INV"”
SAVE/10B, 100, 200

SAVE #5, “SUBR 1" 400, 500

150

Section I1X Tape Cassettes

SKIP

CASSETTE STATEMENT

where #n

XXX

END

nF

General Form: #n, END
SKIP n
/XXX, nF

File number to which a cassette device address
has been assigned; n is an integer from 1 to 6.

Device address of cassette

If neither of the above is specified, the default
device address (the device address currently
assigned to TAPE (see SELECT)) is used.

Skip to the end of current data file.

Skip n logical data records.

Skip n files.

expression (the integer portion of the value of
the expression is used, must be = 1)

Purpose

The SKIP statement allows the user to skip over any number of program or data files, or any number of
data records. The END parameter is used with data files only. It causes the indicated cassette tape to skip
to the end of the current data file; the tape is positioned before the trailer record. The n parameter is
also used exclusively with data files. It causes the indicated cassette tape to skip n logical data records. If
the trailer record is encountered, the tape backspaces so that it is positioned before the trailer record. The
nF parameter causes the tape to skip n complete program or data files; the tape is positioned at the

beginning of the next file.

Example:
350 SKIP END
270 SKIP #1, 2F
SKIP 10
SKIP/10B, (X+2)F

151

XU
3
e
¥ =
SD.

Section X

Plotters

PLOT (MODEL 2202) .
PLOT (MODEL 2212) .
PLOT (MODEL 2232) .

165

156
158
160

Section X Plotters PLOT

2202 PLOTTING OUTPUT WRITER SYSTEM 2200B ONLY

General Form: "null’
PLOT [expression 0] < [expression 1],[expression 2], < literal string } >[,<....]
alpha variable

where: expression 0 represents the replication factor, or the number of times the values enclosed in

<> are plotted
(1 < expression 0 < 1000)
If omitted, expression O is assumed to be 1.

expression 1 represents Ax increments of .01"’
(-1000 < expression 1 < 1000)
If omitted, expression 1 is assumed to be 0.

expression 2 represents Ay increments of .01"
(-1000 < expression 2 < 1000)
If omitted, expression 2 is assumed to be O.

All 3 expressions are truncated to integer values.

‘null” implies move the Ax and Ay distance, specified in expression 1 and expression 2, without
plotting.

Literal string, alpha variable represent character or characters to be plotted or printed.

Purpose

This statement positions the typing element a distance x (expression 1; to the right if positive, to the
left if negative) and y (expression 2; up if positive, down if negative) from the current location. At the new
position a literal string or alpha variable value is plotted or printed if one is present in the PLOT statement.
If there is no argument following expression 2 (‘null’), no character is plotted.

A one character literal string or alpha variable will be plotted while more than one character will cause a
print. Plotting implies no space before the character while printing moves the typing element over 1 space
before each character. Therefore, if more than one character is supplied to plot, the plot element will move
an additional n times . 1" in the +x direction, where n is the number of characters.

The normal plotting character is the centered dot which is specified by its hexadecimal notation, HEX
(FB). For example,

PLOT <10, 20, HEX(FB) >

Examples:
10 PLOT <10, 20, "*" > Advance Ax = 10 increments (of .01”) and Ay = 20 increments
(of .01"’) and plot a *.
10 C=40:D=50 Advance Ax = 30 increments and Ay = 70 increments without

20 PLOT < C -10, D +20, > plotting.
10 PLOT <-50, 100,”ANGLE" > Advance Ax = -50 increments and Ay = 100 increments and print

ANGLE.
10 A$="*" Advance Ax = 10 increments and Ay = 20 increments and plot a *.
20 PLOT <10, 20, A$ >
PLOT 25<, 20,HEX(FB) > Advance Ay = 20 increments and plot a centered dot. Do this 25
times.

156

Section X Plotters PLOT

10 N=10 Advance Ax = 10 increments and print ABC. Do this 10 times.
20 PLOTN<I10,,""ABC" >

10 PLOT <X,Y, “"VALUE"” >,b <40,60,"-"> <A+10,B,C$>

The above is an example of multiple PLOT arguments in the same
statement. They are processed sequentially from left to right.

157

Section X Plotters PLOT

2212 ANALOG FLATBED PLOTTER (10" x 15”) SYSTEM 22008 ONLY

General Form: (“null’)
literal string
alpha variable

PLOT [expression 0] < [expression 1] ,[expression 2] ,{ U > > [, <....]

D
C
S
R

/

7

where: expression O represents the replication factor, or the number of times the values enclosed

in <> are plotted
(1 < expression 0 < 1000)
If omitted, expression O is assumed to be 1.

expression 1 normally represents Ax increments of .015""*
(-1000 < expression 1 << 1000)
If omitted, expression 1 is assumed to be O.

expression 2 normally represents Ay increments of .01""*
{(—1000 < expression 2 < 1000)
If omitted, expression 2 is assumed to be 0.

All 3 expressions are truncated to integer values.
For Plotting

‘null” (i.e., no argument) and U imply move the Ax and Ay distance, specified in expression 1 and
expression 2, with the pen up.

D implies draw a line while moving the Ax and Ay distance specified in expression 1 and
expression 2.

R (RESET) moves the pen to the zero position as manually set on the plotter.

For Setting Plot Conditions

C sets the character size (expression 1) for character plotting. Character size is an integer
from 1 to 15.

S sets the horizontal {expression 1) and vertical (expression 2) spacing between characters for char-
acter plotting.

*These values assume full-scale plotting.

Purpose

When used with plot arguments this statement moves the plot pen from its current position to a position
a distance x (expression 1; to the right if positive, to the left if negative) and y (expression 2; up if positive,
down if negative) from the current position. The movement can be made with the pen up (U, ‘'null’) or
down (D). When a literal string or alpha variable is supplied as the argument, the movement is made with
the pen up to the new position and then the characters are plotted.

158

Section X Plotters PLOT

Several special plotter control arguments are available. R resets the plotter to the 0,0 position. U and D
indicate movement with the pen up or down. C and S are used to set the plotter character size and spacing
as follows:

C sets the character size which is specified in expression 1. This must be an integer value from 1 to 15,
where 1 is the smallest (.10 X .13"")* and 15 is the largest size (1.5" X 1.95"")*.

S sets the horizontal and vertical spacing between characters. Expression 1 specifies the horizontal
spacing (which should be 10 times the character size to prevent overlap) and expression 2 specifies the
vertical spacing (which should be 13 times the character size).

*These values assume full-scale plotting.

Examples:
Moving the plot pen
PLOT <10, 20, D > Plot (pen down) moving Ax = 10 (times .015") and Ay = 20 (times .01"’).
PLOT <A,B,U> Advance (pen up) Ax = integer value of A (times .015"”) and Ay =
integer value of B (times .01").
PLOT<,,R> Reset to 0,0 position.
Setting plot conditions
PLOT <9, ,C> Set character size to 9.
PLOT < 10, -20, S > Set character spacing to 10 in the horizontal direction and -20

vertically.
Plotting characters
10 PLOT <, , "DEGREES" > Plot the characters DEGREES.

10 AS$="DEGREES” Advance (pen up) Ax= x and Ay = y and plot the characters DEGREES.
20 PLOT<X,Y, A$>

Replication and multiple arguments on one line
10 PLOT10<X,Y,D> Plot x and y 10 times.

10 N=30 Advance Ax = -10 and Ay = 20 thirty times.
20 PLOT N<-10,20,U>

10 PLOT<X,Y,U><10,20D > <A+10,-B,U> <,,R>

The above is an example of multiple arguments in one PLOT statement.
They are processed sequentially from left to right.

NOTE:

Alphanumeric characters should not be printed when the
plot pen is at the zero reference point. The pen position is
considered the center of a character, so at the zero reference
point the left half and bottom half of a character will not
print correctly. Therefore, the plot pen should be diagonally
above and to the right of the zero reference point before a
character is printed.

159

Section X Plotters PL OT

2232 DIGITAL FLATBED PLOTTER (31" x 42") SYSTEM 2200B ONLY

General Form: "null’
PLOT [expression 0] < [expression 1],[expression 2], JU >[,<....]
D
R
where: expression 0 represents the replication factor, or the number of times the values

enclosed in < > are plotted

(1 < expression 0 < 1000)

If omitted, expression O is assumed to be 1.
expression 1 represents Ax increments of .0025"

(-1000 < expression 1 < 1000)

If omitted, expression 1 is assumed to be O.
expression 2 represents Ay increments of .0025"

(-1000 < expression 2 < 1000)

If omitted, expression 2 is assumed to be O.

All 3 expressions are truncated to integer values.
For Plotting

‘null’ (i.e., no argument) and U imply move the Ax and Ay distance, specified in expression 1 and
expression 2, with the pen up.

D implies draw a line while moving the Ax and Ay distance specified in expression 1 and expression
2.

R (RESET) moves the pen to the zero position on the plotter.

Purpose

When used with plot arguments this statement moves the plot pen from its current position to a position
a distance x (expression 1; to the right if positive, to the left if negative) and y {expression 2; up if positive,
down if negative) from the current position. The movement can be made with the pen up (U, 'null’) or
down (D).

One additional plotter control argument is available. R resets the plotter to the 0,0 position with the pen
up.

Examples:
Moving the plot pen
PLOT < 10, 20,D > Plot (pen down) moving Ax = 10 (times .0025"’) and Ay = 20 (times
.0025"").
PLOT <A,B,U> Advance (pen up) Ax = integer value of A (times .0025") and Ay =
integer value of B {times .0025"")
PLOT <,,R> Reset to 0,0 position

Replication and multiple arguments on one line
10 PLOT10<X,Y,D> Plot x and y 10 times

10 N=30 Advance Ax = - 10 and Ay = 20 thirty times
20 PLOT N <-10, 20, U>

10 PLOT<X,Y,U><10,20 D> <A+10,-B,U><,,R>

The above is an example of multiple arguments in one PLOT statement.
They are processed sequentially from left to right.

160

X th
> £
S &
T

O &
L

N <
=

o
L
)]
<
LLJ
oo
@)
<
O

section Xi

Mark Sense Card Reader

INTRODUCTION
MODEL 2214 MARK SENSE CARD READER

The Model 2214 Mark Sense Card Reader is an economical System 2200 option which enables marked
cards containing BASIC programs or data to be read into the System 2200. With this peripheral, the cards
are manually fed into the reader and are automatically stacked in a hopper after reading. The card format
allows 40 columns to be marked on each card, with eight data or character bits per column.

Two general modes of operation are used on the System 2200 for reading marked sense cards with the
Model 2214:

1. Console Input Operation
In the console input mode, the card reader device address is selected for console input operation (in lieu
of the keyboard). This permits the card reader to function similar to the System 2200 keyboard. Thus
programs can be entered from cards, similar to the way they are keyed in, and data can be entered,
similar to the way it is keyed in, in response to an input statement. An advantage of the console
input is read data is automatically displayed on the CRT screen, and error detection and recovery is
simplified.

2. Peripheral Device Operation
In the peripheral device mode, data or programs are read from cards in the same manner as other
peripheral devices using, LOAD, DATALOAD and DATALOAD BT BASIC commands and statements.
The required data format on the card and operating procedures are more flexible in this mode.

CONSOLE INPUT 164
INPUT. o o o 166
DATALOADo 169
DATALOADBT oo 171
HEXCODES 173
ASCIICODES 175

163

Section XI Mark Sense Card Reader CONSOLE |NPUT

2214 MARK SENSE CARD READER

Procedure:
(1) Select the Mark Sense Card Reader for Console Input by entering:

SELECT CI 517 (execute)

(2) Read one or more mark sense cards containing commands or program text line. If the lines con-
tain a statement number, they will be loaded and saved, if they do not, they will be executed
immediately and not saved. Each card will be displayed on the CRT as it is entered. |f a read
error occurs, reread the card.

(3) When loading is complete, reselect the keyboard for Console Input by loading a card which con-
tains:

SELECT CI 001

This procedure allows programs to be loaded from the 2214 Mark Sense Card Reader and displayed, or
commands and immediate execution mode statements to be read and executed.

Card Format:

Program and command lines are marked on each card in ASCII character code format. Special single
column codes (TEXT ATOMS, see Table at the end of this section) can be marked for BASIC statement verbs,
functions, etc. Unmarked columns are ignored. A carriage return character should be marked at the end of
each program line in the last column on the card. Multi-statement lines separated by colons are permissible.
Program lines may overlap from 1 card to the next; the carriage return must only appear on the last card of
the program line. If the SKIP position is marked in any column, this column is ignored.

