

### STATISTICS/ENGINEERING GENERAL PROGRAM LIBRARY GLBR 22A

Jack Jarvis & Company, Inc. 707 S. W. Washington Street Portland, Oregon 97205 Telephone: (503) 224-7838

## 



Jack Jarvis & Company, Inc. 707 S. W. Washington Street Portland, Oregon 97205 Telephone: (503) 224-7838

# 2200 General Library Statistics/Engineering GLBR 22A

### Warranty Disclaimer and Consequential Damages

The programming staff of Wang Laboratories, Inc. has taken due care to prepare this program package, including research, development, and testing to ascertain its effectiveness. Wang Laboratories, Inc. and its subsidiaries make no expressed or implied warranty of any kind with regard to this program package and its related material. In no event shall Wang Laboratories, Inc. or its subsidiaries be liable for incidental or consequential damages in connection with or arising out of the furnishing, performance or use of any of its programs.

### **Proprietary Rights**

This program package is a company proprietary item. Tape cassettes of programs may not be reproduced without the written consent of Wang Laboratories, Inc.

### Payment Address

The fee for a package is to be remitted directly to Wang Laboratories, Inc. at 836 North Street, Tewksbury, Massachusetts 01876. No agent or representative is charged with the authority to accept payment on behalf of the administrative offices of Wang, Laboratories, Inc.

### INTRODUCTION

Programs of varying complexity and from different fields have been included in this library to provide a sample of the usefulness and versatility of the 2200 series calculators. Programs have been selected bearing in mind their use and possible application. Each one contains a set of instructions which is easy to follow; at least one example per program has been given to facilitate checking and enhance comprehension.

In loading the program tapes advantage may be taken of SKIP and BACKSPACE features. These two features and their use are explained on a following page.

Programs are designed to display all output on the CRT. However, they may be adapted for printing the output on either the 2201 (typewriter) or the 2221 (Hi-Speed Printer).

NOTE: All operating instructions assume you are at the beginning of the block you desire.

If you wish to load programs that are separated by other blocks, you may use one of two methods.

(1) LOAD each block until you reach the desired block. This would require the repetition of 4 keystrokes for each block between your current position and your desired position. The 4 keystrokes would be:

This method would require you to  $\underline{\text{REWIND}}$  the tape if you desire a block which you have passed.

- (2) Using the SKIP feature will allow you to go from one block to another with less work, and the BACKSPACE feature will allow you to "back-up" to a block that you have passed.
  - a) SKIP Subtract from the Block # corresponding to where you wish to be, the Block # corresponding to your current location then subtract 1. This is the # of files to skip to place you at the beginning of the desired block.

For Example,

The last block loaded was 4; you wish to load Block 12.

$$12 - 4 - 1 = 7$$

b) BACKSPACE - Subtract from the block # corresponding to your present location, the block # corresponding to your desired location then add 1. This is the # of files to backspace to place you at the beginning of the desired block.

For Example,

The last block loaded was 12; you wish to load block 4,

$$12 - 4 + 1 = 9$$

Key 
$$\underline{B}$$
,  $\underline{A}$ ,  $\underline{C}$ ,  $\underline{K}$ ,  $\underline{S}$ ,  $\underline{P}$ ,  $\underline{A}$ ,  $\underline{C}$ ,  $\underline{E}$ ,  $\underline{9}$ ,  $\underline{F}$ ,  $\underline{CR/LF}$ 

To change output device from 2216 (CRT display) to 2201 (typewriter) or 2221 (Hi-Speed Printer) the following procedure is used:

- 1. Choose what output is to be displayed or typed.
- Insert a statement with the following information: For CRT display Statement # SELECT PRINT 005 For Typewriter (2201) Statement # SELECT PRINT 211 For Hi-Speed Printer (2221) Statement # SELECT PRINT 215

It may be advisable to change print to the CRT at the end of the program.

This page intentionally left blank

### TABLE OF CONTENTS

Tape II

| BLOCK                                                                                                                                                                                                                                                 | PROGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PAGE                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31 | LINEAR REGRESSION: Y = A + BX  MULTIPLE LINEAR REGRESSION  Nth ORDER REGRESSION  EXPONENTIAL REGRESSION: Y = AeBX  GEOMETRIC REGRESSION: Y = AXB  LINEAR CORRELATION  CORRELATION MATRIX  ONE-WAY ANALYSIS OF VARIANCE  TWO-WAY ANALYSIS OF VARIANCE  ANALYSIS OF VARIANCE  ANALYSIS OF VARIANCE  CHI-SQUARE TEST & DISTRIBUTION  CHI-SQUARE ANALYSIS  T-TEST  WILCOXON MATCHED-PAIRS SIGNED-RANKS TEST  MANN-WHITNEY-TEST  NORMAL FREQUENCY AND DISTRIBUTION FUNCTION  NEGATIVE BINOMIAL DISTRIBUTION  BINOMIAL DISTRIBUTION  POISSON DISTRIBUTION  F-VALUE  T-VALUE  RANDOM NORMAL DEVIATES  MEAN, VARIANCE, STANDARD DEVIATION II  GEOMETRIC MEAN AND STANDARD DEVIATION II  GEOMETRIC MEAN AND STANDARD DEVIATION  CROSS-COVARIANCE OF TIME SERIES  AUTO-COVARIANCE OF TIME SERIES  SYSTEM RELIABILITY  ERROR FUNCTION  TALBOT'S FORMULA  MANNING'S FORMULA  MANNING'S FORMULA | 3<br>7<br>13<br>17<br>23<br>29<br>33<br>39<br>43<br>47<br>55<br>63<br>69<br>72<br>77<br>81<br>85<br>89<br>93<br>101<br>115<br>119<br>123<br>127<br>131<br>137 |
| 33                                                                                                                                                                                                                                                    | BERNOULLI'S EQUATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 147                                                                                                                                                           |
| 34<br>35                                                                                                                                                                                                                                              | WARPING STRESS DUE TO TEMPERATURE DIFFERENTIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 153                                                                                                                                                           |
| 35<br>36<br>37                                                                                                                                                                                                                                        | PRESSURE DUE TO SURFACE LOADS, PRINT LOADS, FINITE OR INFINITE LINE LOADS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 167                                                                                                                                                           |
| 38                                                                                                                                                                                                                                                    | NETWORK IMPEDANCE - FINDING A SERIES OR PAPALLEL CIRCUIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 171                                                                                                                                                           |
| 39<br>40                                                                                                                                                                                                                                              | CHARACTERISTIC GENERATOR RESISTANCE AND SOURCE emf VOLTAGE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 175<br>179                                                                                                                                                    |

|  |   | 6m |
|--|---|----|
|  |   | ** |
|  |   |    |
|  |   |    |
|  | 7 |    |
|  |   |    |
|  |   | •  |
|  |   |    |
|  |   |    |

### REGRESSION

| BLOCK NO. | PROGRAM TITLE                         |
|-----------|---------------------------------------|
| 1         | LINEAR REGRESSION: $Y = A + BX$       |
| 2         | MULTIPLE LINEAR REGRESSION            |
| 3         | Nth ORDER LINEAR REGRESSION           |
| 4         | EXPONENTIAL REGRESSION: $Y = Ae^{BX}$ |
| 5         | GEOMETRIC REGRESSION: $Y = AX^B$      |
| 6         | LINEAR CORRELATION                    |
| 7         | CORRELATION MATRIX                    |

This page intentionally left blank

## WANG 2200 SERIES PROGRAM

LINEAR REGRESSION: Y = A + BX

TITLE

PS. 01-2200. 01A-00FI-1-0 6/1/73

NUMBER DATE

2200A-01, 2215, 2216/2217

EQUIPMENT

### PROGRAM ABSTRACT

Fits the curve Y = A + BX to a set of N data points by the method of least squares. Also, an analysis of regression is performed.

### PROGRAM DESCRIPTION

Fits the curve Y = A + BX to a set of N data points by the method of least squares. Also, an analysis of regression is performed - the regression table, F-value, coefficient of determination, coefficient of correlation, and standard error of estimate are printed out. The user may estimate values of Y from the regression curve by inputing values of X.

Sample correlation coefficient, 
$$\mathbf{r} = \frac{n\Sigma XY - (\Sigma X)(\Sigma Y)}{\left[n\Sigma x^2 - (\Sigma x)^2\right] \left[n\Sigma Y^2 - (\Sigma Y)^2\right]}$$

$$\mathbf{B} = \frac{n\Sigma XY - (\Sigma X)(\Sigma Y)}{n\Sigma X^2 - (\Sigma X)^2}$$

$$\mathbf{A} = \frac{\Sigma Y - \mathbf{B}\Sigma X}{\mathbf{n}}$$

Standard error of estimate, 
$$\hat{S}_{Y \cdot X} = \frac{1}{n} \sqrt{(n\Sigma Y^2 - (\Sigma Y)^2) - \frac{(n\Sigma XY - \Sigma X\Sigma Y)^2}{n\Sigma X^2 - (\Sigma X)^2}}$$

F-test for r, 
$$F_r = \frac{r^2 (n-2)}{1-r^2}$$

Coefficient of Determination = r<sup>2</sup>

### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right.

### OPERATING INSTRUCTIONS

### EXAMPLE

Perform a linear regression on the following data points

| _ X          | Y                |
|--------------|------------------|
| 1            | 1                |
| 3            | 2                |
| $rac{4}{6}$ | 4                |
|              | 2<br>4<br>4<br>5 |
| 8            | 5                |
| 9            | 7                |
| 11           | 8<br>9           |
| 14           | 9                |

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION
- 4. Key # of Data Pairs CR/LF
- 5. <u>INSTRUCTION</u>
- 6. Key  $X_1 Y_1$  CR/LF

 $\stackrel{\cdot}{\operatorname{Key}} \ X_{n} \ \underline{\stackrel{\cdot}{\cdot}} \ Y_{n} \ \overline{\operatorname{CR/LF}}$ 

- INPUT N
- 4. Key 8 CR/LF

INPUT DATA POINTS

6. Key <u>1</u> <u>1</u> (CR/LF)

Key <u>3</u> <u>.</u> <u>2</u>

CR/LF

Key <u>1</u> <u>4</u> <u>9</u>

7. Read Answer

0 DEG COEFF, is A

1 DEG COEFF. is B

0 DEG. COEFF. = .545454545455

1 DEG. COEFF. = .6363636363636

Program will stop, the word STOP will appear on the CRT (display)

To have residual table, and other results outputed, Key CONTINUE

[ey CONTINUE] CR/LF]

© Wang Laboratories, Inc., 1973

### OPERATING INSTRUCTIONS (Cont)

### REGRESSION TABLE

 SOURCE
 SUM OF SQ.
 DEG. FREEDOM
 MEAN SQ.

 REGRESSION
 53.45454545454
 1
 53.45454545454

 RESIDUAL
 2.54545454546
 1
 .4242424242433

 TOTAL
 56
 7

F = 125.9999999997

8. INSTRUCTION

DO YOU WISH TO ESTIMATE VALUES OF Y FROM THE REGRESSION CURVE? (1 = YES, 0 = NO)

9. Key either  $\underline{1}$  or  $\underline{0}$  CR/LF

9. Key 1 CR/LF

If you choose  $\underline{0}$  go to Step 15.

10. <u>INSTRUCTION</u>

INPUT X

11. Key X CR/LF

11. Key 5 CR/LF

12. Read Y

Y = 3.727272727273

13. INSTRUCTION

ANOTHER POINT? (1 = YES, 0 = NO)

14. Go to Step 9.

15. Program halts.

END PROGRAM

## WANG 2200 SERIES PROGRAM

MULTIPLE LINEAR REGRESSION

TITLE

PS. 01-2200. 01A-00FI-2-0 6/1/73

NUMBER
2200A-01, 2215, 2216/2217

EQUIPMENT

### PROGRAM ABSTRACT

Fits the curve:  $Y = B_0 + B_1 X_1 + B_2 X_2 + ... + B_m X_m$ 

to a set of N data points by the least squares method and then performs an analysis of regression. This last part is optional.

| BLOCK | SAVE "NAME" | BYTES REQUIRED |
|-------|-------------|----------------|
| 2     |             | 2186           |
|       |             |                |

### PROGRAM DESCRIPTION

This is a two-part program. The first segment fits the curve:

$$y = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_M X_M$$
 (M \leq 4)

to a set of N data points by the method of least squares. The second segment performs an analysis of regression - the regression table, F-value, coefficient of determination, coefficient of multiple correlation, and standard error of estimate are printed out. The user may also estimate values of Y from the regression curve by supplying values for the independent variables  $(X_1, X_2, \ldots, X_M)$ .

Ref. 1: Roscoe, John T., "Fundamental Research Statistics", Holt, Rinehart and Winston, Inc. 1969, p. 264 ff.

### Formulae

Solution matrix

### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

### OPERATING INSTRUCTIONS

### **EXAMPLE**

Given the following data

| Y              | 2 | 5 | 7 | 8 | 5 |
|----------------|---|---|---|---|---|
| х <sub>1</sub> | 8 | 8 | 6 | 5 | 3 |
| x <sub>2</sub> | 0 | 1 | 1 | 3 | 4 |

fit a regression equation of the form

$$Y = b_0 + b_1 X_1 + b_2 X_2$$
  
Calculate Y for X1 = 2, X2 = 4.

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION

INPUT M, N

- 4. Key # of Independent Variables # of Data Points, CR/LF
- 4. Key <u>2</u> <u>5</u> <u>CR/LF</u>

5. INSTRUCTION

INPUT DATA POINTS
POINT 1

Each data point  $(X_1, X_2, \ldots, X_N, Y)$  is inputed in one line. Each element of the data point is separated from the others by a comma. For example,

If M< 4:

$$\text{Key } \underline{X}_{\underline{1}} \ \underline{\cdot} \ \underline{X}_{\underline{2}} \ \underline{\cdot} \ \underline{Y} \ \boxed{\text{CR/LF}} \ \boxed{\text{CR/LF}}$$

If M = 4:

$$\text{Key } \underline{X_1} \ \underline{\cdot} \ \underline{X_2} \ \underline{\cdot} \ \underline{X_3} \ \underline{\cdot} \ \underline{X_4} \ \underline{\cdot} \ \underline{Y} \ \underline{CR/LF}$$

### OPERATING INSTRUCTIONS (Cont)

6. Key 
$$\underline{X}_1 \stackrel{\cdot}{\underline{\phantom{A}}} \underline{X}_2 \stackrel{\cdot}{\underline{\phantom{A}}} \dots \underline{X}_{\underline{M}} \stackrel{\cdot}{\underline{\phantom{A}}} \underline{Y}$$
 6. Key  $\underline{8} \stackrel{\cdot}{\underline{\phantom{A}}} \underline{0} \stackrel{\cdot}{\underline{\phantom{A}}} \underline{2}$   $\overline{\underline{CR/LF}}$ 

CR/LF

or

$$\underbrace{\underline{X_1} \ '}_{\underline{X_2}} \ \underline{X_2} \ ' \ \underline{X_3} \ ' \ \underline{X_4} \ ' \ \underline{Y}$$

CR/LF

### 7. INSTRUCTION

POINT 2

Continue as described in Step 6. until all data points have been entered.

8. Read Output

B(0) = 4.488188976374

B(1) = -3.93700787E-02

B(2) = .6377952755911

9. Program will STOP, to continue

> Key CONTINUE CR/LF

10. Read Output

REGRESSION TABLE

SOURCE SUM OF SQ. DEG. FREEDOM

MEAN SQ.

REGRESSION RESIDUAL

5.074015748031 2 ,

16. 12598425197 2 2.537007874016 8.062992125985

TOTAL 21. 2

F= .3146484375

COEFF. OF DETERMINATION= . 2393403654732

COEFF. OF MULTIPLE CORRELATION= . 48922424866

STANDAD EROR OF ESTIMATE= 2,8395408301

DO YOU WISH TO ESTIMATE VALUES OF Y FROM THE

REGRESSION CURVE? (1=YES, 0=NO)

COORDINATE X 1

COORDINATE X 2

Y= 6.960629921259

ANOTHER POINT?

11. INSTRUCTION DO YOU WISH TO ESTIMATE VALUES OF Y FROM THE REGRESSION CURVE?

$$(1 = YES, 0 = NO)$$

### **OPERATING INSTRUCTIONS (Cont)**

12. Key <u>1</u> or <u>0</u> <u>CR/LF</u>

12. Key  $\underline{1}$   $\boxed{CR/LF}$ 

If you keyed 0, then go to Step 19.

13. INSTRUCTION

COORDINATE X1

14. Key X1 CR/LF

14. Key 2 CR/LF

15. <u>INSTRUCTION</u>

COORDINATE X2

Continue as in Step 14, until all coordinates have been entered.

16. Read Answer

Y = 6.96062992159

17. INSTRUCTION

ANOTHER POINT?

