A

0
o Y
e

i ~ Integrated Support System
| ~ (ISS) Release 5
o | User Manual

P ” .
= @ -
F % Yy

INTEGRATED SUPPORT
SYSTEM (ISS)
RELEASE 5
USER MANUAL

© Wang Laboratories, Inc., 1978

LABORATORIES, INC.

(i N ANG) ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01861, TEL. (617) 469-6000, TWX 710 343-6769, TELEX 94-7421

Disclaimer of Warranties
and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care in preparing
this manual; however, nothing contained herein modifies or alters in any

way the

standard terms and conditions of the Wang purchase, lease, or

license agreement by which this software package was acquired, nor
increases in any way Wang's liability to the customer. In no event shall
Wang Laboratories, Inc., or its subsidiaries be liable for incidental or con-
sequential damages in connection with or arising from the use of the soft-
ware package, the accompanying manual, or any related materials.

NOTICE:

All Wang Program Products are licensed to customers in accordance
with the terms and conditions of the Wang Laboratories, Inc. Standard
Program Products License; no ownership of Wang Software is trans-
ferred and any use beyond the terms of the aforesaid License, without the
written authorization of Wang Laboratories, Inc., is prohibited.

(WANG)

LABORATORIES, INC.

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 459-5000, TWX 710 343-6769, TELEX 94-7421

HOW TO USE THIS MANUAL

The Integrated Support System (ISS) Release 5 provides support software
for a Wang computer system equipped with a Wang 2200VP or 2200MVP central
processor. The major software components of ISS Release 5 are the following:

ISS Utilities -- operator-controlled programs which provide various
programming support and standard disk-related functions.

Screen/Disk Subroutines -- program-controlled subroutines to
simplify application programming by performing potentially complex
operator- or disk-related functions.

SORT-4 Subsystem -- a program-controlled subsystem which may be
incorporated into an application program sort specified disk file
records into a reordered output file according to the ascending or
descending values of specified sort key fields. This
program-controlled subsystem may be incorporated into an application
program.

Key File Access Method (KFAM) -- an indexed, disk file access method
which supports multistation access to data file records according to
ascending, descending, or random key sequence. Three versions of
KFAM Release 7 are provided to accommodate different types of 2200
central processors and optionally multiplexed disk environments.
KFAM Release 7 includes utilities, subroutines, and a subsystem.

Chapter 1 of this manual provides a software overview, lists the
hardware requirements, describes ISS start-up procedures, and supplies other
general information. Chapter 2 describes the 1ISS wutilities. Chapter 3
describes the Screen/Disk Subroutines. Chapter 4 describes the SORT-4
Subsystem. Chapters 5 through 8 describe KFAM software. Five appendices are
also included.

The following manuals contain information related to Wang 2200 hardware
and should be available for reference purposes:

The appropriate introductory manual supplied with the CPU.

The Wang BASIC-2 Disk Reference Manual supplied with a disk or
diskette drive (700-4081).

The BASIC-2 Reference Manual supplied with the CPU (700-4080).

iii

The appropriate disk user manual supplied with each disk drive.

If a printer is available, the appropriate printer manual supplied
with the printer.

The 1SS Release 5 software package consists of four prerecorded
diskettes, a copy of the ISS Release 5 Reference Card, and a copy of this
manual, the Integrated Support System (ISS) Release 5 User Manual. The ISS
Release 5 package number 1is 195-0052-3. The diskette numbers are the
following:

Diskette Number Diskette Name

701-2423 (revision letter B or later) ISS Utilities
701-2424 (revision letter B or later) Screen/Disk Subroutines
701-2425 (revision letter B or later) SORT-4

701-2427 (revision letter B or later) KFAM-~7

iv

CONTENTS

CHAPTER 1 GENERAL INFORMATION
1.1 Software Overview . . « « « « « « « « o« « &
1.2 Hardware Requirements . « « « « « o o o & &
1.3 Software Backup to Disk or Disgkette
1.4 ISS Start-up Instructions and Related

Information « « « o« o ¢ ¢ o o ¢ ¢ o o o o
1.5 Application Program Requirements and ISS
Common Variables . . . « « « ¢ &« o« &« + &

CHAPTER

N

THE ISS UTILITIES

Introduction .« ¢« ¢ ¢« ¢ o« o o o o o o & o
The Copy/Verify Utility « « « « ¢« « o « + &
The Create Reference File Utility &
The List/Cross—Reference Utility. . . « . .
The Compression Utility . .« « « « ¢« ¢« o o &
The Decompression Utility « . . .
The Sort Disk Catalog Utility
The Disk Dump Utility « « « « « . .
The File Status Report Utility. « . « « . .
The Program Compare Utility « . .
The Reconstruct Disk Index Utility.
The Alter Disk Index Utility « . .
ISS Utilities Error Messages . . . + + + &

e o o o o .
W= O

NRNMNRNMRONRNMNRONNOMNONNDNNDNDN
.
H i SO O~NOUN S WN

W

CHAPTER THE SCREEN/DISK SUBROUTINES

Introduction and Operating Notes
Data Entry (DEFFN'200) . . . ¢ ¢ « o o« o + &
Date Routines (DEFFN'220,221,222 223,224,225)
Pogition Cursor (DEFFN'248) e e e e e e
Operator Wait (DEFFN'254) « « .« &
Re-enter (DEFFN'255) . v ¢ ¢ ¢ ¢ ¢ ¢ ¢ o &
Print Routine (DEFFN'242) . . « « « + & .
Select/Validate Disk Addresses (DEFFN'ZOS)
Search Index (DEFFN'229) . ¢ ¢ & o o o o &
Allocate Data File Space (DEFFN'228) . . .
Free Unused Sectors {(DEFFN'227)
Limits Next (DEFFN'226) . « « ¢ « & o & « &

L]
HHEEPWoOoOSNOOWMEWN-

N = O

WL WW WWWWWW
L]

O~

CHAPTER

CHAPTER

3,13
3.14
3.15

3.16
3.17
3.18
3.19
3.20

S

L]
=W OoONOU WD -

=
WN=O

L i I I Ol R e o I

4.14
4,15
4.16
4.17
4.18
4.19

Open/Close Output (DEFFN'240,241)
Open/Close Input (DEFFN'250,251)
Introduction to the Multiplexed/Multistation
Disk Subroutines . . « ¢ &+ o o o o o o o o o
Open (DEFFN'217) & & v ¢ ¢ o o o o o o o o o o
End (DEFFN'218) . & . ¢ ¢ ¢ o« o o s o o o s « o «
Close (DEFFN'219) et e e e e e e
Set/Release Hog Mode (DEFFN' 215) e e e e e e e
Translation Table Subroutines (DEFFN'201,202) . .

THE SORT-4 DISK SORT SUBSYSTEM

Introduction .« ¢« o o o o o o o o s o o o o o o o
Writing the Setup Module ¢« ¢ ¢ & . .
Input File Format Requirements . . . « « « « « &
Input Record Format Requirements. . « . « « o« o &
Machine Configuration . . « + « « ¢ ¢ « o o « « &
Disk Device Addresses and Multistation Operation
Pagsword Use . ¢ . & ¢ ¢ ¢ o o o o o o o o « o &
Sort Key Fields « « « ¢ ¢ ¢« ¢ ¢« 4 ¢ o o ¢ « o « &
Sorting Partial Files . ¢ ¢« & & ¢ & ¢ o o o o o &
Type of Sort . . ¢ ¢ ¢« ¢ ¢« & ¢ e 0 e 4 e v e s
Construction of Sort Records . . . « &+ « o « + &
The Sort Work File . . ¢« ¢ ¢« ¢ ¢« o ¢ o o o « o &
The Output File and Deferred Mounting
Special Input Record Selection Procedure
Exit from SORT-4 . ¢ v v v ¢ o ¢ 2 o o o o o o &
Normal Operating Procedure ¢« « ¢ « « « &
Error Messages and Recovery Procedures
SORT-4 Timings =« o o o o o o o o o o o o o o s o
Sample Setup Programs . . . « « o« & « o« o o o« o

KFAM-7 GENERAL INFORMATION

KFAM and Disk Access Methods . . . « « « « « + .
File Structures . . « « « o o o o o o o o o o o
Software Components e e o e s e e o
KFAM, the 2200 Device Table, and 2200 Disk Storage
CharacteriSticCsS « « « + o o+ o o o o « o o o o =
KFAM Record TYPeS « ¢ « o « o o ¢ o s o o o o o o
General Requirements and Conventions
Choosing the Correct KFAM-7 Version« + . .
Getting Started with KFAM~7

vi

67
69

70
72
76
77
77
78

79

83

88

90
103
105
106
106
108
109
112
113
115
117
121
122
123
132
132

140
143
146

150
154
160
165
167

CHAPTER

CHAPTER

CHAPTER

6

L N N N A A e e e e X X
-
H WO ONOWUL S WN -

= O

~

-
=Yoo~ WWwN-

-
-
WO

NN N N N NN NN N NN
L]

7.14
7.15
7.16
7.17
7.18

oo

. o .

.

¢« o o

00 00 00 00 OO0 OO OO OO QO
oo WD -

THE KFAM-7 UTILITIES

INtroduction « o « o o o o o o o o o o o 8 s e o e o e
Initialize KFAM File . . ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o o & o
Build Key File .+ ¢ ¢ 4 4 o ¢ ¢ o o o o o o o o s s o »
Print Key File .+ ¢ & ¢ ¢ ¢ o o ¢ ¢ o o o o o o o & « &
Reallocate File Space . + o ¢ ¢ o ¢ o o o s o s s o o
Reorganize In Place . o ¢ & &« ¢ ¢ ¢ o o ¢ o o o o o & &
Reorganize/Rebuild Subsystem . . « « « « ¢« o « o & o &
Convert to KFAM-7 . . . & & ¢ ¢ o o o o o o o o o s o =
Build Subroutine Module . . . « .« ¢« ¢ ¢ ¢« ¢« ¢ ¢ ¢« « o .
Key File RECOVEIY « o v ¢ ¢ ¢ o ¢ o o o o o o o o o o
Reset Access Tables . « . ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢« ¢ o o o o o

The KFAM-7 SUBROUTINES

INtroduction .« « « « ¢ o o o o o o o o o o o o o ¢ o
KFAM Access Modes « « « o o ¢ o o o o o o« s s o s s o =
General Programming Requirements . . « o« o« o o« o o o+ o
Guidelines for Multiple Key File and Duplicate Key Use
Open (DEFFN'230) . ¢ & v ¢ ¢ ¢ o o o o o « o« o o o o =
Delete (DEFFN'231) & v v ¢ ¢ ¢ o o o o o o o o o o o
Findold (DEFFN'232) . . . v ¢ ¢ ¢ ¢ o o o o o o o o o
Findnew (DEFFN'233) . . & ¢ ¢ ¢ v o o « o o « o « « & =
Findnew(Here) (DEFFN'234) . & v v v ¢ ¢ o ¢ o o« o o o &«
Findfirst (DEFFN'235) . . v v ¢ v ¢ v ¢ v o o« o« o« o o &
Findlast (DEFFN'236) . . & & ¢ ¢ ¢ o o o o o o o o o
Findnext (DEFFN'237) . & ¢ ¢ ¢ 4 & ¢ o o o o o o o o &
Findprevious (DEFFN'212) . . & & ¢ ¢ ¢ « o o o o o« o &
Release (DEFFN'238) & & & & & ¢ 4 ¢ ¢ o o o o o o o o
Re-open (DEFFN'213) e e e e e e e e
Write Recovery Information (DEFFN' 214) e e e e e e
Close (DEFFN'239) . . . « « « « .« . e e e e e e e e
Non-KFAM Subroutines Included with KFAM-7 e o s s o o

KFAM-7 TECHNICAL INFORMATION AND ADVANCED PROGRAMMING

Key File and Memory-Resident Control Information . . .
KFAM-7 File Names . « & ¢ ¢ o o o o o o o o o o o o o
Findnew with Blocked Files . « . & & ¢ v o o « « o o &
Files Too Large for One Disk . « ¢« &« ¢ v ¢ & & ¢ « o« &
Reusing Deleted Space with Findnew(Here)
Status of the Key Descriptor Record . . + « « « « « « &
Key File Recovery Information « « « « « + &
Key Index Records and the Adjustable Bias
Procedures for Changing User File Record Layout

vii

170
176
179
180
183
183
184
191
191
194
195

197
202
204
212
217
219
220
221
223
225
225
226
227
227
228
228
229
230

231
241
242
243
244
244
245
245
251

APPENDICES

Appendix A KFAM Utility Error Messages and
Recovery Procedures . « + « o « s s s o s« o o o« « o 253

Appendix B SORT-4 Variable Check-off List . . . ¢« « « « o « . o 277

Appendix C Conditions Governing Spurious Results
from the List/Cross-Reference Utility 278

Appendix D Translation Tables: ASCII to EBCDIC
and EBCDIC to ASCII L] L] L] - L] L] L] . L)] L] L] L) L] . . 280

Appendix E ISS Utilities Error Messages and

Recovery Procedures « . « « « o s « o o s o « o« » o 282

Customer Comment FOrm + &+ o+ ¢ ¢« ¢ ¢ o ¢ o o « o s o s o« s o« o « « o Last page

viii

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

a\U\unu1¢~¢-#~f~#~h>h>hnpnhnrnpn
H WNFEFUVMPFPLONEENDPRPPVPE LN

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

[I e T L I L) | T
NFFUVMVPONFEFOOAMPEWONEFEFR,NPEONE W=

a\c\u1u|utu:urP-P-#~f~$~#~u>h>n>h>n>n>hth‘hth‘

FIGURES

ISS Release 5 Diskettes « . ¢« « « ¢ ¢ o ¢ o o &
Start-~up Display with No Default Values
Start-up Display Format for Default Values. . .
The System Menu .« ¢ « « « ¢ ¢ o o ¢ o s o o o
The Application Menu Format . « « + « & o« o« « &
The ISS Utilities Menu., . .« ¢« &« « ¢ ¢ & « « o &
Alter Disk Index Display Format . « . . « « o+ .
SORT-4 Sample Operation on Input Records . . .
Input Record Selection Flowchart.
The SORT-4 Setup Program . + . « « « o o & « &
The INVTSORT Program . .« ¢ o « ¢ o o o o o o o
The SORTINVT Program . « o o o o = o o o o o &
User File Structure « « « « « « « « « « o & o &
Key File Structure .« « « « o o o o o o o o o &
Data Sector with Control Bytes . + « « « « o &
The KFAM-7 Utilities Menu . . + + ¢ o & & o o &

TABLES

Minimum Size Requirements for the 2200MVP ., . .
ISS-5 Reference Files + « « & v & ¢ o o o o & &
Start-up and Menu Access Error Messages
ISS Common Variables . . . « ¢ & o« ¢ ¢ ¢ o + &
ISS Utilities and Categories « « « +
Create Reference File Memory Requirements . . .
Sort Disk Catalog Memory Requirements
Disk Dump SF Keys for CRT Output
Alter Disk Index SF Keys . « « 4o « o« o o & « o
Open Return Codes . + « ¢ o« & o « o s o o o o &
SORT-4 Master Setup Program . « « « o o o o o+
SORT-4 Input Record/File Format Combinations .
Maximum Field Lengths and SORT-4 Field Lengths
Alphabetic List of SORT-4 Error Messages . . .
SORT-4 Timings, 2200VP . . &+ v & & o & o o o &
Inventory Record Layout . « « ¢« o« o o o ¢ & & &
KFAM-7 Subroutines . « « « o « « « o « ¢ « o« &
KFAM Record TypPeS « « « « « o o o o o s o o s
Sector Layout for Record Type A Example . . ., .
Record Layout for Record Type M Example
KFAM-7 Versions and Applicable Hardware
KFAM Utility Use with Multiple Key Files . . .
Information Required by Initialize KFAM File .

14
16
17
19
25
47
111
118
135
138
139
144
145
152
171

11
20
22
24
32
40
42
48
75
84
98
101
124
132
136
148
154
156
160
165
173
176

Table
Table
Table
Table
Table
Table
Table
Table

Table
Table
Table
Table
Table
Table
Table
Table

Table
Table

TETIIILY
WKW~ & W

T
s

SF Keys for Print Key File . . . « ¢ ¢« « o « « &
Build Subroutine Module Options . . « &« « o « . &
KFAM Multistation Access Modes. . . . « . . « . .
KFAM Subroutine Argument Symbolic Variables . . .
KFAM Subroutine Qf Return Codes . « « « « « « . .
The KDR Control Information ¢« « « « « . &
KIR Control Information . « « ¢ « ¢ ¢« o o o « & &
User Partition Storage of Array VO$() with the
Non-Multiplexed KFAM-7 Versions . . + « o« o« « &
User Partition Storage of Array T5$() with the
Non-Multiplexed KFAM-7 Versions . . +. + o« o o =
User Partition Storage of Array VO$() with the
Multiplexed KFAM-7 Version . . . e e e e 4 .
User Partition Storage of Array T5$() with the
Multiplexed KFAM-7 Version . . « « o« o o & & &
Table of Open Files, Array @T$(), per Entry . . .
Table of Protected Records, Array @V4$, per Entry
Description of the Files on the KFAM-7 Diskette .
KFAM Error Message Categories and Recovery
OPtionsS + o o o « o o o s « s o o o o o o o o o
KFAM Utility Error Messages . « « « o « » « s o o
ASCIT/EDCBIC Translation . . « « « o« s o o« o o« &«
ISS Utilities Error Messages and Recovery
Procedures. . . « ¢ ¢ ¢ o ¢ o o o« o o o o o o o

181
193
203
209
210
232
234

235
235
236
237
238
240
241
254
255
280

282

CHAPTER 1
GENERAL INFORMATION

1.1 SOFTWARE OVERVIEW

The Integrated Support System (ISS) Release 5 fulfills a wide range of
programming support and standard data processing needs for a disk- or
diskette-based Wang computer system equipped with a 2200VP or 2200MVP central
processor. The collection of software included in ISS Release 5 is supplied
on four prerecorded diskettes. Each diskette contains a major component of
ISS Release 5, as shown in Figure 1-1.

“ 1SS UTILITIES

«~ SCREEN/DISK
SUBROUTINES

Figure 1-1. 1ISS Release 5 Diskettes

The major components of ISS are:

ISS UTILITIES -- A group of utility programs providing programming
support and standard disk-related functions. The Utilities wmenu
facilitates operator selection of the desired program.

SCREEN/DISK SUBROUTINES -- Designed for wuse with wuser-supplied
application programs, these marked subroutines simplify operator/screen
interaction, character code translation, and various disk-related
functions. Subroutines are selected from a displayed list and are saved
to disk for subsequent loading. Global subroutine use for 2200MVP
systems 1s supported.

SORT-4 -~ This versatile disk sort subsystem receives sort parameters
from a short user-supplied program and copies records from the specified
input file into an output file in reordered sequence. A variety of
input record formats and file formats are supported.

KFAM-7 ~-- This disk file access method is comprised of subroutines and
utilities. The subroutines support rapid access to randomly dispersed
records according to ascending, descending, or random key sequence.
KFAM is an acronym for Key File Access Method; the suffix "-7" denotes
the Release 7 version of this support software. In ISS Release 5,
KFAM-7 may be used with 2200VP or 2200MVP central processors and
utilizes the global partition capabilities of a 2200MVP for common
global storage of subroutines and record access control information.

1SS Release 5 also provides start-up software, which is contained on the
ISS Utilities, Screen/Disk Subroutines, and KFAM-7 diskettes.

ISS software may be copied to a single fixed/removable disk for
efficient program loading and multiuser access via a multiplexed disk drive.

1SS Start-up

Each 2200VP central processor or 2200MVP memory partition is considered
by ISS Releagse 5 (ISS-5) conventions to be a '"station." Each station begins
ISS start-up via a program file called START. During start-up, the user
defines the current date and available peripherals. This information is made
available to all 1ISS software and application programs running in that
station, along with certain information defined internally by ISS start-up
software. 1ISS start-up typically occurs at the beginning of a working day and
also whenever peripheral availability changes.

ISS start-up software supplies access to all menu-controlled 1SS
components through its flexible menu structure and allows the user to specify
the desired menu after start-up has been completed. In addition, a
user-specified application program may be loaded and run by specifying the
Application menu.

ISS Utilities

The ISS utilities are operator-controlled programs that provide various
programming- or disk-related functions. Several utilities support several
forms of multiple file processing; all wutilities are compatible with
multiplexed/multistation operation.

COPY/VERIFY -- copies one or more files from one disk to the same or a
different disk and optionally verifies the copy. Each file copied to
the output disk may be either a new file or a replacement for an
existing file. The number of extra sectors may be specified to
determine the allocated space for the output file.

CREATE REFERENCE FILE -- allows the user to create, edit, or print a
"reference file.'" A reference file consists of multiple entries in the
form of an input file name, an output (or second) file name, and an
extra sectors value. Many ISS utilities allow use of a reference file
to specify the files to be processed.

LIST/CROSS-REFERENCE -- lists and/or cross-references each program file
specified. 1f cross-referenced, printed tables indicate: (1) for each
line number referenced elsewhere in the program, a list of line numbers
referencing that line number, (2) for each variable used, a list of line
numbers in which that variable appears, (3) a list of each marked
(DEFFN' statement) subroutine's line number followed by a list of line
numbers which reference that marked subroutine.

COMPRESSION -- copies each specified program file to an output file in
compressed form, which eliminates spaces, inessential line numbers, and
REM statement lines. The compressed program requires less memory and

executes faster than the original program.

DECOMPRESSION -- copies each specified program file to an output file in
decompressed form, separating each multistatement 1line into single
statement lines and assigning a unique line number to each executable
BASIC-2 statement.

SORT DISK CATALOG -- prints or displays a report of a disk catalog
index. File names may be sorted: (1) alphabetically by file name, (2)
by ascending starting sector number, or (3) by ascending file sequence
in the disk index.

DISK DUMP -- allows the user to display or print the contents of one or
moré contiguous sectors within a specified file or range of absolute
sector numbers. Each byte's hexadecimal value and corresponding

characters are displayed in one format or can be printed in one of three
formats, including printing records formatted with control bytes (e.g.,
SOV, EOB) on a field~by-field basis.

FILE STATUS REPORT -~ performs several functions pertaining to
multiplexed/multistation data files, including closing the specified
files for one or all possible stations and printing or displaying the
status of specified files relative to either all possible stations or a
specified station.

PROGRAM COMPARE -- for each pair of program files specified, a
comparison is made on a line-number-by-line-number basis. Messages
appear indicating statement lines whose contents do not match, if a
statement line number exists in only one of the program files, if one
program file ends while the other continues, and if all pairs of program
files are identical.

RECONSTRUCT DISK INDEX -- reconstructs a disk catalog index in the event
of its accidental destruction; e.g., a scratched disk.

ALTER DISK INDEX -- performs certain functions involving a disk's
catalog index, which are: displaying the contents of the catalog index,
renaming a file, changing an active (unscratched) file to a scratched
file, changing a scratched file to an active file, searching for a
specified file name and displaying its disk sector allocation and use,
and removing the last file allocated on a disk thereby freeing its disk
space for allocation to other files.

Screen/Disk Subroutines

There are three groups of Screen/Disk subroutines: Screen subroutines,
Disk subroutines, and Translation Table subroutines. After choosing the
desired subroutines, the user specifies whether the chosen subroutines are to
be used as nonglobal or global subroutines. With nonglobal wuse, both
variables and subroutines are incorporated into the wuser's application
program. With global use, only the variables are incorporated into the
application program, and the subroutines reside 1in a global partition
accessible to multiple partitions.

Screen Subroutines:

DATA ENTRY -- displays a prompt and accepts a numeric or alphanumeric
keyboard entry. Checks are made to determine whether the entry falls
within specified alphanumeric limits or a specified numeric range,
whether the length is acceptable, whether the entry is on a list of
valid entries (table 1look-up), and whether a numeric entry has an
acceptable number of digits to the left and right of the decimal point.
If unacceptable, entry is rerequested. A displayed operator-modifiable
default value may be implemented.

POSITION CURSOR -- positions the cursor to a specified location on the
CRT screen and optionally erases characters to the right of the cursor's
position on the same line and lines below the cursor's position.

DATE ROUTINES -- allows entry of dates in Gregorian or Julian form and
allows conversion between Gregorian and Julian dates. The difference
between two dates may also be calculated.

OPERATOR WAIT -- displays KEY RETURN(EXEC) TO RESUME and waits for the
RETURN key to be touched.

PRINT -- allows a specified character to be printed a specified number
of times.

RE-ENTER -~ displays RE-ENTER to indicate an invalid operator entry.

Disk Subroutines:

SELECT/VALIDATE DISK ADDRESSES -- validates a specified disk address by
checking that it is a valid 2200 disk address and optionally selects the
disk address to a specified file number using a SELECT statement.

SEARCH INDEX ~- examines a disk catalog index to determine if a
specified file 1is: (1) cataloged, (2) scratched or active, and (3) a
data or program file.

ALLOCATE DATA FILE SPACE -- opens a new file on the specified disk and
allocates to that file either a specified number of sectors or all
sectors beyond the current end of allocated disk space to the end of the
catalog area.

FREE UNUSED SECTORS -- examines a specified file's END (end-of-data)
control sector and the catalog trailer (end-of-file) control sector and
reallocates the unused sectors (between the END control sector and
catalog trailer control sector) as '"free" sectors available for other
files. This reallocation reduces the number of extra sectors within the
file to =zero; however, a minimum number of extra sectors may be
specified to limit the number of sectors reallocated as free disk space.

OPEN/CLOSE OUTPUT -- opens for output or closes a data file containing
certain special-purpose software header and trailer records.

OPEN/CLOSE INPUT -- opens for input or closes a data file containing
certain special-purpose software header and trailer records.

LIMITS NEXT -- returns the name of the next file according to file
sequence in a specified disk's index and indicates whether the file 1is
scratched or active and a data or program file.

MULTIPLEXED/MULTISTATION FILE OPEN/END/CLOSE —-— These subroutines
control multiple station access to specified data files. When opening a
file, one of four access modes is specified. Whether or not file access
is granted depends upon the file access mode specified and the file
access mode already granted to other stations for that file. These
subroutines support opening a new file, opening an existing file,
writing an END trailer record (equivalent to DATASAVE DC END), and
closing a file. File password protection is supported, and a disk hog
mode option is available.

Translation Table Subroutines:

ASCII to EBCIDIC -- assigns the proper hexadecimal codes to an
alphanumeric array (table) for the code translation from ASCII to
EBCIDIC.

EBCIDIC to ASCII -- assigns the proper hexadecimal codes to an
alphanumeric array (table) for the code transalation from EBCIDIC to
ASCII.

SORT-4 Disk Sort Subsystem

SORT-4 is a subsystem designed to sort the records in a specified input
file into a reordered sequence in a specified output file. Up to ten
ascending or descending fields in each record collectively compose the sort
key, which determines output file record order. Three types of sorts are
available: (1) a full-record sort, (2) a key sort, and (3) a tag sort which
outputs only sorted pointers to the records in the input file. Acceptable
input file formats include general sequential files; BAS-1 sequential files;
ISS Open/Close sequential files; and KFAM-3, KFAM-4, KFAM-5, and KFAM-7
files. Files containing variable length records, including 2200 TC
(Telecommunications) formatted files, are also supported by SORT-4. Record
formats include unpacked records, packed subfields, and packed records written
by DATASAVE DC, DATASAVE DA, or DATASAVE BA statements (with certain
exceptions). Input record selection to include or exclude records based on
logical tests performed by user-supplied program statements is also supported.

A short, user-supplied setup program loads SORT-4 software and supplies
sort parameters such as input file name, input file format, input record
format, and related information.

KFAM-7

This software system is designed to create, maintain, and search an
index to the records in a data file. All records within the data file must be
a fixed length and contain an alphanumeric key located within the same portion
of every record; the key must be unique when compared to the keys contained
within other records in the file, unless special considerations and procedures
are observed which allow duplicate key use. The index, contained within a
separate Key File, contains a key for each record and the location of that
record. Multiple Key Files for a single data file allow access to records in
the data file using more than one key field. Control information supporting
multistation record access and record protection using one of four available
access modes is also contained in (1) the Key File with the '"Multiplexed"
KFAM-7 version, (2) in a global partition with the '"Single Bank" KFAM-7
version, or (3) in a universal global partition with the "Multiple Bank"
KFAM-7 version.

KFAM-7 subroutines either reside as global program text in a 2200MVP
partition or are incorporated into a user-supplied application program to
perform routine functions on the index, such as random key search, ascending
or descending key sequence search, adding and deleting key/record entries.

KFAM-7 utilities can create a KFAM-7 Key File based upon a sequential
data file containing fixed-length, fixed-format records, create the index in
the Key File, reorder data file records and Key File entries into ascending
key sequence, print certain Key File information, and perform other functions
described elsewhere in this manual.

KFAM-7 utilizes the 2200MVP memory partitioning scheme, allowing KFAM-7
subroutines and record access/protection control information to be contained
within a global partition accessible to application programs and KFAM~7
utilities running in other partitions. The several versions of KFAM-7 are
made available by the presence of different global program files. Programming
differences between the several KFAM-7 versions are nearly transparent to user
software.

1.2 HARDWARE REQUIREMENTS

ISS-5 requires either a 2200VP or a 2200MVP central processor. With a
2200VP, a minimum of 16K memory and Release 1.9 (or a subsequent release) of
the 2200VP Operating System are required. With a 2200MVP, the minimum
partition size required depends upon the ISS component to be used (as
described in Table 1-1), and Release 1.7 (or a subsequent release) of the
2200MVP Operating System is required.

Peripheral requirements include a disk or diskette drive and, for
certain ISS software, a printer. Either one Model 2270, 2270A, or 2270AD
Diskette Drive must be available for mounting an ISS diskette or one
fixed/removable disk must contain the ISS-5 software. At least one other
fixed/removable disk or a second diskette drive (in a dual or triple drive)
should be available for data file storage, especially if the ISS-5 software is
to reside on diskettes. Supported disk device addresses are 310/B10, 320/B20,
330/B30, 350/B50, 360/B60, 370/B70 and Model 2280 disk device addresses D10
through D15, D20 through D25, D30 through D35, D50 through D55, D60 through
D65, and D70 through D75. It is recommended that each disk or diskette drive
be labeled with its respective disk device address.

A Wang printer (132-column) is recommended for all ISS-5 software and is

required for the List/Cross-Reference ISS utility. Supported printer
addresses are 204, 211, 212, 213, 214, 215, 216, and 217. In addition, an
output address of blank indicates user-interactive CRT screen output. An

output address of O0lD indicates output via a telecommunications interface
controller.

In a system where a disk multiplex controller is used, an Engineering
Change (ECN) to the multiplex controller may be necessary in order to use the
disk Multiplexed version of KFAM-7.

Table 1-1. Minimum Size Requirements for the 2200MVP

ISS COMPONENT

PARTITION SIZE REQUIREMENTS

ISS Start-up 8.5K
Module
1SS Utilities Copy/Verify - 10K
Create Reference File - 8.5K minimum (See Chapter 2)
Compression - 13.5K
Decompression - 11.5K
Sort Disk Catalog - 8.5K minimum (See Chapter 2)
Disk Dump - 9K
File Status Report - 10.5K
Program Compare - 14K
Reconstruct Disk Index - 8.5K
Alter Disk Index - 11.25K
Screen/Disk To choose the desired
Subroutines subroutine - 12K
All subroutines are
chosen - 10K (8.9K memory use)
Variables necessary for
global use - 4K (2.8K memory use)
SORT-4 Sequential file - 9K
Subsystem KFAM file - 11-12K
SORT-4 adjusts 1itself to the amount of memory
available and provides better throughput if run in a
larger size partition.
KFAM-7 If global KFAM subroutines are not available, program

overlays are loaded, usually increasing partition size
requirements.

Initialize KFAM File

Build Key File

Print Key File

Reallocate File Space

Reorganize in Place

Reorganize/Rebuild
Subsystem

Convert to KFAM-7

10.25K

9.75K (13.25K with overlays)
9.25K (12.75K with overlays)
9K (12.75K with overlays)
9.5K (13.25K with overlays)

9.25K (13K with overlays)
9.25K (10.25K with overlays)

i

Build Subroutine Module - 7.75K
Key File Recovery ~ 9.75K (11K with overlays)
Reset Access Tables - 9K

Table 1-1. Minimum Size Requirements for the 2200MVP (continued)

ISS COMPONENT PARTITION SIZE REQUIREMENTS
KFAM-7 User Approximately 1000 bytes, plus 87 bytes per accessed
Variables KFAM file.
KFAM-7 Global Multiplexed version - 8K per bank
Subroutines Single Bank version - 9.75K per bank
and Global Multiple Bank version:
Variables global subroutines - 8.5K per bank
global variables - 2.75K in the universal global
area,

1.3 SOFTWARE BACKUP TO DISK OR DISKETTE

ISS-5 software is supplied on four diskettes. A copy should be made of
each diskette. Once copied, the supplied ISS-5 diskettes should be kept as
backup software, and the newly copied diskettes should be labeled and used.
If preferred, one or more 1ISS-5 diskettes may be copied to a single
fixed/removable disk.

Copy ‘Guidelines

To make diskette backup copies if a dual (or triple) diskette drive is
available, use the COPY statement followed by the VERIFY statement.

NOTE:

If the input diskette was formatted using a 2200C, 22008,
or 2200T central processor, use the Copy/Verify utility
instead of these procedures.

For example, to copy an ISS-5 diskette in the leftmost diskette slot at
disk device address xyy to a formatted diskette which does not contain
irreplaceable data in the rightmost diskette drive (dual drive) or middle
diskette drive (triple drive), enter the following sequence:

:SELECT DISK xyy
:COPY FR (0,1023)
:VERIFY R (0,1023)

To copy one or more ISS-5 diskettes to a single fixed/removable disk,
proceed as follows:

1. Obtain a fixed/removable disk which does not contain irreplaceable
data or program files. The disk must have been formatted at one
time and must be scratched using the SCRATCH DISK statement
immediately prior to copy.

2. Mount the 18S8-5 disk(ette) containing the 1SS utilities. Load 1SS
start-up software and complete the start-up procedures as described
in Section l.4. .

3. From the ISS Utilities menu, choose the Copy/Verify utility. Set
Copy/Verify parameters as follows:

INPUT ADDRESS - xyy (diskette address)

INPUT OPTION - COPY/VERIFY

MODE - ALL

OUTPUT ADDRESS - xyy (fixed/removable disk address)
OUTPUT OPTION - ADD

EXTRA SECTORS - -1

4. Refer to Chapter 2 for information on operating the Copy/Verify
utility. Mount the disk and the ISS diskette at their specified
addresses. If error messages of the following type appear: FILE -
filename - CANNOT BE COPIED, skip to Step 7. If error messages do
not appear, upon completion of copy refer to Step 5.

5. Remove the diskette just copied and replace it with the next
diskette to be copied; refer to Step 3 to copy the next diskette.
After copying all diskettes, refer to Step 6.

6. After copying the appropriate ISS diskette, touch SF'3l as required
to obtain the start-up display shown in Figure 1-3. Change the ISS
loading address to the address of the fixed/removable disk.

7. Obtain the ISS Utilities menu and choose the Copy/Verify utility.
Set Copy/Verify parameters identical to those in Step 3, except set
the Input Mode to Verify.