Example:

AR ARARRREARRRANERER AR R AR RN
AIDDDIDDIIDDIDDDDDDUDUDDDDDDDDDHJD[II][]I]I][II]I_
NDDDDDDDDDI-'I]I]DIIDDDDD-DDDDDDDDDD-{IUDDDDDDDDE
g*I]I]I]I]DDDID'LIIDIDI]I]DDI]{II]DDD[IDDD[H]DD[IDDI]DI]';-'
§°DDDDDDIIDI{IIIIDDDDDI]-DI]I]I]DDI]I]DD-DDDDDDDDDI%
?—IIIDIDIII[I-IDIIIDDUDD-DDDI]D[II][I[ID—DDDDDDDDDD%
Z-a/08(0|0(a|0(n|0 (0|0 |0|0(0|0(0|0j0|0M|0|0}0|0|0|O|O|O|DM|0|D|0(0|0{0|0|D|0(E
E'DDDI]I]I]ll]l]D'I]I]llI]DI]DI]I]-DDDDD[I[IDI]I]-DDDD[IDI]I]I]I]%
¢[-0(0|0|0(m|0|0(0|0|0rO|O|O(0|0|0D|0|O|D|0FO|0|0|0f0|0|0|0|0|0KD|0O|0|0|CO|0Oj0|Oj0|0)®
E% 0{0(010{U)0|0(0(0p0(0|0|0(0|0|0|0|0(0ED{0j0|0(0|0{0(0|0{0p0(0(0|0|0(0|0|0(0{0f 1
Ul|y 3

O[O | &|w| & KU~ |1 [>e|d 4
m"\o Uo
TONIdZON Isn | Y - auvo ool /

164

CONSOLE INPUT

Example:

100 ON ABS(A+X) GOSUB 10, 250, 25: A

Mark Sense Card Reader

Section XI

A*Y :GOTO 100

ARRERRRRRAREREREREREAR AR AN

INSERT THIS END IN READER -- THIS SIDE UP

e

-R|0|0|0|0j0|0|8|@|OHR|0(0(0(R(0(0|0|8(OFD|0|8|O|0O|0|0|8|0|8F0(0(010|8|01010]0(0
~J({0(0|0|0|0|D|O(m(0F0(0(@|0|0{0{0|®|0(0:0|(B0|0|RjO|O(O(R{0F0(R|0O|0}0)0(0(0(0(0
-0(0(o|o(M|0|0(0|0|0OM|O|0|0(0O|0|8(0|@|0@(0|8)|0(0|0|M{0(0|0F0(D|N|0(0|0(0(0(0]N
-0l0(0(0(0(o|ol0|8|(a-8|O(N(O|0O|0(8(O(0|OB(O(O|0|0O(R(O|0|/B:0 0 B|O0(0(0[0(0(8
-§0|Q(0(n(0|0|0|0(RFO|O(8({O|8|8(O(B(8|0 000000800800 R|0 0B EB0|00
~0/R{0(0|0|R{D|0|8|{OrR(8|0|8(A(p|0|8 R QN8 B/ 0/0N0/R|0FR IO\ D RBO0ON0D
<0l0{o|o(o|o|m|R{0|8 0(O(0|0O|O(0O(D|O(OOF(O0(0(0|00|80[R0|0(0(0|0(0(010(0(0
=0(0|0|0(/8|0|M(0{0|0FC({O(M|O(O|0O|0O|O(0O|0FO(OIO|0(0|0|0(0(0|0K0(0|8j0(0(0(0(0(010
:0|0|0|0j0(0(0(o|0j0ge|0|0(0(0(0(0(0|0|0ED|O|0|0|0]0|0)0|0)0RI{0)0)010)0j010)070)
m/oomwmun+x>mma/o ;2f0>zr.m..A=A*YM..mm/ao x
5 &S DR X Y18 ©

TON3d 2 ON 3SN Lt - auvo oI

WANG LABORATORIES INC; TEWKSBURY, MASS. USA.

62ZBLBN Wat

165

Section XI Mark Sense Card Reader INPUT

2214 MARK SENSE CARD READER

General Form: INPUT [“character string”,] variable [,variable . . .]

Purpose

This statement allows the user to supply data via the 2214 Mark Sense Card Reader during the running of
a program already stored in memory. The INPUT statement used with the Mark Sense Card Reader
operates in a similar fashion as with the keyboard. In a program, INPUT is first selected by specifying the
Mark Sense Card Reader Device Address and cards containing the data are read instead of keying in the data.
The program then normally reselects INPUT back to the keyboard address. For example, a program
sequence which allows a user to enter values for the variables A and B via a Mark Sense Card is shown below:

30 SELECT INPUT 517
40 INPUTA,B
or
40 INPUT “"ENTER VALUESOF A,B”, A, B
50 SELECT INPUT 001

Statement 30 selects the card reader 517, for INPUT commands. When the INPUT statement is executed,
this device is selected. The system then displays either a question mark or the optional input request
message ENTER VALUE OF A, B?, and waits for the values to be entered. A mark sense card containing
the values can then be read. As the card is read, the information is displayed on the CRT, just as in key-
board entry. When the values have been received and assigned to the variables A and B, the systems then
proceeds the statement 50 where INPUT operations are selected back to the keyboard, address 001.

Use of the INPUT statement with the Mark Sense Card Reader is similar to its use with the keyboard.
Each value must be entered on the card or cards in the order in which variables are listed in the INPUT
statement. If more than one value is entered on a card, they must be separated by commas. (A carriage
return character must be marked in the last column of the card). Several cards may be used to enter the
required input data. If the SKIP position in any column is marked, that column is ignored.

If there is a system detected error in the entered data, an error message is displayed and the value must
be re-entered beginning with the erroneous value. The values which precede the error are accepted. (It
would therefore be necessary to either place only one value on each card or to program restart procedures
to allow an entire card with several values to be reread. The restart procedure would be to depress the RESET
button and run the program starting at the INPUT statement line).

A user may terminate any INPUT statement sequence without supplying all required input values by
simply entering a card with a carriage return character marked on it with no marked information preceding
it. This would cause the system to proceed to the next program statement. The input list variables which
have not received data will remain unchanged.

166

Section XI Mark Sense Card Reader INPUT

Card Format:

Data values are marked on the card in ASCIl character code format (see Table at the end of this
section). A carriage return character, HEX (0D), should be marked on the last column of the card (column
40). If more than one value is entered on a card, they should be separated by commas. Numeric data is
marked in free-format (i.e., 4.2, -7.24 E+05, 2714.132). Space characters and unmarked columns are
ignored. When marking alphanumeric data, the literal string need not be enclosed in quotes. However,
leading blanks will be ignored and commas will act as string terminators. |f leading blanks or commas are to
be included, enclose the string in quotes. Space character must be marked as ASCI| space codes, HEX(20).
Unmarked columns are ignored. If the SKIP position in any column is marked, that column is ignored.

Example:

INPUT A, B2 C(3)

ARRRNRARNERANENRRAREENEAREEANERNERNERESES
§|unnuunulmuululnnnumluunuuuu ojojojojojojoio|e|.
~0{0|n|8|0{8|0|0{8|0H|B|00({0(N|O|0|0(NA|0|0(8{0j0(0|0]oj0M|0|0f0|0|0j0|0|o|0E
.|-n(nnjolu|u|u|o|o|ulo|n(a]s]o]ulu{o]u|olo[sjo|ajojojo|ojo|olaln|o|o|a]alo]o|o]u]z
Zl-0/0/j00[0/0 0|8/ R:0|00|N|0|0|W|0|0 00 0|A|0|0]0|0]0j0|0M0|0(0]0|0j0j0|0)0|n|E
F1-0[s[o[a{n]ujolofo|ois{a{o[o[n|e]ojc{e]ula{aa]n|ojo{ofojo]ofo|ofo]oofo]ofo|ofole
Sojnjnjnjnjajnj0|n|uajujo|as(njnjojnjn|a0|0ojojo|o|ojom|o|o|ojojojo|o|o]oE
zl-0jojojojojojojo|ojoo|oje|o|ofojojo|oj0rD|0jo|0|ojo|0|o|o|000|0|0|0|0(0|0|0|0)2
z1-0/0|0/0|0|0j0|0|0j00|0|0j0/0j0j0j0j0|0f0|o|ojojojo]ojojo|o}n|0j0]0/0j0|0j0j0/0]=
£00jo]o]o]ojojo]ojofo[o]ojolo]ojojo]ojo]|o]ojojo]o]o]ojo]okjo]o]ojo]o]ojofofo) o
%\‘r~'\l$\s- o minw oM~ N> oo gﬁ
] JoNadzoN 3sn | T Y1 40 quvo - FoN/ITLIL

167

INPUT

Mark Sense Card Reader

Section XI

Example:
INPUT A, BS$, C$(1,4)

ARRARRAAREAREREARE AR AR AR AR AR RN

g

YSN'SSYM AUNGSHMIL *ONI S3140LYH08YT ONY

!

13MNB7829

4
(N
I

NOTE:
In the above examples, the data also could be marked on

three separate cards (with one value on each card). The

could, however, require a carriage return character in the last

commas Separating data would not be required. Each card
column.

d 301 SIKL -- ¥30Y3¥ NI ON3 SIHL LY3SNI

o I s T I B e Y e M s s 4
O oo ooooooaolol mm
OO0 ooOoooolall wm
e e Y eI e s O e Y e [e e N 2
DO m O O e O OO «
O o oan | W O OO .
-aaea D s ms O “
- Oms O OO s
-0 0O O0OD0O 0O e o|o) v
wommc owogh [W
O oo oo oooalal |39
O D e m 0o O O OoO(sa ¢
O o @ 0O O m OOl N
-meaaewmw OO m OO0 0
OO m Ojlm O e O|cf L
-maeas T O m O OO s
- e s ¢ Q
DO m O OO0 m Ol o
CO 0O OoOC m o Ofco| Y
DR Pl
OO em | @ O O3 \w
-|maaa O O D O wm
-m o OO m ool 2
O o = @O O em OO N
- e aeamlo O m oo e 3
A = =]] L
o Y e Y e [s I Y s e I I F2v0.
O m v | O C m O(Of N
OO0 O m|lo o m oo H
- oo m O | OF
== == == L3
OO o olo oo o|op |
OO s ea|C m O O3\ ¢
- O D e D O[O \m
OO mm O C|jem m O OO Nm
O O e O e O OO} F s
- D meam O OO h.,w
O m o m O @ 0O Ojcp A=
-mameam O w0 O Z
- O (emom O 0 Z
} 2 \4 8 } 2 v 8 dINS 3000 W.9.d

I
§\‘
7
N

168

Section XI Mark Sense Card Reader DATALOAD

2214 MARK SENSE CARD READER, SYSTEM 2200B ONLY

General Form: DATALOAD [#n,] argument list
/XXX,
where: #n = logical file number to which a device address has been
assigned (n is integer from 1 to 6).
XXX = device address of card reader (517).
argument list = {variable }
array designator s
array designator = array name() (e.g., N(), AS())
Purpose

This statement reads values from a mark sense card reader and sequentially assigns those values to the
variables in the argument list. A maximum of 40 characters per card can be entered. The values are marked
on the card in ASCII code. Blank {unmarked) columns are ignored. Each value must be followed by a CR
(carriage return) and LF (line feed) characters. The carriage return and line feed characters for the last value
on the card should always be marked in the last two columns of the card. Alphanumeric or numeric values
may be assigned to alphanumeric variables; values assigned to numeric variables must be legitimate BASIC
numbers. Arrays are filled row by row.

Numeric values are marked by ASCII in any legal BASIC free-form format (i.e., 4.2, -732.71, 21.2+EQ7).
Space characters and unmarked columns are ignored. Alphanumeric values are also marked in ASCII| code.
Quotes are not required. Leading space characters (HEX (20)) of alphanumeric values will be ignored. All
values, whether numeric or alphanumeric, must be separated by a carriage return and a line feed.

Values will be successively read from one or more cards until all variables in the list are satisified or until
the end-of-file is encountered. For each card read, a CR and LF character must be the last two characters on
the card (i.e., occupy the last two columns on the card). End of file is indicated by marking an x-off
character on a card, followed by a carriage return and line feed. When an end-of-file is encountered, the
remaining variables in the list are left with their current values; an IF END THEN statement will then cause
a valid transfer.

If the SKIP position is marked in any card column, that column will be ignored.

If a read error occurs which produces an illegal number format, an error message will be displayed, and
the program will be terminated, the program can be restarted at the DATALOAD statement and all cards
reread.

If no device address is specified, the address currently selected for TAPE will be used. This should be
selected to 517.

169

DATALOAD

Mark Sense Card Reader

Section XI

Examples:

SELECT TAPE 517

DATALOAD /517, A1$(), X, A$

DATALOAD X, Y, AS$, B$
DATALOAD #3, N(), AS, BS

R R L
- VSN ISSYR AHNGSRMIAL JONT STIH01YH0AYY INYA _mzzﬁ.mmw/
Tmu =Y = va J7 4=
I 23
-m T = o S e s el ¥ |38
— mL
TﬂJ = = = — O || >R
e e R o e B el o
-1
= =3 = = = — Oo|=
—
g e B e S e B e e B e e) e
—
s s S NG B B s B v B el M 1+
p—
0 o = Sl = s T =0
—
TD o o =l;os =2 = =)
— — O o oo s h
Y z v] v 2z v [anes
T_U o B e B e s B e B e B el Bl
r_U s S s S s o N o N e e O s I 1
i S S e S o S e I s B s B e B
”H o O e S e B s S s s sl e
R e O e Y s s Y s o S e [I [
nl - | s O £
— O mm o O emomm O |8 Z
—
rU -m e W OO .
- O C|em o mm O |l /
—
[e B B e B s B e e 47
— 1} Fi Y] v F) 03) IS 5
e B === =] Y2 9
— 2
el L B Bl el I |0
LD O O e O e o) H
= == =l =) 9
p—
O omm e | O wm | 4 |9
p—
- O O J
1-ﬂ O e | T e oo a
p—
- D R >
p—
p— ~
-0 O D M| v
l i3 2 ¥ 8 i} v [] FIET N
O e O wB| O Ok 47 |4
p—
- e — — — R b)) |
—
O — — = m w2 0| g |
R [
- o o — (o — |3 L |5
___ ,3
. s | Em e - | 8 2 z
o — O
- — = . = s - |} 5 N
p— nel
o wm om0k #o|a
@)
- = - w0 o £ |7
- .
- =m— | = omm o T
Tl S T —lem w0 C3| T3l /
o, 2 [8 | 2 2 8 | dixs S0 WO 4
4N 3015 SIHL -- §30¥3¥ NI QN3 SIHL LYISKI \

170

Section XI Mark Sense Card Reader DATALOAD BT

2214 MARK SENSE CARD READER, SYSTEM 2200B ONLY

General Form: N
, alpha-variable *
DATALOAD BT [([N =expression] , [L= {alpha varlable} 8= {Ipha -variable)] [/xxx] {alpha array designator}

where: N = number of characters to read (this is generally 40).
L = leader code character {ignored when reading until a
different character is encountered). If an alpha
variable is specified, the first 8-bits are used. If
L is not specified, no leader code is assumed (optional).