18. Go to Step 12.

19. Program Ends

END PROGRAM

This page intentionally left blank

## WANG 2200 SERIES PROGRAM

Nth ORDER REGRESSION

TITLE

| PS.01-2200.01A-00FI-3-0   | 6/1/73 |  |
|---------------------------|--------|--|
| NUMBER                    | DATE   |  |
| 2200A-01, 2215, 2216/2217 |        |  |
| EQUIPMENT                 |        |  |

### PROGRAM ABSTRACT

Fits the curve:  $Y = B_0 + B_1 X + B_2 X^2 + \dots + B_m X^m$ 

to a set of N(X,Y)- data points by the least squares method and then performs an analysis of regression. This last part is optional.

| BLOCK | SAVE "NAME" | BYTES REQUIRED |
|-------|-------------|----------------|
| 3     |             | 2233           |
|       |             |                |

### PROGRAM DESCRIPTION

This is a two-part program. The first segment fits the curve:

$$Y = b_0 + b_1 X + b_2 X^2 + \dots + b_M X^M$$

to a set of N(X,Y) data points by the method of least squares. The second segment performs an analysis of regression - the regression table, F-value, coefficient of determination, coefficient of correlation, and standard error of estimate are printed out. The user may also estimate values of Y from the regression curve by supplying values for x.  $(M \le 6)$ 

Ref. 1: Kuo, Shan S. "Numerical Methods and Computers", Addison-Wesley, 1965, p. 219 ff.

Ref. 2: Roscoe, John T., "Fundamental Research Statistics", Holt, Rinehart and Winston, Inc., 1969, p. 264 ff.

### Formulae

 $b_0, b_1, \ldots, b_M$  are the solutions of the following equations

$$\begin{split} \mathbf{m} \mathbf{b}_0 &+ (\Sigma \mathbf{X}) \mathbf{b}_1 &+ \dots + (\Sigma \mathbf{X}^M) \mathbf{b}_M = \Sigma \mathbf{Y} \\ (\Sigma \mathbf{X}) \mathbf{b}_0 &+ (\Sigma \mathbf{X}^2) \mathbf{b}_1 &+ \dots + (\Sigma \mathbf{X}^{M+1}) \ \mathbf{b}_M = \Sigma \mathbf{X} \mathbf{Y} \\ &\vdots \\ (\Sigma \mathbf{X}^M) \mathbf{b}_0 &+ (\Sigma \mathbf{X}^{M+1}) \mathbf{b}_1 &+ \dots + (\Sigma \mathbf{X}^{2M}) \mathbf{b}_M = \Sigma \mathbf{X}^M \mathbf{Y} \end{split}$$

### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

### **OPERATING INSTRUCTIONS**

### **EXAMPLE**

Given the following data

fit the curve

$$Y = b_0 + b_1 X + b_2 X^2$$

and estimate Y at X = 2.

1. Key RESET CLEAR CR/LF

LOAD CR/LF

- 2. Key RUN CR/LF
- 3. INSTRUCTION
- 4. Key M · N CR/LF
- 5. INSTRUCTION

INPUT M, N

4. Key 2 1 0 CR/LF

INPUT DATA POINTS

NOTE: 0 raised to the 0 power will result in an error, therefore if X=0 use X=.0000001 or even some other very small # to approximate 0.

6. Key  $X_1 - Y_1$  CR/LF

Key X<sub>2</sub> · Y<sub>2</sub> CR/LF

•

 $\text{Key } \underline{X}_{\underline{N}} \overset{\bullet}{\underline{\phantom{A}}} \underline{Y}_{\underline{N}} \underline{\phantom{A}} \underline{\text{CR/LF}}$ 

Key  $\underline{\phantom{0}}$   $\underline{\phantom{0}}$ 

Key <u>1</u> <u>'</u> <u>7</u> <u>.</u> <u>3</u> CR/LF

Key <u>2</u> <u>3</u> <u>.</u> <u>2</u> <u>CR/LF</u>

Key <u>3</u> • <u>4</u> <u>.</u> <u>6</u> <u>CR/LF</u>

•

Key 9 <u>1</u> 0 . 2 CR/LF

7. Read Output

0 DEG. COEFF. =  $b_0$ 

1 DEG. COEFF. =  $b_1$ 

M DEG. COEFF. =  $b_M$ 

0 DEG. COEFF. = 8.698181952449

1 DEG. COEFF. = -2.34060611459

2 DEG. COEFF. = .2878787925126

### **OPERATING INSTRUCTIONS (Cont)**

8. Program halts, to continue, Key

CONTINUE CR/LF

9. Read Output

REGRESSION TABLE

SOURCE SUM OF SQ. DEG. FREEDOM MEAN SQ.

REGRESSION 48.92633145245 2 24.46316572623 RESIDUAL 8.63466854755 7 1.233524078221

RESIDUAL 8.63466854755 7 TOTAL 57.561 9

F= 19.8319320702

COEFF. OF DETERMINATION= .8499909913388

COEFF. OF CORRELATION= .92194956008

STANDARD ERROR OF ESTIMATE = 1.1106412914 DO YOU WISH TO ESTIMATE VALUES OF Y FROM

THE REGRESSION CURVE? (1=YES, 0=NO)

INPUT X

Y= 5. 168485296849

ANOTHER POINT? (1=YES, 0=NO)

10. INSTRUCTION

DO YOU WISH TO ESTIMATE VALUES OF Y FROM THE REGRESSION CURVE? (1 = YES, 0 = NO)

11. Key  $\underline{1}$  or  $\underline{0}$  CR/LF

If you Key 0, go to Step 17.

INPUT X

13. Key X CR/LF

12. INSTRUCTION

13. Key 2 CR/LF

11. Key 1 [CR/LF]

14. Read Answer

Y = 5.168484893319

15. INSTRUCTION

ANOTHER POINT? (1 = YES, 0 = NO)

- 16. Go to Step 11.
- 17. Program halts.

## WANG 2200 SERIES PROGRAM

EXPONENTIAL REGRESSION:  $Y = Ae^{BX}$ 

TITLE

PS. 01-2200. 01A-00FI-4-0 6/4/73

NUMBER
2200A-01, 2215, 2216/2217

EQUIPMENT

### **PROGRAM ABSTRACT**

Fits the curve:  $Y = Ae^{BX}$  to a set of N(X,Y) - data points by the least squares method and then performs an analysis of regression.

This last part is optional.

| BLOCK | SAVE "NAME" | BYTES REQUIRED |  |
|-------|-------------|----------------|--|
| 4     |             | 1147           |  |

### PROGRAM DESCRIPTION

Fits the curve:

(1) 
$$Y = Ae^{BX}$$

to a set of N data points,  $(X_1, Y_1), X_2, Y_2), \dots, (X_N, Y_N).$ 

The problem is reduced to linear regression by taking the log of both sides of equation (1):

$$log(Y) = log(A) + BX$$

and substituting Y' = log(Y) and A' = log(A):

(2) 
$$Y' = A' + BX$$

A linear regression (by the method of least squares) is performed to determine A' and B. Then, A is determined by:

$$A = e^{A'}$$

An analysis of regression is done on the linear regression - the regression table, F-value, coefficient of determination, coefficient of correlation, and standard error of estimate are printed out. The user may estimate values of Y from the exponential regression curve by inputing values of X.

Ref.: Roscoe, John T., "Fundamental Research Statistics", Holt, Rinehart and Winston, Inc., 1969, 1. 273 ff.

### Formulae

$$\mathrm{B} = \frac{\mathrm{n}\Sigma \; (\mathrm{X_iLOG_eY_i}) - (\Sigma\mathrm{X_i}) \; (\Sigma \; \mathrm{LOG_eY_i})}{\mathrm{n}\Sigma\mathrm{X_i^2} - (\Sigma\mathrm{X_i})^2}$$

$$A = \exp \left[\frac{1}{n} \left\{ (\Sigma LOG_e Y_i) - b \Sigma X_i \right\} \right]$$

$$\mathbf{r} = \frac{n\Sigma \left(\mathbf{X_i} \ \mathrm{LOG}_e^{Y_i}\right) - (\Sigma \mathbf{X_i}) \left(\Sigma \ \mathrm{LOG}_e^{Y_i}\right)}{\left\{n\Sigma \mathbf{X_i^2} - (\Sigma \mathbf{X_i})^2\right\} \left\{n\Sigma \left(\mathrm{LOG}_e^{Y_i}\right)^2 - (\Sigma \ \mathrm{LOG}_e^{Y_i})^2\right\}}$$

### PROGRAM DESCRIPTION (Cont)

F-Test for r, 
$$F = \frac{r^2 (n-2)}{1-r^2}$$

Coefficient of Determination =  $r^2$ 

Standard error of estimate, 
$$\hat{S}_{Y \cdot X} = \frac{1}{N} \sqrt{(n\Sigma(LOGY)^2 - (\Sigma LOG Y)^2 \frac{(n\Sigma X(LOGY) - \Sigma X\Sigma LOGY)^2}{n\Sigma X^2 - (\Sigma X)^2}}$$

### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

### **OPERATING INSTRUCTIONS**

### **EXAMPLE**

Given the following data

| X | Y    |
|---|------|
| 0 | . 25 |
| 1 | 1.1  |
| 2 | 5    |
| 3 | 22.5 |
| 4 | 101  |
| 5 | 452  |

fit  $Y = Ae^{BX}$  and estimate Y at X = 7.

- 1. Key RESET CLEAR CR/LF
  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION
- 4. Key # of data points CR/LF
- 5. <u>INSTRUCTION</u>
- 6. Key  $X_1 \rightarrow Y_1$  CR/LF

$$\text{Key } \underline{\underline{X}_2} \ \underline{\underline{\cdot}} \ \underline{\underline{Y}_2} \ \overline{\underline{CR/LF}}$$

$$\text{Key } \underline{X_N} \ \underline{\cdot} \ \underline{Y_N} \ \underline{\boxed{CR/LF}}$$

- 7. Read Output
- 8. Program Halts. To continue,

  Key CONTINUE CR/LF

### INPUT N

4. Key 6 CR/LF

INPUT DATA POINTS

6. Key <u>0</u> <u>.</u> <u>2</u> <u>5</u> <u>CR/LF</u> Key <u>1</u> <u>.</u> <u>1</u> <u>.</u> <u>1</u> <u>CR/LF</u>

A = .247981950976

B = 1.501811174648

### OPERATING INSTRUCTIONS (Cont)

### 9. Read Output

REGRESSION TABLE

SOURCE SUM OF SQ. DEG. FREEDOM MEAN SQ.

REGRESSION 39. 47014407519 1 39. 47014407519 RESIDUAL 2. 24468250E-04 4 5. 61170625E-05 TOTAL 39. 47036854344 5

F= 703353, 7094924

COEFF. OF DETERMINATION= .9999943129933

COEFF. OF CORRELATION= .9999971565

STANDARD ERROR OF ESTIMATE= 7.49113225E-03 DO YOU WISH TO ESTIMATE VALUES OF Y FROM

THE REGRESSION CURVE? (1=YES, 0=NO)

INPUT X

Y= 9120.490903452

ANOTHER POINT? (1=YES, 0=NO)

10. INSTRUCTION

DO YOU WISH TO ESTIMATE VALUES OF Y

FROM THE REGRESSION CURVE?

(1 = YES, 0 = NO)

11. Key 1 CR/LF

11. Key 1 or 0 CR/LF

If you key 0, go to Step 17.

INPUT X

13. Key X CR/LF

INSTRUCTION

13. Key 7 CR/LF

14. Read Answer

**12.** 

Y = 9120.490903452

15. INSTRUCTION

ANOTHER POINT? (1 = YES, 0 = NO)

16. Go to Step 11.

17. Program halts

END PROGRAM

This page intentionally left blank

## WANG 2200 SERIES PROGRAM

GEOMETRIC REGRESSION: Y = AXB

PS. 01-2200. 01A-00FI-5-0 6/1/73

NUMBER
2200A-01, 2215, 2216/2217

EQUIPMENT

### PROGRAM ABSTRACT

Fits the curve  $Y = AX^{B}$  to a set of N data points,

$$(X_1, Y_1), (X_2, Y_2), \dots, (X_N, Y_N).$$

| BLOCK | SAVE "NAME" | BYTES REQUIRED |
|-------|-------------|----------------|
| 5     |             | 1155           |

### PROGRAM DESCRIPTION

Fits the curve:

$$(1) Y = AX^B$$

to a set of N data points,  $(X_1, Y_1)$ ,  $(X_2, Y_2)$ , . . . ,  $(X_N, Y_N)$ .

The problem is reduced to linear regression by taking the log of both sides of equation (1):

$$LOG(Y) = LOG(A) + B LOG(X)$$

and substituting Y' = LOG(Y), X' = LOG(X), and A' = LOG(A):

$$(2) Y' = A' + BX'$$

A linear regression (by the method of least squares) is performed to determine A' and B. Then, A is determined by:

$$A = e^{A'}$$

An analysis of regression is done on the linear regression - the regression table, F-value, coefficient of determination, coefficient of correlation, and standard error of estimate are printed out. The user may also estimate values of Y from the geometric regression curve by inputing values of X.

Ref.: Roscoe, John T., "Fundamental Research Statistics", Holt, Rinehart and Winston, Inc., 1969, p. 273 ff.

### <u>Formulae</u>

$$\mathsf{B} \ = \ \frac{\mathsf{n}\Sigma \ (\mathsf{LOG}_{e}^{\, \mathsf{X}}{}_{i}^{\, \mathsf{LOG}_{e}^{\, \mathsf{Y}}{}_{i}^{\, }) - (\Sigma \ \mathsf{LOG}_{e}^{\, \mathsf{X}}{}_{i}^{\, }) \ (\Sigma \ \mathsf{LOG}_{e}^{\, \mathsf{Y}}{}_{i}^{\, })}{\mathsf{n}\Sigma \ (\mathsf{LOG}_{e}^{\, \mathsf{X}}{}_{i}^{\, })^{\, 2} - (\Sigma \ \mathsf{LOG}_{e}^{\, \mathsf{X}}{}_{i}^{\, })^{\, 2}}$$

$$A = \exp \left[\frac{1}{n} \left\{ \sum LOG_{e}Y_{i} - (2 LOG_{e}X_{i})b \right\} \right]$$

$$\frac{e^{\frac{n\Sigma (LOG_{e}X_{i} LOG_{e}Y_{i}) - (\Sigma LOG_{e}X_{i}) (\Sigma LOG_{e}Y_{i})}}{\sqrt{n\Sigma (LOG_{e}X_{i})^{2} - (\Sigma LOG_{e}X_{i})^{2} - (\Sigma LOG_{e}Y_{i})^{2} - (\Sigma LOG_{e}Y_{i})^{2}}}$$

### PROGRAM DESCRIPTION (Cont)

Standard Error of Estimate  $\widehat{S}_{Y^{\bullet}X}$ 

$$\frac{1}{n} \sqrt{\left[n\Sigma \left(\text{LOG Y}\right)^2 - \left(\Sigma \text{ LOG Y}\right)^2\right] - \frac{\left(n\Sigma \left(\text{LOG X}\right) \left(\text{LOG Y}\right) - \Sigma \text{ LOG Y }\Sigma \text{ LOG X}\right)^2}{n\Sigma \left(\text{LOG X}\right)^2 - \left(\Sigma \text{ LOG X}\right)^2}}$$

F test for r, 
$$F_{r} = \frac{r^{2} (n-2)}{1-r^{2}}$$

Coeff. of determination =  $r^2$ 

### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right.

### **OPERATING INSTRUCTIONS**

### EXAMPLE

Given the following data

fit  $Y = AX^B$  and estimate Y when X = 2.5.

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. <u>INSTRUCTION</u>

INPUT N

Key # of data pairs

4. Key 8 CR/LF

CR/LF

4.

5. INSTRUCTION

INPUT DATA POINTS

Since  ${\rm LOG_e}(0)$  is undefined, you must approximate 0 by a near zero value, such as .0000001.

6. Key  $X_1 - Y_1$  CR/LF

6. Key 1 ' . 5 CR/LF

 $\text{Key } \underline{X}_{\underline{2}} \stackrel{!}{\underline{\cdot}} \underline{Y}_{\underline{2}} \underline{\text{CR/LF}}$ 

Key <u>2</u> <u>2</u> <u>CR/LF</u>

 $\text{Key } \underline{X}_{\underline{N}} \overset{\bullet}{\underline{\phantom{A}}} \underline{Y}_{\underline{N}} \quad \overline{\underline{CR/LF}}$ 

Key <u>8</u> <u>, 3</u> <u>2</u> <u>CR/LF</u>

7. Read output

A = .5097863625245B = 1.993368171127

8. Program halts. To continue

Key CONTINUE CR/LF

# **OPERATING INSTRUCTIONS (Cont)**

## 9. Read Output

REGRESSION TABLE

SOURCE SUM OF SQ. DEG. FREEDOM MEAN SQ.

REGRESSION 13.76167701101 1 13.76167701101 RESIDUAL 1.21254695E-02 6 2.02091158E-03

TOTAL 13. 77380248054 7

F= 6809. 63832879

COEFF. OF DETERMINATION= .9991196715978 COEFF. OF CORRELATION= .99955973888

STANDARD ERROR OF ESTIMATE= 4.49545502E-02
DO YOU WISH TO ESTIMATE VALUES OF Y FROM

THE REGRESSION CURVE? (1=YES,0=NO)

INPUT X

Y= 3.166862158769

ANOTHER POINT? (1=YES, 0=NO)

## 10. INSTRUCTION

DO YOU WISH TO ESTIMATE VALUES OF Y FROM THE REGRESSION CURVE?

(1 = YES, 0 = NO)

11. Key 1 or 0 CR/LF

11. Key 1 CR/LF

If you key 0, go to Step 17.