8. After completion of verification, if an error message did not
appear, remove the diskette just verified and replace it with the
next diskette to be copied; refer to Step 3 to copy the next
diskette. Otherwise, see Appendix E.

1SS-5 Reference Files

ISS-5 supplies reference files primarily for use with the ISS utility
Copy/Verify, MODE = INDIRECT. For example, if all 1SS diskettes have been
copied to a single fixed/removable disk, other diskette copies of the four 1SS
components may be made wusing the appropriate reference file names. The
reference file names and associated ISS components appear in Table 1-2.

10

Table 1-2. 1SS-5 Reference Files

REFERENCE FILE NAME ISS COMPONENT

ISS.REF1 The ISS Utilities diskette.

ISS.REF2 The ISS Screen/Disk Subroutines diskette.
KFAMREF 7 The KFAM-7 diskette.

SORTREF4 The SORT-4 diskette.

KFAMREFS KFAM-7 Reorganize/Rebuild Subsystem.

1.4 ISS START-UP INSTRUCTIONS AND RELATED INFORMATION

ISS start-up operation allows the user to enter, in reply to operator
prompts, certain information pertaining to the station currently in use.
Following ISS start-up operation, the information pertaining to that station,
including available peripheral addresses and the date, 1s available (via
common variables) to all software running in that station. For instance,
during the operation of an 1ISS wutility program, the 1ISS start-up disk
addresses are used to determine if an operator-entered disk address is valid,
and the date appears on most printouts.

Both operator-entered information and internally obtained information
tested during start—-up is available to all software running in a station. The
operator entered and internally obtained information is collectively referred
to as the '"system configuration table" for the station in use. Internally
obtained information includes memory size and type of CPU.

Operator-entered start-up information is automatically saved (recorded)
in a station file on the ISS disk(ette). During subsequent ISS start-up
operations, the current contents of the station file are automatically loaded
and appear as operator-modifiable default values. A station file may be
created during start-up operation for a particular station number and occupies
10 disk sectors. Station file names are assigned as 1SS.0nnD, where nn is the
station number from 1 through 48. Default values for start-up operation and
most ISS utilities are maintained within this station file.

ISS start-up operation typically occurs only at the start of the working
day, following Master Initialization of the central processor. During the
day, however, if Master Initialization (partition generation with a 2200MVP
central processor) 1is repeated or the wuser needs to change any system
configuration table values, ISS start-up operation must be repeated.

11

Recommended Station Number Convention

The first prompt which appears during ISS start-up operation requests
entry of a station number. The station numbers in use at any time must be
unique, or potentially dangerous file access problems may occur. One way to
ensure unique station numbers are always in use with a 2200MVP central
processor 1s to assign each station number as the partition number currently
in use. A unique station number must be assigned to each station accessing
shared disk(ette) drives because the entered station number (any number from 1
through 48) is equated to common variable S2, and is used by utilities (and
possibly application software) to determine which station is accessing a
multiplexed/multistation disk file.

NOTE:

Although 1SS start-up allows station numbers from 1
through 48, the following ISS components only allow
station numbers from 1 through 16: KFAM-7 utilities and
subroutines, and the SORT-4 subsystem when sorting a KFAM

file. It is recommended that these station number
limitations be considered before assigning unique station
numbers.

2200MVP Partition Generation Considerations

As discussed in the 2200MVP Introductory Manual, the 2200MVP system disk
contains the 2200MVP Operating System and other software associated with

partition generation. Following Master 1Initialization, the partition
generation phase allows 2200MVP memory to be allocated to the partitions to be
used, and each terminal may be assigned to one or more partitions. Partition

size requirements for the ISS components appear in Table 1-1.

During partition generation, if the peripheral addresses have not yet
been defined in the 2200MVP's Master Device Table, choose the Edit Device
Table option. Any peripheral device address used during ISS operation must
have previously been entered into the Master Device Table. The Master Device
Table's current (memory-resident) values may become its default
(disk-resident) values by saving a partition configuration (Save Partition
Configuration option) before executing the partition configuration.
Thereafter, the Edit Device Table option is needed only if the default values
(stored on the 2200MVP system disk) are not acceptable.

If global program files are to be used, it is recommended that these
program files be copied to the 2200MVP system disk to allow the automatic
bootstrap feature to be implemented. The ISS Copy/Verify utility may be used
to copy such files following ISS start-up.

12

After executing a partition configuration, the partition number appears
on the screen. The $RELEASE TERMINAL statement may be used to change the
partition currently attached to the terminal (e.g., if the terminal in use has
been assigned more than one partition).

Edit Mode and Use of Special Function Keys

The top row of keys on the operator's keyboard are referred to as
Special Function Keys. When the SHIFT key is not depressed (unshifted
position), Special Function Keys 'O through 'l5 are available; when the SHIFT
key is depressed (shifted position, the SHIFT 1light illuminates), Special
Function Keys '16 through '31 are available.

If the operating instructions below request the operator to touch any
Special Function (SF) Key, Edit mode must not be active. With a 2200VP, Edit
mode is indicated by an asterisk (*) to the left of the entry; with a 2200MVP,

Edit mode is indicated by a blinking cursor. Edit mode, if active, may be
switched off by manually touching the EDIT key once, which erases the asterisk
or causes the cursor to stop blinking. Similarly, Edit mode may be activated

by touching the EDIT key again.

Valid Keys for Editing Entry Fields

ISS-5 provides a convention whereby certain keys are available for
destructive or nondestructive editing of displayed defaults or entries for all
1SS-5 prompts.

The BACKSPACE and LINE ERASE keys are always available for destructive
editing. BACKSPACE moves the cursor one position to the left and places a

blank at the new cursor position; LINE ERASE erases all characters in an entry
field.

When Edit mode 1is active, certain SF keys become Edit keys and are
available for destructive editing (ERASE and DELETE keys) and nondestructive
editing (BEGIN, END, INSERT, -», --» , <«--, -«). Refer to the BASIC~2
Reference Manual for a description of these Edit keys.

For fields requesting a numeric value, leading zeros need not be entered.

Loading ISS Start-up Software

If an 1SS diskette 1is to be used, it must contain the desired 1IS8S
software component, and a tab must be in place over the write protect hole.
Please note that the word "enter," as used in the following instructions,
indicates that the appropriate characters are to be entered and visually
verified, and then the RETURN key should be touched to complete the entry.
Mount the 1SS disk(ette) and enter the following sequence:

SELECT DISK xyy
LOAD RUN

(where xyy 1s replaced by the disk device address where the 1SS
disk(ette) has been mounted)

13

Responding to the Start-up Prompts

After loading start-up software, the prompt ENTER STATION NUMBER appears
in the upper-left corner of the screen. There are three options available
when responding to this prompt:

1.

Case 1:

To view existing station file numbers and, optionally, the start-up
default values contained within specified station files, touch SF'OQ.
The station numbers whose station files are found on the 1ISS
disk(ette) are displayed. For each specified station number, the
corresponding default values appear. To redisplay the ENTER STATION
NUMBER prompt, enter 0 (zero).

To create a station file for a particular station number, touch
SF'16. In reply to the ENTER STATION NUMBER TO CREATE prompt, enter
the desired station number. If the station number is acceptable,
the station file is created with all default values set to blanks;
the ENTER STATION NUMBER prompt reappears. Otherwise, entry 1is
rerequested. The station number must be between 1 and 48, there
must be sufficient disk space to create the file, and a station file
(active or scratched) must not already exist on the ISS disk(ette)
for that station number.

To proceed without viewing the existing station files or creating a
new station file, enter a station number from 1 through 48. 1If the
entry 1is unacceptable, entry is rerequested; this indicates that the
station file for this station number either does not exist or has
been scratched (see Option 2 above). If the station file 1is
located, the next sequence of prompts appear and the operator either
enters all system configuration table default values if the station
file contains no default values, or views and optionally modifies
the displayed default values contained within the station file.

No Default Values in the Displayed Station File

If the station file contains no default values, the screen appears as
shown in Figure 1-2.

ENTER TODAY'S DATE (MM/DD/YY)
?

STATION #nn

DATE -
MENU TO LOAD -
PRINTER ADDRESS -
LOADING ADDRESS -
DISK ADDRESSES -

w s wN e

Figure 1-2. Start-up Display With No Default Values

14

A reply to each item is requested beginning with DATE. The station
number is displayed (nn in Figure 1-2).

The current date 1is entered in the form mm/dd/yy (month/day/year).
After entry, the date is displayed and the ENTER PRINTER ADDRESS prompt
appears.

The MENU TO LOAD prompt is accompanied by a list of available menus.
The Utilities (ISS utilities), Screen/Disk, and KFAM-7 menus allow selection
of the individual options available for each of these software components.
The SYSTEM menu is a higher-level menu which is especially convenient for ISS
software residing on a fixed/removable disk; it allows selection of the
Utility, Screen/Disk, or KFAM-7 menu. The Application menu allows a specified
application program to be automatically loaded and run. The Application menu,
System menu, or the menu(s) corresponding to the 1ISS software component
contained on the currently mounted ISS disk(ette) may be specified.

Enter the number (1 through 6) which corresponds to the menu to be
loaded. The name of the menu is displayed.

The PRINTER ADDRESS prompt is accompanied by a list of supported printer
addresses. The entered address determines the output device used during
utility program operation for most functions. If a printer is not available,
touch the RETURN key without entering any characters (blank); user-interactive
output appears on the screen when the printer address is blank, accompanied by
the prompt KEY RETURN (EXEC) TO RESUME and requires that the RETURN key be
touched for the program to continue. An output address of 000 indicates no
output, where error messages encountered during utility operation are not
viewable. An output address of 005 indicates CRT output where the CRT 1is
treated like a printer, where error messages appear so briefly on the CRT that
they may not be viewed. Output addresses of 000 and 005 should be used with
caution and only in situations where error messages are irrelevant. An output
address of 01D indicates output via a Wang Telecommunications Controller. If
a printer connected to an operator's 2200MVP terminal (called a local printer)
is to be used, enter 204. Otherwise, enter the three-digit printer address.
The printer whose address is entered should be powered ON and SELECTed. Any
nonblank entry is displayed. It is recommended that any printer whose address
is entered be visually checked to ensure that it is switched on and selected,
especially if a local 2200MVP terminal printer or a Wang Printer Multiplexer
is to be used. Note that ISS and KFAM utilities hog the printer device when
appropriate.

The LOADING ADDRESS prompt is the disk address from which ISS software
is to be loaded. This entry may be one of the disk addresses already
entered. In most cases, this is the disk address from which 1SS software was
just loaded.

15

The DISK ADDRESS prompt, ENTER DESIRED OPTION (0=END), appears along
with 1-ADD, 2-CHANGE ALL, 3-DELETE, where each option is chosen by entering
its corresponding number (1, 2, or 3). The ADD option allows each disk
address entered to be added to the disk addresses previously displayed. The
CHANGE ALL option erases any previously displayed disk addresses and allows
entry of the desired disk addresses. The DELETE option allows one or more of
the displayed disk addresses to be entered and removed from the list. The ADD
and CHANGE ALL options, when chosen, display all 1SS-supported disk
addresses. After choosing any of the options, enter a 0 (zero) to indicate
completion, which, if entered before any disk addresses are entered, allows
the chosen option to be aborted.

Only the disk addresses and the ISS loading address may be specified
during utility operation. The disk addresses may not include the disk address
specified for the loading address. 1f the currently displayed loading address
is incorrect, first change the loading address and then add the old loading
address to the list of disk addresses, if desired. After modifying the list
of disk addresses, enter 0 (zero) to obtain the next prompt.

The screen now displays the entered default values. Refer to “Case 2:
Default Values in the Displayed Station File."

Case 2: Default Values in the Displayed Station File

If default values have been loaded from the station file or manually
entered from the keyboard, these values are displayed in the formats shown 'in
Figure 1-3.

ENTER DESIRED FUNCTION (0=END)

STATION #nn

1 DATE - mm/dd/yy

2 MENU TO LOAD - 11111

3 PRINTER ADDRESS ~ abb

4 LOADING ADDRESS - Xyy

5 DISK ADDRESS - XYY Xyy Xyy

Figure 1-3. Start-up Display Format for Default Values

The displayed default wvalues should be visually verified by the
operator. To change one of the values, enter the number (1 through 5) of the
value to be changed. For additional instructions, refer to the appropriate
paragraph under "Case 1l: No Default Values in the Display Station File." The
ENTER DESIRED FUNCTION (O0=END) prompt reappears after entering a valid
response to any default value. 1If the station number (STATION #nn) previously
entered is incorrect, touch SF'31 to return the ENTER STATION NUMBER prompt to
the screen.

16

When the displayed information is correct, enter 0 (zero). The
displayed default values are saved in the station file and become the default
values for subsequent start-up operations. The menu indicated as the MENU TO

LOAD soon appears on the screen. Should an error message appear, see Table
1-3.

IS8 Menu Hierarchy and SF'31l

The highest level of the three-level ISS menu hierarchy 1is start-up
operation. Before any ISS menu can be obtained, ISS start—up operation must
first occur. One step below start-up is the System menu. Below the System
menu each of the following menus has third-level status: Utilities, Screen/
Disk Subroutines (three menus), KFAM-7, and Application. SF'31 may be touched
in reply to any start—up prompt, any of the ISS menus, or any utility program
prompt to abort the current operation and obtain the next-highest step in the
ISS menu hierarchy. For instance, if operating an ISS utility program,
touching SF'31 returns the Utilities menu to the screen. If SF'31 is touched
again, the Utilities menu 1s replaced by the System menu and, if touched
again, the System menu is replaced by the start-up default values.

Except for the Application menu, each menu lists the options available,
and an SF key number appears to the left of each option. To select an option,
touch the corresponding SF key.

Figure 1-4 shows the System menu from which the listed ISS components

may be chosen by touching the corresponding SF key. For example, to load
(obtain) the Application menu, touch SF'03.

SELECT SUB-MENU

SYSTEM MENU (STATION # = n)

FN KEY PROGRAM NAME FN KEY PROGRAM NAME

01 1ssuTLITIES 03 APPLICATIONS
02 SCREEN/DISK SUBROUTINES 04 KFAM-7

31 RE-START SYSTEM

Figure 1-4. The System Menu

17

CAUTION:

Following 1SS start-up, never remove a data disk or
diskette which was accessed by the program in use unless
an ISS menu appears or a utility prompt requests that a
disk(ette) be mounted. Neither touch the RESET key, nor
switch the CPU's (or terminal's) power off unless one of

the ISS menus appears on the screen. Failure to obey
these procedures can result in the accidental destruction
of data.

It is recommended that the System menu appear on the
screen if an 1SS disk(ette) is to be replaced by a
different ISS disk(ette). Station file default values are
automatically updated and a station file is automatically
created (if one does not exist for this station number)
when a different I8S disk(ette) is mounted at the ISS
loading address while the System menu or the error message
NOT AVAILABLE ON CURRENT DISK appears.

-In order to obtain an ISS menu instead of responding to a
utility program prompt, touch SF'31. By touching SF'3l,
any data file currently open will be closed. Data files
accidentally left open may cause file access conflicts.

Loading an Application Program

If APPLICATION is the specified MENU TO LOAD during the start-up phase
or APPLICATION is chosen in reply to the System menu, the Application menu
appears on the screen. In this menu, the default values may be displayed with
the prompt ENTER OPTION TO CHANGE (O=LOAD APPLICATION) as shown in Figure 1-5.

However, if default values do not exist, the Application menu appears
with the prompt ENTER APPLICATION TO LOAD. After entering the file name of
the application program to be loaded and run, the prompt ENTER ADDRESS TO LOAD
FROM appears. Valid disk device addresses from which an application program
may be loaded include all ISS start-up disk addresses and the ISS loading
address. After entering the three-~digit disk address from which the program
file is to be loaded, the Application menu appears as if the station file
contained the default values (see Figure 1-5).

18

ENTER OPTION TO CHANGE (0 = LOAD APPLICATION)

1 APPLICATION TO LOAD - filename
2 APPLICATION DISK ADDRESS - xyy

STATION NUMBER -~ n CPU TYPE - 11
GREGORIAN DATE - mm/dd/yy JULIAN DATE - nnnnn
MEMORY SIZE - nn K CRT WIDTH - nn
LOADING ADDRESS - xyy PRINTER ADDRESS - abb
DISK ADDRESSES - xxy xyy

Figure 1-5. The Application Menu Format

The Application menu displays the common variable values present in this
station's system configuration table. If the name appearing to the right of
APPLICATION TO LOAD is incorrect, enter 1l; then enter the file name of the
application program to be loaded. 1If the disk address appearing to the right
of APPLICATION DISK ADDRESS is incorrect, enter 2; then enter the disk address
from which the specified application program is to be loaded.

When the displayed values for items 1 and 2 are correct, enter 0 (zero)
to load and run the specified application program. If an error message

appears, refer to Table 1-3.

ISS Start—up and Menu Access Error Messages

1SS provides certain error messages to facilitate recovery from typical
operational errors which may occur during the start-up and menu access phase.
Table 1-3 lists each error message and its associated recovery procedures.
Also included are some typical "hardware'" errors (ERR lnn form) which may
result from incorrect operation.

19

Table 1-3.

Start-up and Menu Access Error Messages

ERROR MESSAGE

DESCRIPTION

RECOVERY

ERR AOl Insufficient memory If a 2200MVP is in use,
available to perform see Section 1.2 for the
the specified operation. the partition size needed

for this operation. Touch
SF'31. Either use a
station with a larger
memory size or (2200MVP
only) wait until a
partition configuration is
re-executed to increase
this partition's memory
size.

ERR 195 The write protect hole is Touch SF'3l. Remove the
not covered when diskette and place a tab
attempting to write data over its write protect
(e.g., default values) hole; remount the diskette
on the specified diskette. | and retry. 1If the tab is
This error could also be in place, make sure the
caused by a disk hardware | diskette spins freely in
(seek) error. its jacket; remount it and

retry. 1If unsuccesgsful,
retry using a different
disk(ette). If this error
persists, contact a Wang
Service Representative.

ERR 198 A disk(ette) is not Touch SF'31. Check if the
mounted (or READY), or disk(ette) is mounted.
the diskette drive door Retry, specifying the
is open. correct disk address.

ERR P48 A peripheral device Touch SF'3l. Do not use
address was specified the specified address
which does not exist until it has been entered
in this 2200MVP's into the Master Device
Master Device Table. Table; i.e., during

partition generation.

ERR 1lnn For all other ERR 1lnn Touch SF'31.

error codes, refer to the
Wang BASIC-2 Language Disk

Reference Manual for disk-
related errors or the
BASIC~2 Reference Manual
for other errors.

20

Table 1-3.

Start-up and Menu Access Error Messages (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

FILE filename IS

NOT AT ADDRESS xyy

KEY RETURN(EXEC)
TO RESUME?

When attempting to load

an application program,
the specified program file
(filename) does not exist
at the specified disk
address (xyy).

Either touch SF'31l

to facilitate re-entry of
the correct application
program file name and disk
address, or mount the
correct disk and touch the
RETURN key.

LOADING ADDRESS
WRONG. KEY
RETURN(EXEC)

TO RESUME?

The disk(ette) at the
specified (start-up) ISS
loading address either does
not contain ISS software

or is not mounted there.

Touch the RETURN key.
Either change the ISS
loading address, or mount
a disk(ette) containing
ISS software and continue.

MVP OPERATING
SYSTEM RELEASE
1.7 (MINIMUM)

REQUIRED, KEY

RETURN (EXEC)

TO RESUME?

ISS-5 requires that the
2200MVP Operating System
(0S) be Release 1.7 or
more recent.

When all other stations
have completed their
respective applications,
from terminal 1 use an
Immediate mode $INIT
statement to allow Release
1.7 (or more recent) of
the 2200MVP OS to be
loaded if available. If
not available, obtain
Release 1.7 (or a more
recent release) from
Wang Laboratories, Inc.

NOT AVAILABLE ON
CURRENT DISK
KEY RETURN(EXEC)

The specified ISS
component does not exist
on the ISS disk(ette)

Either touch SF'31
to obtain the System menu,
or mount the correct ISS

TO RESUME? in use. disk(ette) and touch the
RETURN key.
RE-ENTER During entry of a numeric |[Re-enter a numeric value

nn XX nn
(ddd.)

value, the number entered
falls outside of the
acceptable upper and lower
numeric limits (range)
which are displayed.

The (ddd.) indicates the
number of digits and
decimal position.

within the displayed
upper and lower numeric
limits.

21

Table 1-3.

Start-up and Menu Access Error Messages (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

UNABLE TO OPEN
STATION #nn.

KEY RETURN(EXEC)
TO RESUME?

The station file for this
station number is
scratched or insufficient
room exists on the ISS
disk(ette). This occurs
after start-up software
automatically attempted
to create a station file.

Touch the RETURN key.
Either enter a different
station number or mount
a different ISS diskette.

VP OPERATING
SYSTEM RELEASE
1.9 (MINIMUM)
REQUIRED, KEY
RETURN (EXEC)
TO RESUME?

ISS-5 requires the 2200VP
Operating System (0S) be
Release 1.9 or more
recent.

Master Initialize the
system and load Release
1.9 (or more recent) of
the 2200VP 0S. 1If not
available, obtain Release
1.9 (or a more recent
release) from Wang
Laboratories, Inc.

1.5 APPLICATION PROGRAM REQUIREMENTS AND ISS COMMON VARTABLES

Table 1-4 lists the ISS common variables whose values are determined
during ISS start-up operation. Following ISS start-up operation, these common
variables are available for use in application programs and their values are
displayed along with the Application menu.

Table 1-4. 1ISS Common Variables
DESCRIPTION NAME
Julian Date Q1
Gregorian Date Ql$ (8 bytes)
Memory Size (K)]
CRT Width (64,80) SO
Station Number (1-48) S2

CPU Type (3=VP, 4=MVP)

ISS Loading Address

Printer Address

Disk Addresses

Working Variable for
Multiple Program Load

Flag for Menu to Load

Menu to Load

s3

S$ (3 bytes)

S$(1) (3 bytes)

S$(2) through S$(19) (3 bytes each)
S1$ (64 bytes)

s8$% (11 bytes)
$9% (11 bytes)

22

Application Program Requirements

Application programs running under ISS should adhere to the following
requirements and recommendations:

1. All variables (numeric or alphanumeric, scalar or array) whose first
letter begins with Q, R, S, T, U, V, or W are reserved exclusively
for ISS system use. The variables reserved for SORT-4 are listed in
Appendix B.

2. All DEFFN' statements from DEFFN'200 through DEFFN'255 are similarly
reserved for ISS system use. Also see paragraph 5 below.

3. If an ISS disk(ette) has been removed from the ISS loading address
due to application program processing, the application program
should, upon 1its completion, furnish a return to ISS by (1)
executing a SELECT DISK xyy statement, where xyy is the ISS loading
address, (2) providing the operator with an opportunity to remount
the ISS disk(ette); e.g., a prompt, and (3) executing the statements
LOAD and RUN to load the ISS START file when the operator signals
that the ISS disk(ette) is ready.*

4. It is recommended that disks or diskettes containing application
programs contain a START program file (module) which provides return
links to the ISS disk(ette) START module via SF'31 (use a DEFFN'3l
and a COM CLEAR statement).

5. With application programs using global program text, programming
conventions applicable to the 2200MVP Operating System should be
adopted. For instance, the currently selected global partition is
determined via a SELECT @PART statement in the user's application
program; such a statement allows DEFFN' statement subroutines in the
selected global partition to be accessed via GOSUB' statements in
the user's application program(s). To determine the partition size
required by an application program, after the program has been
loaded and run, touch the HALT key and the RETURN key and enter
:PRINT SPACEK - SPACE/1024.

* As an alternative, the user program can (1) clear the application program
variables, (2) set common variable S8$="SYSTEM", and (3) execute a LOAD DCT
"18S.002M" (the System menu).

23

CHAPTER 2
THE ISS UTILITIES

2.1 INTRODUCTION

The ISS utilities provide several
disk-based data processing environment.

with the IS8S utilities include Copy Functions,

Index Functions, and Special Purpose Functions.

Table 2-1 shows the categories of ISS utility functions relative to the
elements of disk storage. Programming Functions apply only to program files,

standard functions necessary for a
Categories of the functions available
Programming Functions,

and the Copy Functions apply to both data files and program files (all files).

A brief description of each 1SS utility appears in Chapter 1, Section

Table 2-1. 188§

Utilities and Categories

program files

FUNCTIONAL CATEGORY STORAGE ELEMENT UTILITIES
Copy Functions all files Copy/Verify
Programming Functions program files List/Cross-Reference
program files Compression
program files Decompression

Program Compare

Catalog Index Functions disk Sort Disk Catalog
disk Reconstruct Disk Index
disk Alter Disk Index
Special Purpose Functions all files Create Reference File
all files Disk Dump
data files File Status Report

24

Catalog

The ISS Utilities Menu

The Utilities menu, as shown in Figure 2-1, may be obtained following
start-up either by specifying UTILITIES as the MENU TO LOAD or by touching the
appropriate SF key in reply to the System menu.

SELECT UTILITY

ISS UTILITIES (STATION # = 1)

FN KEY PROGRAM NAME FN KEY PROGRAM NAME

00 COPY/VERIFY 05 SORT DISK CATALOG

01 CREATE REFERENCE FILE 06 DISK DUMP

02 LIST/CROSS-REFERENCE 07 FILE STATUS REPORT

03 COMPRESSION 08 PROGRAM COMPARE

04 DECOMPRESSION 09 RECONSTRUCT DISK INDEX
10 ALTER DISK INDEX
31 SYSTEM MENU

Figure 2-1. The ISS Utilities Menu

To load one of the ISS utilities, touch the appropriate SF key. To load
the System menu, touch SF'31,

ISS Utility Default Values and Operating Similarities

For each ISS wutility except Alter Disk Index, default values are
maintained for each station 1in its respective station file. When an 1ISS
utility is loaded, its default values are loaded from the appropriate station
file. The utility's default values (if any) are displayed and modified
exactly like the ISS start-up default values; that is, each default value
appears to the right of a number which allows modification when it is entered
in reply to the ENTER DESIRED FUNCTION prompt. If there are no default values
for the chosen utility, entry of each value is requested beginning with value
1.

After modifying and/or entering the required values and verifying that
the displayed values are correct, the user may save the currently displayed
values as default values (SAVE DEFAULTS) before entering 0 (zero) to proceed.
In addition to the default values, other prompts may appear requesting
nondefault information or such manual actions as mounting a diskette.

If the utility default values for one or more disk addresses conflict
with the start-up disk addresses, entry is automatically requested when that
utility is loaded. Whenever a disk address is requested, valid start-up disk
addresses are displayed.

25

There are two phases of ISS utility operation: the parameter entry
phase and the execution phase. The final step in the parameter entry phase
(except for the PART and INDIRECT modes where additional file names must be
entered) is the appearance of a MOUNT DISK, KEY RETURN (EXEC) TO RESUME?
prompt (INPUT DISK or something similar may follow the word MOUNT instead)
after all parameters have been entered. Once the RETURN key is touched, the
execution phase begins, and the prescribed task is performed. During both
phases, SF'31 is available to close all files and return the ISS Utilities
menu to the screen. Only during the parameter entry phase is SF'l5 available,
which returns the ENTER DESIRED FUNCTION (O=END) prompt to the screen,
allowing modification of any of the default parameters.

Methods of Multiple File Processing: The MODE Parameter

Certain ISS utilities support multiple file processing via the MODE
parameter whose value determines which files are to be processed by the chosen
utility. The multiple file processing utilities are the following:

Copy/Verify - copies and/or verifies each specified input file to a
specified output file which may be created by the utility., Data or
program files are acceptable.

List/Cross—Reference - 1lists and/or cross-references each specified
input file. Only program files are acceptable.

Compression - compresses the contents of each specified input file and
copies the compressed contents to a specified output file which may be
created by the utility. Only program files are acceptable.

Decompression - decompresses the contents of each specified input file
and copies the decompressed contents to a specified output file which

may be created by the utility. Only program files are acceptable.

File Status Report - closes or outputs (prints or displays) the status
of each specified input file. Only data files are acceptable.

Program Compare - compares the program text contained within each pair
of specified files. Only program files are acceptable.

The Mode parameter's significance depends, in part, upon the acceptable
file type (data or program) for the utility used. A disk device address
specifies where all input files reside and a second disk device address
specifies where all output files are to reside (if required by the utility).
Each file 1is identified by a file name unique to all other file names on the
same disk(ette). All input files must be active files (not scratched files).

26

There are four general Mode parameters applicable to most ISS utilities:
All, Range, Part, and Indirect.

1. ALL indicates that all acceptable files on the input disk are to be
processed without user-specification of file names; if the utility
copies the 1input file, each output file name 1is assigned the
corresponding input file name. Files names are not entered.

2. RANGE indicates that all acceptable files on the input disk whose
file names fall within a user—-specified alphabetic or alphanumeric
range (upper and lower 1limits) are to be processed without
user-entry of file names; if the utility copies the input file, each
output file name is assigned the corresponding input file name.
File names are not entered, but a lower and upper limit of file
names are entered.

3. PART indicates that up to 25 input file names entered by the user
are to be checked to ensure they exist and then processed; if the
utility copies the input file, the user enters the corresponding
output file name which is also checked. File names are entered, and
the appropriate disk(s) will be requested via a MOUNT DISK, KEY
RETURN(EXEC) TO RESUME? which allows on-line checking of entered
file names.

4. INDIRECT indicates that a reference file resides on the same disk as
the input files and contains the input file names and corresponding
output file names (if required) to be processed, which were
previously specified during operation of the Create Reference File
ISS utility. A reference file may be created, edited, or printed
using the Create Reference File utility. Several 1SS reference
files listed in Table 1-2 are included along with the ISS program
files and station files.

When copying files, the input and output disk device addresses may be
the same if the Part or Indirect mode is specified. When copying to the same
disk, the All or Range mode must not be specified because the output file
names (which are assigned) cannot be identical to the input file names if the
same disk is used for both input and output.

The Copy/Verify utility, because it alone can process both data and
program files, supports two additional Mode parameters. 1In addition to All
files, all Data files or all Program files may be copied and/or verified. The
DATA or PROGRAM mode is identical to the All mode, except that only data files
or only program files are processed from the input disk.

Although the Program Compare utility does not copy files, the second
program file of a pair to be compared is like an output file in the preceding
discussion. For instance, the All or Range mode cannot be specified if the
disk addresses of the first and second program files are the same; the result
would be to compare each program file to itself because the second file name
is assigned the name of the first file.

27

Copying Files: Specifying Extra Sector Values

The Copy/Verify and Decompression utilities employ an Extra Sectors
parameter whose significance depends upon the mode specified for these
utilities; if the mode is All, Range, Data, or Program, the extra sectors
value is assigned uniformly to all files copied. 1If the mode is Part, the
extra sectors parameter becomes an operator-modifiable value for each file
copied, and the operator can individually specify the number of extra sectors
for each file.

Extra sectors describe the unused disk space within a file, that 1s, the
number of sectors available for additional program text or data records
between the (DATASAVE DC END statement or the END Disk subroutine) "END
(end-of-data) control sector'" and the 'catalog trailer (end-of-file) control
sector." (Please note that these terms are used throughout this manual to
identify these two control sectors.) By specifying the extra sectors value as
a large value for a file which has no extra sectors (such as a source program
file), the output file will have sufficient extra sectors to accommodate
additional program text or data records.

Copying Files: Output Disk(ette) Requirements

Any output disk or diskette to receive copied files must have a catalog
index (SCRATCH DISK statement). Also, a tab must be in place over the write
protect hole.

Use of Multiplexed/Multistation Files

Data files may be created as multiplexed/multistation data files by
using the appropriate Disk subroutines (see Chapter 3). Such data files may
be accessed (opened) in one of four access modes, and a file password may be
required to access the file. The four access modes are Inquiry, Read Only,
Shared, and Exclusive as further described in Table 3-1. Create Reference
File employs Exclusive access to the specified reference file. All other
utilities employ the Shared access mode when accessing specified input files.
With the Shared access mode, application programs may be simultaneously
updating records while that file 1is being copied or verified wutility.
Therefore, the output file may not reflect the file's contents at any one time
(or may not verify) unless the user makes sure that updates will not be
occurring during Copy/Verify operations on that file.

Entry of a password is required during the Disk Dump utility if the file
is a multiplexed/multistation data file and the password is anything other
than blanks (16 characters are allowed for the password). The output file 1is
assigned the same password as the corresponding input file with the
Copy/Verify utility.

Files on a multiplexed/multistation disk(ette) drive should be scratched
only when no other stations are accessing those files. All 1SS utilities
assume the files to be accessed will not be scratched after their file names
have been entered until processing has been completed.

28

Note that a DATASAVE DC END statement destroys that file's password and
access table. The COPY statement, any form of the MOVE statement, or the
Copy/Verify wutility should be used for copying purposes. The END Disk
subroutine should be used instead of the DATASAVE DC END statement.

Error Messages and the Start-up Printer Address

During the entry of parameters in reply to prompts, any error message
encountered appears on the station's screen. Once wutility processing
(execution) has begun, however, error messages are output to the printer
address specified for this station. Error messages may not appear long enough
for detection if address 005 is used for printing, and they are omitted if
address 000 is used.

If the specified printer address does not correspond to an actual
printer (e.g., blank), an error message appears when attempting to load the
List/Cross-Reference utility. With the Create Reference File, Disk Dump, Sort
Disk Catalog, Program Compare, and File Status Report utilities, should the
user specify printed (list) output and the printer address does not correspond
to an actual printer, an error message appears.

The printer is hogged during the output from List/Cross-Reference, and
it is hogged if printer output is specified for the Sort Disk Catalog, Program
Compare, File Status Report, and Disk Dump utilities. It is briefly hogged
during Copy/Verify, Compression, and Decompression.

Error messages for all ISS utilities are listed in Table E-1.

2.2 THE COPY/VERIFY UTILITY

The Copy/Verify utility copies specified files on a file-by-file basis
from one disk(ette) to the same or a different disk(ette). The copied output
files may be verified. The specified files may be verified automatically
following the copy operation for each file (Copy/Verify option) or the
specified files may only be copied (Copy option) or only be verified (Verify
option). The content of each input file up to and including the END control
sector is copied into the output file. 1Input file sectors beyond the END
control sector up to the next-to-last sector are not copied, but the user may
specify the number of extra sectors to be included in the output files. The
last two sectors in a file, the next-to-last sector (copied for compatibility
with KFAM-7 conventions) and the catalog trailer (end-of-file) control sector,
are copied first (unless a one sector file is copied). The next-to-last
sector may be overwritten by the END control sector if 0 (zero) extra sectors
is specified. 1If an END control sector does not exist, all input file sectors
and the specified number of extra sectors are copied to the output file; an
END control sector is not written. The Verify option compares the input and
output files on a sector-by-sector basis.

29

The Output Option parameter -- either Add, Replace, or Add/Replace --
determines where the copied contents of the input file are to be written. 1If
the Add option is specified, the input file's contents are copied into an
output file created (cataloged) by the utility using the specified or assigned
output file name which must be unique to the output disk. If the Replace
option is specified, the input file's contents are copied into a previously
cataloged, scratched or active output file whose file name is identical to the
output file name specified or assigned. If the Add/Replace option 1is
specified, the input file's contents are copied either into an output file
created by Copy/Verify using the specified or assigned output file name if
that name is unique to the output disk, or if the output file name exists on
the output disk, the file whose name is identical to the output file name is
copied into and overwritten. The output file is assigned the status (data or
program file) of the input file and the password (if any) of the input file.
With the Replace option, the sectors used by the input file plus the number of
extra sectors specified must not exceed the number of sectors allocated to the
output file to be replaced, or an error message is printed or displayed and
that file is not copied.