S = stop character (optional).
If an alpha variable is specified, the first character is used.
X = hexadecimal digit.
#n = file number to which a device address has been assigned
(#1 — #6).

xxX = device address of card reader.

*Commas must separate the N, L, and S parameters when more than one is specified.

Purpose

This statement allows 8-bit characters in any code format to be read from a mark sense card (up to 40
characters) and stores the characters read in the alpha variable or alpha array designated. The card is read
and characters stored until the specified alpha variable or array is filled or until the specified number of
characters are read, or until the specified STOP character is read.

The ‘L’ parameter specifies the leader code on the card; when a card is read, leader code is ignored
(i.e., all characters equal to the specified leader code character are ignored until a character is read that is
not equal to the leader code character).

This statement is generally used when specially coded information, which does not conform to a specific
character code format such as ASCII, must be read from a mark sense card. The data is read into alpha-
numeric variables or alphanumeric arrays; from there it can be converted and processed. Data manipulation
and conversion features available in the 2200B are particularly useful for this.

Reading can be terminated for each card by specifying the number of characters to be read (N parameter),
or termination character code (S parameter), or both. The recommended procedure is specifying N = 40,
since there are 40 columns on each mark sense card. If termination does not occur with the last character
of the card, another mark sense card operation should not be requested for at least 20 milliseconds times the
number of remaining characters on the card, since some of these remaining characters on the card may be
read if another read operation is initiated rapidly.

If the SKIP position is marked in any column, that column is ignored.

If a device is not specified the device currently selected for TAPE will be used. This should previously
be selected to 517.

171

Section XI Mark Sense Card Reader D ATALO AD BT

Examples:

DATALOAD BT (N = 40) /517, A$

SELECT TAPE 517

DATALOAD BT (N = 40) A$()

SELECT #1 517

DATALOAD BT (N =40, L = FF, S =99) #1, B$

172

Section XI Mark Sense Card Reader

INFORMATION FOR THE MODEL 2214 MARK SENSE CARD READER
8-BIT HEX CODES (TEXT ATOMS) FOR THE 2200 BASIC LANGUAGE WORDS

BASIC WORD HEXADECIMAL BINARY BASIC WORD HEXADECIMAL BINARY
#PI cC 11001100 GOTO 9C 10011100
ABS(C1 11000001 HE X(D2 11010010
AND 8A 10001010 IF 9F 10011111
ARC CB 11001011 INPUT 99 10011001
ATN(D4 11010100 INT(C5 11000101
BA BE 10111110 KEYIN 88 10001000
BACKSPACE AB 10101011 LEN(D5 11010101
BEG B3 10110011 LET 91 10010001
BIN(DE 11011110 LIMITS 86 10000110
BT DA 11011010 LIST 80 10000000
Cl B5 10110101 LOAD A1l 10100001
CLEAR 81 10000001 LOG(C6 11000110
CcO B8 10111000 MAT A8 10101000
COM A6 10100110 MOVE AD 10101101
CONTINUE 84 10000100 NEXT 9D 10011101
CONVERT AE 10101110 NUM(DD 11011101
COS(C3 11000011 OFF BA 10111010
DA BD 10111101 ON 94 10010100
DATA 97 10010111 OPEN B4 10110100
DBACKSPACE BB 10111011 OR 8B 10001011
DC BF 10111111 PLOT A4 10100100
DEFFN CE 11001110 PLOT(SEL) AF 10101111
DIM 93 10010011 POS(DF 11011111
DISK 8E 10001110 PRINT A0 10100000
DSKIP 89 10001001 PRINTUSING A7 10100111
END 96 10010110 RE D6 11010110
EXP(Cc4 11000100 READ 98 10011000
FN co 11000000 REM A2 10100010
FOR 9E 10011110 RENUMBER 83 10000011
GOSuUB 9A 10011010 RESTORE A3 10100011

173

Section X1 Mark Sense Card Reader

8-BIT HEX CODES (TEXT ATOMS) FOR THE SYSTEM 2200 BASIC LANGUAGE WORDS

BASIC WORD
RETURN
REWIND
RND(
RUN
SAVE
SCRATCH
SELECT
SGN(
SIN(
SKIP
SQR(
STEP

HEXADECIMAL
9B
A9
Cc9
82
85
AC
A5
c8
c7
AA
C2
BO

BINARY

10011011
10101001
11001001
10000010
10000101
10101100
10100101
11001000
11000111
10101010
11000010
10110000

174

BASIC WORD
STOP
STR(
TAB(
TAN(
TAPE
TEMP
THEN
TO
TRACE
VAL(
VERIFY
XOR

HEXADECIMAL
95
D3
CD
CA
8F
8D
B1
B2
90
DC
BC
8C

BINARY

10010101
11010011
11001101
11001010
10001111
10001101
10110001
10110010
10010000
11011100
10111100
10001100

Section XI Mark Sense Card Reader

INFORMATION FOR THE MODEL 2214 MARK SENSE CARD READER
ASCII CODES FOR THE 2200 BASIC LANGUAGE CHARACTERS AND SYMBOLS

CHARACTER CODE

BASIC SYMBOL HEXADECIMAL BINARY BASICSYMBOL HEXADECIMAL BINARY
! 21 00100001 @ 40 01000000
23 00100011 A 41 01000001
$ 24 00100100 a 61 01100001
% 25 00100101 B 42 01000010
& 26 00100110 b 62 01100010
(28 00101000 [5B 01011011
) ' 29 00101001] 5D 01011101
¥ 2A 00101010 C 43 01000011
+ 2B 00101011 c 63 01100011
, (comma) 2C 00101100 CARRIAGE RETURN 0D 00001101
- 2D 00101101 D 44 01000100
2E 00101110 d 64 01100100
/ (slash) 2F 00101111 "’ 22 00100010
0 30 00110000 E 45 01000101
1 31 00110001 e 65 01100101
2 32 00110010 F 46 01000110
3 33 00110011 f 66 01100110
4 34 00110100 G 47 01000111
5 35 00110101 g 67 01100111
6 36 00110110 H 48 01001000
7 37 00110111 h 68 01101000
8 38 00111000 I 49 01001001
9 39 00111001 i 69 01101001
3A 00111010 J 4A 01001010
; 3B 00111011] 6A 01101010
< 3C 00111100 K 4B 01001011
= 3D 00111101 k 6B 01101011
> 3E 00111110 L 4C 01001100
? 3F 00111111 | 6C 01101100

175

Section XI Mark Sense Card Reader

ASCII CODES FOR THE SYSTEM 2200 BASIC LANGUAGE CHARACTERS AND SYMBOLS

BASIC SYMBOL HEXADECIMAL BINARY BASIC SYMBOL HEXADECIMAL BINARY

LINE FEED 0A 00001010 T 54 01010100
M 4D 01001101 t 74 01110100
m 6D 01101101 u 55 01010101
N 4E 01001110 u 75 01110101
n 6E 01101110 \ 56 01010110
o) 4F 01001111 v 76 01110110
o 6F 01101111 W 57 01010111
P 50 01010000 w 77 01110111
p 70 01110000 X 58 01011000
Q 51 01010001 X 78 01111000
q 71 01110001 X-OFF 13 00010011
R 52 01010010 X-ON 11 00010001
r 72 01110010 Y 59 01011001
S 53 01010011 y 79 01111001
$ 73 01110011 Z A 01011010
" (single quote) 27 00100111 2 7A 01111010
SPACE 20 00100000 1 5E 01011110

176

PAPER TAPE
READER

X
s
O
-
Q
L
77

S0 0 000080008000000000800000080008

section XiIi

Paper Tape Reader

SYSTEM 2200B ONLY

DATALOAD« o o o oo 180
DATALOADBT« 181
LOAD COMMAND o o .. 182
LOADo 183

179

Section X1l Paper Tape Reader DATALOAD

2203 PUNCHED TAPE READER, SYSTEM 2200B ONLY

General Form: DATALOAD [#n,] argument list
/XXX,
where #n = Logical file number to which a device address

has been assigned (n is integer from 1 to 6).
xxx = Device address of paper tape reader.

If neither of the above is specified, the default
device address (the device address currently
assigned to TAPE (see SELECT)) is-used.

argument list = {variable
array designatorf ,

array designator = array name () e.g., A(), AS().

Purpose
This statement reads values from paper tape and sequentially assigns those values to the variables in the

argument list. Numeric values may be assigned to alphanumeric variables; values assigned to numeric variables
must be legitimate BASIC numbers. Arrays are filled row by row.

Values are successively read from the tape until all variables in the list are satisfied or until the end-of-file
is encountered (i.e., an X-OFF character is read). When an end-of-file is encountered, the remaining variables
in the list are left with their current values; an IF END THEN statement will then cause a transfer to the
specified line number.

To be read, the paper tape must conform to the following format:

= =
2 2 2 2
o O o O t
m @ m @
€ w 2D 2O € w D O Q
O 4d4 @ o O 4 @ o ., X
7/
[4 [4
® - [° : : : 1st channel
o e |oe [e (o
............. . . . e e s e s . . . IR I . e sprocket holes
o |e [4 [4
e o ¢ ¢ : : o
VALUE Y VALUE s s
/Y 8th channel
N - N— 7/
OPTIONAL OPTIONAL

Values are punched in ASCII character code and are separated by CR LF RUBOUT RUBOUT; the rubouts
are, however, optional. DATALOAD reads only the first seven channels of the tape; the 8th bit is always
read as 0. Nonpunched frames and RUBOUTS are ignored when reading the tape.

Paper tapes punched on a Teletype via DATASAVE statements conform to this format. To read tape not
in this format, use the DATALOAD BT statement.

Example:

DATALOAD X, Y, AS$, B$
DATALOAD #3, N(), A$
DATALOAD /618, A1$(), X, Y
DATALOAD STR(AS, 1, J)

180

Section Xl Paper Tape Reader D ATALO AD BT

2203 PUNCHED TAPE READER, SYSTEM 2200B ONLY

General Form:

_ . _ _ #n, Iph iabl *
DATALOAD BT [R] [([N—expressmn] ,[L‘{:I);ha-variable}} I:S‘{:I);Jha-variable}])] [’x:x] {:Ip?haa :rarra:?/ dZsignator}

where R = Reverse (read in reverse direction).
N = Number of characters to read.
L = Leader code character (ignored when reading until a

different character code is read).
If alpha variable is specified, the first character is used
to specify the leader code.
If L is not specified, no leader code is assumed.
S = Stop character.
If alpha variable is specified, the first character is used to
specify the stop character code.

x = Hexadecimal digit (i.e., 0-9 or A-F).

#n = Logical file number to which a device address has
been assigned (n is integer from 1 to 6).

xxx = Device address of paper tape reader.

If neither of the above is specified, the default
device address (the device address kcurrently
assigned to TAPE (see SELECT)) is used.

*Commas must separate N, L, S arguments if more than one is present.

Purpose

This statement reads a paper tape forwards or backwards and stores the characters that areread in the
alpha variable or alpha array designator specified. The tape is read until the stop character is encountered,
the alpha variable or array is full, or the number of characters specified by N are read, whichever occurs
first. All eight channels of the paper tape are read. The tape is read in the reverse direction if the ‘R’ par-
ameter is included in the DATALOAD BT statement. The ‘L’ parameter specifies the leader code on the
paper tape; when a tape is read, leader code is ignored {(i.e., all characters read which are equal to the
specified leader code character are ignored until a character is read that is not equal to the leader code).

DATALOAD BT permits paper tapes in any format to be read by the System 2200. The data read then
can be converted into a form usable by the System 2200 using the System 2200 data manipulation state-
ments.

Examples:

DATALOAD BT /618, A$

DATALOAD BTR (L=FF, S=0D) #1, A$()
DATALOAD BT (N=100) A$()

DATALOAD BT (N=200, L=00, S=A$) /618, B$()

181

Section X1l Paper Tape Reader

LOAD

2203 PUNCHED TAPE READER SYSTEM 2200B ONLY

General Form:

where

#n

XXX

LOAD [#”]
/XXX

= File number to which a device address is
currently assigned (n is an integer from 1 to 6).

= Device address of device to load from.

If neither of the above is specified, the default
device address (the device address currently assigned
to TAPE (see SELECT)) is used.

Purpose

When the LOAD command is entered, the program punched on the paper tape is loaded and appended
to the current program in memory. This command permits additions to a current program, or if entered
after a CLEAR command, entry of a new program.

To be read, the paper tape must conform to the following format:

RUBOUT
RUBOUT

RUBOUT

CR
CR
LF

RUBOUT

RUBOUT

i

FIRST
TEXT
LINE

LF
. 900 RUBOUT

TEXT
LINE

+
0000
.

TEXT
LINE

*® | x-OFF

*®| x-oFF

®® | x-OFF

1st channel

sprocket holes

8th channel

—
OPTIONAL

__v—/
OPTIONAL

H—/
OPTIONAL

7/

—
OPTIONAL

Text lines are punched in ASCII character code and are separated by CR LF RUBOUT RUBOUT; the
rubouts are optional but are punched when a program is saved on Teletype. The program is terminated by an
X-OFF character. LOAD reads only the first seven channels of the paper tape; the 8th bit is always read as
0. Nonpunched frames and RUBOUTS are ignored when reading the tape.

LOAD also can be used as a program statement for program chaining, as is described on the next page.

