.

General 1/0 Instruction Set

Reference Manual

i

B
5
.

-

-
.

GENERAL 1/0
INSTRUCTION SET
REFERENCE
MANUAL

oratories, Inc., 1975

Disclaimer of Warranties
and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care in preparing
this manual; however, nothing contained herein modifies or alters in any
way the standard terms and conditions of the Wang purchase agreement,
lease agreement, or rental agreement by which this equipment was
acquired, nor increases in any way Wang’s liability to the customer. in no
event shall Wang Laboratories, Inc., or its subsidiaries be liable for inci-
dental or consequential damages in connection with or arising from the
use of this manual or any programs contained herein. —

(wANG)LABDRATDRIES, INC.

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 459-5000, TWX 710 343-6769, TELEX 94-7421

PREFACE

This manual is designed for readers already familiar with a Wang system
and its BASIC language.

The manual describes five BASIC language statements belonging to the
General 1I/0 Instruction Set, namely, $GIO, $IF ON, $TRAN, $PACK, and $UNPACK.
The statements are standard in the System 2200T, available as part of Option
23 or 24 for the System 2200S, and available as Option 2 for the System 2200 B
or C.

A copy of this manual is supplied with each system whose central
processor includes the statements described herein.

CONTENTS

Page
CHAPTER 1 GENERAL I/0 INSTRUCTION SET OVERVIEW
1.0 General Description. 1
1.1 Syntax for the General I/0 Instruction Set 3
1.2 Some Special Terms v . v v v v v v v v v e e e 4
1.3 Alpha Array Modifiers. ¢ . v v v v v v . .. 4
1.4 Sample Alphargs. & . v v v v v v e e e e 6
1.5 Strobes, Signal Levels, and Signal Sequences 7
CHAPTER 2 DATA CONVERSION USING $TRAN, $PACK, OR $UNPACK
2.0 Introduction e e e e e e e 9
2.1 The $TRAN Statement. v 10
The Character Replacement Procedure for $TRAN. 10
The Table Lookup Procedure for $TRAN 11
Constructing a Table for a $TRAN Table Lookup
Procedure. i v e e e e e . 12
2.2 The $PACK and $UNPACK Statements 19
2.3 The Delimiter Form for $PACK and $UNPACK Operations. . . . 21
The Delimiter Specification Variable 21
Features of a Delimiter Form $PACK Operation 22
Alternative Processing Procedures for Delimiter
Form $UNPACK Statements. « . « « 23
Features of a Delimiter Form $UNPACK Operation 24
Additional Examples of Valid Syntax for $PACK and
$UNPACK. . . & . o i e e e e e e e e e e e e e e 24
2.4 The Field Form for $PACK and $UNPACK Operations. 30
The Field Specification Variable 30
Features of a Field Form $PACK Operation 32
Features of a Field Form $UNPACK Operation 33
2.5 The Standard Record Form for $PACK and $UNPACK 0perat1ons 41
CHAPTER 3 I/0 OPERATIONS USING $IF ON AND $GIO
3.0 Introductiono e e e e 44
3.1 The $IF ON Statemento . 44
3.2 The $GIO Statement i v oot 0 .. 47
3.3 Optional Comments for $GIO Operations. 47
3.4 Device Addresses for $GIQ Statements 48
3.5 Microcommand Sequences for $GIO Operations 48
3.6 Direct or Indirect Specification of a Microcommand
Sequence it e e e e e e e e e e e « «50
3.7 Data Buffers for $GIO Operations 51
3.8 Error/Status/General-purpose Registers 53
Initializing $GIO Registers. 55
3.9 Telecommunications (Line Oriented) Data Input. 56
3.10 Programming $GIO Operations. « « « .« .. 59
3.11 Some $GI0 Examples v v v v v v e e e e e e e 60

jv

(3]

APPENDIX A $GIO MICROCOMMAND TABLES v . v v v v . .. 63
APPENDIX B ERROR CODES FOR THE GENERAL I/0 INSTRUCTION SET. 76
APPENDIX C ASCIT CHARACTER SET FOR WANG SYSTEMS18

CUSTOMER COMMENT FORM.« .« « & . v v v v v v v e v e e o Last Page

Table
Table
Table

Table
Table
Table
Table
Table

Table
Table
Table
Table

Table
Table
Table

Table
Table
Table
Table

Table

Chart
Chart
Chart

]
— \)

]
SNoOYOV M QWN) == N
. . L] . L)

— O
.OO .

1
—
—
.

rTT
)
‘.A.)N

A- 14
A-15.

TABLES

Page
General I/0 Instruction Set. o e e e e 1
Sample Alphargs. ¢ ¢ v v v i i e e e e e e e . 7
Valid Delimiter Specification Codes in Hexadecimal
Notation L. e e e 22
Valid Field Specifications in Hexadecimal Notation 3]
Microcommand Categories. 49
Control Microcommands. 65
I/0 Microcommands for Single Character Transfer 66
I/0 Microcommands for Multicharacter Transfer to or
from the Specified $GIO Buffer 66
Single Character Output Signal Sequences 68
Single Character Input Signal Sequences. 69
Multicharacter Output Signal Sequences 70
Valid "Check T" Output Termination Codes for hy in
Several Microcommand Categories. 71
Valid "Lend" Codes for h, in Several Output Microcommands. 71
Multicharacter Input Signal Sequences. 72
Valid "Check T1" and "Check T2" Input Termination Codes
for h; in Microcormands of the Form Ch,h,h,. 73
Valid "Lend" Codes for h in M1crocommands of the
Form Chyh,h, 7o oo oo 73
Definition of Error/Status Bits in Arg-2 Register 8. . . . 73
Telecommunications Input Signal Sequences. 74
Definition of Action Bits for Atoms in Special
Character List « .. 14
Definition of Error/Status Registers for $GIO
Operations with a Telecommunications Microcommand
of the Form Fhh.h e et e e e e e e e e e 75

23 4
CHARTS

Y 3 G 0 T .)
EBCDIC Code. . . . & & v v it e e e e e e e e e e e e e 16
Translation Tables for ASCII to EBCDIC Convers1on and
Vice Versa ¢ o v v v e P V)

vi

FIGURES

Page

Figure 2-1 $PACK Delimiter Formatted Data Buffer 25
Figure 2-2 $PACK Delimiter Formatted Data from an Alphanumeric

Variable. L L e e e e e e e e e e e e e 25
Figure 2-3. $PACK Delimiter Formatted Data from a Numeric Variable. . . 26
Figure 2-4 Delimiter Formatted Data Buffer Suitable for

$UNPACK Operations. v v v v v v v vt e e v w 27
Figure 2-5 Delimiter Formatted Data Suitable for Unpacking to an

Alphanumeric Variable 27
Figure 2-6. Delimiter Formatted Data Suitable for Unpacking to a

Numeric Variable. e s+ o . . 28
Figure 2-7. Field Formatted Data Buffer 34
Figure 2-8. Alphanumeric Field Format, Denoted by Codes of the

Form AOhh« ¢ ¢ i s e e e e s e e e e e e e e e 34
Figure 2-9. Numeric Field in ASCII Free Format, Denoted by Codes

of the Form 10hh. ¢ . . « v ¢ ¢ « ¢ « o . .. 3
Figure 2-10. Numeric Field in ASCII Implied Dec1ma1 Format

Denoted by Codes of the Form 2hohh.« e . 36
Figure 2-11. Numeric Field in IBM Display Format Denoted by Codes

of the Form 3hphh 36
Figure 2-12. Numeric Field in IBM USASCII-8 Format, Denoted by

Codes of the Form 4hpohh c e e e e e e e 3
Figure 2-13. Numeric Field in IBM Packed Dec1ma1 Format Denoted

by Codes of the Form S5hohh. ¢ o o . o . . e o o 37
Figure 2-14, Standard Record Formatted Data Buffer R X
Figure 2-15. Standard Record Formatted Data for an A]phanumer1c

Variable. . . & & ¢« ¢ ¢ i 4t h e e e e e e e e e e . . . 42

Figure 2-16. Standard Record Formatted Data for a Numer1c Variable . . . 42
Figure 3-1. Register Usage for Any $GI0 Statement Except One Having a

Microcommand of the Form Fhyhsh,. e e e e e e e O4
Figure 3-2. Register Usage for a $GIO Statement Hav1ng a M1crocommand

of the Form Fhpyhghy, « & . .. « o+ o« . 58
Figure A-1. Schematic of Input and Output Strobes for the Model

2250 Interface Controller O X

vii

Example
Example
Example
Example
Example
Example

Example
Example

Example
Example

Example
Example
Example
Example
Example
Example
Example
Example
Example
Example

— O oo~ S whn -
. . . L] . . . L3

]
(=X

NN NN NN NN

1 & 1 1
e e o e WN—

WWWWWWwWwMNhN N NN
e o o

EXAMPLES

Character Replacement Using $TRAN.
Extracting the Low-order Hexdigit from ASCII Codes
Using $TRAN When Testing Single Character Input.
A Delimiter Form $PACK Operation
A Delimiter Form $UNPACK Operation
A Delimiter Form $UNPACK Operation with Three

Variations et e e e e e e e e e e e
A Field Form $PACK Operation « & v o « v v o« « . .
A Field Form $PACK Operation, Illustrating Data

Conversion to Several Different Numeric Field Formats. . .
A Field Form $UNPACK Operation . . « . v v v ¢ +v v v « . .

. A Field Form $UNPACK Operation, Specifying Several

Numeric Formats. ¢ ¢ v ¢ ¢ e v e e ..
A Field Form $UNPACK Operation with Data Convers1on .
. A Standard Record Form $PACK Operation o e e e
A Standard Record Form $UNPACK Operation

Initializing a $GIO Register Prior to Statement Execution.
Initializing a $GI0 Register During Statement Execution. .
Testing the Status Code in Register 8.
Testing the Count in Registers 9and 10.
A Multicharacter Qutput Operation. ot e e e e e
CRT Qutput Using PRINT and $GIO Statements
Keyboard Input Using INPUT and $GIO Statements

viii

CHAPTER 1
GENERAL I/0 INSTRUCTION SET OVERVIEW

©

1.0 GENERAL DESCRIPTION

Five Wang BASIC language statements are described in this document.
Collectively, the statements are called the General I/0 Instruction Set.
Individually, the statements are referred to by their mnemonic codes: $GIO, $IF
ON, $TRAN, $PACK, and $UNPACK. See Table 1-1.

Table 1-1. General I/0 Instruction Set

Statement Description

— $GI0 A general I/0 statement designed to perform data
input, data output, and I/0 control operations
with a programmable signal sequence. The statement
supports I/0 operations for Wang's Model 2209
Nine-Track Tape Drive, the Model 2228 Communications
Controller, the Model 2227B Buffered Asynchronous
Communications Controller, and is 1ideally suited to
control I/0 operations for specially interfaced
non-Wang peripheral devices or instruments.

$IF ON A statement designed to test the device-ready condition
of a specified output device or test the data-ready
condition of a specified input device and initiate a
branch to a specified line number if a ready condition
is sensed.

$TRAN - A statement designed to facilitate high-speed
character code translations using a .table lookup
procedure or a character replacement procedure.

R $PACK Statements designed to facilitate data packing
$UNPACK and unpacking (by fields, delimiters, or Wang's standard
record format) between a specified alphanumeric array
buffer and specified arguments in an argument
list. The statements can be used to pack and unpack
records, card images, et cetera.

Chapter 1. Overview

The $GIO statement is unlike any other BASIC language I/O statement. By a
technique similar to machine language programming, the $GI0 statement provides a
“General Input/Output" capability by which I/0 operations can be custom-tailored
to meet the particular signal-sequence requirements of a wide variety of 1/0
peripherals. Primarily, the statement is designed to support non-Wang
peripheral devices and instruments specially interfaced to a Wang system via
interface controllers such as the following:

1. The Model 2207A I/0 Interface Controller (RS-232-C -- Selectable Baud)
2. The Model 2227 Asynchronous Telecommunications Controller

3. The Model 2227B Buffered Asynchronous Communications Controller

4, The Model 2250 I/0 Interface Controller (8-Bit-Parallel)

5. The Model 2252A Scanning Input Interface Controller (BCD 1-to-10-
Digit-Parallel)

Wang peripherals such as keyboards and CRT's can be controlled by $GIO
statements, if desired; other peripherals (particularly cassette and disk
drives) cannot be controlled with $GI0 statements. If a Wang device (e.g., the
‘Model 2209 Nine Track Tape Drive) requires $GI0 statements for control, Wang
Laboratories provides specific recommendations for programmed signal sequences
or utility programs designed to control I/0 performance.

The $IF ON statement, for input and output device scanning
applications, is more versatile than the KEYIN statement which can scan
only input devices. Also, the $IF ON statement offers advantages for
applications involving multi-character input since the first character is not
received separately as is the case in a KEYIN operation (which is excellent
for one-byte handshake applications). The general form of the $IF ON
statement is given in Section 3.1.

The $TRAN statement provides a high-speed data conversion
capability. Conversion of a specified block of data is implemented via a
table Tlook-up or character replacement procedure. By storing conversion
tables 1in alphanumeric arrays and specifying a particular array in a $TRAN
statement, any desired code conversion algorithm can be programmed easily.
Data can be translated before transmission to (or after reception from)
standard or nonstandard peripheral devices in a Wang configuration,
Characters not in ASCII code can be received and then converted, if
necessary, to the ASCII character set used in Wang systems. Similarly,
output data can be converted to any code wused by a non-Wang system or
device. If the optional parameter R is specified in a particular $TRAN
statement, the character replacement procedure is implemented. Furthermore,
if an optional mask is specified in a particular $TRAN statement, selected
bits in each byte stored in a data block are deleted before the
translation is accomplished. The masking capability is useful for data
editing and parity bit removal. The general form of the $TRAN statement is
given in Section 2.1.

Chapter 1. Overview

The $PACK and $UNPACK statements provide the capability to
scatter (unpack) data from a record or to gather (pack) data into a record
and convert the data simultaneously. Data can be taken sequentially
from specified arguments 1in an argument list, converted, and then packed
into one alphanumeric array (record). Conversely, data can be taken
sequentially from an alphanumeric array, converted, and then stored in
specified arguments in an argument Tlist (unpacked). In a packing or an
unpacking operation, the alphanumeric array (the record) is treated as a
contiguous group of characters; that is, element boundaries within the
array are ignored. Each field 1in a record can be identified
sequentially, according to type and length, or by defining special delimiters.
Several different field types can be specified for one record. The general
forms of the $PACK and $UNPACK statements are given in Section 2.2.

The $PACK and $UNPACK statements do not implement direct data
transfer (sending or receiving) with respect to I/0 devices; however, a
$PACK or a $UNPACK statement can be combined with a $GI0 statement (or some
other Wang BASIC Tanguage I/0 statement) in a two-step operation designed to
transfer data between the CPU (Central Processing Unit) and an I/0 device.
The $PACK and $UNPACK statements are especially useful when
processing or preparing input/output records in formats required by
non-Wang peripherals. Also, the statements are of value in many
applications when data of different lengths and precisions are being packed or
unpacked for optimal utilization of memory and peripheral storage areas.

1.1 SYNTAX FOR THE GENERAL I/0 INSTRUCTION SET

The following syntax dis used throughout this manual to denote the
components in a general form of a statement:

1. Upper case letters (A through Z) must be written in an actual
statement exactly as shown in a general form.

2. Lower case letters or words represent items for which specific
information is to be substituted in an actual statement.

3. Hyphens joining lower case words (or words and numbers) signify single
items.

4. Vertically stacked items represent alternatives, only one of which is
to be selected.

5. When stacked items are enclosed in braces,{}, one item must be
specified. The braces are not included in an actual statement.

6. When single or stacked items are enclosed in brackets, [], the items
are optional and may be omitted. The brackets are not included in
an actual statement,

Chapter 1. Overview

7. The following characters must be written as shown in the general form,
unless otherwise indicated by a note:

comma
equal sign
parentheses
pound-sign
slash

N3k~

8. When an ellipsis, ..., follows an item, the item may be repeated many
times successively in an actual statement.

9. Blanks, inserted for readability in the general form, are not
required. Wang systems ignore blanks in an actual statement unless
the blanks are embedded in double quotation marks.

10. The sequential order of the components in a general form must be
preserved when writing an actual statement.

1.2 SOME SPECIAL TERMS

The term "alpharg" is used to simplify the general forms of statements
in the General I/0 Instruction Set. An alpharg is defined as follows:

alphanumeric variable
alpharg = .{STR function
alpha array designator
alpha array designator <s,n>
where, in conformity with the syntax 1in Section 1.1, the braces signify
alternatives (only one of which is to be selected).

The notation <s,n> is called an "alpha array modifier" (see Section
1.3). Also, the notation <s,m,e> 1is called an "alpha array modifier"
for $GI0 statements used in telecommunications applications (see Appendix A,
Table A-13, Note 1).

When an array is designated as an alpharg in any one of the statements in
the General I/0 Instruction Set, the system treats the entire array as a single
string of contiguous characters (bytes) and ignores element boundaries within
the array. However, as wusual, the array dimensions must be specified in a
separate DIM statement to be executed prior to execution of any statement
containing the particular array.

1.3 ALPHA ARRAY MODIFIERS

Both "s" and "n" in the alpha array modifier notation <s,n> are defined by
the same alternatives for statements included in the General I/0 Instruction
Set. That is,

S integer 2 1
nf = <mathematical expression

alphanumeric variable

—

Chapter 1. Overview

Only one item is used to specify "s" and another item of the same or a different
type to specify "n".

Note:

1. When a mathematical expression (or a single numeric
variable) 1is specified for "s" or "n", the system evaluates
the expression and truncates the result to an integer which
must be greater than or equal to one.

2. When an alphanumeric variable is specified for “s" or "n",
the system treats the first two bytes of the variable
as a 16-bit binary number and ignores any remaining bytes
stored in the variable; the dimension of the variable must
be at least two bytes long.

The s-parameter specifies the starting byte of the modified array. The
n-parameter specifies the number of consecutive bytes to be used in an
operation, beginning with the starting byte. For example, the notation:

A$() <5,7>

specifies "seven consecutive bytes of the A$-array, beginning with the fifth
byte".

Either "s" or "n" can be omitted when specifying an array modifier. The
default value for "s" is 1 -- the value used by the system if a modifier is of
the form <, n>.

The default value for "n" is used by the system if a modifier is of the
form <s> . The default value of "n" is not a fixed value but depends upon two
factors:

1. the array length (the maximum number of bytes in the array), and

2. the specified starting byte in the array modifier.

To evaluate the default value for n, use:

default n = m-s+1

where

m
S

the maximum number of bytes in the array, and
the specified starting byte.

When "n" is not specified in an alpha array modifier, the system begins
with the s-byte and uses all remaining bytes in the array.

Chapter 1. Overview

An alpha array modifier specifies a particular portion of an
alphanumeric array in much the same way a string (STR) function
specifies a particular portion of an alphanumeric variable. However, since

the maximum length of an array can be as high as 30,000 bytes in some
cases (while the maximum length of an alphanumeric variable is 64 bytes),
the alpha array modifier provides a powerful programming technique
when working with large array buffer storage areas.

Note:

1. When an array modifier is used in one statement within a
program, neither the size nor the shape of the array is
altered in memory.

2. A special format <s,m,e> rather than <s,n> is required for
an array modifier if used in a $GI0 statement performing a
telecommunications input operation. See the notes following
Table A-13.

1.4 SAMPLE ALPHARGS

Sample alphargs, some including alpha array modifiers, are presented
in this section -- assuming a program contains the following dimension
statement:

10 DIM A$40, B$(3)60, C$5
Upon execution, Line 10 reserves the following storage locations in memory:
a) 40 bytes identified by the alphanumeric variable A$.
b) 180 bytes identified as follows:

1) 1in three groups of 60 bytes each, with respect to element
boundaries, when the specific elements B$(1), B$(2), and B$(3) are
used in statements, or

2) as a contiguous string of 180 bytes, without regard to element
boundaries, 1if the alpha array designator B$() is used in a
General I/0 Instruction Set statement.

c) 5 bytes identified by the alphanumeric variable C$.

Now, if a program containing Tine 10 also contains any $GIO, $TRAN, $PACK,
or $UNPACK statements using the sample alphargs shown in the first column of
Table 1-2, the second column identifies the bytes defined by each alpharg.

(24

Chapter 1. Overview

Table 1-2. Sample Alphargs

Alpharg Specified Bytes (Assuming Line 10 Dimensions)

A$ A11 40 bytes of A$.

STR(A$,5,10) Ten bytes of A$ beginning with the fifth byte.

B$(2) A11 60 bytes of element B$(2).

STR(B$(2),8) Fifty-three bytes of B$(2) beginning with the
eighth byte.

B$() A11 180 bytes of the B$-array.

B$() <68,53> Fifty-three bytes of the B$-array beginning
with the sixty-eighth byte. Same as
STR(B$(2),8).

For J=1 A11 but the first and last bytes of B$().

B$() <J+1,178>

C$=HEX (0080) The first 128 bytes of B$(). Here

B$() <1,C$> HEX(0080)= 0000000010000000 is interpreted as

a binary number to the_ base 2. Thus, the
decimal value is 1x27=128.

C$=HEX (0002) Here the decimal value of C$ is 2. The default

B$() <C$> value of n becomes 180-2+1=179. Therefore, the
notation specifies all bytes of B$() except the
first.

B$() <,50> Fifty bytes of B$() beginning with the first
(since default s=1).