The extra sectors value may be -1, 0, or a positive integer less than
250. 1f -1 is specified, the output file will have as many used and extra
sectors as the input file. TIf 0 (zero) is specified, there will be no extra
sectors in the output file. Otherwise, the number entered becomes the number
of extra sectors in the output file.

The available Mode options include All, Part, Range, Indirect, Program,
and Data as explained in Section 2.1. With the All, Range, Program, and Data
modes, output file names are assigned the same name as the input file, all
files are assigned the same number of extra sectors, and the input disk
address (disk copied from) must not be the same as the output disk address
(disk copied to). With the Part and Indirect modes, the output file name and
number of extra sectors are assignable to each file, and the input and output
disk addresses may be the same. With the Part mode, input file names entered
are acceptable only if the file name specified is a cataloged and active file
on the input disk; invalid file name entries are erased from the screen and
the cursor 1s repositioned. Similarly, duplicate output file names are
unacceptable. With the Indirect mode, all file names and extra sectors values
are read from the specified reference file, which must reside on the input
disk along with all input files. The specified extra sectors value (default
parameter) is ignored with the Indirect mode only.

For backup disk copying, using the Copy/Verify utility with the ALL mode
specified copies all active files from the input disk but does not copy
scratched files (similar to the MOVE statement which can also be used); the
COPY statement copies both active and scratched files.

When copying KFAM-7 files, the User File and Key File(s) should be

copied. The KFAM utility Reallocate KFAM File Space is required following a
Copy/Verify operation unless an extra sectors value of -1 was specified.

30

Please note that any KFAM User File should not be copied with an extra
sectors value of 0 (zero), since the next-to-last sector which contains
recovery information would be overwritten; otherwise, this sector is copied.

Error messages and recovery procedures are provided in Table E-1. The
Utilities menu appears upon completion of utility execution.

2.3 THE CREATE REFERENCE FILE UTILITY

The Create Reference File utility allows the user to create a new
reference file, modify (edit) a previously created reference file, and print
the contents of a reference file. A reference file is a cataloged data file
which contains multiple entries in the following form, per entry: input file
name, output file name, and number of extra sectors. (However, only the input
file name is actually checked, which allows special reference file use
(Indirect mode) by the KFAM utility, Reset Access Tables.) Once created, a
reference file can be used by any utility supporting the Indirect mode to
specify the input file names, output file names (if applicable), and the extra
sectors (if applicable) to be processed.

The Create option creates a new reference file, catalogs it, and allows
selection of the files on the input disk to be included as input files from a
listing of the input disk's catalog index. The operator specifies the
reference file name. After specifying the input files, the output file names
and extra sector values may be entered using operator-modifiable defaults for
each. The specified number of entries determines reference file size, and the
specified extra sectors default determines the displayed operator-modifiable
extra sectors value provided for each entry.

The Edit option allows the entries in a previously created reference
file to be modified. The Print option allows the contents of the reference
file to be printed to the start-up printer address; a printer is required.

One of the parameters is called Type. Prior to 1IS8$S-4 and 1ISS-5, a
reference file did not contain an extra sectors value for each entry. The
Type of New corresponds to IS8S-4 or 1SS-5 reference files, whereas 01d
corresponds to a reference file created using a previous release of ISS. 1In
most cases, the type of New/New should be specified to indicate the existing
reference file (if created previously) and the resulting reference file are to
be compatible with ISS-5 utilities. To update a reference file created using
I1SS-2 or 1SS-3 to 1ISS-5 compatibilty, choose the EDIT option and specify the
Type as Old/New. Create Reference File can read and write both the old and
new type of reference file. 1S5-5 reference files are multiplexed/
multistation data files with a password of ISS 4.0 REF.

Maximum Number of Entries and Memory Requirements

The reference file consists of multiple entries which are loaded into
memory and equated to table elements. As the number of entries increases, the
amount of memory needed to contain this table also increases. The entered
number of entries is automatically rounded upwards in multiples of 14. Table
2-2 lists the maximum number of entries for different memory sizes
corresponding to 2200MVP partition sizes.

31

Table 2-2., Create Reference File Memory Requirements

2200MVP PARTITION MAXIMUM NUMBER OF ENTRIES
8K 56
9K 112
10K 182
11K 236
12K 294
14K 420%
16K 532
18K 658
20K 784
* Approximate maximum for a 16K 2200VP.

Use of Reference Files by Utilities

The input file name, output file name, and extra sectors value in each
entry are used by the Copy/Verify and Decompression utilities if the mode 1is
Indirect, irrespective of the extra sectors value specified during Copy/Verify
or Decompression operation. With Copy/Verify operation, extra sectors values
of -1, 0, and positive integers up to 250 are valid; with Decompression,
positive integers up to 250 are valid. Only the input and output file names
are used with the Compression and Program Compare utilities; with Program
Compare, the input file name corresponds to Input One and the output file name
corresponds to Input Two. Only the 1input file name 1is wused by the
List/Cross-Reference and File Status Report utilities. The KFAM utility Reset
Access Tables uses the input file name column for the User File name, the
output file name column for the Key File/User File disk addresses (in the form
xyy/xyy), and the extra sectors column for the Key File number (as described
in Chapter 6, Section 6.11).

General Operating Notes

After choosing the create, edit, or print option, the default parameters
appear allowing specification of the file name, disk address, etc. With the
print option, the reference file is printed after the default parameters have
been accepted. With the create and edit option, a '"window'" of ten active
files from the disk's catalog index is displayed under the Index column after
accepting the displayed defaults, facilitating selection of files from the
index list to become input files. Whether each file is a data (D) or program
(P) file is also indicated. To the right of the Index column are the columns
Input, Output, and X-sec. The Input column is where selected input file names
appear. The Output column is where an operator-modifiable default output file
name appears for operator verification or modification. The X-sec column 1is
where the default number of extra sectors to be assigned to the corresponding
output file appears for operator modification.

32

Also present on the screen is a cursor and, on the same line as the
cursor, a double arrow and a four-digit number which indicates the entry
number. The cursor and double arrow remain on the same line of the CRT
screen. SF keys enable either the window to the index or the table of
input/output file parameters to be moved, depending upon the column under
which the cursor currently appears. The ten-file-name window to the index may
be thought of as a continuous, rotatable circle with a blank line separating
the beginning and end of the index.

There are two distinct operating phases: (1) selecting the input file
names to be copied, and (2) specifying the output file names and extra sector
values (file parameters) via operator-modifiable default values. 1In order to
select the input file names from the index list, the cursor must be under the
Index column; in order to specify the file parameters, the cursor should be
under the Input column. SF'O places the cursor in the Index column; SF'1l
places the cursor in the Input column. The cursor is initially located under
the Index column.

Selecting Input File Names

The user first selects the input files from the index by (1) positioning
a file name in the index window to be used as an input file to the double
arrow and then (2) touching the RETURN key which moves the file name to the
Input column, increments the entry number, and moves the index and file
parameters forward (up) one file name. To move the index forward (up) one or
five file names, touch SF'l2 () or SF'll (---) respectively; to move the
index backward (down) one or five file names, touch SF'l3 (=) or SF'14 (-=--)
respectively. To move the index to the first five file names on the input
disk, touch SF'7 (BEGIN). By repeatedly moving the appropriate index file
name to the arrow and touching the RETURN key, all input files can be

selected. In order for an input file name to be selected from the Index
column, the current entry pointed to by the double arrow under the Input
column must be all blanks. The input file name may be modified by the

operator and changed to file name which exists on the input disk.

Specifying File Parameters

After selecting all input files, touch SF'l to move the cursor to the
Input column. With the cursor in the Input column, to move the current file
parameters forward (up) one or five file entries, touch SF'l12 (=) or SF'll
(-->) respectively; to move the file parameters backward (down) one or five
file entries, touch SF'13 (=) or SF'l4 (----) respectively. To move the
current file parameters to the first five file names on the input disk, touch
SF'7 (BEGIN). To move the current file parameters to the last five file
names, touch SF'4 (END).

To specify the output file name for the input file name currently
pointed to by the double arrow, touch the RETURN key. The input file name
appears as a default in the Output column with the cursor positioned under the
first character for operator modification. Modify the output file name value
if required and touch the RETURN key. The default extra sectors value appears
under the X-sec column. Modify the extra sectors value if required; when
acceptable, touch the RETURN key. The cursor is now positioned under the next
input file name and the file parameters shift forward (up) one entry. In this
manner, specify the file parameters for all selected input files.

33

Should the list of file parameters be erroneous, the following SF keys
are available:

1. SF'8 (ERASE) erases the current line of parameters including the
input file name.

2. SF'9 (DELETE) deletes the current line of parameters like SF'8, but
moves all following file parameters forward (upward) one entry to
accommodate the deleted line. Entry numbers are automatically
updated.

3. SF'l0 (INSERT) inserts file parameters into the current entry
position and moves all following file parameters backward (down) one
entry to accommodate the insertion. Entry numbers are automatically
updated.

4. SF'15 (RECALL) recalls accidentally erased characters previously in
the current field if the current field is blank.

If additional input file names are to be selected, the user must
position the file parameters such that the current file parameters are blank.
Thereafter, the input file name may be selected by touching SF'0 to move the
cursor to the Index column, moving the index forwards or backwards to the
correct file name, and then touching the RETURN key. SF'l can be touched to
specify that file's parameters.

Indicating Completion

After verifying all file parameters as being correct, touch SF'l6 to
indicate completion. A final check of input file names and output file names
(not duplicate) is made; if an error is detected, the cursor is positioned
under the erroneous file parameter facilitating operator correction. Touch
SF'16 after making each correction. The prompt DO YOU WISH TO PRINT THE
REFERENCE FILE? appears 1f all file parameters are acceptable. Enter Y to
print the contents of the reference file; however, the start-up printer
address must indicate a printer. Otherwise, enter N.

Error messages are described in Table E-1. The Utilities menu appears
upon completion of utility execution.

2.4 THE LIST/CROSS-REFERENCE UTILITY

The List/Cross—-Reference utility lists and/or cross-references specified
program files on a file-by-file basis from the specified disk(ette). The List
component may be automatically followed by the Cross-Reference component
(List/Cross-Reference option) or the two components may be executed
independently (List option or Cross-Reference option). Input program files
must be free of all syntax errors in order to obtain meaningful results. Any
protected program file is not acceptable as an input file.

34

The List component prints the contents of each program file and breaks
up all multistatement lines into "decompressed" form identical to the LIST D
form of the LIST command, whereby each BASIC-2 statement is printed on a
separate line, with the exception of: (1) a REM statement which is not the
first statement in a multistatement line always follows the previous statement
on the same 1line, and (2) a % (Image) statement causes all characters
including colons on that line to remain on that line.

The Cross-Reference component builds and prints three cross-reference
tables: a list of each referenced line number and each line number which
references it, a list of line numbers which contain each variable, and a list
of each DEFFN' statement's line number along with line numbers referencing
(via a GOSUB' statement) that DEFFN' statement. Each line number referenced
and DEFFN' statement is printed in ascending numeric order; each variable
referenced is printed in ascending alphabetic order. A summary is also output.

During the Cross-Reference component, an internal table is built as the
input program is examined for DEFFN' and GOSUB' statements, variables, and
line references. Should this internal table be filled before the entire
program has been examined, three partially complete tables are printed, the
table 1is cleared, and the same program is examined from the point the
utility's table became exhausted. The end result is two sets of partial
cross-reference tables, with each set complete for the portion of the program
examined.

An input program may have the REM % form of the REM statement inserted
to print titles in expanded print (available only with matrix printers). The
following conventions must be observed:

1. To supply two blank lines between the REM 7% statement and the
expanded print title, the following format is necessary with only
one blank between the % and the first character of the title:
REMZ TITLE.

2. To supply a forms feed following the REM 7 statement and the
expanded print title, thereby printing the expanded print title at
the top of the next printer page, the following format is necesary
with no blanks between the %, the ! (upward arrow), and the first
character of the title: REMZ}TITLE.

Default parameters include: the number of spaces the printout is to be
indented from the margin, from 1 through 10; the line length including the
margin, from 70 through 128 (this depends upon the paper size); number of
lines per printed page, from 10 through 55; and the mode of All, Part, Range,
or Indirect.

NOTE:

There are certain statement forms which cause nonvariables
to be referenced as variables, array variables to be
referenced as scalar variables, and variables to be not
referenced. Refer to Appendix € for a 1list of
cross-reference exceptions.

35

Operating Notes

Touching the P key stops printing at the end of the current print page.
Touching the H key stops printing at the end of the current program file. 1In
both cases, KEY RETURN(EXEC) TO RESUME? appears allowing one of the
following: (1) the utility may be aborted by touching SF'31l, (2) the utility
may begin processing the current file from the beginning by touching SF'0, (3)
the utility will print the cross-reference tables for the current file based
upon the program text examined thus far by touching SF'l (only if the
Cross—-Reference option was specified), or (4) the utility may continue from
the point it stopped by touching the RETURN key.

Error messages and recovery procedures are described in Table E-1. The
Utilities menu appears upon completion of utility execution.

2.5 THE COMPRESSION UTILITY

The Compression utility reduces the amount of memory required by a
program and increases the speed of program execution. On a file-by-file
basis, each specified input program file is read, put into compressed form,
and copied to the specified output file. Any protected program file is not
acceptable as an input file.

For maximum disk efficiency, no files should be created on the output
disk by other stations while the Compression utility is being executed, which
prevents the internal execution of the Free Unused Sectors subroutine
incorporated into Compression and leaves the compressed output file with a
greater number of extra sectors than requested.

Compression Rules and Exceptions

Certain rules are observed internally by the Compression utility while
compressing program text. These rules are as follows:

1. All REM statements are eliminated, with the exception of a REM
statement contained within the first 1line of a program. REM
statements may be located anywhere in a multistatement line.

2. All space characters (blanks) are eliminated, with the exception of
blanks contained within quotation marks or an Image % statement.

3. Unnecessary line numbers are eliminated by appending as many BASIC-2
language statements as possible onto a single preceding line
number. The maximum number of appended statements per line number
depends upon the specified maximum number of bytes per statement
line (Length option), either 180 or 256 bytes.

36

Certain exceptions to the above rules are observed by the Compression
utility while compressing program text. These exceptions are generally
necessary to preserve program integrity and are the following:

1. The first 1line in a program £file 1is wunaltered, including REM
statements, which facilitates program identification and
documentation. Statements following the first line are not appended
onto the first line.

2. Certain BASIC-2 language statements are never appended onto a
preceding line, namely DEFFN, DEFFN', FN, and Image 7% statements.
Although these statements are not appended onto a preceding line,
one or more following statements may be appended onto that line.

3. Certain statement lines are never appended onto a preceding line
because of a particular BASIC-2 language statement contained within
the preceding line.

a. Any statement line referenced elsewhere within the program is
never appended onto a preceding line. Statements which can
reference a line number include GOTO, GOSUB, ON GOTO, ON GOSUB,
IF THEN, ON ERROR, etc. If a REM statement is referenced, that
REM is eliminated and a warning error message 1is printed or
displayed.

b. Any statement 1line preceded by a blank REM statement (REM
followed by spaces) 1s 'not appended to a preceding line.
However, because all REM statements are deleted during
Compression, a subsequent Compression is likely to append that
statement onto a preceding line unless a blank REM is inserted
preceding that 1line prior to the subsequent Compression.
Furthermore, should the wuser want a statement 1line neither
appended to a preceding line nor have following lines appended
onto it, blank REM statements should be inserted both preceding
and immediately following the statement line to be unaltered
during the next Compression.

¢. Any statement line following an Image 7%, GOTO, LOAD, RETURN, or
ERROR statement immediately preceded by a colon (:) on a
multistatement line (e.g., 100 DATALOAD DC A():ERROR GOSUB 1000)
is never appended to a preceding line, regardless of the number
of times the program is compressed.

Operating Notes

Default parameters include the input and output disk addresses, the mode
(All, Part, Range, or Indirect), and the Length option. If the Length option
number is entered in reply to the ENTER DESIRED FUNCTION (0=END)? prompt, the
current value (180 or 256) 1is replaced by the other possible value
(flip/flop). 1If the Length option is 256 bytes, the line lengths are as long
as possible, which reduces memory requirements and increases program execution

speed more than 180 bytes. If the 256 option is specified, however, the size
of the output program file may be larger than the size of the input program
file because 256 bytes per line is not as disk-efficient as 180 bytes. For

37

this reason, the output file is approximately 10% larger than the input file,
and contains two extra sectors under most circumstances. If the program's
text is likely to be recalled and edited on a Wang 2200T central processor,
the 180 option must be specified.

Error messages and recovery procedures are described in Table E-1. The
Utilities menu appears upon completion of utility execution.

2.6 THE DECOMPRESSION UTILITY

The Decompression utility reads each specified input program file,
decompresses the program text, and copies the decompressed program text to a
specified output file on a file-by-file basis. To decompress program text,
the Decompression utility breaks up multistatement lines by assigning a line
number one greater than the previous line number to the second statement and
each following statement on a multistatement line. The decompressed statement
lines are indented to facilitate rapid visual identification of executable
(non-REM) statements versus REM statements and executable statements within a
FOR...NEXT loop versus executable statements not within a FOR...NEXT loop.
Any protected program is not acceptable as an input file.

The presence of certain BASIC-2 language statements within
multistatement lines and the exhaustion of available line numbers result in
all or part of an input multistatement line remaining a multistatement line in
its decompressed form. The exceptions to the assignment of each statement .to
a unique, ascending line number are as follows:

1. Any REM statement which 1is mnot the first statement in a
multistatement line is not assigned a line number; instead, it
follows the preceding executable statement on the same line.

2. An ELSE clause (:ELSE) following any statement is not assigned a
line number; instead, it follows that statement on the same line.

3. An ERROR statement which 1is not the first statement on a
multistatement line is not assigned a 1line number; instead, the
:ERROR statement and all following statements on the multistatement
line follow the preceding executable statement on the same line.

4. As Decompression breaks up a multistatement line and assigns unique,
ascending line numbers, there may be fewer available line numbers
between the line numbers of the current multistatement line and next
line than the number of statements to be assigned line numbers in
the current multistatement line. TIf so, each statement is assigned
a line number until line numbers are exhausted, and the 1last
available line number becomes a multistatement line. Similarly, the
greatest possible line number, 9999, may be a multistatement line.

To facilitate rapid visual identification of FOR...NEXT loops (defined

by FOR...TO and NEXT statements) and executable statements versus REM
statements, the following rules of indentation are used:

1. Each REM statement at the beginning of a line is indented one space
from its line number.

38

2. Each executable statement is indented five spaces from its line
number; however, an executable statement within a FOR...NEXT loop is
indented two additional spaces per FOR...NEXT loop the statement is
nested within.

Operating Notes

Default parameters are similar to the Compression utility, with the
exception of the extra sectors value (from 1 to 250) which indicates the
desired number of extra sectors to be contained within the output files. The
actual number of extra sectors in each decompressed output file may not
exactly equal the specified number of extra sectors, since the disk space
required for the decompressed output program text depends upon the input
program text. The input program text is examined only as it is decompressed,
after the utility has opened the output file with a sector allocation
estimated by the utility based upon input file size and the specified number
of extra sectors. With the Indirect mode, however, this parameter is ignored;
with Part mode, this parameter serves as a default value for the extra sectors
value of each output file.

Error messages are described in Table E-1. The Utilities menu appears
upon completion of utility execution.

2.7 THE SORT DISK CATALOG UTILITY

The Sort Disk Catalog utility prints or displays the contents of a
specified disk's catalog index. Each file's name, beginning and ending sector
addresses, and the number of used and extra (free) sectors is output in sorted
order, which is determined by specifying one of the following options:

1. The Name option lists the file names in the catalog index according
to alphabetic order (ascending ASCII collating sequence).

2. The Starting Sector option lists the file names in the catalog index
according to the starting sector address of each file in the catalog
area.

3. The Index Sector Sequence option lists the file names in the catalog
index according to the order in which the file entries are stored in
the catalog index.

Active files, scratched files, or both (All files) may be specified for
the file name list. Disk catalog index information output includes the number
of index sectors, the last sector address allocated to a file, the ending
sector address of the catalog area, and the number of data and program files.
The disk catalog report contains more information than the output of the LIST
DC statement which it resembles.

The maximum number of file name entries which can be printed or
displayed in a catalog index report depends upon the memory available, as
listed in Table 2-3, If insufficient memory exists to list all catalog
entries, an error message appears facilitating output of a partial list.

39

Table 2-3. Sort Disk Catalog Memory Requirements

2200MVP PARTITION MAXIMUM NUMBER OF ENTRIES
7K 65
8K 138
9K 211
10K 284
11K 357
12K 431
14K 577%
16K 723
18K 869
20K 1015
*Approximate maximum for a 16K 2200VP.

Operating Notes

The default parameter for output device can be either CRT or PRINTER.
If the output device number is entered in reply to the ENTER DESIRED FUNCTION

(0=END) prompt, the current value 1is replaced by the other possible wvalue
(flip/flop).

After the default parameters have been accepted, the prompt ENTER TITLE
FOR LIST appears. With printed output, the title entered appears atop each
printed page (in expanded print with matrix printers), along with the disk
address, date, and page number. The start-up printer address must indicate a
printer if printed output is chosen.

With CRT output, the catalog index report appears one screenful at a
time. Touch the RETURN key to view the next screenful of the report.

After the catalog index report is printed or displayed, a prompt appears

allowing (1) the report to be reprinted on the CRT, (2) the report to be
reprinted to a printer, and (3) a return to the ISS Utilities menu.

2.8 THE DISK DUMP UTILITY

The Disk Dump utility prints or displays all or part of a specified disk
or disk file. With printed output, either all records or records located
within specified limits may be printed or displayed in one of three output
formats. With user-interactive displayed output, the user views the contents
of the current sector and may position it forward or backward, to the last
sector before the END control sector or to any specified relative sector
number via SF keys. The displayed current sector may also be printed.

40

With printed output, only sectors preceding the END control sector may
be printed (except for program files where the END control sector is also
printed). With displayed output, however, any sector on the disk may be
displayed.

The sectors to be printed or displayed may be within a specified file
(input mode of File) or within a specified range of absolute sector addresses
(input mode of Range). With the File option, either all sectors in the file
may be dumped or specified relative sector addresses. With the Range option,
the lower and upper absolute sector addresses must be specified. All sector
addresses are relative to 00000 as the first sector of the file (relative
sector address) or disk (absolute sector address). Please note that with the
combination of Data File Structure dump and the File input mode, instead of
relative sector addresses, the logical record numbers are specified (relative
to 00000); however, unless multiple sector records are present, logical record
numbers and relative sector addresses are identical.

The three kinds of Disk Dump output formats are the Horizontal,
Vertical, and Data Structure options. With CRT output, only the Vertical
format is allowed. The Horizontal and Vertical formats print the two-digit
ASCII hexadecimal value of each byte and the characters represented by the
hexadecimal characters in the specified sectors. With the Horizontal dump, 32
bytes of hexadecimal values are followed by the corresponding 32 characters on
each line; wide (14— by 1ll-inch) printer paper is required, and six sectors
are printed per page. With the Vertical dump, each character and its
corresponding two-digit hexadecimal value appear vertically in a column with
three sectors printed per page; normal width (8 1/2- by ll-inch) printer paper
may be used with printed output, and CRT output is also available. The Data
File Structure dump is valid only for data files whose records were written
using DATASAVE DC or DATASAVE DA statements. This dump requires wide printer
paper. For each sector (physical record), each field's content, type (numeric
or alpha), and length is printed. For multiple sector records, the physical
record in each logical record is numbered.

The file name and page number appear atop each page. Each sector is
identified by both its absolute and relative sector addresses. A period (.)
is printed for hexadecimal values below 20, and an "at" sign (@) is printed
for hexadecimal values above 7E.

Operating Notes

Among the default parameters are input mode and output device, which
alternate between FILE or RANGE and CRT or PRINTER respectively, when the
corresponding number is entered in reply to the ENTER DESIRED FUNCTION (O=END)
prompt (flip/flop). The File Name parameter is ignored if the input mode is
Range.

After accepting the default parameters, a MOUNT DISK message appears.
With printed output, to temporarily stop printing, touch the H key. After the
remainder of the sector has been printed, KEY RETURN(EXEC) TO RESUME? is
displayed and printing ceases. To continue printing, touch the RETURN key; to
abort, touch SF'31,

41

With user-interactive displayed output, the first sector of the
specified file or range is displayed after the MOUNT DISK message appears.
The specified file's name (if the input mode is FILE) and sector address
limits of the file or range are displayed on the top line of the CRT. Also,
the absolute and relative sector addresses numbers are dynamically displayed
as the user moves the displayed current sector.

The relative sector address is relative to the first sector of the file
or range, depending upon the input mode. With CRT output, any sector on the
disk can be displayed. Table 2-4 lists and describes the SF keys available
for CRT output.

Table 2-4. Disk Dump SF Keys for CRT OQutput

SF KEY PURPOSE
SF'2 Beginning at the current sector address,
sectors are continuously displayed

one-by-one in ascending sector address
sequence (forward) until any key 1is
touched. After touching any key, the
current sector remains displayed until a
valid SF key is touched.

SF'3 Beginning at the current sector address,
sectors are continuously displayed
one-by-one in descending sector address
sequence (backward) until any key is
touched. After touching any key, the
current sector remains displayed until a
valid SF key is touched.

SF'4 Displays either the 1last sector 1in the
(END) specified range or the 1last sector
(end-of-file catalog trailer sector) 1in
the specified file, depending wupon the
input mode previously chosen.

SF'S Displays the sector preceding the END
(end-of-data) control sector. The sector
displayed is the last sector of data or
program text, depending upon the file
type. SF'S5 1is valid only if the input
mode is Dump by File.

SF'7 Displays the first sector of the specified
(BEGIN) file or range. With a program file, the
header sector appears.

42

Table 2-4. Disk Dump SF Keys for CRT OQutput (continued)

SF KEY PURPOSE

SF'8 Allows the user to enter the sector number
to be displayed relative to the current
sector address. Any negative or positive
relative sector number may be entered as
long as that sector does indeed exist on
the disk in use.

SF'9 Redisplays the most recently displayed
sector.

SF'10 Prints the currently displayed sector to
the device identified by the ISS start-up
printer address.

SF'11 Moves the current (displayed) sector five

(==-) sectors foward, increasing the current
sector address by 5.

SF'12 Moves the current sector one sector

(—=) forward, increasing the current sector
address by 1.

SF'13 Moves the current sector omne sector

(=) backward, decreasing the current sector
address by 1.

SF'l4 Moves the current sector five sectors

(-=) backward, decreasing the current sector
address by 5.

SF'31 Aborts operation of the Disk Dump utility
and brings the ISS Utilities menu to the
screen.

Error messages are described in Table E-1. With printed output, the

Utilities menu appears upon completion, With displayed output, touch SF'31l to

obtain the Utilities menu.

43

2.9 THE FILE STATUS REPORT UTILITY

The TFile Status Report utility prints or displays the multistation
access status of specified data files and can also close any specified data
files accidentally left open on the specified disk. Designed especially for
multiplexed/multistation data files, the utility prints certain access status
information including each specified data file name and one of the following:
(1) NOT OPENED if that file is not open to any station, (2) NOT A MULTIPLEXED
FILE if that file is not a multiplexed/multistation file, or (3) the station
numbers and respective access modes if the file 1is open to one or more
stations. Optionally, the specified data files may be closed or a file status
report printed for only one particular station number. This utility reads and
may rewrite the catalog trailer (end-of-file) control sector used by the
multiplexed/multistation Open/End/Close Disk subroutines to maintain a data
file's access table. This access table information may erroneously indicate
that a file is open because of operator accidents, power failures, and errors
encountered during initial testing of application programs.

The mode is the first parameter used by the utility to determine the
file names to be processed (specify either All, Part, Range, or Indirect). If
a particular station number is specified (station number 1is greater than
zero), either every specified multiplexed/multistation data file opened to the
specified station number is closed (Output option 1) or the access status of
each specified file open to the specified station(s) is 1listed, including
whether or not other station numbers have the file open (Output option 2, 3,
or 4). If the option for all station numbers is specified (station number
equals zero), there are four available Output options: (1) close the
specified data files for all possible station numbers (Close File), (2) print
or display the file name and status of each specified data file relative to
all station numbers (List Status any File), (3) print or display the file name
and status of each specified data file that is a multiplexed/multistation file
relative to all station numbers (List Status Mux'd File), and (4) print or
display the file name and status of each specified data file that is a
multiplexed/multistation file and is currently open to a station relative to
all station numbers (List Status Open File).

CAUTION:

The option to close a file should be used with extreme
caution by persons knowledgeable of multiplexed/multistation
file operation and only when processing by the particular
station number by all stations (whichever is specified) has
been terminated for the file(s) to be closed. Also, never
use the File Status Report utility to close a KFAM file
except for KFAMWORK, a work file; instead, use the KFAM
utility Reset Access Tables to close KFAM files
accidentally left open.

44

Operating Notes

The output device parameter can be either CRT or PRINTER. When the
corresponding number for output device is entered in reply to the ENTER
DESIRED FUNCTION (O=END) prompt, the current value is replaced by the other
possible value (flip/flop).

With CRT output and the 1list status output option, each screenful
appears accompanied by the prompt READY FOR NEXT DISPLAY, KEY RETURN(EXEC) TO
RESUME? which allows the operator to touch RETURN after viewing the displayed
information. After the entire report has been printed or displayed, or after
all files have been closed, a prompt appears allowing the same function to be
re~executed (including printing or displaying the report), or the 1SS
Utilities menu may be obtained.

Error messages are described in Table E-1.

2.10 THE PROGRAM COMPARE UTILITY

The Program Compare utility compares each specified pair of input
program files and prints or displays differences in the program text contained
within the two program files. Statement line numbers of the two program files
are used as the basis of comparison. Messages are printed under the following
conditions: if a statement line number exists in only one program file, if a
statement line number exists in both program files but 1its program text
content differs, if one program file ends before the other, and if all program
files compared are identical. Program Compare ignores all REM statements and
blanks except for those enclosed within quotation marks or part of an Image 7%
statement. For example, the Program Compare utility considers the following
statements identical:

10 REM THIS IS A REMARK: A=B: REM ANOTHER REMARK
10 A=B

The two program files in each pair are identified as Input One and Input
Two. Messages identify differences between the pair of files being compared
and are accompanied by appropriate labeling of disk addresses and file names.
These informative messages are listed in Table E-1.

Operating Notes

The output device parameter can be either CRT or PRINTER. When the
corresponding number for output device 1is entered in reply to the ENTER
DESIRED FUNCTION (O=END) prompt, the current value is replaced by the other
possible value (flip/flop). The Error Limit parameter allows the comparison
of the current pair of program files to be aborted if the specified number of
errors is reached, from 1 through 999; an Error Limit value of 0 (zero)
indicates no error limit. During program execution, the current pair of
program files being compared may be aborted by touching SF'O.

45

With CRT output, each screenful appears accompanied by the prompt READY
FOR NEXT DISPLAY, KEY RETURN(EXEC) TO RESUME?, allowing the operator to touch
RETURN after viewing the information displayed. After all messages have been
printed or displayed, a prompt appears allowing the same function to be
re-executed with CRT or printed output, or the ISS Utilities menu may be
obtained.

2.11 THE RECONSTRUCT DISK INDEX UTILITY

The Reconstruct Index utility is a recovery aid for a disk whose catalog
index has been destroyed; e.g., by being accidentally scratched. The utility
searches the specified disk for file control sectors written during catalog
operations. Based upon the control sectors found, it attempts to reconstruct
a catalog index for the files on the disk. Utility execution can take up to
several hours, especially if numerous scratched files were located on the
disk. The number of index sectors and highest sector address are required.

The utility assigns file names for all data files and for duplicate
program file names in the format /*nnnn*/, where nnnn is a four-digit number
beginning with 0001.

CAUTION:

Before running this utility, a backup of the disk must be
made because the utility writes on the specified disk.
This utility is a last resort in recovery procedures, and
its success is entirely dependent upon the nature of the
disk. It is not guaranteed to reconstruct the disk index.

Operating Notes

There are no error messages. The Utilities menu appears upon completion
of utility execution.

2.12 THE ALTER DISK INDEX UTILITY

The Alter Disk Index utility displays the contents of a specified disk's
catalog index and performs certain special-purpose functions pertaining to the
catalog index. A file may be renamed (assigned a different file name) which
automatically makes the file status active, a scratched file may be activiated
(its status changed from scratched to active), an active file may be scratched
(its status changed from active to scratched), a specified file name may be
searched for and its file usage parameters displayed, and the 1last file
allocated on a disk may be removed which frees (deallocates) its disk space
for allocation to other files.

46

CAUTION:

A backup copy of the disk to be accessed using the Alter
Disk Index wutility must be made prior to utility
execution, since certain disk hardware errors may render
the disk inaccessible. This utility should be used with
great care and only by persons knowledgeable of 2200 disk
operation.

Operating Notes

The only parameter required is the disk address of the disk whose index
is to be viewed or altered. A MOUNT DISK message appears after the disk
address has been entered, and is soon replaced by the display format shown in
Figure 2-2,

INDEX SECTORS - aa

DISK ADDRESS - xyy END CAT. AREA - bbbb
CURRENT END - ¢cccce

INDEX SECTOR - O
FILE NAME START END STATUS
1
2 filename ==== nnnn nnnn 11
3 filename nnnn nnnn 11
4

Figure 2-2, Alter Disk Index Display Format

Figure 2-2 shows the information displayed by the Alter Disk Index
utility, where: aa represents the number of index sectors (established via a
SCRATCH DISK statement), xyy represents the specified disk address, bbbb
represents the absolute sector address where the catalog area ends
(established via a SCRATCH DISK statement), and cccc represents the absolute
sector address of the last sector currently allocated to a file on this disk.

The number appearing to the right of INDEX SECTOR- dynamically reflects
the current index sector position, whose contents are displayed under the
column headings File Name, Start, End, and Status in a "window'" of up to eight
file name entries. The absolute sector addresses (nnnn) under the Start and
End columns define the boundaries for the file whose name appears under the
File Name column. (Instead of the nnnn under the Start and End colummns, the
words DEAD and SLOT may appear to indicate where an old file name of a since
renamed file had once existed. A MOVE statement removes all '"dead slots" and
reorganizes the disk.) Each file has a status of two letters (1l1) where the
first letter 1is either an A if the file is active or an S if the file is
scratched; the second letter is either a D if the file is a data file or a P
if the file is a program file. As shown in Figure 2-2, each file name
position may not yet contain a file name entry. The cursor and double arrow
(=== indicate the current file name entry.

47

The disk index can accommodate up to 15 file name entries in the first
index sector and up to 16 file name entries in each subsequent index sector.
SF keys are provided to move the list of file entries forward (upward) or
backward (downward) while the cursor and double arrow remain stationary; other
SF keys allow the contents of a different index sector to be displayed. Note
that a hashing algorithm 1s used to determine in what index sector a file name
is placed; file names are stored neither sequentially nor alphabetically.
Functions which should be used with extreme care are those performed by SF'O,
SF'l, and SF'2. SF keys applicable to this utility are described in Table 2-5.