Examples:

LOAD
LOAD #1
LOAD /618

Section X1l Paper Tape Reader

LOAD

2203 PUNCHED TAPE READER SYSTEM 22008 ONLY

General Form:

line number 1

line number 2

LOAD [#n,] [Iine number 1 [,Iine number 2]]
/xxx,

where #n = File number to which the device is currently assigned
(nis an integer from 1 to 6).
xxx = Device address of device to load from.

If neither of the above is specified, the default device
address (the device address currently assigned to TAPE
(see SELECT)) is used.

The line number of the first line to be deleted from the
program currently in memory, before loading the new
program. After loading, execution continues at the

line number equal to ‘line number 1°. An error results
if there is no line number = ‘line number 1’ in the new
program.

The line number of the last line to be deleted from the
program currently in memory, before loading the new
program.

Purpose

This is a BASIC program statement which, in effect, produces an automatic combination of the follow-

ing:

STOP (stop current program execution)

CLEARP [line number 1 [line number 2]] (remove program text)

CLEAR N (remove noncommon variables only)
LOAD (load new program)
RUN [line number 1] (run new program)

If only ‘line number 1’ is specified, the remainder of the current program is deleted, starting with that line
number. If no line numbers are specified, the entire current program is deleted, and the newly loaded pro-

gram is executed from the lowest line number.

This permits segmented jobs to be run automatically without normal user intervention. Common
variables are passed between program segments. LOAD must be the last statement on a statement line.

To be read, the paper tape must conform to the following format:

5 5 5 5 55
Q O o O Q O T
0 M m m m Mm
S O c uw 2 O c w 2 2 e e Q
o o O 4 O o O 4 @ o //x X X
o |0 ° o |o ° oo /7’1o @ [@ [1stchannel
3|3 NEEHEE e |* |32 Ak
. A sprocket holes
¢ |8 |FiIRsT |®1® 13 /8 **e s o |0 |e
S [$ |TEXT S |S | TEXT S |8 |TEXT
LINE LINE LINE | 8th channel
OPTIONAL OPTIONAL OPTIONAL OPTIONAL

183

Section XII Paper Tape Reader LOAD

The LOAD statement must not be within a FOR/NEXT Loop; an error results when the NEXT or
RETURN statement is encountered.

Text lines are punched in ASCII character code and are separated by CR LF RUBOUT RUBOUT; the
rubouts are optional but are punched when a program is saved on Teletype. The program is terminated by
an X-OFF character. LOAD reads only the first seven channels of the paper tape; the 8th bit is always read

as 0. Nonpunched frames and RUBOUTS are ignored when reading the tape.
In immediate execution mode, LOAD is interpreted as a command (see LOAD command).

Examples:

100 LOAD

100 LOAD #2

100 LOAD /618

100 LOAD /618, 100
100 LOAD #2, 400, 1000

184

TELETYPE

X
e
O
-
O
LLl
(¢p]

SN0 NNONNNNNR008000000000000

s

3

)

-

section Xiil
Teletype

INTRODUCTION
MODEL 2207 TELETYPE INTERFACE CONTROLLER

The Model 2207 Teletype Interface is used to interface a Teletype to the System 2200. In this configur-
ation, the Teletype keyboard and printer are used in a similar manner to the System 2200 keyboard or CRT,
providing the appropriate device address is selected for console input, console output, and print operations.
Therefore, most console, input, and print operations which apply to a System 2200 keyboard and CRT
also apply to the Teletype keyboard and printer. The CRT cursor and screen control operations, however,
are not valid on a Teletype; HALT/STEP and RESET are produced by the Teletype BREAK and ESC
keys, respectively. For editing, the backarrow (<} key acts as a backspace key to delete the last character
entered and the backslash (\) key acts as a line erase key.

The 2207 Teletype Interface has two device addresses associated with it: one for input and one for
output. For paper tape read or punch operations, the output address with device type 4 is always used. The
following device addresses are used to select the Teletype.

019 (or 01A, 01B) — Teletype keyboard input
01D (or O1E, O1F) — Teletype printer output
41D (or 41E, 41F) — Teletype paper tape read or punch operations

In addition, a number of System 2200B BASIC statements and commands are provided to utilize the
paper tape reader and punch. They are presented in this section.

DATALGCADo 188
DATALOAD BT o 189
DATASAVE 191
DATASAVEBT 193
LOAD COMMAND 194
LOAD s 195
SAVECOMMANDo 197

187

Section X1l Teletype DATA LOAD

TELETYPE STATEMENT SYSTEM 2200B ONLY

General Form: DATALOAD [#n,] argument list
/XXX,
where #n = Logical file number to which a device address

has been assigned (n is integer from 1 to 6).
4dxx = Device address of Teletype. Output (41D, 41E or 41F)

If neither of the above is specified, the default
device address (the device address currently assigned
to TAPE (see SELECT)) is used.

variable
argument list = |array designator S e

array designator = array name () e.g., AS(), B()

Purpose

This statement reads values from the Teletype paper tape and sequentially assigns those values to the
variables in the argument list. Numeric values can be assigned to alphanumeric variables; values assigned to
numeric variables must be legitimate BASIC numbers. Arrays are filled row by row.

Values are successively read from the tape until all variables in the list are satisified or until the end-of-
file is encountered (i.e., an X-OFF character is read). When an end-of-file is encountered, the remaining
variables in the list are left with their current values; an IF END THEN statement then causes a transfer to
the specified line number.

The System 2200 will automatically transmit a X-ON character to the Teletype to start the tape reader,
and a X-OFF character to stop it when reading is completed.

To be read, the paper tape must conform to the following format:

e -
2 2 2 2
o O o O e
o o o o o
£ w 2 2 £ w 2 2 p
O 4 @ o O 4 @@ o , X
/
7/
[] e (0 [] o O [4
e S /8 o !9 |8 H 1st channel
[] o (o [] o o
. . . o | . P e o . e « |+ + sprocket holes
e (@6 (& (O e (& o (o
3|3 $ s .
VALUE e | | VALUE °|e 8th channel
/ L
a4

Values are punched in ASCII character code and are separated by CR LF RUBOUT RUBOUT. All other
RUBOUTS and nonpunched frames on the tape are ignored when the tape is read. DATALOAD reads only

the first seven channels of the tape; the 8th bit is always read as 0.
Paper tapes punched on a Teletype via DATASAVE statements conform to this format. To read tape not

in this format, use the DATALOAD BT statement.

Example:

DATALOAD X, Y, A$, B$
DATALOAD #3, N(), A$
DATALOAD /41D, A1%(), X, Y
DATALOAD STR (AS$, 1, J)

188

Section XIIl Teletype D ATALO AD BT

TELETYPE STATEMENT SYSTEM 22008 ONLY

General Form:
. _ _ #n, Iph iabl *
DATALOAD BT [([N=expressnon] ' [a :l):)ha-variabl }]’ [S_{;:ha-variable}])] [/4:x,] {aalgh: ;Ifrralsl dZsignaton}

where N = Number of characters to read.

= Leader code character (ignored when reading
until a different character code is read).

If alpha variable is specified, the first character is
used to specify the leader code.
If L is not specified, no leader code is assumed.

S = Stop character.

If alpha variable is specified, the first character is used
to specify the stop code.

x = Hexadecimal digit (i.e., 0-9 or A-F).

#n = Logical file number to which a device address
has been assigned (n is integer from 1 to 6).

4xx = Device address of Teletype. Output (41D, 41E, or 41F)

[f neither of the above is specified, the default
device address (the device address currently assigned to
TAPE (see SELECT)) is used.

*Commas must separate N, L, S arguments if more than one is present.

Purpose

This statement reads a paper tape and stores the characters read in the alpha variable or alpha array
designator specified. The tape is read until the stop character is encountered, the alpha variable or array is
full, or the number of characters specified by N are read, whichever occurs first. All eight channels of the
paper tape are read.

The System 2200 automatically sends out an X-ON character to start the Teletype tape reader and an
X-OFF character to stop it. Because two additional characters are read after the X-OFF is sent, the following
considerations should be observed. For termination by count (N parameter), the system normally sends out
the X-OFF character after N-2 characters have been read. Therefore, if the number of characters to be read
isspecified by N, N shouldby = 3. If N = 1 (or 2), the next 2 or (1) characters may be lost. Similarly, if read-
ing is terminated by filling the variable or array, the number of characters in the variable or array should be
= 3. If a stop character is encountered, the stop character and the next 2 characters are read; the tape then
stops. The ‘L’ parameter specifies the leader code on the paper tape; when a tape is read, leader code is
ignored (i.e., all characters read which are equal to the specified leader code character are ignored until a
character not equal to the leader code is recognized).

DATALOAD BT permits paper tapes in any format to be read by the System 2200. The data read then
can be converted into a form usable by the System 2200 using System 2200 data manipulation state-
ments.

189

Section X111 Teletype D ATALO AD BT

Examples:

DATALOAD BT /41D, AS

DATALOAD BT (L=FF, S=0D) #1, AS$()
DATALOAD BT (N = 100) AS$()
DATALOAD BT (N=20, L=00, S=A$) A1$()

190

Section XIIl Teletype DATASAVE

TELETYPE STATEMENT SYSTEM 22008 ONLY

General Form: #n OPEN ""name”’
DATASAVE !] END

4xx .
/ argument list

where #n = Logical file number to which a device address
has been assigned (n is integer from 1 to 6).

4xx = Device address of Teletype. Output (41D, 41E, or 41F)

If neither of the above is specified, the default
device address (the device address currently assigned
to TAPE (see SELECT)) is used.

literal string

alpha variable

expression A
array designator,

argument list

array designator = variable name () (e.g., A$(), B()

name = 1 to 8 characters (note, the name is
required but is not used).

OPEN = Punch leader code (50 null characters).

END = Punch X-OFF character and trailer code
(50 null characters).

Purpose
This statement causes the values specified in the argument list to be punched on paper tape. Numeric
values are written in a form identical to that resulting from a PRINT statement:

Format 1: SM.MMMMMMMME+XX 10! > value = 10"13

Format 2: SZZZZZZ.FFFFFFF 10" <value< 10""°
where: M = mantissa digits

X = exponent digits

F = fraction digits

Z = integer digits

S = minus sign if value < 0, or blank if value =2 0

Alphanumeric values are written identically to the character string data they contain; trailing spaces in
values of alphanumeric variables are not written. Alphanumeric values must not contain any of the follow-
ing characters; CR, RUBOUT, X-OFF, null. The OPEN parameter writes leader code (50 null characters).
The END parameter terminates the data file by punching an X-OFF character and trailer code (50 null
characters).

191

Section X1l Teletype DATASAVE

The paper tape is punched in the following format:

= =
o - | o R |
© © © O w
m o m @
€ w D 2D r w oD 2D C
QO - @ @ QO - @ o , x
) o |0 ° o |0 4 Py 1st channel
e (@ (0 o (@ (O °
[J o [] [J ® []
............ . . d N . . . sprocket holes
o |0 (@ |O o (0 (0 (0@
[} [[[[]
B $ s
VALUE VALUE , 8th channel

Values are punched in ASCII character code and are separated by CR LF RUBOUT RUBOUT.

If the Teletype has the facility for turning the tape punch on and off with TAPE-ON and TAPE-OFF
codes these can be utilized under program control by transmitting the codes to the Teletype by a PRINT
statement prior to and after punching.

Example:

DATASAVE X, Y, A$

DATASAVE OPEN “TTY"”

DATASAVE END

DATASAVE #1, A$()

DATASAVE /41D, N(), A$, X, Y, Z
DATASAVE STR(AS, 1, J), HEX(FAFB)

192

Section XI1I Teletype

DATASAVE BT

TELETYPE STATEMENT SYSTEM 2200B ONLY

General Form:

where #n

4xx

alpha array designator

DATASAVE BT [#n,] {a|pha variable }

14xx alpha array designato

Logical file number to which a device address
has been assigned (n is integer from 1 to 6).

Device address of Teletype. Output (41D, 41E, or 41F)

If neither of the above is specified, the default
device address (the device address currently assigned
to TAPE (see SELECT)) is used.

alpha array name () (e.g., AS())

Purpose

This statement punches the values of an alpha variable or alpha array onto a paper tape with no control
information (i.e., no CR LF RUBOUT RUBOUT separating values). Trailing spaces in alpha values are

punched.

DATASAVE BT permits paper tapes to be punched in any format. Any 8-bit codes may be punched.
If the Teletype has the facility for turning the tape punch on and off with TAPE-ON and TAPE-OFF
codes these can be utilized under program control by transmitting the codes to the Teletype by a PRINT
statement prior to and after punching.

Example:

DATASAVE BT #2, AS$()
DATASAVE BT /41D, B1$
DATASAVE BT Q$()

193

Section XIIl Teletype

LOAD

TELETYPE COMMAND SYSTEM 2200B ONLY

General Form:

where #n

dxx

#n,
LOAD [/4xx,]

File number to which a device address is

currently assigned (n - an integer from 1 to 6).

Device address of device to load from. (41D, 41E, or 41F)

If neither of the above is specified, the default device
address (the device address currently assigned to
TAPE (see SELECT)) is used.

Purpose

When the LOAD command is entered, the program punched on the paper tape is loaded and appended to
the current program in memory. This command permits additions to a current program, or if entered after a

CLEAR command, entry of a new program.

To be read, the paper tape must conform to the following format:

1st channel

- sprocket holes

8th channel

5 5 5 5
o O o O T
@ o @ o o O o
> D £ o 2 2 ;
o o O 4 @ o //Q X X X
s |e ° -3t -
[]] [J e |
e |® | FIRST ° o |o NEXT I A
e |8 | TEXT s e TEXT
® |® | 1INE bl s LINE /

/7 / —

OPTIONAL

Text lines are punched in ASCI| character code and are separated by CR LF RUBOUT RUBOUT. The
program is terminated by 3 X-OFF characters. LOAD reads only the first seven channels of the paper tape;
the 8th bit is always read as 0. Nonpunched frames and RUBOUTS are ignored when reading the tape.

