2200

Programmer’s Guide
to Word Processing

2200
Programmer’s Guide
to Word Processing

1st Edition — August, 1982
Copyright © Wang Laboratories, Inc., 1982
700-6961

WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 @ TEL. (617) 459-5000, TWX 710-343-6769, Telex 94-7421

Disclaimer of Warranties
and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care in preparing
this manual; however, nothing contained herein modifies or alters in any
way the standard terms and conditions of the Wang purchase, lease, or
license agreement by which this software package was acquired, nor
increases in any way Wang's liability to the customer. In no event shall
Wang Laboratories, Inc., or its subsidiaries be liable for incidental or con-
sequential damages in connection with or arising from the use of the soft-
ware package, the accompanying manual, or any related materials.

NOTICE:

All Wang Program Products are licensed to customers in accordance
with the terms and conditions of the Wang Laboratories, Inc. Standard
Program Products License; no ownership of Wang Software is trans-
ferred and any use beyond the terms of the aforesaid License, without the
written authorization of Wang Laboratories, Inc., is prohibited.

WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 e TEL: 617/459-5000, TWX 710-343-6769, TELEX 94-7421

PREFACE

This manual describes programming tools available to purchasers of Wang
2200 Word Processing software. Before using the tools described in this
manual the reader should become familiar with 2200 Word Processing by scanning
the 2200 Word Processing Operator's Guide (700-6937A) . While becoming
familiar with 2200 Word Processing in general, the reader should pay
particular attention to the following: the structure of 2200 Word Processing
documents, especially the use of page breaks and format lines, the Document
Summary, the Print Document Menu, glossaries, and the Wang 2200 Word
Processing menus.

Chapter 1 of this manual describes the functions that can be performed
using the Document Access subroutines. The subroutines allow the programmer
to access, modify, and create 2200 Word Processing documents from executing
BASIC-2 programs. The final section of Chapter 1 is a reference guide for the
subroutine user. '

Chapter 2 describes the steps a programmer takes to create a menu entry
on one of the 2200 Word Processing menus.

Chapter 3 describes the steps a programmer takes to access the 2200 Word
Processing Software system from an application program.

|
[
e

CHAPTER 1

(e
. L]
N =

-
s W

1.6

2.1
2.2
2.3

2.4

CONTENTS

DOCUMENT ACCESS SUBROUTINES

INtroducCtion ..cececececcscssosvrcsccccssosssccsssssssccccssccce
Structure of a 2200 Word Processing Documentcecccceccee
Administrative Information ...cccceccecescccccccccscaccce
Text INformation .cceeecescsccccscscscsccsscccssscsssscccsns
Document Access Subroutine Functions .c.ecccecceccrcccececes
Designing a Document Access Applicationcccececccccecccs
Identify the Application GOalsS ...ccescecccccccaccccccccee
Loading the Subroutines ..cccecececcccccrcecasececccccccncns
Direct MethOod ..ccecccecscesscsccssosccssosossscscscccscccnnccs
Software Selection Tool Method ..ccecceececccccccsccccccne
Miscellaneous Programming NOteS ccecceccccccccscccccasces
Error COAeS .ccecececccccesssccstsoscsscssassssscsosscssccnsas
Reference Guide to the Document Acess Subroutinesccce.
Initialize Dat@ ccecccecssscecsccccoosossssccsssccscssccscs
Open Document (Exclusive Mode) ...ccceecccccccccccccnccne
Close DOCUMENL ccceecesscccscsossssscccscssssssccssssssccssns
Create DOCUMENE ..cceccecccsccsccsscsssssccsssscsssscssssans
Delete Document ..cceeocececscsccsccssoscscscsccssscsscsococcnse
Change PasSSWOrd ...cccoceeccccccccsscsccocsssccccscssoscone
GO TO PABE cecvscsvccsccccsssscscsscscsaossssscsossssssccccnns
Read Current Page cccccececccccccscscccssscsccsoccscccccscssccce
Rewrite/Replace Page ...cccececcccccsscscssossssssssccncns
Insert/Write NeW Page ceccceccccsccoccscccsssccnscsccsccs
Delete Current Page .cccececcecsscosccccccsasoscsssscssscsns
Append Page .ceecccccccccccccsctssscscssssssccsccscccccss
Search Text String ...cccceeeececcccccsccccsosssscessccnns
Read Administrative Informationccccceccoceesscocaccs
Write Administrative Informationcccecececcccsccccees
Attach GlOSSArY ..ccscecccscccscsccssossccssscssssssssssssse
Call GlOSSAYY cccceeecscccccscscssssccsoscscssssscsccoscsccs
Detach GlOSSArY .ccecccsceccsccscsccssscscsscsscscsssssssens

2200 WORD PROCESSING MENU MODIFICATION

INELOAUCEION 4ueeeeeeeeoosescenneoocoscssassecccsosasassasns
Menu Data FileS ccccececcescescsosecccsssssosossccccsccsssscnscs
Menu Data File StruCtuUre .ccccececccccccsscscsossscscsccccscscs
The First DATA Statementccccco.. ceccccsssscssssseses
The Second DATA Statement .cccccecccsceccscccssssscssccsss
Intermediate DATA StatementS .cccececcecccscccscsccsccscscscse
The Last DATA Statement .ccccecccccscccsscccsossssocccsss
An Example Menu Data File .c.cceececsccscocssosccssccscsccccss

1-1
1-1
1-2
1-2
1-5
1-6
1-8
1-9
1-10
1-12
1-17
1-18
1-19
1-19
1-20
1-21
1-22
1-23
1-24
1-25
1-26
1-27
1-28
1-29

1-30

1-31
1-32
1-34
1-35
1-36
1-37

2-1
2-2
2-2
2-3
2-3
2-4
2-5
2-5

CONTENTS (continued)

CHAPTER 3 ACCESSING 2200 WORD PROCESSING FROM USER APPLICATIONS

3.1 INtroduction ..cececececscscscscscscssscsessscscsccsoccsnans
3.2 Entering Word Processing From an Applicationccceceeesee
3.3 Exiting Word ProcesSingeeeececescccscscscsssscsscccccss
3.4 Sample ProgramsSccececesescscescssssssssssssssscsccscccs

APPENDIX A DOCUMENT ACCESS SUBROUTINE MODULES ..c.ccceceecccossccocnnns

3-1

3-1
3-2
3-3
3-3

A-1

INDEX © 0 00 0000000000000 00 INDEX_].

vi

FIGURES

Figure 1-1 Character Set of the 2236DW Terminal ...cccccecccosccccecces 1-4
Figure 1-2 Appearance of a Document Page on the 2236DW Terminal 1-5
Figure 1-3 Appearance of a Page (Figure 1-2) when Stored on Disk 1-6
Figure 1-4 Subroutines Used to Successfully Access Documentsccc.. 1-7
Figure 1-5 Page Accessing Subroutinesccccecccceccceccaccccccnece. 1-7
Figure 2-1 Advanced Functions Menu ...cecceeocecsssssssccccccsscccccnns 2-1

TABLES
Table 1-1 Hex Codes for 2236DW Terminal Graphic Characters «.cecececces 1-3
Table 1-2 Document Access SUbroutines .cccccccecccccsccccorsccccccccnce 1-6
Table 1_3 Error codes ..l..l.......ll...ll..l.0.0...........0..0....00 1-17

vii

CHAPTER 1
DOCUMENT ACCESS SUBROUTINES

1.1 INTRODUCTION

The 2200 Word Processing Document Access Subroutines are BASIC-2
subroutines that allow the programmer to access, modify, and create 2200 Word
Processing documents from executing BASIC-2 programs. With these subroutines
a programmer can perform the following functions.

. Read specific information from documents

. Rewrite document text

. Modify existing documents (i.e. pages, formats, etc.)
. Create new documents

. Read document summary information from documents

. Modify document summary information

. Search a document. for a specified text string

. Recall glossary text in a document

Each subroutine execution accomplishes one function in a chain of
functions necessary to perform an application determined by the programmer.
This chapter will demonstrate subroutine operation by creating some simplified
sample programs. The sample programs are designed only to give the programmer
a basic understanding of how the subroutines operate. The sophistication of
the applications depends on the creativity and knowledge of the individual
programmer. A . '

The Document Access subroutines are marked subroutines (GOSUB') that
allow the programmer to perform specific operatlons with 2200 Word Processing
documents. Word processing document access is accomplished on a page oriented
basis. In simplest terms, the subroutines allow the user to access documents
by locating pages, adding pages, deleting pages, or replacing pages. To
successfully use the Document Access subroutines, the programmer must be
familiar with the structure of a 2200 Word Processing document, as described
in the following section.

1.2 STRUCTURE OF A 2200 WORD PROCESSING DOCUMENT

2200 Word Processing documents contain administrative and text
information. Each 2200 Word Processing document is saved on disk in a BASIC-2
file called a "volume". Each volume may contain one or many documents
organized in one or many libraries. A detailed description of the kind of
information contained in each document follows.

1.2.1 Administrative Information

Administrative information consists K of Document Summary information,
statistical information, and Print Document menu information. The Document
Summary information is composed of alphanumeric and numeric fields that
contain information useful in document file maintenance. The summary allows
the user to enter title, author, and operator; and provides space for comments.
(such as a brief description of the document or keyword information to aid the
user in identifying the document). Each time the document is accessed by
means of word processing, the document summary screen appears with the
previously entered information. The user may retain the summary information,
or change specific fields.

Statistical information appears below the summary information on the
screen. The system maintains statistical information, and updates it every
time a document is accessed by means of word processing. The word processing
user is unable to alter any of the information in these fields. However, the
Document Access subroutines allow the programmer to manipulate these data
fields, accessing and changing the information they contain.

Print menu information consists of default values presented by the Print
Document menu when it is viewed. When a selected document is printed, the
values supplied by the user in the Print Document menu become the default
values.