Table 2-5. Alter Disk Index SF Keys

SF KEY FUNCTION

SF'0 The status of the '"current file entry" is
changed from active (A) to scratched (8)
or from scratched (S) to active (A). The
"ecurrent file entry" is pointed to by the
double arrow. This function 1is performed
automatically by touching SF'0; no prompt
appears.

SF'1l The File Name of the current file entry
may be changed to a specified file name.
After touching SF'l, the prompt ENTER NEW
NAME appears. Either the function may be
aborted by entering 0 (zero) or the new
file name may be entered. If the new file
name 1s entered, the new file name 1is
assigned to the file whose information is
currently displayed and appears elsewhere
in the index. The old file name may be
reused in that disk index.

SF'2 The last file in the catalog area may be
removed from the disk, which frees
(deallocates) that file's sectors for use
by other files and removes its entry in
the index. After touching SF'2, the index
sector containing the last file is located
and displayed, accompanied by the prompt
DO YOU WANT TO REMOVE THIS FILE? (Y/N).
If Y is entered the file is removed; if N
is entered, the function 1is aborted and
the previously displayed index sector is
redisplayed.

48

Table 2-5.

Alter Disk Index SF Keys {continued)

SF KEY FUNCTION

SF'3 A specified file may be located in the
index and 1its index sector displayed.
After touching SF'3, the prompt ENTER FILE
NAME appears. Either the function may be
aborted by entering 0 (zero) or the file
name to be located may be entered. When
found, that file's 1index sector 1is
displayed and that file becomes the
"current file entry."

SF'4 Moves the 'current file entry' to the last

(END) file within the current index sector.

SF'7 Moves the "current file entry" to the first

(BEGIN) file within the current index sector.

SF'll Moves the list of file entries forward

(=) (upward) five file entries within the
current index sector, which repositions
the "current file entry."

SF'12 Moves the list of file entries forward

(=) (upward) one file entry within the current
index sector, which repositions the
"current file entry."

SF'13 Moves the list of file entries backward

=) (downward) one file entry within the
current index sector, which repositions
the "current file entry."

SF'l4 Moves the list of file entries backward

C——-) (downward) one file entry within the
current 1index sector, which repositions
the "current file entry."

SF'20 Displays the contents of the last index
sector.

SF'23 Displays the contents of the first index
sector.

SF'27 Displays the contents of 1index sector

located five sectors forward from the
current index sector position. The last
index sector is redisplayed, when reached,
if SF'27 is repeatedly touched.

49

Table 2-5. Alter Disk Index SF Keys (continued)

SF KEY FUNCTION

SF'28 Displays the contents of the index sector
located one sector forward from the
current index sector position. The last

index sector is redisplayed, when reached,
if SF'28 is repeatedly touched.

SF'29 Displays the contents of the index sector
located one sector Dbackward from the
current index sector position. The first
index sector is redisplayed, when reached,
if SF'29 is repeatedly touched.

SF'30 Displays the contents of the index sector
located five sectors backward from the
current index sector position. The first

index sector is redisplayed, when reached,
if SF'30 is repeatedly touched.

SF'31 Aborts operation of the Alter Disk Index
utility and returns the ISS Utilities menu
to the screen.

2.13 1SS UTILITIES ERROR MESSAGES

The 1I8S utilities provide error messages under certain conditions.
Table E-1 lists all utility error messages and gome typical BASIC-2 error
messages (ERR lnn form). Recovery procedures are also provided. Most error
messages are accompanied by the audio tone.

Certain utilities use the $OPEN and $CLOSE statements to respectively
set or release disk hog mode and printer hog mode. Should a power failure
occur or utility execution be aborted by any means other than SF'31l, the
currently hogged disk drive or printer may be released by executing a $CLOSE
statement that specifies that the appropriate device address is entered in the
Immediate mode from the terminal which was executing the utility.

50

CHAPTER 3
THE SCREEN/DISK SUBROUTINES

3.1 INTRODUCTION AND OPERATING NOTES

The 1SS Screen/Disk subroutines comprise a library of marked subroutines
designed to eliminate the repetitious, detailed programming tasks otherwise
required of an application programmer. These marked subroutines, known as the
1SS Screen/Disk subroutines, provide a simple interface between application
programs and a wide range of potentially complex disk- and operator-related
tasks.

There are three groups of Screen/Disk subroutines: the Disk
subroutines, the Screen subroutines, and the Translation Tables subroutines.
The Screen subroutines perform various tasks related to the 1interaction
between operator and station, whereas the Disk subroutines perform tasks
related to station and disk interaction. The Translation Tables subroutines
initialize 256-byte arrays with the proper hex codes for four standard
character code translations; these arrays are designed for use with the
BASIC-2 statement $TRAN.

The Screen subroutines are Data Entry, Date Routines, Position Cursor,
Operator Wait, and the Print Routine. The Disk subroutines are
Select/Validate Disk Addresses, Search Index, Allocate Data File Space, Free
Unused Sectors, Limits Next, Open/Close OQOutput, Open/Close Input, and the
Multiplexed/Multistation Open/End/Close subroutines. The Translation Table
subroutines are ASCII to EBCDIC, and EBCDIC to ASCII.

The subroutines chosen may be specified either as ‘'global" or
"nonglobal” (local). In either case, the subroutines chosen are loaded into
memory (the partition in use) and saved to disk.

If global is specified, two program files are created (saved) at a
user-specified disk address with user-specified file names. One program file
contains Dimension (DIM) statements for certain variables which must be
incorporated into each user-written application program; the other program
file contains program text consisting of the selected subroutines to which the
user adds a DEFFN @PART statement 1in order for the subroutines to be
referenced (later) by multiple stations as a global partition.

51

If nonglobal is specified, only one program file is created containing
Dimension statements and subroutines both of which incorporate into the user's
application program. A disk address and file name are specified by the user.

Symbolic Variables and Arguments

The DEFFN' statement which marks each Screen/Disk subroutine may require
certain parameter values to be passed from the GOSUB' statement calling 1it.
Parameter values passed from the GOSUB' statement are assigned to certain

variables within the subroutine. If parameters (arguments) are required,
"symbolic variables" 1listed in this manual denote each argument required
following the appropriate GOSUB' statement. Symbolic variables are not the
actual variables required in an argument list. Instead, symbolic variables

indicate whether a numeric expression or alphanumeric expression is required
in place of the symbolic variable.

If a symbolic variable's name is numeric, a numeric expression such as a
number or a user—defined numeric variable 1is required in its place. If a
symbolic variable's name is alphanumeric, an alphanumeric expression such as
an alphanumeric literal (within quotation marks) or user-~defined alphanumeric
variable is required in its place. This convention attempts to ensure that an
alphanumeric expression (argument) is not assigned to a numeric variable in a
subroutine, and vice versa.

Generally, the letter chosen for a symbolic variable's name is the first
letter of the associated parameter's name; e.g., L represents Length.

Reserved IS8 Variables and DEFFN' Numbers

All variables (scalar and array, alpha and numeric) in the range Q
through W are reserved for use by ISS. Such variables should be handled as
"read only" variables by the user's program unless the description of a
specific subroutine states otherwise (e.g., default values for Data Entry, a
Screen subroutine). Similarly, all DEFFN' statements in the range 200-255 are
reserved solely for 1ISS subroutines. While individual items within these
ranges may not be used on a given release of 1SS, it 1is assumed that no
variables or DEFFN' subroutines 1in these ranges are used for purposes
unrelated to the subroutines.

All subroutines are compatible with one another in regard to variable
usage. However, all Translation Table subroutines load the same array
variable. Also, if the same subroutine is to be called more than once, before
calling the subroutine the second (or next) time, any information returned
from the previous call should be either processed or equated to a user-defined
variable.

52

If a subroutine argument specifies a disk file number, a disk address
must be selected for that file number before calling the subroutine. File
numbers are selected by executing a SELECT statement (such as SELECT #3/310),
or by using the Select/Validate Disk Addresses subroutine (see Section 3.8).

Reserved Statement Line Numbers

A1l Screen/Disk subroutines may be loaded simultaneously. Because none
of the subroutines destructively overlaps another, all subroutines may be used
in a single program, if desired. Statements are numbered within the range
71-90, and 6000-9899, where DIM statements are located on statement lines
71-90 and DEFFN' subroutine program text is located on lines 6000-9899.
Program lines associated with the menus are located outside these ranges.

Choosing the Desired Subroutines

Following ISS start—up operation (see Chapter 1), the Screen Routines
menu appears. Each group of subroutines has its own menu; the menu's name
appears within parentheses below:

1. Screen subroutines (Screen Routines)
2. Disk subroutines (Disk Routines)
3. Translation Table subroutines (Translation Tables)

In reply to the menu currently displayed, the user chooses the
subroutines to be saved by touching the corresponding SF keys. As each
subroutine is chosen, an asterisk (*) appears to the left of not only the
chosen subroutine, but also any subroutines automatically included with the
one chosen.

In addition to the SF keys available to choose the desired subroutines,
the following SF keys are available:

1. To obtain the next menu of subroutines, touch SF'l16. After touching
SF'16, if the Screen subroutines menu was displayed, the Disk
subroutines menu appears; 1if the Disk subroutines menu was
displayed, the Translation Table subroutines menu appears; if the
Translation Table subroutines menu was displayed, the Screen
subroutines menu reappears. In this manner, the user can obtain the
next menu and choose the subroutines desired from that menu.

After choosing the subroutines desired, SF'l16 should be touched

again to allow the user to visually verify the subroutines chosen
from the three menus.

2. To erase all subroutines chosen (indicated by asterisks) from all

menus, touch SF'18. Because SF'l8 erases all asterisks, the user
should again choose all the subroutines desired from the three menus.

53

Saving the Subroutines Chosen to Disk

After visually verifying that the correct subroutines have been chosen,
the user has two options:

1.

To save the chosen subroutines for subsequent nonglobal use, touch
SF'26. The chosen subroutines are loaded and the following prompts
appear:

ENTER OUTPUT ADDRESS -- requests entry of the disk device address
(xyy form) where the chosen subroutines are to be saved. Valid ISS
disk addresses are displayed.

MOUNT OUTPUT DISK, KEY RETURN(EXEC) TO CONTINUE? -- requests
mounting of the disk(ette) where the chosen subroutines are to be
saved (the disk address just entered). Touch RETURN when ready.

ENTER FILE NAME -- requests entry of the file name to be assigned to
the program file to contain the selected subroutines.

SAVING ROUTINES and STOP ROUTINES SAVED appear. To obtain the ISS
System menu, from which the Applications menu may be obtained, touch
SF'31.

To save the chosen subroutines for subsequent global (2200MVP only)
use, touch SF '28. The chosen subroutines are 1loaded and the
following prompts appear:

ENTER OUTPUT ADDRESS -- requests entry of the disk device address
(xyy form) where the chosen subroutines and DIM statements are to be
individually saved as program files. Valid ISS disk addresses are
displayed.

MOUNT OUTPUT DISK, KEY RETURN(EXEC) TO CONTINUE? -- requests
mounting of the disk(ette) where the chosen subroutines are to be
saved (the disk address just entered). Touch RETURN when ready.

ENTER FILE NAME FOR 'VARIABLES' -- requests entry of the file name
to be assigned to the program file to contain the DIM statements for
certain variables. This program file's contents are incorporated

into the user's application program.

ENTER FILE NAME FOR 'TEXT' -- requests entry of the file name to be
assigned to the program file to contain the chosen subroutines
(program text). This program file's contents should (later) be

loaded, a DEFFN @PART statement added to it, and it should then be
resaved for subsequent use as a global program file.

SAVING ROUTINES and STOP ROUTINES SAVED appear. To obtain the ISS

System menu, from which the Applications menu may be obtained, touch
SF'31.

54

Estimating Partition Memory Size Requirements

In order to load a program file containing all 1ISS Screen/Disk
subroutines, a 8.75K partition is necessary; however, in order to load and run
a program file containing all ISS Screen/Disk subroutines, a 10K partition
(8.9K memory) is necessary. These partition requirements are the same for
both global and non-global subroutines. The variables required in the global
output require a 2.75K partition to load and a 4K partition (2.8K memory) to
load and run if all Screen/Disk subroutines are chosen. Because it is not
likely that all Screen/Disk subroutines will be chosen, use of the END
statement or PRINTSPACE (Space function) allows the user to determine the
amount of unused (free) memory and the amount of memory actually necessary.
For instance, after the program has been loaded and run, the Immediate Mode
statement :PRINT SPACE K - SPACE/1024 prints the partition size needed by the
program in K bytes.

3.2 DATA ENTRY (DEFFN'200)

The Data Entry subroutine, a Screen subroutine, accepts a keyboard entry
and determines if it is acceptable for either numeric or alphanumeric input.
Using the LINPUT statement, entries can be checked for (1) values either
within a specified numeric range or alphanumeric limits, (2) the length of an
alphanumeric entry, (3) whether an alphanumeric entry is on a specified list
of valid responses (table look-up), and (4) the length to the left of, and to
the right of, the decimal place for a numeric entry. With numeric entry, all
digits (0-9), a minus sign, a decimal point, and exponential characters
(including the uppercase letter E) are valid entries.

A prompt can be displayed on line 1, by either the subroutine or the
user program, and an operator-modifiable or unmodifiable default value can be
implemented to reduce the required number of operator keystrokes. With
operator-modifiable defaults, Edit mode is activated, allowing nondestructive
editing of the displayed default.

During the call to the Data Entry subroutine, any SF key is a valid
operator response 1if (1) the wuser's application program provides the
corresponding DEFFN' statement followed by either a RETURN or a RETURN CLEAR
statement and (2) Edit mode is not active.

Checking Features

After the program calls the subroutine and the operator touches RETURN,
any checks specified in the subroutine argument list are automatically
performed on the entire response, including the following:

1. With a numeric entry, does the response conform to the minimum and
maximum (range check) values specified, if any?

2. With a numeric entry, is the number of digits to the left and right
of the decimal point within the maximum length limit specified for
each?

55

3. With an alphanumeric entry, is the length within the maximum limit
specified?

4. With an alphanumeric entry, does the response conform to either the
specified alphanumeric limits (without table look-up) or the list of
acceptable responses (with table look-up).

If the entry is acceptable, a valid response is returned in numeric-
variable Q9 for a numeric entry, or alpha-variable Q6$ for an alphanumeric
entry. If a default value is used, the default value must be equated to the
appropriate variable prior to each Data Entry subroutine call. The maximum
entry field length for alphanumeric input 1is 64 characters. With numeric
input, up to 62 characters can be entered; however, the 2200 system supports
13-digit precision for numeric field entry and calculations.

With alphanumeric input, if an entry is rejected based on the arguments
specified, RE-ENTER is displayed on Line 3, the audio alarm sounds, and the
subroutine is readied to accept data. With numeric input where the entry
falls outside the specified range or decimal point/digit length, RE-ENTER
L$ =ENTRY =H$ (ddd.dd) is displayed to indicate the entry failed the numeric
range or length check, where the (ddd.dd) indicates the entry mask according
to arguments L1 and R1.

Any error message displayed on Line 3 prior to calling the Data Entry
subroutine is erased upon RETURN to the user's program from the Data Entry
subroutine. The user's program can perform customized entry checking and, .if
invalid, can print the error message on Line 3 and branch back to the GOSUB'
200 statement. The error message remains displayed until the operator again
touches the RETURN key to indicate completion after correcting the response.

GOSUB' 200 Argument Format

Transfer to the Data Entry subroutine occurs via the statement:
GOSUB' 200 (L$, H$, L1, R1l, P$, T)

Numeric Input Arguments

Numeric input (symbolic variable) arguments are described below:

Range Check - L$ contains the lowest acceptable numeric entry for the
field. Since L$ is itself alphanumeric, it must always be
expressed as an alphanumeric string; e.g., L$ = '"-99.99",

H$ contains the highest acceptable numeric entry for the
field and must be expressed as an alphanumeric string; e.g.,
H$= "+99.99".

If L$ and H$ both contain blanks, no range check is
performed.

56

Length Check - L1l equals the maximum number of characters to the left of
the decimal place.

Rl equals the maximum number of characters to the right of
the decimal place. L1 plus Rl cannot exceed 19. If L1 and
Rl both equal zero, no mask is displayed and a length test
1s not performed, but keystrokes are accepted.

Prompt - P$ contains the alphanumeric prompt displayed on line 1 of
the CRT. The user's program may either let the subroutine
display the prompt by setting the argument symbolic variable
P$ equal to the prompt, or display the prompt prior to

calling Data Entry and set argument P$=" " (blank) when
calling the subroutine, to preserve the already displayed
prompt.
Type of - T determines the type of entry and whether a default wvalue
Entry is used, as follows:

If T=-1, numeric input with an operator-modifiable,

displayed default value occurs. The default wvalue
contained in alpha-variable Q6% is displayed and may be
modified 1if desired by the operator. Edit mode 1is
activated.

If T=1, numeric input occurs without default.

If T=0, numeric input with a default value occurs
without display. The default value contained in
numeric-variable Q9 is used only if the operator accepts

the default value by keying RETURN before entering any
other characters.

Return - A valid operator reply is contained in numeric-variable Q9
(and also in alpha-variable Q6§$).

Alphanumeric Input Arguments without Table Look-up Checking

Alphanumeric input arguments without table look-up checking are
described below:

Limit Check - L$ contains the lowest acceptable alphanumeric string value
of the entry.

H$ contains the highest acceptable alphanumeric string value
of the entry. If L$ and H$ are blank, no limits check

occurs.
Length Check - Ll equals the maximum number of characters for the field, up
to 64 characters. If L1 equals zero (0), up to 64

characters will be accepted. Rl must equal zero (0).

57

Type Of
Entry

Prompt

Return

T may either equal 2, to indicate alphanumeric input
without a default value, or wequal 3, to indicate
alphanumeric input with an operator-modifiable, displayed
default value. If T=3, the default characters contained in
alpha-variable Q6% are displayed and may be modified. Edit
mode is activated if T=3.

P$ contains the alphanumeric prompt. The user's program may
either let the subroutine display the prompt by setting the
argument symbolic variable P$ equal to the prompt, or
display the prompt prior to calling Data Entry, and set
argument P$=" " (blank) when calling the subroutine to
preserve the already displayed prompt.

A valid operator reply is contained in alpha-variable Q6$.

Alphanumeric Input with Table Look-up Checking

Alphanumeric input arguments with table look-up checking are described

below:

Table of
Valid
Responses

Length Check

Type Of
Entry

Prompt

Return

L$ and H$ contain the valid responses. Both arguments are 64
bytes in length and are the two elements of an array which is
searched character-by-character (via the MATSEARCH
statement) with the operator response. Within the 128 bytes
available for table look-up entries, each entry must equal
the length of argument L1 and be padded with trailing spaces
if necessary. If L$ and H$ are blank, no checking occurs.

Ll equals the maximum number of characters for the field, up
to 64 characters. Rl must be 1,

T may either equal 2, to indicate alphanumeric input

without a default wvalue, or equal 3, to indicate
alphanumeric input with an operator-modifiable, displayed
default value. If T=3, the default characters contained in

alpha-variable Q6$ are displayed and may be modified. Edit
mode is activated if T=3.

P$ contains the alphanumeric prompt. The user's program may
either let the subroutine display the prompt, by setting the
argument symbolic variable P$ equal to the prompt, or the
program may display the prompt prior to calling Data Entry,
and set argument P$=" "(blank) when calling the subroutine,
to preserve the already displayed prompt.

A valid operator reply is contained in alpha-variable Q6%.

The entry number in the array comprised of variables L$ and
H$ is returned in numeric variable Q9.

58

3.3 DATE ROUTINES (DEFFN'220,221,222,223,224,225)

The Date subroutines consist of a group of independently accessible
Screen subroutines which facilitate the entry and use of dates. Dates may
assume two forms: Gregorian and Julian. Gregorian form is alphanumeric
MM/DD/YY, where:

YY is the 2 low-order digits of the year.
MM is the number of the month such that 1 < MM < 12.

DD is the day of the month 1 < DD < 31, depending upon the month
(including leap year for February).

Julian form is numeric YYDDD, where:
YY is the 2 low-order digits of the year.

DDD is number days since the beginning of YY counting January 1 as
1.

A Julian date is in '"proper form" if:
YY > 0 and

1 DDD < 365 whenever YY specifies a non-leap year, or

IA

1 < DDD < 366 whenever YY specifies a leap year.

A Julian date must be 1in proper form to be correctly converted to
Gregorian form by any of the subroutines.

All Date subroutines automatically account for leap years.

Enter Date - Gregorian Form

This subroutine provides for keyboard entry of a Gregorian date. It
returns the entered date in Gregorian and Julian form. A prompt must be
specified. The entered date 1is displayed in Gregorian and Julian form for

operator verification before the subroutine is exited.
The subroutine is entered via
GOSUB' 220 (P$)
where: P$ is the prompt, 64 characters maximum.
The prompt is displayed on line 1, and the cursor appears on line 2.
The slashes (/) in the date must be entered along with the appropriate

digits (MM/DD/YY form), although leading zeroes need not be entered. If MM or
DD assume values outside their valid ranges, entry is requested again.

59

If the date entered is acceptable, the message IS DATE OK (Y/N) appears
on Line 2 with the entered date in its Gregorian and Julian forms. 1If N is
entered, entry is requested again. If Y is entered, the Gregorian date is
returned in alpha-variable U9$ and the Julian in numeric—variable U9; the
subroutine is exited.

Convert Date - Gregorian to Julian

This subroutine converts a date from Gregorian to Julian format. It is
entered via

GOSUB' 221 (G$)

where: G$ is the Gregorian date to be converted.

The subroutine returns alpha-variable U9% with the Gregorian date and
numeric-variable U9 with the Julian equivalent of G$. 1If G$ could not be
converted because the values of MM or DD were outside the wvalid range,

alpha-variable Q6$ is returned as E.

Enter Date - Julian Form

This subroutine provides for keyboard entry of a Julian date (YYDDD
form). A prompt must be specified. The entered date is converted to its
proper form (via GOSUB'224). The date is displayed in Gregorian and Julian
form for operator verification.

The subroutine is entered via

GOSUB' 222 (P$)

where: P$ is the prompt, 64 characters maximum.

The prompt is displayed on line 1, and the cursor appears on line 2.
No check is performed to ensure the proper form of the entered Julian date.

The message IS DATE OK (Y/N) appears on Line 2 with the entered date in

its Gregorian and Julian forms. If a Julian date was not entered in its
proper form, the Gregorian date is incorrect. If N is entered, entry is
requested again. If Y is entered, the Gregorian date 1is returned 1in

alpha-variable U9$ and the Julian in numeric-variable U9; the subroutine is
exited.

Convert Date — Julian to Gregorian

This subroutine converts a date from Julian to Gregorian form. The date
specified as an argument is converted to its proper form (via GOSUB'224). It
is entered via

GOSUB' 223 (J)

where: J is the Julian date to be converted.

60

The routine returns alpha-variable U9$ with the Gregorian equivalent of
J and numeric-variable U9 with the entered Julian date. No check is performed
on J. A Julian date not in its proper form produces a Gregorian date with MM
or DD outside the valid range.

Convert Julian Date to Proper Form

This subroutine converts any five-digit Julian date to a Julian date in
proper form; i.e., the number of days specified must be wvalid for the
specified year and 1is converted if invalid (see examples below). It 1is
entered via

GOSUB' 224 (J)
where: J 1s a Julian date.

The subroutine returns the entered date in numeric-variable Q9 in proper
form. For example:

72367 is returned as 73001
71733 1s returned as 73002

Calculate Days Between Two Dates

This subroutine calculates the number of days between two Julian dates.
It is entered via

GOSUB' 225 (J1, J2)
where: Jl is the earlier date.
J2 is the later date.
U3 is returned equal to the number of days between J1l and J2.
For example: If J1 = 75004 and J2 = 75009, then U3 is returned as 5.

If J1 = 71360 and J2 = 72060, then numeric-variable U3 is returned as 65.

3.4 POSITION CURSOR (DEFFN'248)

The Position Cursor subroutine moves the cursor to any location on a
16 x 64 or 24 x 80 display screen. Also, it can optionally erase both the
characters to the right of the new cursor position on the same line and entire
lines below it. ©Position Cursor automatically determines the type of CRT
used. Unlike the PRINT AT function which erases the specified number of
characters, the Position Cursor subroutine erases the specified number of
lines. If desired, the PRINT AT function may be used instead of Position
Cursor. A PRINT or LINPUT statement, or a call to the Data Entry subroutine
typically follows the Positon Cursor call.

61

Transfer to the Position Cursor subroutine occurs via the statement:

GOSUB' 248 (R,C,E)

where: R = row (i.e., line number minus one), relative to zero.
C = column, relative to zero.
E = number of lines to erase.

The cursor 18 moved to the position specified by the R,C argument
relative to zero (0); e.g., R=0 and C=2 move the cursor to the top-most line,
position 3. The absolute value of E determines if lines are erased and is
identical for the two types of available display screens.

If E=0 (zero), no characters are erased. If E=-1 or E=1, only
characters in the same line (row) to the right of the cursor's new position
are erased. If E is less than minus one (-1) or greater than one, characters

to the right of the cursor's new position (on that line) are erased, as are
all lines below, to the value of E-1 lines for E values greater than one, or
the absolute value of E minus one for E values less than minus one. If
E=-9E99 or E=9E99, the entire screen is cleared.

3.5 OPERATOR WAIT (DEFFN'254)

This Screen subroutine displays the message KEY RETURN(EXEC) TO RESUME?
on Line 2. Execution 1is halted on an INPUT instruction until RETURN 1is
touched. Up to 64 entered characters are returned in alpha-variable Q6%.

Transfer to the subroutine is via the statement:

GOSUB' 254

3.6 RE~ENTER (DEFFN'255)

If the Data Entry subroutine is selected, the RE-ENTER subroutine may be
used. The RE-ENTER subroutine displays the word RE-ENTER on CRT Line 3 when
called to signal the operator of an entry error.

Transfer to the RE~-ENTER subroutine is via the statement:

GOSUB' 255

3.7 PRINT ROUTINE (DEFFN'242)

The Print Routine subroutine 1s a Screen subroutine which prints a
specified character a specified number of times.

62

Transfer to the Print Routine subroutine is via the statement:
GOSUB' 242 (N, C§$)
where: N = the number of times to print the character.

C$ = the character to be printed.

3.8 SELECT/VALIDATE DISK ADDRESSES (DEFFN'205)

The Select/Validate Disk Addresses subroutine is a Disk subroutine which
validates a specified disk address against a list of valid 2200 disk addresses
and optionally selects that disk address to a specified disk file number
(i.e., device table "slot"). The Select function is identical to that
performed by the BASIC-2 language SELECT statement, thus allowing substitution
of a Select/Validate Disk Addresses subroutine call for the corresponding
SELECT statement. The list of valid disk addresses is an alphanumeric literal
string consisting of all possible ISS start-up disk addresses.

Should the programmer wish to customize the disk address list to suit a
particular disk configuration, the program file 185.2055 must be modified
before the desired subroutines are chosen from the subroutine menus. This
does not allow individual stations to determine the valid disk addresses for
each day as in ISS start-up, but the list is set for all stations permanently
unless the subroutine text is modified or 18S5.205S is remodified and the
subroutines are rechosen. To alter the disk address list in 18S8.205S: (1)
CLEAR all program text, (2) LOAD program file ISS.205S8, (3) LIST line 8875,
(4) carefully EDIT that line, which contains the literal string of 3-byte disk
addresses, (5) SCRATCH the old 1SS.205S program file, and (6) resave the new
1SS.205S in place of the original file; e.g., enter SAVE DC T (), '"1SS.205S".

The subroutine is called by:
GOSUB' 205 (F,Al$, Fl)

where: F is the file number (device slot) to be assigned the disk
device address if the select option is specified (0-15).

Al$ is the disk device address in the "xyy" form to be validated
and optionally selected.

F1=0 (zero) requests only validation of the specified address.
Fl=1 requests both wvalidation of the specified address and

selection of the file number to the specified address, if it is
valid.

The subroutine provides three possible return codes in alpha-variable Q$:

Q$="X" indicates argument Fl is invalid or the value of F is less
than 0 (zero) or greater than 15.

63

Q$="1" indicates an invalid disk address.

Q$= blank indicates successful subroutine execution.

3.9 SEARCH INDEX (DEFFN'229)

The Search Index subroutine, a Disk subroutine, searches a disk catalog
index for a specified file name. It returns the status of the file as active,
scratched, or nonexistent, and indicates whether the file is a data or program
file. 1t is recommended that the BASIC-2 statement LIMITS be used instead of
Search Index for efficiency; however, please note that Search Index returns
the information in alpha-variable R2$, which is not returned by the LIMITS
statement.

The subroutine is called by:

SELECT #F/xyy
GOSUB' 229 (F, N$)

where: xyy is the disk device address.
F is the file number (device slot).
N$ is the file name.

The numeric-variable R is used as a return code to indicate one of the
following:

- active data file

- active program file
file does not exist

- scratched program file
- scratched data file

NHEFOHN
|

In addition, alpha-variable R2$ returns the file status code.

R2$ = HEX(10) the file is active.
R2$ = HEX(1ll) the file is scratched.
R2$ = HEX(00) the named file does not exist.

3.10 ALLOCATE DATA FILE SPACE (DEFFN'228)

This Disk subroutine catalogs (creates) a data file on any selected disk
and allocates to it either (1) all available sectors between the current end
of cataloged files and the end of the cataloged area, or (2) a specified
number of sectors, to which it automatically adds two sectors to offset the
two required system overhead (control) sectors. It checks the catalog index
to ensure the uniqueness of the file name and allows a minimum acceptable
number of sectors, not including control sectors, to be specified when all
available disk space is to be allocated. Since the subroutine automatically
accounts for system overhead sectors, the specified number of sectors is the
number of extra sectors.

64

Allocate Data File Space is a counterpart to Free Unused Sectors.
The subroutine is called by:

SELECT #F/xyy
GOSUB' 228 (F,N$,S)

where: xyy is the disk device address.
F is the file number.
N$ is the name of the new file.

S is the number of sectors, not including the two file control
sectors (END and catalog trailer sectors), to be used by the
subroutine as a basis for opening the file. If S is equal to or
greater than zero, the minimum number of sectors which must be
available for the file to be opened is S8 plus 2, and all
available disk space is allocated to the file, if opened. 1If S
is less than zero, the absolute value of S plus 2 determines
both the minimum number of sectors which must be available to
open the file and the actual file allocation. For example, if §
is 10, 12 or more sectors are allocated; if S is -10, then only
12 sectors are allocated.

There are three conditions sufficient to prevent the file from being
opened. In the sequence of their evaluation they, and their return codes
contained in alpha-variable R2$, are the following:

1. If the file name is the same as a cataloged scratched file, the
return code R2$ is set to 3.

2. 1If the file name is the same as a cataloged active file, the return
code R2$ is set to 2.

3. 1I1f there are insufficient sectors in the catalog area, beyond the
current end, to open the specified minimum file, the return code R2$
is set to 1.

If none of these conditions occur, the file is opened and the return
code R2$ is set to O.

3.11 FREE UNUSED SECTORS (DEFFN'227)

This Disk subroutine examines a selected file in a disk catalog area.
It reallocates those sectors (extra sectors) between the END (end-of-data)
sector and the catalog trailer (end-of-file) sector as free sectors available
to be allocated to other files. That file's catalog trailer sector 1is
repositioned accordingly. The deallocation of sectors may be restricted by
specifying that a minimum number of extra sectors be maintained in the file
(reserved for file additions).

65

The file must have an END control sector written by either a DATASAVE
DC END statement or the Disk subroutine equivalent. 1If this subroutine 1is
executed on a file without an END sector, that file is destroyed.

This subroutine is a counterpart to Allocate Data File Space.

The subroutine is called by:

SELECT #F/xyy
GOSUB' 227 (F, N$, S1)

where: yy is the disk device address.
F is the file number.
N$ is the name of the file to be examined.
Sl is the number of extra sectors to be maintained in the file.
There are two independent conditions under which the file will not be
altered. 1In the sequence of their evaluation, they, and their return codes,
are:
1. If the file does not exist, the return code R2$ is set to 3.
2. If the number of extra sectors found in the file is less than or
equal to the requested number of extra sectors, the subroutine

returns 1 in R2$.

If none of the above conditions occur, the file is altered and the
subroutine returns O in R2$.

Note that if the file is the last file in the catalog area, Free Unused
Sectors updates the end of catalog, as well as the end of file.

3.12 LIMITS NEXT (DEFFN'226)

The Limits Next subroutine, a Disk subroutine, returns the names of
files on a disk in index sector sequence, the same order provided by the LIST
DC statement. Also returned for each file is its file status and whether it
is a data or program file. For each call, the next file name in sequence and
its corresponding status is returned.

66

Transfer to the Limits Next subroutine occurs via the statement:

SELECT #F/xyy
GOSUB' 226 (F,N$)

where: F The disk file number.

N$

The file name where the sequence is to begin. If argument
N$=HEX(0000000000000000) or the file name in N$ is not
cataloged, the scan begins with the first file in sequence.

xyy = The disk device address.

After return, this subroutine provides the following return values in
alpha-variable R9$ and numeric-variable R:

R9$ = The name of the next file in sequence. If R9$ equals HEX
(0000000000000000), the end of file sequence has been

encountered.
R = The file status of the file name returned in R9$, where:
2 - indicates active data file.
1 - 1indicates active program file.
0 - indicates file does not exist (occurs at end of
index).
-1 - 1indicates scratched program file.
-2 - 1indicates scratched data file.

The initial call provides F and N$; thereafter, upon return, the program
should test for R=0. 1If R does not equal 0, the program loop can continue
calling DEFFN'226.

3.13 OPEN/CLOSE OUTPUT (DEFFN'240,241)

These Disk subroutines open for output, and subsequently close, disk
data files which utilize special-purpose header and trailer information. In
addition to satisfying the file open and close requirements for disk catalog
operation, they produce single-sector software header and trailer records with
the following fields:

67

FIELD DISK
FIELD TYPE LENGTH LENGTH CONTENTS

1 Alphanumeric 3 4 HDR-indicates header
EOF-1ndicates end of file
EOR-indicates end of volume

2 Alphanumeric 8 9 file name
3 Numeric 8 9 creation date (Julian
format)
4 Numeric 8 9 number of days to
retain file (the '"retention
period")
5 Numeric 8 9 volume number

Based on the data in the software header and trailer records, which are
not to be confused with the hardware END (end-of-dat-) and catalog trailer

(end-of-file) control sectors, these subroutines enforce certain system
standards. For example, when a file is opened for output, a life span in days
is specified for it. The file cannot be opened for output again until this

life span has expired.

Open Output

Before <calling this subroutine, the numeric-variable Ql should be
equated to the Julian date (YYDDD form). The subroutine is called by:

SELECT #F/xyy
GOSUB' 240 (F,N$,D,V)

where: xyy is the disk device address.
F is the file number from 0 through 3 only.
N$§ is the name of the file to be opened.

D is the number of days the file 1is to be preserved (the
"retention cycle")

V 1s the volume number of the file.

The subroutine displays the message MOUNT DISK TO CONTAIN VOL. XX OF
FILE (file name) UNIT X. After the specified disk is mounted, the catalog
index is searched for the file name. 1If the file is not listed in the disk
index, it is opened using the Allocate Data File Space subroutine. Up to
three files may be open. 1f the file is indexed but scratched, the scratched
file is reopened as an active file. If the file is indexed and active and the
retention period has expired, the file is reopened.