12. INSTRUCTION

INPUT X

13. Key X CR/LF

13. Key 2 . 5 CR/LF

14. Read Answer

Y = 3.166862158769

15. INSTRUCTION

ANOTHER POINT? (1 = YES, 0 = NO)

16. Go to Step 11.

17. Program halts.

**END PROGRAM** 

This page intentionally left blank

# WANG 2200 SERIES PROGRAM

LINEAR CORRELATION

TITLE

PS. 01-2200. 01A-00FI-6-0 6/1/73

NUMBER DATE

2200A-01, 2215, 2216/2217

EQUIPMENT

### **PROGRAM ABSTRACT**

Computes the coefficient of linear correlation, R, between 2 variables, X and Y.

| BLOCK | SAVE "NAME" | NAME" BYTES REQUIRED |  |
|-------|-------------|----------------------|--|
| 6     |             | 454                  |  |

### PROGRAM DESCRIPTION

Computes the coefficient of linear correlation, R, between 2 variables, X and Y, by the equation:

$$R = \frac{N\Sigma (X_i^Y_i) - (\Sigma X_i) (\Sigma Y_i)}{\sqrt{(N\Sigma X_i^2 - (\Sigma X_i)^2) (N\Sigma Y_i^2 - (\Sigma Y_i)^2)}}$$

where

N = number of observations

$$(X_1, X_2)$$
, . . .,  $(X_N, Y_N)$  are the data points.

The degree of linear correlation varies from no linear correlation (R = 0) to perfect linear correlation ( $R = \pm 1$ ).

## NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

# OPERATING INSTRUCTIONS

## EXAMPLE

Given the following data

| X | Y    |
|---|------|
| 0 | . 25 |
| 1 | 1.1  |
| 2 | 5    |
| 3 | 22.5 |
| 4 | 101  |
| 5 | 452  |

determine the coeff. of correlation.

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION
- 4. Key # of data points CR/LF
- 5. INSTRUCTION
- 6. Key  $X_1 \stackrel{!}{\cdot} Y_1$  CR/LF

  Key  $X_2 \stackrel{!}{\cdot} Y_2$  CR/LF  $\vdots$ Key  $X_N \stackrel{!}{\cdot} Y_N$  CR/LF
- 7. Read Answer

NO. OF DATA POINTS, N?

4. Key  $\underline{6}$  CR/LF

INPUT DATA POINTS 1/LINE (XI, YI, CARRIAGE RETURN)

6. Key <u>0</u> <u>'</u> <u>.</u> <u>2</u> <u>5</u> CR/LF Key <u>1</u> <u>'</u> <u>1</u> <u>.</u> <u>1</u> CR/LF

Key <u>5</u> <u>4</u> <u>5</u> <u>2</u> <u>CR/LF</u>

COEFF. OF CORRELATION = .7730712833711

**END PROGRAM** 

This page intentionally left blank

# WANG 2200 SERIES PROGRAM

| <br> | <br> | <br> |
|------|------|------|
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |
|      |      |      |

PS. 01-2200. 01A-00FI-7-0 6/1/73

NUMBER DATE

2200A-01, 2215, 2216/2217

EQUIPMENT

# **PROGRAM ABSTRACT**

TITLE

Given a set of N observations in M variables, the correlation coefficient between each pair of variables is computed.

CORRELATION MATRIX

| BLOCK SAVE "NAME" |  | BYTES REQUIRED |
|-------------------|--|----------------|
| 7                 |  | 1596           |

## PROGRAM DESCRIPTION

Given a set of N observations in M variables, the correlation coefficient between each pair of variables is computed. The observations should be arranged in the following format:  $(M \le 9)$ 

#### **VARIABLES**



The correlation matrix is an array of correlation coefficients where the element in the ith row and jth column of the matrix is the correlation coefficient between the ith and jth variables. The correlation matrix is printed out row by row skipping a line between each row; each row is printed out from left to right using as many lines as required.

Ref.: Roscoe, John T., "Fundamental Research Statistics", Holt, Rinehart and Winston, Inc. 1969, p. 80.

#### Formula

$$\mathbf{r} = \frac{\mathbf{N} * \mathbf{\Sigma} \mathbf{X}_{\mathbf{I}} \mathbf{X}_{\mathbf{J}} - \mathbf{\Sigma} \mathbf{X}_{\mathbf{I}} \mathbf{\Sigma} \mathbf{X}_{\mathbf{J}}}{\sqrt{(\mathbf{N} \mathbf{\Sigma} \mathbf{X}_{\mathbf{I}}^2 - (\mathbf{\Sigma} \mathbf{X}_{\mathbf{I}})^2) (\mathbf{N} \mathbf{\Sigma} \mathbf{X}_{\mathbf{J}}^2 - (\mathbf{\Sigma} \mathbf{X}_{\mathbf{J}})^2}}$$

r is the coefficient of correlation between Col. I and Row J. I, J

#### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right.

## OPERATING INSTRUCTIONS

# **EXAMPLE**

#### VARIABLES

|              |   | v <sub>1</sub> | $v_{2}^{}$ | $^{ m V}_{ m 3}$ | $^{\mathrm{V}}_{4}$ | V <sub>5</sub> | V <sub>6</sub> |
|--------------|---|----------------|------------|------------------|---------------------|----------------|----------------|
|              | 1 | 1              | 2          | 3                | 4                   | 5              | 6              |
|              | 2 | 2              | 4          | 6                | 8                   | 10             | 12             |
|              | 3 | 1              | 1          | 2                | 2                   | 3              | 3              |
| OBSERVATIONS | 4 | 10             | 20         | 30               | 40                  | 50             | 60             |
| ATI          | 5 | 20             | 21         | 30               | 31                  | 40             | 41             |
| ERV          | 6 | 5              | 6          | 8                | 9                   | 10             | 11             |
| )BS]         | 7 | 8              | 9          | 12               | 13                  | 20             | 21             |
|              | 8 | 6              | 5          | 8                | 7                   | 9              | 8              |

- Key RESET CLEAR CR/LF 1. LOAD CR/LF
- Key RUN CR/LF
- INSTRUCTION 3.

INPUT N, M

- Key # of OBS. ' # of Variables, CR/LF
- Key <u>8</u> <u>6</u> CR/LF

INSTRUCTION

INPUT MATRIX

The matrix is inputed 1 row at a time, each element of a row being separated from the other by a comma. The end of a row is signaled by a |CR/LF| immediately following a ?.

For example, a row (1, 2, 3, 4, 5) would be inputed as follows:

? CR/LF

- Key Row 1 (separate each element by a comma) CR/LF CR/LF
- Key 1 · 2 · 3 · 4 · 5 · 6 6. CR/LF CR/LF
- Continue as in Step 6 until all rows have been entered.

# OPERATING INSTRUCTIONS (Cont)

# 8. Read Output

# CORRELATION MATRIX:

| CORRELATION MATE | IX:             |                 |                 |
|------------------|-----------------|-----------------|-----------------|
| 1.               | . 9050304029759 | . 8889477287354 | . 7861654344404 |
| . 8036271568616  | . 7330850411146 |                 |                 |
| . 9050304029759  | 1.              | . 9979403263559 | 9736735293795   |
| . 9784473407736  | 9514482103872   |                 |                 |
| . 8889477287354  | 9979403263559   | 1               | . 9153849761381 |
| . 9256854863732  | 9049630407939   |                 | .•              |
| . 7861654344404  | . 9736735293795 | . 9153849761381 | 1               |
| 9964929192138    | . 9943204246135 | 9256854863732   | 9964929192138   |
| . 8036271568616  | 9784473407736   | . 7205604651122 | . 7504727172130 |
| 1                | 9937107479557   | 9049630407939   | . 9943204246135 |
| 7770950411146    | 9514482193872   |                 |                 |

# VARIANCE ANALYSIS

| BLOCK NO. | PROGRAM TITLE                        |
|-----------|--------------------------------------|
| 8         | ONE-WAY ANALYSIS OF VARIANCE         |
| 9         | TWO-WAY ANALYSIS OF VARIANCE         |
| 10        | ANALYSIS OF VARIANCE - LATIN SQUARES |

This page intentionally left blank

# WANG 2200 SERIES PROGRAM

ONE-WAY ANALYSIS OF VARIANCE
TITLE

PS. 01-2200. 01A-00FI-8-0 6/1/73

NUMBER DATE

2200A-01, 2215, 2216, 2217

EQUIPMENT

## PROGRAM ABSTRACT

Performs a one-way analysis of variance on up to 99 groups of data.

| BLOCK | SAVE "NAME" | BYTES REQUIRED |
|-------|-------------|----------------|
|       |             |                |
| 8     |             | 1565           |
|       |             |                |

#### PROGRAM DESCRIPTION

Performs a 1-way analysis of variance on up to 99 groups of data. The analysis of variance table and F-value are printed out.

Ref.: Roscoe, John T., "Fundamental Research Statistics", Holt, Rinehart and Winston, Inc., p. 230 ff.

#### Formulae

Suppose that we have independent random samples of sizes  $n_1$ ,  $n_2$ , . . . ,  $n_k$ , from k populations and  $X_{ij}$  is the jth observation of ith population with

$$n_1 + n_2 + \dots + n_k = n$$
.

Suppose that  $X_{ij}$  are independently N ( $\mu_i$ ,  $\sigma^2$ ), i=1, ..., k. and  $X_{ij} = \mu_i + e_{ij}$ 

$$(i=1, ...k; j=1, ...n_i)$$

 $e_{ii}$  are independently  $N(0, \sigma^2)$ 

Then the F-test for the null-hypothesis,

$$H_0$$
;  $\mu_1 = \mu_2 = \dots = \mu_k$ 

can be written as:

with k-1 and n-k degrees of freedom.

#### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

## **OPERATING INSTRUCTIONS**

## EXAMPLE

Given the following data, perform a 1-way analysis of variance

| Group 1 | Group 2 | Group 3 |
|---------|---------|---------|
| 2       | 3       | 3       |
| 4       | 4       | 5       |
| 5       | 2       | 3       |
| 3       |         | 2       |

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. <u>INSTRUCTION</u> NO. OF GROUPS ?
- 4. Key # of Groups CR/LF 4. Key 3 CR/LF
- 5. <u>INSTRUCTION</u> NO. OF ELEMENTS IN GROUP 1 ?
- 6. Key # of Elements in Group 1 6. Key 4 CR/LF
- 7. INSTRUCTION

# INPUT GROUP 1

Input the elements in the group when requested. The elements in the group are inputed 4/line. If necessary, add zeroes to the end of the group to complete the set of 4 elements. For example, the group 1, 2, 3, 4, 5, 6 is inputed in 2 steps as follows:

: 1, 2, 3, 4 : 5, 6, 0, 0

Note: Each element is separated by a comma.

# **OPERATING INSTRUCTIONS (Cont)**

8. Key Group 1, 4/line CR/LF

8. Key 2 · 4 · 5 · 3 CR/LF

Continue until entire group has been entered.

- 9. Program will back to Step 5.
  The next group is asked for. This loop will continue until all groups have been entered.
- 10. Read Variance Table and F-value.

SOURCE SUM OF SQ. DEG. FREEDOM MEAN SQ.

BETW. GROUPS . 4318181818 2 . 2159090909

WITHIN GROUPS 11.75 8 1.46875 TOTAL 12.1818181818 10

F= .1470019342298

11. Program Ends

END PROGRAM

# WANG 2200 SERIES PROGRAM

TWO-WAY ANALYSIS OF VARIANCE

TITLE

PS. 01-2200. 01A-00FI-9-0 6/1/73

NUMBER DATE

2200A-01, 2215, 2216/2217

EQUIPMENT

### **PROGRAM ABSTRACT**

Computes the analysis of variance table and the F-value for the row and column variance in a two-factor experiment.

| BLOCK | SAVE "NAME" | BYTES REQUIRED |  |
|-------|-------------|----------------|--|
| 9     |             | 1652           |  |

# PROGRAM DESCRIPTION

Computes the analysis of variance table and the F-values for the row and column variance in a two-factor experiment.

Ref.: Brunk, H.D., "An Introduction to Mathematical Statistics", Blaisdell Publishing Co., 1965, p. 296.

## Formulae:

The analysis of variance table for the observations:

$$X_{ij}$$
 [i = 1, 2, ... k; j = 1, 2, ..., n]

where k = number of rows and n = number of columns is given below:

with 
$$X_{i} = \frac{1}{n} \begin{pmatrix} n \\ \Sigma \\ j=1 \end{pmatrix} X_{ij}$$
,  $x_{i} = \frac{1}{k} \begin{pmatrix} k \\ \Sigma \\ i=1 \end{pmatrix} X_{ij}$  and  $X_{i} = \frac{1}{nk} \begin{pmatrix} \Sigma \\ i \end{pmatrix} \sum_{j=1}^{n} X_{ij}$ ;

| Source of Variation | Sum of Squares                                             | Degrees of<br>Freedom | Mean<br>Square                  | F                   |
|---------------------|------------------------------------------------------------|-----------------------|---------------------------------|---------------------|
| Between Rows        | $SS_{A} = n \sum_{i} (X_{i} - X)^{2}$                      | k-1                   | $A = \frac{SS_A}{k-1}$          | $F_A = \frac{A}{C}$ |
| Between columns     | $SS_{B} = k \sum_{j} (X_{\cdot j} - X_{\cdot \cdot})^{2}$  | n-1                   | $B = \frac{SS}{n-1}$            | $F_B = \frac{B}{C}$ |
| Residual            | $SS_{e} = \sum_{i \ j} (X_{ij} - X_{i.} - X_{.j} + X)^{2}$ | (k-1)(n-1)            | $C = \frac{SS}{e}$ $(k-1)(n-1)$ |                     |
| Total               | $SS_{t} = \sum_{i} \sum_{j} (X_{ij} - X)^{2}$              | nk-1                  |                                 |                     |

### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

# OPERATING INSTRUCTIONS

# EXAMPLE

|     | A           | В           | $\mathbf{C}$ | D           |
|-----|-------------|-------------|--------------|-------------|
| I   | <b>27</b> 8 | 273         | 285          | 385         |
| II  | 306         | <b>2</b> 88 | 310          | 395         |
| III | 277         | 227         | 349          | <b>36</b> 8 |
| ÍV  | 162         | 150         | 141          | 196         |
| V   | 162         | 170         | 177          | 154         |
| VI  | 249         | 225         | 227          | 263         |

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. <u>INSTRUCTION</u>

NO. OF ROWS, NO. OF COLUMNS?

- 4. Key # of rows , # of cols.

  CR/LF
- 4. Key <u>6</u> <u>4</u> CR/LF

5. <u>INSTRUCTION</u>

INPUT TABLE OF DATA

It is assumed that the data is arranged in a table (see example). The data in the table is inputed, row by row, 4 elements/line. If necessary, attach zeroes to the end of each row to complete the set of 4 input elements. For example, the row 1, 2, 3, 4, 5 would be inputed in 2 steps as follows:

: 1, 2, 3, 4 : 5, 0, 0, 0

6. Key  $\underline{\text{Row 1}}$   $\boxed{\text{CR/LF}}$ 

- 6. Key <u>2</u> <u>7</u> <u>8</u> <u>·</u> <u>2</u> <u>7</u> <u>3</u> <u>·</u> <u>2</u> <u>8</u> <u>5</u> <u>·</u> <u>3</u> <u>8</u> <u>5</u> CR/LF
- 7. Continue entering rows until all rows have been entered.

# OPERATING INSTRUCTIONS (Cont)

# 8. Read Variance Table and F-value.

F(ROW)= 22.01536682028

| SOURCE     | SUM OF SQ.             | DEG. | FREEDOM | MEAN SQ.        |
|------------|------------------------|------|---------|-----------------|
| TOTAL      | 137492. 958333         | 23   |         |                 |
| COLUMN     | 16735. 791666          | 3    |         | 5578. 597222    |
| ROM        | <b>10</b> 6275. 208333 | 5    |         | 21255. 0416666  |
| RESIDUAL   | 14481.958334           | 15   |         | 965. 4638889333 |
| F(001) = 5 | 778152125569           |      |         |                 |

# WANG 2200 SERIES PROGRAM

ANALYSIS OF VARIANCE - LATIN SQUARES
TITLE

PS. 01-2200. 01A-00FI-10-0 6/1/73

NUMBER DATE
2200A-01, 2215, 2216/2217

EQUIPMENT

## **PROGRAM ABSTRACT**

Computes the analysis of variance table and the F-value for column, row and treatment variance for a simple Latin Square design.

| BYTES REQUIRED |
|----------------|
|                |
| 1184           |
|                |

## PROGRAM DESCRIPTION

Computes the analysis of variance table and the F-values for column, row, and treatment variance for a simple Latin square design. The user must supply the matrix of treatment assignments and the matrix of data.

Ref.: Brunk, H.D., "Mathematical Statistics", Blaisdell Publishing Co., 1965, p. 301.

## Formulae

The program requires that the matrix of treatment assignments be defined by data statements.

We shall denote the observations by  $\left\{X_{ijk}\right\}$ , where  $X_{ijk}$  is the observation on the treatment combination where factor A is at the ith level, B at the jth, C at the kth and the triples (i, j, k) take on only the m<sup>2</sup> values dictated by the particular Latin Square selected for the experiment. Then  $\left\{X_{ijk}\right\}$  can be tabulated in the following fashion.