1.2.2 Text Information:

Pages of text information comprise the main body of the document. All
2200 Word Processing document pages consist of the following three parts.

. A format line that begins the page of text
. Text area that may include additional format lines
. A page break that ends each page of text, excluding the last page

When a word pfocessing-document'is~viewedwon the screen, special graphic
characters appear within the document pages. The graphic characters represent
special keys pressed by the operator when the document was created. Every
word processing document is stored on disk as a document file. The document
file contains hex codes to represent both text characters and special graphic
characters. The hex codes are stored in a continuous string of data,
regardless of how they appear on screen, or when output to a printer. The
following rules apply to a word processing document stored on disk.

Spaces created by pressing special keys (such as the TAB, RETIURN, or
INDENT key) are not stored in the disk form of the document. Only the
hex code for the graphic character is stored. Spaces created in this
manner appear as unoccupied space when the document is viewed on screen.

Spaces typed within the text of a document are stored as HEX(BO% in the
disk form of the document. Spaces created in this manner are displayed
as a small dot when the document is viewed on screen.

All unused characters from the 1last text character to the end of the
page are stored on disk as HEX(20)s.

1-2

ff§

The last text character of all document pages, except the last page,
g”“ must be a page break character (HEX(8F)).

The first format 1line of a page begins with a First Format Line
Indicator (HEX(8F)). All other format lines contained in a page of text
begin with a HEX(86) which indicates a format line other than the first
format line of a page. Each format 1line begins with a format 1line
indicator and a vertical spacing indicator, followed by a user—defined
sequence of spaces and tabs. A return- character must end the format
line.

A text page should not contain adjacent format lines.

Table 1-1 1lists word processing graphic characters, their meaning, and
their BASIC-2 hex codes. Figure 1-1 shows the word processing character set
hex codes for the 2236DW terminal. The word processing character set, an
alternate character set for the 2236DW terminal, is automatically activated
when WANG 2200 Word Processing software is executed.

The word processing character set is not in use when a word processing
document is viewed on a 2236DE terminal. In this case, the hex codes and
their meaning remain as shown in Table 1-1, but a different graphic symbol is
displayed.

The programmer can control the appearance of a word processing document
with the hex codes shown in the following table. Refer to the 2200 Word
Processing Operator's Guide for a description of the word processing functions

@@M performed when the following hex codes are used in a document.

Table 1-1. Hex Codes for 2236DW Terminal Graphic Characters

Hex Code Graphic Meaning

HEX (5C) * \ Required Space

HEX (5E) * I Superscript

HEX (5F) % l Subscript

HEX (7F) ! Merge

HEX (81) ¢ Center

HEX (82) > Tab

HEX (83) < Return

HEX (84) - Indent

HEX (85) - Dec Tab

HEX (8B)] Stop

HEX (8C) ' Note

HEX (8F) L Page Break or First Format
Line Indicator

HEX (86) | Format Line Indicator for
Format Lines within Text

HEX (FF) 1 Don't Merge

* Starred HEX codes may be different in some non-English implementations
g"& of the system.

,.«W

High-order HEX Digit

3|

Aoe—

El

ol

wl

=1

3|

<

ol

w|

ol

2|

z|

™|

w|

ol

~

Al

3|

%

3|

+1

«©|

|

Ol

Space

p

“

G-

«©

3

Low-order
HEX Digit

7.

Word Processing Character Set for the 2236DW Terminal

Figure 1-1.

Figure 1-2 is a sample page of a 2200 Word Processing document as it
appears on the screen of a 2236DW terminal. The page consists of a format
line that begins with a format 1line indicator, HEX(8F), and ends with a
return, HEX(83). Text and special graphic characters follow the format line.
The last character of the page is a page break, HEX(8F). Figure 1-3 1is the
same page as it appears when stored on disk.

Figure 1-2. Appearance of a Document Page on the 2236DW Terminal Screen

Format Line Begins

HEX (8F31808080808080808280808080808080808082808080808080808080828080808080808080
8083835468697380697380616E806578616D706C652E83838F)

Format Line Ends Page Break

Figure 1-3. Appearance of a Page (Figure 1-2) when Stored on Disk

1.3 DOCUMENT ACCESS SUBROUTINE FUNCTIONS

Table 1-2 1lists the subroutine function performed by each of the
Document Access subroutines, and the DEFFN' assignment for each subroutine.

1-5

Table 1-2. Document Access Subroutines

Subroutine DEFFN'
Function Assignment
Initialize Data 205
Open Document 206
Close Document 207
Create Document 208
Delete Document 209
Change Password 079
Go To Page s 245
Read Page 247
Rewrite Page 248
Insert Page 249
Delete Page 251
Append Page ’ 252
Search Text 253
Read Administrative Information 218
Write Administrative Information 219
Attach Glossary 229
Call Glossary 230
Detach Glossary 233

1.4 DESIGNING A DOCUMENT ACCESS APPLICATION

The Document Access subroutines provide the programmer with the tools
necessary to manipulate a word processing document from an executing BASIC-2
program. The approach wused to produce results can vary from programmer to
programmer. However, the following discussion can serve as a guide for
programmers designing an application.

An application program can access up to four open documents at a time.
The user passes parameters to the subroutines that assign a slot number (1 to
4) to each open document. The subroutines distinguish between the open
documents based on the user—assigned slot numbers, not on the word processing
document ID.

1-6

Figure 1-4 shows the order in which the 2200 Document Access subroutines
are used to successfully access documents.

Initialize Data
GOSUB' 205

|

Create New Document OR Open Existing Document

GOSUB' 208 GOSUB' 206

L N

Change Password | | Delete Document
GOSUB' 209

GOSUB' 079

Access Document Pages
Refer to Figure 1-5

Access Administra-
tive Information

o~

Figure 1-4.

Close Document
GOSUB' 207

Subroutines Used to Successfully Access Documents

Figure 1-5 shows the Document Access subroutines used to access pages of
a document after it is successfully opened, as shown in Figure 1-4.

Go To Page
GOSUB' 245

—

Delete
Page
GOSUB' 251

Rewrite/Replace | | Read Current
Page Page
GOSUB' 248 | GOSUB' 247

Insert/Write Page .Appeﬁd
Page Page
GOSUB' 249 GOSUB' 252

o |

“Search Text String
GOSUB' 253

Figure 1-5. Page Accessing Subroutines

1-7

1.4.1 Identify the Application Goals

To design a document access application, the programmer first identifies
the goals of the application. For example, goals for a document access
application could be: to delete a document, to create a new document, to add
text to a document, to get administrative information from a document.

After the application is designed, the application program is coded to
achieve the design goals. . Subroutine.calls to access documents, and the order
in which they are used, are shown in Figures 1-4 and 1-5. The following
subsections list the subroutine calls needed to achieve example design goals.

Delete a Document

To delete a document the application program must contain the following
subroutine calls, in order.

Call the Initialize Data subroutine with a GOSUB' 205.
Call the Open Existing Document subroutine with a GOSUB' 206.
Call the Delete Document subroutine with a GOSUB'209.

Create a Document with No Text

To create a document containing no text but containing administrative
information, the application program must contain the following subroutine
_ calls, in order. ’

Call the Initialize Data subroutine with a GOSUB' 205.

Call the Create New Document subroutine with a GOSUB' 208.

Call the Write Administrative Information subroutine with a GOSUB' 219.
Call the Close Document subroutine with a GOSUB' 207.

Get Administrative Information from an Existing Document

To retrieve administrative .information from an existing document, the
application program must contain the following subroutine calls, in order.

Call the Initialize Data subroutine with a GOSUB' 205.

Call the Open Existing Document subroutine with a GOSUB' 206.

Call the Read Administrative Information subroutine with a GOSUB'218.
Call the Close Document subroutine with a GOSUB' 207.

Create a Document with Text

To create a document containing text, the application program must
contain the following subroutine calls, in order.

Call the Initialize Data subroutine with a GOSUB' 205.

Call the Create New Document subroutine with a GOSUB' 208.

Call the Go To Page subroutine with a GOSUB' 245.

Call the Insert New Page subroutine with a GOSUB' 249. .

Call the Write Administrative Information subroutine with a GOSUB' 219.
Call the Close Document subroutine with a GOSUB' 207.

1-8

)

The subroutines use, as a parameter, the variable VO$() that holds the
contents of a document page. The variable is, in effect, a user—created
buffer area for the page contents. The buffer established in this manner must
represent a valid 2200 Word Processing document page, as described in Section
1.2,

The following are three principal ways to create a page buffer to be
placed in a word processing document through the Document Access subroutines.

It is up to the programmer-to decide what method, or combination of methods,
is preferred.

1. Create a page buffer by establishing a variable that consists of
concatenated literals, alpha variables, and hex codes.

2. Create a page buffer by modifying a page read from an existing
document. For example, the page modification can consist of any, or
all, of the existing page concatenated with data from a data file.

3. Create a page buffer that consists of recalled glossary text. The
three Document Access subroutines used to place glossary text in the
page buffer are described in the following subsection.

Glossary Text

To recall glossary text and place the text into the page buffer, the
application program should contain the following subroutine calls, in order.

Call the Attach Glossary subroutine with a GOSUB' 229.
Call the Call Glossary subroutine with a GOSUB' 230.
. Call the Detach Glossary subroutine with a GOSUB' 233.

Glossary text recalled through the use of the Document Access
subroutines is first created by means of 2200 Word Processing. Refer to the
2200 Word Processing Operator's Guide (700-6937) for a description of
glossaries and directions on how to create glossaries.

1.5 LOADING THE SUBROUTINES

In 2200 Word Processing Software, Wang Laboratories, Inc. includes
modules that contain the Document Access subroutines and the BASIC-2 program
"DAST.DAT". The DAST.DAT program is known as the Software Selection Tool.