1.5 STROBES, SIGNAL LEVELS, AND SIGNAL SEQUENCES

To custom-tailor I/0 operations for a non-Wang peripheral device, the
engineer vresponsible for interfacing the device to a Wang system (or a
programmer) must determine appropriate microcommand sequences for $GIO
statements. Specification of microcommand sequences is similar to machine
language programming and can be made directly or indirectly in $GI0 statements
by techniques described in Chapter 3.

A single microcommand represents a fundamental operation usually
consisting of several steps. With a sequence of microcommands, a complete I/0
operation can be constructed similar to a standard BASIC language I/0 operation
such as INPUT, PRINT, DATALOAD BT, et cetera.

Chapter 1. Overview

Each microcommand is represented by a four-hexdigit-code (two bytes). The
first pa1r of hexdigits usually identifies the type of operation and the "signal
sequence" to be executed. The second pair of hexdigits usually specifies
particular information; for example, the character to be output or the
register containing the character to be output. Similarly, for an input
operation, the second byte of the microcommand may specify the reg1ster for
storage of an incoming character.

Seventeen categories of microcommands are available (see Table 3-1). Each
of the seventeen microcommand categories contains subcategories presented in
Appendix A, where the signal sequence corresponding to each microcommand is
described using mnemonics and special notation. The notation and mnemonics are
defined using the terms "strobe" and "level" (or "signa] level") -- terms not
ordinarily encountered by applications programmers using documentation for a
Wang system; however, the terms are familiar to electronics engineers for whom
the $GI0 statement is geared

Users of configurations containing only standard Wang peripheral
devices do not need to know the strobes and signal levels exchanged between
the CPU, a device controller board, and a particular peripheral device during
execution of an I/0 operation. A major feature of any high-level programming
language, such as BASIC, is its simplified, conversational mode
programming capability. Therefore, each I/0 statement, except $GI0, executes a
built-in signal sequence.

Actually, the $GI0 statement operates within the framework of the
conversational mode BASIC language yet permits the programming of customized
signal sequences required by a wide variety of non-Wang 1I/0 devices. A
microcommand sequence, whether specified directly or indirectly in a $GIO
statement, replaces the built-in signal sequence implicit 1in other 1/0
statements.

The description of the $GI0 statement in Chapter 3 includes
many references to signal sequences, signal levels, and strobes. Readers of
Chapter 3 who do not have an electronics background should understand the
syntax and fundamental operations of the $GI0 statement without becoming
concerned about any lack of understanding of signal levels and
strobes. In general, the engineer responsible for interfacing a non-Wang I/0
device to a Wang system is the person best qualified to determine the
microcommand sequences needed to control a particular device and to know
whether the installation of a device 1is compatible with an exchange of
the particular strobes and levels included in each microcommand. Furthermore,
when $GI0 statements are needed to control a Wang I/0 device, Wang
Laboratories prescribes the microcommand sequence needed to implement each
operation for the device.

The descriptions of the $TRAN, $PACK, and $UNPACK statements in Chapter 2
do not refer to strobes and signal levels since these data conversion statements
do not implement direct data transfer between the CPU and any I/0 devices.

CHAPTER 2
DATA CONVERSION USING $TRAN, $PACK, OR $UNPACK

2.0 INTRODUCTION

Three statements in the General I/0 Instruction Set provide data

gonversion capabilities for Wang systems. The statements are $TRAN, $PACK, and
UNPACK.

The general form of the $TRAN statement represents two forms, depending
upon whether the parameter R is or is not included in an actual statement. Upon
execution, a $TRAN statement implements a code conversion operation on a
specified block of data (the first argument) using a table or list defining the
translation (the second argument). If an optional mask is specified, each data
byte is masked by a logical AND operation before the translation. If the

optional '"replace" parameter R is specified, only selected data characters are
translated.

The general form of the $PACK statement represents three forms, depending
upon whether the parameter D, the parameter F, or neither D nor F is included in
an actual statement. Upon execution, a $PACK statement implements a packing
and/or data conversion operation which sequentially transfers data from each
argument in an argument 1ist and stores the data in a specified buffer,
according to a prescribed format (a delimiter format, a field format, or the
standard Wang record format).

The general form of the $UNPACK statement also represents three forms,
depending upon whether the parameter D, the parameter F, or neither D nor F is
included in an actual statement. Upon execution, a $UNPACK statement implements
an unpacking and/or data conversion operation which separates data stored in a
specified buffer, according to a prescribed format, and sequentially transfers
the data to each argument in an argument 1list.

Using the field form of a $PACK or $UNPACK statement, numeric data can be
converted into or from one or more of the following field types during execution
of the packing or unpacking operation:

a) an ASCII free format,

b) an ASCII implied decimal format,
c) an IBM display format,

d) an IBM USASCII-8 format, and/or
e) an IBM packed decimal format.

Furthermore, the field width can be specified also.

$TRAN

General Form:
$TRAN (arg-1, arg-2) [hh] [R]

where:

1l

arg-1 An alpharg representing a block of data to be translated

via a table-lookup or character replacement procedure.

arg-2 An alpharg representing a table (or a 1list, if R

is specified) of characters defining the translation.

hh = A pair of hexdigits representing a mask (optional).
If specified, a mask defines the bits to be "deleted”
(that is, replaced by zeros) in each arg-1 byte by executing
a logical AND operation using the next successive arg-1
byte and the mask before translating the resulting
character.

R = The *"replace" parameter (optional). If specified, R
indicates that only those masked or original arg-]
characters which match an even-numbered character in the
arg-2 list are to be replaced by the preceding odd-numbered
character in the 1list; if no match is found, the masked or
original byte is returned to arg-1.

alphanumeric-variable
{STR-function }
<Ss,Nn>

alpharg
alpha-array-designator
alpha-array-designator

2.1 THE $TRAN STATEMENT

The $TRAN statement is designed for code conversion operations, such as
the conversion of EBCDIC codes to ASCII codes. Applications include byte
substitution operations needed for hexadecimal code conversions, character
verification, or initialization operations -- to name a few. Many other
applications are possible with user ingenuity.

The general form of the $TRAN statement represents two different data

conversion operations. The desired procedure is identified by the inclusion or
omission of the parameter R.

The Character Replacement Procedure for $TRAN

If the R parameter is specified in an actual $TRAN statement,
the arg-2 component of the statement must represent a 1ist of "to-from"
translation characters. Since the 1list of "to-from" characters cannot be
specified directly in the $TRAN statement, the 1ist must be stored in memory
by an input operation or by execution of another statement prior to execution
of the $TRAN statement, as shown in Example 2-1. The 1ist must consist of
pairs of bytes to be interpreted as follows:

10

Chapter 2. $TRAN

a) The second byte in each pair of bytes is a "translate from" character;
that is, the even-numbered bytes in an arg-2 list define the set of
characters to be translated.

b) The first byte in each pair of bytes is a “translate to" character
corresponding to a particular "from" character; that is, the
odd-numbered bytes in an arg-2 list define the replacement characters
for a translation operation.

c) The last pair of “"to-from" characters must be followed by at least one
pair of space characters, where each space character is denoted by a
HEX(20) code. (Unpredictable results may occur if an arg-2 list is
not terminated by a pair of space characters.)

During execution of a $TRAN statement with R specified, the following
events occur:

1. The next successive arg-1 byte is masked, if a mask is specified.

2. The masked (or original) byte 1is compared with each successive
“translate from" character in the arg-2 list,

3. As soon as a match 1is found, the corresponding replacement
character (the preceding "translate to" character) is returned to
the arg-1 byte position currently being processed.

4. If no match is found, the masked (or original) byte is returned to
the arg-1 byte position currently being processed.

The Table Lookup Procedure for $TRAN

If the R parameter is omitted in an actual $TRAN statement, the arg-2
component of the statement must specify the translation table as a set of
consecutive characters. Since the translation table cannot be specified
directly in a $TRAN statement, the table must be stored in memory by an
input operation or by other statements prior to execution of the $TRAN
statement, as shown in Examples 2-2 through 2-4.

The sequential position of each character in a translation table is
extremely important when R is not specified, since the table lookup procedure is
a "displacement" procedure equivalent to the following steps:

1. The next successive arg-1 byte is masked, if a mask is specified.
2. The equivalent decimal system value of the masked (or original)
byte is calculated, e.g., in the ASCII character set used by Wang

systems, an unmasked uppercase G is represented by (47); =
(01000111)2 = (71)10.

11

Chapter 2. S$STRAN

3. The decimal system value from Step 2 becomes the "displacement" used
to locate the proper translation character in the arg-2 table. The
displacement can be defined as the movement of an imaginary pointer
which points to the first position in the table for a zero
displacement and moves to the (m+1)th position for a displacement of
"m". For example, since the decimal system value of an ASCII G is 71,
its translation character must appear in position 72 in an arg-2 table
if no mask is used in the translation operation. (See Example 2-2.)

4, The character found in the arg-2 table is stored in the arg-1 byte
position currently being processed.

5. If the translation table is too short for the required displacement in

Step 3, the masked (or original) byte is returned to the arg-1
position currently being processed.

Constructing a Table for a $TRAN Table-lookup Procedure

The System 2200 uses an 8-bit code to represent its character set
consisting of three types of characters:

1. Graphic (printable) characters, e.g., A, a, 1, 7, ?, #.

2. Control (nonprintable) characters, e.g., carriage return, Tline feed,
backspace.

3. Text atoms (BASIC language words), e.g., DIM, GOSUB, INPUT, stored in
memory as single 8-bit codes whether entered from the keyboard by a
single "keyword" keystroke or by multi-keystrokes (one for each
character in the word).

The code for graphic and control characters 1is equivalent to 7-bit ASCII
(American Standard Code for Information Interchange) plus a high-order "0"
eighth bit. See Appendix C. The high-order eighth bit for text atoms is "1".

In hexadecimal notation, where two hexdigits equal 8 bits, the System
2200 graphic and control characters are represented by codes whose first
hexdigit is less than eight, and text atoms are represented by codes whose
first hexdigit is greater than or equal to eight. For example, A = (41),., 7 =
(37)16, z = (7A)1e’ RUN = (82)16, REWIND = (A9)16.

Some computer systems represent graphic and control characters by an
8-bit code called EBCDIC (Extended Binary Coded Decimal Interchange Code).
The ASCII and EBCDIC codes differ greatly with respect to the assignment of
characters to particular binary values. See Charts 2-1 and 2-2.

In Charts 2-1 and 2-2, the character assignment squares represent 8-bit
(one-byte) codes arranged sequentially in ascending order, according to the
equivalent decimal system value shown in the lower right corner of each
square. There are 128 character assignment positions in the ASCII chart with
decimal values from 0 to 127 inclusive, and 256 positions in the EBCDIC chart
with decimal values from 0 to 255 inclusive. When an assigned character
appears in a particular position, the binary value is found by reading the four

12

Chapter 2. $TRAN

high-order bits in the left margin of the chart and reading the four Tlow-order
bits at the top of the chart. Similarly, the hexadecimal value is found by
reading the high- and low-order hexdigits in the left and top margins,
respectively. For example, in Chart 2-1, E = (01000101), = (45),5= (69)¢-

Check the following characters in Charts 2-1 and 2-2:

Character ASCII Code EBCDIC Code
(23)16 = (35);0 (7B) 16 = (123)4,
A (41)16 = (65)1¢ (C1)16 = (193) 4,
d (64),6 = (100),, (84),5 = (132)4,
7 (37)16 = (55)1, (F7)16 = (247) 1,
space (20),6 = (32)4g (40),¢ = (64)4,

After several character-by-character comparisons in the charts, one concludes
that no simple functional relationship can be used to convert EBCDIC to ASCII
code or vice versa. Hence, the technique of constructing a translation table
should be understood.

Remember (or review) the description of the $TRAN table Tookup procedure.
Then, keep 1in mind one very important fact -- when a character 1is being
translated, its decimal value becomes the displacement by which the
appropriate translation character is found (the displacement is measured from
the first position in the table). Therefore, a translation table must contain
the "after translation characters" arranged in a sequence corresponding to the
decimal values of the "before translation characters."

For simplicity, consider the following application. A System 2200
receives numeric-only data in EBCDIC code (with no signs or decimal points).
The data is stored in a large array, B$(). A $TRAN statement converts the
data from EBCDIC to ASCII code prior to execution of other data processing
procedures, How is the translation table programmed?

Actually, one of several different translation tables can be wused for
such an application, as shown 1in the following summary. The summary
demonstrates how storage requirements for a translation table can be reduced
dramatically by wusing a mask in a $TRAN statement, when appropriate. Consider
the following facts: :

1. 1In Chart 2-2, the digits 0 through 9 are represented in EBCDIC by
(FO);¢ through (F9),,, i.e., by codes having decimal values ranging
from 240 through 249,

2. In Chart 2-1, the digits O through 9 are represented in ASCII by
(30); through (39)¢.

3. Combining the facts in (1) and (2), one concludes that the ASCII
code (30); must occupy position 241 in an EBCDIC to ASCII
translation table because the $TRAN table lookup procedure uses a
displacement equal to 240 every time it encounters an EBCDIC code

13

Chapter 2. $TRAN

(FO),6 1in the array B$(). Furthermore, the translation table must
have a minimum of 250 bytes to accommodate displacements as large as
249 when (F9),¢ codes are encountered in B$(). Since an array is
treated as a set of contiguous bytes by a $TRAN statement, the
translation table can be defined by a 25-element array with 10 bytes
per element. The first 240 bytes of the table can be filled with
null characters (00)1¢ and the last 10 bytes with the appropriate
ASCII characters, as illustrated by the following sequence:

10 DIM T$(25)10
20 INIT (00) T$()
30 T$(25) = HEX(30313233343536373839)

Then, assuming the EBCDIC data is stored in the array B$() prior to
Line 90 in the program, the following statement can be used to
translate the data into ASCII code:

90 $TRAN (B$(), T$())

However, a more efficient translation table can be developed, as
shown in (4).

4. If the mask (OF),s = (00001111), is used in the $TRAN statement,
each of the codes (F0),, through (F9);¢ becomes one of the codes
(00),¢ through (09),, before the displacement lookup procedure is
implemented. Since the masked codes (00),, through (09),. have
decimal values ranging from 0 through 9, a ten-byte translation
table 1is sufficient for this numeric-only application as illustrated
in the following sequence:

10 DIM T$10
20 T$ = HEX(30313233343536373839)

90 $TRAN (B$(),T$) OF

5. In some cases, a literal string can be wused instead of a HEX
function to define a translation table, e.g., the statement

20 T$ = "0123456789"

when executed by the System 2200, automatically storess the ASCII
codes HEX(30) through HEX(39) in the variable T$.

Now consider an application not restricted to conversion of numeric-only
EDCDIC data. Assume the System 2200 receives data in EBCDIC code, including
both control and graphic characters shown in Chart 2-2. If the data is stored
in the array X$(), the following statement can be used to translate the data:

$TRAN (x$(),T2$())
where T2$() is defined by Lines 100 through 260 in Chart 2-3.

14

Chapter 2. $TRAN

Next, consider an application requiring ASCII data stored in the array
Y$() to be translated into EBCDIC data prior to its transmission from a System
2200 to another system. For this application, the following statement can be
used:

$TRAN (Y$(),T1$())
where T1$() is defined by Lines 15 through 90 in Chart 2-3.

Observe in Chart 2-3 that the ASCII to EBCDIC translation table T1$() is
constructed by arranging EBCDIC codes in a sequence corresponding to ASCII
positions, Similarly, the EBCDIC to ASCII translation table T2$() is
constructed by arranging ASCII codes in a sequence corresponding to EBCDIC
positions.

Examples 2-2 and 2-3 demonstrate the use of translation tables where
ASCII codes are converted into other ASCII codes.

CHART 2-1. ASCII Code*

Low-order:

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
o 4-:::. 000 001 010 011 100 101 1.'0 111 000 001 010 011 100 101 110 111
order: digit
anite :?gxi-t 0 1 2 3 4 5 6 7 8 9 A B C D E F
TJUL SOH | STX | ETX | EOT | ENa | Ack | BEL BS HT LF vT | FE cR | sa]
0000) 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
DLE | DC1 |Dc2 | Dc3 [pDca | Nak | sYN [ETB | caNn | eMm | suB | Eesc | Fs Gs | ms us
0001 1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0010 2 Space] " # $ % & (ap’os.) () . + { r)| (dash) (pari.od) /
32 33 34 35 36 37 38 39 40 a1 42 a3 a4 a5 a6 a7
0011 3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
a8 a9 50 51 52 53 54 55 56 57 58 59 60 61 62 63
0100| & @ A B C D E F G H | J K L M N (o]
64 65 66| 67 68 69 70 71 72 73 74 75 76 77 78 79
oto1l sl Pl Q| R| S| Tl Uu|lv | w|x |vY |z ||\ 1|1 “‘::_:’.:;'
80 81 82 83 84 85 86 87 88 89 90 91 92 93 24 95
0110l 6 :;3. a b | ¢ d e f g |h i j k I m n o
26 97 98 99| 100] 101 102 103] 104 105] 106 107 108 109 110 113
o111 7 p q r s t u v w X y z { : } ~ | DEL
12] 1 14 11s{ 116 117] 18] 119 1200 121 122|123 124] 125] 126 127

*Numbers in the lower right corner of each box represent the decimal equivalent of the binary-and
the hexadecimal code for the character shown in the box, e.g., A = (41)4= (01000001}, = (65)40-

15

Chapter 2. STRAN

CHART 2-2. EBCDIC Code*

- : 1 1 1
Low or;!-ebr“s 000 000 001 001 010 010 011 011 100 00 01 01 110 110 111 111
igh, of %1 To| M| %| % To| M! O O1| To| T1| %0} 01| Mol Ny
order: hex-
digig|
_ hexs 0 1 2 3 4 5 6 7 8 9 A B Cc D E F
4-bits digit '
0000 0 | NuL | soH | sTx | ETX | PF | HT | LC | DEL RLF ! smm | vT | FF [cr | so | s
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0001 1 DLE DC1 DC2 DC3 RES NL BS 1L CAN EM cC iFS iGS IRS s
16 17 18 19 20 21 22 23 24 25 26 27 28| 29| 30 31
0010 2 DS SOS FS BYP LF ETB ESC SM ENQ | ACK BEL
32 33 34 35 36 37| 38 39 40 1 42 43 44 45 46 47
0011 3 SYN PN RS uc EOT DC4 NAK sus
48 49 50 51 52 63 54 55| 56 57 58 59 60 61 62| 63
0100 4 Space ¢ (period) < (+ |
64 65 66 67 68| 69 70 71 72| 73 74 " 75 76 77 78| 7
0101| 5 & ! $ *) ; -
80, 81 82 83 84 85| 86 87 88| 89 90, 91 92 93] 94 95
{dash) ' (N (under-
0110 6 || — | / N P T ?
96| 97| 98; 99, 100 101 102 103 104 105 10! 107| 108| 109 110 111
grave {apos.)
0111 7 accent | . # @ , - »
112 113 114 11d 116} 117 118 119 120 121 122 123 124 125 126 127
1000 8 a 4 b c d e f g h i
‘IZ_QL 12! 130 131 132 133 134 13_5i 136| 137 138, 139 140 141 142_f 143
1001| 9 i k | m n o p q r
144 145 146 147 148 149 150 151 152 153 154 155 156! 157 158 159
1010 A ~ H t u v w X Y 4
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
1011| B
17§ 177 178§ 172! 180 181 182 183 184 185 186 187 188 189 190, 191
1100| ¢ A B C D E F G H I
192 193] 194 195 196] 197| 198 199 200, 201 202 203 204 205 206 207
1101| D J K L M N o P Q R
208 209 210 211 212 213 214 215 216 217 218 219 220] 221 222 223
ol | N s Tl lu| v]| w| x| Y| 2z
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
1111 F 0 1 2 3 4 5 6 7 8 9
240 241 242 243 244 245 246‘ 247 248 249 250| 251 252] 253 254 255

*Numbers in the lower right corner of each box represent the decimal equivalent of the binary and
the hexadecimal code for the character shown in the box, e.g., A = (Cl}4 = (11000001}, = (193) 4.

16

—

Chapter 2. $TRAN

Chart 2-3. Translation Tables for ASCII to EBCDIC Conversion and Vice Versa

10 DIM T1$(8)16, T2$(16)16

15 REM USE T1$() IN $TRAN FOR ASCII TO EBCDIC CONVERSION
20 T1$(1)=HEX(00010203372D2E2F1605250B0OCODOEOF)
=HEX(101112133C3D322618193F2722003500)

=HEX (405A7F7B5B6C507D4D5D5C4E6B604B6T)
=HEX(FOF1F2F3F4F5F6F7F8F97A5EAC7EGEGF)

=HEX)
=HEX
=HEX

7CC1C2C3C4C5C6C7C8CID1D2D3D4D5D6
70 T1$
80 T1$
90 T1$
100 REM
110 T2%(
120 T2%(
130 T2$(
140 T2$(
150 T2$(
160 T2$(
170 T2$(
180 T2$(
(
(
(
(
(
(
(
(

)

)

)

) D7D8D9E2E3E4E5E6E7ESE900E000006D)

) 79818283848586878889919293949596)
)=HEX(979899A2A3A4A5A6A7ABA9CO6AD0OAT07)

USE T2$() IN $TRAN FOR EBCDIC TO ASCII CONVERSION
1)=HEX (000102030009007F0000000BOCODOEOF)
2)=HEX(10111213000008001819000000000000)
3)=HEX (00001C00000A171B0000000000050607)
4)=HEX (0000160000 1E0004000000001415001A
5
6
7
8
9
1
1
1
1
1
1
1

P~~~

(1
(2
(3
(4
60 T1$(5
(6
(7
(8

)=HEX (2600000000000000000021242A293B00
)=HEX(2D2F00000000000000007C2C255F3E3F)
)=HEX (000000000000000000603A2340273D22)
)=HEX (0061626 3646566676869000000000000)
0)=HEX (006A6B6C6D6E6F707172000000000000)

(

2 |
)=HEXg20000000000000000000002E3C282800;

(

(

190 T2%
200 T2%
210 T2%
220 T2%
230 T2%
240 128
250 T2%
260 T2%

1)=HEX(007E737475767778797A00000000000Q)
2)=HEX(00000000000000000000000000000000)
3)=HEX(7B414243444546474849000000000000)
4)=HEX (7D4A4B4C4DAEAF505152000000000000)
5)=HEX(5C00535455565758595A000000000000)
6)=HEX (30313233343536373839000000000000)

Example 2-1. Character Replacement Using $TRAN

Assuming data has been stored in A$ by program logic executed prior to
Line 100, the following sequence replaces each HEX(11) code in A$ by a HEX(OD)
code and replaces each HEX(07) code by a HEX(00) code. The list of codes
defining the conversion is assigned to L$ in Line 100. As required, the list is
terminated by a pair of space characters.