Let

$$\overline{X}_{i..} = \frac{1}{m} \sum_{j,k} X_{ijk}, \overline{X}_{.j.} = \frac{1}{m} \sum_{i,k} X_{ijk}$$

$$\overline{X}_{..k} = \frac{1}{m} \sum_{ij} X_{ijk}$$
,  $\overline{X} = \frac{1}{m^2} \sum_{ijk} X_{ijk}$ 

## PROGRAM DESCRIPTION (Cont)

Note that there are only m terms in the sum  $\Sigma$   $x_{ijk}$ , for there are only m pairs (j,k) corresponding to a fixed i.

Then, 
$$SS_{A} = m \sum_{i} (\overline{X}_{i..} - \overline{X})^{2}, SS_{B} = m \sum_{J} (\overline{X}_{.j.} - \overline{X})^{2}$$

$$SS_{C} = m \sum_{i} (\overline{X}_{..k} - \overline{X})^{2}, SS_{C} = \sum_{i,j,k} (X_{ijk} - \overline{X}_{i..} - \overline{X}_{.j.} - \overline{X}_{..k} + 2\overline{X})^{2}$$

$$SS_{t} = \sum_{i,j,k} (X_{ijk} - \overline{X})^{2}$$

Let 
$$A = \frac{SS_A}{m-1}$$
,  $B = \frac{SS_B}{m-1}$ ,  $C = \frac{SS_C}{m-1}$ ,  $E = \frac{SS_C}{(m-1)(m-2)}$ ,

Then, the analysis of variance table can be presented in the following fashion:

|           | T                  | r                          | † · · · · · · · · · · · · · · · · · · · |                                                           |
|-----------|--------------------|----------------------------|-----------------------------------------|-----------------------------------------------------------|
| Source of | Degrees of         | Sum of                     | Mean Sum of                             |                                                           |
| Variation | Freedom            | Squares                    | Squares                                 | F                                                         |
| Row       | m-1                | SSA                        | A                                       | $F_A = \frac{A}{E}$                                       |
| Column    | m-1                | ss <sub>B</sub> ,          | В                                       | $F_B = \frac{B}{E}$                                       |
| Treatment | m-1                | SSC                        | С                                       | $\mathbf{F}_{\mathbf{C}} = \frac{\mathbf{C}}{\mathbf{E}}$ |
| Residual  | (m-1) (m-2)        | SS <sub>e</sub>            | E                                       |                                                           |
| Total     | m <sup>2</sup> - 1 | $\mathrm{ss}_{\mathrm{t}}$ |                                         |                                                           |

### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

## OPERATING INSTRUCTIONS

## EXAMPLE

Matrix of treatment assignments:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \\ 3 & 4 & 5 & 1 & 2 \\ 4 & 5 & 1 & 2 & 3 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}$$

Matrix of data:

$$\begin{pmatrix} 40 & 50 & 30 & 40 & 40 \\ 50 & 55 & 35 & 50 & 55 \\ 40 & 60 & 40 & 50 & 45 \\ 35 & 40 & 30 & 35 & 30 \\ 55 & 60 & 45 & 45 & 60 \end{pmatrix}$$

Enter N in data statement 500. Enter the matrix of treatment assignments row by row in data statements 501 to 998. For example, one might have for a 5 x 5 Latin Square:  $(N \le 9)$ 

500 DATA 5

501 DATA 1, 2, 3, 4, 5

502 DATA 2, 3, 4, 5, 1

503 DATA 3, 4, 5, 1, 2

504 DATA 4, 5, 1, 2, 3

505 DATA 5, 1, 2, 3, 4

Note: Please separate matrix elements with commas and no spaces.

$$A_{1,2}$$
 - . . .  $A_{1,N}$   $CR/LF$ 

•

 $A_{N,2}$  , ... ,  $A_{N,N}$  CR/LF

<u>4 <u>4</u> 5 CR/LF</u>

# OPERATING INSTRUCTIONS (Cont)

- 4. Key RUN CR/LF
- 5. INSTRUCTION

# INPUT TABLE OF DATA

The matrix of data is entered 1 row at a time. The elements of the row are separated by a comma. The end of a row is signaled by 2 CR/LF. For example, row 1 is 1, 2, 3, 4, 5, 6 and is entered as follows:

- 1, 2, 3, 4, 5, 6, CR/LF
- ? CR/LF
- 6. Key Row 1 of data matrix,

CR/LF CR/LF

6. Key <u>4</u> <u>0</u> <u>, 5</u> <u>0</u> <u>, 3</u> <u>0</u> <u>, 4</u> <u>0</u> <u>CR/LF</u> <u>CR/LF</u>

- 7. Continue until all rows have been entered.
- 8. Read Variance Table and F-values.

| SOURCE       | SUM OF SQ.    | DEG. FREEDOM | MEAN SQ. |
|--------------|---------------|--------------|----------|
| ROW          | 1146          | 4            | 286. 5   |
| COLUMN       | 736           | 4 ,          | 184      |
| TREATMENT    | 146           | 4            | 36. 5    |
| RESIDUAL     | 168           | 12           | 14       |
| TOTAL        | 2 <b>1</b> 96 | 24           |          |
| F(ROM) = 20. | 46428571429   |              |          |

F(COL)= 13.14285714286 F(TREAT)= 2.607142857143 This page intentionally left blank

# STATISTICAL HYPOTHESIS TESTING

| BLOCK NO. | PROGRAM TITLE                                |
|-----------|----------------------------------------------|
| 11        | CHI-SQUARE TEST & DISTRIBUTION               |
| 12        | CHI-SQUARE ANALYSIS                          |
| 13        | T-TEST                                       |
| 14        | WILCOXON MATCHED - PAIRS SIGNED - RANKS TEST |
| 15        | MANN-WHITNEY U-TEST                          |

This page intentionally left blank

# WANG 2200 SERIES PROGRAM

CHI-SQUARE TEST & DISTRIBUTION
TITLE

PS. 01-2200. 01A-00FI-11-0 6/1/73

NUMBER
2200A-01, 2215, 2216/2217

EQUIPMENT

### **PROGRAM ABSTRACT**

The Chi-Square test compares an observed distribution with an assumed distribution.

| BLOCK | SAVE "NAME" | BYTES REQUIRED |  |
|-------|-------------|----------------|--|
| 11    |             | 891            |  |

## PROGRAM DESCRIPTION

The Chi-Square (X<sup>2</sup>) test compares an observed distribution with an assumed distribution.

$$X^{2} = \sum_{i=1}^{N} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

where:

O; = observed frequency

E<sub>i</sub> = expected frequency

N = number of observed values

The larger the deviations, the larger the value of X<sup>2</sup>.

The Chi-Square distribution is a continuous distribution used primarily to check the "goodness of fit" of an assumed distribution when compared to observed frequencies. If V = degrees of freedom, the probability integral may be approximated by:

V odd: 
$$P(X^2, V) = \left(\frac{(X^2)^2 \frac{V+1}{2} e^{\frac{-X^2}{2}}}{V(V-2) \dots 1}\right) \left(\frac{2}{X^2}\right)^{\frac{1}{2}} \left(1 + \sum_{R=1}^{\infty} \frac{(X^2)^R}{(V+2) \dots (V+2R)}\right)$$

V even: 
$$P(X^2, V) = \begin{pmatrix} \frac{(X^2) & \frac{V}{2} & \frac{-X^2}{2}}{V(V-2)...2)} \end{pmatrix} \begin{pmatrix} \infty & \frac{(X^2)^R}{(V+2)...(V+2R)} \end{pmatrix}$$

Precision should be to about 10<sup>-5</sup>.

#### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right.

### OPERATING INSTRUCTIONS

# **EXAMPLE**

| OBS | EXP |
|-----|-----|
| 14  | 10  |
| 9   | 10  |
| 7   | 10  |
| 13  | 10  |
| 6   | 10  |
| 11  | 10  |

Find  $X^2$ ,  $P(X^2, 6-1)$ 

- Key RESET CLEAR CR/LF 1. CR/LF LOAD
- Key RUN CR/LF 2.
- 3. INSTRUCTION

TO COMPUTE X ♠ 2 INPUT 0, TO COMPUTE P(X ♠ 2, V) INPUT 1

Key 0 CR/LF 4. Key 0 CR/LF

or

Key 1 | CR/LF

If you keyed 0, then go to Step 5. Otherwise go to Step 13.

**INSTRUCTION** 5.

NO. OF OBSERVED VALUES?

- Key # of OBS. Values | CR/LF
- Key  $\underline{6}$  CR/LF 6.

INSTRUCTION 7.

INPUT OBSERVED VALUES

The observed and expected values are inputed as follows:

0<sub>2</sub>, E<sub>2</sub> CR/LF

# OPERATING INSTRUCTIONS (Cont)

8. Key 
$$O_1 \stackrel{!}{\underline{\phantom{}}} E_1$$
  $CR/LF$ 

Key 
$$O_{\underline{N}}$$
  $\stackrel{\cdot}{\underline{\cdot}}$   $E_{\underline{N}}$   $\boxed{CR/LF}$ 

9. Read

- 8. Key <u>1</u> <u>4</u> <u>1</u> <u>0</u> <u>CR/LF</u>
  - Key 9 1 0 CR/LF
  - Key <u>7</u> <u>1</u> <u>0</u> <u>CR/LF</u>
  - Key 1 3 · 1 0 CR/LF
  - $\text{Key } \underline{6} \quad \underline{\phantom{0}} \quad \underline{1} \quad \underline{0} \quad \overline{\text{CR/LF}}$
  - Key 1 1 1 1 0 CR/LF

CHI-SQUARE = 5.2

P(5.2, 5) = .6080355905271

10. INSTRUCTION

11. Key 1 CR/LF if you have more inputKey 0 CR/LF if you have no

more input. Program halts.

- 12. Go to Step 3.
- 13. <u>INSTRUCTION</u>

14. Key Deg. of Freedom

CR/LF

15. INSTRUCTION

16. Key  $X^2$  CR/LF

17. Read

18. Go to Step 10.

MORE INPUT? (1 = YES, 0 = NO)

11. Key 1 CR/LF

DEGREES OF FREEDOM?

CHI-SQUARE?

# WANG 2200 SERIES PROGRAM

CHI-SQUARE ANALYSIS

PS. 01-2200. 01A-00FI-12-0

6/1/73

NUMBER

TITLE

DATE

2200A-01, 2215, 2216/2217

**EQUIPMENT** 

### **PROGRAM ABSTRACT**

Computes for an N x M contingency table, the value of CHI-SQUARE.

| BLOCK | SAVE "NAME" | BYTES REQUIRED |
|-------|-------------|----------------|
| 12    |             | 1683           |

### PROGRAM DESCRIPTION

Computes, for an N x M contingency table, the value of Chi-Square, the number of degrees of freedom, the expected value for each cell and the Chi-Square contribution from each cell.

N times M must be  $\leq 50$  and must be a multiple of 4.

#### **FORMULAE**

### Expected Value for Each Cell

The expected value for cell (I, J) is the sum of the observed values of Row I times the sum of the observed values of column J divided by the total observed values.

$$E_{1,1} = \sum_{J=1}^{m} O_{1,J} * \sum_{I=1}^{N} O_{I,1} \div \sum_{I=1}^{N} \sum_{J=1}^{M} O_{I,J}$$

## Chi-Square Contribution for Each Cell

$$x^2 = \frac{(O - E)^2}{E}$$

Chi-Square =  $\Sigma$  of the individual contributions

## Degrees of Freedom

(# of Rows - 1) (# of Columns - 1)

## OPERATING INSTRUCTIONS

## **EXAMPLE**

|   | I   | II  | III |
|---|-----|-----|-----|
| Α | 160 | 242 | 37  |
| В | 108 | 178 | 18  |

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION
- 4. Key No. of Rows CR/LF
- 5. INSTRUCTION
- 6. Key No. of Cols. CR/LF
- 7. INSTRUCTIONS

NUMBER OF ROWS?

4. Key 2 CR/LF

NUMBER OF COLUMNS?

6. Key  $\underline{3}$  CR/LF

INPUT CONTINGENCY TABLE 4 ELEMENTS/LINE

The elements of the contingency table are entered row by row 4 elements/ line. If the last elements to be inputed in a row do not make a set of 4, complete the set of 4 with the first elements in the next row. If it is the last row, complete it with zeroes. For example,

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

is inputed as follows:

: 1, 2, 3, 4

:5,6,7,8

: 9, 0, 0, 0

8. Key <u>ELEMENT ROW BY ROW</u> 4 ELEMENTS/LINE

CR/LF

8. Key <u>1</u> <u>6</u> <u>0</u> <u>2</u> <u>2</u> <u>4</u> <u>2</u> <u>3</u> <u>7</u> <u>1</u> <u>0</u> <u>8</u> CR/LF

Key <u>1</u> <u>7</u> <u>8</u> <u>.</u> <u>1</u> <u>8</u> <u>.</u> <u>0</u> <u>.</u> <u>0</u> <u>CR/LF</u>

# OPERATING INSTRUCTIONS (Cont)

The expected value for each cell and its Chi-Square contribution is calculated and printed. Also the total Chi-Square is printed and the # of degrees of freedom.

# 9. Read Table

| OBSERVED VALUE | FOR EACH CELL<br>EXPECTED VALUE<br>COLUMN 1 | CHI 2 CONTRIBUTION |
|----------------|---------------------------------------------|--------------------|
| 160            | 158.34724                                   | 1.7250775E-2       |
| 108            | 109.65276                                   | 2.4911481E-2       |
|                | COLUMN 2                                    |                    |
| 242            | 248.15612                                   | .15271781          |
| 178            | 171.84388                                   | <b>.</b> 22053658  |
|                | COLUMN 3                                    |                    |
| 37             | 32.496635                                   | .62407366          |
| 18             | 22.503365                                   | .90121163          |

CHI-SQUARE = 1.9407019

DEGREES OF FREEDOM = 2

T-TEST

TITLE

PS. 01-2200. 01A-00FI-13-0 6/1/73

NUMBER DATE
2200A-01, 2215, 2216/2217

EQUIPMENT

#### PROGRAM ABSTRACT

Calculates the T-statistic to test whether or not two samples have the same population mean.

| BLOCK | SAVE "NAME" | BYTES REQUIRED |
|-------|-------------|----------------|
| 13    |             | 1428           |

Calculates the t-statistic to test whether or not two samples have the same population means. The test is performed for one of the four following hypotheses.

Let  $\mu_i$  = population mean for sample i.

 $\sigma_{i}$  = standard deviation for sample i.

Hypothesis 1:  $\mu_1 = K$ ; K = a given value.

Hypothesis 2:  $\mu_1 = \mu_2$ ;  $\sigma_1 = \sigma_2$ 

Hypothesis 3:  $\mu_1 = \mu_2$ ;  $\sigma_1 \neq \sigma_2$ 

Hypothesis 4:  $\mu_1 = \mu_2$ ; where samples 1 and 2 are paired variates.

Sample 1:  $X_1$ ,  $X_2$ , ...,  $X_n$ ; N = no. of elements in sample 1.

Sample 2:  $Y_1, Y_2, \ldots, Y_m$ ; M = no. of elements in sample 2.

### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right.

# EXAMPLE

Hypotheses 4:  $\mu_1 = \mu_2$ 

12 pairs of elements

| Sample |     |
|--------|-----|
| 2.9    | 5.8 |
| 3.4    | 4.9 |
| 3      | 2.3 |
| 3.4    | 2.1 |
| . 3.7  | 2.6 |
| 4      | 3.8 |
| 2.9    | 7.9 |
| 3.1    | 4   |
| 2.8    | 4.1 |
| 2.8    | 3.8 |
| 2.4    | 3.3 |
| 3      | 3.1 |

Find T and Degrees of freedom

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. <u>INSTRUCTION</u>

HY, POTHESIS TO BE TESTED?

4. Key <u>HYPOTHESIS CODE</u>

CR/LF

4. Key  $\underline{4}$  CR/LF

If Hypothesis is #4, go to Step 12.

5. <u>INSTRUCTION</u>

NO. OF ELEMENTS IN SAMPLE I

- 6. Key NO. OF ELEMENTS IN SAMPLE 1

  CR/LF
- 7. INSTRUCTION

ENTER SAMPLE I

# OPERATING INSTRUCTIONS (Cont)

Sample is inputed 4 elements/line completing the last input line with zeroes if necessary. For example, the sample 1, 2, 3, 4, 5, 6 would be inputed in 2 steps as follows:

Please note: each element of an input line is separated by a comma.

8. Key <u>ELEMENTS OF SAMPLE I</u>
(4 ELEMENTS/LINE)

CR/LF

If hypothesis tested is 2 or 3, then go to Step 16.

9. INSTRUCTION

ENTER GIVEN VALUE OF MEAN

- 10. Key VALUE OF MEAN CR/LF
- 11. Go to Step 16.
- 12. <u>INSTRUCTION</u>

NO. OF PAIRS OF ELEMENTS?

13. Key NO. OF PAIRS OF ELEMENTS

13. Key 1 2 CR/LF

CR/LF

14. <u>INSTRUCTION</u>

ENTER SAMPLES (1 PAIRS/LINE)

The samples are inputed one pair of data/input line. That is,

$$x_1, y_1 \\ x_2, y_2 \\ \vdots \\ x_N, y_N$$

Note: The pairs are separated by a comma.

N = No. of pairs of elements.