An application can load the document access subroutines by two different
methods: the subroutines can be loaded directly, or the subroutines can be
loaded indirectly by wusing DAST.DAT, the Software Selection Tool. An
advantage gained by the direct method can be reduced memory use and improved
program performance. However, a disadvantage is that program maintenance is
less convenient. Applications programs are not insulated from changes made to
the Document Access subroutine modules, or module names. An advantage of the
Software Selection Tool method is that the application only supplies the prime
numbers of the subroutine calls; all the module names required for the calls
are supplied through the Software Selection Tool. The remainder of this
section describes both methods of overlaying the subroutines.

1-9

NOTE

Line numbers in the range 4000 to 5500 are reserved for the
program overlays. The user's application program must not
contain statements with 1line numbers in that range. The
common variables required by the overlays are reserved
variables and can not be used as variables in the
application program.

1.5.1 Direct Method

To load the document access subroutines directly, the programmer must
know the number of modules and the module names needed for each subroutine
call. Appendix A contains a 1list of each subroutine function, assignment
number, number of modules, and module names needed for each subroutine.

The 2200 Word Processing Software system uses the following variable
assignment conventions. When directly loading the subroutine modules, the
user application can follow these conventions or choose to use other variable
assignments. In this manual, examples and directions follow the conventionms.

19(4)

number of modules required to perform the subroutine

1980 = alpha variable specifying sequentially the names of the modules

to load

To 1load the Document Access subroutines directly, the programmer must
take the following steps. For the example disk access statements, it is
assumed that all software is stored on the device in Slot 0. :

Step 1

The application program must declare common variables required for the
Document Access subroutine module overlays. The following COM statement must
appear in the application program.

coM A6$6, Bl1$l, R1$1, UO$3, U3$l, U4s$s, V5$(160)1, UO(23), U5(10),
v6(9, Vvo(9), V5(9), A1(2,4), A3(4), A9(4), A7(4), B7(4), B2(4),
Uu1$(256)1, Vvi$(3)82, va$l, U2$(64)1, U3(9), UO, V5, U6, U7, V9, U8, U4,
Vo, V2

For user convenience, COM statements required for the Document Access
subroutines are provided in the program ''DAST.COM". When the programmer is
keying in the application program, the LOAD command (LOAD DCT#0, "DAST.COM'")
can be issued to load the COM statements into memory. After the LOAD command
is executed, the programmer can edit the COM statements and enter the
remaining statements of the application program. The last COM statement
provided in DAST.COM is not needed when using this method.

1-10

W\

Step 2

To allow the user to reduce the amount of memory reserved for COMmon
variables, the user determines the memory space allocated by a COM statement
for the arrays V0$(, B1$(, B2$(O, B3$(, and B45O0.

The array VO0$() is used in the Document Access subroutines to contain a
document page. The maximum allowable size for a document page, and therefore
the maximum COMmon size for VO$() is V0$(4181)1. To reduce the memory space
allocated to VO$(), the COMmon size of VO$() can be decreased to equal the
number of characters contained in the largest page accessed or created by the
subroutines. The count of the number of characters in the largest page must
include all format line characters, text characters, and page breaks, if any.

The COMmoned size for the B1$(), B2$(), B3$(0, and B4$() arrays depends
on how many documents the application program opens at any one time (maximum
is four), and the slot numbers the user assigns to the documents. The
following list shows two forms of the COM statement for each of the arrays.
The form of the COM statement used in the applications program depends on
vhether or not the listed slot number is in use in the application program.

Slot Number Slot Number
Slot Number In Use Not In Use
1 CoM B1$(123)2 CoM B1$(D1
2 coM B2$(123)2 CoM B2$(1)1
3 COM B3$(123)2 COM B3$(D)1
4 CoM B4$(123)2 CoM B4$ (1)1

For example, an application program assigns the maximum memory
allocation for page size, and opens four documents simultaneously. This is
the optimum case, requiring the maximum amount of memory space allocated for
the arrays. The following COM statement is required in the application
program.

CoM vo$ (4181)1, Bl$(12352, B2$(123)2, B3$(123)2, B4$(123)2

Step 3

Each subroutine function is accomplished by 1loading several modules
supplied with 2200 Word Processing Software. Refer to Appendix A for a list
of modules mnecessary to accomplish each subroutine call. Since each
subroutine requires that several modules are loaded, the multiple module form
of the LOAD statement is used in Step 4. The application program must
dimension a scratch variable that represents the names of the modules to load.

By 2200 Word Processing Software system convention, I9$() represents an
alpha variable that specifies sequentially the names of the modules to load.
The DIM statement for I9$() that must appear in the application is determined
by the maximum number of modules that are loaded at any one time. For
example, the maximum number of modules needed to support the Open Document
subroutine call is 7. Since 14 is the maximum number of modules required to
support a single subroutine call, the following DIM statement can be used in
all applications that are designed to overlay the Document Access subroutines
as they are required by application logic.

1-11

DIM 19$(14)8

If the statement in step 4 is used to load all subroutines required by

program logic, the dimension for I9$() must equal the number of modules to
load. The length remains 8.

Step 4

The application program must contain the following LOAD statement for
each subroutine overlay. The statement loads into memory the desired Document

Access subroutine modules. Line numbers in the range 4050 to 5500 are
reserved for this overlay.

LOAD DCT #0, <I9(4)> I9$() 4050,5500 BEG [begin-1ine-number]

I19(4) = number of modules required to perform the subroutine or
subroutines

1980 = alpha variable specifying sequentially the names of the modules
to load

begin?line-number = The 1line number of the application program where
execution is to begin after the overlay is loaded
into memory.

Step 5
The application program must contain calls (GOSUB') to the desired

Document Access subroutines. Refer to Section 1.6 for the general form of the
subroutine calls.

1.5.2 Software Selection Tool Method

When the Software Selection Tool, DAST.DAT, is used as a segment of the
application program, it provides data statements needed to load the ‘Document
Access subroutines 1listed in Table 1-2. To use this method, the application
program must overlay DAST.DAT. The DAST.DAT overlay supplies a marked
subroutine (DEFFN'216) that accepts the prime numbers of the desired Document
Access subroutines and returns the total number and names of the modules
associated with the desired subroutines. The information returned from the
DAST.DAT overlay can, in turn, be used to overlay the subroutine modules.

The programmer must take the following steps to ensure that the
application program can successfully perform the DAST.DAT and Document Access
subroutine module overlays. The application program must contain the
following statements in the order presented. For the following disk access
statements, it is assumed that all software is stored on the device in Slot O.

Step 1

The application program must declare common variables required for the
DAST.DAT overlay, and Document Access subroutine module overlays. The
following COM statement must appear in the application program.

1-12

CoOM R9$(44)8, A6$6, B1$l, R1$1, UO$3, U3$l, Uss$s, v5$(160)1, U0(23),
U5(10), V6(9), V9(9), V5(9), A1(2,4), A3(4), A9(4), A7(4), BT(4), B2(4),
U1$(256)1, V1$(3)82, Va$l, U2$(64)1, U3(9), UO, V5, U6, U7, V9, U8, U4,
Vo, V2

For user convenience, the first COM statement required for the Document
Access subroutines is provided in the program 'DAST.COM". Before the
programmer enters the application program, the LOAD command (LOAD DCTH#O,
"DAST.COM") can be issued to load.the first COM statement into memory. After
the LOAD command is executed, the programmer can enter the remaining
statements of the application program. The statement number of the first COM
statement can be changed to suit the application program.

Step 2

To allow the user to reduce the amount of memory reserved for COMmon
variables, the user determines the memory space allocated by a COM statement
for the arrays V0$(, B1$0Q, B2$(0, B3$(, and B450.

The array VO$() is used in the Document Access subroutines to contain a
document page. The maximum allowable size for a document page, and therefore
the maximum COMmon size for VO$() is V0$(4181)1. To reduce the memory space
allocated to VO$(), the COMmon size of VO$() can be decreased to equal the
number of characters contained in the largest page accessed or created by the
subroutines. The count of the number of characters in the largest page must
include all format line characters, text characters, and page breaks, if any.

The COMmoned size for the B1$(), B2$(, B3$(, and B4$() arrays depends
on how many documents the application program opens at any one time (maximum
is four), and the slot numbers the user assigns to the documents. The
following 1list shows two forms of the COM statement for each of the arrays.
The form of the COM statement used in the applications program depends on
whether or not the listed slot number is in use in the application program.

v Slot Number Slot Number
Slot Number In Use Not In Use

1 COM B1$(123)2 CcoM B1$(1)1

2 COM B2$(123)2 coM B2$(1)1

3 COM B3$(123)2 CcoM B3$ (1)1

4 COM B4$(123)2 CcoM B4$ (1)1

For example, an application program assigns the maximum memory
allocation for page size, and opens four documents simultaneously. This is
the optimum case, requiring the maximum amount of memory space allocated for
the arrays. The following COM statement is required in the application
program.

COM VO$(4181)1, B1$(123)2, B2$(123)2, B3$(123)2, B4$(123)2

Step 3

The application program must dimension scratch variables required by
DAST.DAT. The following DIM statement must appear in the application program.

DIM R9, R9$1, 19, I9$54, I9(5), I9$(14)8, 18$3
1-13

Step 4

The application program must contain the following LOAD statement to
effect the DAST.DAT overlay. Line numbers in the range 4000 to 4050 are
reserved for overlay. '

LOAD DCT#0, "DAST.DAT'" 4000,4050 BEG [begin-line-number]

begin-line-number = The line number of -the application program where
execution is to begin after the overlay is loaded
into memory.

Step 5

The application program must contain a statement to call the marked
subroutine (DEFFN '216) supplied by DAST.DAT. The subroutine returns the
number and name of the Document Access subroutine modules (OUTPUT) associated
with a user-supplied count and list of Document Access subroutine assignment
numbers (INPUT). The returned information is required to overlay the Document
Access subroutine modules as described in Step 7.

The general form of the call is as follows.
GOSUB '216 (19, I9%)

INPUT: I9

A count of the number of Document Access subroutines
required by the application program.