68

Regardless of which one of the above conditions is found, the subroutine
writes the software header record in the first available file sector. The
Julian date 1is obtained from numeric-variable Ql. Control returns to the
application program with the current sector position being the first available
file sector after the software header.

If the file name is cataloged and active, but the retention period has
not expired, the message RETENTION CYCLE NOT EXPIRED appears together with the
mount message. If there is insufficient space to open a file, the message
INSUFFICIENT SPACE appears together with the mount message.

NOTE:

Keying X and RETURN in response to the mount message
causes any file with the same name to be reopened.

Close Output

The subroutine is called by:

SELECT #F/xyy
GOSUB' 241 (F, T$)

where: xyy is the disk device address.
F is the file number from 0 through 3 only.

T$ is the software trailer indicator. T$ = EOF for end of file,
or T$ = EOR for end of volume.

The subroutine writes the software trailer followed by the hardware END
trailer.

If the file is the last file in the catalog area, the Free Unused
Sectors subroutine is used to return the unused sectors to the available disk
catalog area. The file is closed and a message requests removal of the disk.

I1f T$ is set to EOF, control is returned to the application program. If

T$ is set to EOR, the volume counter is incremented for the next software
header, and the Open Output subroutine is called again.

3.14 OPEN/CLOSE INPUT (DEFFN'250,251)

These Disk subroutines open for input, and subsequently close, disk data
files which utilize special-purpose header and trailer information. They are
designed to work in conjunction with the Open/Close Output subroutines and
depend upon properly structured software headers and trailers.

69

Open Input

The subroutine is called by:

SELECT #F/xyy
GOSUB' 250 (F, N§, V)

where: xyy is the disk device address.
F is the file number from 0 through 3 only.
N$ is the file name.
V is the volume number.

The subroutine displays the prompt MOUNT VOL. XX OF FILE _ _ _ _ _ _ _ _

- UNIT X. After the proper disk is mounted, the catalog index is searched

for the file name. If the file name is found, the software header is read to

determine if the volume number is correct. A correct volume number causes the
subroutine to return control to the application program with the file open.

If the file is scratched or cannot be found, or the volume number of the
file is not the specified volume number, an error message is displayed
together with the mount prompt.

Close Input

Before calling the Close Input subroutine, the current sector position
in the file must be at the software trailer.

The subroutine is called by:
GOSUB' 251(F)
where: F is the file number from 0 through 3 only.

The subroutine reads the software trailer and checks whether it
specifies an end of file or end of volume. An end-of-file trailer causes the
subroutine to close the file and return control to the application program.
An end-of-volume trailer causes the subroutine to increase the volume counter
by one, and initiate the Open Input subroutine with the same file name and the
new volume number specified.

3.15 INTRODUCTION TO THE MULTIPLEXED/MULTISTATION DISK SUBROUTINES

The Multiplexed/Multistation Open/End/Close subroutines provide file
access control for both 2200MVP multistation use and multiple 2200VP access
via multiplexed disk drives. (In previous releases of 1SS, these subroutines
were called "Multiplexed subroutines.")

70

Multiplexed/Multistation disk files provide additional £file access
security features not available with regular 2200 disk files. The security
features require that user-supplied application programs always employ the
Multiplexed/Multistation subroutines on data files, instead of the BASIC-2
Language DATALOAD DC OPEN statement and the DATASAVE DC OPEN, END, and CLOSE

statements. Special information (namely an access table, the data file name,
and a password) is maintained in a previously unused portion of the catalog
trailer (end-of-file) control sector by these subroutines. Implementing a

unique file password allows only those who know the password to access that
file. In addition, the access table allows a station upon opening the file,
to have exclusive (private) access to a file in the Exclusive mode, or file
access in one of three nonexclusive (public) modes including the Inquiry, Read
Only, and Shared modes. The selected access mode is established each time the
file is opened and is discontinued when the file is closed. <Closing a file
terminates file access, whereas opening begins file access, for each station,
independent of other stations.

A Set/Release Hog mode (disk drive hog) subroutine is also described in

this section. All 1SS wutilities and subroutines are compatible with
Multiplexed/Multistation files. KFAM utilities and certain subroutines use
slightly modified versions of these Open/End/Close subroutines; it 1is

recommended, however, that the appropriate KFAM subroutines be used to access
KFAM files and not the Open/End/Close subroutines.

File Password Use

A file 1is first created by the Open subroutine by what 1is called an
"open new" operation. Whether or not a file password will be required by all
stations attempting access to that file (later) is determined by the content
of the argument symbolic variable P$ when the Open subroutine is called for
the '"open new" operation. If P$ contains blanks, a password of blanks is
required for all stations to open that file. 1If P$ contains anything other
than blanks, that value of P$ must be provided on any call of the Open
subroutine for any user to access that file. A file password may be up to 16
characters in length.

When the '"open new'" operation has been successfully completed, the
password security feature 1is operable. Once set by the 'open new," the
password cannot be changed. A password may be implemented on a subsequent
"open new" command to create a new file, if not implemented when the file was
previously created.

Converting to Multiplexed/Multistation Files

The conversion from a regular disk data file to a Multiplexed/
Multistation data file occurs when that file is opened using the Open

subroutine ("open o01d"). Thus, by accessing the file, it is automatically
converted to a Multiplexed/Multistation file; however, for the file to remain
a Mulitplexed/Multistation file, the Open/End/Close subroutines must always be
used instead of the DATALOAD DC OPEN and the DATASAVE DC OPEN, END, and CLOSE
statements.

71

CAUTION:

The statement DATASAVE DC END destroys the the access
table necessary for Multiplexed/Multistation files and
also the file ©password (if any). Use only the
Multiplexed/Multistation Open/End/Close subroutines when
accessing Multiplexed/Multistation files and mnot the
equivalent BASIC-2 language statements.

3.16 OPEN (DEFFN'217)

The Open subroutine (also called the Multiplexed/Multistation Open), by
virtue of its arguments, allows a Multiplexed/Multistation file to be opened,
the access mode defined, and a password (if any) used. When creating
(cataloging) a new file or reusing the space occupied by a scratched file with
the same file name, this 1is called an "open new.'" When accessing an existing
file, this 1is called '"open old." 1In addition, when accessing an existing
file, the access mode may be changed; this is called a 'reopen old." The
"open new' replaces the BASIC-2 language statement DATASAVE DC OPEN and
similarly allocates file sectors and saves the necessary catalog index
information. The "open old" is the equivalent of the DATALOAD DC OPEN
statement and is for existing data files.

Access Modes

The four access modes are called 1Inquiry, Read Only, Shared, and
Exclusive. In the Exclusive mode, only the station with exclusive access may
open the file. However, in order for that user to have exclusive access, no
other station can have that file open. The Exclusive mode 1is automatically
set by the Open subroutine for an "open new."

A file may be opened in the Inquiry mode if that file is not currently
open in the Exclusive mode to another station. Conversely, a file open in the
Inquiry mode keeps stations requesting the Exclusive mode from opening that
file.

A file may be opened in the Read Only mode if that file is not currently
open in the Shared or Exclusive mode to another station. Conversely, a file
open in the Read Only mode keeps stations requesting the Exclusive or Shared
Modes from opening that file.

When the Shared mode is requested, that file will be opened successfully
if that file is not open in the Read Only or Exclusive modes. Conversely, a
file open in the Shared mode keeps stations from opening that file in the Read
Only and Exclusive modes.

A file may be opened in the Exclusive mode if no other stations are
accessing that file. Once a file 1is opened in the Exclusive Mode, no other
stations can access that file until it is closed.

72

Disk Hog Mode

With the availability of Exclusive file access, disk hog mode is not
usually necessary. Only in cases where more than one file must be opened with
exclusive access on one disk is the use of disk hog mode usually necessary.
(Exclusive access requires that no other stations have that file open in order
for the Open subroutine to be successful.)

NOTE:

Any use of disk hog mode by the Open/End/Close subroutines,
or disk hog mode subroutine DEFFN'215, use the $OPEN and
$CLOSE statements and require device (file) slot #15 in
the station's device table. Therefore, device slot #15 is
reserved exclusively for Open/End/Close subroutine use.

Opening Two or More New Files

If two or more files will be opened as new files (open new), after
checking that enough disk space exists for all files (use the Sort Disk
Catalog utility), the following procedures are recommended:

1.

2.

Set disk hog mode ON (use a $OPEN statement or GOSUB' 215).

Call the Open subroutine with file parameters set for the first new
file. Hold disk hog mode.

If successful, call the Open subroutine with file parameters set for
the next new file. Hold disk hog mode.

Repeat step 3 for each new file. However, release disk hog mode (or
use $CLOSE) after opening the last new file.

For each file, perform the following steps:
a. Perform required processing.

b. Move the current sector address to the appropriate end-of-data
file location where the END control sector is to be written.

¢. Call the End subroutine.

d. Call the Close subroutine.

73

GOSUB' 217 Argument Format

After the file number has been selected to its disk device address
(e.g., SELECT #3/310), transfer to the Open subroutine occurs via:

GOSUB' 217 (F$,F,C,S,A,P$,A1$,H)

where:

F$ indicates the file name, which on an "Open New" command
must be unique to that disk. On any "Open 0ld," it must be
identical to the previously assigned file name. The file
name 1is always within quotation marks in the argument list,
unless an alpha-variable is used instead.

F contains the file (device) number, from 0 through 1l4.
C contains the station number, from 1 through 48.

S determines the type of open performed. An S§ greater than
zero, indicates an "open new'"; also, S equals the number of
sectors to be allocated for this file, which should include
two sectors for the END and the catalog trailer control
sectors. S=0 indicates an "open old." =-1 indicates a
"reopen o0ld" during which the access mode is changed. =-2
indicates an ‘open o0ld" but only if the file 1is a
Multiplexed/Multistation file will subroutine execution be
performed.

A determines the access mode for this file. A=l indicates
Inquiry mode. A=2 indicates Read Only mode. A=3 indicates
Shared mode. A=4 indicates Exclusive mode. During an "open
new," A is automatically set equal to 4.

P$ contains a password of up to 16 characters, if a password
is required (within quotation marks). Password content is
determined solely by that file's open new.

Al$ contains the disk address in the “xyy" form.

H=1 indicates that disk hog mode will be held following this
call. H=0 1indicates that hog mode 1is to be released
(cancelled) following this call. The hog mode also may be
released using GOSUB' 215, as described in Section 3.19.

Literal disk address Al$ must coincide with the address
currently selected for the file number.

NOTE:

74

GOSUB'

217 Return Codes

Alpha-variable Q$

contains a

blank 1if

subroutine execution

successful, or a return code as summarized in Table 3-1.

was

Table 3-1. Open Return Codes
VALUE Q$ INDICATES CAUSE AND RECOVERY
blank Successful open. Continue
A" Access mode conflict Retry, or wait and retry.
(see "Access Modes" If abnormal delay, check
above). if value of argument A is
correct. Check if correct
file was accessed (values
F$,F,C,Al$). Check if
that file was accidentally
left open (use File Status
Report utility).
"p” Open command conflicts Check if value of argument
with file disposition; S is correct. Check if
e.g., open new issued correct file was accessed
to existing file, (values F$,F,C,Al$). On
open old issued to open old, check if that
file already open to file was accidentally
this station, reopen left open (use File Status
old issued to close Report utility).
file, or file not found.
™" Open old for only a Check if value of argument
Multiplexed/ S is correct. Check if the
Multistation file correct file was accessed
(8=-2) could not be (values F$,F,C,Al$). Retry
performed because the with S$=0 to convert this file
file specified is not to a Multiplexed/Multistation
a Multiplexed/ file or retry with correct file
Multistation file. specified.

75

Table 3-1. Open Return Codes (contiuned)

VALUE Q$ INDICATES CAUSE AND RECOVERY
s Insufficient disk Retry after reducing value
space to complete of S if acceptable, or
open new allocation. use different disk by

changing Al1$ and F. Otherwise,
use Free Unused Sectors

Disk subroutine to create

more disk space and retry

open new with S as is.

npy Password conflict. Check value of P§$.
Retry with correct file
password.

3.17 END (DEFFN'218)

The End subroutine performs the function of the BASIC-2 statement
DATASAVE DC END. As with DATASAVE DC END, upon calling the End subroutine,
the current sector address must be at the location required for the END
(end-of-data) control sector. The current sector address must not be at the
catalog trailer (end-of-file) control sector when this subroutine is called.

Transfer to the End subroutine is via the statement:
GOSUB' 218 (F$,F,Al$,H)
where: F$ is the file name (within quotation marks).
F is the file (device) number, from O through 14.
Al$ is the disk address in the xyy form.

H=1 indicates that disk hog mode is to be held or obtained
following this call. H=0 indicates that hog mode is to be
released (cancelled) following this call.

Alpha-variable Q$ contains a blank if subroutine execution was
successful. Otherwise, Q§ equals either "S" or "F", both of which indicate
the file is full and it should be copied using the Copy/Verify utility or MOVE
statement to increase the number of extra sectors in the file. Q$="s"
indicates that the END control sector was successfully written in the
next-to-last sector of the file, but it warns that the number of extra sectors
in the file is now O (zero). Q$="F" indicates that the END control sector was
not written, since the END control sector would have overwritten that file's
catalog trailer (end-of-file) control sector. The return code of Q$="F"
corresponds to an ERR D81 BASIC-2 Language error.

76

3.18 CLOSE (DEFFN'219)

Closing a file promptly is important because of possible access mode
conflicts. Once access to a file is no longer needed, that file should be
immediately closed, especially if it was opened with Exclusive access.

If necessary, a file may be left open for later processing. An
unlimited number of files can be open for one station because station file

status is maintained in the catalog trailer (end-of-file) control sector and
not by each station.

Because the access table resides on nonvolatile storage of disk, the
station may be cleared or its power switched OFF, and the file will remain
open to that station. This type of action is not recommended and may be
recovered from by using the File Status Report ISS utility.

Transfer to the Close subroutine occurs via the following statement:

GOSUB' 219 (F$,F,C,Al$,H)

where: F$ is the file name (within quotation marks).

F is the file (device) number, from 0 through 14.
C is the station number, from 1 through 48.

Al$ is the disk address in the xyy form.

H=1 indicates hog mode is to be held following this call. H=0

indicates hog mode is to be released (cancelled) following this
call.

There are no return codes.

3.19 SET/RELEASE HOG MODE (DEFFN'215)

If an Open/End/Close subroutine 1is chosen, the Set/Release Hog mode
subroutine may be used to switch Hog mode without calling an Open/End/Close
subroutine. The $OPEN and $CLOSE statements are used to hog the disk drive
specified and may be implemented by the user instead of using DEFFN'215.

Transfer to the disk hog mode subroutine is via the statement:

GOSUB' 215 (Al$,M)

where: Al$ is the disk address in the xyy form.

M is the disk hog mode indicator. If M=1, hog mode is set
immediately. 1If M=0, hog mode is released (cancelled) following

this call.

There are no return codes.

17

NOTE:

The Set/Release Hog mode subroutine uses device (file)
slot #15. If hog mode will never be used by Open, End,
Close, and Set/Release Hog mode subroutine calls, device
slot #15 is available for use by that application program.

3.20 TRANSLATION TABLE SUBROUTINES (DEFFN'201, 202)

The Translation Table subroutines assign specific sets of hex codes to
an alphanumeric array so that it may be used as a translation table with the
BASIC-2 statement $TRAN. The subroutines do not actually accomplish the
translation; they merely initialize the array Q9$(). It may be initialized

for any of the following translations by means of the indicated GOSUB'
subroutine call.

TABLE SUBROUTINE
EBCDIC TO ASCII GOSUB' 201
ASCII TO EBCDIC GOSUB' 202

The subroutines load without overlap; they may all be loaded at once.

All the subroutines initialize the same array variable, dimensioned .as
Q9$(8)32. If more than one table is to be used in an application, either the
array variable must be changed by modifying the subroutines, or the
application program must execute the appropriate subroutine each time a
different translation is to be effected.

Assuming that alpha-variable D$ contains data to be translated from
ASCII to EBCDIC and the program contains the ASCII to EBCDIC translation table
subroutine, the following statement sequence could be used to translate D$:

20 DIM Q9$(8)32
110 GOSUB' 202 :REM INITIALIZE TABLE
120 $TRAN (D$,Q9%()):REM TRANSLATE
130 STOP "D$ TRANSLATED"
9748 DEFFN'202
(translation table subroutine ASCII to EBCDIC)
9780 ...:RETURN

The characters supported for ASCII to EBCDIC and EBCDIC to ASCII
translations are provided in Appendix D.

78

CHAPTER 4
THE SORT-4 DISK SORT SUBSYSTEM

4.1 INTRODUCTION

SORT-4 is a subsystem for sorting records contained within a disk data
file. A user-written setup program provides the parameters for the sort and
loads SORT-4 software. It eliminates the lengthy operator/screen dialog
otherwise required for the entry of the sort parameters, although the user's
setup program may request operator-keyed input of appropriate parameters.
When sorting is complete, SORT-4 can load a specified application program
module and can be used as a subsystem to an application program.

SORT-4 requires little operator attention but must be run either in a
2200VP or a 2200MVP foreground partition (currently attached to a terminal).
With a 2200VP central processor, at least 16K memory is required. With a
2200MVP central processor, SORT-4 does not access a global partition and
requires at least between 9K to 12K to run, depending upon the input file type
(see Table 1-1).

SORT-4 offers the following features:

1. The user may specify whether a key sort or a full-record sort is to
be performed, or permit SORT-4 to decide. Both the key sort and
full-record sort provide sorted output records in exactly the same
format as their input record counterparts. In addition, a tag sort
may be specified, in which case only pointers to each input record's
position on the disk are written into the output (or work) file, and
not the actual records themselves.

2. SORT-4 operates in a 2200MVP multistation or multiple CPU disk
multiplexed environment under ISS conventions, using the
Multiplexed /Multistation Disk subroutines.

3. Six input file formats are supported:

a. An ordinary cataloged data file,

b. A BAS-1 data file,

c. A data file opened and closed with ISS Open and Close
Output/Input subroutines,

d. A KFAM-3 file,

79

e. A KFAM-4 file, and
f. A KFAM-5 or KFAM-7 file.

The sort key can consist of up to 10 sort key fields. Sort key
fields may be alphanumeric or numeric, but their total length must
not exceed 64 bytes, not counting control bytes. Sort order may be
specified as ascending or descending for each field, and sort keys
may be partial fields, that is, a STR() function of an alphanumeric
variable.

The following input record formats are supported:

a. Packed arrays, where the array-type blocking is packed for
writing on disk, in either DC or BA mode.

b. Contiguous packed records, where each individual record 1is
packed into a contiguous space within an alphanumeric array,
which is written on disk in either DC or BA mode.

c. Variable length records, packed into an alphanumeric array with
either a one-byte length indicator (block size up to 256) or a
two-byte length indicator (block size greater than 256). The
block may be written 1in either DC or BA mode. TC
(Telecommunication) files are supported by a separate variable
length record format.

d. 1Individual alphanumeric fields in records written in unpacked
format, blocked or unblocked, may contain packed subfields.

In the above record formats, the field form of $PACK is supported.
The internal and delimiter forms of $PACK are not supported. A
record may contain either one packed array, or any number of packed
fields, but not both. 1In addition to the formats defined for the
field form of $PACK, Wang packed decimal format, signed and
unsigned, is supported; exponential as defined in the PACK statement
is not supported.

Any combination of record format and file format 1is generally
permitted, with exceptions noted in Table 4-2 and the text following
Table 4-2.

With output files written to a disk drive specified in the set-up
program as being accessible only to this station (not a multistation
disk drive), if a full-record sort is specified, the mounting of the
output platter may be deferred until the last pass, at which time
the input platter may be removed. With a tag sort, deferred
mounting 1s also allowed 1f the output file is not written to a
multistation disk drive and is not the work file. Deferred mounting
permits sorting a full disk platter in a dual platter system.

80

7. The programmer may write a special input procedure, to be overlaid
in Pass 1, to process or screen individual records before input to
the sort.

8. SORT-4 treats arrays in input records as arrays. An input record
may contain up to 255 fields, each array element counting as one
field, provided that the record can be described in not more than 60
table entries (see below).

9. SORT-4 allows a full-record sort on records up to 256 bytes,
packed. It also allows a full-record sort with partial fields as
sort keys. In most cases, a full-record sort will be faster than a
key sort.

10. For KFAM files, a starting and ending key is specified, instead of a
starting record number and number of records to be sorted. The
input KFAM file 1is accessed according to key sequence
(FINDFIRST/FINDNEXT) 1instead of sequentially (physical records
irrespective of their key values).

In addition to the cataloged input file, SORT-4 requires a cataloged
work file. A procedure for calculating the number of sectors required for the
work file is described in Section 4.12.

SORT-4 may be loaded directly from the appropriate ISS platter at the
time of execution. In this case, the ISS platter containing SORT-4 software
must remain mounted throughout the sorting procedure. However, it 1is not
recommended that the unused sectors of that ISS platter be used for the work
file. Therefore, to maximize available disk space, it is recommended that
SORT-4 be copied from the ISS diskette platter it is issued on prior to use.
A Copy/Verify reference file has been included to facilitate copying SORT-4
using the ISS utility Copy/Verify (Indirect Input mode). The name of the
reference file is SORTREF4.

Before attempting to sort a file, the programmer should know exactly how
that file's records were written to disk. If this information 1is not
available, the ISS utility Disk Dump should be used to print a portion of the
file. The printed output may provide enough clues about the file's contents
to enable the programmer to successfully define sort parameters. With records
written in DC or DA mode, the Disk Dump option Data File Structure is
especially helpful.

81

SORT-4 Modules

The SORT-4 program modules and functions are as follows:

SORT4 :

SORT400B:
SORT400C:

SORT401A:
SORT402A:

SORT402B:
SORT403A:

SORT404A:

SORT405A:
SORT406A:
SORT407A:
SORT410A:
SORT411A:
SORT4 20A:
SORT425A:

SORT430A:
SORT490A:

SORTREF4:

SORT-4 setup phase, start, processes setup parameters.
Overlay SORT4 if KFAM input.
Required for multistation files.

Setup, continued.
specifications.

Process record format and sort key
Setup, continued. Calculate length of generated code, available
memory, sort blocking and array sizes, and work file size.

Open output file.

Start generating code for modules SORT420A and SORT425A.

Full-record sort or tag sort, finish generating code for module
SORT425A.

Key sort only, generate code for modules SORT420A and SORT430A.
Generate code for Pass 1, module SORT410A.

Generate code for Pass 1, module SORT410A.

Pass 1, internal sort.

Overlay SORT410A if KFAM input.

Pass 2, merge, key sort only.

Pass 2, merge, full-record sort or tag sort.

Pass 3, read input file via pointers and write output, key sort
only.

Ending (all paths lead to here), close files, stop or load user
program to follow.

1SS Copy/Verify Reference File.

Minimum System Configuration

Station requirements for a 2200MVP central processor include at least a
9K partition for sorting a sequential (non-KFAM) file and 11K to 12K partition
for KFAM files, depending on the size of the setup program. With a 2200VP,
16K memory is required. A disk or diskette is also required. SORT-4 programs
require about 270 sectors.

82

4.2 WRITING THE SETUP MODULE

In order to call the SORT4 program file (module) and provide the
necessary sort parameters, the user must write a set-up program as described
below. In general, 1lines 10-179 of the setup program are executed before
SORT4 is loaded, and must be cleared when SORT4 is loaded. Lines 3400-3699
are used to set up the variables for SORT4, and remain after loading SORT4.

The SORT-4 "master'" setup program appears in Table 4-1 and includes each
possible statement line required by SORT-4. Some statement lines have default
values. If a statement line's default value is acceptable for a particular
sort operation, that statement line need not be included 1in the setup
program. However, if a statement line does not have a default value or if the
default value 1is not acceptable for a particular sort operation, that
statement line must be included in the user's setup program either in the form
shown in Table 4-1 or by use of an INPUT or LINPUT statement if that parameter
must be decided by the operator at run-time. Those statement lines whose
CONTENTS indicate KFAM only need to be included only when the input file
format is a KFAM file.

For each statement line in Table 4-~1, the entry under the column DEFAULT
VALUE indicates whether or not a statement line has a default value, by the
following conventions:

a. If a statement line has no default value, ''mone" appears under the
DEFAULT VALUE column.

b. If a statement line has a default value, either (1) the default
value appears under DEFAULT VALUE or (2) a hyphen (-) appears under
DEFAULT VALUE and the default value appears under the CONTENTS
column.

Be sure to read all sections in the remainder of this chapter before
writing the first SORT-4 setup module. Variables and their values are
critical to the successful execution of SORT-4; line numbers need not be the
same as those listed in Table 4-1, but must be within the required ranges.
Sample SORT-4 setup programs are provided in Section 4.19.

NOTE:
Any disk device address referred to as "multistation"
below indicates a disk drive accessible to any other

station besides the station in which SORT-4 is run. If
the disk drive is multiplexed, it is a multistation disk
drive. By using the parameters for multistation use 1in

the setup program, the files will be handled by SORT-4
using the ISS Multiplexed/Multistation Disk subroutines.
This 1is particularly important if the output file is a
cataloged, Multiplexed/Multistation file Dbecause the
output file's access table and password will be destroyed
if multistation use is not specified (by the DATASAVE DC
END statement).

83

Table 4-1. SORT-4 Master Setup Program

LINE

CONTENTS

DEFAULT
VALUE

SEE
SECTION

10
20

179

3400

3405

3410

3415

3420

3425

3430

3435

REM program identification

DIM K(10),B(10),N(10),N$(4)8,P$(4)16,
F$(6)3,A$(4)62,M0$(1)21

(This line is necessary to define any
arrays referred to below. 1t may be

cleared when SORT4 is loaded because

SORT4 defines all necessary arrays.)

LOAD DC (device) "SORT4" 10, 179

Machine configuration, see Section 4.5
below:

M = memory size, K bytes. For a 2200MVP
specify M = SPACEK + 2. For a 2200VP,
specify M = SPACEK.
default = 16, 2200VP; or

S if under ISS

MO$(1l) = "table of device addresses"
default = "310320330350B10B20B30"

SELECT #0 (first device address),

#1 (second device address), etc.

default = SELECT #0 310, #1 320, #2 330,
#3 350, #4 BlO, #5 B20, #6 B30

Sort specifications:
F = input file format

- unlabeled sequential

- BAS-1 labeled sequential
- 1SS labeled sequential
KFAM-3

- KFAM-4

- KFAM-5 or KFAM-7

wPwNoHO
1

N$(1)
F$(1)

input file name

input device address

(Hog mode address if multistation)

P$(1)

input file password, if any

(4
]

Key File number (KFAM only)

none
none

none

none

none

none

blank

4.5

4.5

4.5

4.3

4.6

84

Table 4-1. SORT-4 Master Setup Program (continued)

DEFAULT SEE
LINE CONTENTS VALUE SECTION
3440 F$(2) = Key File device address (KFAM blank 4.6
only)
(Hog mode address if multistation)
3445 B = records per block 1 4.4
3450 B$ = blank, records written in DA blank 4.4
or DC mode, or
= "B" records written in BA mode
3455 F$ = record format blank 4.4
blank = not packed
"A" = packed array
p" = fixed length packed
"yY" = variable length packed
"o = TC format variable length
packed records
3460 N6 = maximum length of variable 0 4.4
portion of record (variable
length only)
3465 A$(1) through A$(4) = description blank 4.4
of packed fields in record
3470 I1$ = reserved for future use
3475 D = starting block # to be sorted 1 4.9
(sequential files only)
3480 L$ = "number of blocks of records to ALL 4.9
be sorted" or "ALL" (always in
quotes) (sequential files only)
3485 A$ = starting key to be sorted HEX zeros 4.9
(KFAM only)
3490 E$ = limiting key to be sorted (KFAM HEX F's 4.9
only). Records up to, but not
including, this key will be
sorted.
3495 K = number of sort key fields none 4.8

85

Table 4-1. SORT-4 Master Setup Program (continued)

DEFAULT SEE
LINE CONTENTS VALUE SECTION
3500 Per Sort key field, n:
K(n) = sequence number of key field none 4.8
B(n) = starting byte (if partial field) 1 4.8
N(n) = number of bytes (if partial all 4.8
field)
STR(X9$,n,1) = HEX(01l) if descending sort on HEX(00) 4.8
this field; HEX(00) if ascending
3520 [N$(3) = sort work file name none 4,12
3525 |F$(3) = sort work file device address none 4.6
(Hog mode address if multistation)
3530 [P$(3) = sort work file password, if any blank 4.7
3540 P8 = maximum number of records to * 4.12
sort
3550 |N$(4) = output file name none 4.13
3555 |F$(4) = output file device address none 4.6
(Hog mode address if multistation)
3560 (P$(4) = output file password, if any blank 4.7
3565 C$ = "Y" output file cataloged Y 4.13
"N" output file not cataloged
"W" use work file for output
(tag sort only)
3570 P7 = number of sectors in output * 4,13
file
3575 P8§ = "K" to force key sort blank 4.10
"R" to force full-record sort
blank: 1lets program decide
between K and R, or "T" tag sort
3580 D$ = "D" deferred mounting of output blank 4.13
disk (full-record sort only)
3585 $2 = station number (required if any 0 4.5
disk device is multistation)

*Default value described in the specified section.

86

Table 4-1. SORT-4 Master Setup Program (continued)

DEFAULT SEE
LINE CONTENTS VALUE SECTION

3590 | F$(5)

device address, SORT-4 program none 4.6
modules (Hog mode address if
multistation)

3595 G$ = "name of special input blank 4,14
procedure" (blank if none)

3600 M4 = number of bytes occupied by 0 : 4.14
special input procedure

3605 M$

"name of program to load blank 4,15
following the sort" (if blank,
STOP)

3610 S9 = 0, stop if error, no record 0 4.15
count in S8, or

1, stop if error, pass record
count in S8, or

2, pass error code in S9 and
record count in S8

3615 F$(6) device address for user blank 4.6
programs G§ and M§ (Hog mode

address if multistation)

87

4.3 INPUT FILE FORMAT REQUIREMENTS

One of the parameters in the setup program (F) indicates the input file
format to be sorted. There are six input file formats referred to as file
formats 0, 1, 2, 3, 4 and 5. Sorted output is always written in file format 0.

The terms defined below apply to the following discussion of SORT-4 file
formats.

block ~ Two or more records written to disk as a group to save disk
access time. See "blocked."

blocked - A file whose records are written in blocks. Contrast with
"unblocked."”

KFAM - Abbreviation of Key File Access Method. A KFAM file consists
of a data file and a Key File which indexes records in the data
file. KFAM files allow rapid access to records 1located

anywhere in the data file, unlike sequential files where record
access usually occurs record-by~record from the beginning of
the file until the desired record is found. SORT-4 accesses
KFAM files in logical key sequence.

labeled - Any file containing header information in the first sector,
called a "label." Contrast with "unlabeled."

sequential - In this chapter, any non-KFAM file 1is called a sequential
file. SORT-4 accesses sequential files in sequential physical

record order.

unblocked - A file whose records are not written in blocks. Typically, one
record occupies one sector or more than one sector.

unlabeled - Any file that is not a labeled file.

File Format 0

This general file format requires a cataloged disk file with an END
(end-of-data) control sector (DATASAVE DC END). File format 0 files are
unlabeled, sequential files. If records are blocked, unused spaces in the
last block must contain padding records with high or low values in the sort
key fields. Records are read sequentially and are included in the sort.

File Format 1

BAS-1 files are labeled sequential files, known as file format 1 in
SORT-4. The file name in the disk catalog is SCRATCH. The first sector of
the file contains a software header label. The first field of this label is
alpha and contains HDR; the second field is alpha and contains the file name,
which should match the input file name defined in N$(1) from line 3420 in
Table 4-1. SORT-4 only reads the first two fields of the header 1label.
Remaining fields in the header 1label may be defined in any way, not
necessarily in BAS-1 format.

88

Data records with File Format 1 begin in the second sector of the file.
Data must be written in array SORT-4 record format or packed array SORT-4
record format (see Section 4.4). The first field in each record must be a
2-byte alphanumeric field, the Record ID. The second byte of the Record ID is
always "1" for an active data record. An end-of-file condition is recognized
when the second byte of the Record ID is greater than 1. (The second byte of
the Record ID contains 2 for end-of-file and 3 for end-of-volume. SORT-4 only
sorts one volume of a multivolume file and therefore interprets any value
greater than 1 as an end-of-file condition.)

The sector following the end of active data contains a special software
trailer label. This record is ignored by SORT-4.

Following the software trailer is an END (end-of-data) control sector
(DATASAVE DC END) which must have been written, because it is used by SORT-4
to determine the file size.

File Format 2

Referred to as "ISS format'" because of the label conventions used in the
1SS Open and Close Output/Input Disk subroutines (see Chapter 3), File Format
2 is a more general labeled file convention than Format 1.

File Format 2 is a labeled sequential file, with the first sector a
header label, followed by data records, followed by a special software trailer
label occupying one sector, followed by an END {(end-of-data) control sector
(DATASAVE DC END).

The header label contains at least two alpha fields. The first field
contains HDR, and the second field contains the file name which must match to
the file name in the disk catalog and the input file name defined in N$(1).
Remaining fields in the header record are not read by SORT-4, and may contain
anything.

The only restriction on the data records is that they must conform to
one of the conventions defined in Section 4.4 below.

End-of-file is recognized as follows:

1. If the first field of the record is alphanumeric, a value of HEX(FF)
in the first byte of the field signals that the end of the file has
been reached.

2. If the first field of the record is numeric, a value of exactly 9E99
in that field signals that the end of the file has been reached.

In the case of packed records, these conventions are interpreted as
follows. For contiguous packed records (record formats P, T, and V), HEX(FF)
in the first byte of the record, as packed, signals end-of-file. For packed
array records (record format A), the record is first unpacked, and then the
value of the first field is tested. If the first field is numeric, the
packing format must be large enough to accommodate the number 9E99,.

89

The software trailer record is not read by SORT-4. The trailer record
is used to indicate end-of-file (EOF in the first field) or end-of-volume
(some other value in the first field). SORT-4 will only sort one volume at a
time, and therefore end-of-file and end-of-volume are both treated as
end-of-file.

The END control sector (DATASAVE DC END) following the software trailer
is required, so that SORT-4 can determine the file size from the ''sectors
used" entry in the disk catalog.

File Formats 3, 4, 5

KFAM files are denoted by SORT-4 File Formats 3, 4, and 5. KFAM-3 files
and KFAM-4 files are denoted by SORT-4 File Formats 3 and 4 respectively.
KFAM-5 and KFAM-7 files are both denoted by SORT-4 File Format 5. The KFAM
file is read using a special version of FINDFIRST and FINDNEXT.

KFAM-4, KFAM-5, and KFAM-7 files are accessed in the Read Only mode.
Read Only is not defined for KFAM-4, and acts as Exclusive mode, except where
two stations are sorting the same file using SORT-4.

Deleted records are not included in the sort, regardless of whether they
are flagged in the User File as deleted, since deleted records are not indexed
in the Key File.

KFAM-5 and -7 files contain an END control sector, and can therefore be
specified as sequential files (file format 0) if a special input procedure
(see Section 4.14) is written to exclude deleted records (and inactive
records, if blocked) from the sort, assuming all deleted records contain a
hexadecimal (FF) in the first byte of the KFAM key. SORT-4 processes
sequential files faster than KFAM files, since it need not access the Key File.