LOAD also can be used as a program statement, as described on the next page.

Examples:

LOAD
LOAD #1
LOAD /41D

194

Section XIII

Teletype LO AD

TELETYPE STATEMENT SYSTEM 2200B ONLY

General Form:

#n,

OAD
LOA [/4xx,

] [Iine number 1 [,Iine number 2”

where #n = File number to which the device is currently assigned
(n is an integer form 1 to 6).

4xx = Device address of Teletype.

If neither of the above is specified, the default device
address (the device address currently assigned to
TAPE (see SELECT)) is used.

i

The line number of the first line to be deleted from the
program currently in memory, before loading the new
program. After loading, execution continues at the line
whose number is equal to ‘line number 1°. An error will
result if there is no line number = ‘line number 1’ in the
new program.

The line number of the last line to be deleted from the
program currently in memory, before loading the new
program.

line number 1

Il

line number 2

Purpose

Thisisa BASIC program statement which, in effect, produces an automatic combination of the following:

STOP {stop current program execution)

CLEAR P [line number 1 [,line number 2]] (remove program text)
CLEAR N (remove noncommon variables only)

LOAD {load new program)

RUN [line number 1] {run new program)

If only ‘line number 1’ is specified, the remainder of the current program is deleted starting with that line
number. If no line numbers are specified, the entire current program is deleted, and the newly loaded pro-
gram is executed from the lowest line number.

This permits segmented jobs to be run automatically without normal user intervention. Common
variables are passed between program segments. LOAD must be the last statement on a statement line.

To be read, the paper tape must conform to the following format:

5 5 5 5

o © o © Low o uw

@ o @ o

2 2 £ o 2 2 o O O

T C 4 &x & y X X X
o |0 ° ® e (@ |o 1st channel
o |0 ° ® o (o o
oo ° o o

. .o .. L. . - sprocket holes
NEXT

e || FIRST *i*isis oo e

o0 TEXT o o TEXT
®|®| wune ®1®] wLiE W, 8th channel

K —_—
OPTIONAL

The LOAD statement must not be within a FOR/NEXT loop or subroutine; an error results when the
NEXT or RETURN statement is encountered.

195

Section XIII Teletype LOA D

Text lines are punched in ASCII character code and are separated by CR LF RUBOUT RUBOUT. The
program is terminated by three X-OFF characters. LOAD reads only the first seven channels of the paper
tape; the 8th bit is always read as 0. Nonpunched frames and RUBOUTS are ignored when reading the tape.

In immediate execution mode, LOAD is interpreted as a command (see LOAD command).

Example:

100 LOAD

100 LOAD #2

100 LOAD /41D

100 LOAD #2, 400, 1000
100 LOAD /41D, 100

196

Section XIlI Teletype

SAVE

TELETYPE COMMAND SYSTEM 22008 ONLY

General Form:

where #n

4xx

1st line number

2nd line number

SAVE #n, line number Jine number
/dxx,

File number to which device address is assigned

(#1 to #6).
Device address of Teletype. (41D, 41E, or 41F)

If neither of the above is specified, the default device

address (the device address currrently assigned to
TAPE, (see SELECT)) is used.

Starting line number to be saved.

Ending line number to be saved.

Purpose

The SAVE command causes BASIC programs (or portions of BASIC programs) to be punched on paper

tape.

If no line numbers are specified, the entire user program text is saved. SAVE with one line number
causes all user program lines from the indicated line through the highest numbered program line to be
punched on tape. If two line numbers are entered, all text from the first through the second line number,

inclusive, is punched.
The paper tape format is:

5 5 5 5

2 9 2 o wowow

2] [as] o o

2 2 c w2 2 o O ©

o o [&] - o o X X x
.

[] .—| ® [J [J 4 [J [J [J

[] [] L J [) [) [] [] ®

o o [] ® o

o5

e E FIRST *|° § § NEXT oo le

- i TEXT oo TEXT !

LINE LINE i ’

/7 /

Text lines are punched in ASCII character code and are separated by CR LF RUBOUT RUBOUT. The
program is terminated by 3 X-OFF's.

Examples:

SAVE

SAVE #3

SAVE /41D

SAVE /41D, 100, 200
SAVE #5, 400

197

SECTION XIV
ERROR CODES

90080

=

..

e

:3

}

g

¥

)

TAIIIIIIIIIITIIATIIIINIIIAIAAIIANIIIINNON

!

section X1V

Error Codes

Section X1V Error Codes

The Wang System 2200 BASIC checks for and displays syntax errors as each line is entered. The user may
then correct the error before proceeding with his program. When any error is detected, the line being scanned
by the system is displayed and on the next line, an "1’ symbol is placed at the point of the error followed
by the error message number. 0

The following example shows the format of the System 2200 error pointer:

:10 DIM A(P)
T ERR 13

The user may then refer to the listing of error messages to identify the error by code number. The list
contains a description of each and a suggested method for correcting the error.

NOTE:

An error message can only indicate one possible type of error.

Example:

PXINT X
T ERR 06 (expected equal sign)

The system has interpreted ‘P’ as a variable and thus expects an equal sign following ‘P’; whereas, the user
may have meant:

:PRINT X

The system assumes the statement is correct until illegal syntax is discovered.

The error message, SYSTEM ERRORY!, is displayed if certain hardware failures occur. The user should
RESET or MASTER INITIALIZE (Power On, Power Off} the system and re-enter the sequence of events
that produced this error.

NOTE:

Certain combinations of illegal or meaningless operations may
also result in a SYSTEM ERROR message.

THREE TYPES OF ERRORS CAN OCCUR
A Syntax Error

Results when the required format of a System 2200 BASIC statement is violated. Pressing a sequence of
keys not recognized as an accepted combination results in this type of error. Syntax errors in a statement are
recognized and noted, as soon as the execute key is touched to enter a statement. Examples of this type of

error include mispelling verbs, illegal formats for numbers, operators, parentheses, and the improper use of
punctuation.

Example:

:10 DEFFN . (X) = 3*X12 - 2*X13
T ERR 21

202

Section XIV Error Codes

An Error of Execution

Results when an illegal arithmetic operation is performed, or the execution of an illegal statement or
programming procedure is attempted when a program is executed. This type of error differs from a Syntax
Error. The statement itself uses the proper syntax. However, the execution of the statement is impossible

to perform and leads to an error condition. Typical errors of this type include illegal branches, arithmetic
overflow or underflow, illegal “FOR"’ loops, etc.

Example:

(Branch to non-existant statement number)

:100 GOTO 110

:105 PRINT “VALUES=" A, B, C

:120 END

:RUN

100 GOTO 110

TERR 11
A Programming Error
The 2200 executes the statements entered properly, but the results obtained are not correct, because

the wrong information or logic is used in writing a program. Although there is no way for the 2200 to
identify a programming error, debugging features such as TRACE, HALT/STEP, CONTINUE, can significantly
speed up the process of debugging a program.

203

Section XIV

Error Codes

CODE 01
Error: Text Overflow
Cause: All available space for BASIC statements and system commands has been used.
Action: Shorten and/or chain program by using COM statements, and continue. The compiler
automatically removes the current and highest-numbered statement.
Example: 10 FORI = 1TO 10
:20 LET X = SIN(I)
:30 NEXT |
:8201F Z = A-B THEN 900
TERR 01
(the number of characters in the program exceeded the available space in memory for
program text when line 820 was entered)
User must shorten or segment program.
CODE 02
Error: Table Overflow
Cause: All available space for internal operating system tables and variables has been used up
(storage of variables, values, etc.) or a repetative program loop which illegally allows
system tables to fill up was encountered. An example of the latter would be jumping
out of FOR loops or subroutines without completing them.
Action: Shorten or correct and/or chain the program by using COM statements and continue.
Example: :10 DIM A(19), B(10, 10), C(10, 10)
:RUN
TERR 02
(the table space required for variables exceeded the table limit for variable storage as
line 10 was processed)
User must compress program and variable storage requirements.
CODE 03
Error: Math Error
Cause: 1. EXPONENT OVERFLOW. The resulting magritude of the number calculated
was greater than or equal to 10'°°. (+,-, % ,/,1, TAN , EXP).
2. DIVISION BY ZERO. '
3. NEGATIVE OR ZERO LOG FUNCTION ARGUMENT.
4. NEGATIVE SOQR FUNCTION ARGUMENT.
5. INVALID EXPONENTIATION. An exponentiation, {(X1Y) was attempted where
X was negative and Y was not an integral, producing an imaginary result, or X
and Y were both zero.
6. ILLEGAL SIN, COS, OR TAN ARGUMENT. The function argument exceeds
27 X 10" radians.
Action: Correct the program or program data.
Example: PRINT (2E + 64 / (2E - 41)

2ERR 03 (exponent overflow)

204

Section X1V Error Codes

CODE 04
Error: Missing Left Parenthesis
Cause: A left parenthesis (() was expected.
Action: Correct statement text.
Example: :10 DEF FNA V) = SIN(3xV-1)
tERR 04
:10 DEF FNA(V) + SIN(3x%V-1) (Possible Correction)
CODE 05
Error: Missing Right Parenthesis
Cause: A right ()) parenthesis was expected.
Action: Correct statement text.
Example: :10Y =INT(1.2156
tERR 05
:10Y = INT(1.215) (Possible Correction)
CODE 06
Error: Missing Equals Sign
Cause: An equals sign (=) was expected.
Action: Correct statement text.
Example: :10 DEFFNC(V) -V +2
tERR 06
10 DEFENC(V) = V+2 (Possible Correction)
CODE 07
Error: Missing Quotation Marks
Cause: Quotation marks were expected.
Action: Reenter the DATASAVE OPEN statement correctly.
Exampile: :DATASAVE OPENTTTT"”
TERR 07
:DATASAVE OPEN “TTTT"” {Possible Correction)
CODE 08
Error: Undefined FN Function
Cause: An undefined FN function was referenced.
Action: Correct program to define or reference the function correctly.
Example: :10 X=FNC(2)
:20 PRINT “X"";X
:30 END
:RUN
10 X=FNC(2)
tERR 08
:05 DEFFNC(V)=C0S(2xV) (Possible Correction)

205

Section XIV Error Codes

CODE 09
Error: lllegal FN Usage
Cause: More than five levels of nesting were encountered when evaluating an FN function.
Action: Reduce the number of nested functions.
Example: :10 DEF FN1(X)=1+X :DEF FN2(X)=1+FN1(X)
:20 DEF FN3(X)=1+FN2(X) :DEF FN4(X)=1+FN3(X)
:30 DEF FN5(X)=1+FN4(X) :DEF FN6(X)=1+FN5(X)
:40 PRINT FN6(2) '
:RUN
10 DEF FN1(X)=1+X :DEF FN2(X)=1+FN1(X)
tERR 09
:40 PRINT 1+FN5(2) (Possible Correction)
CODE 10
Error: Incomplete Statement
Cause: The end of the statement was expected.
Action: Complete the statement text.
Example: :10 PRINT X"
TERR 10
:10 PRINT " X"
OR
:10 PRINT X (Possible Correction)
CODE 11
Error: Missing Line Number or Continue lllegal
Cause: The line number is missing or a referenced line number is undefined; or the user is
attempting to continue program execution after one of the following conditions: A
text or table overflow error, a new variable has been entered, a CLEAR command has
been entered, the user program text has been modified, or the RESET key has been
pressed.
Action: Correct statement text.
Example: :10 GOSUB 200
TERR 11
:10 GOSUB 100 (Possible Correction)
CODE 12
Error: Missing Statement Text
Cause: The required statement text is missing (THEN, STEP, etc.).
Action: Correct statement text.
Example: 10 IF 1+12+X,45
TERR 12
:10 IF 1=12«X THEN 45 (Possible Correction)

206

Section XIV Error Codes

CODE 13
Error: Missing or lllegal Integer
Cause: A positive integer was expected or an integer was found which exceeded the allowed
limit.
Action: Correct statement text.
Example: :10 COM D(P)
tERR 13
:10 COM D(8) (Possible Correction)
CODE 14
Error: Missing Relation Operator
Cause: A relational operator (< ,=,>,<=,>=,<>) was expected.
Action: Correct statement text.
Example: :10 IF A-B THEN 100
tERR 14
:10 IF A=B THEN 100 (Possible Correction)
CODE 15
Error: Missing Expression
Cause: A variable, or number, or a function was expected.
Action: Correct statement text.
Example: :1I0FOR I=,TO 2
tERR 15
10 FOR I=1TO 2 (Possible Correction)
CODE 16
Error: Missing Scalar
Cause: A scalar variable was expected.
Action: Correct statement text.
Example: :10 FOR A(3)=1TO 2
tERR 16
:10 FORB=1TO 2 (Possible Correction)
CODE 17
Error: Missing Array
Cause: An array variable was expected.
Action: Correct statement text.
Example: :10 DIM A2
t1ERR 17
:10DIM A(2) (Possible Correction)

207

Section X1V Error Codes

CODE 18
Error: Illegal Value for Array Dimension
Cause: The value exceeds the allowable limit. For example, a dimension is greater than 255 or
an array variable subscript exceeds the defined dimension.
Action: Correct the program.
Example: :10 DIM A(2,3)
120 A(1,4) =1
:RUN
20 A(1,4) =1
tERR 18
:10 DIM A(2,4) (Possible Correction)
CODE 19
Error: Missing Number
Cause: A number was expected.
Action: Correct statement text.
Example: 10 DATA L
tERR 19
:10 DATA 1 (Possible Correction)
CODE 20
Error: lllegal Number Format
Cause: A number format is illegal.
Action: Correct statement text.
Example: :10 A=12345678.234567 (More than 13 digits of mantissa)
TERR 20
:10 A=12345678.23456 (Possible Correction)
CODE 21
Error: Missing Letter or Digit
Cause: A letter or digit was expected.
Action: Correct statement text.
Example: :10 DEF FN.(X)=X15-1
TERR 21
10 DEF FN1(X)=X15-1 (Possible Correction)