An alphanumeric variable consisting of the concatenation
of the three digit DEFFN' assignment numbers (refer to
Table 1-2) for the subroutines required by the application
program. The DEFFN' assignement numbers may be listed in
any order, but all assignment numbers must consist of
three digits. In the case of an assignment number less
than 100, leading zeros must be used in order to supply
three digits. '

19%

OUTPUT: R9$ = Error return code.
HEX(00) for a successful call.

HEX(01) if an input DEFFN' assignment number is not found.

dimensioned size of R9$().

The number of Document Access subroutine modules required
by the input subroutine numbers. This return variable is
used in the LOAD statement described in Step 7.

R9

R9$ O

n

An array containing the list of module names required for
the input subroutine numbers. This return variable is
used in the LOAD statement described in Step 7.

An example of this statement is shown in program line 120 in the example
application section.

1-14

HEX(02) if there are too many module names for the .

-

Step 6

The application program should contain the following statement to check
the error code returned from the subroutine call described in Step 5.

IF R9$ <> HEX(00) THEN [line-number]

line-number = Line number for the first statement in an error handling.
routine contained in the application program.

Step 7

The application program must contain the following LOAD statement. The
statement loads into memory the desired Document Access subroutine modules
using the return information from Step 5. Line numbers in the range 4050 to
5500 are reserved for this overlay.

LOAD DCT #0, <R9> R9$() 4050,5500 BEG [begin-1ine-number]
begin-line-number = The line number of the application program where
execution is to begin after the overlay is loaded
into memory.
Step 8
The application program must contain calls (GOSUB') to the desired
Document Access subroutines. Refer to Section 1.7 for the general form for

the subroutine calls.

Example Application

The application programmer determines that the following Document Access
subroutines are required to append a page contained in variable VO$() to

document 0015A. The application program opens one document and assigns ' that
document to Slot 1.

Subroutine DEFFN'
Initialize Data 205
Open Document 206
Go To Page 245
Append Page 252
Close Document 207

The following statements, contained in the application program, allow
the program to make calls to the four Document Access subroutines previously
listed. Refer to Section 1.6 for details regarding the general form of the
Document Access subroutine calls.

1-15

0010
0020

0030
0040
0050

0060
0070

0080
0090

0100
0110
0120

0130
0140

0150
0160

0170
0180
0190

0200

0210
0220
0230

0260
0270
0280
0290

0300
0310
0320

0330

0340
0350

0400

REM STEPS 1 AND 2, DECLARE COMMON VARIABLES ,

COM R9$(44)8, B1$1, R1$1, A6$6, UO$3, U3$L, U4a$s, V5$(160)1,
U0(23), U5Q10), Ve(9), V9(9), V5(9), A1(2,4), A3(4), A9(4), AT(4),
B7(4), B2(4), U1$(256)1, V1$(3)82, Va$l, U2$(64)1, U3(9) :

com vo, vs, ue, U7, V9, U8, U4, VO, V2 ,

REM MAX PAGE SIZE, ONE OPEN DOCUMENT ASSIGNED TO SLOT NUMBER 1

CoM v0o$(4181)1, B1$(123)2, B2$(1)1, .B3$(1)1, Ba$(1)1

REM STEP 3, DIMENSION SCRATCH VARIABLES.
DIM R9, R9$1, I9, 19$54, 19(5), 19$(10)8, I8%$3

REM STEP 4, LOAD THE DAST.DAT OVERLAY
LOAD DCT#0, 'DAST.DAT" 4000,4050, BEG 120

REM STEP 5, BRANCH TO MARKED SUBROUTINE SUPPLIED BY DAST.DAT ,
REM PROGRAM REQUIRES FIVE SUBROUTINES ('205, '206, '245, '252, '207)
GOSUB '216 (5,'205206245252207")

REM STEP 6, BRANCH TO LINE 400 IF AN ERROR IS RETURNED
IF R9$ <> HEX(OO) THEN 0400

REM STEP 7, LOAD REQUIRED DOCUMENT ACCESS SUBROUTINES
LOAD DCT #0, <R9> R9$() 4050,5500 BEG 0190

REM STEP 8, CALLS TO DOCUMENT ACCESS SUBROUTINES
REM CALL TO INITIALIZE DATA SUBROUTINE
GOSUB '205

REM CALL TO OPEN DOCUMENT SUBROUTINE, DOCUMENT IS "0OLSA", PASSWORD
IS " ", SLOT NUMBER IS 1

GOSUB '206 ("0015a", " ",1)

IF B1$ <> HEX(00) THEN 0400

REM PROCESSING TO CREATE VO$() , THE PAGE TO BE APPENDED

REM CALL GO TO PAGE SUBROUTINE, SLOT NUMBER IS 1

REM GO TO PAGE POSITIONS TO LAST 'PAGE OF DOCUMENT IF 999 1S USED
GOSUB '245 (1,999)

IF B1$ <> HEX(OO) THEN 0400

REM CALL TO APPEND PAGE SUBROUTINE, SLOT NUMBER IS 1
GOSUB '252 (1)
IF B1$ <> HEX(00) THEN 0400

REM CALL TO CLOSE DOCUMENT SUBROUTINE, SLOT NUMBER IS 1
GOSUB '207 (1)
IF B1$ <> HEX(00) THEN 0400

REM ERROR HANDLING ROUTINE

1-16

-

)

1.5.3 Miscellaneous Programming Notes

When using the Document Access subroutines, a programmer must allow for
the following programming restrictions. ‘

1'

Passwords should conform to the current 2200 Word Processing
convention i.e. upper/lowercase alphabetic characters and numeric
digits. Word processing will not allow editing of a document
containing an illegal password. '

A page of a document contains a maximum of 4181 characters,
including all format line characters and the page break character.
Each document contains a maximum of 116 pages.

Each page of a document must begin with a format line and each page,
excluding the last page, must end with a page break. This
convention must be followed when adding or replacing pages in a
document.

If the format line of a document is greater than 80 characters, the
document can not be edited in a 28K partition; a 1larger partition
and the horizontal scroll feature are required. A 28K partition is

adequate to open, close, and print the document. '

NOTE

The Document Access subroutines cannot be modified by the
programmer.

1-17

1.5.4 Error Codes

Table 1-3 lists some possible errors that result when using the document
access subroutines. The error codes are returned in the variable B1$.

Hex
Error Code.

01
02
03
04
05
06

07
08
09
10
20
22
23
24
25
26
27
28
29
Al
A2
A3
A4
A5
A6
A7
A8
A9
BO
Bl
B2
B3
B4
B5

Numeric
Error Code

80 through 89
90 through 99

* HEX(00)

Table 1-3. Error Codes

Description

Volume Full

File or Volume already exists

File or Volume does not exist

No free device slots

Incorrect password

Open access type error - (File is open by another
user, or was previously opened by this user)

File not open :

Illegal File ID

Not enough room in file (to reuse scratched file)

File mess up

EOF reached unexpected (fatal)
Destination VAU not valid

Buffer variables not valid -

No VAU's in file

Source & VAU # inconsistent

Volume init parameter inconsistent

Byte parameter error in replace

EOF reached normal (not fatal)

Data transfer with greater than 128 VAU's
Page table full

Last page cannot be deleted

Page does not exist

User defined slot number already assigned
Illegal file name

Library map not found on the selected disk
Library has not been established

Illegal page number

Prototype doesn't exist

Prototype not accessible

Glossary not attached

Glossary not verified

Glossary index exceeds one sector
Clossary entry not found

Wrong numeric type for admin

Description

Disk errors (refer to BASIC-2 manual)
I/0 errors (refer to BASIC-2 manual)

‘Normal, successful return

1-18

1.6 REFERENCE GUIDE TO THE DOCUMENT ACCESS SUBROUTINES

The following subsections provide a reference for the Document Access
Subroutine user. Each subsection is titled with the name of the subroutine,
briefly describes the purpose of the subroutine, and states the DEFFN'
assignment for the subroutine. A 1list of -the parameters passed to the
subroutine (INPUT), and parameters received from the subroutine (OUTPUT) is
included. Error codes returned when a subroutine call is unsuccessful are
described in Subsection 1.5.4. ‘

1.6.1 Initialize Data

DEFFN' 205
. INPUT: None
OUTPUT: None
The application program initializes data and dimensions the variables
that are used by the system with this subroutine. It must be the first

Document Access subroutine call in the application program and should not be
called again in the program.

1-19

1.6.2 Open Document (Exclusive Mode)

DEFFN'206 (R5$, A6$, B9)

INPUT: R5$ = Document ID
A6$ = Document password
B9 = User-defined slot number (1-4)
OUTPUT: Bl$ = Return code = HEX(00) if subroutine call is successful

Error code if subroutine call is unsuccessful

This subroutine opens the named document in Exclusive mode. The named
document must be an existing word processing document when the subrou?ine call
is made. Up to four documents can be open at a time. The user assigned slot
number will remain associated with the document as long as the document stays
open.

If a document is already open at the user defined slot, the current file
will be left open, and the return code, Bl$ = HEX(A4) willlresult.

If the user specified document is already open, by eith?r the current
user or another user's program, the return code Bl$ = HEX(06) will result.

If the document is not password protected, A6$ is input as " ".

1-20

-

1.6.3 Close Document

DEFFN'207 (B9)

INPUT: B9 = User-defined slot number (1-4)
= 0 means close all open documents
OUTPUT: B1$ = Return code = HEX(00) if subroutine call is successful

Error code if subroutine call is unsuccessful

This subroutine closes the document associated with the specified slot
number. If the number belongs to an attached glossary, it will detach the
glossary. If no document associated with the specified slot number is open,
the return code, B1$ = HEX(07) will result.