# OPERATING INSTRUCTIONS (Cont)

15. Key 
$$X_1 \rightarrow Y_1$$
 CR/LF

T VALUE = 1.677252659013

DEG. FREEDOM = 11

END PROGRAM

This page intentionally left blank

WILCOXON MATCHED-PAIRS SIGNED-RANK TESTS
TITLE

PS. 01-2200. 01A-00FI-14-0 6/1/73

NUMBER
2200A-01, 2215, 2216/2217

EQUIPMENT

#### **PROGRAM ABSTRACT**

Performs the Wilcoxon matched-pairs signed-ranks test on a set of N pairs of data.

| BLOCK | SAVE "NAME" | BYTES REQUIRED |
|-------|-------------|----------------|
| 14    |             | 1720           |

Performs the Wilcoxon matched-pairs signed-ranks test on a set of N pairs of data. Note: It is best to leave tie scores for a given pair out of the analysis.  $(N \le 130)$ .

Ref.: Roscoe, John T., "Fundamental Research Statistics", Holt, Rinehart and Winston, Inc., 1969, p. 181 ff.

#### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right.

# EXAMPLE

For the following data, find T.

| 12 | 16 |
|----|----|
| 11 | 9  |
| 12 | 15 |
| 10 | 9  |
| 9  | 12 |
| 7  | 9  |
| 6  | 10 |
| 4  | 9  |
| 4  | 3  |

- Key RESET CLEAR CR/LF LOAD CR/LF
- Key RUN CR/LF
- INSTRUCTION 3.

NO. OF PAIRS

- Key NO. OF PAIRS [CR/LF] 4.
- 4. Key 9 CR/LF

INSTRUCTION 5.

INPUT PAIRS OF DATA

The pairs  $(X_i, Y_i)$  are inputed 1/line as follows:

:  $X_2$ ,  $Y_2$  Note: The pairs are separated by a comma.

 $: X_N, Y_N$ 

6. Key 
$$X_1 - Y_1$$
 CR/LF

Key 
$$\underline{X}_2$$
  $\underline{Y}_2$   $\underline{CR/LF}$ 

Key 4 · 3 CR/LF

$$T = 6.5$$

#### END PROGRAM

This page intentionally left blank  $% \left\{ 1,2,...,n\right\} =\left\{ 1,2,$ 

MANN-WHITNEY U-TEST

TITLE

PS. 01-2200. 01A-00FI-15-0 6/1/73

NUMBER DATE
2200A-01, 2215, 2216/2217

EQUIPMENT

### **PROGRAM ABSTRACT**

Performs the Mann-Whitney U test given two samples.

| BLOCK | SAVE "NAME" | BYTES REQUIRED |
|-------|-------------|----------------|
| 15    |             | 1574           |

Performs the Mann-Whitney U-test given two samples. The size of samples 1 and 2 must be  $\leq 40$ .

Ref.: Roscoe, John T., "Fundamental Research Statistics", Holt, Rinehart and Winston, Inc., 1969, p. 175 ff.

### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

## EXAMPLE

Find u for these 2 samples

Sample 1

4, 4, 1, 3, 2, 5, 5, 8, 9, 9

Sample 2

7, 6, 4, 7, 10, 8, 10, 8, 11, 9

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION

ENTER N 1

- 4. Key SIZE OF SAMPLE 1 CR/LF
- 4. Key 1 0 CR/LF

5. INSTRUCTION

ENTER SAMPLE 1

Input samples 1 and 2 when requested. The samples are inputed 4 elements/line completing the last input line with zeroes if necessary. For example, the sample (1, 2, 3, 4, 5, 6, 6, 8, 9, 10) would be inputed in 3 steps as follows:

:1,2,3,4

: 5, 6, 7, 8

: 9, 10, 0, 0

Note: The elements of an input line are separated by a comma.

6. Key SAMPLE 1(4 ELEMENTS/LINE)

CR/LF

6. Key 4 · 4 · 1 · 3 CR/LF

Key 2 · 5 · 5 · 8 CR/LF

Key 9 • 9 • 0 • 0 CR/LF

7. The information for Sample 2 will be entered in the same manner as Sample 1. Therefore go to Step 3 and enter data of Sample 2.

8. Read

U = 21

END PROGRAM

# PROBABILITY

| BLOCK | PROGRAM TITLE                               |
|-------|---------------------------------------------|
| 16    | NORMAL FREQUENCY AND DISTRIBUTION FUNCTIONS |
| 17    | NEGATIVE BINOMIAL DISTRIBUTION              |
| 18    | BINOMIAL DISTRIBUTION                       |
| 19    | POISSON DISTRIBUTION                        |
| 20    | F-VALUE                                     |
| 21    | T-VALUE                                     |
| 22    | RANDOM NORMAL DEVIATES                      |

NORMAL FREQUENCY AND DISTRIBUTION FUNCTIONS
TITLE

| PS. 01-2200. 01A-00FI-16-0 | 6/1/73 |  |
|----------------------------|--------|--|
| NUMBER                     | DATE   |  |
| 2200A-01, 2215, 2216/2217  |        |  |
| EQUIPMENT                  |        |  |

# PROGRAM ABSTRACT

Computes values of the normal frequency and normal distribution functions.

| BLOCK | SAVE "NAME" | BYTES REQUIRED |
|-------|-------------|----------------|
| 16    |             | 607            |

Computes values of the normal frequency and normal distribution functions. The frequency function is:

$$(1) f(x) = \frac{1}{\sqrt{2\pi}} \begin{pmatrix} \frac{-X^2}{2} \\ e^{\frac{-X^2}{2}} \end{pmatrix} \underset{0 \le X \le \infty}{0 \le X}$$

The distribution function is:

(2) 
$$Q(X) = \frac{1}{\sqrt{2^{\pi}}} \int_{-\infty}^{X} e^{\frac{-X^2}{2}} dX$$

Equations (1), (2) are for standardized variables. We say, Y is normal  $(M, \sigma)$ , if  $X = (Y-M)/\sigma$  has the distribution and frequency functions above (where M = mean,  $\sigma = \text{standard deviation}$ ). The program has the option to standardize the variable if it is not already standardized.

The distribution function is approximated as follows. Given an  $X \ge 0$ , define Y = 1/(1+P\*X), P = .33267 then.

$$Q(X) = 1 - e^{\frac{-X^2}{2}} (A_1 Y + A_2 Y^2 + A_3 Y^3) / \sqrt{2\pi} + E$$

where:

$$|E| \le 10^{-5}$$
 $A_1 = .4361836$ 
 $A_2 = -.1201676$ 
 $A_3 = .937298$ 

For 
$$X \le 0$$
,  $Q(X) = 1 - Q(-X)$   
 $f(X) = f(-X)$ 

#### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. Whenever such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

## EXAMPLE

Find F(X), Q(X) for:

a standardized variable = 1.5

1. Key RESET CLEAR CR/LF

LOAD CR/LF

- 2. Key RUN CR/LF
- 3. INSTRUCTION

INPUT '0' FOR A STANDARDIZED VARIABLE OR '1' FOR A NON-STANDARDIZED VARIABLE

4. Key 0  $\boxed{\text{CR/LF}}$ 

4. Key 0 CR/LF

or

Key 1 CR/LF

If you have a standardized variable go to Step 7. Otherwise, go to Step 5.

5. INSTRUCTION

INPUT 'MEAN, STANDARD DEVIATION'

- 6. Key MEAN · STD. DEV. CR/LF
- 7. INSTRUCTION

INPUT 'X' (or '99999' TO END PROGRAM)

8. Key X CR/LF

8. Key <u>1</u> . <u>5</u> CR/LF

9. Read:

F(X) = .1295175943551Q(X) = .933198107297

10. INSTRUCTION

INPUT 'X"

11. Go to Step 8.

This page intentionally left blank

| NEGATIVE BINOMIAL DIST              | RIBUTION |   |
|-------------------------------------|----------|---|
| TITLE                               |          |   |
| PS.01-2200.01A-00FI-17-0            | 6/1/73   | • |
| NUMBER<br>2200A-01, 2215, 2216/2217 | DATE     |   |
| EQUIPMENT                           |          |   |

| PROGRAM ABSTRAC | Τ ,                      |                |
|-----------------|--------------------------|----------------|
| Computes values | of the Negative Binomial | Distribution.  |
| BLOCK           | SAVE "NAME"              | BYTES REQUIRED |
| 17              |                          | 639            |

The negative binomial distribution given by:

$$P(K, R, P) = \frac{(R + K - 1)!}{K! (R-1)!} P^{R}Q^{K}$$

is a discrete distribution used in solving waiting time problems. It calculates the probability that the Rth success will occur at a given trial number R + K, in a succession of N Bernoulli trials. This program is restricted to R a positive integer.

The program computes P(K, R, P) and keeps a running sum of the probabilities calculated.

## NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. Whenever such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

## EXAMPLE

Find P(K,R,P) for:

| K | R | P   |
|---|---|-----|
| 1 | 2 | .5  |
| 3 | 4 | . 5 |

and the sum of probabilities.

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION
- 4. Key K · R · P CR/LF
- 5. Read:
- 6. INSTRUCTION
- 7. Go to Step 4.

INPUT 'K, R, P' (OR '0, 0, -1) TO PRINT THE SUM OF THE PROBABILITIES CALCULATED THUS FAR, OR '0, 0, 0' TO END PROGRAM)

4. Key <u>1</u> <u>2</u> <u>2</u> <u>.</u> <u>5</u> CR/LF

INPUT 'K, R, P'

Key <u>3</u> • <u>4</u> • <u>.</u> <u>5</u> CR/LF

P(K, R,) = .15625

INPUT 'K, R, P'

Key <u>0</u> • <u>0</u> • <u>-</u> <u>1</u> CR/LF

SUM OF PROBABILITIES = .4062499999999

INPUT 'K, R, P'

Key <u>0</u> • <u>0</u> • <u>0</u> <u>CR/LF</u>

**END PROGRAM** 

This page intentionally left blank

#### BINOMIAL DISTRIBUTION

TITLE

PS. 01-2200. 01A-00FI-18-0 6/1/73

NUMBER
2200A-01, 2215, 2216/2217

EQUIPMENT

#### **PROGRAM ABSTRACT**

The program computes values of the Binomial Distribution.

| BLOCK SAVE "NAME" | BYTES REQUIRED |
|-------------------|----------------|
| 18                | 631            |

The binomial distribution given by:

$$P(K, N, P) = \frac{N!}{K! (N-K)!} P^{K} Q^{N-K}$$

is a discrete distribution giving the probability of obtaining exactly K successes in N Bernoulli trials.

The program computes P(K, N, P) and keeps a running sum of the probabilities calculated.

### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. Whenever such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

### EXAMPLE

Find P(K, N, P) for

| K | N | Р  |
|---|---|----|
| 1 | 5 | .5 |
| 2 | 5 | .5 |

and the sum of probabilities.

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION
- 4. Key K · N · P CR/LF
- 5. Read:
- 6. <u>INSTRUCTION</u>
- 7. Go to Step 4.

INPUT 'K, N, P' (OR '0, 0, -1' TO PRINT THE SUM OF PROBABILITIES CALCULATED THUS FAR, OR '0,0,0' TO END PROGRAM)

- 4. Key 1 · 5 · . 5 CR/LF
- P(K, N, P) = .15625

INPUT 'K, N, P'

Key <u>2</u> • <u>5</u> • <u>.</u> <u>5</u> <u>CR/LF</u>

P(K, N, P) = .3124999999998

INPUT 'K, N, P'

Key <u>0</u> • <u>0</u> • <u>-</u> <u>1</u> CR/LF

SUM OF PROBABILITIES = .4687499999998

INPUT 'K, N, P'

Key <u>0</u> <u>'</u> <u>0</u> <u>'</u> <u>0</u> <u>CR/LF</u>

END PROGRAM

This page intentionally left blank

| POISSON DISTRIBUTION      |        |  |  |  |
|---------------------------|--------|--|--|--|
| TITLE                     |        |  |  |  |
|                           |        |  |  |  |
|                           |        |  |  |  |
| PS.01-2200.01A-00FI-19-0  | 6/1/73 |  |  |  |
| NUMBER                    | DATE   |  |  |  |
| 2200A-01, 2215, 2216/2217 |        |  |  |  |
| EQUIPMENT                 |        |  |  |  |

| PROGRAM ABSTRACT                            | 7*          |                |
|---------------------------------------------|-------------|----------------|
| Computes values of the Poisson Distribution |             |                |
| BLOCK                                       | SAVE "NAME" | BYTES REQUIRED |
| 19                                          |             | . 481          |

The Poisson distribution given by:

$$P(K,\lambda) = \frac{e^{-\lambda} \frac{K}{\lambda}}{K!}$$

is a discrete distribution concerned with the occurrence of relatively rare events. K is the frequency,  $P(K,\lambda)$  is the probability associated with that frequency, and  $\lambda$  is the expected frequency.

The program computes  $P(K,\lambda)$  and keeps a running total of the probabilities calculated.

## NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. Whenever such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

## **EXAMPLE**

Find  $P(K, \lambda)$  for

and the sum of probabilities

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION
- 4. Key K ' LAMBDA CR/LF
- 5. Read:
- 6. INSTRUCTION
- 7. Go to Step 4.

INPUT 'K, LAMBDA (OR '-1, -1' TO PRINT THE SUM OF THE PROBABILITIES CALCULATED THUS FAR, or '0,0' TO END PROGRAM).

4. Key 9 , 1 0 CR/LF

P(K, LAMBDA) = .125110035723

INPUT 'K, LAMBDA'

Key <u>7</u> <u>1</u> <u>0</u> <u>CR/LF</u>

P(K, LAMBDA) = 9.00792257E-02

INPUT 'K, LAMBDA'

Key <u>- 1 ' - 1 CR/LF</u>

SUM OF PROBABILITIES = .2151892614230

INPUT 'K, LAMBDA'

Key 0 ' 0 CR/LF

END PROGRAM

This page intentionally left blank

F-VALUE

TITLE

PS. 01-2200.01A-00FI-20-0 6/1/73

NUMBER DATE

2200A-01, 2215, 2216/2217

EQUIPMENT

| PROGRAM ABSTRACT                                   | у .         |                |
|----------------------------------------------------|-------------|----------------|
| Computes values of the probability of the F-ratio. |             |                |
| BLOCK                                              | SAVE "NAME" | BYTES REQUIRED |
| 20                                                 |             | 725            |

Computes the probability of an F-ratio with N degrees of freedom in the numerator and D degrees of freedom in the denominator.

# NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. Whenever such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

#### EXAMPLE

Find the value of the F-ratio of 28.7 with 1 degree of freedom in the numerator and 8 degrees of freedom in denominator.

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION

4. Key F-VALUE CR/LF

5. INSTRUCTION

6. Key <u>DEG. FREEDOM IN NUMERATOR</u>

<u>CR/LF</u>

7. INSTRUCTION

- 8. Key <u>DEG. FREEDOM IN DENOMINATOR</u>

  <u>CR/LF</u>
- 9. Read
- 10. <u>INSTRUCTION</u>
- 11. Go to Step 4.

F-VALUE? (TO END PROGRAM INPUT 99999)

4. Key <u>2</u> <u>8</u> <u>.</u> <u>7</u> <u>CR/LF</u>

DEG. FREEDOM IN NUMERATOR?

6. Key 1 CR/LF

DEG. FREEDOM IN DENOMINATOR?

8. Key <u>8</u> CR/LF

PROBABILITY OF F=9.83000000E-04

F-VALUE?

This page intentionally left blank

| TITLE                                  |        | , |
|----------------------------------------|--------|---|
| PS.01-2200.01A-00FI-21-0               | 6/1/73 |   |
| NUMBER                                 | DATE   |   |
| 2200A-01, 2215, 2216/2217<br>EQUIPMENT |        |   |

T-VALUE

| PROGRAM ABSTRACT                       | у .         |                |
|----------------------------------------|-------------|----------------|
| Computes the probability of a T-value. |             |                |
| ВLОСК                                  | SAVE "NAME" | BYTES REQUIRED |
| 21                                     |             | 677            |

Computes the probability of a T-value for a two-tailed test with N degrees of freedom.

# NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. Whenever such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

EXAMPLE

Find

P(2.2) for 4 deg. of freedom and P(.7) for 3 deg. of freedom.

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION
- 4. Key T-VALUE CR/LF
- 5. INSTRUCTION
- 6. Key DEG. OF FREEDOM CR/LF
- 7. Read:
- 8. INSTRUCTION
- 9. Go to Step 4.

T-VALUE? (TO END PROGRAM INPUT 99999)

4. Key <u>2</u> <u>2</u> <u>CR/LF</u>

DEG. FREEDOM?

6. Key 4 CR/LF

PROBABILITY OF T = 9.22090000E-02

T-VALUE?

Key <u>7</u> CR/LF

DEG. FREEDOM?

Key  $\underline{3}$  CR/LF

PROBABILITY OF T = .536536

T-VALUE?

Key 9 9 9 9 9 CR/LF

END PROGRAM

This page intentionally left blank

|       | RANDOM NORMAL DEVIATES |  |
|-------|------------------------|--|
| TITLE |                        |  |
|       |                        |  |

PS. 01-2200. 01A-00FI-22-0 6/1/73

NUMBER
2200A-01, 2215, 2216/2217

EQUIPMENT

| PROGRAM ABSTRACT                  |             |                |  |  |  |
|-----------------------------------|-------------|----------------|--|--|--|
| Generates random normal deviates. |             |                |  |  |  |
| BLOCK                             | SAVE "NAME" | BYTES REQUIRED |  |  |  |
| 22                                |             | 335            |  |  |  |
|                                   |             |                |  |  |  |

Generates random normal deviates with a mean of zero and a variance of one.