100 L$=HEX(0D1100072020)
110 $TRAN (AS$, L$) R

17

Chapter 2. $TRAN

Example 2-2. Extracting the Low-order Hexdigit from ASCII Codes

The following program sequence ‘"extracts" the low-order hexdigit
from the hexadecimal notation for each ASCII character stored in X$ by
employing a technique based on these considerations:

a) In hexadecimal notation, each character is of the form (h;hy)¢, where
h; represents the high-order hexdigit and horepresents the low-order
hexdigit.

b) If a character of the form (hijhz)16is ANDed with the character (0OF)i¢=
(00001111), , the result is a character of the form (Ohz)16 whose
equivalent decimal system value is one of the sixteen integers in the
range from 0 through 15 inclusive, depending upon.which hexdigit
h, actually corresponds to the original character. Thus, only sixteen
unique characters are required in a translation table. Furthermore,
these characters can be the sixteen symbols used in the hexadecimal
number system, i.e., 0 through 9 and A through F.

10 T$="0123456789ABCDEF"
20 X$="*GO#"

30 HEXPRINT X$

40 $TRAN (X$, T$) OF

50 PRINT X$

:RUN
2RA474F23
A7F3

In Line 10, a table containing the characters corresponding to the sixteen
hexadecimal symbols (called hexdigits) is assigned to T§. In Line 20, a sample
set of ASCII characters is stored in X$ to demonstrate the effect of the actual
$TRAN operation when the program is run. Upon execution, Line 30 prints the
hexadecimal notation for each byte stored in X$ prior to the translation
operations. In Line 40, the mask (OF);¢=(00001111).causes the four high-order
bits in a byte to be replaced by zeros before the displacement for the table
lookup procedure is calculated.

Originally, the first byte of X$ is an asterisk character whose code is
(2A)16 = %00101010)2; after the logical AND operation' with the mask (OF);¢, the
result is (00001010),. The decimal equivalent of the resulting code is 10 which
becomes the displacement for the table lookup procedure. The displacement moves
the invisible pointer from the first to the eleventh position in the T$ table,
where the character A is located; hence, the character A replaces the asterisk
as the first byte in X$. The process continues with the second byte of X$ which
is translated from the character "G" = (47)1¢ to the character "7" by the same
procedure.

18

Chapter 2. $PACK and SUNPACK

Example 2-3. Using $TRAN When Testing Single Character Input

Assume an operator inputs a single character to indicate a desired
procedure, e.g., S = save, L = load, E = edit, I = insert, D = delete. The
following sequence tests the input character and branches to the corresponding
procedure.

100 DIM A$1, T$12

110 T$="1S2L3E415D"

120 INPUT "OPTION DESIRED--S,L,E,I,D",A$

130 $TRAN (A$,T$)R

140 ON VAL(A$) - 48 GOTO 500,600,700,800,900
150 PRINT "INVALID. REENTER"

160 GOTO 120

2.2 THE $PACK AND $UNPACK STATEMENTS

As their names imply, the $PACK and $UNPACK statements implement inverse
operations. The operations are completely independent of each other (one
operation can appear in a program without the other operation). However, a
general programming practice is recommended for those cases where data
previously packed by a $PACK statement is subsequently unpacked by a $UNPACK
statement; in such cases, the $UNPACK argument 1ist should be identical in
format to the $PACK argument 1ist -- the formats are identical if the number,
type, and sequential order of the variables match (names may differ).

A $PACK statement sequentially transfers data from one or more arguments
in an argument 1ist and stores the data in a specified buffer according to a
prescribed format, i.e., a delimiter format (if the parameter D is specified), a
field format (if the parameter F is specified), or the standard record
format (if neither D nor F is specified). A $PACK operation can be
particularly useful for gathering and formatting data in a large buffer area
prior to outputting the data to a peripheral device capable of receiving large
quantities of data rapidly. (The actual output operation must be controlled
by another BASIC language statement such as DATASAVE BT or a customized $GIO
output operation.)

A $UNPACK statement separates data in a formatted buffer (according to a
prescribed delimiter, field, or the standard record format) and sequentially
transfers the data to one or more arguments in an argument 1ist. A $UNPACK
operation can be particularly useful for separating and distributing data
previously received from a peripheral device and stored in a large . buffer area
by a customized $GI0 input operation or a DATALOAD BT operation.

The syntax for all three forms of the $PACK and $UNPACK statements is
given in this section. The delimiter form for both statements is described in
detail, including examples, 1in Section 2.3; the field form is described in
Section 2.4; the standard Wang record form is described in Section 2.5.

19

$PACK, SUNPACK

where:

General Forms:

$PACK [(D=a1pha)] alpharg FROM argument-1ist

F=alpha

$UNPACK [(D=a1pha)] alpharg TO argument-list

F=alpha

D = the delimiter format parameter.

F = the field format parameter.

alpha-array-designator

alpha ={a1phanumeric-variab1e } = the format specification variable.

alpha-array-designator
alpha-array-designator <s,n>

alpharg =) STR-function } = the data buffer (the "record").

{a]phanumeric—variab]e

argument-
list = one or more arguments, separated by commas, with

numeric-variable
numeric-array-designator
each argument = < alphanumeric-variable
STR-function
alpha-array-designator

If neither D nor F is specified in an actual statement, the standard
Wang record format is implied.

If the specified buffer for a $PACK or $UNPACK operation is an
alphanumeric array with or without an alpha-array-modifier, the
dimensions of the array must be specified in a DIM or COM statement
earlier in the program logic. (Also, the dimensions of any arrays
included in the argument-list must be specified.)

The data buffer size can be a critical consideration. For $PACK
operations, the buffer size must not be too small to hold all the data
from the argument list plus delimiter characters, if .any, or control
bytes (used in the standard record format). On the other hand, for
some delimiter form $UNPACK operations, buffer size is not a critical
consideration (see Section 2.3); for other forms of the $UNPACK
operation, buffer size can be critical.

See Section 1.3 for a discussion of the alpha array modifier <s,n> .

20

Chapter 2. $PACK and $UNPACK
(Delimiter Form)

2.3 THE DELIMITER FORM FOR $PACK AND $UNPACK OPERATIONS

When denoting the delimiter form for a $PACK or $UNPACK operation, a
delimiter specification variable must be assigned to the parameter D, as shown
in the following examples of valid syntax.

$PACK (D=P$) B$() FROM X(),Y$
~—— ——

» buffer to receive data
- delimiter specification variable
»delimiter parameter

’ ' L variables having data to be packed

$UNPACK (D=U$) C$() TO X,Y,Z

’ (—>variab1es to receive data

p buffer having data to be unpacked
» delimiter specification variable
» delimiter parameter

‘The Delimiter Specification Variable

Prior to execution of a delimiter form $PACK or $UNPACK statement, a
value must be stored in the delimiter specification variable by execution of
another BASIC language statement (see Examples 2-4 through 2-6). Since the
delimiter specification value must be a two-byte code of the form shown in
Table 2-1, a minimum of two bytes must be stored in the designated delimiter
specification variable; any additional bytes are ignored by the system,

Observe in Table 2-1 that the second byte in a delimiter specification
code defines the delimiter character. Only one character can be defined as a
delimiter for a particular $PACK or $UNPACK operation, e.g., the code (002C);¢
specifies a comma as the delimiter since the second byte is (2C);¢ which
represents a comma. See Appendix C. The specified delimiter is inserted
automatically between sequential data values during a $PACK operation, or is
recognized as the boundary for a data value during a $UNPACK operation.

As shown in Table 2-1, the first byte in a delimiter specification code
must be (00)31¢, (01)16, (02);6 or (03);4. For a $PACK operation, any one of
the four codes is equally suitable since the first byte is not utilized by the
system when executing a $PACK statement but is needed to satisfy the syntax.
On the other hand, the first byte determines the particular processing
procedure used by the system when executing a $UNPACK statement.

21

Chapter 2. $PACK and SUNPACK

(Delimiter Form)

Table 2-1. Valid Delimiter Specification Codes in Hexadecimal Notation

Two-byte Effect of First Effect of First Byte
Code* Byte for $PACK for $UNPACK Operations
00hh none 1. Display error message when data is

insufficient for the next variable
: in the T1ist.
2. Skip a variable in the list for each
successive delimiter in the record.

0Thh

none 1. Ignore remaining variables when
data is insufficient for the next
argument in the list.
2. Skip a variable in the 1ist for each
successive delimiter in the record.
02hh none 1. Display error message when data is
insufficient for the next variable
in the Tlist.
2. Ignore successive delimiters in the
record.
03hh none 1. Ignore remaining variables when data

is insufficient for the next
variable in the 1ist.

2. Ignore successive delimiters in the
record.

*hh = a two-hexdigit-code defining the actual delimiter character for a

particular
delimiter.

$PACK or $UNPACK operation, e.g., hh=2C denotes a comma as the

Features of a Delimiter Form $PACK Operation

1.

2.

A specified portion of a buffer is packed if an alpha array modifier
is included in a $PACK statement.

The buffer for a $PACK operation is not cleared before the operation
begins. In applications where undesirable data and delimiters may
arise from reuse of a buffer, initialization of the buffer by an
INIT statement may be advisable prior to execution of the $PACK
statement.

Data from each argument in the argument list is packed in the buffer
sequentially with insertion of the specified delimiter between data
corresponding to successive variables. See Figure 2-1.

If the argument list contains an array, a delimiter s inserted
between data corresponding to successive elements. Data from a
two-dimensional array are packed element by element, row by row
sequentially.

22

Chapter 2. $PACK and SUNPACK
(Delimiter Form)

5. No delimiter follows the last data value packed in the buffer.

6. Data from an alphanumeric variable is packed as shown in Figure 2-2.
The number of bytes packed, including any trailing spaces, equals
the dimensioned length of the variable (default value=16).

7. Data from a numeric variable 1is packed in a fixed point or a
floating point format, depending on the magnitude of the value, as
shown in Figure 2-3. A1l sign codes, the character E which denotes a
floating point value, and the digits 0 through 9 are packed in the
buffer using 8-bit ASCII codes shown in Appendix C. A fixed point
value may occupy as few as two bytes or up to 15 bytes (leading and
trailing zeros are omitted). A floating point value is packed in
scientific notation occupying 15 bytes.

8. If the buffer is too small to hold the data correspondin to the
next variable in the argument list, an error message %Code 97) is
displayed. ‘

9. If the buffer is Tlarge enough to hold all data values and

delimiters, a delimiter form $PACK operation terminates after data
from the last variable is stored in the buffer.

Alternative Processing Procedures for Delimiter Form $UNPACK Statements

The unpacking procedures listed in Table 2-1 represent all possible
combinations of two alternative processing procedures for each of two buffer
conditions which might arise during a $UNPACK operation.

For applications where the buffer being unpacked may contain
insufficient data to supply the next receiving variable in the argument 1list,
the following alternatives are available:

1. Display an error message, thereby stopping program execution until
suitable program modifications are made.

2. Ignore the remaining receiving variables (letting them retain their
current values) and continue program execution with the next
statement.

For applications where the buffer being unpacked may contain successive
delimiters between a pair of data values, the following alternatives are
available:

1. Ignore the successive delimiters and transfer the next data value to
the receiving variable currently being processed.

2. Skip one receiving variable in the argument 1ist for each successive
delimiter (letting skipped variables retain their current values).

Since both buffer conditions (successive delimiters and insufficient data) may
occur during execution of a particular $UNPACK statement, a programmer should
refer to Table 2-1 to determine which delimiter specification code corresponds
to the desired processing procedure for the application being programmed.

23

Chapter 2. SPACK and $UNPACK

(Delimiter Form)

Features of a Delimiter Form $UNPACK Operation

.ID

2,

A specified portion of a buffer 1is unpacked if an alpha array
modifier is included in a $UNPACK statement.

In general, when a buffer is being unpacked, data up to (but not
including) the designated delimiter is stored in the next receiving
variable in the argument 1ist. However, if the receiving variable
is numeric and the data is not a legal representation of a BASIC
number, an error message (Code 20) is displayed.

When a delimiter is followed by one or more additional delimiters as
gshown schematically 1in Figure 2-4, the system ignores the successive
delimiters if the delimiter specification code for the operation is
of the form (02hh);g or (03hh);g, or the system skips one receiving
variable for each successive delimiter if the code is of the form
(00hh),¢ or (01hh);5. See Table 2-1.

When the buffer contains insufficient data to supply the next
receiving variable, the system -dignores all remaining receiving

~variables if the delimiter specification code is of the form (01hh);g

or (03hh);s , or the system displays an error message (Code 97) if
the code is of the form (00hh);g or (02hh);g.

Data bounded by a delimiter is acceptable for wunpacking to an
alphanumeric receiving variable if formatted as shown in Figure 2-5.
Any 8-bit code except the specified delimiter code can be unpacked;
however, the number of bytes actually transferred equals either the
number of bytes in the buffer up to the delimiter or the dimensioned
length of the receiving variable, whichever is smaller.

Data bounded by a delimiter is acceptable for unpacking to a numeric
receiving variable if formatted as shown in Figure 2-6. Any numeric
value in the range from 10-°% to 10*!00 (exclusive of the upper end
point of the range) can be unpacked for storage in a numeric
variable if its format duplicates any form acceptable by the system
for entry via the keyboard.

A delimiter form $UNPACK operation, if not prematurely terminated by
an error message, terminates when either the buffer is empty or the
entire argument 1ist is satisfied.

Additional Examples of Valid Syntax for $PACK and $UNPACK

$PACK (D=STR(D$,4,2)) Q$() FROM X,Y,Z(1)
$PACK (D=D$) B$()<5, 100> FROM X()

$UNPACK (D=STR(Q$,3,2)) X$() TO X,Y,Z(1,2)
$UNPACK (D=M$) A$() <M,N> TO P()

24

Chapter 2. S$PACK and S$UNPACK
(Delimiter Form)

data | DEL | data | DEL| data| DEL| ... data

where:

DEL = delimiter byte (any specified 8-bit code),
data = alphanumeric or numeric value (see Figure 2-2 and 2-3).

Figure 2-1. $PACK Delimiter Formatted Data Buffer

» As many bytes as the dimensioned 1length of
the alphanumeric variable (trailing spaces
added, if necessary).

where:

c = any 8-~bit code, except the specified delimiter code.

Figure 2-2. $PACK Delimiter Formatted Data from an Alphanumeric Variable

25

Chapter 2. $PACK and $UNPACK
(Delimiter Form)

Data from a numeric variable is packed in the buffer in a fixed
point format or a floating point format, depending upon the magnitude,
i.e., the absolute value, |Q]| .

+13
Fixed Point Format if .1'=|Q| <10

» Up to 13 digits (leading and trailing
zeros omitted). The decimal point =
(2E),¢ 1is in the proper position or
is omitted if Q is an integer.

Sign of the value: minus = (2D),¢ if
Q<0; blank = (20}, if Q20.

!

Floating Point Format if 10799 < |Q] <.1, or if 10%13 < |Q| <10+100

s|d|.|d|d|d|d|d|d|d|d|E|s!|d|d
/—/

Two exponential digits.

Sign of exponent: minus=(2D),4;
plus=(2B)¢. ‘
Code denoting exponential format,
E=(45)16'

Eight digits including trailing
zeros.

Decimal point = (2E);,.

Non-zero leading digit.

Sign of value: minus=(2D),q if
Q<0; blank=(20),, if Q0.

F;
YYY ¥ l

where, in either format,

d = any decimal digit (0 through 9) stored as an 8-bit ASCII character of
the form (3h);5, where "h" is any hexdigit 0 through 9. See Appendix
C.

Figure 2-3. $PACK Delimiter Formatted Data from a Numeric Variable

26

Chapter 2. $PACK and $UNPACK
(Delimiter Form)

data | DEL | data | DEL { DEL | DEL | data [DEL| ... |data

where:

DEL = delimiter byte (any specified 8-bit code).
data = alphanumeric or numeric value (see Figures 2-5 and 2-6).

Figure 2-4. Delimiter Formatted Data Buffer Suitable for
$UNPACK Operations

clcic c
N ~" v
l P The number of bytes unpacked equals the
number of bytes up to the delimiter character,
or the dimensioned length of the alphanumeric
variable, whichever is smaller.
where:

¢ = any 8-bit code, except the delimiter code.

Figure 2-5. Delimiter Formatted Data Suitable for Unpacking to an Alphanumeric
Variable

27

Chapter 2. 8PACK and SUNPACK
(Delimiter Form)

ASCII free format numbers with magnitude from 10 -99 to 10+100 (excluding

the value 10"°%9) can be unpacked from the buffer if the number format is
acceptable to the system for keyboard entry. Any 1leading, trailing,
and/or embedded spaces are ignored. The following fixed and floating
point formats are acceptable (digits, decimal points, signs and E must be
ASCII codes shown in Appendix C).

sid|{d}...|]d|l.|d}]...|d Fixed Point Format

Y

» Up to 13 digits (including any
leading and trailing zeros) and
an optional decimal point.

»-Sign: plus, minus, or none.

s|d|d}.|d|...|d|E|s|d|d| Floating Point Format*

One or two digits denoting the

power of ten.

Sign of exponent: plus, minus,

or none.

L y».Character denoting floating point

format.

p-Up to 13 digits and an optional
decimal point.

_ - Sign of the value: plus, minus,
or none.

*If unpacking into numeric arrays, this format is restricted to numbers
whose exponents are < 10 in magnitude; no such restriction applies if
unpacking numbers to specific numeric array elements.

Figure 2-6. Delimiter Formatted Data Suitable for Unpacking to a Numeric
Variable

Example 2-4. A Delimiter Form $PACK Operation

The following program packs the values currently stored in the
variables X, A$, and Y into the delimiter formatted record B$ with the
specified delimiter character (a comma) separating each value from the
successive value.

100 DIM B$30, A$5

110 A$ = "ABC": X = -12: Y = 4.56E-18
120 D$ = HEX(002C)

130 $PACK (D=D$) B$ FROM X, AS$, Y

140 PRINT "B$="; B$

:RUN ‘

B$=-12,ABC , 4.56000000E-18

28

Chapter 2. S$PACK and $UNPACK
(Delimiter Form)

Example 2-5. A Delimiter Form $UNPACK Operation

The following program unpacks the five numeric data values,
currently stored in the B$ record with commas (the specified delimiter
character) as separators, and stores the values in the variables A,B,C,D and E.

10 DIM B$24

20 B$ = "123, -.4567,0,+5,.009"
30 D$ = HEX(002C)

40 $UNPACK (D=D$) B$ TO A,B,C,D,E
50 PRINT A;B;C;D;E

:RUN

123 -.4567 0 5 9.00000000E-03

Example 2-6. A Delimiter Form $UNPACK Operation with Three Variations

The delimiter formatted record B$ contains three alphanumeric data
values separated, as shown schematically, by one or more delimiters
(defined to be a space character).

B§ = | A{B]|C D|E|F G{H|I

200 DIM B$12

210 B$ = "ABC DEF GHI"

220 D$ = HEX(0320)

230 $UNPACK (D=D$) B$ TO W$, X$, Y$, Z$

240 PRINT"W$=";W$, "X$=";X$, "Y$=";Y$, "2$=",;Z$
:RUN

W$=ABC X$=DEF Y$=GHI 7%=

Now, if Line 220 is changed as follows:
220 D$ = HEX(0020)
and the program is run a second time, the result becomes

:RUN
W$=ABC X$=DEF Y$= Z$=GHI

Furthermore, if Line 220 is changed as follows:
220 D$ = HEX(0220)

and the program is run a third time, the result becomes
:RUN

40 $UNPACK (D=D$) B$ TO W$, x$, Y$, Z$
+ERR 97

29

Chapter 2. $PACK and S8UNPACK
(Field Form)

The first time the program in Example 2-6 is run, the first byte stored in
the delimiter specification variable D$ is (03)16. The second time the program
is run, the first byte stored in D$ is (00)16. The third time the program is
run, the first byte stored in D$ is (02)16. Therefore, as indicated in Table
2-1, the unpacking procedures during execution of Line 230 are different in the
three variations of the program. Even though the data in B$ is insufficient for
the four arguments specified in the argument list, the fourth argument and the
extra delimiter character are ignored in the first unpacking procedure. In the
second procedure, the argument Y$ is skipped when the extra delimiter character
is encountered, In the third procedure, an error message is displayed; however,
data is unpacked until the error condition arises.