4.4 INPUT RECORD FORMAT REQUIREMENTS

SORT-4 will sort a variety of packed record formats that previous sort
utilities would not handle. Information applicable to combinations of SORT-4
file formats and SORT-4 input record formats appears in Table 4-2.

The following sort parameters combine to determine the exact record
format:

B = records per block
B$ = normal (DC) mode or BA mode
F$ = record format
N6 = maximum length of variable portion of record (if applicable)
A$() = description of fields in record

90

In discussing SORT-4 record types, the following terms apply:

1. A read field is any field (variable) contained in a DATASAVE
statement argument list when the record is written to disk. Read
fields, as stored on disk, are separated by control bytes (except
for DATASAVE BA statement records, or BA mode). SORT-4 need not
unpack read fields in an input record, since the fields are the ones
read from or written to disk.

2. A packed field is any field (variable) which is packed into a read
field before the record 1is written to disk via a DATASAVE
statement. Since a packed field, as it resides on disk, is not
separated from other packed fields by control bytes, it may be
necessary to define the record so SORT~4 can unpack the packed
fields in an input record.

3. A sort ke is composed of one or more sort key fields, which
collectively determine output record order. Each sort key field may
be specified as an ascending or descending sort key field for the
character~by-character comparisons based upon the ASCII collating
sequence performed on all input records by SORT-4. The
highest-order (primary) sort key field determines output record
order for all records except those whose highest order sort key
field contents are identical (duplicate). 1In this latter case, the
next high-order (secondary) sort key field is used to examine input
record contents, etc.

To differentiate between read fields and packed fields, the following
example is provided. 1In the two statements which follow, alpha array P$() is
a read field, and variables M$, M1l$, M2$, and M3$ are packed fields.

$PACK (F=A$) P$ () FROM M$, MLI$, M2$, M3$
DATASAVE DC #3, P$()

Records Per Block

Records per block (B) must be defined for all record formats except
variable length records (F$ = "V" or F$ = "T"). The default value = 1. The
maximum value = 255.

DC or BA Mode

Read/write mode (B$) is set to blank for records writtem in normal DC
(or DA) mode, with control bytes separating read fields. Otherwise, set B$ =
"B" to indicate records written in BA mode. The default value is blank.
Either value of B$ is permitted with any record format F$.

If B$ = blank, SORT-4 reads a sample record or block of records from the
file to be sorted and determines the format as written on disk by analyzing
the control bytes. The sample record (or block of records) is the first
record or block of a sequential file, or the first record or block to be
sorted in a KFAM file. The format determined here must be consistent with the
parameters supplied by the user.

91

If B$ = "B", the array to be read in BA mode is always A0$(4)64.
Parameters supplied by the user must be consistent with this read field
format; e.g., record length not greater than 256 bytes.

Record Format

SORT-4 assumes that all records in the file are written in exactly the
same format. Note that packed records of different formats can be written so
that they all appear, to the sort, to be written in the same format.

SORT-4 will sort packed records using the field form of $PACK in any of
the formats listed below. It can convert any of the numeric $PACK formats,
field form, into sort format for sorting. SORT-4 can also convert a signed
numeric created by PACK (fixed point only) into sort format for sorting.

SORT-4 record formats are indicated by the value of F$. If F$ = blank
(array format), the record is not packed as an array, however, individual
fields within the record may be packed. If packing crosses element
boundaries, however, F$ must be set not equal to blank. If F$§ is not equal to
blank (A, P, T, or V), the entire record must be packed into a single array,
and individual fields may not be packed. The single array must be composed of
at least two elements.

It should be noted that $UNPACK successfully converts numeric data into
a variety of forms, whereas $PACK converts an internal numeric variable into
one fixed format only. This means that if numeric data is created by some
other means than $PACK, its precise value can change if it is converted via
$UNPACK and then $PACK again. Therefore, SORT-4 guarantees to reproduce the
identical packed field only if it was originally created with a $PACK
statement. Otherwise it will output a field of the same numeric value, 1if
enough space is allowed, but not necessarily the identical format.

Caution is advised in using ASCII free format. In particular, $UNPACK
will convert a four-byte field 9E99 to the correct numeric value, but $PACK
requires 15 bytes to convert 9E99 back to 9.0000000000E+99.

Caution 1is also advised in wusing fields created with the PACK
instruction (Wang signed pack format). The PACK instruction works with half
bytes, not full bytes. 1If the PACK image calls for an odd number of half
bytes, the last half byte is not used and retains its previous value. If that
half byte happens to be set to a hex value A-F, it will cause SORT-4 to stop
with ERR X75. The reason for this is that for the sake of consistency in
defining fields, the packed field is defined in terms of full bytes, not half
bytes, in SORT-4. This field 1length 1is converted to an image which will
UNPACK the full number of bytes. If the last half byte happens to be HEX A-F,
the program will fail. To prevent this from occurring:

1. Create Wang signed packed fields always with an odd number of #'s
following the sign.

2. Or clear the alpha field to blanks, to create a trailing =zero,
before using PACK.

92

F$ = Blank, Array Format (default value)

"Array format" means that records are written noncontiguously (array
blocking) in the normal 2200 DC or DA mode where control bytes define fields,
for example:

DATASAVE DC#1, A$, B, c$, D
indicating four fields per record: alpha, numeric, alpha, numeric.
Blocked records must be written in array form, for example,

DIM A$(4)16, B(4), Cc$(4)30
DATASAVE DC #1, A$(), B(), c$()

indicating four records per block, each record containing an array element of

A$(Q), B(), and c$Q).

For records written in BA mode (without control bytes), a record format
other than "blank'" must be specified.

If the packed numeric fields in an array format record are not sort key
fields, the record description in array A$() may be omitted, and partial
fields to be used as sort keys may be defined in N() and B(). Conversely, if

any of the sort key fields are packed numeric fields, the array A$() must be
provided in the setup program.

F$ = "A", Packed Array Format

Records are processed internally in noncontiguous array format; i.e.,
DIM A$(4)16, B(4), c$(4)30
indicating 4 records per block, with each record containing an A$, B,

and C$. But they are packed using the field form of the $PACK statement into
one alphanumeric array when written on the disk:

$PACK(F=F$) P$() FROM A$(), B(), c$()
DATASAVE DC#1, P$()

The record format must be described in A$() (see below) to identify the
packed fields in the record.

This format assumes that records are blocked (B = 2 or more). 1f
records are not blocked, use format "P" below.

F$ = "P", Contiguous Packed Records, Fixed Length

A record or block of records is packed into one alphanumeric array. If
records are blocked, each record occupies a contiguous space in the array, for
example:

93

Record: DIM A$16, B, C$30

Packing format: HEX (A0105205A01E)
Record length, packed: 51
Blocking: B = 5

Packed Array: DIM P$(4)64

The first record in the block is packed into bytes 1-51 of the array

P$(), the second record is packed into bytes 51-102, etc. The Nth record in
the block is unpacked as follows:

$UNPACK(F=F$) P$() (N-1)*51+1, 51 TO A$,B,c$

The record format must be described in A$() (see below) to identify the
packed fields in the record.

F$ = "V'", Variable Length Packed Records

Variable length records can be sorted if they are written according to
the following conventions:

Variable length records must be written in a fixed length block which is
read or written as one array. The block may be written in BA mode, in which
case the block length is 256.

Depending on the block length, either one or two bytes are used to
indicate the record length and the total bytes written in the block. If the
block does not exceed 256 bytes, one byte is used for the length. If the
block exceeds 256 bytes, two bytes are used. A separate record format is
provided for TC (Telecommunications) variable length records, F$="T" (see
below).

The block of records starts with a block length indicator of one or two
bytes, indicating the total length of all information writtenm in the block.
Each record starts with a record length indicator of one or two bytes (depends
on block 1length), indicating the record length. The record length value
includes the length (1 or 2) of the record length indicator. The block length
includes the sum of all record lengths plus the length (1 or 2) of the block
length indicator, except where the block 1s written in BA mode (256 bytes), in
which case the length of the block length indicator is not counted (maximum
255).

94

For example, the layout of a block of variable length records would look
like this:

Starting
Byte Length Contents
1 1 Block length indicator (hex),
value = 4+R1+R2+R3%
2 1 Record length indicator (hex),
value = Rl+l
3 Rl First variable length record
3+R1 1 Record length indicator (hex),
value = R2+1
4+R1 R2 Second variable length record
4+R1+R2 1 Record length indicator (hex),
value = R3+1
5+R1+R2 R3 Third variable length record
5+R1+R2+R3 - Unused space

*If BA mode, block length = 3+R1+R2+R3

Variable length records must contain a fixed portion followed by a
variable portion. The fixed portion is fixed length and fixed format
throughout the file and must be described in A$() (see below). The sort key
must be contained in the fixed portion of the record. The variable portion
always follows the fixed portion and may range from 0 to N6 bytes long, where
N6 is the maximum length of the variable portion of the record. N6 must be
set for variable length records because its default value is 0. N6 may be set
to 0, indicating fixed length records in the variable length record format.

F$ = "T", Telecommunications (TC) Variable Length Packed Format

Although Telecommunications (TC) format may be called a file format in
general terms, SORT-4 instead treats TC format as a record format, F$ = "T".
SORT-4, with some exceptions, allows any combination of record format and file
format, but the file format wusually specified for TC format is sequential
unlabeled files, or F=0. Sequential labeled file format, F=2, 1is also
supported for TC record format, although this combination of record format and
file format is rare.

The TC format consists of variable length records contained within a

248-byte block 1including several control bytes. It is the user's
responsibility to ensure that one or several entire variable length records
are contained within this block. Individual fields written to disk as

variable length records are not sortable as is, and may be reformatted by a
user's application program for subsequent SORT-4 input as F$="T" or F$="V"
variable length record formats.

The SORT-4 TC record format (F$="T") requires an END (end-of-data)
control sector (DATASAVE DC END) following the last data sector.

TC format records can be sorted if written according to the conventions
adhered to by Wang software for the TC format, which include the following:

95

TC record format resembles the wvariable length packed record format,
F§="Vv". Variable length records in TC format are packed into a one
dimensional alphanumeric array of four array elements, whose lengths are each
62 bytes; e.g., DIM A$(4)62. The array is saved into a single sector using
either DATASAVE DC or DATASAVE DA, and read using DATALOAD DC or DATALOAD DA
disk statements.

In packing the records into the array, array element boundaries are
ignored; the array is treated as 1f it were simply 248 contiguous bytes of
storage. Within the 248 bytes, three control bytes are used, shown as x, y,
and z in the following illustration.

L 248 bytes ﬂ
i u bI
S L
77/
x|lylz record z| record |z record z | record unused
w4
77

X a one-byte hexadecimal code indicating whether this sector is the
last sector, x=HEX(FO), or is not the last sector, x=HEX(00).

y a one-byte hexadecimal value indicating the number of used bytes
plus one in the array. 1In the above illustration where U is the
total block length written, y is the hexadecimal equivalent of U +
1. The maximum decimal value of y is 249.

z a one-byte hexadecimal value preceding each record, indicating the
record length in bytes.

These variable length records must contain a fixed portion followed by a
variable portion, in order to sort. The fixed portion is a fixed length and
fixed format throughout the file and must be described in A$() (see below).
The sort key must be contained within the fixed portion of the record. The
variable portion must always follow the fixed portion and may range from O
(zero) to N6 bytes long.

N6 is the maximum length of the variable portion of the record, and must
be set for variable length records. The default value is 0 (zero). N6 may be
set to 0, indicating fixed length records in the variable length record format.

96

For example, the following table represents the layout of a TC record
format file with three records:

Starting
Byte Length Contents

1 1 Indicates if this sector is
the last sector (hex),
HEX(00) = not last sector,
HEX(FO) = last sector.

2 1 Block length indicator
(hex), value = 6+R1+R2+R3.

3 1 Record length indicator
(hex), value = R1 + 1.

4 R1 First variable length record.

44R1 1 Record length indicator
(hex), value = R2+1.

5+R1 R2 Second variable length
record.

S5+R1+R2 1 Record length indicator
(hex), value = R3+1,

6+R1+R2 R3 Third variable length record.

6+R1+R2+R3 Unused space.

Combinations of SORT-4 File Formats and Record Formats

Most combinations of input file formats and input record formats are
supported. Table 4-2 provides a cross-reference of record/file formats
supported by SORT-4.

97

Table 4-2. SORT-4 Input Record/File Format Combinations
INPUT INPUT FILE FORMATS (F)
RECORD
FORMATS F=0 F=1 F=2 F=3,4,5
(F$) (general) (BAS-1) (188) (KFAM)
F$="blank" Supported* Supported* Supported* Corresponds to
(Noncontiguous KFAM record
unpacked type "A".
array format) May correspond
to KFAM record
types '"™M" or
"N" (see below).¥
F$="A" Supported Supported Supported Supported (rare).
(Noncontiguous
packed
array format)
F§="p" Supported Not Supported Corresponds to
(contiguous supported KFAM-5 and -7
packed record type "B".
format) May correspond to -
KFAM record
types nen, M
or "N" (see below).
F$="1" Supported Not Supported Not supported.
(TC variable supported (rare)
length contig-
uous packed
format)
Fé="1y" Supported Not Supported Supported (rare).
(Variable supported (rare) See below.
length contig-
uous packed
format)
F$ = "blank'" is not valid for BA mode records. Use one of the other record

formats.

98

Comments on Table 4-2

Input record formats and file formats are described in Section 4.3 and
Section 4.4. The following notes apply to the combinations of KFAM file
formats and SORT-4 input record formats described in Table 4-2.

1.

With KFAM files (File Format 3, 4, or 5), determination of the
record format is related to the KFAM record type chosen during
Initialize KFAM File (a KFAM utility). Certain KFAM record types
apply to certain SORT-4 record formats (F$) as noted below and
previously in Table 4-2.

a. KFAM record type "A" always corresponds to F$='"blank".

b. KFAM-5 and KFAM-7 record type ''B" always corresponds to F$='"P";
B$ must equal "B" in the setup program.

¢. KFAM record type '"C'" corresponds to F$="P" if the records
contain only alphanumeric fields dimensioned equal in 1length.
KFAM type "C" records which contain any numeric fields or
contain all alphanumeric fields that are unequal in length are
not sortable.

d. KFAM record type '™", DC mode, corresponds to F$="blank" if
records are unpacked, or F$="P" if records are packed.

e. KFAM record type '"M", BA mode, is not sortable because KFAM type
"M" implies more than one sector per record (multiple sector
record).

f. KFAM record type '"N" depends on the record's contents. F$ may
equal "blank"; or, F$ may equal "P" with B$ equal to either
"blank' or "B'" in the setup program.

Under certain conditions, KFAM files are sortable as variable length
records (although KFAM 1itself does not support variable length
records). That is, F$ may equal "V'" if the following conditions are
met :

a. The record length is 1less than one sector, and records (if
blocked) are blocked in a fixed block of exactly one sector.

b. With blocked records, the third byte of the KFAM pointer (in the
Key File) must point to the starting byte of the record in the
block. This is the variable Q in KFAM (starting position or
"length byte").

99

Description of Fields in a Record, A$(Q)

The array A$() is provided to describe the record format in detail,
Array A$() must be used when F$§ = "A", "P", "T", or "V", and also if F§ =
blank and it is necessary to define packed sort key fields. Array A$() is
dimensioned as A$(4)62.

Syntax rules for A$() follow:

1. The entire record must be described in A$(), if it is used.

2. Colons or semicolons are used to separate read fields. Commas are
used to separate packed fields. (With formats "A", "P", "T", and

"V'", commas are used exclusively).

3. Fields must be described in the order in which they appear in the
record.

4. The record description may not cross element boundaries in A$(). 1If
the description is to be continued from one element of A$() to the
next, the first element must end with the correct punctuation mark
(colon, semicolon, or comma).

5. Blanks are ignored in A$().

6. Fields are defined as follows:

nnn Alpha read field
Numeric read field
Annn Alpha packed field
Fnnn ASCII free format
Innn.dd ASCII integer format
Dnnn.dd IBM display format
Unnn.dd IBM USASCII-8 format
Pnnn.dd IBM packed decimal format
Snnn.dd Wang signed packed field, fixed point
format only
Wnnn.dd Wang unsigned packed field, fixed point
format only
nnn = field length, bytes, in packed form
.dd = decimal positions (ignored by SORT-4)

Following any field definition:
(sss) = array of dimension sss

Packed fields can be defined as alpha if they are not used in the
sort key, or if their sort sequence would be the same packed or
unpacked. Wang unsigned packed fields are always treated as alpha
by SORT-4. The fewer packed fields that are defined, the faster
SORT-4 will run.

100

10.

11.

Blocking of records is not defined in A$(). Only the individual
record should be defined. SORT-4 will construct the necessary
arrays based on the description in A$() and the blocking factor, B.

For variable length records, only the fixed portion should be
defined in A$(). The variable portion is treated by SORT-4 as an
alpha field of maximum length N6 (length of N6 is limited only by
the size of the block).

The maximum number of fields in a record, whether defined by A$() or
not, is 255. Each array element counts as one field. The
description of contiguous packed records (F$ = "P", "T", or "V") may
be abbreviated by combining fields which are not used in the sort.
For array-type records (F$ = blank or "A"), 255 fields per record is
an absolute limit.

The maximum number of entries in A$(), plus one implied read field
entry for each group of packed fields defined, is 60. Arrays count
as one entry.

The maximum lengths of fields of the various formats and the field
lengths when converted to sort format, are provided in Table 4-3
below.

Table 4-3. Maximum Field Lengths and SORT-4 Field Lengths

MAX SORT
CODE TYPE NAME LENGTH LENGTH
00 - Alpha read 124 L
01 # Numeric read 8 L
02 A Alpha packed 124 1
03 F ASCIT free 16 8
04 1 ASCII integer 14 INT (1.5+L/2)
05 D IBM display 13 INT (2+L/2)
06 U IBM USASCII-8 13 INT (2+L/2)
07 P IBM packed 7 1+L
08 S Wang signed packed 7 1+L
09 W Wang unsigned packed 7 L*
- - Variable length no limit not allowed
L = Field length in the above table.
* Wang unsigned packed treated as alpha.

101

Examples of A$() Syntax

1.

Assume array-type blocking, with four records per block, where the
records are written as follows:

DIM A$(4) 16, B(4), C$(4)30
DATASAVE DC#1, A$(), B(), c$()

SORT-4 setup program parameters would be:
B =4
F$ = blank
A$(1) = "16;#;30" (not necessary in this case)
Note that the default value for B$ (DC mode) is automatically used
because it is not specified in the setup program. The value of N6
should not be set, or should be set equal to 0 (zero).

Same record as above, but C$(X) is constructed as follows:

Start Length Contents

1 4 Alpha

5 10 Numeric, IBM display, image HEX(320A)

15 5 Numeric, IBM packed decimal, image HEX(5205)
20 5 Numeric, Wang signed packed, PACK(+#####, #E##)
25 6 Numeric array, 3 elements, 2 bytes each, IBM

packed decimal, image HEX(5002)
SORT-4 setup program parameters would be:
4

blank
"16;#;A4,D10,2,P5.2,85.4,P2(3)"

B
F$
A$(1)

Because it is not necessary to indicate the decimal positions, A$(1l) can
be expressed as:

A$(1) = "16;4#;A4,D10,P5,S5,P2(3)"
Assume a record is defined as follows:

DIM X$(10)16,Y(10),2(10)

where X$(X) Y(X), and Z(X) comprise one record, 10 records per block.
The block of records is packed into one array to save space on disk.
Y() and 2Z() are converted to IBM packed decimal, lengths 6 and 3,
respectively. The block is written in BA mode:

DIM P$(4)64, F$6

F$ = HEX(A01050065003)

$PACK(F=F$) P$() FROM x$(0),YO),z()
DATASAVE BA T#1,(L,L) P$Q)

102

4.5

Record definition for SORT-4 would be:

B =10

B$ - llBll

F$ = "A" (packed array)
A$(1) = "Aleé, P6, P3"

Records are the same as above, except they are packed individually from
scalar fields:

FOR X =1 TO 10
Calculate X$, Y, and 2
$PACK (F=F$) P$() (X-1)*25+1 FROM X$, Y, 2

NEXT X
DATASAVE BA T#1, (L,L) P$()

These would be contiguous packed records and would be defined for SORT~4
as follows:

B =10
B$ = IIBII
F$ = tpn
A$(1) = "Al6, P6, P3"

Assume variable length records which each contain an account number of
eight bytes, followed by a transaction code of two bytes, followed by
variable-length information from 1 to 48 bytes in length depending upon
the transaction:

F$ = nVn
A$(1) = "A8,A2"
N6 = 48

The record may be sorted on only the first two fields, account number
and transaction code.

Fixed-length, 80-byte card images are transmitted to the 2200 and stored

in the TC format. To sort these records, define the record format as
follows:
F$ = HTII
A$(1) = "Aas0(2)"
(N6 = 0,default)

MACHINE CONFIGURATION

The following explanations of SORT-4 requirements and conventions are

referred to in Table 4-1 by section number. File formats and record formats
(including use of array A$() to define the fields in a record) were previously
discussed in Sections 4.3 and 4.4.

103

SORT-4 1s written to use the memory size contained in the variable S
(for ISS) or, if S = 0, to use 16K. SORT-4 runs faster if it knows that more
memory 1s available to it. Memory size is usually indicated by using the
SPACEK form of the SPACE function. With a 2200MVP partition, specify M =
SPACEK + 2; with a 2200VP, specify M = SPACEK. This convention ensures
correct memory size wuse. (SORT-4 automatically accounts for the memory
overhead requirements of a 2200VP.) With a 2200VP, memory size is a number
from 16 to 64 which represents the memory size of the station in multiples of
1024 bytes.

SORT-4 is set to support devices 310, 320, 330, 350, Bl0O, B20, and B30,
but will support any disk device address with the necessary changes.

There are two ways to change the machine configuration. Either change
it permanently in the SORT4 module itself or change it, for any given sort, in
the setup program. If running in a multistation or disk-multiplexed
environment, where memory size and available devices change from one station
to another, it may be best to define the machine configuration at run time,
depending on the station number. If not running in a multistation
environment, or 1f all stations are the same size and access not more than a
total of seven disk devices, it 1is probably better to change the machine
configuration in the SORT4 module.

The table of device addresses, M0$(1)21, allows up to seven three-byte
device addresses to be entered into this table. The table must be accompanied
by a SELECT statement, selecting the first device in the table as #0, the
second as #1, and so forth. File numbers in the device table are linked to
devices, rather than files. Hog mode addresses should not be used in the
table of device addresses or the SELECT statements.

To set the machine configuration permanently in module "SORT4":

CLEAR

LOAD DC (device) '"SORT4"

3150 M = memory size, K bytes

3280 M0$(1) = "valid device addresses, maximum 7"

3285 SELECT DISK (first address in table), #1 (second
address in table), etc.

SCRATCH (device) '"SORT4'"

SAVE DC (device)() "SORT4"

If running under ISS with an unknown configuration of disk devices,
SORT-4 can be set up from ISS start-up common variables:

82 = Station number (from 1 through 16 when sorting a
KFAM file; otherwise, 1 through 48).
S = memory size (With a 2200MVP, use of M = SPACEK + 2
is recommended instead.)
S$ = system disk (ISS loading address), #0

$$(2) thru S$(18) other disk devices.

104

Disk devices can be copied to the table as follows:
3405 MO$()= STR (S$,,3) & S$()
Note that SORT-4 allows only 7 disk devices.

To set the machine configuration for an individual sort, code the setup
module as shown in lines 3400-3410, in Section 4.2, or use the following:

3405 MO$(1)
3410 FOR I

"table of xyy disk device addresses"
0 TO 6: SELECT #I STR(MO$(),I*3+1,3) :NEXT I

4.6 DISK DEVICE ADDRESSES AND MULTISTATION OPERATION

To indicate multistation or disk multiplexed operation, the device
address should be written as a hog mode address by adding 8 in hexadecimal
arithmetic to the middle digit (310 becomes 390, 320 becomes 3A0, etc.). Hog
mode addresses identify the device addresses for particular files and are only
used in array F$(), not in the table of device addresses, M0$(), described in
Section 4.5.

If two or more files are on the same device, then the device addresses
must be consistent, either multistation (hog mode) or not, as the case may be.

Files on a multistation disk (multistation files) are opened and closed
using the ISS Multiplexed/Multistation Disk subroutines (described in Chapter
3), as follows:

The input file is opened in the Read Only access mode. If the input
file is a KFAM-4 file, it is also opened in the Read Only mode under KFAM-4
conventions ("R" placed in the access table in the KDR record). The input
file is generally closed when SORT-4 ends, with the exception of a tag sort,
where the input file is left open in Read Only mode. The program processing
the output of the tag sort should close the input file when it is finished.
The KFAM-4 close is always done at the end of SORT-4, whether the input file
is open or closed.

The input Key File 1s neither opened nor closed via the ISS subroutines,
consistent with the KFAM-5 and KFAM-7 convention of letting the status of the
User File also determine the status of the Key File.

The sort work file is opened in Exclusive mode and is generally closed
when SORT-4 ends, with the exception of a tag sort which uses the sort work
file as an output file, whereby the sort work file is reopened in Read Only
mode when SORT-4 is finished. The program processing the output of the tag
sort should close the sort work file when processing is finished.

The output file is opened in Exclusive mode and closed when SORT-4 1is
finished.

If SORT~4 ends with an error condition or is terminated by the operator
(SF'31), all multistation files are closed.

105

If SORT-4 stops with a hardware error message (i.e., ERR I96 or ERR I99)

the program should be terminated by touching SF'3l to ensure that all
multistation files are closed.

4.7 PASSWORD USE

Passwords are required to access the input file and the sort work file,
if those files have been created with passwords, and are designated as
multistation. Otherwise, this parameter can be omitted.

If the output file was previously cataloged (C$ = "Y") and is a
multistation file created with a password, then a password for the output file
is required. If the output file was not previously cataloged, then any

password supplied here becomes the password assigned to the file.

Passwords are ignored on files not designated as multistation.

4.8 SORT KEY FIELDS

Up to ten fields may be included in the sort key. The sort key field(s)
control sorting and determine output record order. Individual sort key fields
may be alpha, numeric, or any of the packed numeric formats listed in Section
4.4, The sort may be ascending or descending on any individual sort key
field. The maximum length of the entire sort key, as packed for sorting, 1is
64 bytes.

Partial fields, which are equivalent to the STR function of an alpha
field, may also be defined as sort key fields.

Key field 1 is the highest-order sort key, key field 2 is the next
highest, and so on. The key fields are defined as follows: K(1), B(1), N(1),
and STR(X9$, 1, 1) define key field 1; K(2), B(2), N(2), and STR(X9$, 2, 1)
define key field 2, etc.

The sequence number of the key field is the position of the field in the
record containing the key. If A$() is left blank, the sequence number is
determined by the position of the record as written on disk. For example,
assume records are written as follows, blocked 3:

DIM A$(3)6, C$(3)21, S$(3)48, Z$(3)5
DATASAVE DC A$(), c$(), s$0), z$Q)

Each record contains the following fields, in order:

A$(X) = account

C$(X) = customer name
S$(X) = address

2$(X) = zip code

106

To sort by zip code (Z$) and customer name (C$),

K =2
K(1) =4
K(2) = 2

This defines the high-order key as the fourth field in the record and
the next highest key as the second field in the record.

To use a partial field for a sort key, assume that bytes 47 and 48 of
the address (S$) are the state. To sort by state and customer name,

K =2
R(1) = 3
B(1) = 47
N(1) = 2
K(2) = 2

It is not necessary to define N(1) in this case. The default value is
the total number of bytes in the field, starting at B(1). Since the default
for B(1) is 1, it is not necessary to specify B(l) = 1 if the partial field
starts in the first byte of the field. 1If neither B(l) nor N(1) has a value
assigned to it, then all the bytes in the field starting at 1 (the entire
field) are included in the sort key.

If the record is described in A$(), the fields specified in A$()
determine the sequence number of the sort key. For example, the
same record might be described:

A$(1) = "6;21;A46,A2;A5"

In this case, the address field (S$§) is divided into two subfields. The
total number of fields defined is 5. To sort by zip code (last field), K(1) =
5, not 4. To sort by state (last 2 bytes of address field), K(1) = 4, not 3.
In this case, not a partial field, but a whole field is used and B(l) and N(1)
should not be specified.

If arrays are included in the record, each element of the array is
counted as one field to determine the sequence number of a key field.

For example:

DIM A$8, N(20), c$12
DATASAVE DC A$, N(), c$

To sort by C$§, K(1) = 22. To sort by the first two numeric fields, K(1)
= 2 and K(2) = 3.

The same rules apply to packed records defined in A$(). For example, if
the record above is packed into a contiguous 80-byte record:

F$ = HEX(A0085003A00C)
$PACK(F = F$) A0$() FROM A$, N(O), c$

107

The record to be sorted could be described in any one of the following

ways:
1. A$(1) = "A8, P3(20), Al2"
2. A$(1) = "A8, P3(2), AS4, Al2"
3. A$(1) = "A8, P3, P3, AS54, Al2"

In any case, to sort on the first two numeric fields, set K(1) = 2 and
K(2) = 3. However, to sort on the last field defined in Example 1, set K(1) =
22, whereas to sort on the last field defined in Examples 2 or 3, set K(1) = 5,

The fewer fields it is necessary to define, the more efficient the sort
will be. Also, the sort is more efficient if sort key fields are defined as
scalars instead of array elements. Example 3 produces a more efficient sort,
if sorting on the first two numeric fields, but all three examples will work.

The maximum value for the sequence number of a key field, K(1), is 255
which is also the maximum number of fields allowed in a record.

4.9 SORTING PARTIAL FILES

With particularly large files, it may be necessary to split the file in

half in order to sort it. For example, if a sequential file occupies 9000
sectors, one record per sector, the first half of the file would be sorted by
specifying D = 1 and L$ = "4500". The second half would be sorted by
specifying D = 4501 and L$ = "ALL'". The user must then write a merge program

to merge the two halves.

"ALL" (L$) means that all records in the sequential file from the
specified starting point (D) to the end of the file are sorted.

The parameters D and L$ apply to sequential files only (file formats 0,
1, and 2). These parameters specify blocks of records rather than individual
records to accommodate variable length records. The starting point of a
particular block of variable length records is easy to find, but the location
of a particular record is not known without a search of the file. If records
are blocked, D = 2 means that the sort starts with the second block of
records, not the second record. Similarly, L$ = "S5" means that five blocks of
records, not 5 records, are sorted.

The default values D = 1 and L$ = "ALL" cause the entire file to be
sorted.

For KFAM files (File Formats 3, 4, and 5), D and L$ are ignored and need
not be specified. TInput records are specified by a beginning KFAM key (A$)
and an ending KFAM key (E$). A partial KFAM file may be sorted by specifying
the starting and ending key values. For example, to split a file into two
halves, first sort all records with KFAM keys A - M and then all records with

KFAM keys N - Z. The first sort would specify A$ = "A" and E$ = "N". The
second sort would specify A$ = "N" and E$ = HEX(FF). Note that the ending key
is a limiting value; a record with this key is not included in the sort. The

limiting key value of the first group is the same as the starting key value of
the next group.

108

Specifying the beginning and ending keys can also be used to take
advantage of the KFAM key to sort a segment of a KFAM file without reading
every record in the file.

The default values, A$ = HEX zeros and E$ = HEX FF's, cause the entire
KFAM file to be sorted.

4.10 TYPE OF SORT

Three types of sorts are available in SORT-4: a key sort, a full-record
sort, and a tag sort.

The key sort extracts the sort key from the input record, packs it in
sort format, and appends to it a 4-byte pointer to the original input record
(two-byte sector address and two-byte pointer to record or starting byte

within the block). The "sort record" (record processed by the sort) contains
only the sort key and pointer. When all sort records have been sorted, there
is a final pass (PASS 3 - OUTPUT) which reads the sort records in sorted

sequence, uses the pointer to locate the original input record, reads the
input record, and copies it to an output file in sorted sequence.

The key sort is very fast and efficient through the input, sort, and
merge phases, but slows down considerably in the last pass, because it must
read the entire input file again in random record sequence.

The full-record sort packs the entire input record into a maximum of
five '"buckets" of 64 bytes each, where the first bucket is the sort key.
Certain fields, such as numeric sort key fields, partial sort key fields, and
sort key fields which are extracted from an array, are duplicated in the sort
record which is then sorted and merged. On the last pass of the merge, sort
records are converted back into the original input format and are written 1in
sequential order into the output file.

The full-record sort is generally slower than the key sort during code
generation, reformatting input, sorting, and merging, because there are more
fields to be defined and moved around. However, the full-record sort
compensates for this because it does not read the input file in random
sequence in the last pass. Many factors influence whether a full-record sort
or a key sort is more efficient for a particular application, including record
length, sort key length, and the amount of available memory. In general,
either let SORT-4 decide or experiment with both types of sorts for a
particular application.

A key sort can be executed for any file, but a full-record sort can only
be executed under the following conditions:

1. The input record occupies one sector or less.
2. There is sufficient space in the sort work file.

3. An array in a blocked record, array-type blocking or packed array
type, may not exceed 20 elements or require more than 210 bytes for
$PACK or $UNPACK.

109

If no sort type is specified (P8% = blank), SORT-4 will decide whether
to do a key sort or a full-record sort, taking into account the above factors,
the proportion of key size to record size, input blocking, and whether
deferred mounting of the output file has been specified. This decision does
not always determine the fastest way of sorting a particular file. It 1is
worth experimenting to see which type of sort is faster, especially if very
large files are to be sorted.

Set P8 = "K" to specify a key sort, or P8 = '"R" to specify a
full-record sort.

The third type of sort, a tag sort (P8% = "T"), operates like a key sort
except that the output of a tag sort is only the pointers to the original

input records and not the full records themselves. A user program can then
access the input records in sorted order without having to move the input
records to a separate output file. This feature eliminates the output pass

required in a key sort and reduces the size of the output file considerably.
Tag sort output can be used, for example, as a secondary index to a file, by
using BA mode access in conjunction with the SORT-4 output pointers to print
sorted input file records.

The exact output of the tag sort follows:

1. The file is sequential, with an END record following the last block
of pointers.

2. Pointers are written in DC mode, 50 per block:

DIM A0$(50)4
DATASAVE DC A0$()

3. The format of each pointer follows:

Bytes 1,2: Absolute sector address (hex) of corresponding input
record.

Bytes 3,4: For array type or packed array type (F$ = blank or "A"), .
pointer to record within block (hex) in byte 4. For
packed records (F$ = "P", "T", or "V"), pointer to
starting byte of record within block in bytes 3, 4
(hex) In the case of variable length records, this
points to the starting byte of the length indicator.

4. Unused pointers in the last block are padded with HEX(FFFFFFFF).

S. The record count, S8, can be saved to determine the exact number of
pointers to be processed (see Section 4.15).

Note that if a tag sort is specified, and the input file is
multistation, it will remain open in the Read Only mode. The sort
work file may be used for the output of a tag sort, eliminating the
need for a separate output file (see Section 4.13). 1If the sort
work file is multistation, and is used for the output of the tag
sort, it will be reopened in Read Only mode, and held open, at the
end of the sort.