208

Section X1V Error Codes
CODE 22
Error: Undefined Array Variable
Cause: An array variable is referenced in the program which was not defined properly in a

DIM or COM statement (i.e., an array variable was not defined in a DIM or COM

statement or has been referenced both as a 1-dimensional and as a 2-dimensional array).
Action: Correct statement text.
Example: 110 A(2,2) = 123

:RUN

10 A(2,2) = 123
1ERR 22

:1DIM A(4,4) (Possible Correction)
CODE 23
Error: No Program Statements
Cause: A RUN command was entered but there are no program statements.
Action: Enter program statements.
Example: :RUN

TERR 23

CODE 24
Error: Illegal Immediate Mode Statement
Cause: An illegal verb or transfer in an immediate execution statement was encountered.
Action: Re-enter a corrected immediate execution statement.
Example: IFA=1THEN 100

TERR 24

209

Section XIV Error Codes

CODE 25
Error: lllegal GOSUB/RETURN Usage
Cause: There is no companion GOSUB statement for a RETURN statement, or a branch was
made into the middle of a subroutine.
Action: Correct the program.
Example: :10 FOR 1+1 TO 20
:20 X=1+SIN(1+4)
:25 GO TO 100
:30 NEXT I: END
100 PRINT “X="";X
:110 RETURN
:RUN
X=-.7568025
110 RETURN
T ERR 25
.25 GOSUB 100 (Possible Correction)
CODE 26
Error: lllegal FOR/NEXT Usage
Cause: There is no companion FOR statement for a NEXT statement, or a branch was made
into the middle of a FOR loop.
Action: Correct the program.
Example: :10 PRINT “I="";1
:20 NEXT |
:30 END
:RUN
1=0
20 NEXT I
TERR 26
:5 FORI=1TO 10 (Possible Correction)
CODE 27
Error: Insufficient Data
Cause: There is insufficient data for READ statement requirements.
Action: Correct program to supply additional data.
Example: :10 DATA 2
:20 READ XY
:30 END
:RUN
20 READ X,Y
TERR 27
:11 DATA 3 (Possible Correction)

210

Section X1V

Error Codes

CODE 28
Error: Data Reference Beyond Limits
Cause: The data reference in a RESTORE statement is beyond the existing data limits.
Action: Correct the RESTORE statement.
Example: :10 DATA 1,2,3
:20 READ X,Y,Z
:30 RESTORE 5
:90 END
:RUN
30 RESTORE 5
tERR 28
:30 RESTORE 2 (Possible Correction)
CODE 29
Error: lllegal Data Format
Cause: The data format for an INPUT statement is illegal (format error).
Action: Reenter data in the correct format starting with erroneous number or terminate run
with the RESET key and run again.
Example: :10 INPUT X,Y
:90 END
:RUN
:INPUT
?1A,2E-30
TERR 29
?12,2E-30 (Possible Correction)
CODE 30
Error: lllegal Common Assignment
Cause: A COM statement variable definition was preceded by a non-common variable
definition.
Action: Correct program, making all COM statements the first numbered lines.
Example: :10 A=1 :B=2

:20 COM A,B
:99 END
:RUN

20 COM A,B

TERR 30
:10[CR/LF—EXECUTE] (Possible Correction)
:30 A=1:B=2

211

Section X1V

Error Codes

CODE 31
Error: lllegal Line Number
Cause: The ‘statement number’ key was pressed producing a line number greater than 9999;
or in renumbering a program with the RENUMBER command a line number was
generated which was greater than 9999.
Action: Correct the program.
Example: :9995 PRINT X,Y
:[line number key]
TERR 31
CODE 33
Error: Missing HEX Digit
Cause: A digit or a letter from A - F was expected.
Action: Correct the program text.
Example: :10 SELECT PRINT O0OP
TERR 33
:10 SELECT PRINT 005 (Possible Correction)
CODE 34
Error: Tape Read Error
Cause: The system was unable to read the next record on the tape; the tape is positioned
after the bad record.
CODE 35
krror: Missing Comma or Semicolon
Cause: A comma or semicolon was expected.
Action: Correct statement text.
Example: :10 DATASAVE #2 XY, Z
T ERR 35
:10 DATASAVE #2,X,Y,Z (Possible Correction)
CODE 36
Error: lllegal Image Statement
Cause: No format {e.g. #.##) in image statement.
Action: Correct the statement text.
Example: :10 PRINTUSING 20, 1.23

:20% AMOUNT =

:RUN
:1T0 PRINTUSING 20,1.23
1ERR 36
:20% AMOUNT = ##### (Possible Correction)

212

Section XIV Error Codes

CODE 37
Error: Statement Not Image Statement
Cause: The statement referenced by the PRINTUSING statement is not an image statement.
Action: Correct the statement text.
Example: :10 PRINTUSING 20,X

:20 PRINT X

:RUN

:10 PRINTUSING 20,X

TtERR37

:20% AMOUNT = $# ###.## {(Possible Correction)
CODE 38
Error: lllegal Floating Point Format
Cause: Fewer than 4 up arrows were specified in the floating point format in an image

statement.
Action: Correct the statement text.
Example: 110 % ## ##11

t ERR 38

110 % ## ## 11T
CODE 39
Error: Missing Literal String
Cause: A literal string was expected.
Action: Correct the text.
Example: :10 READ A$

:20 DATA 123

:RUN

20 DATA 123

TERR 39

20 DATA “123” (Possible Correction)
CODE 40
Error: Missing Alphanumeric Variable
Cause: An alphanumeric variable was expected.
Action: Correct the statement text.
Example: :10 AS$, X = “JOHN"

TERR 40

110 A$, X$ = "JOHN"
CODE 41
Error: lllegal STR(Arguments
Cause: The STR{(function arguments exceed the maximum length of the string variable.
Example: :10 B$ = STR(AS, 10, 8)

TERR 41
:10 B$ = STR(AS, 10, 6) (Possible Correction)

213

Section XIV

Error Codes

CODE 42
Error: File Name Too Long
Cause: The program name specified is too long (a maximum of 8 characters is allowed).
Action: Correct the program text.
Example: :SAVE “PROGRAM#1"”
TERR 42
:SAVE “PROGRAM1” (Possible Correction)
CODE 43
Error: Wrong Variable Type
Cause: During a DATALOAD operation a numeric (or alphanumeric) value was expected but
an alphanumeric (or numeric) value was read.
Action: Correct the program or make sure proper tape is mounted.
Example: :DATALOAD X, Y
TERR 43
:DATALOAD X3, Y$ (Possible Correction)
CODE 44
Error: Program Protected
Cause: A program loaded was protected and, hence, cannot be SAVED or LISTED.
Action: Execute a CLEAR command to remove protect mode, (but, program will be scratched).
CODE 45
Error: Statement Line Too Long
Cause: A statement line may not exceed 192 keystrokes.
Action: Shorten the statement line being entered.
CODE 46
Error: New Starting Statement Number Too Low
Cause: The new starting statement number in a RENUMBER command is not greater than
the next lowest statement number.
Action: Reenter the RENUMBER command correctly.
Example: 50 REM — PROGRAM 1
62 PRINT X, Y
73 GOSUB 500
:RENUMBER 62, 20, 5
TERR 46
:RENUMBER 62, 60, 5 (Possible Correction)
CODE 47
Error: lllegal Or Undefined Device Specification
Cause: The #n device specifications in a program statement is undefined.
Action: Define the specified device numbers.
Example: :SAVE #2
TERR 47
:SELECT #2 10A
:SAVE #2 (Possible Correction)

214

Section X1V

Error Codes

CODE 48

Error: Undefined Keyboard Function

Cause: There isno mark (DEFFN’) in a user’s program corresponding to the keyboard function
key depressed.

Action: Correct the program.

Example: :[keyboard function key #2]
TERR 48

CODE 49

Error: End of Tape

Cause: The end of tape was encountered during a tape operation.

Action: Correct the program or make sure the tape is correctly positioned.

Example: 100 DATALOAD X, Y, Z

TERR 49

CODE 50

Error: Protected Tape

Cause: A tape operation is attempting to write on a tape cassette that has been protected
(by tab on bottom of cassette tape).

Action: Mount another cassette or ‘‘unprotect’’ the tape cassette by covering the punched
hole on the bottom of the cassette with the tab.

Example: SAVE /103

TERR 50

CODE 51

Error: lllegal Statement

Cause: The System 2200 does not have the capability to process this BASIC statement.

Action: Do not use this statement.

CODE 52

Error: Expected Data (Nonheader) Record

Cause: A DATALOAD operation was attempted but the device was not positioned at a
data record.

Action: Make sure the correct device is positioned correctly.

CODE 53

Error: lllegal Use of HEX Function

Cause: The HEX(function is being used in an illegal situation. The HEX function may not
be used in a PRINTUSING statement.

Action: Do not use HEX function in this situation.

Example: :10 PRINTUSING 200, HEX(F4F5)

*ERR 53
:10 A$ = HEX(F4F5)
:20 PRINTUSING 200,A% (Possible Correction)

215

Section X1V

Error Codes

CODE 54
Error: lllegal Plot Argument
Cause: An argument in the PLOT statement is illegal.
Action: Correct the PLOT statement.
Example: 100 PLOT <5, , H>
* ERR 54
100 PLOT <5,,C> (Possible Correction)
CODE 55
Error: lllegal BT Argument
Cause: An argument in a DATALOAD BT or DATASAVE BT statement is illegal.
Action: Correct the statement in error.
Example: 100 DATALOAD BT (M=50) A$
TERR 55
100 DATALOAD BT (N=50) AS (Possible Correction)
CODE 56
Error: Number Exceeds Image Format
Cause: The value of the number being packed or converted is greater than the number integer
digits provided for in the pack or convert image.
Action: Change the image specification.
Example: 100 PACK (##) A$ FROM 1234
T ERR 56
100 PACK (####) AS FROM 1234 (Possible Correction)
CODE 57
Error: lllegal Disk Sector Address
Cause: Illegal disk sector address specified; value is negative or greater than 32767. (The System
2200 cannot store a sector address greater than 32767.)
Action: Correct the program statement in error.
Example: 100 DATASAVE DAF (42000 ,X) A,B,C.

T ERR 57
100 DATASAVE DAF (4200 ,X) A,B,C (Possible Correction)

216

Section XIV

Error Codes

CODE 58
Error: Expected Data Record
Cause: A program record or header record was read when a data record was expected.
Action: Correct the program.
Example: 100 DATALOAD DAF(0,X) A,B,C
TERR 58
CODE 59
Error: lllegal Alpha Variable For Sector Address
Cause: Alphanumeric receiver for the next available address in the disk DA instruction is not
at least 2 bytes long.
Action: Dimension the alpha variable to be at least two characters long.
Example: 10 DIM A$1
100 DATASAVE DAR() ,A$) X,Y,Z
1ERR 59
10 DIM A$2 (Possible Correction)
CODE 60
Error: Array Too Small
Cause: The alphanumeric array does not contain enough space to store the block of infor-
mation being read from disk or tape or being packed into it. For cassette tape and
disk records, the array must contain at least 256 bytes (100 bytes for 100 byte cassette
blocks).
Action: Increase the size of the array.
Example: 10 DIM A$(15)
20 DATALOAD BT AS$()
TERR 60
10 DIM A$(16) {Possible Correction)
CODE 61
Error: Disk Hardware Error
Cause: The disk did not recognize or properly respond back to the System 2200 during read
or write operation in the proper amount of time.
Action: Run program again. If error persists, re-initialize the disk; contact Wang service
personnel.
Example: 100 DATASAVE DCF X,Y,Z

TERR 61

217

Section X1V

Error Codes

CODE 62

Error: File Full

Cause: The disk sector being addressed is not located within the catalogued specified file.
When writing the file is full, for other operations, a SKIP or BACKSPACE has set the
sector address beyond the limits of the file.

Action: Correct the program.

Example: 100 DATASAVE DCT#2, A$(), B$(), CS$()

TERR 62

CODE 63

Error: Missing Alpha Array Designator

Cause: An alpha array designator (e.g., A$()) was expected. (Block operations for cassette
and disk require an alpha array argument.)

Action: Correct the statement in error.

Example: 100 DATALOAD BT A$

TERR 63
100 DATALOAD BT A$() (Possible Correction)

CODE 64

Error: Sector Not On Disk

Cause: The disk sector being addressed is not on the disk. (Maximum legal sector address
depends upon the model of disk used.)

Action: Correct the program statement in error.

Example: 100 MOVEEND F = 10000

TERR 64
100 MOVEEND F =9791 (Possible Correction)

CODE 65

Error: Disk Hardware Malfunction

Cause: A disk hardware error occurred (i.e., the disk is not in file ready position. This could
occur, tor example, if the disk is in LOAD mode or power is not turned on).

Action: Insure disk is turned on and properly setup for operation. Set the disk into LOAD mode
and then back into RUN mode, with the RUN/LOAD selection switch. The check light
should then go out. If error persists call your Wang Service personnel.

(Note, the disk should never be left in LOAD mode when running.)