2.4 THE FIELD FORM FOR $PACK AND $UNPACK OPERATIONS

When denoting the field form for a $PACK or $UNPACK operation, a field
specification variable must be assigned to the parameter F as shown in the
following examples of valid syntax.

$PACK (F=F$) B$() FROM Y$(),Z
~—— ~——

L_> variables containing data to be
packed
buffer to receive data
field specification variable
field parameter

Yvy

$UNPACK (F=G$) A$() TO M,N,Q$()
— ———
I variables to receive data
buffer containing data to be unpacked
field specification variable

field parameter

VVVl—

The Field Specification Variable

The value stored in a field specification variable prior to execution of a
$PACK or $UNPACK operation must provide as many two-byte codes of the form
shown in Table 2-2 (not counting any "skip field" codes) as the number of
arguments in the argument list. See Examples 2-7 through 2-11.

Observe in Table 2-2 that the first byte of each field specification
code defines the field type, e.g., the code (A0) indicates an alphanumeric
field. Codes are available to denote five different types of numeric fields.
The code (00)16 indicates that a field is to be skipped.

As shown in Table 2-2, the second byte in each field specification code
denotes the field width in hexadecimal notation. For an array, the field
width is defined as the width of each element (not the width of the array as a
set of contiguous bytes) since arrays are packed or unpacked
element-by-element.

30

Chapter 2. $PACK and $UNPACK
(Field Form)

Table 2-2. Valid Field Specifications in Hexadecimal Notation

Two-byte :

Code Field Type, Denoted by First Byte Remarks
00hh Skip the number of bytes denoted by the field width

10hh Numeric field in ASCII free format See Fig. 2-9
2hphh Numeric field in ASCII implied decimal format See Fig. 2-10
3h,hh Numeric field in IBM display format See Fig. 2-11
4h,hh Numeric field in IBM USASCII-8 format See Fig. 2-12
5h,hh Numeric field in IBM packed decimal format See Fig. 2-13
AOhh Alphanumeric field See Fig. 2-8

*hh = a two-hexdigit-code whose equivalent decimal system value is the
field width, e.9., (32)16 = (50);9 = a fifty byte field width. For
an array, the second byte of its field specification code must define
the field width for each element of the array (not the entire array).

h = the Tow-order hexdigit whose equivalent decimal system value defines

P the implied decimal point position, measured from the right side of the
field, e.g., hy = 3 means an implied decimal position three places
from the right, h = B means an implied decimal position eleven places
from the right.

The $PACK statement at the beginning of Section 2.4 requires two field
specification codes for F$ since the argument 1ist includes the alphanumeric
array Y$() and the numeric variable Z. Now, suppose

F$ = HEX(A018100D)

then
(R018),¢ = the field specification for each element of Y$(), where (AO),,
denotes an alphanumeric field type, and (18);,= (24),, denotas
a 24-byte field width.
(]OOD)IG =

the field specification for Z, where (10),. denotes a numeric
field in ASCII free format, and (0D),¢ = tQ3)10 denotes a 13-
byte field width.

Or, suppose F$ = HEX(A0180007100D), then a 7-byte field width would be skipped

between the value packed from the last element of Y$() and the value packed
from Z.

31

Chapter 2. $PACK and $UNPACK
(Field Form)

Similarly, the $UNPACK statement requires three field specification
codes for G$ since the argument list includes the numeric variables M and N
followed by the alphanumeric array Q$(). Now, suppose

G$ = HEX(510B2509A025)

then

(510B)16 = the field specification for M, where (51)1s denotes an IBM
packed decimal numeric field with an implied decimal
position one place from the right, and (0B); = (11);0denotes
an 11-byte field width.

(2509 16 = the field specification for N, i.e., a 9-byte numeric field in
ASCII implied decimal format with the decimal position five
places from the right.

(A025 16 = the field specification for Q$(), i.e., each element is a

37-byte alphanumeric field.

Notes:

1. The number of two-byte codes stored in the field
specification variable (not counting any skip field
codes) must equal the number of arguments in the
argument 1list of a $PACK or a $UNPACK statement. If
not, an error message (Code 97) 1is displayed during
execution. Remember, however, that each array requires
only one field specification to define the type and
width of every element in the array since an array is
always packed or unpacked element-by-element.

2. Each field type code in the field specification value
must match the corresponding alphanumeric/numeric
variable type in the argument 1ist. If not, an error
message (Code 43) is displayed during $PACK or $UNPACK
execution.

3. Conversion of numeric data to (or from) up to five
different field types can be performed automatically
when a buffer is packed (or unpacked) by a field form
$PACK (or $UNPACK§ statement.

Features of a Field Form $PACK Operation

1. A specified portion of a buffer is packed if an alpha array modifier
is included in a $PACK statement.

2. The buffer is not cleared before the packing operation begins. In
applications where undesirable data may arise from reuse of a buffer,
initialization of the buffer by an INIT statement may be advisable
prior to execution of a $PACK statement.

32

Features

Chapter 2. $PACK and $UNPACK
(Field Form)

Data from each variable in the argument 1ist is packed in the
buffer sequentially, according to the specified field type and
width for the argument being packed. See Figure 2-7. If the
field type code is numeric when the argument is alphanumeric or
vice versa, an error message (Code 43) is displayed.

Data from an alphanumeric variable is packed as shown
schematically in Figure 2-8.

Data from a numeric variable is converted automatically from the
8-byte (packed decimal) internal format used in the system memory to
the format specified by the field type code. The five valid field
types are shown schematically in Figures 2-9 through 2-13.

If the buffer is too small to hold the data corresponding to the next
variable 1in the argument 1ist, an error message (Code 97) is
displayed.

If the buffer is large enough to hold all data values, a field

form $PACK operation terminates after data from the last variable is
stored in the buffer.

of a Field Form $UNPACK Operation

.I.

A specified portion of a buffer is unpacked if an alpha array modifier
is included in a $UNPACK statement.

When a buffer is being unpacked, each successive data value is
recognized as the number of contiguous characters corresponding to the
specified field width of the next receiving variable. See Figure 2-7.

If the specified field type 1is numeric when the next receiving
variable is alphanumeric or vice versa, an error message (Code 43) is
displayed.

When an alphanumeric field is unpacked to an alphanumeric variable,
the number of bytes stored in the variable equals the field width or
the dimensioned length, whichever is smaller. See Figure 2-8.

When a numeric field is unpacked to a numeric receiving variable, the
data is converted automatically from the specified field type to the
8-byte packed-decimal format used in the system memory. If the data
contains an illegal character, an error message (Code 20) is
displayed. The five valid field types are shown schematically in
Figures 2-9 through 2-13.

A field form $UNPACK operation, if not prematurely terminated by an

error message, terminates when either the buffer is empty or the
entire argument 1list is satisfied.

33

Chapter 2. $PACK and $UNPACK
(Field Form)

field 1 | field 2 | field 3 | ... | field n

Note: Each field represents an alphanumeric or numeric
variable (or an array element) formatted according
to the field type (see Figures 2-8 through 2-13).

Figure 2-7. Field Formatted Data. Buffer

clc|c c
N - J/

»As many bytes as the specified field width.
where:

c = any 8-bit code (one byte).

Figure 2-8. Alphanumeric Field Format, Denoted by Codes of the Form AOhh

34

Chapter 2. $PACK and SUNPACK
(Field Form)

ASCII free format numbers with magnitude from 10™2%9to 10*109(exclusive of
the upper end point) can be unpacked from the buffer if the number format
is acceptable to the system for keyboard entry. Any 1leading, trailing,
and/or embedded spaces are ignored. The following fixed and floating
point formats are acceptable (digits, decimal points, signs and E must be
ASCII codes shown in Appendix C).

s|djd|... |d|.|d]...]|d Fixed Point Format

» Up to 13 digits (including any
 leading and trailing zeros) and
an optional decimal point.

- Sign: plus, minus, or none.

s{djd{.{d|...|d|E|s|d|d | Floating Point Format

Ly One or two digits denoting the
power of ten.
Sign of exponent: plus, minus,
or none.
———» Character denoting floating point
format.
Up to 13 digits and an optional
decimal point.
Sign of the value: plus, minus,
or none.

\

\

Figure 2-9. Numeric Field in ASCII Free Format, Denoted by
Codes of the Form 10hh

35

Chapter 2. $PACK and S$UNPACK

(Field Form)

s|d|d|d]|... {d Note: Each byte, except the first one,
— represents a significant decimal
Y digit in the value. The first

byte represents the sign. No
decimal point is stored.

» As many bytes as the field width.
where: '

wn
It

a re?ui;ed sign, stored as an ASCII plus or minus; + = (2B);gand
- = (2D)16.
= any decimal digit (0O through 9), stored as an ASCII code of the
form (3h)16.

a
i

Figure 2-10. Numeric Field in ASCII Implied Decimal Format,
Denoted by Codes of the Form 2hphh

(Fh)IG (Fh)16 (Fh)16 e (Fh)16 (h h)16 Note: Each byte, except the last

one, is a code of the form

(Fh);grepresenting one

decimal digit in the number.
The last byte contains the
sign code as the high-order

hexdigit.
where:
F = the high-order hexdigit,
h = a low-order hexdigit (0 through 9, only), representing any decimal digit.
hS = a hexdigit representing the sign of the number; C = +, D = - for a $PACK

operation. For $UNPACK, Bor D = -, and A,C, or E = +,

Figure 2-11. Numeric Field in IBM Display Format, Denoted by
Codes of the Form 3hphh

36

Chapter 2. S$PACK and $UNPACK
(Field Form)

(5h)16 | (5h)16 | (5h)¢ (hsh)ls Note: Each byte, except the last
one, is a code of the form
(5h),grepresenting one
decimal digit in the
number. The last byte
contains the sign code as
the high-order hexdigit.
where:
5 = the high-order hexdigit.
h = a low-order hexdigit (0 through 9, only), representing any decimal
digit.
hg = a hexdigit representing the sign of the number; A = +, B = - for a
$PACK operation. For $UNPACK, B or D = -, and A,C, or E = +,

Figure 2-12.

Numeric Field in IBM USASCII-8 Format, Denoted by
Codes of the Form 4hphh

hh | hh

hh

hh

where:

Note:

Each byte, except the last one, contains
two hexdigits representing two decimal
digits in the number (thereby
conserving memory by requiring only a
half-byte per decimal digit).

h = a hexdigit (0 through 9, only), representing any decimal digit stored
as half a byte.

Pg = a hexdigit representing the sign of the number; C = +, D
For $UNPACK, B or D = -, and A,C, or E

$PACK operation.

- for a
+.

Figure 2-13.

by Codes of the Form 5hphh

37

Numeric Field in IBM Packed Decimal Format, Denoted

Chapter 2. $PACK and $UNPACK
(Field Form)

Example 2-7. A Field Form $PACK Operation

The following program demonstrates how values from an alphanumeric
variable and two numeric variables are packed into the B$ record,
according to a prescribed field format.

10 DIM B$15

20 A$ = "ABC": X = -12: Y = +1.2345
30 F$ = HEX(A00520051005)

40 $PACK (F=F$) B$ FROM A$, X, Y

50 PRINT “B$="; B$

:RUN

B$=ABC -0012 1.23

Example 2-8. A Field Form $PACK Operation, Illustrating Data Conversion to
Several Different Numeric Field Formats

The following program demonstrates how numeric data can be converted to a
specified numeric field format during a $PACK operation. For simplicity, the
argument 1ist contains only one numeric variable X whose current value is to be
packed in the record B$, according to a prescribed field format. The dimension
of B$ is the default length 16 bytes.

10 X = 12.345

20 F$ = HEX(T00A) (See Table 2-2 and Figure 2-9.)
30 $PACK (F=F$) B$ FROM X

40 PRINT "B$ IN HEXADECIMAL NOTATION:"

50 HEXPRINT B$

60 PRINT "B$="; B$

:RUN

B$ IN HEXADECIMAL NOTATION:

2031322E333435202020202020202020

B$=12.345

In the above result, a space character is stored in the first byte of B$§. The
decimal digit 1 dis stored in the second byte of B$ as the ASCII 8-bit code
(31he . The decimal point is stored in the fourth byte of B$ as the ASCII code
(2Ehe . A1l sixteen bytes of B$ are shown in hexadecimal notation when Line 50
is executed.

Now, if Line 20 is changed as follows:

20 F$ = HEX(240A) (See Table 2-2 and Figure 2-10.)
and the program is run a second time, the result becomes

:RUN

B$ IN HEXADECIMAL NOTATION:

2B303030313233343530202020202020

B$=+000123450 (Implied decimal point four digits
from the right.)

38

Chapter 2. $PACK and $UNPACK
(Field Form)

If Line 20 is changed as follows:

20 F$ = HEX(3305) (See Table 2-2 and Figure 2-11.)
and the program is run a third time, the result becomes

:RUN

B$ IN HEXADECIMAL NOTATION:

F1F2F3F4C52020202020202020202020

B$=QRSTE (Ignore this result; non-Wang codes
should not be printed.)

If Line 20 is changed as follows:

20 F$ = HEX(4206) (See Table 2-2 and Figure 2-12,)
and the program is run a fourth time, the result becomes

:RUN

B$ IN HEXADECIMAL NOTATION:

5050515253A420202020202020202020

B$=PPQRS$ (Ignore this result; non-Wang codes
should not be printed.)

If Line 20 is changed as follows:

20 F$ = HEX(5506) (See Table 2-2 and Figure 2-13.)
and the program is run a fifth time, the result becomes

:RUN

B$ IN HEXADECIMAL NOTATION:

00001234500C€20202020202020202020

If Line 20 is changed as follows:

20 F$ = HEX(AO010) (See Table 2-2 and Figure 2-8.)

and the program is run a sixth time, an error code is printed since a numeric
value cannot be packed in an alphanumeric field format.

:RUN
30 $PACK (F=F$) B$ FROM X

4+ ERR 43
If Line 20 is changed as follows:
20 F$ = HEX(2304)

an error code (#ERR 56)is printed, when the program 1is run, since the field
width is too small to hold the value.

39

Chapter 2. $PACK and $UNPACK
(Field Form)

Example 2-9. A Field Form $UNPACK Operation

The following program unpacks the buffer B$, according to a
field format, and successively stores each field in the variables specified in

the argument Tlist.

90 DIM B$37

95 B$="J. SMITH M5.80130 1234,5689"

100 FS=HEX (AO0AA001100710031010)

110 $UNPACK(F=F$) B$ TO A$, C$, X,Y,Z

120 PRINT A$, C$, X, Y,Z

:RUN ‘

J. SMITH M 5.8013 1
234.5689 ‘

Example 2-10. A Field Form $UNPACK Operation, Specifying Several
Numeric Formats

10 DIM B$21
20 B$ = "+12345678901234567890"
30 F$ = HEX(2015)
40 $UNPACK (F=F$) B$ TO X
50 PRINT X
:RUN
1.23456789E+19

Now, change Line 30 and run again.

30 F$ = HEX(2206)
:RUN
123.45

Now change Line 30 and run again.

30 F$ = HEX(1010) \
:RUN
40 $UNPACK (F=F$) B$ TO X

4+ ERR 20

Example 2-11. A Field Form $UNPACK Operation with Data Conversion

10 B$ = HEX(51525354A5)
20 F$ = HEX(4005)
30 $UNPACK (F=F$) B$ TO X
40 PRINT X

:RUN

12345

40

specified

2,5 THE_STANDARD RECORD

Chapter 2. $PACK and SUNPACK
(Standard Record Form)

FORM_FOR $PACK AND $UNPACK OPERATIONS

When neither the parameter D nor the parameter F is included in a $PACK or
$UNPACK statement, the system packs or unpacks data according to the standard
System 2200 record format shown schematically in Figure 2-14. The same format
is used by the DATASAVE statement for cassette operations, and by the DATASAVE
DC or DATASAVE DA statements for disk operations.

Control bytes
et N

E

data | SOV { data | ... SOV | data| EOB

Sov
EOB
data

start-of-value byte
end-of-block byte
alphanumeric or numeric values (see Figures 2-15 and 2-16).

Figure 2-14. Standard Record Formatted Data Buffer

The control bytes, the SOV bytes, and the EOB bytes in the standard record
format are described as follows:

1. Control bytes

2. SOV bytes

3. EOB byte

For $PACK and $UNPACK operations, the only relevant
information about control bytes is the fact that two
such bytes mark the beginning of the format. The
bytes are supplied or dinterpreted by the system
automatically during execution of a standard
record form $PACK or $UNPACK operation.

An SOV (start of value) byte precedes data
corresponding to each variable or array element
represented in the format. The high-order bit in the
byte indicates whether the data which follows
represents a numeric or alphanumeric value. The
seven low-order bits in the byte indicate the number
of data bytes in the value (in binary)..

L:/—ynumber of data bytes, in binary

»0 = numeric, 1 = alphanumeric

The EOB (end of block) byte is an (FD),, code
indicating the end of valid data in the record.

Two different data formats are possible in the standard record form,
depending upon whether a particular value represents a numeric or
alphanumeric variable. The data formats are shown in Figures 2-15 and 2-16.

41

Chapter 2. $PACK and $UNPACK
(Standard Record Form)

As many bytes

as the

dimensioned length of

the alphanumeric variable (trailing spaces added,

if necessary).

clc|c o

A WI 7
where:
c = any 8-bit code

Figure 2-15. Standard Record Formatted Data for an Alphanumeric Variable

h.h

hihy | hohg | hyhs | hghz | hghg | hyghyifhiohys

8 bytes always

(See definition of each hexdigit below.)

Figure 2-16. Standard Record Formatted Data for a Numeric Variable

The hexdigits in Figure 2-16 are defined as follows:

s] L]

hS

a hexdigit representing two signs for a numeric value (the sign
of the number itself and the sign of the

h =0 if the number is + and the
hS = 1 if the number is - and the
hS = 8 if the number is + and the exp
hz = g if the number is - and the

a hexdigit (0 through 9, only)

represen

digit in a two-decimal-digit exponent.

a hexdigit (0 through 9, only)

represe

digit in a two-decimal-digit exponent.

exponent), that is,

exponent is +,
exponent 1is +,

onent is -, and

exponent is -.

ting the units-position

nting the tens-position

a hexdigit (0 through 9, only) representing (for i=1 through 13)
one of the "significant" (sometimes called "mantissa") digits in
the normalized form of a number; h1 >
position is after hi1; thirteen digits are stored (trailing zeros

are added, if necessary).

42

0; the implijed decimal

Chapter 2. $PACK and $UNPACK
(Standard Record Form)

Example 2-12. A Standard Record Form $PACK Operation

The following program packs the values of A$ and X in the record B$, using
the standard record format shown in Figure 2-14.

10 DIM B$20, A$5
20 A$ = "ABC": X = -123.45
30 $PACK B$ FROM A$, X

The result, in hexadecimal notation, is:

B$ = |80/01|85{41(42(43|20{20|08(12|01|23|45|00({00{00|00|FD| 20|20

e |

SOV Value of A$ SOV Value of X EOB

Example 2-13. A Standard Record Form $UNPACK Operation

If the record B$ contains one alphanumeric value and one numeric value as
follows:

B$ = |[80[01{84|52|53|54|55(08(85[17|39|60|00|00|00|00|FD]....
‘W-—/ ? N ~ J T

SOV Alpha Value SOV Numeric Value EOB

Then the following program unpacks B$ and stores the values in the variables Q$
and Z.

100 $UNPACK B$ TO Q$, Z

110 PRINT Q$, Z

:RUN

RSTU 7.39600000E-15

43

CHAPTER 3
I/0 OPERATIONS USING $IF ON AND $GIO

3.0 INTRODUCTION

Two of the General 1I/0 Instruction Set statements extend the 1/0
capabilities of Wang configurations. The statements are $IF ON and $GIO.

The $IF ON statement can test the device-ready condition of a specified
output device or test the data-ready condition of a specified input device and
initiate a branch to a specified 1ine number if a ready condition is sensed.

The $GIO statement permits the design of customized input and output
operations to support non-Wang peripheral devices interfaced to a Wang system
via such interface controllers as the Models 2207A, 2227, 2227B, 2250, and
2252A, The $GIO statement is required for some Wang peripheral devices (e.q.,
the Model 2209 Nine-Track Tape Drive and the Model 2228 Communications
Controller operating with a terminal emulator program); however, in such
cases, Wang Laboratories documents the required $GI0 statements by specifying
the microcommand sequence needed for each input, output, or control operation
or supplies a software package for the device. If desired, Wang keyboards and
CRT's can be controlled by $GI0 statements, but cassette and disk drives
cannot.

3.1 THE $IF ON STATEMENT

For input device scanning applications, the $IF ON and KEYIN statements
should be compared. For example, KEYIN is well-suited for handshake
applications where a single control byte is received when a data ready condition
is sensed, and for applications where special function codes should initiate a
program branch. By contrast, $IF ON 1is preferred for applications where a
multicharacter input device is to be tested since the statement does not receive
the first character upon sensing a data ready condition.

For output device scanning applications, $IF ON tests the ready/busy
signal on the controller which serves as the interface between the Wang central
processor and the external device. The conditions which produce the
controller's ready signal depend upon the characteristics of the device and the
signals exchanged between the controller and the device. Therefore, a
programmer must check the suitability and programming logic of a $IF ON
statement when debugging an application program.

For example, a printer (even when not powered on) may appear ready if a
$IF ON statement scans the device when the controller's one-byte buffer is
empty. On the other hand, the printer may appear busy if scanned while the
controller holds a byte of data awaiting a ready signal from the printer buffer.