Ref.: "Handbook of Mathematical Functions", National Bureau of Standards Applied Mathematics Series .55, 1968, p. 953.

### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. Whenever such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

#### EXAMPLE

Find 20 Random Normal Deviates?

1. Key RESET CLEAR CR/LF

> LOAD CR/LF

Key RUN CR/LF

INSTRUCTION 3.

NO. OF RANDOM NORMAL DEVIATES

4. Key No. of Random Normal Deviates 4. Key 2 0 CR/LF

CR/LF

5. Read

NO. OF RANDOM NORMAL DEVIATES

-1.383557232697 1.022692621501 .1215135834351 -1.364422270283

-.8948073958194 .3948850845874 .6570253793798 -.5282952951161

-1, 255201373407 -, 9817867253492 -1, 962471742495 -1, 791781668457

1, 375546518128 , 3341626351156 -, 7562615685378 , 7685680757243

1, 128744313775 -1, 01863679351 -1, 177084245438 . 2473385189663

This page intentionally left blank

# MISCELLANEOUS STATISTICS

| BLOCK | PROGRAM TITLE                         |
|-------|---------------------------------------|
| 23    | MEAN, VARIANCE, STANDARD DEVIATION I  |
| 24    | MEAN, VARIANCE, STANDARD DEVIATION II |
| 25    | GEOMETRIC MEAN AND STANDARD DEVIATION |
| 26    | CROSS-COVARIANCE OF TIME SERIES       |
| 27    | AUTO-COVARIANCE OF TIME SERIES        |
| 28    | SYSTEM RELIABILITY                    |
| 29    | ERROR FUNCTION                        |

This page intentionally left blank

MEAN, VARIANCE, STANDARD DEVIATION I

PS. 01-2200. 01A-00FI-23-0 6/1/73

NUMBER
2200A-01, 2215, 2216/2217

EQUIPMENT

#### **PROGRAM ABSTRACT**

Computes the mean, variance and standard deviation for ungrouped data.

| вьоск | SAVE "NAME" | BYTES REQUIRED |
|-------|-------------|----------------|
| 23    |             | 532            |

Computes the mean, variance, and standard deviation for ungrouped data.

For a population:

mean = 
$$(\Sigma X_i)/N$$

variance = 
$$\left(\Sigma X_i^2 - \frac{(\Sigma X_i)^2}{N}\right) / N$$

st. dev. = 
$$\sqrt{\text{variance}}$$

where:

$$N = no.$$
 of observations

$$X_1, X_2, \ldots, X_n = observed values$$

For a sample: the divisor in the variance formula is N - 1 rather than N.

# NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. Whenever such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

# EXAMPLE

Find the mean, variance and standard deviation of the following population.

# Observed Values

2, 3, 4, 5, 6

- 1. Key RESET CLEAR CR/LF
  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. <u>INSTRUCTION</u>

INPUT 0 FOR A POPULATION, 1 FOR A SAMPLE

4. Key  $\underline{0}$  CR/LF

 $\mathbf{or}$ 

Key 1 CR/LF

4. Key 0 CR/LF

5. INSTRUCTION

NO. OF OBSERVATIONS

6. Key NO. OF OBSERVATIONS CR/LF

6. Key  $\underline{5}$  CR/LF

7. INSTRUCTION

INPUT OBSERVATIONS 4/LINE

The observed values are inputed 4/line. If necessary, complete the last input line with zeroes. Separate each element of an input line with a comma.

8. Key OBSERVED VALUES (4/LINE)

CR/LF

8. Key <u>2</u> • <u>3</u> • <u>4</u> • <u>5</u> CR/LF

Key <u>6</u> <u>, 0</u> <u>, 0</u> <u>o</u> <u>CR/LF</u>

9. Read

MEAN = 4

VARIANCE = 2

ST. DEV. = 1.4142135624

END PROGRAM

This page intentionally left blank  $% \left( 1\right) =\left( 1\right) \left( 1$ 

MEAN, VARIANCE, STANDARD DEVIATION II
TITLE

PS. 01-2200. 01A-00FI-24-0 6/1/73

NUMBER
2200A-01, 2215, 2216/2217

EQUIPMENT

| PROGRAM ABSTRACT                                                      |             |                |  |  |
|-----------------------------------------------------------------------|-------------|----------------|--|--|
| Computes the mean, variance, and standard deviation for grouped data. |             |                |  |  |
| BLOCK                                                                 | SAVE "NAME" | BYTES REQUIRED |  |  |
| 24                                                                    |             | 481            |  |  |

Computes the mean, variance, and standard deviation for grouped data.

For a population:

mean = 
$$\begin{pmatrix} M \\ \Sigma \\ i=1 \end{pmatrix} / N$$

variance = 
$$\begin{pmatrix} M \\ \Sigma \\ i=1 \end{pmatrix} \begin{pmatrix} X_i^2 \\ f_i - \begin{pmatrix} M \\ \Sigma \\ i=1 \end{pmatrix} \begin{pmatrix} X_i \\ f_i \end{pmatrix} \end{pmatrix} \begin{pmatrix} X_i \\ f_i \end{pmatrix} \begin{pmatrix} X_i \\ f_i \end{pmatrix} \begin{pmatrix} X_i \\ f$$

st. dev. = 
$$\sqrt{\text{variance}}$$

where:  $X_i = ith observed value$ 

 $f_i$  = number of times  $X_i$  occurred.

$$N = \sum_{i=1}^{M} f_{i}$$

M = number of observed values.

For a sample, the divisor in the variance formula is N - 1 rather than N.

# NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. Whenever such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

# EXAMPLE

Find mean, variance, and standard deviation for the following data taken from a population.

| X  | freq |
|----|------|
| 61 | 5    |
| 64 | 18   |
| 67 | 42   |
| 70 | 27   |
| 73 | 8    |

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. <u>INSTRUCTION</u>

INPUT 0 FOR A POPULATION, 1 FOR A SAMPLE

4. Key 0 CR/LF

4. Key 0 CR/LF

or
Key <u>1</u> CR/LF

5. <u>INSTRUCTION</u>

NO. OF OBSERVATIONS

6. Key NO. OF OBSERVATIONS CR/LF

6. Key <u>5</u> CR/LF

7. INSTRUCTION

INPUT XI, FI (1 = 1, 2, ...M)

The observed value and its frequency is a data pair. Each data pair is an input line, where the two elements of the pair are separated by a comma.

8. Key 
$$X_1 - F_1$$
  $\overline{CR/LF}$ 

$$\text{Key }\underline{X}_{\underline{2}} \ \underline{\cdot} \ \underline{F}_{\underline{2}} \ \overline{\text{CR/LF}}$$

# OPERATING INSTRUCTIONS (Cont)

9. Read

MEAN = 67.45

VARIANCE = 8.5275

ST. DEV. = 2.9201883501

END PROGRAM

GEOMETRIC MEAN AND STANDARD DEVIATION

TITLE

PS. 01-2200. 01A-00FI-25-0 6/1/73

NUMBER DATE

2200A-01, 2215, 2216/2217

EQUIPMENT

#### **PROGRAM ABSTRACT**

Computes the geometric mean and geometric standard deviation for a geometrically normal set of data.

| SAVE "NAME" | BYTES REQUIRED |  |
|-------------|----------------|--|
|             | 368            |  |
|             | SAVE "NAME"    |  |

Computes the geometric mean and geometric standard deviation for a geometrically normal set of data.

Geometric Mean = 
$$(A_1 \cdot A_2 \cdot A_3 \cdot ... A_N)^{1/N}$$

# NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. Whenever such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

#### **EXAMPLE**

Find the geometric mean and the geometric standard deviation for the following data:

10, 52, 63, 42, 12, 25, 95, 46, 48, 10

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION
- 4. Key NO. OF DATA ELEMENTS CR/LF
- 5. INSTRUCTION
- 6. Key  $\underline{\underline{A}}_{1}$  CR/LF

 $\begin{array}{cc} \text{Key } \underline{A}_2 & \boxed{\text{CR/LF}} \end{array}$ 

 $\text{Key } \underline{A}_{\underline{N}} \quad \boxed{\underline{CR/LF}}$ 

7. Read

NO. OF DATA ELEMENTS

4. Key <u>1</u> <u>0</u> CR/LF

DATA ELEMENTS 1/LINE

6. Key <u>1</u> <u>0</u> <u>CR/LF</u>

Key <u>5</u> <u>2</u> <u>CR/LF</u>

 $\text{Key } \underline{1} \quad \underline{0} \quad \boxed{\text{CR/LF}}$ 

GEOMETRIC MEAN IS: 31.17049587113

GEOMETRIC STANDARD DEVIATION IS: 2.258031500973

END PROGRAM

This page intentionally left blank

TITLE CROSS-COVARIANCE OF TIME SERIES

PS. 01-2200. 01A-00FI-26-0 6/1/73

NUMBER DATE
2200A-01, 2215, 2216/2217

EQUIPMENT

#### PROGRAM ABSTRACT

Finds the cross-covariances of series A with series B (which leads and lags A).

| вьоск | SAVE "NAME" | BYTES REQUIRED |
|-------|-------------|----------------|
| 26    |             | 1793           |

Finds the cross-covariance of a series A with series B (which leads and lags A). The lag covariance and the lead covariance are calculated for lags and leads of 0, 1, 2, ..., L-1 where  $L \le N$  and N = number of elements in series A and B.

 $(N \le 70)$ 

# NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. Whenever such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

# EXAMPLE

Find the cross-covariance of series A with series B (L = 5).

Series A

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Series B

3, 6, 11, 18, 27, 38, 51, 66, 83, 102

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION
- 4. Key N · L CR/LF
- 5. INSTRUCTION
- 6. Key A<sub>1</sub> · B<sub>1</sub> CR/LF Key A<sub>2</sub> · B<sub>2</sub> CR/LF

 $\text{Key } \underline{A}_{\underline{N}} \stackrel{!}{\underline{\hspace{1cm}}} \underline{B}_{\underline{N}} \quad \boxed{\text{CR/LF}}$ 

INPUT N, L

4. Key <u>1</u> <u>0</u> <u>'</u> <u>5</u> CR/LF

INPUT SERIES A AND B, 2 ELEMENTS/ LINE i.e. A1, B1, CARRIAGE RETURN, A2, B2, CARRIAGE RETURN, . . . )

6. Key 1 · 3 CR/LF

, Key <u>2 • 6 CR/LF</u>

Key <u>1</u> <u>0</u> <u>1</u> <u>0</u> <u>2</u> <u>CR/LF</u>

7. Read

LAG/LEAD LAG COVARIANCE LEAD COVARIANCE

0 90.75 90.75

1 77.91666666667 63.25

2 59.25 34.25

3 34.25 4.25

4 2.416666666667 -26.25

This page intentionally left blank

| AUTO  | COVARIANCE | OF A | TIME | SERIES |  |
|-------|------------|------|------|--------|--|
| TITLE |            |      |      |        |  |

PS. 01-2200. 01A-00FI-27-0 6/1/73

NUMBER
2200A-01, 2215, 2216/2217

EQUIPMENT

| PROGRAM ABSTRACT                            |             |                |  |  |
|---------------------------------------------|-------------|----------------|--|--|
| Finds the auto-covariance of a time series. |             |                |  |  |
| BLOCK                                       | SAVE "NAME" | BYTES REQUIRED |  |  |
| 27                                          |             | 1345           |  |  |

Finds the autocovariances of a time series for lags of 0 to L where L  $\leq$  N and N = number of elements in the series. (N  $\leq$  96)

### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. Whenever such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

# EXAMPLE

For the time series

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 13, 14, 15, 16

find autocovariances for 7 lags

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION
- 4. Key N · L CR/LF
- 5. INSTRUCTION

INPUT N, L

4. Key <u>1</u> <u>6</u> <u>7</u> CR/LF

INPUT SERIES, 4 ELEMENTS/LINE. IF NECESSARY FILL LAST INPUT LINE WITH ZEROES.

The series  $A_1$ ,  $A_2$ , . . . ,  $A_N$  is inputed 4 elements/line. Complete the last line with zeroes if necessary. For example, 1, 2, 3, 4, 5, 6 is inputed as follows:

Continue until all elements have been entered.

CR/LF

# OPERATING INSTRUCTIONS (Cont)

# 7. Read:

| LAGS | AUTOCOVARIANCE  |
|------|-----------------|
| Ø    | 21. 25          |
| 1    | 18. 41666666667 |
| 2    | 15. 25          |
| 3    | 11. 75          |
| 4    | 7. 916666666667 |
| 5    | 3. 75           |
| 6    | <b>75</b>       |

| TITLE                               |        |   |
|-------------------------------------|--------|---|
| PS. 01-2200. 01A-00FI-28-0          | 6/1/73 | • |
| NUMBER<br>2200A-01, 2215, 2216/2217 | DATE   |   |
| EQUIPMENT                           |        |   |

SYSTEM RELIABILITY

| PROGRAM ABSTRACT |                                                                                      |                |  |  |
|------------------|--------------------------------------------------------------------------------------|----------------|--|--|
|                  | Calculates the system reliability when chance failure is present along with wearout. |                |  |  |
| BLOCK            | SAVE "NAME"                                                                          | BYTES REQUIRED |  |  |
| 28               |                                                                                      | 327            |  |  |

Calculates the system reliability when chance failure is present along with wearout.

$$R = e^{X}, X = \sum_{i=1}^{N} (L_{i} + \frac{1}{M_{i}})t$$

where:

R = system reliability

 $M_i = mean we arout time of ith component (hrs.)$ 

 $L_{i}$  = chance failure rate of ith component

t = operating time (hrs.)

### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. Whenever such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

# EXAMPLE

|   | Component | Mean Wearout | Chance Failure |
|---|-----------|--------------|----------------|
| _ | 1         | 6000         | .0001          |
|   | 2         | 6500         | .00015         |
| • | 3         | 7000         | .0002          |

Operating Time = 1000

Find value of system reliability

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTIONS
- 4. Key NO. OF COMPONENTS .

  OPERATING TIME CR/LF
- 5. INSTRUCTION
- 6. Key MEAN WEAROUT TIME

  CHANCE FAILURE, CR/LF

NO. OF COMPONENTS, OPERATING TIME

4. Key <u>3</u> <u>1</u> <u>0</u> <u>0</u> <u>0</u> <u>CR/LF</u>

MEAN WEAROUT TIME, CHANCE FAILURE RATE FOR COMPONENT 1

6. Key <u>6</u> <u>0</u> <u>0</u> <u>0</u> <u>0</u> <u>.</u> <u>0</u> <u>0</u> <u>0</u> <u>1</u>

The program will loop to Step 5 until the mean wearout time and chance failure rate for each component has been inputed. After all components have been entered go to Step 7.

7. Read:

SYSTEM RELIABILITY = .4011700152417

END PROGRAM

This page intentionally left blank

| IIILE                                  |        |  |
|----------------------------------------|--------|--|
| PS. 01-2200. 01A-00FI-29-0             | 6/1/73 |  |
| NUMBER                                 | DATE   |  |
| 2200A-01, 2215, 2216/2217<br>EQUIPMENT |        |  |

ERROR FUNCTION

| PROGRAM ABSTRACT |                                        |                |  |  |  |
|------------------|----------------------------------------|----------------|--|--|--|
| Comput           | Computes values of the error function. |                |  |  |  |
| BLOCK            | SAVE "NAME"                            | BYTES REQUIRED |  |  |  |
| 29               |                                        | 1034           |  |  |  |

Computes the definite integral of the function

$$E(X) = \frac{2}{\sqrt{\pi}} e^{-X^2}$$

between the limits of 0 and X, using the trapezoidal rule with Romberg's extrapolation. The integral is calculated to 4 significant digits.

### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. Whenever such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

### EXAMPLE

Find the value of the error function at 3 and 5.