Example: 100 DATALOAD DCF A$,B$

TERR 65

218

Section X1V

Error Codes

CODE 66
Error: Format Key Engaged
Cause: The disk format key is engaged. (The key is normally engaged only when formatting
a disk pack.)
Action: Turn off the format key.
Example: 100 DATASAVE DCF X,Y,Z
TERR 66
CODE 67
Error: Disk Format Error
Cause: A disk format error was detected on disk read or write. The disk is not properly
formatted such that sector addresses can be read.
Action: Format the disk again.
Example: 100 DATALOAD DCF X,Y,Z
TERR 67
CODE 68
Error: LRC Error
Cause: A disk longitudinal redundancy check error occurred when reading a sector. The data
may have been written incorrectly, or the System 2200/Disk Controller could be
malfunctioning.
Action: Run program again. If error persists, re-write the bad sector. If error still persists, call
Wang Service personnel.
Example: 100 DATALOAD DCF A$()
TERR 68
CODE 71
Error: Cannot Find Sector
Cause: A disk seek error occurred; the specified sector could not be found on the disk.
Action: Run program again. If error persists, re-initialize (reformat) the disk pack. If error still
occurs call Wang Service personnel.
Example: 100 DATALOAD DCF AS$()

TERR 71

219

Section XIV Error Codes

CODE 72
Error: Cyclic Read Error
Cause: A cyclic redundancy check disk read error occurred; the sector being addressed has
never been written to or subsequently the sector was incorrectly written on disk {i.e.,
the disk pack was never initially formatted).
Action: Format the disk if it was not done. If the disk was formatted, re-write the bad sector,
or reformat the disk. If error persists call Wang Service personnel.
Example: 100 MOVEEND F =8000
T1ERR 72
CODE 73
Error: lllegal Altering Of A File
Cause: The user is attempting to rename or write over an existing scratched file, but is not
using the proper syntax. The scratched file name must be referenced.
Action: Use the proper form of the statement.
Example: SAVE DCF "'SAM1”
tERR 73
SAVE SCF ("SAM1”) “SAM1” {Possible Correction)
CODE 74
Error: Catalog End Error
Cause: The end of catalog area falls within the library index area or has been changed by
MOVEEND to fall within the area already used by the catalog; or there is no room left
in the catalog area to store more information.
Example: SCRATCH DISK F LS=100, END=50
1ERR 74
SCRATCH DISK F LS=100, END=500 (Possible Correction)
CODE 75
Error: Command Only (Not Programmable)
Cause: A command is being used within a BASIC program. Commands are not programmable.
Action: Do not use commands as program statements.
Example: 10 LIST
tERR 75

220

Section XIV

Error Codes

CODE 76
Error: Missing < or > (Plot Enclosures)
Cause: The required PLOT enclosures are not in the PLOT statement.
Action: Correct the statement in error.
Example: 100 PLOT A, B, “"*”
TERR 76
100 PLOT <A, B, “*"> (Possible Correction)
CODE 77
Error: Starting Sector Greater Than Ending Sector
Cause: The starting sector address specified is greater than the ending sector address specified.
Action: Correct the statement in error.
Example: 10 COPY FR(1000, 100)
TERR 77
10 COPY FR{100, 1000) (Possible Correction)
CODE 78
Error: File Not Scratched
Cause: A file is being renamed that has not been scratched.
Action: Scratch the file before renaming it.
Example: SAVE DCF (LINREG") “LINREG2"
TERR 78
SCRATCH F “LINREG” (Possible Correction)
SAVE DCF (“LINREG"”) “LINREG2"”
CODE 79
Error: File Already Catalogued
Cause: An attempt was made to catalogue a file with a name that already exists in the catalogue
index.
Action: Use a different name.
Example: SAVE DCF “"MATLIB”

TERR 79
SAVE DCF “MATLIB1"” (Possible Correction)

221

Section X1V

Error Codes

CODE 80
Error: File Not In Catalog
Cause: The error may occur if one attempts to address a non-existing file name or to load a
data file as a program or open a program file as a data file.
Action: Make sure you’re using the correct file name; make sure the proper disk pack is
mounted.
Example: LOAD DCR “PRES”
TERR 80
LOAD DCF “PRES” (Possible Correction)
CODE 81
Error: /XXX Device Specification lllegal
Cause: The /XXX device specification may not be used in this statement.
Action: Correct the statement in error.
Example: 100 DATASAVE DC /310, X
TERR 81
100 DATASAVE DC #1, X (Possible Correction)
CODE 82
Error: No End Of File
Cause: No end of file record was recorded on file and therefore could not be found in a SKIP
END operation.
Action: Correct the file.
Example: 100D SKIP END
TERR 82
CODE 83
Error: Disk Hardware Failure
Cause: A disk address cannot be properly transferred from the System 2200 to the disk
when processing MOVE or COPY.
Action: Run program again. If error persists, call Wang Field Service Personnel.
Example: COPY FR(100,500)

TERR 83

222

Section X1V

Error Codes

CODE 84
Error: Not Enough System 2200 Memory Available For MOVE or COPY
Cause: A 1K buffer is required in memory for MOVE or COPY operation. (i.e., 1000 bytes
should be available and not occupied by program and variables).
Action: Clear out all or part of program or program variables before MOVE or COPY.
Example: COPY FR(0, 9000)
TERR 84
CODE 85
Error: Read After Write Error
Cause: The comparison of read after write to a disk sector failed. The information was not
written properly.
Action: Write the information again. If error persists, call Wang Field Service personnel.
Example: 100 DATASAVEDCF$ X, VY, Z
TERR 85
CODE 86
Error: File Not Open
Cause: The file was not opened.
Action: Open the file before reading from it.
Example: 100 DATALOAD DC A$
TERR 86
10 DATALOAD DC OPEN F “DATFIL” (Possible Correction)
CODE 87
Error: Common Variable Required
Cause: The variable in the LOAD DA statement, used to receive the sector address of the next
available sector after the load, is not a common variable.
Action: Define the variable to be common.
Example: 10 LOAD DAR (100,L)
TERR 87
5 COML (Possible Correction)
CODE 88
Error: Library Index Full
Cause: There is no more room in the index for a new name.
Action: Scratch any unwanted files and compress the catalog using a MOVE statement or
mount a new disk platter.
Example: SAVE DCF “PRGM”’

TERR 88

223

Section XIV

Error Codes

CODE 89
Error: Matrix Not Square
Cause: The dimensions of the operand in a MAT inversion or identity are not equal.
Action: Correct the array dimensions.
Example: :10 MAT A=IDN(3,4)
:RUN
10 MAT A=IDN(3,4)
TERR 89
:10 MAT A=IDN(3,3) (Possible Correction)
CODE 90
Error: Matrix Operands Not Compatible
Cause: The dimensions of the operands in a MAT statement are not compatible; the operation
cannot be performed.
Action: Correct the dimensions of the arrays.
Example: :10 MAT A=CON(2,6)
:20 MAT B=IDN(2,2)
:30 MAT C=A+B
:RUN
30 MAT C=A+B
TERR 90
:10 MAT A=CON(2,2) (Possible Correction)
CODE 91
Error: lllegal Matrix Operand
Cause: The same array name appears on both sides of the equal sign in a MAT multiplication or
transposition statement.
Action: Correct the statement.
Example: :10 MAT A=A*B

TERR 91
:10 MAT C=A*B (Possible Correction)

224

Section X1V Error Codes

CODE 92
Error: lllegal Redimensioning Of Array
Cause: The space required to redimension the array is greater than the space initially reserved

for the array.
Action: Reserve more space for array in DIM or CON statement.
Example: :10 DIM(3,4)

:20 MAT A=CON(5,6)

:RUN

20 MAT A=CON(5,6)

TERR 92

:10 DIM A(5,6) (Possible Correction)
CODE 93
Error: Singular Matrix
Cause: The operand in a MAT inversion statement is singular and cannot be inverted.
Action: Correct the program.
Example: :10 MAT A=ZER(3,3)

:20 MAT B=INV(A)

:RUN

20 MAT B=INV(A)

TERR 93
CODE 94
Error: Missing Asterisk
Cause: An asterisk (*) was expected.
Action: Correct statement text.
Example: :10 MAT C=(3)B
TERR 94
:10 MAT C=(3)*B (Possible Correction)

225

% 0
Nm
C S
T
O
N <

?LmﬁwﬁﬁwﬁﬂﬁﬁiQMwmlwml_whx

Y3 AIAIIAITINIIDIAIIIAINIAIAIIINIIINIII NN

section XV

Appendices

A — SPECIFICATIONS .

B — AVAILABLE PERIPHERALS.
C — ASCII CHARACTER CODE SET
D — ERROR MESSAGES

229

230
232
233
234

Section XV Appendices

APPENDIX A

SPECIFICATIONS

CRT (Cathode Ray Tube) — Model 2216

Unit Size
Height . 14 in. (35.6 cm)
Depth . 16 in. (40.6 cm)
Width 21% in. (54.6 cm)
Display Size
Height . 8in. (20.3 cm)
Width 10% in. (26.7 cm)
Capacity

16 lines, 64 characters/line
Character Size

Height . 0.20in. (0.51 cm)
Width 0.12 in. (0.30 cm)
Weight

36 Ibs (16.3 kg)

System 2200 Power Requirements
115 VAC or 230 VAC + 10%
50 or 60 Hz = % cycle

System 2200 Operating Environment
50°F to 90°F (10°C to 32°C)
40% to 60% relative humidity

TAPE DRIVE —Model 2217

Stop/Start Time

0.09/0.05 sec
Capacity

522 bytes/ft (1712 bytes/m)
Recording Speed

7.5 IPS (19.05 cm/sec)
Search Speed

7.5 IPS (19.05 cm/sec)
Transfer Rate

326 characters/sec (approx.)
Inter-record Gap

0.6 in. (1.52 cm)

(Capacity and transfer rate include gaps and redun-

dant recording.)

CPU (Central Processing Unit) — System 2200,
Model A or B.

Built-in Functions

Mathematical & Trigonometric Functions™
EXP e to the power of x

LOG Natural Log

SQR Square Root
T Pi

SIN Sine

COoSs Cosine

TAN Tangent
ARCSIN Inverse Sine
ARCCOS Inverse Cosine

ARCTAN Inverse Tangent

RND Random Number Generator

Logical & Data Manipulation Functions

ABS Absolute Value of a Number

INT Integer Value of a Number
1, 0, or +1 if a number is negative, O,
or positive.

STR Selection of one or more characters in
an alphanumeric string.

HEX Hexadecimal Values

LEN Length of Alphanumeric Variable

CPU (Central Processing Unit) — System 2200,
Model A or B (Continued)

Variable Formats

Scalar Numeric Variable.

Numeric 1- and 2-dimension Array Variables.
Alphanumeric String Variable.

Alphanumeric 1- and 2-dimensional String Arrays.

Average Execution Times (Milliseconds)
Add/Subtract 0.8

Multiply/Divide 3.87/7.4
Square Root/e* 46.4/25.3
Log, x/X" 23.2/45.4
Integer/Absolute Value 0.24/0.02
Sign/Sine 0.25/38.3
Cosine/Tangent 38.9/78.5
Arctangent 72.5
Read/Write Cycle 1.6u sec

(Average execution times were determined using
random number arguments with 13 digits of pre-
cision. Avérage execution times will be faster in
most calculations with arguments having fewer
significant digits.)

Section XV Appendices APPENDIX A

SPECIFICATIONS (Cont.)

Capacity Weight
Memory Size 34 1bs (15.4 kg)
4,096 bytes (expandable to 32K) KEYBOARD
Peripheral Capacity
6 (expandable to 11 max) Mode! 2215 _
Dynamic Range Height 3|n (7.62 cm)
10%° to 10"°° De_zpth .« « 10in.(25.4cm)
Subroutine Stacking Width 17%in. (44.5cm)
No Limit Weight
7 1bs (3.2 kg)
*CPU Size
Height 9% in.(24.8 cm) Model 2222 _
Depth 16in. (40.6 cm) Height 3in.(7.62cm)
Width 17in. (43.2cm) Depth 10in.(25.4.cm)
Weight Wndth . e« « . . . 19%in. (49.5 cm)
24 Ibs (10.9 kg) Weight
Power Supply Size 7% \bs (3.4 kg)
Height 7’ in. (19.7 cm)
Depth 8% in. (22.2 cm) *Trigonometric arguments in radians, degrees or gradians.
Width 19in.(48.3cm)

Wang Laboratories reserves the right to change specifications without prior notice.

231

Section XV Appendices APPENDIX B

AVAILABLE PERIPHERALS

2201 Output Writer

2202* Plotting Output Writer

2203* Punched Paper Tape Reader

2212* Analog Flatbed Plotter (10 x 15"")
2214 Mark Sense Card Reader

2215 BASIC Keyword Keyboard

2216 CRT Executive Display

2217 Single Tape Cassette Drive
2216/2217 Combined CRT Executive Display/Single Tape Cassette Drive
2218 Dual Tape Cassette Drive

2219 I/0 Extended Chassis

2221 Line Printer (132 Column)

2222 Alpha-Numeric Typewriter Keyboard

2230-1* Fixed/Removable Disk Drive (1,228,800 bytes)
2230-2* Fixed/Removable Disk Drive (2,457,600 bytes)
2230-3* Fixed/Removable Disk Drive (5,013,504 bytes)

2231 Line Printer (80 Column)
2234* Hopper-Feed Punched Card Reader
2232* Digital Flatbed Plotter (31" x 42"')

2240-1* Dual Removable Flexible Disk Drive (262,144 bytes)
2240-2* Dual Removable Flexible Disk Drive (524,288 bytes)

2241 Thermal Printer (80 Column)

2207* I/0O Interface Controller (RS-232-C)

2227 Standard Telecommunications Controller

2290 CPU/Peripheral Stand

2250 I/0O Interface Controller (8 Bit Parallel)

2252* Input Interface Controller (BCD 10-Digit-Parallel)

OPTION 1 Matrix ROM
OPTION 2 General I/0 ROM
OPTION 3 Character Edit ROM

*Peripheral used with the System 2200B only. A System 2200A can be upgraded to a
System 2200B upon request at a nominal charge.