44

$IF ON

General Form:

$IF ON [#f, line-number

/XYY s
where:
f = An indirect address - a file number (1,2,3,4,5 or
6) to which the address of the I/0 device to be
tested is assigned.
Xyy = An absolute address - the three hexdigit address

code of the I/0 device to be tested.

line-number = A specified program 1ine to which a branch 1is to
be made if a ready condition is sensed.

1. If neither an indirect nor absolute address is specified, the
address currently selected for the I/0-class parameter TAPE is
the default address. (Care must be exercised to avoid
defaulting to a cassette drive address since cassette drives
cannot be controlled by $IF ON statements.)

2. FEither a device-ready or a data-ready condition is tested,
depending upon whether the specified address belongs to an
output or an input device. The device-ready condition is
tested if an output device address is in effect. The
data-ready condition is tested if an input device address is
in effect. If a not-ready condition is sensed, program
execution proceeds to the next statement. If a
ready-condition is sensed, program execution branches to the
specified Tine number.

45

$GIO

where:

comment

Xyy

arg-1

arg-2

arg-3

alpharg

]

General Form:

$GIO [comment][#f (arg-1, arg-2) [arg-3]

/Xyy

An optional character string identifying the particular
operation (e.g., WRITE, READ, CHECK READY); the comment
is ignored by the system.

An indirect address - a file number (1,2,3,4,5 or 6) to
which the address of the I/0 device is assigned.

An absolute address - a three-hexdigit address code with
the recommended value for x equal to "0" since the
device type code is not utilized during a $GIO
operation; the value of yy must be the two hexdigit
preset address on the controller board into which the
I/0 device is plugged.

A customized microcommand sequence, defining the input
or output operation as follows:

a) Directly, by a string of hexdigits with each
four-hexdigit-code denoting one two-byte
microcommand.

b) Indirectly, by an alpharg representing the
microcommand sequence.

An alpharg representing a multi-purpose memory area
whose byte-positions (called "registers") are used for
storage of special-characters and error/status
information (the dimensioned length must be at least 10
bytes).

An alpharg representing the data buffer (required for
some microcommand sequences, not required for others).

STR-function
alpha-array-designator

{a]phanumeric-variable
alpha-array-designator <s,n>}>

1. If neither an indirect nor absolute address is specified, the
address currently assigned to the SELECT statement parameter
TAPE is the default address. (Care must be exercised to avoid
defaulting to a cassette drive address since cassette drives
cannot be controlled by $GI0 statements.)

2. For telecommunications applications the alpha array modifier
is of the form<s,m,e> See Appendix A, Table A-13, Note 1.

46

Chapter 3. I/0 Operations

3.2 THE $GIO STATEMENT

The $GI0 statement, as indicated mnemonically, is a General Input/Output
statement., The statement implements a particular input, output, or I/0 control
operation defined by the microcommand sequence specified directly or indirectly
in an actual statement. Each microcommand in a particular sequence is denoted
by a four-hexdigit-code which represents a set of fundamental operations. The
operations associated with valid microcommands are defined 1in the tables
presented in Appendix A of this manual.

By properly choosing a sequence of microcommands, a complete I/0 operation
can be custom-tailored to suit a non-Wang device interfaced to a Wang system.
Thus, within the framework of Wang's high-level BASIC 1language, the $GIO
statement provides a capability similar to machine language programming.

For example, consider the following statement:
100 $GI0 WRITE /03B (6C01 4400 A206 8601, R$) B$()
A Vi N —r N

~
‘ » data buffer

(see Section 3.6)

error/status/sp.-char.
registers
(see Section 3.5)

, Microcommand sequence
(see Section 3.7)

» device address
(see Section 3.4)

comment
(see Section 3.3)

The comment and device address in the illustration are optional components. The
arg-3 data buffer B$() is required in this example by the presence of the
microcommand A206 which represents a multicharacter output operation
described in Appendix A, Table A-6 (a data buffer is not required when a
sequence contains no multicharacter I/0 microcommand). An arg-1
microcommand sequence is always required, whether specified directly (as
illustrated) or indirectly by an "alpharg" representing a previously specified
microcommand sequence. Also required, as illustrated by R$, is an arg-2
component representing the error/status/general-purpose registers for the $GIO
operation.

3.3 OPTIONAL COMMENTS FOR $GIO OPERATIONS

The operation represented by a $GI0 statement s not readily
identifiable from its microcommand sequence. For this reason, a descriptive
comment inserted after the mnemonic $GI0O may prove helpful when reviewing or
revising a program. Effectively, a comment preserves the conversational
feature of Wang's BASIC language.

47

Chapter 2. I/0 Operations

3.4 DEVICE ADDRESSES FOR $GIO STATEMENTS

Three different methods can be used to specify a device address for a
particular $GIO operation:

1) Direct address specification using a slash character followed by a
three hexdigit address code, for example,

200 $GIO READ /03A (M$, R$) B$()

2) Indirect address specification using a pound-sign followed by a file
number to which the desired address has been previously assigned, for
example,

300 SELECT #2 03A
310 $GIO READ #2 (M$, R$) B$()

3) Omitting an address, thereby implying the device address currently
selected for TAPE-class operations should be used, for example,

400 SELECT TAPE 03A
410 $GIO READ (M$,R$) B$()

3.5 MICROCOMMAND SEQUENCES FOR $GIO OPERATIONS

Except for the $GIO statement, Wang's BASIC language is a "conversational"
language. Each statement begins with a mnemonic or a verb which identifies the
built-in function or operation to be performed. Sometimes the general form of a
particular statement includes one or more parameters representing alternative
procedures which can be selected by a programmer. In general, a programmer can
use the convenient BASIC language for a wide range of applications even though
the built-in procedures represented by individual statements cannot be altered.

Most BASIC language input and output operations are designed to optimize
the performance capabilities of one or more Wang I/0 devices. Some of the
standard I/0 operations provide signal sequences which may prove useful for
program control of devices specially interfaced to a Wang system via one of
Wang's interface controller boards. However, the $GI0 statement is designed to
fit the framework of the BASIC language wh1]e providing a technique by which
input, output, and/or control operations can be custom-designed to suit special
devices. A custom-designed 1/0 operation depends upon the selection of an
appropriate microcommand sequence to define a particular $GIO operation.

Each microcommand in a sequence must be represented by a
four-hexdigit-code of the form hlhzhahq, where h: (i=1, 2, 3, 4) is any hexdigit
(0 through 9 or A through F) which is acceptabﬁe as 1ndicated by the tables in
Appendix A. The first two hexdigits in a microcommand code usually identify the
type of operation, e.g., single character output with echo or multicharacter
verify. The Tlast two hexdigits supply information, e.g., a character to be
stored, the number of a particular register for storage or retrijeval of a
character, or the number corresponding to a termination condition.

48

Chapter 3.

I/0 Operations

Table 3-1. Microcommand Categories
Category Code Format* Type of Operation Buffer Required
1 0h2h3hq or 1h2h3hq Control no
2 4h2h3hq Single character output no
3 5h2h3h‘+ Single character output no
with acknowledge
4 6h2h3h‘+ Single character output no
with echo
5 7h2 h3 IL Address strobe no
6 86h q+ Single character input no
7 8h hsh, Single character input no
g with verify
8 9h,hsh, Single character input no
with echo
9 Ah, h3hy, Multicharacter output yes
10 Bhy hyhy, Multicharacter output yes
(h,=0,1,4, or 5) with acknowledge
11 Bh h h% Multicharacter output yas
-=5,3,6, or 7) with echo
12 Bhy hg h, Multicharacter output, yes
(h,=8,9,C, or D) each character requested
13 BAh3hq Multicharacter verify yes
14 C6h3h‘+ Multicharacter input yes
15 Chohshy, Multicharacter input yes
(hy=0,1,4,5) with echo
16 Chohshy, Multicharacter input, yes
(hz— 8 through F) each character requested
17 Fhyhsh, Telecommunications input yes

*h ,h3, and h, are the second, third, and fourth hexdigits, respectively, in
a microcommand code.

49

Chapter 3. 1I/0 Operations

In Appendix A, general descriptions of each microcommand category are
given. Table A-1 describes the fundamental operations represented by "control"
microcommands whose codes have h; , i.e., the first hexdigit of a
four-hexdigit-code, equal to 0 or 1. Table A-2 describes the fundamental
operations represented by "single character data transfer" microcommands having
h, =4, 5, 6, 7, 8 or 9. Table A-3 describes "multicharacter data transfer"
microcommands having h,=A, B, C or F.

The seventeen categories of microcommands Tisted in Table 3-1 encompass
many subcategories of microcommands. Each microcommand subcategory represents a
prescribed signal sequence defining a fundamental operation which may be
appropriate for many different composite operations. In Appendix A, detailed
information is presented as follows:

1) Table A-4 gives the signal sequences for 34 microcommand subcategories
representing single character output.

2) Table A-5 gives the signal sequences for 14 microcommand subcategories
representing single character input.

3) Table A-6 gives the signal sequences for 19 microcommand subcategories
representing multicharacter output.

4) Table A-9 gives the signal sequences for 14 microcommand subcategories
representing multicharacter input.

5) Table A-13 gives the signal sequences for 8 microcommand subcategories
representing telecommunications input.

6) Table A-1 gives 9 microcommand subcategories representing control of
I/0 operations.

A microcommand sequence for a $GIO operation can consist of any number of
codes belonging to the subcategories in Tables A-1, A-4, and A-5 but at most one
code belonging to a subcategory in Table A-6, A-9, or A-13. Choosing a
microcommand sequence is equivalent to programming the signal sequence needed to
implement a desired operation.

Anyone programming $GIO operations for non-Wang devices interfaced to a
Wang system must be thoroughly familiar with the hardware of the device to be
operated and must know how the device is interfaced (i.e., what controller board
and cables are used as the interface through which signals are exchanged between
the CPU of the system and the external device).

When the $GIO statement 1is required to control a Wang device, Wang

Laboratories documents the microcommand sequences needed for each type of
operation or supplies a software package.

3.6 DIRECT OR INDIRECT SPECIFICATION OF A MICROCOMMAND SEQUENCE

After a microcommand sequence representing a desired operation has been
chosen, either one of two methods can be used to specify the sequence in an
actual $GI0 statement -- the direct method or the indirect method.

50

“

Chapter 3. I/0 Operations

In the direct method, the microcommand sequence is written in the $GIO
statement as a string of hexadecimal symbols (i.e., any valid combination of the
characters 0 through 9 and A through F). For readability, a space character can
be inserted after each four hexdigit microcommand code. The space characters
(the blanks) are ignored by the system. For example,

100 $GIO REWIND (6CO7 4400 8601, R$)

In the indirect method, the microcommand sequence is stored in an
alphanumeric variable or array prior to the $GI0 statement. Then, the variable
or array is used as the arg-1 component of the $GI0 statement. No space
characters can be inserted between microcommand codes for readability in
this method. However, the dimension of the alphanumeric variable or array
must be large enough to assure the presence of the "microcommand" code 2020
which is necessary to denote the end of the microcommand sequence.
Unpredictable results may occur if at least one trailing blank does not follow
the sequence. For example,

100 DIM M$8 Reserves 8 bytes in M$.
110 M$ = HEX(6C0744008601) Specifies 6 bytes; leaves two blanks.
120 $GI0 (M$,R$)

The indirect method of specifying the microcommand sequence for a $GIO
statement 1is useful when it is desirable to write only one $GI0 statement in a
program and redefine the microcommand sequence before a subsequent execution of
the statement. Also, the indirect method conserves space in memory if a $GIO
statement is written repetitively.

3.7 DATA BUFFERS FOR $GIO OPERATIONS

A data buffer is not required for every $GIO operation. As shown in Table
3-1, eight of the seventeen categories of microcommand codes require no buffer.
A microcommand sequence can include any number of microcommands which do not
require a buffer.

Each of the nine categories of microcommands which represent a multi-
character data transfer operation requires a specified data buffer to identify
the data storage area to be used for a particular input or output operation. A
$GI0 microcommand sequence cannot include more than one multicharacter data
transfer microcommand ?i.e., a code with its first hexdigit h1 = A,B,C, or F).

When specifying a data buffer for a $GIO operation, an alphanumeric
scalar variable or a string function can be used if 64 or less bytes of data
are to be transferred. For transfer of more than 64 bytes of data, an
alphanumeric array (one or two dimensional) must be specified as the buffer
for the operation. If desired, an alpha array modifier can be used to specify a
particular portion of an array as a $GI0 buffer.

Unless indicated otherwise by an alpha array modifier or a string

function, the data buffer size for a $GI0 operation 1is equal to the
dimensioned length of the arg-3 alphanumeric array or variable,

51

Chapter 3.

The
.IC

I/0 Operations

following rules apply to $GIO multicharacter data transfer:

When a one or two dimensional alphanumeric array is specified as
the buffer, the array is treated as a set of contiguous characters
(bytes) and element boundaries are ignored.

If the only specified termination condition for an input operation is
the character "count", execution of the input microcommand terminates
when the number of received characters equals the defined 1length of
the arg-3 buffer. (See Tables A-9 and A-10.) For example, in Line 100
below, the B$-array (defined as a one-dimensional array with 10
elements, each 10 bytes 1long) provides a storage area for 100
contiguous bytes. In Line 150, the $GIO operation (defined by the
microcommand code C640) implements a multicharacter input operation to
be terminated by the character count , i.e., when the buffer is
filled with 100 characters.

100 DIM B$(10)10

150 $6I0 (C640, R$) B$()

If either a "special character" or an "input strobe with ENDI Tlevel
set to logic 1" 1is one of the termination conditions for an input
operation, the buffer length should be large enough to receive and
store all input data. Registers 9 and 10 in the arg-2 variable will
contain the count of the number of characters actually received. If
the number of received characters exceeds the available buffer space,
an error bit is set in arg-2 Register 8; in such a case, the count in
Registers 9 and 10 reflects the total number of received characters
whether stored or not. (See Figure 3-1 in Section 3.8.)

For an output operation, the total number of characters sent equals
the total number of characters in the defined length of the arg-3 data
buffer unless a termination condition is specified. (See Table A-6
and A-7.) For example, in Line 40 below, the X$-array is defined as a
two-dimensional array with 8 rows having 10 elements per row, with
each element 20 bytes 1long., Therefore, the X$-array provides a
storage area for 1600 contiguous bytes of information. In Line
70, the $GIO operation (defined by the microcommand code AO0QO)
implements a multicharacter output signal sequence "which does not
terminate until the 1600 characters in the buffer are sent out.

40 DIM X$(8,10)20

70 $GI0 (A000, R$) X$()

52

Chapter 3. I/0 Operations

Note:

By using alpha array modifiers, different portions of one
alphanumeric array can be used in a program for several
$GI0 operations as well as $PACK and $UNPACK operations.

3.8 ERROR/STATUS/GENERAL-PURPOSE REGISTERS

The $GI0 statement uses its arg-2 component as a multipurpose memory area
where special characters and error/status information are stored. The
dimensioned length of this memory area must be at least 10 bytes in most cases,
or at least 12 bytes if the arg-1 component (the microcommand sequence) defines
a telecommunications input operation.

Each byte-position in an arg-2 memory area is called a register, and the
arg-2 variable is referred to as the "error/status/general-purpose registers" to
indicate the variable's multipurpose function. For example, Register 1 (the
first byte-position) can be used to store a special character defining a
termination condition for a multicharacter input operation; the termination
character might be (0D),., i.e., a carriage return code, or perhaps (13), 19 1-€s
an X-OFF code (if a puncﬁed tape is to be read), or some other character. On
the other hand Register 1 can be used for other purposes if a different
operation is being programmed.

Registers 2 and 3 (or another pair) can be used to store a two-byte binary
value defining a delay or a timeout condition associated with control
microcommands of the form 12h;1 and 12h;2 1in Table A-1. However, these
registers can be used for other purposes a]so since valid usage of the first
seven registers depends upon the type of operation being programmed and the
alternatives available to the programmer.

Register 8 is wused by the system, on a bit-by-bit basis, to set
error/status flags and is not available to the programmer for other uses.
Similarly, Registers 9 and 10 are used by the system and are not available to
the programmer.

To clarify the relationships between the arg-2 registers and the arg-1
microcommands for a $GI0 statement, Figure 3-1 presents a summary of register
usage applicable to all but a small set of $GI0 statements, i.e., to any
statement except one having a microcommand of the form Fhohshy,. To be totally
meaningful, the summary in Figure 3-1 should be studied in conjunction with the
microcommand tables in Appendix A. The figure shows the registers accessed by
the system for particular operations and the registers available to a
programmer.

The error/status/general-purpose registers, together with the micro-
commands, provide great flexibility when a programmer is custom-tailoring an
input or an output operation. Furthermore, information stored in the
registers by the system during execution of a $GI0 statement (e.g., error
flags or a character count) can be tested, if desired, after execution is
completed.

53

Chapter 3

. I/0 Operations

Registers (i.e., byte-positions in arg-2 variable)

112

31415

6|78

91|10

.

1. General-purpose.*

L—» Automatic storage of a two-byte binary count of
the total number of transferred characters
during multicharacter output or input (even if
some characters are not stored when a buffer
overflow occurs). See Tables A-9, A-10, A-11.

—» Error/status flags, automatically set on a

bit-by-bit basis as follows:

Bit Fla See Table

T (Tow) 1=Buffer overflow. A-12.

2 1=LRC error. A-11,A-12
1=Echo/Verify error.

3

4 1=Compare error,

5 1=Timeout exceeded,

6 1=ENDI-level termination.

7 1=Special character termination.
8 (high) 1=Count termination.

—» General-purpose.*

_,{‘2:
-

—»General-purpose.*

General-purpose.*

Automatic storage of the character received with
ENDI-level=logic "1" during multicharacter output (see
Tables A-6 & A-7) or multicharacter input (see Tables
A-9 & A-10).

1. General-purpose.*

2. Automatic storage of the calculated LRC character during
multicharacter output (see Tables A-6 & A-8) or multi-
character input (see Tables A-9 & A-11).

2. Storage of a special character defining a termination
condition for multicharacter input (see Tables A-9 & A-10).

*General-purpose usage includes the following:

. Storage of an "indirect" character for single character output (Table A-4).

. Storage of an acknowledge or echo character received

output (Table A-4).

. Storage of an "indirect" verify character for single character input (Table A-5).

after single character

. Storage of the character received during single character input (Table A-5).
. Storage of the first or second byte of a two-byte value defining a delay or a
timeout condition (Table A-1).

Figure 3-1.

Register Usage for Any $GI0O Statement Except One Having
a Microcommand of the Form Fh_h_h

2734

54

Chapter 3. I/0 Operations

Initializing $GI0 Registers

Registers 8, 9 and 10 in the arg-2 variable are initialized to binary zero
(00),¢ automatically when execution of a $GIO statement begins. The other
registers are not initialized automatically.

To initialize specific registers, either one (or both) of the following
methods can be employed:

1. Use string (STR) functions to store information in particular
registers prior to execution of a $GI0 statement. See Example 3-1.

2. Use control microcommands of the form Oh,hsh, to store information in
particular registers during execution of a $GI0O statement. See
Example 3-2 and Table A-1,

Keep in mind, however, that the rationale for initializing any register
depends upon the kind of operation being customized.

As an illustration, let's assume data are to be read from a punched tape
until an X-OFF code, (13);,, is encountered. Fundamentally, such an application
involves multicharacter 1input with a special termination character. If a
microcommand of the form Chyhgh, (where h,#2 and h;=0, 1,3,5 or 7) is chosen
from Table A-9, the signa% sequence dgenerated by the microcommand includes
"check T1" and "check 72" steps, at least one of which tests each input character
with respect to a special termination character. According to Table A-10, the
special termination character must be stored in arg-2 Register 1. Example 3-1
demonstrates how the special character can be stored prior to execution of the
$GIO statement, and Example 3-2 demonstrates storage during execution.

Example 3-1. Initializing a $GIO Register Prior to Statement Execution

10 DIM R$10, 1$(200)60
20 STR(R$,1,1) = HEX(13)
30 $GIO (C630, R$) I1$()

In Line 20, the string function stores the code (13),.i.e., an X-OFF
character in the first byte position of R$. Observe in Line %0 that R$ is the
arg-2 component of the $GIO statement. The dimensioned length of R$ is 10
bytes, according to Line 10.

Only one microcommand C630 is used in the arg-1 component of the $GIO
statement (see Line 30). Observe from Table A-9, that a microcommand of the
form Céh; h, implements multicharacter input with a particular signal sequence
which may or may not be suitable to a particular device.

55

Chapter 3. 1I/0 Operations

Example 3-2. Initializing a $GI0 Register During Statement Execution

10 DIM R$10, I$(200)60
20 $GI0 (0113 €630, R$) I$()

The microcommand 0113 in Line 20 of Example 3-2 is of the form Oh,hsh,,
where hy, =1 specifies the particular register (i.e., Register 1)} in which the
character denoted by hyh, = 13 is to be stored.

Example 3-3. Testing the Status Code in Register 8

If desired, the status code in Register 8 (i.e., the individual bits) can
be tested after a $GIO operation is executed by using a string function. For
example,

200 $GIO READ (6CO1 4400 C221 8601, R$) B$
210 IF STR(R$,8,1) = HEX(00) THEN 250
220 IF STR(R$,8,1) = HEX(20) THEN 400

Also, if preferred, individual bits in Register 8 can be tested during execution
of a $GI0 statement by including one or more microcommands of the form 16h3h!+ or
17h;h, in the arg-1 microcommand sequence. See Table A-1.