1. Key RESET CLEAR CR/LF
LOAD CR/LF

- 2. Key RUN CR/LF
- 3. INSTRUCTION
- 4. Key  $X \subset \mathbb{CR}/LF$
- 5. Read
- 6. INSTRUCTION

TO END PROGRAM INPUT 0.
INPUT 'INTEGRATION LIMIT X'

4. Key <u>3</u> CR/LF

INTEGRAL = .9999779835828

INPUT 'INTEGRATION LIMIT X'

Key 5 CR/LF

INTEGRAL = .9999989816139

INPUT 'INTEGRATION LIMIT X'

Key 0 CR/LF

END PROGRAM

This page intentionally left blank

### **ENGINEERING**

| BLOCK      | PROGRAM TITLE                                                             |  |
|------------|---------------------------------------------------------------------------|--|
| 30         | TALBOT'S FORMULA                                                          |  |
| 31         | MANNING'S FORMULA                                                         |  |
| 32         | HEADLOSS IN A PIPE                                                        |  |
| 33         | BERNOULLI'S EQUATION                                                      |  |
| 34         | WARPING STRESS DUE TO TEMPERATURE DIFFERENTIAL                            |  |
| 35         | PRESSURE DUE TO SURFACE LOADS, PRINT LOADS, FINITE OR INFINITE LINE LOADS |  |
| 36         | BEAM                                                                      |  |
| 37         | OIL WELL DEPLETION                                                        |  |
| <b>3</b> 8 | NETWORK IMPEDANCE - FINDING A SERIES OR PARALLEL CIRCUIT                  |  |
| 39         | CHARACTERISTIC GENERATOR RESISTANCE AND SOURCE emf VOLTAGE                |  |
| 40         | "ERLANG B" EQUATION                                                       |  |

This page intentionally left blank

TALBOT'S FORMULA

TITLE

PE.11-2200.01A-00FI-1-0 6/1/73

NUMBER DATE
2200A-01, 2215, 2216/2217

EQUIPMENT

| PROGRAM ABSTRACT   |                            |                  |
|--------------------|----------------------------|------------------|
| Estimates the area | of waterway opening requir | ed for culverts. |
| BLOCK              | SAVE "NAME"                | BYTES REQUIRED   |
| 30                 |                            | 217              |

Talbot's formula is one of the best known empirical formulas for estimating the area of waterway opening required for culverts.

$$a = CA^{3/4}$$

where:

a = Required Waterway Opening

A = Drainage Area (Acres)

C = Runoff Coefficient

#### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

#### OPERATING INSTRUCTIONS

EXAMPLE

A = 2.1 acres

C = .5

- 1. Key RESET CLEAR CR/LF
  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION

4. Key Area (In Acres) CR/LF

5. INSTRUCTION

6. Key Runoff Coeff. CR/LF

- 7. Read
- 8. <u>INSTRUCTION</u>
- 9. Key  $\underline{0}$  CR/LF

or

Key 1 CR/LF

DRAINAGE AREA?

4. Key <u>2</u> . <u>1</u> CR/LF

RUNOFF COEFF.?

6. Key <u>5</u> CR/LF

REQUIRED WATERWAY OPENING = .8722369398

MORE INPUT? (1 = YES, 0 = NO)

9. Key  $\underline{0}$  CR/LF

If you have more input, go to Step 3. Otherwise, go to Step 10.

10. END PROGRAM

This page intentionally left blank

MANNING'S FORMULA

TITLE

PE.11-2200.01A-00FI-2-0 6/1/73

NUMBER DATE

2200A-01, 2215, 2216/2217

EQUIPMENT

#### **PROGRAM ABSTRACT**

Computes the discharge quantity for open channel flow.

| BLOCK | SAVE "NAME" | BYTES REQUIRED |
|-------|-------------|----------------|
| 31    |             | 411            |

This program combines Manning's formula for velocity of water flow with the general flow formula to determine the discharge quantity for open-channel flow.

$$Q = \frac{1.486}{n} AR^{2/3}S^{1/2}$$

where:

Q = Discharge (ft<sup>3/sec</sup>)

A = Area of flow cross section (ft<sup>2</sup>)

n = Manning's roughness coefficient

R = Hydraulic radius (ft)

S = Slope of channel (ft/ft)

#### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

#### OPERATING INSTRUCTIONS

## EXAMPLE

$$A = 20 \text{ ft}^2$$

$$S = .003$$

$$n = .03$$

$$R = 2.5 \text{ ft.}$$

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION
- 4. Key A CR/LF
- 5. INSTRUCTION
- 6. Key n CR/LF
- 7. INSTRUCTION
- 8. Key R CR/LF
- 9. <u>INSTRUCTION</u>
- 10. Key  $\underline{S}$   $\overline{CR/LF}$
- 11. Read
- 12. <u>INSTRUCTION</u>
- 13. Key  $\underline{0}$  CR/LF

or

Key 1 CR/LF

AREA OF FLOW CROSS SECTION (SQ. FT.)?

- 4. Key <u>2</u> <u>0</u> CR/LF
- MANNING'S ROUGHNESS COEFF.?
- 6. Key <u>0</u> <u>3</u> <u>CR/LF</u>
- HYDRAULIC RADIUS (FT.)?
- 8. Key <u>2</u> . <u>5</u> CR/LF
- SLOPE OF CHANNEL (FT/FT)?
- 10. Key . 0 0 3 CR/LF

DISCHARGE = 99.94970504597 CU. FT.?SEC.

MORE INPUT? (1 = YES, 0 = NO)

13. Key 0 CR/LF

If you have more input, go to Step 3. Otherwise, go to Step 14.

14. END PROGRAM

This page intentionally left blank

HEADLOSS IN A PIPE

PE.11-2200.01A-00FI-3-0 6/1/73

NUMBER DATE

2200A-01, 2215, 2216/2217

EQUIPMENT

PROGRAM ABSTRACT

TITLE

Computes the headloss between two reservoires on different levels.

| BLOCK | SAVE "NAME" | BYTES REQUIRED |
|-------|-------------|----------------|
| 32    |             | . 337          |

This program calculates the head loss between two reservoires on different levels. Friction factor, pipe O.D. and length of the line are related to the head loss which is calculated in the following formula:

$$H = \left[ f \frac{L}{D} + 1.5 \right] \frac{V^2}{2a}$$

$$H = \left[ f \frac{L}{D} + 1.5 \right] \left[ \frac{(16/(\pi \cdot D^2))^2}{64.4} \right]$$

where: H = Head loss in ft.

L = Length in ft.

D = O-Diameter of pipe in ft.

f = Friction Factor



### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

#### OPERATING INSTRUCTIONS

## EXAMPLE

$$L = 150'$$

$$f = .013$$

$$D = .667'$$

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION
- 4. Key L CR/LF
- 5. INSTRUCTION
- 6. Key D CR/LF
- 7. INSTRUCTION
- 8. Key f CR/LF
- 9. Read
- 10. INSTRUCTION
- 11. Key 0 CR/LF

 $\mathbf{or}$ 

Key 1 CR/LF

LENGTH (FT)?

- 4. Key 1 5 0 CR/LF
- 0-DIAMETER OF PIPE (FT.)?
- 6. Key <u>6 6 7 CR/LF</u>

FRICTION FACTOR

- 8. Key <u>0 1 3 CR/LF</u>
- HEADLOSS = 9.01622697414
- MORE INPUT? (1=YES, 0=NO)
- 11. Key 0 | CR/LF

If you have more input, go to Step 3. Otherwise go to Step 12.

12.

END PROGRAM

This page intentionally left blank

TITLE

BERNOULLI'S EQUATION

PE.11-2200.01A-00FI-4-0 6/1/73

NUMBER DATE
2200A-01, 2215, 2216/2217

EQUIPMENT

**PROGRAM ABSTRACT** 

Computes the headwater depth of culverts flowing full.

| BLOCK | SAVE "NAME" | BYTES REQUIRED |
|-------|-------------|----------------|
| 33    |             | 424            |

This program uses Bernoulli's equation to compute the headwater depth of Culverts flowing full.

$$H = (1 + K_e + \frac{2.9n^2L}{R^{4/3}}) \frac{V^2}{2g}$$

where:

H = DIFFERENCE IN ELEVATION BETWEEN HEADWATER ELEVATION AND ELEVATION OF TAILWATER SURFACE, OR DIFFERENCE BETWEEN HEADWATER ELEVATION AND CROWN AT OUTLET WHEN CULVERT IS FLOWING FULL WITHOUT TAILWATER BEING ABOVE CROWN (FT)

 $V^2/2g = Velocity Head (ft)$ 

Ke = Coefficient of Entrance Loss.

n = Manning's Roughness Coefficient

L = Length of Culvert (ft)

R = Hydraulic Radius (ft)

#### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

### OPERATING INSTRUCTIONS

#### EXAMPLE

$$R = 2.5 \text{ ft.}$$

$$L = 70 \text{ ft.}$$

$$n = .015$$

$$K_e = .2$$

$$v^2/2g = .8 \text{ ft.}$$

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION
- 4. Key  $V^2/2g$  CR/LF
- 5. INSTRUCTION
- 6. Key K<sub>e</sub> CR/LF
- 7. <u>INSTRUCTION</u>
- 8. Key n CR/LF
- 9. INSTRUCTION
- 10. Key L CR/LF
- 11. INSTRUCTION
- 12. Key R CR/LF
- 13. Read
- 14. INSTRUCTION
- 15. Key 0 CR/LF

 $\mathbf{or}$ 

Key 1 CR/LF

VELOCITY HEAD (FT.)?

4. Key <u>8 CR/LF</u>

COEFF. OF ENTRANCE LOSS?

6. Key . 2 CR/LF

MANNING'S ROUGHNESS COEFF.?

8. Key <u>0</u> <u>1</u> <u>5</u> CR/LF

LENGTH OF CULVERT (FT.)?

10. Key 7 0 CR/LF

HYDRAULIC RADIUS (FT.)?

12. Key <u>2</u> <u>.</u> <u>5</u> <u>CR/LF</u>

HEADWATER DEPTH (FT.) = 1.0676916087

MORE INPUT? (1 = YES, 0 = NO)

15. Key 0 CR/LF

## OPERATING INSTRUCTIONS (Cont)

If you have more input, go to Step 3. Otherwise, go to Step 16.

16.

END PROGRAM

WARPING STRESS DUE TO A TEMPERATURE DIFFERENTIAL TITLE

PE.11-2200.01A-00FI-5-0 6/1/73

NUMBER
2200A-01, 2215, 2216/2217

EQUIPMENT

#### **PROGRAM ABSTRACT**

Computes the warping stress in two directions which exist in the center of a slab of concrete pavement.

| BLOCK | SAVE "NAME" | BYTES REQUIRED |
|-------|-------------|----------------|
| 34    |             | 470            |

This program computes the warping stress in two directions which exist in the center of a slab of concrete pavement.

$$S_t = \frac{E_c \text{ et}}{2} \left( \frac{C_1 + \mu C_2}{1 - \mu^2} \right)$$

where:

 $S_t = warping stress (psi)$ 

 $E_c = modulus of elasticity of concrete (psi)$ 

t = temperature differential

 $C_1$  = coefficient of slab length in desired direction

 $C_2$  = coefficient of slab length normal to  $C_1$ 

#### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

## OPERATING INSTRUCTIONS

$$C_2 = -1.265$$

$$C_1 = 1.265$$

$$E_c = 5,000,000 \text{ psi}$$

$$t = 20$$

- 1. Key RESET CLEAR CR/LF
  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION
- 4. Key  $E_c$  CR/LF
- 5. INSTRUCTION
- 6. Key  $\underline{\mathbf{t}}$  CR/LF
- 7. INSTRUCTION
- 8. Key C<sub>1</sub> CR/LF
- 9. INSTRUCTION
- 10. Key C<sub>2</sub> CR/LF
- 11. Read
- 12. INSTRUCTION
- 13. Key  $\underline{0}$  CR/LF

or

Key 1 CR/LF

MODULUS OF ELASTICITY OF CONCRETE (PSI)?

4. Key <u>5</u> <u>0</u> <u>0</u> <u>0</u> <u>0</u> <u>0</u> <u>0</u> <u>0</u> <u>CR/LF</u>

TEMPERATURE DIFFERENTIAL?

6. Key <u>2</u> <u>0</u> CR/LF

COEFF. OF SLAB LENGTH IN DESIRED DIŘECTION?

8. Key <u>1</u> <u>.</u> <u>2</u> <u>6</u> <u>5</u> <u>CR/LF</u>

COEFF. OF SLAB LENGTH NORMAL TO C1?

10. Key - 1 . 2 6 5 CR/LF

WARPING STRESS = 275

MORE INPUT? (1 = YES, 0 = NO)

13. Key  $\underline{0}$  CR/LF

## OPERATING INSTRUCTIONS (Cont)

If you have more input, go to Step 3. Otherwise, go to Step 14.

14.

END PROGRAM

PRESSURE DUE TO SURFACE LOADS - POINT LOAD, FINITE

\*\*TITLE\*\*

\*\*INFINITE LINE LOADS\*\*

| PE.11-2200.01A-00FI-6-0   | 6/1/73 |  |
|---------------------------|--------|--|
| NUMBER                    | DATE   |  |
| 2200A-01, 2215, 2216/2217 |        |  |
| EQUIPMENT                 |        |  |

#### PROGRAM ABSTRACT

This program computes horizontal unit pressure due to a point load, or lateral pressure due to a line load either finite or infinite.

| BLOCK | SAVE "NAME" | BYTES REQUIRED |
|-------|-------------|----------------|
| 35    |             | . 475          |

CASE 1 This program computes horizontal unit pressure due to a point load, such as a truck wheel, at any point on the wall of a backfill surface.

$$h_{c} = P \frac{X^{2}Z}{R^{5}}$$

where:

$$R = \sqrt{X^2 + Y^2 + Z^2}$$

h = Horizontal unit pressure (psf)

P = Applied point load (lbs)

X = Horizontal distance from load to wall (ft)

Y = Lateral distance from load to point on wall (ft)

Z = Vertical distance from load to point on wall (ft)

CASE 2 This program computes lateral pressure due to a line load or a narrow strip load of finite length at any depth opposite one end of a parallel strip load on the backfill.

$$h_{s} = P_{s} \frac{X^{2}Z}{R_{1}^{4}} \left[ \frac{R_{1}^{2}Y_{1}}{3(R_{1}^{2} + Y_{1}^{2})^{3/2}} + \frac{2Y_{1}}{3(R_{1}^{2} + Y_{1}^{2})^{1/2}} \right]$$

where:

$$R_1 = \sqrt{X^2 + Z^2}$$

h = Unit lateral pressure (psf)

P = Load per unit length of strip (lbs/ft)

X = Distance back of wall (ft)

Z = Depth of pressure (ft)

 $Y_1$  = Length of strip load (ft)

#### PROGRAM DESCRIPTION (Cont)

CASE 3 This program computes the lateral unit pressure due to a line load or narrow strip of infinite length at any depth opposite one end of a parallel strip load on the backfill.

$$h_s = \frac{4}{3} P_s \frac{X^2 Z}{R_1^4}$$

where:

$$R_1 = \sqrt{X^2 + Z^2}$$

h = Unit lateral pressure (psf)

 $P_{g}$  = Load per unit length of strip (lb/ft)

X = Distance back of wall (ft)

Z = Depth of pressure (ft)

#### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

#### CASE 1

### OPERATING INSTRUCTIONS

#### EXAMPLE

- X = 10.5 ft. = horizontal distance from load to wall (ft)
- Y = 11.25 ft. = lateral distance from load to point on wall (ft)
- Z = 12.0 ft. = vertical distance from load to point on wall (ft)
- P = 6,000 lbs. = applied point load
- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION
- 4. Key CASE NO. CR/LF
- 5. INSTRUCTION
- 6. Key APPLIED POINT LOAD .

  HORIZONTAL DISTANCE .

  LATERAL DISTANCE .

  VERTICAL DISTANCE CR/LF
- CASE NO.
- 4. Key 1 CR/LF
- P, X, Y, Z
- 6. Key 6 0 0 0 1 1 0 5 1 1 1 . 2 5 1 2 CR/LF

- 7. Read:
- 8. INSTRUCTION
- 9. Key 0 CR/LF

or

Key 1 CR/LF

HC = 2.805001552062

ANOTHER CASE (1 = YES, 0 = NO)

9. Key 0 CR/LF

If you have another case go to Step 3. Otherwise, go to Step 10.

10.

END PROGRAM

#### CASE 2

## OPERATING INSTRUCTIONS

#### EXAMPLE

- X = 10.5 ft. Distance Back of Wall (ft).
- Z = 12 ft. Depth of pressure (ft)
- Y<sub>1</sub> = 11.25 ft. Length of Strip Load (ft)
- $P_s = 6,000 \text{ lb/ft.}$  Load per unit length of strip.
- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION
- 4. Key CASE NO. CR/LF
- 5. INSTRUCTION
- 6. Key LOAD/UNIT LENGTH OF STRIP
  - DISTANCE BACK OF WALL
  - · LENGTH OF STRIP LOAD
  - DEPTH OF PRESSURE

CR/LF

- 7. Read
- 8. INSTRUCTION
- 9. Key 0 CR/LF

or

Key 1 CR/LF

CASE NO.

- 4. Key <u>2</u>, CR/LF
- P, X, Y, Z
- 6. Key <u>6</u> <u>0</u> <u>0</u> <u>0</u> <u>0</u> <u>1</u> <u>0</u> <u>.</u> <u>5</u> <u>.</u> <u>1</u> <u>1</u> <u>.</u> <u>2</u> <u>5</u> <u>.</u> <u>1</u> <u>2</u> <u>CR/LF</u>

HS = 62.94973679071

ANOTHER CASE (1 = YES, 0 = NO)

9. Key 0 CR/LF

If you have another case, go to Step 3. Otherwise, go to Step 10.

10. END PROGRAM

#### CASE 3

## OPERATING INSTRUCTIONS

#### EXAMPLE

X = 10.5 ft. Distance back of wall

Z = 12 ft. Depth pressure

P<sub>s</sub> = 6,000 lb/ft. Load per unit length of strip.

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION

4. Key CASE NO. CR/LF

5. INSTRUCTION

- , DISTANCE BACK OF WALL,
- DEPTH PRESSURE, CR/LF
- 7. Read

8. INSTRUCTION

9. Key 0 CR/LF

or

Key 1 CR/LF

CASE NO.

4. Key 3 CR/LF

P, X, Z

6. Key LOAD PER UNIT LENGTH OF STRIP 6. Key 6 0 0 0 1 1 0 5 5 1 2

CR/LF

HS = 163.729866604

ANOTHER CASE (1 = YES, 0 = NO)

9. Key 0 CR/LF

If you have another case, go to Step 3. Otherwise, go to Step 10.