110

Figure 4~1 illustrates the basic content of three sample input records
during each pass for the three types of sorts. Assume the three unblocked
input records are located at (absolute) sectors 91, 92, and 93 respectively
and are sorted into ascending order of their sort keys. During Passes 1 and
2, the tag sort and key sort are identical. After Pass 3, the key sort uses
the Pass 2 pointers to read the input file records and copy the records in
sorted sequence to the output file., The full-record sort, however, carries
the entire record for the duration of the sort (in buckets), whereas the key
sort carries only pointers (and sort key) through Passes 1 and 2. Note that

key sort output and full-record sort output are identical, and differ greatly
from tag sort output.

SORT KEY INPUT FILE ABSOLUTE SECTOR ADDRESS
SAMPLE 11)135 $2.85 Q
INPUT

FILE \os 121 $2.35\ 92
\ 21 193 g2\ @

PASS TAG SORT KEY SORT FULL-RECORD SORT

\9100 n\ E+ RECORD IN aucms\

\ 9200 08\ \ 08 + Recoro I BUCKETS \
\oaoo 21\ | \21 + recorn v suckers |

2 [\o200 o8\ [\s200 o8 | |\08 + RECORD IN BUCKETS |
9100 11 9100 11 \11 + recoro 1n suckers |
9300 21 9300 21 \21 + Recoro IN BuckeTs \

3 o200 \ \os 121 s2.35\ |\ 08 121 $2.35\
\ 9100 \ \11 135 s2.85\ |\ 11 135 5285\
\ 9300 | \ 21 193 55,12\ \ 21 193 $5.12\

Figure 4-1. SORT-4 Sample Operation on Input Records

111

4.11 CONSTRUCTION OF SORT RECORDS

In the construction of sort records, there are major differences between
SORT-3 and SORT-4 internally. In SORT-3 there may be one or two buckets of up
to 64 bytes each, limiting the sort record to 128 bytes. In SORT-4 there may
be up to five buckets, allowing up to 256 bytes plus the sort key. In SORT-3,
bucket lengths determine how the record is written on disk, and thus affect
blocking efficiency in the sort work file. In SORT-4, buckets are packed into
array 0%$() before writing on disk, so that bucket sizes have no effect on
sort /merge blocking.

SORT-4 packs the sort record into as few buckets as are required for the
particular sort. Therefore, it is not necessary to discuss, as in SORT-3,
ways of defining dummy sort keys so as to make sorting more efficient. It is
all done in the sort program.

The key that is actually used for sorting, by MAT SORT and MAT MERGE, is
the entire first bucket. The first bucket starts with the actual sort key,
which is followed by nonsort information if it would save a bucket to pack it
that way. If it is a key sort or tag sort, the nonsort information is the
pointer to the original input record. 1If the sort key is 60 bytes or less,
this pointer is included in the first bucket and acts as a low-order sort
key. If a sequential file is being sorted (Formats 0, 1, or 2), the pointer
keeps records in the original order if duplicate sort keys are encountered.

With a full-record sort, certain fields included in the sort key are
duplicated in the nonsort portion of the record:

1. Numeric sort keys.
2. Partial alphanumeric sort keys.
3. Alphanumeric sort keys which are array elements.

This duplication of fields should be taken 1into account if it 1is
necessary to calculate the length of the sort record. Some of the duplication
can be eliminated as follows:

1. Packed numeric sort keys which are always in fixed-point form and
always known to be positive can be defined in A$() as alpha.

2. Partial alphanumeric fields used as sort keys should be defined as
fields in A$() rather than using the partial field indicators B()
and N(Q).

3. Arrays which contain sort keys should be split up in A$() so that

the sort key fields are scalars. For example, to sort on the first
and fifth elements of K$(20)8, define the record as:

A$(1) = "A8, A8(3), A8, A8(15)"

This 1s done automatically by SORT-4 in the case of array-type
blocking where A$() is left blank.

112

4.12 THE SORT WORK FILE

The sort work file must be cataloged as a disk file prior to running the
SORT-4 setup program. The user may calculate the number of work file sectors
required for a particular sort, in order to efficiently allocate disk space
for the sort work file. To catalog a disk file, the following can be executed
in the immediate mode:

DATASAVE DC OPEN platter, sectors, 'name"

To calculate the sort work file size (sectors) necessary for a
particular sort, the sort record length must first be known.

With a key sort, the length of the sort record is:

S=K+ 4
where: S = sort record length.
K = key length (see Table 4-3 for length of numeric keys).

With a full-record sort, the calculation of the sort record length is

more difficult. All fields from the input record are packed into the sort
record. Numeric sort key fields are repeated in the nonsort portion of the
record. Also, alphanumeric sort key fields which are partial fields or
elements of an array are repeated in the nonsort portion of the record. The

only sort key fields not repeated are alpha scalars where the entire field is
included in the sort key.

Packed numeric fields are copied to the nonsort portion of the record in
their original alphanumeric form. Internal numeric fields are packed, using
the internal form of $PACK.

Variable length records are converted into fixed length records for a
full-record sort. Therefore, the length of the sort record includes the
maximum length of the variable portion of the record.

The length of the sort record (in bytes) for a full-record sort is:

S=K+T1+V-A+N+ 3%GN(N)

where: 8 = sort record length.

K = key length (see Table 4-3 for length of numeric keys).
I = length of input record, or fixed length portion of a
variable length record, excluding control bytes. (Numeric

field length is 8.)

V = maximum length of variable portion of record.

113

A = total 1length of alpha scalar full-field sort keys (not
duplicated).
N = number of internal numeric fields in input record.

In the unusual case where there are more than 21 internal numeric fields
in a blocked record, three additional bytes must be added for every 21
internal numeric fields.

The blocking of sort records varies with the record length and memory
space available for arrays, but SORT-4 juggles array sizes to ensure that the
blocking is at least 75% efficient. For example, if 248 bytes per sector are
available for data, at least 186 bytes will actually be used. Therefore, the
space required to store the sort records is:

F = R*5/186

where: F = space required for sort records.

R

i

number of records sorted.

S

sort record length (see above).

Additionally, there is a fixed overhead of 25 sectors for generated code
and a variable overhead of one extra block of sort records (up to 16 sectors,
in proportion to memory size) plus a String Index which occupies one sector
per 36 sorted strings. A total of 50 sectors should accommodate all the
overhead, hence the formula:

Sort work file size (sectors) = 50 + F
where: F = space required for sort records (see above).
If a tag sort is using the sort work file as an output file, the tag

sort output overlays part of the overhead portion of the work file; therefore,
the sort work file size is the greater of the two:

’—l
=
"

50 + R*S/186

N
=
n

R/50 + 20 + R*S/186 (tag sort only)

where: W sort work file size, sectors

R number of records sorted

S

sort record length

If the sort work file is on a multistation disk, it is opened in
Exclusive mode. If it is also used as the output file for a tag sort, it is
reopened in Read Only mode at the end of the sort and is not closed.

SORT-4 calculates the work file size required, based upon either the
number of records in the input file or the wmaximum number of records that
could be in the input file in the case of variable length records.

114

SORT-4 will stop if the actual sort work file is not large enough. 1In
certain cases, the actual number of records to be sorted will be much less
than the maximum number of records in the file, namely:

1. When a partial file is being sorted using a starting and/or ending
KFAM key.

2. When certain records are selected for sorting via a special input
procedure (see Section 4.14).

3. With variable length records, where the average number of records
in a block is 1less than the number of minimum length records
(variable portion zero) that will fit in a block.

The variable P8 is provided to approximately indicate the maximum number
of records to be sorted, if that number (P8) is significantly less than the
maximum number of records in the file. If P8=0 (default wvalue), SORT-4 uses
the maximum number of records in the file to calculate the required sort work
file size. 1If P8 is greater than zero, SORT-4 calculates sort work file size
on the basis of P8 records.

In addition to checking the work file size in the setup phase, SORT-4
also checks each time a block of sort records is written in Pass 1 to make
sure that the sort work file space is not exceeded. Therefore, if P8 is too
small, no damage is done.

4.13 THE OUTPUT FILE AND DEFERRED MOUNTING

The output of SORT-4 is always an unlabeled sequential file (file format
0). Output records are written in the same format as input records, and the
blocking is the same, with the exception of a tag sort (see Section 4.10 for
the output format of a tag sort).

The output file may either be previously cataloged by the user (C$="Y")
or cataloged by SORT-4 (C$="N"). 1If a tag sort is specified, the sort work
file may be used for output (C$="W").

If the output file is on a multistation disk, it is opened in Exclusive
mode. In a tag sort, if the output file is also the sort work file, it is
reopened in Read Only mode and kept open at the end of the sort. Otherwise,
the output file is closed when SORT-4 is finished.

In a full-record sort or a key sort, the default length of the output
file in SORT-4 is equal to the length of the input file.

In a tag sort, the length of the output file is calculated as INT(P8/50)
+3, where P8 = the maximum number of records to be sorted (see Section 4.12).

The variable P7 is used for the length of the output file, in sectors.
If P7=0, the default calculations above are used. If P7 is set to some number
greater than zero, then that number is used.

115

If the output file was not previously cataloged, then exactly P7 sectors
are cataloged. If the output file is already cataloged, then it must contain
at least P7 sectors.

Under certain conditions, the disk containing the file may be dismounted
at the end of Pass 1 and replaced by the disk containing, or to contain, the
output file. This permits a file occupying a full disk platter to be sorted
using two disk platters. This procedure, referred to as deferred mounting, is
indicated by D$="D" in the setup module.

Deferred mounting is allowed under the following conditions:

1. The disk containing the output file is not multistation.

2. A full-record sort or a tag sort (mot a key sort) is being performed.
3. If it is a tag sort, the output file is not the sort work file.

Normally the input file, output file, sort work file, and the SORT-4
program modules must remain mounted throughout the sort. With deferred
mounting, the SORT-4 modules and the sort work file can occupy the fixed disk,
while the removable disk is switched from input to output.

SORT-4 writes an END (end-of-data) control sector following the last
sector of live data in the output (or work) file. The user program(s) which
processes the sorted output file should use an IF END THEN statement, and, if
records are blocked, test for unused records in the last sector containing
live data which are 'padded" by SORT-4 to indicate that they are not wvalid
records. Padded records fill any unused record positions in the last block.
SORT-4 generates high values for both ascending keys and descending keys.

The padding procedure for the various record formats are as follows:

F§ = "0" blank (array-type blocking) -- The first read field and all
read fields containing sort keys are filled with HEX(FF) in all bytes if the
field is alpha or exactly 9E99 if the field is numeric.

F$§ = "A" (packed array) -- The first field and all fields containing
sort keys are filled with high values before the record is packed. Alpha
fields are filled with HEX(FF) in all bytes. Numeric fields are filled with
the highest value that can be packed. For ASCII free format, with a field
length of 15 or more, the value is 9E99. Other $PACK formats are padded with
the number of 9's indicated below, where L = packed field length.

Field Format Number of 9's
ASCII free L-1
ASCII integer L-1
IBM display L
IBM USASCII-8 L
IBM packed 2*%L-1

116

Wang packed formats are padded as follows:
Signed: HEX(099999...) per field length
Unsigned: HEX(999999...) per field length

F$ = "P", fixed length packed records. The entire record, in packed
form, is filled with HEX F's.

F$ = "V", variable length packed records or F$ = "T" TC record format.
No padding is necessary.

4.14 SPECIAL INPUT RECORD SELECTION PROCEDURE

The user may specify a special input procedure to be overlaid in Pass 1
of the sort. The user's program text in the file indicated as G$ in the setup
program 1s added to module SORT410A. This procedure can be used to sort
records selectively or for any other input processing that does not interfere
with the functioning of the sort. No other file may be opened during the
input processing phase; during this phase, input records are selected for
sorting typically based on certain user-defined logical relationships between
fields. 1If a special input procedure is used, the user's setup program must
equate scalar variable M4 (Line 3600 in Table 4-1) to the number of bytes
required by the user's program text and common variables carried through the
sort.

Coding of the input procedure must conform to the following rules:

1. The SORT-4 variables listed in Appendix B must be treated as Read
Only variables; that 1is, their values must not be altered by the
user's program. Any variable employed in a special input procedure
for purposes other than reading must not be one of the reserved
SORT-4 variables listed in Appendix B. =

2. The first line of the special input procedure must be 1000. Lines
1000-1999 may be wused for REM statements, DIM statements, an
initialization procedure, or any other processing to take place
before any input records have been read.

3. Lines 2500-3499 are used for normal input processing. At this
point, the input record has been read, but has not yet been included
in the sort. To include the record in the sort, GOTO 3500 (or drop
through). To exclude the record from the sort, GOTO 2400. Input
record selection is graphically shown in Figure 4-2.

117

[-— CONT INUE

SORY-4 READS

NEXT INPUT ?
RECORD

USER TESTS

CURRENT RECORD. ‘G0 TO 2400,
1S RECORD NO EXCLUDE ™
ACCEPTABLE RECORD

?

YES
G0 TO 3500,

INCLUDE

RECORD
SORT-4 WRITES
RECORD IN THE >—
OUTPUT (WORK)

FILE

Figure 4-2. 1Input Record Selection Flowchart

To reference the input record, the variable names assigned by SORT-4
must be known. Perhaps the easiest way to do this is to set up the particular
sort with a special input procedure:

1000 REM
2500 STOP

When the program stops,

SELECT LIST 215
LIST 10, 3550

Depress SF'31 to end program, if multistation.
The input record is defined on the following lines:
500 DIM statements
2440 Read input record, $UNPACK if F$=""A"
2460 MAT COPY variable length record to fixed work area, 0$()
3510 $UNPACK if F$=blank, "P","T", or "V"
1f records are blocked, the variable Q points to: (1) the record within

the block if F$=blank or "A", (2) the starting byte of the record if F$="P",
or (3) the length byte(s) preceding the record if F$ ="T" or F§ ="V".

118 .

Only packed array records (F$="A") are unpacked prior to the special
input procedure. Other formats are unpacked later, so that records not in the
proper packed format can be dropped in the special input procedure. Records
are available, in the special input procedure, in the following forms:

F$ = blank: Read fields available, Q points to record within block.

F$ = "AM: Packed fields available, Q points to record within block.
F$ = "P": Record is available in packed form in array A0$(), starting
byte Q.
F$ = "v": Record is available in packed form in array AO0$(). Q points
or to the length byte(s). If full-record sort, the record,
F$ = "T" starting with length byte(s), has been moved to array 0$(),
starting byte 1.
Variable names G0-G9, HO-H9, ... LO-L9 may be used as working variables
in the special input procedure. (These are reserved for the output record

definition and are not used in Pass 1.)

SORT-4 assigns variable names A(Q-A9, BO-B9, ... FO-F9, to the input
record, based upon a table constructed in the setup phase. If the record has
been described in A$(), this table is simply one entry per A$() entry, plus an
implied read only field inserted in front of each group of packed fields.
Variable names are calculated directly from the table subscript. The name A0
is always assigned to the first entry in the table, A9 to the tenth, B0 to the
eleventh, etc. For example, if the setup program defines

A$(1) = "#; AS, P3(5), A4; #(16)"

the table entries and variable names are:

Table Field Field Array Variable
Entry Type Length Dimension Name

1 numeric read 8 1 A0

2 read only 24 1 Al$24

3 alpha packed 5 1 A2$5

4 IBM packed 3 5 A3(5)

5 alpha packed 4 1 Aasa

6 numeric read 8 16 A5(16)

The read fields AO, Al$, and AS() are available during the special input
procedure. The packed fields may not even be defined by SORT-4, in the case
of a key sort or tag sort.

If a numeric read field is designated as a sort key, it 1is always
defined as an array by SORT-4. 1In the example above, if the first field is a
sort key, it is defined as AQO(l), not AO0. 1If the field is already defined as
an array (array, or blocked, or blocked array), then its definition is the
same, whether it is a sort key or not.

119

In packed array format (F$="A"), packed numeric fields designated as
sort keys are always defined as arrays. What would otherwise be a scalar is
defined as an array of Dimension 1.

If records are blocked as arrays (F$=blank or "A"), SORT-4 adds another
dimension for blocking to the variables to which the blocking applies. With
array-type blocking, the extra dimension is added to read fields. With packed
array format, the extra dimension is added to packed fields. 1In the example
above, where records were written five per block, the variable names would
become A0(5), Al1$(5)24, A2$5, A3(5), A4a$4, A5(16,5). The read fields for the
current record being processed would be A0(Q), Al$(Q), and A5(X,Q), where X=1
to 1l6.

For packed records, formats "A", "P", "T", and "V", the read field is
always A0$(). The fields defined in A$() are then assigned variable names Al
and up.

In the case of a packed array, all fields are always unpacked and
available in the special input procedure. Blocking applies to packed fields.
For example:

F$ = "A"
B=35
A$(1) = "Al2, P3(5), sS4, Al(3), F15"
B$ = NWgw
Table Field Field Array Variable
Entry Type Length Dimension Name
1 read field 64 4 A0$(4)64
2 alpha packed 12 1 A1$(5)12
3 IBM packed 3 5 A2(5,5)
4 Wang packed 4 1 A3$(5)4
5 alpha packed 1 3 A4$(3,5)1
6 ASCII free 15 1 A5(5)

The fields of the input record available in the special input procedure
are A1$(Q), A2(X,Q), A3$(Q), A4$(Y,Q), and A5(Q), where X=1 to 5 and Y=1 to 3.

Note that the Wang packed decimal field (signed or unsigned) is unpacked
as an alpha field at this point.

If a record description is not provided in A$() (array-type only),
SORT-4 constructs a table based on the format of the record as written on
disk. Consecutive fields of the same length and type are combined into
arrays, except that fields containing sort keys are always defined as
scalars. For example, if the record as originally written was:

DIM A$(2)8, B$(2)8, c$(2)8, D$(2)8, E$(2)12
DATASAVE DC A$(), B$(O), c$(O), p$(), ES$Q)

120

and there are two records per block, and the first field is the sort key,
SORT-4 will define the record as follows:

DIM A0$(2)8, A1$(3,2)8, A28(2)12
DATALOAD DC A0$(), A1$(), A2$()

Individual records may be referenced in the special input procedure as
A0$(Q), A1$(X,Q), and A2$(Q), where X=1 to 3.

The variable M4 should contain a conservative estimate of the number of
bytes occupied by the special input procedure and any common variables which
may be carried through the sort.

Appendix B shows the variables used by SORT-4. The special input
procedure should avoid using any of these variables except the ones reserved
for output. If common variables are to be carried through the sort, they
should be variables not used by SORT-4.

4,15 EXIT FROM SORT-4

If M$=blank (default), SORT-4 will stop when finished, displaying a
count of the number of records sorted and END OF SORT, or the appropriate
error message.

Or M§ may contain the name of the program to be loaded following the
sort. This program must be present on the device specified in F$§(6).

If a program is to be loaded following the sort, the following options
are available:

89 = 0 (default), stop if SORT-4 ended in an error condition.
Otherwise clear all common variables starting at S8 and load
user program M$.

S9 = 1, stop if SORT-4 ended in an error condition. Otherwise store
record count in S8 (COM), clear all common variables starting at
S9, and load user program M§.

89 = 2, store error code (see Section 4.7) in S9, store count of records

sorted in S8, clear common variables starting at M$, and load
user program M§.

Common variables are defined in SORT-4 starting with S8, S9, M§8, etc.
The value of S9 in the setup module indicates how many of these common
variables (0, 1, or 2) will be saved with the appropriate information, when
loading user program M$. The record count and error code (if any) might be
displayed by the wuser program loaded by SORT-4, although SORT-4 stops
execution if an error occurs.

121

4.16 NORMAL OPERATING PROCEDURE

Except for deferred mounting of the output file, there 1is no operator
dialogue in SORT-4. The input file, sort work file, all SORT-4 modules, and
any necessary user modules (setup program, special input procedure, and
program to be loaded following the sort) must be present and cataloged on
disks which are mounted prior to the running of SORT-4. The output file may
or may not be cataloged, as specified in the setup module, and the disk which
will contain the output may or may not be mounted at the start of SORT-4.

If deferred mounting of the output is specified, the following dialog
takes place at the end of Pass 1:

1. REMOVE INPUT VOLUME AND MOUNT OUTPUT VOLUME
ENTER 'GO' TO RESUME

Replace the input volume with the output volume. Enter GO and touch the
RETURN key when ready.

If the response 1is not correct, the prompt reappears, requesting
reentry. If the response is correct, the program will display PASS 2 --
MERGE, and continue with the sort.

During the running of SORT-4, the following information will be
displayed on the screen, starting at display screen Line 4:

(Phase of the sort: Start, Pass 1, Pass 2, or Pass 3)

INPUT FILE (name) DEVICE (address) FORMAT (number)

RECORDS PER BLOCK (number)

STARTING BLOCK # TO BE SORTED (number) or STARTING KEY TO BE SORTED
(key), if KFAM

NUMBER OF BLOCKS TO BE SORTED (number or "ALL") or ENDING KEY (NOT
SORTED) (key), if KFAM

WORK FILE (name) DEVICE (address)

NUMBER OF KEY FIELDS (number)

KEY FIELDS (field number, D if descending, repeated)

OUTPUT FILE (name) DEVICE (address) CATALOGED (code)

(Type of sort: KEY SORT, TAG SORT, or FULL-RECORD SORT)

If it is necessary at any time to terminate the sort before it 1is
finished, key HALT/STEP and then depress Special Function Key 31 to make sure
all files are closed properly. The program will stop, normally, with the
message OPERATOR INTERVENTION. 1If error messages are passed to a user program
following the sort, it should stop with an appropriate message in that
program. SORT-4 error messages appear in Section 4.17, below.

If error messages are not passed to the user program, any error message
encountered will be displayed, as 1listed in Table 4-4. Otherwise, upon

successful completion, the following is displayed:

RECORD COUNT NNNNN
STOP END OF SORT

122

4.17 ERROR MESSAGES AND RECOVERY PROCEDURES

There are two types of error conditions that could be encountered during
the operation of SORT-4. Hardware (ERR lnn) errors are described below under
"Hardware Errors."

SORT-4 supplies software-generated error messages which enable the
error's cause to be quickly isolated and corrected by the programmer.
Software error messages, which appear as several words indicating the nature
of the error, are described under '"'SORT-4 Software Errors."

Hardware Errors

Certain hardware error messages will cause SORT-4 to stop. If any of
these occur, touch SF'31l to end the sort and close any files that may be open
in a multistation environment.

If either ERR 196 or ERR 199 occur, touch SF'3l to end the program. Try
rerunning the sort. ERR 196 means that the information written on the disk is
bad. ERR I99 means that the disk platter itself is bad. If the error recurs,
try running from a backup copy of the disk.

ERR D83 indicates that the output file to be cataloged is already
cataloged. Touch SF'31l to end the program. Make sure that the correct disks

are mounted. This may require a programming change in the setup module (C$ =
"Y") .

ERR D82 indicates the file cannot be found. A data file or program
module does not exist on the specified device. Touch SF'31l to end the
program. Make sure that the correct disks are mounted. This may require a
programming change in the setup module.

Other hardware errors could be caused by hardware or software failure,
invalid data, or a number of other reasons. Make a note of the line number of
the program that caused the error, and the error number. Enter LIST S and
make a note of the module name displayed on the first line. Depress SF'3l to
end the program and close all files.

SORT~4 Software Errors

SORT-4 checks for many error conditions and comes to an orderly halt,
closing all files, if SORT-4 detects an error. Associated with each error
condition is a message and a number. The number is optionally passed to a
user program via S9 if the option is specified; otherwise, the accompanying
message is displayed on the screen and SORT-4 stops. (Also see Section 4.15.)

Error messages displayed by SORT-4 are listed in alphabetic order in
Table 4-4, with a cross-reference to the number associated with each error
message. Error messages and recovery procedures are listed in numeric order
following the table.

123

Table 4-4., Alphabetic List of SORT-4 Error Messages

ERROR MESSAGE NUMBER*
BLOCK SIZE TOO SMALL see #25
DEFERRED MOUNTING INVALID see #20
DEVICE CONFLICT see #9
ERROR CLOSING FILES see #35
ERROR OPENING OUTPUT FILE see #17
ERROR OPENING WORK FILE see #15
FULL RECORD SORT NOT POSSIBLE see #32
INPUT BLOCKING INVALID see #8
INPUT FILE BUSY see #39
INPUT FILE OPEN ERROR see #3
INVALID DEVICE ADDRESS see #10
INVALID END OF FILE see #1
INVALID FORMAT see #2
INVALID NUMBER OF BLOCKS see #6
INVALID NUMBER OF KEY FIELDS see #26
INVALID OUTPUT TYPE see #30
INVALID RECORD DEFINITION see #23
INVALID RECORD FORMAT see #13
INVALID RECORD TYPE see #24
INVALID RECORDS PER BLOCK see #4
INVALID SORT KEY SPECIFICATIONS see #21
INVALID SORT TYPE see #31
INVALID STARTING BLOCK see #5
MEMORY SPACE TOO SMALL see #33
NO CPU NUMBER see #29
NO RECORDS TO SORT see #11
OPERATOR INTERRUPT see #28
OUTPUT FILE TOO SMALL see #19
PACKED ARRAY MUST BE BLOCKED see #37
PACKED RECORD MUST BE ARRAY see #38
PROGRAM ERROR see #34
RECORD COUNT INPUT = XXXXX, OUTPUT = XXXXX, ERROR see #36
RECORD COUNT = XXXXX; STOP END OF SORT see #99
RECORD DEFINITION INCONSISTENT see #22
SEQUENCE ERROR see #18
SORT KEY TOO LONG see #27
STARTING BLOCK TOO HIGH see #7
TOO MANY FIELDS see #14
WORK FILE BUSY see #40
WORK FILE TOO SMALL see #16
WRONG INPUT FILE see #12

* For an explanation of the error message and its recommended recovery
procedure, refer to the appropriate number on pages 125-131.

124

Numeric List of SORT-4 Error Messages and Recovery Procedures

1.

INVALID END OF FILE

Input File Formats 0, 1, or 2 must be ended with an END control sector
(DATASAVE DC END). The number of sectors used is invalid.

Recovery: Correct the input data file.

INVALID FORMAT

Format (F) not 0 - 5 (file format).

Recovery: Correct the format code (F) in the setup program.
INPUT FILE OPEN ERROR

Multistation OPEN error (file not found, invalid password, etc.) or KFAM
Key File not found.

Recovery: Correct the input data file and/or setup program (file name,
password) .

INVALID RECORDS PER BLOCK

Blocking (B) is not an integer from 1 to 255, or does not match actual
blocking in sample record, or does not match blocking (V8$) in KFAM KDR
record.

Recovery: Correct setup program.

INVALID STARTING BLOCK

Starting block # to be sorted (D) is less than 1 or not an integer.
Recovery: Correct setup program.

INVALID NUMBER OF BLOCKS

Number of blocks to be sorted (L$) is not "ALL" and not numeric, or not
an integer greater than 0.

Recovery: Correct setup program.

STARTING BLOCK TOO HIGH

Starting block # to be sorted (D) is greater than the number of blocks of
records in the input file.

Recovery: Either there are no records to sort, or the setup program
should be corrected.

125

10.

11.

12.

13.

INPUT BLOCKING INVALID

The block length, in sectors, does not divide evenly into the length of
the data portion of the input file.

Recovery: Correct the input data. Blocks of records must be fixed~
length and must be written on disk in the same identical
format.

DEVICE CONFLICT

A device address is specified as multistation for one file and not for

another file. The device address must be consistent (multistation or not

multistation) for all files on that device.

Recovery: Correct the setup program.

INVALID DEVICE ADDRESS

A device address is specified which is either blank or not in the table
of device addresses, MO$().

Recovery: Correct the setup program.

NO RECORDS TO SORT

Either KFAM returns an end-of-file condition trying to find the first
record to sort, or the count of records being sorted at the end of Pass 1
is zero.

Recovery: None.

WRONG INPUT FILE

The file name in the header label, formats 1 and 2, does not match the
input file name specified in the setup program,.

Recovery: Mount correct disk and rerun, or correct the setup program.
INVALID RECORD FORMAT

The sample record being used to determine the input record format does
not have correct control bytes.

Recovery: Correct the input data file.

126

14-

15.

16.

17.

18.

19.

TOO MANY FIELDS

More than 255 fields are defined in the input record, or more than 60
table entries are required to describe it, or more than 256 bytes are
required for a DATALOAD or DATASAVE statement to read the input or write
the output.

Recovery: Change the setup module to describe the input record as fewer
fields, combining scalars into arrays wherever possible. If
this is not possible, SORT-4 will not sort this file.

ERROR OPENING WORK FILE

The multistation OPEN subroutine detects an error condition (file not
found, invalid password, etc.) trying to open the sort work file.

Recovery: Check that the correct disk is mounted, or correct the setup
program (file name, password, device).

WORK FILE TOO SMALL

The work file contains less than 25 sectors, or is too small to either
sort the maximum number of records specified (P8) or be used as both a
work file and output file for a tag sort, or the dynamic check in Pass 1
shows that the work file is full.

Recovery: Adjust the maximum number of records (P8) in the setup module,
or create a larger sort work file, or switch from a
full-record sort to a key sort (if P8$ = "R").

ERROR OPENING OUTPUT FILE

Multistation OPEN error (file not found, invalid password, output file
presently in use, etc.) trying to open the output file.

Recovery: Check that the correct disk is mounted and the output file is
not being accessed by another station. Correct the setup
program (file name, password) if necessary.

SEQUENCE ERROR

The sorted keys are not in proper sequence. This is a check against
possible hardware or software malfunction.

Recovery: Rerun the program. Notify Wang Laboratories if the error
persists.

OUTPUT FILE TOO SMALL

The output file is smaller than the number of sectors specified in P7
(default = input file size), or the dynamic check in Pass 2 or 3 shows
that the output file is full.

Recovery: Adjust the output file size (P7) in the setup module, or
create a larger output file.

127

20.

21.

22,

23.

24,

25.

DEFERRED MOUNTING INVALID

Deferred mounting of the output file (D$ = '"D") may not be specified if a
key sort is being performed, if the work file is also used for the output
of a tag sort, or, for all sort types, if the output file is multistation.

Recovery: Correct the setup program.
INVALID SORT KEY SPECIFICATIONS

The description of sort key fields in K(), B(), N(), and X9$ is invalid,
or the description of a partial sort key field is inconsistent with the
field length, or a partial sort key field has been specified for a
numeric field.

Recovery: Correct the setup program.

RECORD DEFINITION INCONSISTENT

The record definition supplied in A$() is inconsistent with other record
definition information. With packed records (F$ = "A", "p", "T" or
“y"), A$() is blank, or the sample record shows more than one read field
array, or the array is numeric. This error is also possibly caused by
the definition in A$() not fitting the sample record: too many or too
few fields are defined; field lengths of packed fields do not add up to

field 1lengths of read fields; or field 1lengths, types, and array
dimensions do not match the sample record.

Recovery: Correct the setup program.

INVALID RECORD DEFINITION

The record definition supplied in A$() is invalid within itself. The
field type 1is 1invalid, length or array dimensions out of bounds,
punctuation marks are invalid, or there is an invalid sequence of read
fields and packed fields. Or, for variable length records, the length of
the variable portion (N6) is not an integer or is less than zero.
Recovery: Correct the setup program.

INVALID RECORD TYPE (F$)

The record format (F$) is not blank, "A", "P", "T", or "V".

Recovery: Correct the setup program.

BLOCK SIZE TOO SMALL

For fixed-length packed records (F$ = "P"), the product of blocking times
record length 1is greater than the block 1length. For variable length
records (F$ = "T" or "V"), the block is too small to hold the largest

possible record.

Recovery: Correct the setup program.

128

26.

27.

28.

29.

30.

31.

32.

INVALID NUMBER OF KEY FIELDS

The number of sort key fields (K) is not an integer from 1 to 10.
Recovery: Correct the setup program.

SORT KEY TOO LONG

The total length of the sort key exceeds 64 bytes.

Recovery: Change the setup program to shorten the sort key, if possible.
OPERATOR INTERRUPT

SORT-4 was terminated by depressing SF'31.

Recovery: Rerun the program.

NO CPU NUMBER

No station (CPU) number or an invalid station number was specified with
multistation files.

Recovery: Specify the station number (S82) in the setup program.
INVALID OUTPUT TYPE

The work file may not be used as the output file (C$ = '"W") except with
a tag sort (P8% = "T").

Recovery: Correct the setup program.

INVALID SORT TYPE

The type of sort specified (P8$) is not blank, "K', "R", or "T".

Recovery: Correct the setup program.

FULL RECORD SORT NOT POSSIBLE

A full-record sort has been specified (P8 = "R" or D$ = '"D" forcing

full-record sort), but it is not possible to perform a full-record sort
for one of the following reasons: :

a. The nonsort portion of the record exceeds 256 bytes.

b. A 2-dimensional array, created by an array in a blocked record, is
too large to be packed in one $PACK statement.

Recovery: Change the setup program to perform a key sort or tag sort.

129

33.

34.

35.

36.

37.

MEMORY SPACE TOO SMALL

The memory size specified (M or S) is less than 7K, or the memory size is
too small for the following minimum requirements for the sort/merge file:

a. Sort blocking must be at least five records per block and occupy at
least two sectors.

b. Sort blocking must be at least 75% efficient (at least 186 bytes of
data per sector in the sort work file).

Recovery: Change the setup program to perform a key sort or tag sort, or
correct the memory size sgpecified. It may not be possible to
sort unusually large records or blocks of records in an 8K
machine.

PROGRAM ERROR

Hardware or software error. Generated $PACK statement does not match
generated hex images.

Recovery: Notify Wang Laboratories.

ERROR CLOSING FILES

An error is detected by one of the multistation subroutines when writing
an END control sector on the output file or reopening the work file used

for output, or closing a file.

Recovery: Rerun the program. Notify Wang Laboratories if this error
recurs.

RECORD COUNT INPUT = XXXXX, OUTPUT = XXXXX, ERROR

The number of input records entered into the sort does not match the
number of output records from the sort. Hardware or software error.

Recovery: Rerun the program. Notify Wang Laboratories if this error
recurs.

PACKED ARRAY MUST BE BLOCKED

If the input record format is specified as packed array (F$ = "A"), then
the blocking factor (B) must be greater than 1.

Recovery: Change the setup program. If packed records are not blocked,
specify F$ = "p".

130

38.

39.

40.

98.

99.

PACKED RECORD MUST BE ARRAY

For the packed record formats (F$ = "A", "P", "T", or "V'"), the record or
block written on disk must be an array containing two or more elements.

Recovery: Change F$ to blank 1in the setup program, or change the format
of the input record on disk so that at least two elements of
an array are written per block of packed records.

INPUT FILE BUSY

Multistation input file cannot be opened in the Read Only access mode
because of an access conflict, or KFAM-4 access conflict or access table
full.

Recovery: Rerun the program when the access conflict is resolved. It may
be necessary to clear spurious information out of the access
table. If no other station is accessing the file, see the 1SS
utility File Status Report if a non-KFAM file was used as
input, or see the KFAM utility Reset Access Table (either
KFAM-3, -4, -5, or -7), if a KFAM input file was specified.

WORK FILE BUSY

Multistation work file cannot be opened in the Exclusive access mode
because of an access mode conflict.

Recovery: Rerun the program when the access conflict is resolved. It may
be necessary to clear spurious information out of the access
table. 1If no other station is accessing the file, see the ISS
utility File Status Report to clear the access table.

ERROR MESSAGE NOT DEFINED

Following any error message, the program displays:

STOP ERROR ENDING

RECORD COUNT XXXXX

STOP END OF SORT

This is the normal ending. If error messages are passed to the next
program, the value S9 = 99 indicates that the sort was executed with no
errors.