Example 3-4. Testing the Count in Registers 9 and 10

After a $GI0 multicharacter input operation is completed, the binary count
stored in Registers 9 and 10 can be tested and/or converted to a numeric value
in floating point format by using the STR and VAL functions. For example,

300 $GIO READ (6CO1 4400 C221 8601, R$) B$
310 C = 256*VAL(R$,9,1) + VAL(R$,10,1)
320 IF STR(R$,9,2) = HEX(0200) THEN 480

In Line 310, each byte of the two-byte binary count 1is converted to a
floating point number using the VAL function. The floating point number
obtained from Register 9 is multiplied by 256, added to the number obtained from
Register 10, and the result stored in the numeric variable C.

In Line 320, the two-byte binary count in Registers 9 and 10 1is compared

to (0200),¢, which is equivalent to (512),,; then, if the count is equal to the
decimal number 512, program execution branches to Line 480.

3.9 TELECOMMUNICATIONS (LINE ORIENTED) DATA INPUT

In Table A-13, the signal sequences for a set of microcommands of the form
Fh,h h, are described. If one of these multicharacter input microcommands is
included in the arg-1 component of a $GI0 statement, the dimensioned length of
the arg-2 variable must be at least 12 bytes. See Figure 3-2.

56

Chapter 3. I/0 Operations

Beginning with Register 11 in the arg-2 variable, a special character list
can be stored. The list can include one or more data terminators and one or
more data separators. Two registers are needed to define each special character
since an "atom" specifying the action to be associated with a particular
character must precede the character. The 1list must end with two space
characters.

Table A-14 shows which bit-positions in an atom must be set to "1" to
define particular actions. The information in the table can be presented
schematically as follows:

Data separator.
Not a separator.

ata terminator.
ot a terminator.

. 1 = Don't store character in arg-3 data buffer.
0 = Store character in arg-3 data buffer.
1 = Echo the character to the output channel whose address

equals the current input device address + 4.
0 = Don't echo to current address + 4.

>
\

1 =
0=

1
0

Echo the character to the console output device.
Don't echo to the console output device.

|

If an input character does not match a character in the special character
list, the hexdigits h_h 1in the microcommand Fh_h h, serve as the atom defining
the action to be taken. 'This "general" atom is 2sfored in Register 1. (The
system overrides any value other than zero for the Tow order hexdigit h when
storing the atom in Register 1.) 4

Registers 8, 9 and 10 are initialized to binary zero (00);¢ when execution
of a $GIO statement begins. Other registers such as those used to define the
special character 1ist must be initialized by the programmer.

Figure 3-2 presents a summary of register usage for any $GI0 statement
which contains a microcommand of the form Fhohsh,. Table A-15 indicates where
register usage for a "telecommunications" microcommand differs from the register
usage shown in Figure 3-1 for all other $GI0 statements.

57

Chapter 3. I/0 Operations

Registers (i.e., byte-positions in arg-2 variable)

1

2134 |5|6}47(8|9 (1011112 |. . .| n-1 [n212

‘Hf-—-" N

t»Plr‘e-storage of a Special Character
List* with information arranged in

pairs of bytes as follows: atom,
character, atom, character,...,
space, space. The Tlist must end with
two space characters, i.e.,

HEX(2020). For a null Tist, the
space characters must be stored in
Registers 11 and 12. (See Tables
A-13 and A-14.)

L» Automatic storage of a two-byte binary count of the
number of elements into which data was stored during
the input operation.

L—» Status flags, automatically set on a bit-by-bit basis as

follows:

Bit Flag

T (Tow) 1 = Buffer overflow (at least one byte lost).

2 1 = Element overflow (no separator received
before element full).

3 Not used.

4 Not used.

5 1 = Timeout exceeded.

6 1 = ENDI-Tevel termination.

7 1 = Terminator-character termination.

8 (high) 1 = Separator received for last element.

L » Not used.

— Automatic storage of the character received with ENDI-level
equal to Togic "1".

L »Not used,

L »Automatic storage of the one-byte value defined by HEX(h hq), where h,

and h, are in the microcommand Fh2hshs defining the teleCommunications
input operation. (See Tables A-13 and A-14.) The stored value serves
as the action atom for any input character which does not match a
character in the special character Tlist.

*A list of characters to be recognized as data separators, terminators or
characters to be given special treatment. A separator denotes the end of an
input "line"; the next received character is then stored as the first character
in the next element of the arg-3 buffer. A terminator denotes the end of the
data stream; the telecommunications microcommand signal sequence is terminated.
The atom preceding a particular character not only identifies whether the
character is a separator or terminator but also indicates whether the character
is to be stored in the arg-3 buffer and whether an echo is to be sent to the
console output address or an address equal to the current input address plus 4
or to no address.

Figure 3-2. Register Usage for a $GI0 Statement Having a Microcommand
of the Form Fh,h;h,.

58

Chapter 3. I/0 Operations

3.10 PROGRAMMING $GIO OPERATIONS

Programming $GI0 operations is similar to machine language programming
since the $GI0 microcommands are similar to machine language codes. Each
microcommand represents a fundamental operation, usually multi-step. For some
applications only one microcommand may be needed in a $GI0 statement. For most
applications several microcommands arranged in a particular sequence can produce
the desired operation.

Anyone planning to program $GI0 operations should be thoroughly familiar
with the organization of the microcommand tables in Appendix A.

Before an appropriate microcommand sequence can be chosen, the application
and hardware requirements must be defined and related to the inherent features
of the available microcommands. Consideration must be given to questions such
as the following:

Is a multicharacter output operation required?
. If so, determine which microcommand in Table A-6 most fits the
hardware.

Is a multicharacter input operation required?
... If so, examine Tables A-9 and A-13.

Are there timing considerations?
. If so, examine Table A-1 where the codes for setting delays or
timeouts are discussed.

. Should more than one device be accessed by a single $GI0 statement?
If so, examine the address strobe codes in Table A-4.

Should a single character be output at some stage in the operation?
If so, examine Table A-4.

Should a single character be received at some stage in the

operation?
If so, examine Table A-5.

59

Chapter 3. I/0 Operations

Notes:

1. Tables A-4, A-5, A-6, A-9 and A-13 contain pairs of
codes (e.g., 40h;h, and 44h,h, , B2h h and BGh3h+)
whose signal sequences are identichl in every
respect but one -- the CPU outputs a character
with an 0BS strobe in one case and with a CBS
strobe 1in the other case. For most hardware, the
signal sequence with an OBS strobe rather than a

CBS strobe is the appropriate choice.

2. The microcommands whose signal sequences output
characters with an OBS strobe rather than a CBS
strobe are appropriate for CRT's, printers,
and many devices interfaced to a System 2200 CPU
via controllers other than the Model 2250 1/0
Interface Controller. The connector on the
Model 2250 controller supports both OBS and CBS
strobes; therefore, a programmer must know how an
interfaced device is connected to such
controllers before making decisions regarding the
two types of output strobes.

Any reader who has used only high-level programming languages like Wang's
BASIC 1language (excluding $GI0) may not be prepared for the extra effort needed
to coordinate microcommands with hardware characteristics. Actually, the $GIO
statement represents two levels of programming. The statement itself fits into
the framework of the high-level BASIC language, except for its arg-1 component;
selecting the microcommands for the arg-1 component (i.e., customizing the 1/0
operation) is equivalent to using a lower-level language. See the examples in
Section 3.11.

3.11 SOME $GIO EXAMPLES

Some $GI0 microcommand sequences are presented in the examples which
follow., Two examples show how the CRT and keyboard can be used to test the
function of some microcommands.

Example 3-5. A Multicharacter Output Operation

The microcommand sequence 1in Line 100 1illustrates use of a delay,
deselection of the current address and selection of another address, and output
of particular characters as well as multicharacter output from the array B$().
The variable A$ serves as the error/status/general-purpose registers, Each
microcommand is described briefly below.

100 $GI0 /01D (0202 0300 4011 1221 7105 4000 711D 1200 A0OCO 4013, A$) B$()

60

Chapter 3. I/0 Operations

Microcommand functions:
0202 Store the character (02)161n Register 2.
0300 Store the character (00)16 in Register 3.

4011 Send the character (11)16 to the currently selected address, i.e.,
1D.

1221 Set a delay condition equal to 50 microseconds multiplied by the
two-byte binary value stored in Registers 2 and 3.

7105 Deselect the current address (i.e., 1D) and select the address 05
(the CRT).

4000 Send the character (00)16 to the currently selected address, i.e.,
05.

711D Deselect the current address 05 and select the address 1D.

1200 Disable the delay specified by the microcommand 1221.

AQ0OO Qutput each character in the buffer using the following sequence:
WR = wait for a ready signal from the enabled device.
DATAQUT/0BS = send the next character with an 0BS strobe.

LEND = the LRC End sequence specified by hu=0 (i.e., none).

4013 Send the character (13)
1D,

1¢ to the currently selected address, i.e.,

The microcommand sequence above might be suitable for output of data to a
punch tape unit. The microcommand 4011 sends an X-ON character to the unit.
The microcommands 1221, 7105 and 4000 send a null character to the CRT (after a
delay of 25600 microseconds). A delay is introduced to allow the punch unit
motor time to reach a specified condition. The delay 1is disabled before the
multicharacter output operation begins.

Example 3-6. CRT Qutput Using PRINT and $GIO Statements
Duplicate and run the following program sequence:

10 DIM A$5

20 A$ = "ABCDE"

30 SELECT PRINT 005

40 PRINT A$;

50 PRINT "¥*¥%n

60 $GIO /005 (A00O, R$) A$
70 PRINT "@@R@"

The microcommand AQOO in Line 60 implements multicharacter output to the
device with preset address 05. Each character in the dimensioned length of the
arg-3 buffer A$ is sent to the device with an OBS strobe. Line 60 duplicates
the output produced by 1lines 30 and 40.

61

Chapter 3. I/0 Operations

Several features of the PRINT statement are not demonstrated by Line 40.
Remove Line 10 from the program and run the modified program. Observe that the
PRINT statement does not output the trailing space characters stored in A$ which
has a default length of 16 bytes if Line 10 1is removed. Note that the
microcommand AOOO outputs all 16 characters in A$, including trailing spaces.

Now, restore line 10 to the program, remove the semicolon in line 40, and
run the second modification. Observe that the output of Lines 40 and 60 is not
identical since the PRINT statement automatically outputs a carriage-return
character and a line-feed character if there is no trailing punctuation.

Replace Line 60 as follows and omit the semicolon in Line 40:

60 $GIO /005 (A000 400D 400A, R$) A$
Now, run the modified program and observe that the microcommand 400D sends a

carriage-return character (0D) and the microcommand 400A sends a line-feed
character (OA)16 16

Example 3-7. Keyboard Input Using INPUT and $GI0 Statements

The following program sequence demonstrates a $GI0 multicharacter input
operation:

10 SELECT INPUT 001

20 INPUT A$
30 HEXPRINT A$
40 PRINT "?";

50 $GIO /001 (010D C610, R$) B$
60 HEXPRINT B$

The INPUT statement in Line 20 automatically outputs a question mark and a
space character to the CRT to indicate the system 1is awaiting dinput via the
currently selected device. The statement accepts characters (for temporary
storage in the CPU buffer) and automatically sends an echo of each received
character to the CRT. An error message appears on the CRT if 191 characters are
received without a carriage-return. Processing of the temporarily buffered data
begins as soon as a carriage-return character is received. Since the default
dimension of A$ is 16 bytes, only 16 characters are stored in A$.

In Line 50, the $GI0 microcommand 010D stores the carriage-return
character (0D);¢ in Register 1. The microcommand C610 . implements a
multicharacter input operation via the currently addressed device (see Table
A-9). Since h3=1, each input character is compared to the special termination
character stored in Register 1. If more characters are received than can be
stored in the arg-3 buffer, the buffer-overflow flag is set 1in Register 8.
Observe that no echo is sent to the CRT.

There are many features built into an INPUT statement which are especially
suited for keyboard input, such as permitting a subroutine to be called by a
special function key. Example 3-7 is not presented to offer an alternative
procedure for keyboard input. Hopefully, Examples 3-6 and 3-7 show readers how
to test the features of some microcommands using the CRT as an output device and
the keyboard as an input device.

62

(YR

APPENDIX A -- $GIO MICROCOMMAND TABLES

In this appendix, valid microcommand codes for $GI0 operations are
presented in a set of tables. Each table contains a group of codes which
represent related operations.

Every microcommand code in Tables A-1 through A-7 and A-13 is represented
by a four hexdigit code of the form h h,hsh,, where each subscript denotes the
position of a hexdigit in the code (in ascending order from the Teftmost to the
rightmost position). In the tables, the first hexdigit is always specified; the
second hexdigit 1is usually specified. The third and fourth hexdigits must be
specified after checking the valid options given in one or more of the auxiliary
tables included in the appendix.

Tables A-2 and A-3 give general descriptions for codes related to single
character transfer (Table A-2) and multicharacter transfer (Table A-3). Each
table has a Remarks column which directs the user to other tables where the
signal sequences are given. After a user is familiar with the fundamental types
of I/0 operations for which microcommand codes are available, Tables A-2 and A-3
can be bypassed.

Every table which gives the signal sequences corresponding to some
microcommand codes is followed by a legend which defines the mnemonics appearing
in the table. Definitions for some of the mnemonics refer to IBS input strobes,
OBS output strobes, or CBS output strobes. For those readers to whom the term
"strobe" is unfamiliar, a brief explanation follows.

A strobe is a short-duration change in the voltage level of a particular
direct-current circuit. For example, in the circuitry of Wang's Model 2250 1/0
Interface Controller, a logic "0" is represented by a "high" Tlevel signal
(between +2.4 and 3.6 volts DC) and a logic "1" is represented by a "low" level
signal (between 0 and +0.4 volts DC). As shown in Figure A-1, output strobes
from a Wang CPU to an external device via the Model 2250 interface controller
have a pulse width of 5 microseconds, plus or minus 10%. Input strobes from an
external device to the Model 2250 interface must have a pulse width which Ties
in the range from 5 to 20 microseconds.

5 to 20> <5 us—f~ — — Logic "0%, +2.4 V (min)
uSs 110%
— — Logic "1", +0.4 V (max)
Input Output
Strobe Strobe

Figure A-1. Schematic of Input and Output Strobes for the Model 2250
Interface Controller

63

An input strobe received by the Model 2250 interface controller on a
particular circuit from an external device indicates that data signals (8-bits
in parallel, i.e., one byte) are available on other circuits, awaiting transfer
into the CPU. Similarly, an output strobe sent from the CPU via the Model 2250
interface controller on a particular circuit indicates to an external device
that data signals (8-bits in parallel) are available on other circuits, awaiting
reception by the external device.

For some applications, bytes of information to be sent to a device fall in
two classifications: (1) control data (e.g., instructions), and (2) output data
to be stored. For this reason, the Model 2250 interface controller provides
two different circuits for output strobes. On one circuit, an output strobe is
designated as an OBS strobe (Output Data Strobe); on the other circuit, a strobe
is designated as a CBS strobe (Control Output Strobe). Thus, a byte of
information on the eight parallel data circuits can be identified by using
either an OBS or a CBS strobe to indicate whether it is output data or control
data.

If a microcommand table contains a code for a signal sequence which sends
information via an OBS strobe, the table also contains another code for a signal
sequence identical except for its use of a CBS strobe to send the information.
When selecting microcommand codes to control a device interfaced via a Model
2250 controller, one must know whether both the CBS and 0BS output strobe
circuits are connected or only the 0BS circuit.

If a device is interfaced to a Wang system via an interface which provides

only one type of strobe for data output operations from the CPU, a $GIO
microcommand sequence should consist of codes which send an 0BS strobe.

64

t

Table A-1.

Control Microcommands

Code

General Description

Function**

Oh,hh,

Move Immediate Character to Register

Store the immediate character HEX(hsh,), specified
by the pair of hexdigits hy and h,, in Register h, ,
specified by the hexdigit h,.

11h;h,

Move Register to Register

Move the contents of specified Register h,
specified Register h,.

to the

18hsh,

Compare Registers, Set Error

Compare the contents of specified Registers h, and h, .
If unequal, set the compare-error-bit in the Status-
code-register; i.e., set Position-bit-08 in Register
8 to "1".

15h,h,

Compare Registers, Terminate

Compare the contents of specified Registers hy and h,.
If unequal, set the compare-error-bit in the status-
code-register and also terminate execution of the
$GIO0 statement.

16h h,

Compare Status-Code-Bits=0, Terminate

Test specified bits in the status-code-register for
a "0" by executing a Togical AND operation using the
complement of the status-code-register and the mask
specified by the binary equivalent of HEX(h hu)' If
any specified bit is "0"; i.e., the resuft*of the
logical AND 1is not equal to HEX(00), terminate
execution of the $GI0 statement.

17h,h,

Compare Status-Code-Bits=1, Terminate

Test specified bits in the status-code-register for
a "1" by executing a Togical AND operation using the
8-bit code in the status-code-register and the mask
specified by the binary equivalent of HEX(h hh). If
any specified bit is "1"; i.e., the result® of the
logical AND is not equal to HEX(00), terminate
execution of the $GI0 statement.

12h,1

Set Delay Condition for Output
Strobes*

Prior to executing each subsequent output strobe (ex-
cept an ABS strobe, if any) in the $GIQ microcommand
sequence, introduce a delay defined by the two-byte
binary value stored in Registers h; and (h;+1),
where hy cannot exceed 6. The delay is equal to 50
microseconds multiplied by the decimal equivalent of
the two-byte binary value; the minimum delay (50
microseconds) is specified by storing HEX(0001) in
the designated registers; the maximum delay (approx-
imately 3.28 seconds) is specified by storing HEX(FFFF).
A HEX(0000) disables the delay condition.

12h,2

Set Timeout Condition for Sensing a
Device Ready Signal or an Input
Strobe*

Prior to executing each subsequent sensing operation
for either a device-ready-signal or an input-strobe,
implement a timeout defined by the two-byte binary
value stored in Registers hy and (hy+1), where h,
cannot exceed 6. If an awaited device-ready-signal
or input-strobe is not sensed within the allotted
time span, set the timeout-array-bit in the status-
code-register. The timeout is equal to 1 millisecond
multiplied by the decimal value of the two-byte binary
number; e.g., the minimum timeout (1 millisecond) is
specified by storing HEX(0001) in the designated re-
gisters; the maximum timeout (approximately 65.5 sec-
onds) is specified by storing HEX(FFFF). A HEX(0000)
disables the timeout condition.

1200

Reset Delay/Timeout Condition

Disable the delay or the timeout condition specified by
a prior microcommand of the form 12hy1 or 12h;2 in the
$GI0 sequence.

*Either a delay or a timeout condition, not both,

condition disables the other condition.

can be active at one time. Specifying one

** See Figures 3-1 & 3-2 for a definition of register usage in the specified $GI0 arg-2 variable.

65

Table A-2.

1/0 Microcommands for Single Character Transfer

Code General Description Function (Optional and Automatic Features) Remarks
4hyhzhy, | Single Character Qutput 1. Wait or don't wait for a Ready signal from the device. | See Table A-4
2. Send an 0BS or CBS output strobe with the specified
immediate or indirect character.
5hyhshy | Single Character Output with (Steps 1 and 2 are the same as those for codes with h 1=4.) | See Table A-4
Acknowl edge 3. Wait five microseconds.
4. Set the CPU Ready/Busy signal to Ready.
5. Await an input strobe with a character from the device.
6. Save or don't save the received character.
6hzh3h“ Single Character Output with Echo (Stegs 1 through 6 are the same as those for codes with See Table A-4
Verify the received character by comparison with the
output character; and, if unegqual, set the echo-error-
bit in the status-code-register.
8. Terminate or don't terminate execution of the $GIO
statement if the received character and output char-
acter are unequal.
7hzh3h“ Address Strobe 1. Send an address strobe to the I/0 bus with the speci- See Table A-4
fied immediate or indirect 8-bit device address code.
86hsh, | Single Character Input 1. Set the CPU Ready/Busy signal to Ready. See Table A-5
2. Await an input strobe with a character from the device.
3. Save or don't save the received character.
8h,hyh, | Single Character Input with Verify (ﬁteps 1 through 3 are the same as those for codes with See Table A-5
4, Ver1%y the received character by comparison with the
specified immediate or indirect character; and, if
unequal, set the echo-error-bit in the status-code-
register.
5. Terminate or don't terminate execution of the $GIO
statement if the received character and the specified
character are unequal.
9h2h3h“ Single Character Input with Echo (Steps 1 thr?ugh 3 are the same as those for codes with See Table A-5
h, =8, h,=6
4. Hait or don't wait for a Ready signal from the device.
5. Send an echo of the received character using an OBS or
CBS output strobe.
Table A-3. 1/0 Microcommands for Multicharacter Transfer to or from the Specified $GI10 Buffer
Code General Description Function (Optional and Automatic Features) Remarks
Ah,0h, Multicharacter Qutput Sequentially output each character as follows: See Table A-6
1. MWait or don't wait for a Ready signal from the device.
2. Send out the next character from the $GIO buffer using
an OBS or CBS output strobe. (Optional)
3. Repeat Steps 1 and 2 if the current character is not
the last character in the $GIQ buffer.
4. Execute the specified LRC End Segquence corresponding to
hexdigit h,.
Bhzhshy Multicharacter Qutput Sequentially output each character as follows: See Table A-6
(h,=0,1,4,0r 5) I with Acknowledge 1. Wait or don't wait for a Ready signal from the device.
2. Send out the next character from the $GIO buffer using
an OBS or CBS output strobe.
3. Wait five microseconds.
4. Set the CPU Ready/Busy signal to Ready.
5. Await an input strobe from the device.
6. Execute the specified termination-condition-check
corresponding to hexdigit h,.
7. Repeat Steps 1 through 6 if the current character is
not the last character in the $GI10 buffer.
8. Execute the specified LRC End Sequence corresponding
to hexdigit h,.
Bh,h,h Multicharacter Output Sequentially output each character as follows: See Table A-6

(h2=3,%,6,0r 7) | with Echo

(Steps 1 through 4 are the same as those for codes with
h=B, h,=0,1,4, or 5.)