10. END PROGRAM

BEAM

TITLE

PE. 11-2200.01A-00FI-7-0 6/1/73

NUMBER DATE
2200A-01, 2215, 2216/2217

EQUIPMENT

#### **PROGRAM ABSTRACT**

Program recommends steel beams to use for a number of common applications.

| BLOCK | SAVE "NAME" | BYTES REQUIRED |
|-------|-------------|----------------|
| 36    |             | 2713           |

This program recommends steel beams to use for a number of common applications.

Input L, B, S, W, P, A when requested.

- 1 for uniformly distributed load
- T = 2 for single midpoint load
  - 3 for uniform load plus single midpoint load
    - 4 for two equal symmetric loads
    - 1 for beam supported at both ends
- $B = \frac{2}{a}$  for one end fixed, other end supported
  - 3 for beam fixed at both ends
    - 4 for one end fixed (cantilever)
- S = length of span in feet
- W = distributed load in pounds per foot (set = 0 if not applicable)
- P = each concentrated load in pounds (set = 0 if not applicable)
- A = location of load(s) in feet from end (set = 0 if not applicable)

#### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. Whenever such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

### **OPERATING INSTRUCTIONS**

## EXAMPLE

Determine the recommended beam for the following data:

$$L = 1$$

$$B = 1$$

$$S = 20 \text{ ft.}$$

$$W = 50 lbs/ft.$$

$$P = 0$$

$$A = 0$$

- 1. Key RESET CLEAR CR/LF
  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION
- 4. Key  $\underline{L}$  ,  $\underline{B}$  ,  $\underline{S}$  ,  $\underline{W}$  ,  $\underline{P}$  ,  $\underline{A}$
- 5. Read
- 6. INSTRUCTION
- 7. Key 0 CR/LF

 $\mathbf{or}$ 

L, B, S, W, P, A?

$$\frac{\text{Key } \underline{1} \text{ , } \underline{1} \text{ , } \underline{2} \text{ } \underline{0} \text{ , } \underline{5} \text{ } \underline{0} \text{ , } \underline{0} \text{ , } \underline{0}}{\text{CR/LF}}$$

RECOMMENDED BEAM IS A 6 JR 4.4

MORE INPUT 
$$(1 = YES, 0 = NO)$$

7. Key 
$$0$$
 CR/LF

If you have more input, program goes to Step 3. Otherwise, program ends.

This page intentionally left blank

OIL WELL DEPLETION
TITLE

PE. 04-2200.01A-00FI-4-0 6/1/73

NUMBER DATE

2200A-01, 2215, 2216/2217

EQUIPMENT

#### **PROGRAM ABSTRACT**

Calculates the number of years that an oil well will produce.

| BLOCK | SAVE "NAME" | BYTES REQUIRED |
|-------|-------------|----------------|
| 37    |             | 624            |
|       |             |                |

This program calculates the number of years that an oil well will produce given the current production rate, the minimum number of barrels of oil that must be produced to cover expenses and the reserve to be recovered on decline.

$$D = \frac{C}{I \quad LOG \quad \left(\frac{I}{q}\right)}$$

$$Y = \frac{D}{12} \left[ \frac{I}{q} - 1 \right]$$

where:

C = Reserve to be recovered on decline (barrels)

I = Initial rate (barrels/month)

q = Economic limit rate (barrels/month)

D = Decline rate (months)

Y = Life of decline production of oil well (years)

It also computes the cumulative production for each year plus the unit production for each year

$$CP_n = LOG \left[ \frac{12N}{D} + 1 \right] DI$$

$$P_n = CP_n - CP_{n-1}$$

where:

 $CP_n$  = cumulative production for nth year

 $P_n$  = unit production for nth year

#### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

#### OPERATING INSTRUCTIONS

#### EXAMPLE

Given:

Reserve to be recovered on decline = 50,000 barrels

Initial rate = 1000 barrels/months

Economic Limit Rate = 200 barrels/months

Find the decline rate (months) and the life of decline production of oil well (years)?

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. <u>INSTRUCTION</u>
- 4. Key RESERVE CR/LF
- 5. <u>INSTRUCTION</u>
- 6. Key INITIAL RATE CR/LF
- 7. INSTRUCTION
- 8. Key ECONOMIC LIMIT RATE, CR/LF
- 9. Read

RESERVE TO BE RECOVERED ON DECLINE (BARRELS)

- 4. Key  $\underline{5}$   $\underline{0}$   $\underline{0}$   $\underline{0}$   $\underline{0}$   $\underline{CR/LF}$
- INITIAL RATE (BARRELS/MO.)?
- 6. Key 1 0 0 0 CR/LF

ECONOMIC LIMIT RATE (BARRELS/MO.)?

8. Key 2 0 0 CR/LF

Y = 10.35558224267

### OPERATING INSTRUCTIONS (Cont)

10. Read

CP(1) = 10146.80805834P(1) = 10146.80805834CP(2) = 17782.85486478P(2) = 7636.04680644CP(3) = 23907.42529636P(3) = 6124.57043158CP(4) = 29021.13755731P(4) = 5113.71226095CP(5) = 33410.87903326P(5) = 4389.74147595CP(6) = 37256.44790239P(6) = 3845.56886913CP(7) = 40678.00149686P(7) = 3421.55359447CP(8) = 43759.8273348P(8) = 3081.82583794CP(9) = 46563.33706577P(9) = 2803.50973097CP(10) = 49134.66211213P(10) = 2571.32504636CP(11) = 50000P(11) = 865.33788787

11. INSTRUCTION

MORE INPUT? (1 = YES, 0 = NO)

12. Key  $\underline{0}$  or  $\underline{1}$  CR/LF

11. Key 0 CR/LF

If you key  $\underline{1}$   $\overline{CR/LF}$ , program will go to Step 3. Otherwise program ends.

# WANG 2200 SERIES PROGRAM

NETWORK IMPEDANCE - FINDING A SERIES OR PARALLEL CIRCUIT
TITLE

| PE.03-2200.01A-00FI-1-0   | 6/1/73 |  |
|---------------------------|--------|--|
| NUMBER                    | DATE   |  |
| 2200A-01, 2215, 2216/2217 |        |  |
| EQUIPMENT                 |        |  |

### **PROGRAM ABSTRACT**

This program is designed to find a series (parallel) circuit that is in parallel (series) by the leaning-ladder method.

| ВLОСК | SAVE "NAME" | BYTES REQUIRED |
|-------|-------------|----------------|
| 38    |             | 393            |

# PROGRAM DESCRIPTION

CASE 1 This program is designed to find a series circuit that is in parallel by the leaning-ladder method

$$R_s = \frac{R_p X_p^2}{(X_p^2 + R_p^2)}$$

$$X_{s} = \frac{X_{p}R_{p}^{2}}{(X_{p}^{2} + R_{p}^{2})}$$



where:

 $R_s = Resistance to be in series (ohms)$ 

 $X_{s}$  = Reactance to be in series (ohms)

 $R_{p}$  = Resistance in parallel (ohms)

 $X_1$  = Reactance in parallel (ohms)

CASE 2 This program is designed to parallel a circuit that is in series. The method is the leaning ladder method.

$$R_{p} = R_{s} + \frac{X_{s}^{2}}{R_{s}}$$

$$X_{p} = X_{s} + \frac{R_{s}^{2}}{X_{s}}$$



where:

 $R_{n}$  = Resistance to be paralleled (ohms)

 $X_1 = \text{reactance to be paralleled (ohms)}$ 

R<sub>2</sub> = Resistance in series (ohms)

 $X_2$  = resistance in series (ohms)

# PROGRAM DESCRIPTION (Cont)

# NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

# OPERATING INSTRUCTIONS

# EXAMPLE

Resistance = 25 (ohms)

Reactance = 50 (ohms)

Find RS, XS

1. Key RESET CLEAR CR/LF

LOAD CR/LF

- 2. Key RUN CR/LF
- 3. INSTRUCTION

INPUT CASE NO. (1 OR 2)

Case 1, finds a series circuit

Case 2, finds a parallel circuit

4. Key CASE NO. CR/LF

4. Key  $\underline{1}$   $\boxed{CR/LF}$ 

5. INSTRUCTION

RESISTANCE?

6. Key RESISTANCE CR/LF

6. Key 2 5 CR/LF

7. INSTRUCTION

REACTANCE?

8. Key REACTANCE CR/LF

8. Key 5 0 CR/LF

If Case no. 1, go to Step 9.

If Case no. 2, go to Step 11

9. Read

RS = 20

RX = 10

- 10. Go to Step 12
- 11. Read

RP =

XP =

12. <u>INSTRUCTION</u>

MORE INPUT? (1 = YES, 0 = NO)

13. Key  $\underline{0}$  or  $\underline{1}$  | CR/LF|

13. Key 0 CR/LF

If you keyed  $\underline{1}$  CR/LF, go to Step 3. Otherwise, program ends.

# WANG 2200 SERIES PROGRAM

CHARACTERISTIC GENERATOR RESISTANCE AND SOURCE
TITLE emf VOLTAGE

| PE.03-2200.01A-00FI-2-0            | 6/1/73 |   |
|------------------------------------|--------|---|
| NUMBER<br>2200A-01, 2215,2216/2217 | DATE   | • |
| EOUIPMENT                          |        |   |

## PROGRAM ABSTRACT

This program computes the characteristic generator resistance and the source emf voltage of an efficient rf switched amplifier whose output power swings with mismatch.

| BLOCK | SAVE "NAME" | BYTES REQUIRED |  |
|-------|-------------|----------------|--|
| 39    |             | 567            |  |

## PROGRAM DESCRIPTION

This program computes the characteristic generator resistance and the source emf voltage of an efficient rf switched amplifier whose output power swings with mismatch.

## Generator Resistance

$$R_{0} = Z_{0} \frac{1 - \frac{R_{2}}{Z_{0}} \left(\frac{P_{f_{max}}}{P_{f_{min}}}\right)^{1/2}}{\left(\frac{P_{f_{max}}}{P_{f_{min}}}\right)^{1/2} - \frac{R_{2}}{Z_{0}}}$$

# Source emf Voltage

$$E = \frac{2 (R_0 + R_2)}{(Z_0 + R_2)} - \sqrt{Z_0 P_{\text{max}}}$$

where:

 $R_0$  = Characteristic generator resistance (ohms)

 $Z_0$  = Characteristic impedance of transmission line (ohms)

 $R_2$  = Real load resistance (ohms)

P = Maximum forward-going power (watts)

 $P_{f \text{ min}}$  = Minimum forward-going power (watts)

E = Source emf voltage (volts)

### NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

## OPERATING INSTRUCTIONS

# EXAMPLE

Characteristic Impedance of transmission line (ohms) = 50

Real load resistance (ohms) = 16.7

Max. forward-going power (watts) = 100

Min. forward-going power (watts) = 20

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTIONS

CHARA. IMPEDANCE OF TRANSMISSION LINE (OHMS)?

- 4. Key CHARA. IMPEDANCE CR/LF
- 4. Key 5 0 CR/LF

5. INSTRUCTION

REAL LOAD RESISTANCE (OHMS)?

- 6. Key REAL LOAD RESISTANCE CR/LF
- 6. Key <u>1</u> <u>6</u> <u>.</u> <u>7</u> CR/LF

7. <u>INSTRUCTION</u>

MAX. FORWARD-GOING POWER WATTS)?

- 8. Key MAX. FORWARD-GOING POWER CR/LF
- 8. Key  $\underline{1}$   $\underline{0}$   $\underline{0}$   $\overline{CR/LF}$

9. <u>INSTRUCTION</u>

MIN. FORWARD-GOING POWER (WATTS)?

- 10. Key MIN. FORWARD-GOING POWER

  [CR/LF]
- 10. Key 2 0 CR/LF

11. Read

CHARACTERISTIC GENERATOR
RESISTANCE = 6.654685808016 OHMS
SOURCE EMF VOLTAGE = 49.51801111596
VOLTS

12. INSTRUCTION

MORE INPUT? (1 = YES, 0 = NO)

# **OPERATING INSTRUCTIONS (Cont)**

13. Key  $\underline{0}$   $\overline{CR/LF}$ 

13. Key  $\underline{0}$  CR/LF

 $\mathbf{or}$ 

Key 1 CR/LF

If you have more input, go to Step 3. Otherwise program ends.

# WANG 2200 SERIES PROGRAM

"ERLANG B" EQUATION

TITLE

PE. 03-2200. 01A-00FI-3-0 6/1/73

NUMBER DATE

2200A-01, 2215, 2216/2217

EQUIPMENT

### **PROGRAM ABSTRACT**

Computes the probability that exactly N equipments will be busy simultaneously when offered to Erlang's (Grade of Service).

| BLOCK | SAVE "NAME" | BYTES REQUIRED |  |
|-------|-------------|----------------|--|
| 40    |             | 264            |  |
|       |             | ·              |  |

# PROGRAM DESCRIPTION

In the administration of a telephone or telex exchange, it is common to estimate the load upon groups of equipments by reading Erlang meters associated with each grouping of equipments.

The purpose of such activities is to determine the grade of service given the number of equipments and the traffic offered. The "Erlang B" equation that is calculated is:

$$P = \frac{T^{N}}{e^{T}} N!$$

where:

T = Traffic offered in Erlangs

N = Number of equipments

P = Probability that exactly N equipments will be busy simultaneously when offered to Erlangs (Grade of Service)

## NOTE

Many operating instructions are presented via the CRT (display) or one of the output devices. When such instructions occur the word <u>INSTRUCTION</u> will appear on the left hand side of the operating instructions and what is displayed or typed will appear on the right hand side.

## OPERATING INSTRUCTIONS

### **EXAMPLE**

Traffic = 17.075 Erlangs # of equipment = 24.

- 1. Key RESET CLEAR CR/LF

  LOAD CR/LF
- 2. Key RUN CR/LF
- 3. INSTRUCTION
- 4. Key TRAFFIC CR/LF
- 5. INSTRUCTION
- 6. Key No. of Equipments CR/LF
- 7. Read:
- 8. INSTRUCTION
- 9. Key 0 CR/LF

or

Key 1 CR/LF

TRAFFIC IN ERLANGS

4. Key <u>1</u> <u>7</u> <u>.</u> <u>0</u> <u>7</u> <u>5</u> <u>CR.LF</u>

NO. OF EQUIPMENTS

6. Key 2 4 CR/LF

P = 2.33546384E-02

MORE INPUT (1 = YES, 0 = NO)

9. Key 0 CR/LF

If you have more input, go to Step 3. Otherwise program ends.

|  |          | 4  |
|--|----------|----|
|  |          | .9 |
|  |          |    |
|  |          |    |
|  | <b>7</b> |    |
|  |          |    |
|  |          |    |
|  |          | ě  |
|  |          |    |
|  |          |    |

Jack Jarvis & Company, Inc. 707 S. W. Washington Street Portland, Oregon 97205 Telephone: (503) 224-7838

## WANG LABORATORIES (CANADA) LTD.

180 Duncan Mill Road Don Mills, Ontario M3B 1Z6 TELEPHONE (416) 449-7890 TELEX 06-21-7549

#### WANG EUROPE, S.A.

Buurtweg 13 9412 Ottergem Belgium TELEPHONE: 053/74514

TELEX: 26077

#### WANG ELECTRONICS LTD.

40-44 High Street Northwood, Middlesex, England **TELEPHONE Northwood 27677** 

## **WANG FRANCE SARL**

47, Rue de la Chapelle Paris 18, France TELEPHONE 203.27.94 or 203.25.94 WANG LABORATORIES GMBH

Moselstrasse No. 4 6000 Frankfurt am Main West Germany

TELEPHONE (611) 23-00-40

## **WANG SKANDINAVISKA AB**

Fredsgaten 17 S-172-23 Sundbyberg 1, Sweden **TELEPHONE 08-98-12-45** 

#### WANG NEDERLAND B.V.

Damstraat 2 Utrecht, Netherlands **TELEPHONE 030-930947** 

#### WANG PACIFIC LTD.

61, King Yip Street, 1st Floor Kwun Tong, Kowloon, Hong Kong TELEPHONE 3-434231/2

#### WANG INDUSTRIAL CO., LTD.

110-118 Kuang-Fu N. Rd. Taipei, Taiwan Republic of China **TELEPHONE 784181-3** 

#### **WANG GESELLSCHAFT MBH**

Grinzinger Allee 16 1190 Vienna 19 Austria TELEPHONE (0222) 32.42,43

#### WANG COMPUTER PTY. LTD.

25 Bridge Street Pymble, NSW 2073 Australia **TELEPHONE 449-6388** 

4

#### **WANG INTERNATIONAL** TRADE, INC.

836 North Street Tewksbury, Massachusetts 01876 TELEPHONE (617) 851-4111 TWX 710-343-6769 TELEX 94-7421

#### PHI COMPUTER SERVICES

836 North Street Tewksbury, Massachusetts 01876 TELEPHONE (617) 851-4111 TWX 710-343-6769 **TELEX 94-7421** 

24 Mill Street Arlington, Massachusetts 02174 TELEPHONE (617) 648-8550



LABORATORIES, INC.

836 NORTH STREET, TEWKSBURY, MASSACHUSETTS 01876, TEL (617) 851-4111, TWX 710 343-6769, TELEX 94-7421

Printed in U.S.A. 700-3120 7-73-1.5M

Volume Price: \$25.00 Package Price: \$250.00