232

!

Section XV Appendices

APPENDIX C

The following chart shows the ASCII codes used by the System 2200. Each peripheral may not use all
these codes. See the appropriate peripheral reference manual for the codes pertaining to a particular device.

WANG SYSTEM 2200 ASCII CHARACTER CODE SET

Codes not legal for certain devices may default to other characters.

Low Order Hexadecimal Digit Of Code

w

~N O o b

High Order Hexadecimal Digit of Code

0 1 2 3 4 5 6 7
NULL SPACE| 0 @ | P D
HOME (CRT) X-ON ! 1 AlQ a | g

“ B | R b | r
CLEAR SCREEN X-OFF # 3 c|s c |s
(CRT)
$ 4 DI T d |t
% L5 E U e u
& | 6 F vV £ v |
BELL ' G | w g ﬂ
(apos) |
BACKSPACE W (8 H | X h | x
(CRT CURSOR <)
HT (TAB) or CLEAR) 9 Py i |y !
(CRT CURSOR =) | TAB ‘
LINE FEED SET * J |z i] z
(CRT CURSOR |) | TAB
VT (VERTICAL + ,- K |] K
TAB)
FORM FEED OR] <or[| L [\ N
REV. INDEX
(CRT CURSOR 1)
CR (CARRIAGE - = M|] m
RETURN)
SO ¢ > or] N | torMorl | n N
(SHIFT UP)
SI ° / ? O | <or o
L(SH|FT DOWN) ; (DEGREE)

233

Section XV Appendices

APPENDIX D

CODE 01
CODE 02
CODE 03
CODE 04
CODE 05
CODE 06
CODE 07
CODE 08
CODE 09
CODE 10
CODE 11

CODE 12
CODE 13
CODE 14
CODE 15
CODE 16
CODE 17
CODE 18
CODE 19
CODE 20
CODE 21
CODE 22
CODE 23
CODE 24
CODE 25
CODE 26
CODE 27
CODE 28
CODE 29
CODE 30
CODE 31
CODE 33
CODE 34
CODE 35
CODE 36
CODE 37
CODE 38
CODE 39
CODE 40
CODE 41
CODE 42
CODE 43
CODE 44
CODE 45
CODE 46

CODE 47

LISTING OF ERROR MESSAGES

TEXT OVERFLOW

TABLE OVERFLOW

MATH ERROR

MISSING LEFT PARENTHESIS

MISSING RIGHT PARENTHESIS

MISSING EQUALS SIGN

MISSING QUOTATION MARKS

UNDEFINED FN FUNCTION

ILLEGAL FN USAGE

INCOMPLETE STATEMENT

MISSING LINE NUMBER OR CONTINUE
ILLEGAL

MISSING STATEMENT TEXT

MISSING OR ILLEGAL INTEGER

MISSING RELATION OPERATOR

MISSING EXPRESSION

MISSING SCALAR

MISSING ARRAY

ILLEGAL VALUE

MISSING NUMBER

ILLEGAL NUMBER FORMAT

MISSING LETTER OR DIGIT

UNDEFINED ARRAY VARIABLE

NO PROGRAM STATEMENTS

ILLEGAL IMMEDIATE MODE STATEMENT

ILLEGAL GOSUB/RETURN USAGE

ILLEGAL FOR/NEXT USAGE

INSUFFICIENT DATA

DATA REFERENCE BEYOND LIMITS

ILLEGAL DATA FORMAT

ILLEGAL COMMON ASSIGNMENT

ILLEGAL LINE NUMBER

MISSING HEX DIGIT

TAPE READ ERROR

MISSING COMMA OR SEMICOLON

ILLEGAL IMAGE STATEMENT

STATEMENT NOT IMAGE STATEMENT

ILLEGAL FLOATING POINT FORMAT

MISSING LITERAL STRING

MISSING ALPHANUMERIC VARIABLE

ILLEGAL STR{ ARGUMENTS

FILE NAME TOO LONG

WRONG VARIABLE TYPE

PROGRAM PROTECTED

STATEMENT LINE TOO LONG

NEW STARTING STATEMENT NUMBER
TOO LOW

ILLEGAL OR UNDEFINED DEVICE
SPECIFICATION

234

CODE 48
CODE 49
CODE 50
CODE 51
CODE 52
CODE 53
CODE 54
CODE 55
CODE 56
CODE 57
CODE 58
CODE 59

CODE 60
CODE 61
CODE 62
CODE 63
CODE 64
CODE 65
CODE 66
CODE 67
CODE 68
CODE 71
CODE 72
CODE 73
CODE 74
CODE 75
CODE 76
CODE 77
CODE 78
CODE 79
CODE 80
CODE 81
CODE 82
CODE 83
CODE 84

CODE 85
CODE 86
CODE 87
CODE 88
CODE 89
CODE 90
CODE 91
CODE 92
CODE 93
CODE 94

UNDEFINED KEYBOARD FUNCTION
END OF TAPE
PROTECTED TAPE
ILLEGAL STATEMENT
EXPECTED DATA (NONHEADER) RECORD
ILLEGAL USE OF HEX FUNCTION
ILLEGAL PLOT ARGUMENT
ILLEGAL BT ARGUMENT
NUMBER EXCEEDS IMAGE FORMAT
ILLEGAL SECTOR ADDRESS
EXPECTED DATA RECORD
ILLEGAL ALPHA VARIABLE FOR SECTOR
ADDRESS
ARRAY TOO SMALL
DISK HARDWARE ERROR
FILE FULL
MISSING ALPHA ARRAY DESIGNATOR
SECTOR NOT ON DISK
DISK HARDWARE MALFUNCTION
FORMAT KEY ENGAGED
DISK FORMAT ERROR
LRC ERROR
CANNOT FIND SECTOR
CYCLIC READ ERROR
ILLEGAL ALTERING OF A FILE
CATALOG END ERROR
COMMAND ONLY (NOT PROGRAMMABLE)
MISSING <OR > (PLOT ENCLOSURES)
STARTING SECTOR > ENDING SECTOR
FILE NOT SCRATCHED
FILE ALREADY CATALOGED
FILE NOT IN CATALOG
/XXX DEVICE SPECIFICATION ILLEGAL
NO END OF FILE
DISK HARDWARE FAILURE
NOT ENOUGH MEMORY FOR MOVE
OR COPY
READ AFTER WRITE ERROR
FILE NOT OPEN
COMMON VARIABLE REQUIRED
LIBRARY INDEX FULL
MATRIX NOT SQUARE
MATRIX OPERANDS NOT COMPATIBLE
ILLEGAL MATRIX OPERAND
ILLEGAL REDIMENSIONING OF ARRAY
SINGULAR MATRIX
MISSING ASTERISK

To help us to provide you with the best manuals possible, please make your comments and suggestions
concerning this publication on the form below. Then detach, fold, tape closed and mail to us. All comments
and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to include your
name and address. Your cooperation is appreciated.

TITLE OF MANUAL:

COMMENTS:

Fold

Fold

(Please tape. Postal regulations prohibit the use of staples.)

WANG)

Fold

FIRST CLASS
PERMIT NO. 16
Tewksbury, Mass.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY |F MAILED IN THE UNITED STATES

Attention:

— POSTAGE WILL BE PAID BY —

WANG LABORATORIES, INC.

836 NORTH STREET

TEWKSBURY, MASSACHUSETTS 01876

Marketing Department

Fold

Printed in U.S.A.

fecmcecmcmmmceememcececmescmmcmecmdeccmccecccmcecmancescscsescamann . atmmmenn——..—.—————————————————————— - =

Cut along dotted line.

J

i

ALPHABETICAL INDEX

ADD

AND, OR, XOR .o
BACKSPACE (Tape Cassettes)
BIN . . . e e
BOOL .

CLEAR

COM

CONSOLE INPUT (Mark Sense Card Reader)

CONTINUE .

CONVERT
CR/LF—EXECUTE Key .

DATA

DATALOAD (Tape Cassette)
DATALOAD (Mark Sense Card Reader)
DATALOAD (Paper Tape Reader) .
DATALOAD (Teletype) . .
DATALOAD BT (Tape Cassettes)

DATALOAD BT (Mark Sense Card Reader)

DATALOAD BT (Paper Tape Reader)
DATALOAD BT (Teletype)
DATARESAVE (Tape Cassettes)
DATASAVE (Tape Cassettes) .
DATASAVE (Teletype) .
DATASAVE BT (Tape Cassettes)
DATASAVE BT (TeIetype)
DEFFN . . .
DEFFN’ .

DIM.

END

FOR .

GOSUB .

GOSUB’ .

GOTO . .

HALT/STEP .
HEX (Hexadecimal) Functlon .
HEXPRINT .

IF END THEN

IF... THEN

IMAGE (%) .

INIT .

INPUT .

. 118

121

.12
.14
. 141
. 115
. 116

58
73

. 164

58

17
74

. 142
. 169
. 180
. 188
. 143
171
. 181
. 189
. 144
. 145
. 191
. 146
. 193

75
76
79
80
81
83
85
86
59
39
120

. 87

88
89

90

INPUT (Mark Sense Card Reader)
KEYIN .

LEN (Length) Functlon .

LET. .o

LIST .

LOAD (Tape Cassettes)

LOAD (Paper Tape Reader)

LOAD (Teletype) . .

LOAD COMMAND (Tape Cassette)

LOAD COMMAND (Paper Tape Reader)

LOAD COMMAND (Teletype)
NEXT . e ..
NUM

ON . .

PACK . . .

PLOT (Model 2202)

PLOT (Model 2212)

PLOT (Model 2232)

POS. .

PRINT. . . .
PRINTUSING .

READ .

REM . .

RENUMBER

RESET .

RESTORE

RETURN . . .
REWIND (Tape Cassettes)
ROTATE . ..
RUN

SAVE COIVIMAND (Tape Cassettes)

SAVE COMMAND (Teletype)
SELECT . .
SKIP (Tape Cassettes)
SPECIAL FUNCTION . .
STATEMENT NUMBER .
STOP

STR (String) Functlon

TRACE .

UNPACK .

VAL

. 166

92
39
93
61

. 147
. 182
. 194
. 150
. 184
. 196

94

. 122

94

. 123
. 156
. 158
. 160
. 124

95
98

. 101
. 102

62
63

. 103
. 104
. 148
. 125

64

. 151
. 197

44

. 149

65
67

. 105

38

. 106
. 126
. 127

WANG LABORATORIES

(CANADA) LTD.
180 Duncan Mill Road
Don Mills, Ontario M3B 1Z6
TELEPHONE (416) 449-7890
TELEX 06-966546

WANG EUROPE, S.A.
Buurtweg 13

9412 Ottergem

Belgium

TELEPHONE: 053/74514
TELEX: 26077

WANG ELECTRONICS LTD.
1, Olympic Way, 4th Floor
Wembley Park,

Middlesex, England
TELEPHONE: 01/903/6755
TELEX: 923498

WANG FRANCE SARL

47, Rue de.la Chapelle
Paris 18, France
TELEPHONE 203.27.94 or 203.25.94

WANG LABORATORIES GMBH

Moselstrasse No. 4

6000 Frankfurt am Main

West Germany

TELEPHONE (0611) 252061-64

WANG SKANDINAVISKA AB

Fredsgaten 17

S-172-23

Sundbyberg 1, Sweden
TELEPHONE 08-98-12-45

WANG NEDERLAND B.V.

Damstraat 2
Utrecht, Netherlands
TELEPHONE 030-930947

WANG PACIFIC LTD.

61, King Yip Street, 1st Floor
Kwun Tong Kowloon, Hong Kong
TELEPHONE 3-434231/2

WANG INDUSTRIAL CO., LTD.

110-118 Kuang-Fu N. Rd.
Taipei, Taiwan

Repuklic of China
TELEPHONE 784181-3

WANG GESELLSCHAFT MBH
Grinzinger Allee 16

1190 Vienna 19

Austria

TELEPHONE (0222) 32.42.43

LABORATORIES, INC.

WANG COMPUTER PTY. LTD.\
25 Bridge Street
Pymble, NSW 2073
Australia

TELEPHONE 449-6388

WANG INTERNATIONAL
TRADE, INC.

836 North Street

Tewksbury, Massachusetts 01876
TELEPHONE (617) 8561-4111
TWX 710-343-6769

TELEX 94-7421

WANG COMPUTER SERVICES

836 North Street

Tewksbury, Massachusetts 01876
TELEPHONE (617) 851-4111
TWX 710-343-6769

TELEX 94-7421

24 Mill Street
Arlington, Massachusetts 02174
TELEPHONE (617) 648-8550

J

(WANG)

836 NORTH STREET, TEWKSBURY, MASSACHUSETTS 01876, TEL (617} 851-4111, TWX 710 343-6769. TELEX 94-7421

Printed in U.S.A.

700-3038C

1-74-3M

Price $10.00

	Cover
	Introduction
	Table of Contents
	Section I: General System Introduction
	Section II: BASIC Language Structure
	Section III: Numeric Expressions
	Section IV: Alphanumerics
	Section V: I/O Device Selection
	Section VI: Non-Programmable Commands
	Section VII: General BASIC Statements
	Section VIII: Data Manipulation
	Section IX: Tape Cassettes
	Section X: Plotters
	Section XI: Mark Sense Card Reader
	Section XII: Paper Taper Reader
	Section XIII: Teletype
	Section XIV: Error Codes
	Section XV: Appendices
	Appendix A: Specifications
	Appendix B: Available Peripherals
	Appendix C: Wang System 2200 ASCII Character Code Set
	Appendix D: Listing of Error Messages