5. Await an input strobe and echo character from the
device.

6. Verify the received character by comparison with the
output character; and, if unequal, set the echo-error-
bit in the status-code-register.

7. Execute the specified termination-condition-check
corresponding to hexdigit h,.

8. Repeat Steps 1 through 7 if the current character is
not the last character 1n the $GIO buffer.

9. Execute the specified LRC End Sequence corresponding
to hexdigit h,.

(Table A-3 continued on next page)

66

Table A-3.

(Continued from preceding page)

Code

General Description

Function (Optional and Automatic Features)

Remarks

Bhyhsh,
(n;=8,9,C, or D)

Requested Multicharacter
Output

Sequentially output each character as follows:

1. Set the CPU Ready/Busy signal to Ready.

2. Await an input strobe from the device.

3. Execute the specified termination-condition-check
corresponding to hexdigit h3.

4. Wait or don't wait for a Ready signal from the device.

5. Send out the next character from the $GIO buffer
using an OBS or CBS output strobe.

6. Repeat Steps 1 through 5 if the current character is

not the last character in the $GI0 buffer.
7. Execute the specified LRC End Sequence corresponding
to hexdigit h,.

See Table A-6

BAh,0

Multicharacter Verify

Sequentially verify each character in the $GIO0

buffer as follows:

1. Set the CPU Ready/Busy signal to Ready.

2. Await an input strobe and character from the device.

3. Verify the next character in the buffer by comparison
with the received character; and, if unequal, set the
echo-error-bit in the status-code-register.

4. Execute the specified termination-condition-check
corresponding to hexdigit h,.

5. Repeat Steps 1 through 4 if the current character is
not the last character in the $GIQ buffer.

See Table A-6

C6hyh,

Multicharacter Input

Sequentially receive and store characters until one or

more specified termination conditions are satisfied.

1. Set the CPU Ready/Busy level to Ready.

2. Await an input strobe and character from the external
device.

3. Execute the specified termination-condition-check,
corresponding to hexdigit hy (if h3=2,3,6, or 7 for
an ENDI-level-check or if h3=1,3,5, or 7 for a
special-character-not-to-be- stored check).

4., Save the input character in the next byte of the $GIO0
buffer (unless the character is ruled out by Step 3).

5. Execute the specified termination-condition-check
corresponding to hexdigit h, (if h;=0 for a special-
character-to-be- stored-checi or 1f h, =4,5,6, or 7
for a special-count-condition- check)

6. Repeat preceding steps until a valid termination
condition is sensed.

7. Execute the specified LRC End Sequence corresponding
to hexdigit h

(A special_high- speed version is available.

C22h, in Table A-9.)

See code

See Table A-9

Chyhahy,
(ho=0,1,4,5)

Multicharacter Input
with Echo

Sequentially receive and store characters (echoing

each one to the input device) until a valid termi-

nation condition is detected.

(Steps 1 and 2 are the same as the events for micro-

commands with h;=C, hy=6.)

3. Wait or don't wait for a Ready signal from the
device.

4. Send an echo of the received character using an 0BS
or CBS output strobe.

(Steps 5,6,7,8, and 9 are the same as Steps 3 through

7 for C6hzh, microcommands.)

See Table A-9

Chzhghy
(h2=8 thru F)

Multicharacter Input
Upon Request

After first requesting each character by sending an 0BS
or CBS strobe to the device, sequentially receive and
store characters until one or more specified termi-
nation conditions are satisfied.

Set or don't set the CPU Ready/Busy level to Ready.

Send an 0BS or CBS "request" strobe to the device.
Wait for five microseconds.

Set or don't set the CPU Ready/Busy level to Ready.
Await an input strobe and character from the device.
(Steps 7,8,9,10, and 11 are the same as Steps 3 through
7 for codes with h;=C, hy=6.)

QAP WN —

Wait or don't wait for a Ready signal from the device.

See Table A-9

Fh,h,h,

Telecommunications (Line-
oriented) Input

Sequentially receive and store characters, after first
masking the high-order eighth bit, if specified, and
checking the resulting character for a match in the
"special character 1ist"” stored in the $GI0 arg-2 vari-
able beginning with the eleventh byte. Atoms in the
list (see Table A-14) define the action to be taken if
a received character matches a special character. The
hexdigits hyh, specify the action-atom for all charac-
ters not in the 1ist. Received data is stored in the
$GI0 arg-3 buffer which can be divided into elements by
an alpha array modifier of the form<s,m,e> . Each
"line" of data up to a separator character is stored in
the next available element. Several methods of input
termination are possible.

See Table A-13

67

Table A-4.

Single Character Output Signal Sequences

Character Character

Code Signal Sequence To Be Sent To Be Saved Type of Operation
40h,h, | WR, O0BS/IMM HEX{h4h,)
41hsh, 0BS/IMM ° HEX{h3h,)
42h,0° | WR, OBS/IND Is in Register h,
43h30 0BS/IND Is in Register h, Single Character Qutput
44h3h, | WR, CBS/IMM HEX(hahkg
45h;h, CBS/IMM HEX(h3h,)
46h,0° | WR, CBS/IND Is in Register h,
47h30 CBS/IND Is in Register h,

(Acknowl edge)
50h,h, | WR, OBS/IMM, W5, CPB, IBS HEX{h3h,) no
51h,h, 0BS/IMM, W5, CPB, IBS HEX{h3h,) no
52h,h, | WR, OBS/IND, W5, CPB, IBS, SAVE Is in"Register h, In Register h,
53h;h, 0BS/IND, W5, CPB, IBS, SAVE Is in Register hy | In Register h, | Single Character Output
54h;h, | WR, CBS/IMM, W5, CPB, IBS HEX(hahkg no with Acknowledge
55hh, CBS/IMM, W5, CPB, IBS HEX{h3h,) no
56h3h“ WR, CBS/IND, W5, CPB, IBS, SAVE Is in"Register h3 In Register h“
57h3h, CBS/IND, W5, CPB, IBS, SAVE Is in Register hy 1 In Register h,

(Echo)
60h.h, | WR, OBS/IMM, W5, CPB, IBS, VERIFY HEX(h,h,) no
61hh, 0BS/IMM, W5, CPB, IBS, VERIFY HEX(h3h,) no
62h3h~ WR, OBS/IND, W5, CPB, IBS, SAVE, VERIFY Is in"Register h, | In Register h,
63h h, 0BS/IND, W5, CPB, IBS, SAVE, VERIFY Is in Register h; | In Register h,
64h,h, | WR, CBS/IMM, W5, CPB, IBS, VERIFY HEX(hah“g no
65h,h, CBS/IMM, W5, CPB, IBS, VERIFY HEX(h3h,) no
66h,h, | WR, CBS/IND, W5, CPB, IBS, SAVE, VERIFY Is in Register hy | In Register h,
67h h, CBS/IND, W5, CPB, IBS, SAVE, VERIFY Is in Register hy | In Register h, | Single Character Output
68h,h, | WR, OBS/IMM, W5, CPB, IBS, VERIFY, TERM | HEX(hsh,) no with Echo
69h,h 0BS/IMM, W5, CPB, IBS, VERIFY, TERM | HEX(h3h,) no
6Ah.h, | WR, OBS/IND, W5, CPB, IBS, SAVE, VERIFY, TERM | Is in Register hy | In Register h,
6Bh,h, 0BS/IND, W5, CPB, IBS, SAVE, VERIFY, TERM | Is in Register hy | In Register h,
6Ch,h, | WR, CBS/IMM, W5, CPB, IBS, VERIFY, TERM HEX(hahkg no
60h,h, CBS/IMM, W5, CPB, IBS, VERIFY, TERM | HEX{h3h,) no
6Eh.h, | WR, CBS/IND, W5, CPB, IBS, SAVE, VERIFY, TERM | Is in Register hy { In Register h,
6Fh,h, CBS/IND, W5, CPB, IBS, SAVE, VERIFY, TERM | Is in Register h; | In Register h,
71h3h, | ABS/IMM HEX(hsh,) Address Strobe”
73h30 ABS/IND Is in Register h,

*Codes of the form 7h%h%h“, where h,=1 or 3, can be used as often as desired in a microcommand
h

sequence to
"immediate"
controller

deselec e currently selected device address and select another address. The
or "indirect" address sent with an ABS strobe must be the preset address of the
board for the device being selected. The preset address is the 8-bit code (one

byte) corresponding to the last two hexdigits of the three-hexdigit-address-code usually used

to select a
Legend for
WR =
08BS =
cBS =
/IMM

/IND

W5 =
cpPB

IBS
SAVE =

VERIFY =

TERM =

ABS/IMM =

ABS/IND =

particular device.

Table A-4.

The CPU awaits a Ready signal from the enabled device.

The CPU sends an OBS output strobe.

The CPU sends a CBS output strobe.

An “immediate" character (the two hexdigit code specified by hyh,) is sent with the
output strobe. For example, if hjh, = 3F in the microcommand code, the character HEX(3F)
is sent out.

An "indirect" character (the character stored in the arg-2 register specified by h,)} is
sent with the output strobe. For example, if h3 = 1 in the microcommand co%e, the
character stored in Register 1 is sent out.

The CPU waits five microseconds.

The CPU sets its Ready/Busy signal level to Ready.

The CPU awaits an input strobe from the enabled device.

The character received with the input strobe is stored in the arg-2 register specified by
h“‘ For example, if h‘b = 2 in the microcommand code, the received character is stored in
Register 2. (If h, = 0, the character is not stored.)

The character received with the input strobe is compared to the character sent with the
output strobe. If the compared characters are unequal, set the echo-error-bit
(bit-position-04 in arg-2 Register 8).

If the compared characters are unequal, immediately terminate execution of the $GIO
statement.

The CPU sends an ABS address strobe to the 1/0-bus with the "immediate" address specified
by the two hexdigit code hyh, in the microcommand code.

The CPU sends an ABS address strobe to the I/0-bus with the "indirect" address stored in
the arg-2 register specified by h3 in the microcommand code.

68

“©

Table A-5.

Single Character Input Signal Sequences

Received Character

Code Signal Sequence Compare Character | to be saved Type of Operation

8600 cPB, IBS no Single Character Input
860h,, cPB, IBS, SAVE In Register h,

80h,h, | CPB, IBS, VERIFY/IMM HEX(hsh,) no

82h3hk cPB, IBS, SAVE, VERIFY/IND Is in Register hy | In Register h, Single Character Input
88hsh, CPB, IBS, VERIFY/IMM, TERM HEX(h3h, no with Verify

BAhahk CPB, IBS, SAVE, VERIFY/IND, TERM Is in Register h; | In Register h,

9200 cPB, IBS, WR, ECHO/0BS no

9300 cPB, IBS, ECHO/0BS no

920h,, CPB, IBS, SAVE, WR, ECHO/0BS In Register h,

930h,, cpB, IBS, SAVE, ECHO/0BS In Register h, Single Character Input
9600 cPB, IBS, WR, ECHO/CBS no with Echo

9700 cpB, IBS, ECHO/CBS no

960h,, cpB, IBS, SAVE, WR, ECHO/CBS In Register h,

970h,, CPB, IBS, SAVE, ECHO/CBS In Register h,

Legend for Table A-5

cPB =
IBS -
SAVE =

The CPU sets its Ready/Busy signal level to Ready.
The CPU awaits an input strobe from the enabled device.
The character received with the input strobe is stored in the arg-2 register specified by

h,. For example, if h, = 3 in the microcommand code, the received character is stored in
Register 3. (If h, = b, the character is not stored.)

VERIFY/IMM=The character received with the input strobe is compared to the '“immediate" character

specified by the two hexdigit code h_ h, in the microcommand code. If the compared
characters are unequal, set the echo-error-%i% (bit-position-04 in arg-2 Register 8).

VERIFY/IND=The character received with the input strobe is compared to the "“indirect" character

TERM =

WR =
ECHO/0BS =

ECHO/CBS =

stored in the arg-2 register specified by h, in the microcommand code. If the compared
characters are unequal, set the echo-error-bi% (bit-position-04 in arg-2 Register 8).

If the compared characters are unequal, immediately terminate execution of the $GIO
statement.

The CPU awaits a Ready signal from the enabled device.

The CPU sends an echo of the received character with an 0BS output strobe to the enabled
device.

The CPU sends an echo of the received character with a CBS output strobe to the enabled
device.

69

Table A-6. Multicharacter Output Signal Sequences

Code Signal Sequence Check T | Lend

Code* Code** Type of Operation
A0Oh, (WR,DATAQUT/0BS), REPEAT,LEND h,
A10h, (DATAOUT/0BS), REPEAT,LEND h, Multicharacter
A4Oh, (WR ,DATAOUT/CBS), REPEAT,LEND h,, Output
A50h,, (DATAOUT/CBS), REPEAT,LEND h,
BOh,h, (WR,DATAOUT/0BS ,W5,CPB,IBS, CHECK T), REPEAT,LEND hy h,
Blhsh, (DATAOUT/OBS,W5,CPB,IBS, CHECK T), REPEAT,LEND hy h, Multicharacter
B4h_h, (WR, DATAQUT/CBS,W5,CPB,IBS, CHECK T), REPEAT,LEND hy hy, Output with
BShyh, (DATAOUT/CBS,W5,CPB,IBS, CHECK T), REPEAT,LEND hy hy, Acknowledge
B2h,h, (WR,DATAOUT/0BS ,W5,CPB,1BS ,VERIFY,CHECK T), REPEAT,LEND h, h,
B3h3h~ (DATAOUT/0BS,W5,CPB, IBS,VERIFY,CHECK T), REPEAT,LEND h3 h, Multicharacter
B6h,h, (WR,DATAGUT/CBS,W5,CPB,IBS,VERIFY,CHECK T), REPEAT,LEND hy h, Output with Echo
B7h,h, (DATAOUT/CBS,W5,CPB,IBS,VERIFY,CHECK T), REPEAT,LEND hy h,
B8h, h, (CPB,IBS,CHECK T,WR, DATAQUT/0BS), REPEAT,LEND h, h,
Bh.h, (cPB,1BS,CHECK T, DATAOUT/OBS), REPEAT,LEND hy h, Requested Multi-
BCh.h, (cpB,1BS,CHECK T,WR, DATAOUT/CBS), REPEAT,LEND hy h, character Output
BDh h, (cPB,IBS,CHECK T, DATAQUT/CBS), REPEAT,LEND hy h, (Each Character)
BAh_ 0 (CPB,IBS,VERIFY,CHECK T), REPEAT hy Multicharacter

3 Verify
A20h~ A high-speed version of AQOh,, allowing not more than 30ss per data h, High-speed Output
character and not more than KSps between final data character and
LRC character. No timeout or delay is implemented in this version.

A6Ch,, SCAN DATA BUFFER, CALCULATE LRC, LEND h, LRC Only Output

L —» See Table A-8.

*See Table A-7. See Table A-7,
**See Table A-8. A

Legend for Table A-6.

(In this table, any sequence enclosed in parentheses is repeated for each
character in the defined length of the arg-3 data buffer.)

WR = The CPU awaits a Ready signal from the enabled device.
DATAQUT/0BS = The CPU sends out the next character in the arg-3 buffer with an 0BS output strobe.

DATAQUT/CBS = The CPU sends out the next character in the arg-3 buffer with a CBS output strobe.

W5 = The CPU waits five microseconds.

CPB = The CPU sets its Ready/Busy signal level to Ready.

IBS = The CPU awaits an input strobe from the enabled device.

VERIFY = The character received with the input strobe is compared to the character sent with

the output strobe. If the compared characters are unegual, the echo-error-bit (i.e.,
bit-position-04 in arg-2 Register 8) is set to "1".

CHECK T = The CPU checks for the type of termination condition specified by hexdigit hy (see
Table A-7) and executes a prescribed sequence if a valid condition is detected.

REPEAT = The output sequence within the parentheses is repeated for all characters in the
defined length of the arg-3 buffer,

LEND =

The LRC End Sequence specified by hexdigit h, is executed (see Table A-8).

Note:

When programming a multicharacter-output-with-echo
operation, neither a timeout of the form 12h.2 nor
a delay of the form 12h,1 can be in effect aur‘lng
execution of a microcosmand of the form BZhjh,,
B3hyh,, B6hsh,, or B7hih,. A false indication of
an echo error may occur if a timeout or delay is
in effect.

70

9

Table A-7.

Valid "Check T" Output Termination Codes for h, in Several Microcommand Categories

Microcommand Category Bh,hsh, Bh,h,h, Bh,hyh, BAh,0
Output Termination Condition h,=0,1,4,5 h,=2,3,6,7 h,=8,9,C,D
None (go to next microcommand when buffer finished). 0 0 0 8
Terminate statement if echo or acknowledge character 1 9
verifies unequal.
Terminate statement if ENDI level = logic "1" when an 2 2 2 A
input strobe is received. Also save the character re-
ceived in Register 6 and set the ENDI-bit in the status-
code-register.
Terminate statement if either termination condition is 3 B
detected.

Table A-8. Valid "Lend" Codes for h“ in Several Output Microcommands
Microcommand Ahghshy, | Bhyhshy, Bh,hyh,
LRC End Sequenc Category h,=0 through 7 h,=8,9,C,D
None (go to next microcommand). 0 0 0
WR, SEND LRC/0BS, SAVE LRC 2 2 -
SEND LRC/0BS, SAVE LRC 3 3 -
WR, SEND LRC/CBS, SAVE LRC 6 6 -
SEND LRC/CBS, SAVE LRC 7 7 -
SAVE LRC 4 4 4

Legend for Table A-8.

WR
SEND LRC/0BS

SEND LRC/CBS

SAVE LRC

The CPU awaits a Ready signal from the enabled device.

The CPU sends the calculated LRC* character with an 0BS
strobe to the enabled device.

The CPU sends the calculated LRC* character with a CBS
strobe to the enabled device.

The calculated LRC character is saved in arg-2
Register 5.

*The LRC character is calculated by executing an Exclusive OR for all
characters in the data buffer.

71

Table A-9.

Multicharacter Input Signal Sequences

O

. Check T Lend**
Code Signal Sequence Code Code Type of Operation
C6hsh, | (CPB,IBS, CHECK T1,SAVE DATA,CHECK T2) ,REPEAT,LEND hy hy, Multicharacter
Input

COhzh, | (CPB,IBS,WR,ECHO/OBS, CHECK T1,SAVE DATA,CHECK T2),REPEAT,LEND hy hy,
Clhshy | (CPB,IBS, ECHO/OBS, CHECK T1,SAVE DATA,CHECK T2),REPEAT,LEND hs hy, Multicharacter
C4hshy, | (CPB,IBS,WR,ECHO/CBS, CHECK T1,SAVE DATA,CHECK T2),REPEAT,LEND hy hy Input with Echo
C5hshy | (CPB,IBS, ECHO/CBS, CHECK T1,SAVE DATA,CHECK T2),REPEAT,LEND hy hy,
C8h3hy, WR, 0BS,W5,CPB,IBS,CHECK T1,SAVE DATA,CHECK T2),REPEAT,LEND hy hy,
C9hszhy, 0BS,W5,CPB,IBS,CHECK T1,SAVE DATA,CHECK T2),REPEAT,LEND hy hy,
CAhsh, | (CPB, WR, 0BS, IBS,CHECK T1,SAVE DATA,CHECK T2),REPEAT,LEND h, hy,
CBhahy | (CPB, 0BS, IBS,CHECK T1,SAVE DATA,CHECK T2),REPEAT,LEND hy hy, Requested Multi-
CChshy | (WR, CBS,W5,CPB,IBS,CHECK T1,SAVE DATA,CHECK T2),REPEAT,LEND hy hy, character Input
CDhzhy | (CBS,W5,CPB,IBS,CHECK T1,SAVE DATA,CHECK T2),REPEAT,LEND hs hy, (Each Character)
CEhshy | (CPB, WR, CBS, IBS,CHECK T1,SAVE DATA,CHECK T2),REPEAT,LEND hsy hy
CFhsh, | (CPB, CBS, IBS,CHECK T1,SAVE DATA,CHECK T2),REPEAT,LEND hy hy
C22hy, (CPB,IBS, no timeout or delay, CHECK ENDI,SAVE DATA),REPEAT, LEND by, High-speed Input

Note: C22h, is a special case, optimized for maximum speed -- a char-

acter may be received every 30 #s approximately.

L s See Table A-11.
*See Table A-10. See Table A-10.

**See Table A-11.
Legend for Table A-9.

(In this table, any sequence enclosed in parentheses is repeated until a valid
termination condition is detected.)

CPB = The CPU sets its Ready/Busy signal level to Ready.

1BS = The CPU awaits an input strobe from the enabled device.

WR = The CPU awaits a Ready signal from the enabled device.

ECHO/0BS = The CPU sends an echo of the received character with an OBS strobe to the enabled device.

ECHO/CBS = The CPU sends an echo of the received character with a CBS strobe to the enabled device.

0BS = The CPU sends an OBS strobe to the enabled device to request an input character.

CBS = The CPU sends a CBS strobe to the enabled device to request an input character.