If the user supplies B9 = 0, the subroutine will close all the currently
open documents, including attached glossary, if any. -

1-21

‘1.6.4 Create Document

DEFFN'208 (R5$, A6$, B9)

INPUT: R5$ = Document ID or "NEXTa" (where "a" represents the library)
A6$ = Document password '
B9 = User-defined slot number (1-4)

OUTPUT: R5$ = Document ID created .
Bl$ = Return code = Error code if subroutine call is unsuccessful

This subroutine creates a new document with only one page. The
specified library must exist before the call to this subroutine is wmade. The
document contains the same initial format as the prototype document for the
specified library. The variable R5$ should either be a specific document ID

or in the "NEXTa" form. 'NEXTa" form means the next available document ID in
library "a".

After successful document creation, the document will stay open im
Exclusive mode, associated with the user-assigned slot number. R5$ contains
the document ID of the newly created document.

1-22

1.6.5 Delete Document

@Mﬁ DEFFN'209 (B9)
INPUT: B9 = User-defined slot number 1-4)
OUTPUT: B1$ = Return code = Error code if subroutine call is unsuccessful

This subroutine deletes the document associated with the user-specified
slot number. The document must first be opened with the Open Document
subroutine before it can be deleted with this subroutine.

)

1-23

1.6.6 Change Password

DEFFN'079 (A6$, B9)

INPUT: A6$ = New password
B9 = User—defined slot number (1-4)

OUTPUT: Bl$ = Return code = Error code if subroutine call is unsuccessful

This subroutine assigns a new password to the document associated with
the user—specified slot number. The document must be opened with the Open
Document or Create New Document subroutine before a password can be assigned
with this subroutine.

Embedded spaces in the password are not accepted by other Wang Word
Processing systems.

1-24

1.6.7 Go To Page

DEFFN'245 (B9, A7)

INPUT: B9
A7

User-defined slot number (1-4)
Page number

OUTPUT: A7 = Page number
Bl$ = Return code = Error code if subroutine call is unsuccessful

This subroutine positions a current page marker at the specified page.
The page is not read by this subroutine. When going to an actual page number,
the current page marker will be positioned to the specified page. If the
specified page is 999 (A7=999), the current page marker is set to the last
page of the document, and the variable A7 will equal the number of the 1last
page. The Footer, Header, Work, and Extra page are numbered -3, -2, -1, and
0, respectively.

1-25

1.6.8 Read Current Page

DEFFN'247 (B9) ﬂ
INPUT: B9 = User—defined slot number (1-4)

OUTPUT: VO$() = Current page
Bl$ = Return code = Error code if subroutine call is
unsuccessful’

This subroutine reads the contents of a page and places the contents in
the variable VO0$(). The current page marker must be assigned by the Go To
Page subroutine before calling this subroutine. The current page of the
document associated with slot number B9 is read. The current page marker is
not altered by this subroutine call.

1-26

€M“

1.6.9 Rewrite/Replace Page

DEFFN'248 (B9)

INPUT: B9

User-defined slot number (1-4)
vo$ O

Page buffer

Return code = Error code if subroutine call is
unsuccessful

OUTPUT: B1$

This subroutine places the contents of the page buffer, v0$(0 , into the
document at the current page. The current page marker must be assigned by the
Go To Page subroutine before calling this subroutine. The contents of the
variable VO$() will replace the contents of the current page of the document
associated with slot number B9.

The buffer must represent a valid 2200 Word Processing document page, as
described in Section 1.2. Its correctness will not be verified. An error
code is returned if the page is invalid.

The current page marker remains unchanged by this subroutine call.

1-27

1.6.10 Insert/Write New Page

DEFFN'249 (B9)

4 INPUT: B9
vos$ O

User—defined slot number (1-4)
Page buffer

[}

Return code = Error code if subroutine call is
unsuccessful

OUTPUT: B1$

This subroutine inserts the contents of the page buffer, V9$(), as a new
page directly before the current page of the document associated with slot
number B9. The current page marker must be assigned by the Go To P§ge
subroutine before calling this subroutine. The current page marker remains
unchanged by this subroutine call.

For example, if the current page marker points to Page ?, after
inserting a new page, the current page marker will remain 3, the original Page
3 will become .Page 4, and the newly inserted page will become Page 3.

The page buffer, VO$(), must represent a valid 2200 Word ?rocessing
document page, as described in Section 1.2. Its c?rrectness will not be
verified. An error code is returned if the page is invalid.

This subroutine only inserts pages of text. To modify the Footer,
Header, or Work page the Rewrite/Replace subroutine must be used.

The 2200 Word Proces51ng Software system will allow a maximum of 116
text pages per document.

1-28

1.6.11 Delete Current Page
DEFFN'251 (B9)

INPUT: B9

User-defined slot number (1-4)

OUTPUT: B1$ = Return code = Error code if subroutine call is unsuccessful
This subroutine deletes the current page from the document associated
with the specified slot number. The current page marker must be assigned by
the Go To Page ‘subroutine before calling this subroutine. The current page
marker will remain unchanged. For example, if Page 3 is deleted, Page 4 now
becomes Page 3 and the current page marker would still be pointing to Page 3.

The system does not allow the user to delete the last remaining page of
a document; the user must retain at least one regular text page in a document.

1-29

1.6.12 Append Page
DEFFN'252 (B9)

INPUT: B9
vos$ O

User-defined slot number (1-4)
Buffer page

OUTPUT: B1$

Return code = Error code if subroutine call is
unsuccessful’ i '

This subroutine allows the user to add the contents of the buffer page,
V0$(O, as a new last page of the document associated with slot number B9. The
Go To Page subroutine must be called prior to calling the Append Page
subroutine so the current page marker can be positioned to the last page of
the document. Upon return from the Append Page subroutine call, the current
page marker will point to the new last page.

The buffer must represent a valid 2200 Word Processing document page, as
described in Section 1.2. Its correctness will not be verified. An error
code is returned if the page is invalid.

The 2200 Word Processing Software system allows a maximum of 116 text
pages.

1-30

1.6.13 Search Text

String

DEFFN'253 (B8$, B6)

INPUT: B8$ =
B6 =
OUTPUT: Bl =
Bl$ =

Search string
Byte location to begin search

Byte location where the search string begins in the page
Return code = Error code if subroutine call is unsuccessful

This subroutine searches the buffer page, V0$(O, for the first

occurrence of the
number in the page.
vo$() by calling
subroutine. If the
byte number where
the return variable

This function

specified search string, starting at the specified byte
The contents of the page must be placed in the variable
the Read Page subroutine prior to the call to this
string is found, the return variable, Bl, will equal the
the string begins in the page. If the string is not found,
will be equal to zero.

performs a case insensitive search. For example, if the

search string is 'boston', the subroutine will locate "BOSTON", "Boston', and

"boston".

1-31

1.6.14 Read Administrative Information

DEFFN'218 (B9)
INPUT: B9 = User-defined.slot number (1-4)

OUTPUT: Bl$ = Return code
A6$0, A7$0, A0 = Administrative information
B0, A9$() = Print defaults

This subroutine returns the current values of the administrative
information of the document associated with the specified slot number.
Administrative information is the statistical information presented in the
Document Summary. This subroutine also returns the print defaults of the
document. Print defaults are the information presented to the user on the
Print Document menu.

The output from the Read Administrative Information subroutine call
consists of returned values for the following variables. The 1list of
variables contains a description of the administrative information or print
default field represented by the variable and the length of each returaed
alphanumeric variable.

Alpha Array A6$(4)25

A6$(1) Document Name 25 bytes

A6$(2) Operator , 20 bytes

A6$(3) Author 20 bytes

A6$(4) Comments 20 bytes

Alpha Array A7$(13)6

A7$Q1) Document ID 5 bytes
A7$(2) Created Date 6 bytes
A7$(3) Created Time 4 bytes
A7$(4) Created Worktime . 6 bytes
A7$(5) Last Revised Date 6 bytes
A7$(6) Last Revised Time 4 bytes
A7$(7) Last Revised Worktime 6 bytes
A7$(8) Last Printed Date 6 bytes
A7$(9) Last Printed Time 4 bytes
A7$(10) Last Archived Date 6 bytes
A7$(11) Last Archived Time 4 bytes
A7$(12) Archive ID 5 bytes
A7$(13) Total Worktime 4 bytes

Numeric Array AO(5)

A0(D) Created Keystrokes
A0(2) Last Revised Keystrokes
A0(3) Total Pages

A0 (4) Total Lines

A0 (5) Total Keystrokes

1-32

-

Numeric Array BO(11)

BO(1) Print from Page
B0(2) Print thru Page
BO(3) Starting as Page No.
BO (4) First Header Page
BO(5) First Footer Page
BO(6) Footer Begins on Line
BO(7) ‘ Paper Length
B0 (8) No. of Originals
B0 (9) Character Set Number
B0 (10) Printer Number
BO(11) Left Margin

Alpha Array A9$(01
A9$(1) Device 1 byte
A9%(2) Pitch 1 byte
A9$(3) Format 1 byte
A9% (4) Forms 1 byte
A9%(5) Style 1 byte
A9$ (6) Summary 1 byte
29%(7) Delete 1 byte

When a document is printed by means of the 2200 Print Document menu, the
Device, Pitch, Format, Forms, Style, and Summary options are selected by
positioning an acceptance block. To supply these selections through the
Document Access subroutines, the appropriate variable from the previous list
equals HEX(01) to represent the first field selection, HEX(02) to represent
the second field selection, HEX(03) to represent the third field selection,
and so on. ‘

1-33

1.6.15 Write Administrative Information

DEFFN'219 (B9)

INPUT: B9 = User-defined slot number (1-4)
A6$(0, A7$0, A0 = Administrative information
BO(O), A9%$() = Print defaults

OUTPUT: Bl1$ = Return code = Error code if subroutine call is unsuccessful

This subroutine updates the administrative information and print default
information for the document associated with the specified slot number.
Specific variable assignments are described in the Read Administrative
Information subroutine located in Subsection 1.6.14.