W5 = The CPU waits five microseconds.

CHECK T1 = The CPU checks for a termination condition by ENDI-level (if hy=2,3,6,0or 7) and/or by a
Special Character not-to-be-saved (if h3=1,3,5,0or 7). See Tabie A-10.

SAVE DATA= The received character is saved in the arg-3 data buffer.

CHECK T2 = The CPU checks for a termination condition by a to-be-saved Special Character (if h; =0)
or by the Count (if h;=4,5,6,0r 7). See Table A-10.

REPEAT = The input sequence within the parentheses is repeated until a valid termination condition
is detected.

LEND = The LRC End Sequence specified by hexdigit h, is executed (see Table A-11).

72

Table A-10.

in Microcommands of the Form Chzhahu

Valid "Check T1" and "Check T2" Input Termination Codes for

ENDI-Tevel
Termination

(Termination when an

Special Character
Termination

(Termination when an

Count
Termination

(Termination when the

hs input strobe is re- input character is number of characters
ceived with the ENDI equal to the charac- received is equal to
signal level set to ter stored in arg-2 the defined length of
logic "1".) Register 1.) the arg-3 data buffer.)

0 yes*

1 yes**

2 yes¥rx

3 yes¥ax yesh*

4 yes

5 yes** yes

6 yes¥r* yes

7 yes*rx yes** yes

**If

the

*If hi =0, the special character is saved in the data buffer and included in both
RC calculation and the character count.

=1,3,5,0r 7, the special character is not saved in the data buffer; there-

fore, neither the LRC calculation nor the character count includes the special

character,

Register 6.

(Note: For h
conditions occurs.

condition, and then the Count.)

***The character received (when the ENDI level is logic "1") is saved in arg-2

=3,5,6,0r 7, termination occurs when one or more of the specified
The ENDI level is checked first, then the Special Character

Table A-11. Valid "Lend" Codes for h, in Microcommands of the
Form Ch2h3hk
hy LRC End Sequence*
0 None (Go to next microcommand.)
1 Calculate the LRC of the input data (not including the
special or ENDI character) and save in arg-2 Register 5.
2 Calculate the LRC of the input data (not including the

ENDI character) and save in arg-2 Register 5.
compare the LRC with the ENDI character (i.e.,charac-
ter received when ENDI level = logic "1").
pared characters unequal, set the LRC-error-bit in

arg-2 Register 8. (See Table A-12.)

Also,

If com-

*Use h,=2 only with h,=2.
received, the LRC character is compared to the contents of arg-2
Register 6.

Table A-12.

If h3#2 and an ENDI character is not

Definition of Error/Status Bits in Arg-2 Register 8

Bit Position

Error/Status Condition (If Bit Position Set To "1")

Note:
01 Buffer overflow (i.e., more characters received than could The four high-order bit positions in a byte are labeled
be stored in the arg-3 data buffer). The total count of 80,40,20,10, respectively; the four low-order bit

characters received

(whether stored or not) is saved as a
two-byte binary number in arg-2 Registers 9 and 10.
condition cannot occur if h1=4,5,6,or 7 in microcommands

of the form Chzhshu’ see Table A-10.)

(positions are labeled 8,4,2,1, respectively.
This

one byte (8-bits)

02 LRC compare error. (This condition can occur only if h,=2 < o —

in microcommands of the form Ch,hsh,, see Table A-11.) IS0 Bit position labels
20 Termination by ENDI level = logic "1". * L—————» Low-order hexdigit
40 Termination by Special Character. * ———» High-order hexdigit
80 Termination by Count. *

*This bit position can be set only if the condition occurs when

more than one type of termination condition is

hy =3,5,6 and 7 in Table A-10).

specified (see

73

Table A-13. Telecommunications Input Signal Sequences

Code Signal Sequence*

FOhsh, | (CPB,IBS, [WR ,ECHO1/0BS] , [WR,ECHO2/0BS], {SAVE DATA]),REPEAT
Flhsh, | (CPB,IBS, [ECHO1/0BS] ,[ECHO2/0BS}, [SAVE DATA]),REPEAT
Fah,h, | (CPB,IBS, {WR,ECHO1/CBS] , [WR,ECHO2/CBS], [SAVE DATA] },REPEAT
Fshyh, | (CPB,IBS, L ECHO1/CBS] ,[ECHO2/CBS], SAVE DATA]},REPEAT

F8nyh, | (CPB,IBS,MASK, [WR,ECH01/0BS] , [WR,ECHO2/0BS] , [SAVE DATA]),REPEAT
Foh,h, | (CPB,IBS,MASK,[ECHO1/0BS] ,[ECHO2/0BS],{SAVE DATA]),REPEAT
FChyh, | (CPB,IBS,MASK, [WR,ECHO1/CBS] , [WR,ECHO2/CBS], [SAVE DATA)),REPEAT
FDhyh, | (CPB,IBS,MASK,[ECHO1/CBS},[ECHO2/CBS], [SAVE DATA]),REPEAT

*The sequence inside each set of square brackets is optional, that is, execution may or

may not occur after a received character (masked, if specified) is checked against each
character in the "special character Tist" stored in arg-2 (beginning with the eleventh
byte). Information in the special character list must be arranged in pairs of bytes as
follows: atom**, character, atom, character,..., space, space. The list must end with
two space characters, HEX(2020), or unpredictable results will occur. If the list is to
be null, the eleventh and twelfth bytes must be blank. If a received character matches
one of the characters in the 1ist, the preceding atom defines the action to be taken
(see Table A-14). If a received character does not match a special character, the
hexdigits hjh, in the microcommand serve as the atom defining the action to be taken for
the character.

**An atom is an eight-bit code whose individual bits (if equal to "1") define a particular

Le
cp
18
WR
MA
EC

EC

EC

EC

SA
RE

action. (See Table A-14.)

gend for Table A-13.

B = The CPU sets its Ready/Busy signal level to Ready.

S = The CPU awaits an input strobe from the enabled device.

= The CPU awaits a Ready signal from the enabled device.

SK = Set the high-order eighth bit of the received character to "0".

HOT/0BS = The CPU sends an echo of the received character with an OBS strobe to the console output
device.

H02/0BS = The CPU sends an echo of the received character with an OBS strobe to the output channel
of the currently selected input device (i.e., to the device whose address
input-device-address +4).

HO1/CBS = The CPU sends an echo of the received character with a CBS strobe to the console output
device.

H02/CBS = The CPU sends an echo of the received character with a CBS strobe to the output channel
of the currently selected input device (i.e., to the device whose address is the
input-device- address +4).

VE DATA = The received character is saved in the arg-3 data buffer.

PEAT = The input sequence within the parentheses is repeated until a valid termination

condition is detected.

Table A-14. Definition of Action Bits for Atoms in Special
Character List

Bit Position Action (If Bit Position Set to "1")

04 Character is a data "SEPARATOR" *

08 Character is a data "TERMINATOR" **

10 Do not store the character in the arg-3 data
buffer.

40 Echo the character to the output channel whose

address equals the current input device address
+4,

80 Echo the character to the console output device.

*SEPARATOR = A character marking the end of an input "line"; the
next received character is to be stored as the first
byte in the next element of the arg-3 data buffer.

**TERMINATOR = A character marking the end of the input data; ter-
minate execution of the data input.

(See the note following Table A-12 for a definition of the bit
positions.)

74

Notes for Table A-13:

If an alpha array modifier is used when specifying 4. 1If the buffer is divided into elements by wusing an
the buffer for a microcommand chosen from Table A-13, alpha array modifier, each "line" of data (denoted by
the modifier must be of the form: a separator character) is stored in the next
available element of the buffer. If a line overfLo?s
<[s) , M, €> the element, the remaining characters are stored in
the next element, and the element-overflow status bit
where s = starting byte, optional (default value=1}, is set (bit-position-02 1in arg-2 Register 8).
m = number of bytes per element (required), However, if there are no more elements, the remaining
e = number of elements (required), characters are lost, and the buffer-overflow status
and {s} {integer'z 1 } bit is set (bit-position-01 in Register 8).
m» = <expression
e alpha variable
: : : 5. A $GI0 telecommunications input operation can be ter-
If an alpha variable is used to define one of these R p A
parameters, the first two bytes in the variable are minated by one or more of the following conditions:
considered to be a 16-bit binary value; any remaining " . " . :

: : a) A "terminator" character is received (several
bytes of the variable are ignored. different characters can be specified as data
The product of m and e (i.e., m*e) defines the total terminators).
zgzbggcggcg%;:zdavaI]ab]e for use during execution of b) A "separator" character is received when data is

: being t;ansferred to the last element in the

s buffer (several different characters can be
The values of s, m, and e must not specify more bytes et
than exist in " the array; therefore, the following specified as data separators).
condition must be satisfied by the values: c) An input strobe with the ENDI level set to logic
e - s +1<d 1" is received; if so, the character is saved in
where d = the dimension of the array. arg-2 Register 6.
For example, after the statement d) A buffer overflow occurs.
e) A timeout condition is exceeded (i.e., no
DIM B$(12)40 character is received within a specified amount
reserves 480 contiguous bytes for the B§-array, the of time).
array modifiers below are interpreted as follows:
. - 0
B$() <81,40,1> 1is equivalent to B$(3), ¢ ?:{ea$:;$:skfzso?: t:lcr::SETa"gom::n::: f°;- zhzgé?a
<,80,6> splits the array into 6 80-byte
) s elements statement is ignored by a subsequent microcosmand

B$() <5,60,3> defines 3 60-byte elements, starting

with the fifth byte of the array.

Table A-15.

of the form Fhyhsh,.

Definition of Error/Status Registers for $GI0 Operations with a

Telecommunications Microcommand of the Form Fhyhsh,

Byte Bit
Position Position Usage
1* all Contains the second byte of the Fh,hyh, micro-
command, i.e.,the hjh, code. (With h, set to 0.)
2,3,4,5 all Not used.
6 all Contains the ENDI-character, i.e., the charac-
ter received with ENDI signal Tevel = "1".
7 all Not used.
8 Status code, set during $GIO execution as follows:

01 1 = Buffer overflow (at least one byte lost).

02* 1 = Element overflow (no separator code received
before too many characters received for size
of one element of the buffer).

10 1 = Timeout (when active for microcommands of the
Form 12hyh,).

20 1 = Data input termination by an ENDI-character

40* 1 = Data input termination by a Terminator-
character.

80* 1 = Data input termination by a Separator-
charactor received for last element of
buffer.

9,10* all Contains the count (a two-byte binary value) of
the number of elements into which input data was
stored during execution of the $GIO statement.

1,...* Contains the Special Character List, ending with
two space characters, HEX(2020).

*Usage differs for non-telecommunications microcommands, i.e., micro-
commands where h; is not equal to F.

(See the note following Table A-12 for a definition of the bit
positions in a byte.)

75

APPENDIX B -- ERROR CODES FOR THE GENERAL I/0 INSTRUCTION SET

Presented in this section are five error codes which might occur when
entering or running programs which include statements from the General I/0
Instruction Set.

CODE 95

Error: I11egal Microcommand or Field/Delimiter Specification

Cause: The microcommand or field/delimiter specification is invalid.
Action: Use only the microcommands and field/delimiter specifications

listed in the marual.

Example: :RUN
:10 $GI0 (1023, R$)

$ERR 95
:10 $GI0 (0123, R$) Possible Correction
CODE 96
Error: Missing Buffer
Cause: The $GIO arg-3 buffer was either omitted or already used by another

multicharacter input, output, or verify microcommand.

Action: Define the buffer if it was omitted, or use two $GIO statements to
separate multicharacter microcommands.

Example: 10 $GIO /03B (AOOO C640, R$) B$

tERR 96

10 $GIO /03B (A000, R1$) B1$

20 $GIO /03B (C640, R2$) B2$ Possible Correction
CODE 97
Error: Variable or Array Too Small
Cause: Insuffient space reserved in DIM statement or insuffient data for

at least one arqument in a SUMNPACK statement.
Action: Change DIM statement or change argument Tist (or input more data)

and run the program again.

Example: 10 DIM R$6
20 $GIO (0123, R$)

:RUN
:20 $GI0 (0123, R$)
$ERR 97
:10 DIM R$10 Possible Correction

76

CODE 98
Error:
Cause:

Action:

Example:

CODE 59
Error:
Cause:

Action:

I11egal Array Modifier Arguments
The arguments exceed the total size of the alpha array.
Redefine the array modifier or redimension the array.

10 DIM A$(3)10, B$(4)64

20 $TRAN (A$() <10, 23>, B$()

:RUN

:20 $TRAN (A$() <10, 23>, B$())
4ERR 98

()

:20 $TRAN (A$() <10, 20>, B$()) Possible Correction
I11egal Alpha Variable For Sector Address (Standard message)

Alpha variable is not at least two bytes long.

Redimension the alpha variable.

77

APPENDIX C - ASCIT CONTROL AND GRAPHIC CHARACTERS IN HEXADECIMAL AND
BINARY NOTATION

FORMATS: Note: |
HEXADECIMAL CODES: HEX (a, a,) Character set for wang systems
8-bit codes (bgb,beb Bbszb
7-BITBINARY CODES: (b, by b b, by b, b,) bg=0, b, through b =RSEI
THREE BITS 0 0 0 0 1 1 1 1 7BIT
(HlGH————J 0 0 1 1 0 0 1 1 BINARY
ORDERY 0 1 0 1 0 1 0 1 NOTATION
FIRST HEX
DIGIT—— O 1 2 3 4 5 6 7
{HIGH ORDER}
a, b, b3 bz b,
NUL | DLE 4 0 @ P \ p 0 of{o0 0
SOH | DC1 ! 1 A Q a q 1 o O 1
STX | DC2 " 2 B R b r 2 0|0j1]0
ETX | DC3 # 3 Cc S c s 3 o(0o} 1i{1
EQOT | DC4 $ 4 D T d t 4 o[11 0|0
C
H ENQ | NAK % 5 E U e u 5 011101
A ACK | SYN & 6 F v t v 6 o{ 1|10
R
A BEL ETB {apos.} 7 G w 9 w 7 0 1 1 1
$ BS | CAN | 8 H X h x 8 {|1|0]0|0
E HT EM) 9 | Y i y 9 11001
R LF | SuB * J Z i z All1|jofl1]|o
S
VT | ESC | + ; K [k { Bll1|0]1]1
FF Fs (co’mma) < L \ | \ C 1 1 0 0
CR GS (dash} = M] m } o) 11110]1
SO | RS Jieiom | = N t n ~ Efl1]1]1]0
st | us | / > | o [wee| o | DEL Filvfr)1]
Y
t%_ ‘j SECOND HEX FOUR BITS
CHARACTERS DIGIT (LOW
(LOW ORDER) ORDER)
LEGEND FOR ASCIHl CONTROL CHARACTERS
NUL Null DLE Data Link Escape
SOH Start of Heading DC1 Device Control 1
STX Start of Text DC2 Device Control 2
ETX End of Text DC3 Device Control 3
EQT End of Transmission DC4 Device Control 4
ENQ Enquiry NAK | Negative Acknowledge
ACK Acknowledge SYN Synchronous Idle
BEL Bell (audible or attention signal) ETB End of Transmission Block
BS Backspace CAN | Cancel
HT Horizontal Tabulation EM End of Medium
{punched card skip) suB Substitute
LF Line Feed ESC Escape
vT Vertical Tabulation FS File Separator
FF Form Feed GS Group Separator
CR Carriage Return RS Record Separator
SO Shift Qut us Unit Separator
S Shift In DEL Delete

78

A

:To help us to provide you with the best manuals possible, please make your comments and suggestions
! concerning this publication on the form below. Then detach, fold, tape closed and mail to us. All comments
=and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to include your
§ name and address. Your cooperation is appreciated.

'
|
= 700-3514F
[
1
:
: TITLE OF MANUAL: GENERAL 1/0 INSTRUCTION SET REFERENCE MANUAL
]
! COMMENTS:
'
[]
]
1
i
]
! Fold
'
'
[]
1
'
]
Foid

(Please tape. Postal regulations prohibit the use of staples.)

WANG)

Fold
FIRST CLASS E
PERMIT NO. 16 '
Tewksbury, Mass.
BUSINESS REPLY MAIL

NO POSTAGE.STAMP NECESSARY IF MAILED IN THE UNITED STATES

- POSTAGE WILL BE PAID BY —

WANG LABORATORIES, INC.

ONE INDUSTRIAL AVENUE

LOWELL, MASSACHUSETTS 01851

Attention: Technical Writing Department

Cut along dotted line.

Fold

Printed in U.S.A.
13-1019

te

United States

—~

Alabama Florida Louisiana New Hampshire Oregon Vermont
Birmingham Miami Baton Rouge Manchester Eugene Montpelier
Mobile Hialeah Metarrie Portland
Jacksonville New Jersey Virginia
Alaska Orlando Maryland Toms River Pennsylvania Newport News
Anchorage Tampa Rockville Mountainside Allentown Norfolk
Towson Chfton Camp Hill Richmond
; Georgia Erie
:;'::;: Atlanta g’l'ﬁ;'sf: husetts New Mexico Philadelphia Washington
Tucsor Savannah Boston Albuquerque Pittsburgh Richland
2
" Burlington Wayne Seattle -
Hawaii New York Spokane i
California Honolul Chelmsford Albany Tacoma M
Culver City ulu Lawrence Buffalo Rhode Island .
Cranston
iountam Valley Idaho tga:?n Fairport Wisconsin A
resno
Inglewood Idaho Falis Tewksbury kfek; \S/s:::ecslts South Carolina snr:g'l;zild
Sacramento L Worcester v Charleston
Iinois Syracuse Wauwatosa
San Diego . Columbia
San Franctsco Chicago Michigan
Morton Kentwood North Carolina
Santa Clara Tennessee
v Park Ridge Okemos Charlotte Ch
entura Rock Island Southfield Greensboro K attalrl\ooga
Rosemont Raleigh noxvite
Colorado Minnesota Memphis
Englewood Indiana Eden Prairie Ohio Nashville
Indianapoiis Mi . Cincinnati
Connecticut South Bend |ssogr| Cleveland Texas
New Haven Creve Coeur Middleburg Heights AUStin
EIES
Stamford Kansas Nebraska Toledo Houeton
Wethersfield Overland Park Omaha Worthington
Wichita San Antonio
District of Nevada Oklahoma
Columbia Kentucky Las Vegas Oklahoma City Utah
Washington Louwsville Reno Tulsa Salt Lake City
International Offices International Representatives
Australia France Singapore Abu-Dhabi Kenya
Wang Computer Pty Ltd. Wang France S AR.L Wang Computer {Pte) Ltd Argentina Korea
Adelaide, S.A Paris Singapore Bahrain Kuwait
Brisbane, Qld Bordeaux Bolivia Lebanon
Canberra, ACT Lyon Sweden Brazil Liberia
DarwinN T Marseilles Wang Skandinaviska AB Canary Istands [SETEINE
Perth, WA Nantes Stockholm Chile Maita
South Melbourne, Vic 3 Strasbourg Gothenburg Colombia Mexico
Sydney, NSW Toulouse Malmo Costa Rica Morocco
. Cyprus Nicaragua
. Great Britain Switzerland Denmark Nigeria
Austria Wang (UK} Ltd Wang A.G Dominican Republic Norway
Wang Gesellschaft, mbH. Richmond
v Zurich Ecuador Paraguay
enna Birmingham Basel Egypt Peru
London Geneva Et Salvador Philippines
Belgium Manchester) Fintand Portugal ‘
Wang Europe, S.A Northwood Hills Wang Trading A.G. Ghana Saud) Arabra
Brussels Hong Kang Zug Greece Scotland
Erpe-Mere Wang Pacific Ltd Guatemala Spain
9 United States Hait Sri Lanka
Hong Kong W, \ | Trade, | ait rla
Canada ang International Trade, Inc Honduras Sudan
Wang Laboratories Japan Lowell, Mass icetand Syna
Wang Computer Ltd India Thailand
(Canada) Ltd West G
Burnaby, B C Tokyo estGermany Indonesia Turkey &
: Wang Laboratories, GmbH Ireland United Arab
Calgary, Alberta Netherlands Frankfurt rela Bt
Don Mills, Ontario Wang Nederland B V Israel irates :
9 Berlin Jtal Venezuela 3
Edmonton, Atberta 1Jsselstein C ay :
ologne J
Hamilton, Ontario Gronigen amaica A ;
g Dusseldorf J o T
Montreal, Quebec Essen apan :
Ottawa, Ontario New Zealand Jordan ;
i W c Fretburg |
Winnipeg, Manitoba ang Computer Ltd
Auckland Ham urg . j
Wellinaton annover ‘
China s Kassel
Wang Industrial Co., Ltd ~ Panama Munich
Taipet Wang de Panama Nurnberg
Wang Laboratories Ltd (CPEC) S A Saarbrucken
Taipe: Panama City Stuttgart ’

LABORATORIES

., INC.

) +

(WANG)

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617} 459-5000, TWX 710 343-6769, TELEX 94-7421

Printed in U.S.A
7C0-3514F
6-80-3M

Price: see current list

	Preface
	Contents
	Chapter 1: General I/O Instruction Set Overview
	Chapter 2: Data Conversion Using $TRAN, $PACK, or $UNPACK
	$TRAN
	$PACK, $UNPACK

	Chapter 3: I/O Operations Using $IF and $GIO
	$IF ON
	$GIO

	Appendix A: $GIO Microcommand Tables
	Appendix B: Error Codes for the General I/O Instruction Set
	Appendix C: ASCII Control and Graphic Characters in Hexadecimal and Binary Notation