If successful calls to Document Access subroutines result in changes to
the page count of a document, the page count is automatically adjusted in the
document's administrative information. In this case, it is not necessary to
update the page count by calling the Write Administrative Information
subroutine.

1-34

1.6.16 Attach Glossary

@'\ DEFFN'229 (R5$, A6%$, B9)

INPUT: R5$ = Glossary ID
© A6$ = Glossary password :
B9 = User-defined slot number (1-4)

OUTPUT: Bl$ = Return code = Error code if subroutine call is unsuccessful

This subroutine attaches a glossary to the workstation for subsequent
use in the modification of a document by the application program. Attaching a

glossary opens the glossary for further use and uses up one of the four slots
available for documents. '

Only one glossary may be attached at a time. Only text recall
glossaries are allowed. Because this subroutine opens a glossary file, the
application program must close the file with the Detach Glossary subroutine or
the Close Document (close all files option) subroutine.

1-35

1.6.17 Call Glossary

DEFFN'230 (A4$)
INPUT: A4$ = Glossary label

OUTPUT: V0$() = Glossary text
© Bl$ = Return code = Error code if subroutine call is
unsuccessful ‘

The glossary has to be attached before calling glossary text. This
subroutine looks up the appropriate glossary entry by the specified glossary
label and returns the glossary text in the variable V0$(). The subroutine is
similar in function to the Read Page Subroutine. The application program must
perform the actual insertion of this glossary text into the current page of a
document.

1-36

1.6.18 Detach Glossary

gﬂﬁ DEFFN'233 (B9)

INPUT: B9

User—-defined slot number

Return code = Error code if subroutine call is
unsuccessful

OUTPUT: B1$

This subroutine first detaches the glossary from the workstation, and
then closes the detached glossary.

1-37

e

CHAPTER 2
2200 WORD PROCESSING MENU MODIFICATION

2.1 INTRODUCTION

2200 Word Processing Software provided by Wang Laboratories, Inc.,
supplies the purchaser with BASIC-2 programs that perform word processing
functions. Specifically, the BASIC-2 program '609menu' performs the following
functions. (The following description of functions and procedures used to
execute "609menu” will be familiar to readers who have customized their 2200
system menus by modifying ''@MENU".)

1. Displays the following 2200 Word Processing System menus: Word
Processing menu, Special Print Functions menu, Advanced Function
menu, Utilities menu, and Glossary Functions menu.

2. Accepts user-supplied selections from the displayed menu.
3. Loads the program or menu corresponding to the user selection.
Figure 2-1, the Advanced Functions menu, is a example menu that can be

displayed by the execution of the BASIC-2 program ''609menu' and a menu file.

WANG 2200 Word Processing System
Advanced Functions

. Advanced Filing

. Convert WP Document to TC File
. Convert TC File to WP Format

. Document Merge

. Keyword Search

Figure 2-1. Advanced Functions Menu

When the user executes "609menu', the program calls into memory a menu
file. When the 2200 Word Processing daily startup procedure is followed, the
LOAD RUN command automatically executes '60%9menu’. (Refer to the 2200 Word
Processing Operator's Guide for a description of the daily startup
procedure.) The first menu displayed by the automatic execution of '"609menu"
is the 2200 Word Processing menu, defined by the menu file "609MENU".

Each menu file consists of DATA statements with line numbers in the
range 9000 through 9999.. A menu file supplies. the following information: the
name of the menu file, a menu title, menu message, and menu selection text. A
list of the 2200 Word Processing System menus and their menu file names
follows, '

2200 Menu ' Menu File Name
Word Processing 609MENU
Special Print Functions 609SPRNT
Advanced Functions 609ADV
Utilities 609UTIL
Glossary Functions 609Glos

The following information from the sample menu shown in Figure 2-1 is
contained in a menu file named ''609ADV". Of the following information, only
the menu file name is not displayed on the menu screen.

1. Menu file name, ''609ADV"

2. Menu title, "WANG 2200 Word Processing System"

3. Menu message, ''Advanced Functions"

4. Menu selection text, ''Advanced Filing"

5. Menu selection text, '"Convert WP Document to TC File"
6. Menu selection text, ''Convert TC File to WP Document"
7. Menu selection text, ''Document Merge'

8. Menu selection text, "Keyword Search'

In addition to the information displayed on the sample menu, the menu
file als¢ provides data to indicate if a selection invokes a program (P), or
another menu (M), along with the name of the invoked program or menu.

2,2 MENU FILES

When the user executes "'60%menu', the program calls into memory a menu
file. The following rules apply to menu files.

1. 1In 2200 Word Processing mode, the first menu displayed by executing
"609menu" is the Word Processing menu, which corresponds to the menu
file named '609MENU''. Any valid file name can be used for
subsequent menus invoked by selections from any 2200 Word Processing
System menus.

2. The DATA statements contained in the all menu files must be in the
range 9000 through 9999.

3. The maximum number of selections per menu is 15.

2-2

f§§

4, Programs or menus named in the DATA statements of a menu file must
reside on same disk surface as the 2200 Word Processing Software.

2.3 MENU FILE STRUCTURE

The menu files must contain DATA statement that provide data in a
specified sequence. The first, second, and last DATA statements have unique
forms; but the intermediate DATA statements are similar in form. To add menu
selections to a 2200 Word Processing menu, the user must add intermediate DATA
statements to the appropriate menu file. Descriptions of the form for each
DATA statement follow. '

2.3.1 The First DATA Statement

The first DATA statement supplies four data values. The following is
the general form of the first DATA statement.
General Form:
DATA 'Menu file name", '"Menu title', 3, n

Where:

Menu file name The name of the menu file currently in memory.

Menu title A menu title that appears on the first line of the

displayed menu.

3 = A data value that represents the number of data
entries in the intermediate DATA statements.

n = 0, 1, or 2; a data value that represents the number
of data entries in the second DATA statement. A
value of zero for n indicates the second DATA
statement is omitted.

2.3.2 The Second DATA Statement
The second DATA statement is an optional statement that supplies one, or

two, data values depending on the user's screen design. The following is the
general form of the second DATA statement. '

2-3

General Form:
DATA "Menu file name"[, '"Menu message'']

Where:

Menu file name = The name of the menu to display when the user
: presses the CANCEL key instead of making a menu

selection from the displayed menu. If " " is
entered the Wang 2200 Word Processing menu is
displayed. »

Menu message = A message that is displayed on the second line of
the menu screen. If the data value is entered as
" ", no message is displayed.

2.3.3 Intermediate DATA Statemeﬁts

Each intermediate DATA statement supplies three data values. Since
intermediate DATA statements correspond to a selection choice on the menu, the
number of intermediate DATA statements is equal to the number of menu
selections. The following is the general form of the intermediate DATA
statements. Note that if the third item in any given intermediate DATA
statement is not "P'" or 'M", the corresponding entry will not be displayed on
the menu.

General Form:

DATA {"Program name', '"Menu selection text", "P" }
{"Menu file name", "Menu selection text", "M" }

Where:

Menu selection text = Text displayed on the menu screen for each menu
selection. The maximum text length is 50
characters.

Program name = The name of the program to execute when the
corresponding menu selection text is chosen.
Alternately, a 1list of program module names,
separated by commas, may be supplied. When the
alternate form is used, all the program modules
are loaded at the same time before execution
begins.

Menu file name = The name of the menu to display when the

corresponding menu selection text is chosen.

2.3.4 The Last DATA Statement

The last DATA statement supplies three literals. The following is the
exact form of the last DATA statement in the menu file. The 1last DATA
statement of every menu file must appear as shown in the exact form.

Exact Form:

DATA "no more","end of menu list"," "

2.4 AN EXAMPLE MENU FILE

The following sample menu file produces the Advanced Functions menu
shown in Figure 2-1. The menu file name is ''609ADV".

9000 REM "Menu file name'", "Menu title'", 3, 2 entries in next DATA
9010 DATA "609ADV', '"WANG 2200 Word Processing System', 3,2

9020 REM "Menu data file name' for CANCEL, 'Menu message"

9030 DATA "609MENU ', "Advanced Functions'

9040 REM ''Menu or Program" to invoke, ''Selection text', "P or M"
9050 DATA '"609Fstrt', 'Advanced Filing", 'P"

9060 DATA ''609WP100", '"Convert WP Document to TC File'", "P"

9070 DATA '609TC100", 'Convert TC File to WP Document', 'P"

9080 DATA '"609MERGO,Primeé62,6090pen,JCAT ,REC-GEN,REC-RD", "Document

Merge" , llPll

9090 DATA 'no more",'"end of menu list"," "

If the following DATA statement is added to '609ADV', the sixth entry
appearing on the Advanced Functions menu is '"User-supplied program".
Selection of the '"User-supplied program" entry executes the program 'PROG1'.

9085 DATA '"PROG1", "User-supplied program', 'P"

2-5

CHAPTER 3
ACCESSING 2200 WORD PROCESSING FROM USER APPLICATIONS

3.1 INTRODUCTION

This chapter describes how an executing application program invokes 2200
Word Processing; how 2200 Word Processing can be terminated after it is
invoked from an executing application; and how an executing application
program can invoke a specific 2200 Word Processing function.

To create an application that invokes word processing, or a word
processing function, the programmer should be familiar with 2200 Word
Processing software conventions. In particular, an application that invokes
2200 Word Processing will observe the following conventions.

1. The alpha array R3$() is reserved by the word processing system as a
system stack. Each element in the system stack is a program name.
The stack is used by the word processing system to store and process
multiple program names.

2. $PSTAT must be set equal to the name of the word processing system
menu that will be displayed when the application enters the word
processing system.

Normal 2200 word processing system flow is the result of the 2200 word
processing daily startup procedure. When the procedure is followed, the user
issues a LOAD RUN command that results in the automatic execution of the
following four BASIC-2 programs: START, WPstart, 609start, and 609menu. The
following list describes the purpose served by each program.

Program Purpose

START Closes all open data files and executes the WPstart
program.

WPstart Closes all open data files, sets $PSTAT = " ", and

executes the 609start program.

609start Sets up all common variables needed by 2200 Word
Processing, removes the first element from the
system stack, and executes the 609menu program.

-609menu Displays the 2200 Word Processing menu. Chapter 2
describes in more detail the purpose and use of this
program.

3-1

3.2 ENTERING WORD PROCESSING FROM AN APPLICATION

The program 609start is the normal entry point into the 2200 Word
Processing system from a user—application. 609start establishes the word
processing enviroment without closing any files opened by the application. In
addition, 609start removes the first program name in the system stack,
executes the named program, and pops up succeeding elements in the stack. To
properly execute 2200 Word Processing from a user—application, the following
conditions must be established by the application.

1. The word processing menu driver program, 609menu, must be the first
entry in the R3$() system stack.

2. If the application must provide an exit from word processing, the
program that word processing must return contrel to is named in the
system stack. Specifically, the second entry in the system stack
must be the name of the program that word processing exits to.

3. Since $PSTAT determines the entry menu that will be displayed when
the application enters the word processing system, it must be set
equal to the name of a 2200 Word Processing menu. A list of the
2200 Word Processing menus, and the corresponding values that must
be assigned to $PSTAT, follows.

2200 Menu $PSTAT Value
Word Processing 60SMENU
Special Print Functions 609SPRNT
Advanced Functions 609ADV
Utilities 609UTIL
Glossary Functions 609Glos
Supervisory Functions 609SUPER

System Management Functions 609MANAG
4. The application program loads 609start. -

As a programming aid, 2200 Word Processing software contains the program
609ENTRY. 609ENTRY contains most of the statements needed in an entry
module. However, depending on the application, additional statements should
be added to 609ENTRY to define an exit point from word processing and to
COMmon R3$(). The following statements are contained in 609ENTRY.

10 REM '609ENTRY' - ENTER 2200WP FROM IDEAS?2
20 DIM C$(4) 62

¢ I=LEN(R3$0))
MAT COPY -R3$(<1,I> to -R3$()<10,I>
R3$(1) = "609menu"
$PSTAT = "'609MENU"
LOAD T "609start"

oo oo oo oo o

3-2

3.3 EXITING WORD PROCESSING

When 2200 Word Processing is entered by an application, the entry menu
displayed is determined by the value $PSTAT assigned by the application. Once
the word processing system is entered it functions in the same way as if the
system were entered by means of the 2200 Word Processing daily startup
procedure, with the following exeception. 2200 Word Processing software
contains an exit routine that is available when the 2200 Word Processing entry
menu is displayed.

To activate the word processing exit routine, the following exit
procedure is followed: when the 2200 Word Processing entry menu is displayed,
the user holds down the SHIFT key and simultaneously presses the CANCEL key.
Caution should be taken to follow the word processing exit procedure only when
the entry menu is displayed. If the exit procedure is followed at any other
time unpredictable results can occur.

As described in Section 3.2, the program that word processing must
return control to when the word processing exit procedure is followed is named
in the system stack. Since entry into the word processing system pops the
system stack, the name of the return program is the first element in the stack
when the exit procedure is followed. If the system stack does not contain an
entry and the exit procedure is followed, the 2200 Word Processing system is
not exited.

3.4 SAMPLE PROGRAMS

The following examples illustrate programming techniques that allow
applications to enter, and exit from, the 2200 Word Processing system.

10 REM PROGRAM ‘'ENTRY' ENTERS 2200 WORD PROCESSING

20 REM LINE 30 DECLARES R3$(10)9 AS A COMMON VARIABLE
30 COM R3$(10)9

40 REM LINES 50, 60 PUSH DOWN THE SYSTEM STACK

50 I=LEN(@R3$())

60 MAT COPY -R3$()<1,I> to -R3$()<10,I>

70 REM LINE 80 SETS SYSTEM STACK

80 R3$(1) = "60%menu': R3$(2) = "EXIT"

90 PRINT "ENTERING 2200WP"
100 REM LINE 110 SETS $PSTAT EQUAL TO DESIRED 2200 WP MENU NAME
110 $PSTAT = ''609MENU"
120 REM LINE 130 LOADS "609start"
130 LOAD T '"609start"

10 REM PROGRAM NAME IS "EXIT"
20 REM THIS PROGRAM EXITS FROM 2200 Word Processing
30 PRINT "EXITING WORD PROCESSING"

APPENDIX A
DOCUMENT ACCESS SUBROUTINE MODULES

.A.1 MODULE NAMES

Chapter 1 describes two methods that can be used to 1load the Document
Access subroutines; the direct method and the DAST.DAT method. When the
DAST.DAT method is used, module numbers and names are supplied in data
. statements contained in DAST.DAT. To use the direct method, the application
must supply values for I19(4), -the number of modules to load, and 1950, the
names of the modules to load. Module numbers and module names, grouped by the
subroutine functions they perform, are shown in the following list.

Subroutine DEFFN' Number of Module
Function Assignment Modules Names

Initialize Data 205 2 DOC.INIT
REC.INIT

Open Document 206 7 DOC.OPEN
CAT.VLIS
CAT.PRIM
CAT.RD
CAT.LIST
CAT.FO/C
CAT.OPEN

Close Document 207 5 DOC.CLOS
CAT.FO/C
CAT.PRIM
CAT.OPEN
CAT.RD

Create Document 208 14 DOC.CRET
CAT.VLIS
CAT.FCRE
CAT.FO/C
CAT.FLIS
CAT.PRIM
CAT.OPEN
CAT.RD
CAT.INS
CAT.LIST
REC.PRIM

Subroutine
Function

Delete Document

Change Password

Go To Page

Read Page

Rewrite Page

Insert Page

DEFFN'
Assignment

Number of
Modules

Module
Names

209

079

245

247

248

249

A-2

10

REC.RD
REC.INS
REC.FREE

DOC.DEL
CAT.FDEL
CAT.PRIM
CAT.RD
CAT.DEL
REC.PRIM
REC.FREE
REC.DEL

DOC.PASS
CAT.FMOD
CAT.PRIM
CAT.RD
CAT.INS
CAT.DEL
REC.PRIM
REC. INS
REC.FREE

PAG.GOTO
PAG.SUB
REC.PRIM
REC.RD

PAG.READ
PAG.SUB
REC.PRIM
REC.RD

PAG.REWT
PAG.SUB
REC.PRIM
REC.RD
REC. INS
REC.FREE
REC.DEL
REC.REP

PAG.INS
PAG.SUB
REC.PRIM
REC.RD
REC. INS
REC.FREE
ADM.READ
ADM.WRIT
CAT.FFCB
CAT.PRIM

Subroutine DEFFN'

W Function Assign;nent
Delete Page 251
Append Page 252
Search Text 253

Read Administrative Information 218

Write Administrative Information 219

Attach Glossary 229
Call Glossary ’ 230

Detach Glossary 233

A-3

Number of
Modules

11

10

Module
Names

PAG.DEL
PAG.SUB
REC.PRIM
REC.DEL
REC. INS
REC. FREE
ADM.READ
ADM.WRIT
CAT.FFCB
REC.RD
CAT.PRIM

PAG.APD
PAG.SUB
REC.PRIM

. REC.INS

REC.FREE
REC.RD

ADM.READ
ADM.WRIT
CAT.PRIM
CAT.FFCB

PAG.SRCH
PAG.SUB

ADM.READ
REC.PRIM
REC.RD

ADM.WRIT
REC.PRIM
REC.RD

CAT.PRIM
CAT.FFCB

GLS.ATCH
CAT.VLIS
CAT.PRIM
CAT.RD

CAT.LIST
CAT.FO/C
CAT.OPEN

GLS.CALL
REC.PRIM
REC.RD

GLS.DICH

CAT.PRIM
CAT.FO/C
CAT.OPEN
CAT.RD

INDEX

Administrative Informationccceeceeesscccasoesssnessccesssl=l to 1-
Append Page SUDroutine ...ccececeesescesessescccsccssccsccsnaese 176, 1=
Application Programcsoceceesesscsescssscsscsccssscsssssscssssse 178

Attach Glossary SUDroutine ...eeeeececccssscccecscccsccccccssssscnses 1™

5, 1-33
7, 1-30
to 1-16
6, 1-35

?

Call Glossary SUDTOULINe ..ccceeeceesscscesscscesccscscsscscssssseses 176, 1-36
Change Password SUDrOULinecececececcscoscaccccccccoscsesses 176, 1=7, 1-24
Close Document Subroutineccceececcss ceececsaaan cececcsssses 176, 1-7, 1-21
Common VariableS ..cccececcsccccccccecsssssccessssssssss 1-10, 1-11, 1-13, 1-14
Create Document SUDYOULineccceeceececccscscsssccccosssssss 16, 1-7, 1-22
Current Page Markercceceecescccescsceccscscsccssscnsssssssss 1725 to 1-30

DAST.DAT cceeeccccccocscssccosssssossscnsssasssacssssccsssess 112 to 1-16, A-1
Delete Document SUbBroutine ..c.cccceeccccccscccccssassssscsescsss 1=6, 1-7, 1-23
Delete Page SUbroutinecceeceescescesccssescescsoacecceaes 16, 1-7, 1-29
Detach Glossary SUDroutine ...ceceeececsccsscsscsscccccsccsscsssscssse 176, 1=37
Document PAge .icceeoceesscoscesscssscsssssssscsseassesss 1=8, 1-9, 1-26 to 1-31
Document SUMMAYY .ccccecessocsscccscscoccscsonnscs ceesssssscees 1-2, 1-32 to 1-34

Err‘or codes ® 0 0 0 0 0 0000000000060 0000000600000 0 0600005000000 0000000000000 1-14’ 1-18
Example Program © 0000000000600 00000000000060600000000000000000000000000 1_15’ 1-16
Extra Page © 0 0 0 00 0 0006060060668 0000000600600 00600000 06000000060000000000000000 1-25’ 1-29

Footer Page ® © 0 0 0 0 00 00 0000606000006 0006 0606060 006006002 0006000006000 0600000000060000000o0 1—28
Format Line teeeccsesccescesescncssscsscccsssssssssasssasss 12, 1-3, 1-5, 1-17

Glossary Text © 0000000000000 0000000000000000000000000000 1—8’ 1-9’ 1-35 tO 1-37
GO TO Page subroutine @000 0000000000000 0000000000000000000000c000 1—6’ 1-7’ 1-25
Graphic Characters © 0 0006000000000 0000000000000000000000000060000000000000000 1-3

Header Page © 000000000 00000060000000000000000000000000600000000000000o0 1—25, 1-28
Hex COdeS © 0 0000000000000 0000000000000000000000000000000006000600000s00 1—3 tO 1_5

Initialize Data Subroutine cecesccsscssessnas cecsees 1-6, 1-7, 1-19
Insert Page Subroutine ...cccceececcecccccscccccossccssnccssssnne 1-6, 1-7, 1-28

MenuData File 9 0 060 0060080600000 00000000000000000000000000000000000000 2-2 to 2-4
Open Document Subroutineiceecceccecccccscecccnccscccccnss 1-6, 1-7, 1-20

Page 0..ooooooooooooo}o0o0.0oo.oooooooo.ooooooo.oououooo 1-8’ 1-9, 1-26 tO 1-31
Page count © 0000600000 0000000000000000000600600000000000000000000000000000000 1_34

Page 3123 © 00000000000 000000000000000000000000000000000000000600000060000000 1-17

Password © 0 00 0 0 00 0600600600000 060600060600 000° 0060600000600 000000 00 1-16, 1_17, 1-20, 1-24
Print Document MENUccecceeceeecccoccscsssssassssssssssessss 1=2, 1-33, 1-34

" INDEX-1

Read Administrative Information Subroutinececiveeeveecioens
Read Page SUbDroutineccecesssoescocosoassionsscascsossasssns 1
Rewrite Page Subroutine P |

o
o

-3
-2
-2

NN

DR -6’
-6, 1-7,
-6, 1-7,

Search Text SUDYOULINE ..ceveevececcscsoscsssoccsnnnns eeeeeeeenes 1-6, 1-7, 1-31
Slot Nmber ® 0 0 0 5 0 00 00 00 00 0 ... ® 0 6 % 00 00 00 0 s ... 9 © 0 0 0 0 0 0 0 0 0 20 0 000 00000 PP S EE NSO DNDS 1-6
Text Information 9 © 0 0 0. 000 00 0 060 0000000605000 0600000000000 e 060 0 0 0 0 0 . . e 0 00 000 00 00 1—1

VOlume © 0 0 9 0 0000000000060 00000006050000006000600008000000600s0600600000000000000060000 1-1

word Processing Docmlent ® 0 0 0 8 0 60006 0 0006000600000 0006000000000 060000000900 1-1 ’ 1—2
work Page ® 0 0 5 00 000000605 05 00000060 5 000000000009 0060000000000 0000000e0o0 1_25, 1—28
Write Adminisrative Information Subroutineccccececeececcccccncns 1-6, 1-34

609 MENU .l..o‘..ol...0..00...00!0.0..0.00..0.000l0..0..‘0.0...;0000000.000 2-2

609 METNIU s coecoecccosscssosossscssssssscscsosssssosccscscsscscsscsscscscsccccsssoss 2-1 tO 2—4

@MENU 00 0 C3 0000600000000 000 0000000050008 00000006060000060000000000000000000s0000 2“1

INDEX-2

Title

Help Us Help You. ..

We've worked hard to make this document useful, readable, and technically accurate. Did we succeed? Only you can tell us!

Customer Cor_nment Form
2200 PROGRAMMER'S GUIDE TO WORD PROCESSING

Publications Number

_700-6961

Your comments and suggestions will help us improve our technical communications. Please take a few minutes to let us
know how you feel.

. How did you receive this publication? How did you use this Publication?
O Supportor O Don'tknow O Introduction O Aid to advanced
Sales Rep) to the subject knowledge
O Wang Supplies O Other O Classroom text O Guide to operating
Division (student) instructions
O From another O Classroom text O Asareference
user (teacher) manual
O Enclosed O Self-study ‘0 Other
with equipment text
. Please rate the quality of this publication in each of the following areas. VERY
EXCELLENT GOOD FAIR POOR POOR
Technical Accuracy — Does the system work the way the manual saysitdoes? [) O 0 (m]
Readability — Is the manual easy to read and understand? O 0 0O m] (m]
Clarity — Are the instructions easy to follow? (m] o (m} (m] O
Examples — Were they helpful, realistic? Were there enough of them?) 0 O 0 a
Organization — Was it logical? Was it easy to find what you needed to know?) 0 a (m) a
lllustrations — Were they clear and useful? 0o 0 (m] (m) a
Physical Attractiveness — What did you think of the printing, binding, etc? a 0o . (m] a)

Were there any terms or concepts that were not defined properly? O Y O N If so, what were they?

After reading this document do you feel that you will be able to operate the equipment/software? 0 Yes = O No
O Yes, with practice

What errors or faults did you find in the manual? (Please include page numbers)

Do you have any other comments or suggestions?

Name
Title
Dept/Mail Stop

Company

Thank you for your help.

Street

City

State/Country

Zip Code

Telephone

All comments and suggestions become the property of Wang Laboratories, Inc.

Printed in U.S.A.

14-3140 3-82-5C

Fold

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 16 LOWELL, MA

POSTAGE WILL BE PAID BY ADDRESSEE

WANG LABORATORIES, INC.

CHARLES T. PEERS, JR., MAIL STOP 1369
ONE INDUSTRIAL AVENUE

LOWELL, MASSACHUSETTS 01851

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Fold

J

{

Cut along dotted line.

J

e

c

. e The completed order form should be mailed to: To Order by Phone, Call:
A\WANAV (@B wanc LasoraTORIES, INC. (800)225-0234
Supplies Divis;on From Mass., Hawaii, and Alaska
51 Middlesex St.
No. Chelmsford MA 01863 (617)256-1400
TELEX 951-743
Order Form for Wang Manuals and Documentation
-@- Customer Number (If Known)
@ Bill To: Ship To:
l(-:D Customer Contact: @ Date Purchase Order Number
()«)
Phone Name
Taxable (@Tax Exempt Number (@@ Credit This Order to
Yes O A Wang Salesperson
No O Please Complete Salesperson’s Name Employee No. RDB No.
‘ Document Number Description Quantity Unit Price | Total Price
® Sub Total
Authorized Signature Date Less Any
Applicable
. . . Discount
0O Check this box if you would like a free copy of the Sub Total
- - - ub Tota
Corporate Publications Literature Catalog (700-5294)
LocalState Tax
Total Amount

Ordering Instructions

1. If you have purchased supplies from Wang before, and
know your Customer Number, please write it here.

Provide appropriate Billing Address and Shipping Address.
Please provide a phone number and name, should itbe
necessary for WANG to contact you about your order.

Your purchase order number and date.

Show whether order is taxable or not.

If tax exempt, please provide your exemption number.

ons wn

7. It you wish credit for this order to be given to a WANG
salesperson, please.complete.

8. Show part numbers, description and quantity for each
product ordered.

9. Pricing extensions and totaling can be completed at your
optiop; Wgng will refigure these prices and add freight on
your invoice.

10. Signature of authorized buyer and date.

~ Wang Supplies Division Terms and Conditions

1. TAXES — Prices are exclusive of all sales, use, and like
taxes.

2. DELIVERY — Delivery will be F.O.B. Wang's plant.
Customer will be billed for freight charges; and unless
customer specifies otherwise, all shipments will go best
way surface as determined by Wang. Wang shall not
assume any liability in connection with the shipment nor
shall the carrier be construed to be an agent of Wang.

If the customer requests that Wang arrange for insurance
the customer will be billed for the insurance charges.

3. PAYMENT — Terms are net 30 days from date of invoice.
Unless otherwise stated by customer, partial shipments will
generate partial invoices.

4. PRICES — The prices shown are subject to change without
notice. Individual document prices may be found in the
Corporate Publications Literature Catalog (700-5294)

S. LIMITATION OF LIABILITY — In no event shall Wang be liable
for loss of data or for special, incidental or consequential
damages in connection with or arising out of the use of or
information contained in any manuals or documentation
furnished hereunder.

Printedin U.S.A. 14-3141 5-82-5C

Fold

BUSINESS REPLY CARD

FIRSTCLASS PERMITNO.16 NO.CHELSMFORD, MA.

POSTAGE WILL BE PAID BY ADDRESSEE

WANG LABORATORIES, INC.
Supplies Division

c/o Order Entry Dept.

M/S 5511

51 Middlesex St.

No. Chelmsford, MA 01863

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Fold

.

ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851
TEL. (617) 459-5000

TWX 710-343-6769, TELEX 94-7421

Printed in U.S.A.
700-6961
8-82-2M

	Cover
	Preface
	Table of Contents
	Chapter 1: Document Access Subroutines
	1.1 Introduction
	1.2 Structore of a 2200 Word Processing Document
	1.3 Document Access Subroutine Functions
	1.4 Designing a Document Access Application
	1.5 Loading the Subroutines
	1.6 Reference Guide to the Document Access Subroutines

	Chapter 2: 2200 Word Processing Menu Modification
	2.1 Introduction
	2.2 Menu Files
	2.3 Menu File Structure
	2.4 An Example Menu File

	Chapter 3: Accessing 2200 Word Processing from User Applications
	3.1 Introduction
	3.2 Entering Word Processing from an Application
	3.3 Exiting Word Processing
	3.4 Sample Programs

	Appendix A: Document Access Subroutine Modules
	Index