131

4.18 SORT-4 TIMINGS

In general, SORT-4 takes longer for the setup phase (1 to 2 minutes)
than SORT-3 (about 30 seconds), because SORT-4 has more options to choose
from. But the actual sorting time is less in SORT-4 than SORT-3. If the file
is large enough to make up for the increased setup time, SORT-4 will rumn
faster than SORT-3. Table 4-5 gives some comparisons of running times for
different SORT-4 machine configurations and input files. An explanation of
the terms used in the table follows:

@ File 24/24 consists of 24-byte records with a 24-byte sort key. The
record is all one field. There are 10 records per block.

e File 120/8 consists of 120-byte records, blocked two per sector,
with an 8-byte (numeric) sort key. The record contains six fields.

e File 120/64 is the same file as above, except that four fields (one
numeric and three alpha) or a total of 64 bytes, are included in the
sort key.

° Sort type R is a full record sort, K is a key sort, and T is a tag
sort.

Input records are in random order. A five-megabyte hard disk is used in
all cases. All sort times are in minutes, and vary depending on the number of
fields in a record, the type of sort, the amount of memory available, and
other factors.

Table 4-5. SORT-4 Timings, 2200VP

SORT SORT-4 TIME SORT-4 TIME
FILE RECORDS TYPE 2200VP w/16K 2200VP w/ 64K
24/24 2000 R 1.0 n/a
24 /24 20000 R 9.1 6.8
120/8 4000 K 9.2 9.0
120/8 4000 R 9.55 6.9
120/8 4000 T 2.5 2.5
120/64 1000 K 3.0 n/a
120/64 1000 R 2.3 1.8
120/64 4000 R n/a 7.0

4.19 SAMPLE SETUP PROGRAMS

Table 4-1 provides a master setup program that includes all setup
statements that could possibly be needed. As an aid to first-time SORT-4
users, the following sample setup programs are provided.

132

Sorting a KFAM-3 Data File

A list of publications is contained in a KFAM-3 data file, where each
record is composed of the following fields:

1. A 12-byte alphanumeric publication number; e.g., 700-5010B, 1is the
KFAM-3 key field,

2. A 2-byte alphanumeric flag, indicating whether the document 1is
obsolete or still active.

3. A 60-byte alphanumeric title and description of the document is the
sort key field; in this case, it composes the entire sort key.

The records are blocked three per sector in array format and are not
packed. The User File name is PUBLFO000, and the Key File number is 1. The
purpose of the sort 1s to <create an output file sorted by the
title/description field, the third field in each record. Since this list 1is
updated biweekly, the input User File/Key File resides on diskette at address
Bl0. The work file resides on removable disk at address B20, and the output
file resides on diskette at address 310. A 2200VP central processor is used.

The setup program first provides the memory size, disk addresses, and
SELECT statements to define the hardware configuration. Other statements are
documented by REM statements and are explained elsewhere in this chapter,
especially in Table 4-1. Note that the following statement lines (see Table
4-1) were not included, for the following reasons:

1. Line 3430, input file password, is unnecessary since KFAM-3 files do
not have file passwords, and multistation operation (hog mode
addresses) has not been specified.

2. Line 3450, DC/DA or BA mode, is unnecessary since the default value
of blank (DC/DA mode) is acceptable.

3. Line 3455, record format, 1is unnecessary since the default value of
blank (not packed) is acceptable.

4. Line 3460, length of the variable portion of the record, 1is
unnecessary since the file contains only fixed-length records, and

the default value of 0 (zero) is acceptable.

5. Line 3465, description of packed fields, is unnecessary since there
are no packed fields (the record format is blank).

6. Line 3475 and 3480 are unnecessary since the file is a KFAM file,
not a sequential file.

7. Line 3480 and 3485 are unnecessary since the entire KFAM is to be
sorted.

8. Line 3530 is unnecessary since the sort work file has no password,
and multistation operation has not been specified,

133

10.

11.

12.

13.

14.

Line 3540 is wunnecessary since the sort work file is already
cataloged.

Line 3560 is unnecessary since the output file has no password, and
multistation operation has not been specified.

Line 3565 is unnecessary since the default value of Y (output file
is cataloged) is acceptable.

Line 3580 is unnecessary since deferred mounting is not needed,
thereby making the default value (blank) acceptable.

Line 3585 is unnecessary since multistation operation has not been
specified for any disk device.

Lines 3595 and 3600 are unnecessary since a special input procedure
is not used.

The SORT-4 setup program for this application appears on the following
page.

134

10 REM "TITLE" SORTS A KFAM-3 DATA FILE WITH BLOCKED DATA RECORDS

20 DIM K(10), B(10), N(10), N&(4)B, P$(4)16, F$(6)3, A%(4)62, MO$(1)21
179 LOAD DC F"SORT4" 10,179

3400 M=EPACEK: REM 2200VP-RESIDENT PROGRAM

3404 REM DEFINE DISK DEVICEE IN THE CONFIGURATION

3405 MO$(1)="310810B20"

3410 SELECT DISK 310: SELLECT #1/B10: SELECT #2/820

3414 REM DEFINE KFAM-3 FILE, FILE TYPE 3 (F), INPUT FILE NAME AND ADDRESS
3415 F=3

3420 N#$(1)="PUBLFOO0O"

3425 F$(1)="B10"

3434 REM DEFINE KEY FILE NUMBER (J) AND ADDRESS
3435 J=1

3440 F$(2)="B10"

3444 REM DEFINE RECORD BLOCKING (B)

3445 B=3

3474 REM DEFINE SORT KEY FIELD

3475 D=1

3495 K=1

3500 K(1)=3: REM THIRD FIELD IS THE SORT KEY FIELD
3519 REM DEFINE WORK FILE NAME AND ADDRESS
3520 N& (3) ="SORTWORK"

3525 F$(3)="B2C"

3549 REM DEFINE OUTPUT FILE NAME, ADDRESS, AND ITS SIZE
3550 N$(4)="SORTOUT"

3555 F$(4)="310"

3570 P7=680

3574 REM FORCE FULL-RECORD SORT

3575 P8%="R"

3589 REM SORT-4 PROGRAMS LOADING ADDRESS

3590 F$(5)="310"

3604 REM NAME AND ADDRESS OF PROGRAM TO LOAD FOLLOWING COMPLETION OF SORT-4
3605 ="TITLE2"

3e10 59=2% REM PASS RECORD COUNT AND ERROR CODE TO *TITLE2"

3615 F$(6)="310"

Figure 4-3. The SORT-4 Setup Program

135

Sorting an Inventory File

A file of inventory records is stored in a sequential file. Before each
record is written to disk, it is packed into a single alphanumeric array using
the field form of the $PACK statement. Table 4-6 shows the individual fields
within the packed record, and the following program text defines each record's
contents as stored one record per sector.

Table 4-6. Inventory Record Layout

FIELD VARIABLE PACKED BYTE BYTE
NUMBER NAME LENGTH LOCATION FIELD TYPE
1 F1$ 12 1-12 Alphanumeric
2 F$ 12 13-24 Alphanumeric
3 F2$ 24 25-48 Alphanumeric
4 F3$ 2 49-50 Alphanumeric
5 HO 3 51-53 Numeric, IBM Packed Decimal
6 G2$ 5 54-58 Alphanumeric
7 G3$ 24 59-82 Alphanumeric
8 I5% 6 83-88 Alphanumeric
9 14$ 20 89-108 Alphanumeric
10 E 4 109-112 Numeric, IBM Packed Decimal
11 El 4 113-116 Numeric, IBM Packed Decimal
12 E2 4 117-120 Numeric, IBM Packed Decimal
13 E3 4 121-124 Numeric, IBM Packed Decimal
14 E4 4 125-128 Numeric, IBM Packed Decimal
15 ES 4 129-132 Numeric, IBM Packed Decimal
16 H 4 133-136 Numeric, IBM Packed Decimal
17 H2 4 137-140 Numeric, IBM Packed Decimal

The sort key is comprised of two fields. The contents of alpha-variable
15¢$ (field number 8) and alpha-variable F1$ (field number 1) are chosen as the
primary and secondary sort key fields, respectively. 1If the record type 1is
defined as packed (F$="P"), the alpha-array A$() must be provided to define
the packed fields and the sort key is simply defined by the relative field
numbers, 8 and 1.

Alternatively, each record may be viewed as being comprised of the
elements of alpha-array M$() and the sort key fields specified as partial
fields of each array element. The record type 1is specified as not packed
(F$="blank") and the alpha-array A$() need not be provided im the setup
program.

136

To illustrate the two approaches to defining the record type and sort
key fields, two setup programs which perform the same task are provided: a
2200MVP and a single Model 2280 disk surface (disk address D13) are used. A
tag sort is performed, and the program INVIPRNT is loaded following completion
of SORT-4 operation, which prints the input file records in sorted order by
using the pointers in the work file. Note that Hog mode addresses are used
when defining the disk device addresses, array elements of alpha-array F$(),
since the input file is a multistation/multiplexed file.

In both setup programs, the following parameters were not defined
because their values are not required:

1. Key File number (J) on line 3435.
2. Key File address (F$(2)) on line 3440.
3. Length of variable portion of record (N6) on line 3460.

4. The starting and ending key values to be sorted (A$,E$) on 1lines
3485 and 3490.

5. The maximum number of records to be sorted (P8) on line 3540.
6. The number of sectors in the output file (P7) on line 3570.
7. The deferred mounting option (D$) on line 3580.

8. The name of the special input procedure and its number of bytes (G$
and M4) on lines 3595 and 3600.

9. The error recovery method (S9) on line 3610.

The following parameters are not included (in both programs) since their
default values are acceptable:

1. Input file password (P$(1)) on line 3430.
2. Records per block (B) on line 3445.
3. DC/DA or BA mode records (B$) on line 3450.

4. Starting number and number of blocks (D and L$) on lines 3475 and
3480.

5. The sort work file and output file passwords (P$(3), P$(4)) on lines
3530 and 3560.

Note that the sort key 1is specified differently in the two setup

programs. The program INVTSORT specifies that records are not packed
(F$="blank") by means of exclusion of this parameter, and uses partial fields
(array elements) to specify the two sort key field locations. The program

SORTINVT specifies packed records (F$="P"), provides the alpha-array A$() to
define the fields, and defines the partial sort key fields in terms of array

M$().

137

10 REM INVTSORT, SORT USING PARTIAL FIELDS
DIM K(10),N(10),B(10),F$(6)3,N$(4)8B,MO%(1)21
LOAD T°"SORT4"10,179

20
179
3400
3405
3410
3412
3414
3415
3420
3430
3495
3505
3515
35es
3535
3545
3555
3565
3575
3585
3590
3595
3600
3605
3625

REM

M=SPACEK +2 : REM MEMORY SIZE
MO ()="D10D11D12D13D14D15"
FOR 1=0T0 5
SELECT #I<STR(MOS(),I*3+1,3)>
NEXT I
F=0 : REM FILE TYPE
N$(1)="INVTFO10" : REM INPUT FILE NAME
F$(1)="D33"
K=2 : REM NUMBER OF KEY FIELDS
SORT KEY SPECIFICATIONS
K(1)=2
K(2)=1
B(1)=21
B(2)=1
N(1)=6
N(2)=12
N$(3),N$(4)="SORTWORK"
F$(3),F$(4)="D33"
Ce="W* ! REM WRITE TAGS INTO SORTWORK FILE
PE$="T* : REM TYPE OF SORT (TAG)
S2=1
M$=" INVTPRNT* ! REM PROGRAM TO LOAD FOLLOWING SORT
F$(S),F$(6)="D93"

Figure 4-4. The INVTSORT Program

138

10 REM SORTINVT, SORT USING PACKED RECORD DEFINITION
DIM K(10),N(10),B(10),F$(6)3,N8(4)B,MOS(1)21,A8(4)62
LOAD T"8ORT4"10,179

20
179
3400
3405
3410
3412
3414
3415
3420
3425
3500
3510
3520
3530
3540
3550
3560
3570
3575
3580
3585
3590
3600

REM

M=SPACEK+2 : REM MEMORY SIZE
MO%()="D10D11D12D13014D15"
FOR I=0TO S

SELECT #I<STR(MOS(), I*3+1,3)>
NEXT 1
F=0 : REM FILE TYPE
N$(1)="INVTFO10" : REM INPUT FILE NAME
Fe$(1)="D93"
K=2 : REM NUMBER OF KEY FIELDS
SORT KEY SPECIFICATIONS
Fe="pP"

AS()="A12,A12,A24,A2,P3, AS, A24, AG,P4,P4,P4,P4,P4,P4,P4,P4, A20"
K(1)=8

K(2)=1

N$(3) ,N$(4)="SORTWORK"

F$(3),F$(4)="D93"

Ce="W*" : REM WRITE TAGS INTO SORTWORK FILE

PB&="T" : REM TYPE OF SORT (TAG)

82=1 : REM STATION NUMBER FOR MULTISTATION/MULTIPLEXED
Me=" INVTPRNT" ¢ REM PROGRAM TO LOAD FOLLOWING SORT
F$(5),F$(c)="D93"

Figure 4-5. The SORTINVT Program

139

CHAPTER 5
KFAM-7 GENERAL INFORMATION

5.1 KFAM AND DISK ACCESS METHODS

A disk access method transfers data between memory and a direct access
storage device, such as disk or diskette. It enables records within a disk
file to be rapidly located by certain conventions associated with the
particular access method used.

Direct access (nonsequential) storage devices typically provide rapid
access to randomly dispersed data on a rapidly rotating disk(ette) surface by
using a moveable read/write head. To fully utilize this desirable hardware
feature, an access method is usually applied to certain data files (especially
large data files) where rapid access to random records is required. The Key
File Access Method (referred to as KFAM) provides several means of rapid
access to records within a file.

KFAM, although unique, resembles access methods usually categorized as
"indexed sequential" or "indexed." A KFAM file consists of two files: (1)
the file containing the data records, called a User File, and (2) a file
containing an "index" for quickly locating specific User File records, called
a Key File. Within each User File data record is a "key," such as a social
security number. Each key's value is typically unique within the same KFAM

file. The Key File contains system information used internally by KFAM, as
well as the key and corresponding address of each record in the User File,
which enables the retrieval of records based on their keys. Key File

information is automatically maintained by KFAM.

KFAM Release 7 (KFAM-7) provides the following features not always
associated with indexed sequential access methods:

e An entry in the Key File 1is maintained for each record in the User
File, allowing records to be added to the KFAM file in random order
of their keys and, thereafter, accessed either by key or key
sequence. Record deletions by key are also provided. Disk space is
efficiently utilized regardless of logical record length since KFAM
fully supports blocked records (multiple records per sector), single
sector records (not blocked), and multiple sector records.

° Records entered in random key order may be reordered by supplied
KFAM utility software into ascending order of their keys. (With
multiple Key Files, reorganization is based upon the "primary" Key
File.) This provides efficient record access by ascending or
descending key sequence.

140

. Using supplied KFAM utility programs, data files meeting KFAM input
record requirements may be converted to KFAM User File format and a
Key File created for the User File.

° The Key File may be located on a different disk platter than the
User File it indexes, thus minimizing disk hardware access times.

e When the appropriate KFAM marked subroutine 1is called which
successfully opens (or closes) the requested User File, KFAM
automatically opens (or closes) the companion Key File.

° KFAM supports four file access modes which collectively provide a
controlled file access system for KFAM disk files. Individual
stations are granted or denied file access based on the requested
access mode and access modes previously granted to other stations
still accessing the file. Other multistation Security features are
provided.

° Three versions of KFAM-7 are provided which support multiple Key
Files for a single User File, allowing alternate (secondary) key
retrieval and multiple key paths for User File records. One version
requires special programming considerations to prevent duplicate
updating of records (sector protection is not available).

The Wang BASIC-2 language includes a group of statements known as the
Automatic File Cataloging statements. Automatic File Cataloging statements
create and maintain a disk-resident catalog, or index, of the files stored on
a disk. This catalog keeps track of, among other things, the name given to
each file and each file's starting and ending sector addresses.

The disk catalog system allows files to be easily found on a specified
disk, but does not keep track of individual records within a file. KFAM is a
system for both keeping track of, and rapidly locating, individual records
within a file.

The Index of Data Records

Within the Key File, KFAM creates and maintains an index of the
individual User File records. ©Each record is uniquely identified by a key
field. The index can be thought of as a list of all the keys for a given
file. Associated with each key in the index is the relative sector address of
the record that the key identifies.

The Key File index constructed by KFAM 1is a sophisticated B-tree
structure, designed so that keys can be found quickly in a random key
sequence, and even more quickly in ascending or descending key sequence. Keys
can be added and deleted easily, without disturbing the organization of the
Key File.

141

Different Key File operations are performed by different KFAM
subroutines. The Open subroutine initializes certain memory-resident KFAM
variables with information read from the Key File and performs the necessary
2200 disk operations to provide access to the User File and the Key File.
Conversely, the Close subroutine rewrites certain KFAM variables into the Key
File to reflect its updated contents and performs the necessary 2200 disk
operations to discontinue access to the User File and the Key File. During
the execution of other KFAM subroutines, Key File information may be rewritten
automatically when 1t is necessary to reflect changes to 1its contents,
depending upon the KFAM-7 version in use and the access mode chosen when
opening the file.

KFAM subroutines do all of the searching and updating within the Key
File. KFAM subroutines are provided to add or delete a key from the Key File,
access records based up a supplied key or key sequence (ascending or
descendine), and perform other functions. Through the use of KFAM
subroutines, KFAM coordinates multiuser file access by using file password
protection and four available access modes; it also coordinates multiuser
record access within a file including record protection (for two of the three
KFAM-7 versions). Most of the Key File maintenance is automatically handled
by KFAM during subroutine execution.

Whenever a KFAM subroutine is to find a record, or add a new key to the
Key File and find a location for the new record in the User File, the KFAM
subroutine puts the User File record location into the Current Sector Address
parameter of the Device Table, opposite the file number being used for the

User File. Thus, on return from the subroutine, an ordinary Catalog Mode
DATALOAD DC or DATASAVE DC statement (DC mode) can be executed, at the desired
KFAM-controlled sector location. A KFAM variable containing the relative

sector address of the appropriate record is available for use with DATALOAD DA
or DATASAVE DA statements (DA mode) and DATALOAD BA or DATASAVE BA statements
(BA mode).

KFAM-7 is a multiuser system allowing up to 16 stations to
simultaneously access a KFAM User File. KFAM-7 employs protective procedures
to prevent the destructive instrusions of one station into the operation of
another and offers 1levels of protection consistent with the required
operations, thereby allowing maximum availability of the file and the disk
surface to other stations. The levels of protection are provided by four
available access modes, where certain conventions are associated with each
access mode. Each station chooses an access mode when requesting access to
(opening) a file. The access modes are the following:

1. "Inquiry" access mode allows a station granted access to only read
within the User File; other stations may both read or write.

2. "Read Only" access mode allows a station granted access to only read
within the User File; other stations may likewise only read.

3. "Shared" access mode allows a station granted access to both read
and write within the User File; other stations may likewise read or
write.

142

4. "Exclusive" access mode allows only one station to access the User
File; that station may read or write within the file once access is
granted.

A record protection option 1is available for Shared access mode
operation, whereby only the station requesting record protection has access to
that record until another KFAM subroutine is executed by that station. Record
protection is typically used while updating a record, and is like having
exclusive access to the protected record.

5.2 FILE STRUCTURES

For each KFAM file, KFAM creates and maintains certain information
stored in the User File and the Key File. The User File contains data records
maintained by the user. Certain sectors in the User File, however, also
contain specific information maintained by KFAM. In contrast, the entire
contents of the Key File are maintained by KFAM.

User File Structure and Maintaining File/Record Access Information

The User File contains data records beginning with the first sector
allocated to the User File. Data records are stored by the user within the
User File via KFAM subroutines and DATASAVE statements. An END control sector
(end-of-data) follows the last sector of data. The position of the END
control sector 1is automatically controlled by KFAM, based upon the KFAM
subroutines called by the user's program. One or more extra sectors may
follow the END control sector. 1In the next-to-last sector, KFAM maintains a
dummy END control sector which, at the programmer's option, also contains
recovery information necessary to recreate the Key File should it be
accidentally destroyed (which consists of most of the Key File's Key Directory
Record (KDR) and a list of the last record position assigned within a sector
by each station number). The last sector allocated is the catalog trailer
control sector.

Access to the Key File is determined by access to the User File. The
User File's catalog trailer control sector contains an access table which is
examined before the User File is opened and determines whether User File
access is granted or refused, based upon the access mode requested and the
access modes already granted to other stations. Once the User File is opened,
the Key File is opened along with it. If a User File has a password that
password must be supplied to access the User File and Key File.

Note that the two END control sectors and the catalog trailer control
sector are indicated by the first two bytes which contain specific hexadecimal
values. Figure 5-1 illustrates the User File structure.

The END control sector (end-of-data) and the dummy END control sector
(recovery information) are wusually rewritten only under certain conditions
upon closing the file. The END record is rewritten when the file is closed,
only if records have been added to the User File. Recovery information 1is
written when the file is closed if record additions or deletions have occurred.

143

The presence of the END control sector allows the file to be read
sequentially, provided the user observes the following conventions:

1. All deleted records must be flagged with a hexadecimal wvalue of FF;
i.e., HEX(FF), in the first byte of the key.

2. With blocked records (types A, B, and C), whenever a new sector 1is
allocated, all records in the block must be initialized with a
HEX(FF) in the first byte of the key.

"Dummy' END Control
Sector Contains Key
File Recovery Information

END Control Sector Catalog Trailer Control

Marks End-Of-Data Sector Marks End-Of-File
and Contains File Access
Tables, Password, etc.

/
\ W/

t¢—DATA RECORDS — ™ "—-UNUSED—T

Figure 5-1. User File Structure

144

Key File Structure

The Key File is the means by which KFAM facilitates indexed record
access to randomly dispersed records within the User File. The first Key File
sector contains the Key Directory Record (KDR), and each remaining sector
contains a Key Index Record (KIR). The Key File also contains an END control
sector which is automatically rewritten as sectors are added to the Key File.
A catalog trailer control sector is the last sector allocated to the Key File.

The KDR control information maintains each station's current sector
address, any sectors protected by a station, information about the KFAM file,
and system (KFAM internal) information. With certain versions of KFAM-7
provided in 18S-5, record access information 1is dynamically maintained in
memory instead of in the KDR. The KDR is rewritten under certain conditions
with all KFAM-7 versions to reflect changes to its contents, for example, when
records have been added or deleted. Recovery information, stored in the User
File's dummy END control sector, consists of nearly all of the KDR.

Each remaining Key File sector contains a Key Index Record (KIR), which
consists of Key Index Entries (KIEs). KIEs are internal tables consisting of
key values and corresponding record locations, by which KFAM provides indexed
access to each User File record. When the programmer adds keys to a Key File,
an adjustable bias is available to maximize the number of KIEs per KIR, thus
reducing the time needed for KFAM to search the Key File for a key.

The KDR 1is rewritten when a file 1is <closed and when a FINDNEW,
FINDNEW(HERE), or DELETE subroutine is called. With the Multiplexed KFAM-7
version, the KDR is also rewritten at least once during each successful record
access subroutine call in access modes where multiuser record access with
updating is allowed (Inquiry and Shared access modes). This preserves Key
File integrity by ensuring that only one subroutine executes at any time.

Key Descriptor Record

(KDR) Contains Critical END Control Sector Catalog Trailer Control
Control Information Marks End-Of-Data Sector Marks End-0Of-File
, » <—KEY INDEX ENTRIES re— UNUSED —~

Figure 5-2. Key File Structure

145

5.3 SOFTWARE COMPONENTS

KFAM-7 software falls into the two major groups of utilities and
subroutines. KFAM-7 utilities are available to initialize a User File and Key
File, reorganize a User File and Key File, print the contents of the Key File,
recover from certain operational accidents, and perform other functions.
KFAM-7 subroutines are marked (DEFFN' statement) subroutines which open and
close KFAM files, locate User File records, and add or delete keys in the Key
File. KFAM-7 subroutines are the operational heart of the Key File Access
Method.

KFAM Utilities

Following ISS start-up procedures, KFAM utility programs may be chosen
in reply to the KFAM-7 menu (exception: Reorganize/Rebuild Subsystem). 1ISS
start-up procedures maintain certain information, including valid disk device
addresses and the device address of a printer. This information is available
through the use of common variables which, for instance, are used by KFAM
utilities to ensure that a disk address entered in reply to an operator prompt
is indeed a valid disk address. The KFAM-7 utilities are the following:

INITIALIZE KFAM FILE -- This setup utility catalogs (creates) a User
File and/or a Key File and writes the KDR into the Key File based upon
certain information entered by the user. This is always the first step
in creating any KFAM User File/Key File.

BUILD KEY FILE -- After running Initialize KFAM File, this setup utility
is run 1f the User File contains any data records to create a
key/relative sector address entry (KIE) in the Key File for each data
record in the User File. The KDR information is also updated.

PRINT KEY FILE -- This utility prints or displays the KDR, each KIR, and
all KIEs in each KIR. Certain access table information is output, which
provides the access mode of each possible station (1 through 16)
accessing that file. This 1information 1is not only helpful in
determining the cause of access mode conflicts, but also allows the Key
File structure to be studied.

REALLOCATE FILE SPACE -- This special-purpose utility updates internal
KDR information related to the size of a User File and Key File. The
1SS utility called Copy/Verify may be used to copy a User File and/or a
Key File and increase or decrease the number of extra sectors in each
file; however, the Copy/Verify utility does not update critical KDR
information. Reallocate File Space 1is required to wupdate this KDR
information following Copy/Verify operation.

REORGANIZE IN PLACE -- This utility program reorders each record in the
User File into ascending key sequence, removes all deleted records from
the User File, and then rebuilds the Key File based upon the reordered
User File. Following reorganization, the time needed to access the file
in ascending or descending key sequence 1is reduced. This utility
rewrites the reordered User File and Key File over the original (input)
User File and Key File.

146

REORGANIZE/REBUILD SUBSYSTEM -- This program-controlled subsystem
reorganizes a User File and Key File 1like the Reorganize In Place
utility, but writes the reordered User File and Key File into separate
output files without overwriting the original input User File and Key
File. A short wuser-written program defines the reorganization
parameters. This subsystem can be used to copy a User File and Key File
since it leaves the input User File and Key File intact, and can copy,
reorganize, and change file space allocation at the same time. This
subsystem allows a Key File to be built without reorganizing the input
User File, and is a program-controlled alternative to the Build Key File

utility.
CONVERT TO KFAM-7 =-- This utility accepts a KFAM-3 or -4 data file as
input and converts it to KFAM-7 format. KFAM-5 files are media

compatible with KFAM-7 files and do not require conversion.

BUILD SUBROUTINE MODULE -- A complete set of KFAM-7 subroutines reside
on the supplied KFAM-7 diskette for each KFAM-7 version. This utility
allows only those subroutines needed for a particular application to be
chosen, and saves them into a program file. When loaded, the subset of
subroutines requires less memory than the complete set of subroutines.

KEY FILE RECOVERY ~-- This recovery utility is provided to reconstruct an
accidentally destroyed Key File. The User File must be intact for this
program to operate successfully. This utility is similar to the Build
Key File utility, but uses the recovery information stored in the
next-to-last User File sector to recreate the Key File's KDR.

RESET ACCESS TABLES -- KFAM-7 maintains control information in various
access tables. This information may be erroneous if the file is not
closed due to a power failure or operational accident. This utility is

provided to clear the erroneous access table information; the Print Key
File utility is used to determine that the information 1is erroneous.
The access table information may be cleared for a particular station
number or all possible stations; it may be cleared for specified files
or all files listed as open in global memory.

KFAM Subroutines

KFAM-7 subroutines are available in three versions to accommodate
different hardware arrangements. Whether the KFAM-7 subroutines reside in a
memory partition self-designated as 'global" in a Single or Multiple Bank
2200MVP central processor, or are coresident with user-written program text in
a 2200VP central processor, the available subroutines are the same and the
programming procedures are nearly identical.

Subroutines fall into the following groups: General Purpose, Key

Sequence Access, Random Access, Add and Delete, and Special Purpose. Table
5-1 lists and describes each subroutine.

147

Table 5-1.

KFAM-7 Subroutines

GROUP

NAME

DESCRIPTION

General
Purpose

OPEN

Opens the specified User File and Key File
for this station. KFAM variables
necessary for record access are
initialized.

CLOSE

Closes the specified User File and Key
File for this station, and rewrites the
KDR in the Key File and the END control
sector and recovery information 1in the
User File. KFAM variables no longer
needed for record access are reset.

RE-OPEN

Changes the access mode of a currently
open KFAM file.

WRITE RECOVERY
INFORMAT ION

Rewrites the END control sector and
recovery information in the User File
without closing the file.

Key Sequence
Access

FINDFIRST

Locates the lowest key in the Key File and
sets the User File Current Sector Address
to the corresponding record location.

FINDNEXT

Locates the next-highest key in the Key
File and sets the User File Current
Sector Address to the corresponding
record location. After FINDFIRST finds
the lowest key, repeated FINDNEXT
subroutine calls allow ascending key
sequence access throughout the entire
file, since each call 1locates the next
record in logical key sequence. FINDNEXT
can be preceded by any successful
subroutine call in the Key Sequence
Access, Random Access, and Add and Delete
groups to return the next record 1in
ascending key sequence.

FINDLAST

Locates the highest key in the Key File
and sets the User File Current Sector
Address to the corresponding record
location.

148

Table 5-1.

KFAM-7 Subroutines (continued)

GROUP

NAME

DESCRIPTION

FINDPREVIOUS

Locates the next-lowest key in the Key
File and sets the User File Current
Sector Address to the corresponding
record location. After FINDLAST finds
the highest key, repeated FINDPREVIOUS
subroutine calls allow descending key
sequence access throughout the entire
file, since each call locates the
previous record in logical key sequence.
FINDPREVIOUS can be preceded by any
successful subroutine call in the Key
Sequence Access, Random Access, and Add
and Delete groups to return the previous
record in descending key sequence.

andom Access

FINDOLD

Locates the supplied key in the Key File
and sets the User File Current Sector
Address to the record with that key.

Add and Delete

FINDNEW

Adds the supplied key to the Key File,
allocates a User File location for the
new record, and sets the User File
Current Sector Address to that record

location. The number of active records
increases by one, the assigned record
location updates the current "last

record" control information, and the KDR
is rewritten.

FINDNEW (HERE)

Adds the supplied key to the Key File and
sets the internal KIE relative sector
address to the current User File sector.
This subroutine typically follows a
DELETE subroutine call and either changes
the value of a key in an existing record
or allows the disk space used by a
deleted User File record to be reused
without reorganization. The number of
active records increases by one, the
current 'last record" control information
is not updated, and the KDR is rewritten.

DELETE

Removes the specified key from the Key
File and sets the User File Current
Sector Address to the record whose key is

deleted. The number of active records
decreases by one, and the KDR 1is
rewritten.

149

Table 5-1. KFAM-7 Subroutines (continued)

GROUP NAME DESCRIPTION
Special RELEASE "Unprotects" the previously protected User
Purpose File record. Each station may flag a

record to be updated during a record
access subroutine call; however, no other
stations may access the protected record
until that station calls another KFAM
subroutine. Should a long delay occur,
RELEASE may be <called to allow other
stations to access the protected record.

5.4 KFAM, THE 2200 DEVICE TABLE, AND 2200 DISK STORAGE CHARACTERISTICS

KFAM-7 performs two very important tasks for the user: (1) it maintains
an index for all data records in a User File, and (2) it controls file and
record access by multiple users. This is accomplished internally by KFAM-7 as
a result of KFAM-7 subroutine use by application programs. The user operates
indirectly on the Key File via KFAM subroutine calls. KFAM interprets each
subroutine call and executes the requested operation only if it is considered
valid. Other precautions are also performed by KFAM to preserve Key File
integrity, although unseen by the user.

Unlike the Key File which the programmer only indirectly accesses, the
User File is the user's complete responsibility to maintain in accordance with

KFAM-7 requirements and conventions. The user must ensure that User File
records and their respective keys are in agreement with the key value/sector
address entries in the Key File and other Key File information. In most

cases, calling the appropriate KFAM subroutines, careful use of the BASIC-2
language DATASAVE and DATALOAD statements, and other considerations are
necessary to avoid programming accidents.

The 2200 Device Table

Each 2200VP central processor or 2200MVP memory partition (station)
contains its own device table in memory. Each device table maintains certain
information including 16 slots, each of which correspond to one disk file (or
non~-disk device). A slot contains control information including the file's
disk device address, the absolute sector address where the file begins, the
absolute sector address at which this station is currently positioned in that
file, and the absolute sector address where the file ends.

150

BASIC-2 syntax requires that a pound sign (#) precede each reference to
a slot number, usually called a "file number." The Open subroutine requires
certain parameters to be included in its argument list. These parameters
include the disk device address and the file number to be associated with the
User File, and the disk device address and the file number to be associated
with the Key File. The Open subroutine executes two SELECT statements which
place the disk addresses into the corresponding device table slots, or file

numbers, specified for the User File and Key File. The disk operations
associated with opening 2200 disk files are executed for both files, which
places the beginning, current, and ending sector locations 1into the

corresponding slots in the device table for both files (obtained from the disk
index).

Other Open subroutine arguments include the name of the User File, a
KFAM ID number from one to eight by which this pair of files 1is later
identified, and a Key File number from which KFAM creates the Key File name.
The KFAM ID number is wused internally by KFAM and is also used in
user-specified KFAM subroutine argument lists for record access operations.

After a KFAM file has been opened, data records can be written into,
and/or read from, the User File. The user must be extremely careful not to
write any data into the Key File. Given the KFAM ID number as an argument, a
particular KFAM subroutine call results in a specific action, during which the
Key File is usually accessed internally by KFAM.

A call to a KFAM record access subroutine might result in KFAM (1)
locating the desired key in the Key File and (2) placing the User File
relative sector address obtained from the Key File into the Current Sector
Address in the device table slot for the User File. KFAM sets the Current
Sector Address by performing a DBACKSPACE BEG statement, followed by a DSKIP
statement to the value of variable T6 (relative sector address) which it
obtains from the Key File index. The user can then access the desired User
File record knowing the record is located at the Current Sector Address for
that station.

The 2200 system relies upon device table information to read or write a
data record. The DATALOAD DC statement loads a data record based upon the
specified file (slot) number's Current Sector Address. Similarly, the
DATASAVE DC statement saves a data record based upon the specified file
number's Current Sector Address. With DATASAVE BA or DA and DATALOAD BA or DA
statements, which do not use the device table Current Sector Address, the user
program can specify the correct absolute sector address by adding the relative
sector address returned in KFAM variable T6 to the absolute sector address at
which the file begins obtained by using a LIMITS statement. (See the Wang
BASIC-2 Disk Reference Manual.)

151

In both cases, each DATALOAD or DATASAVE statement specifies (1) the
file number within which a record is to be read or written, and (2) an
argument list of variables which either contain the data to be written
(DATASAVE statement), or will contain the data to be read (DATALOAD
statement). The argument list of variables determines the record length,
which must be uniform for all records within the same KFAM User File. More
specifically, it is strongly recommended that the argument list variables used
to write records within the file be the same; that 1is, the sequence,
dimensioned lengths, and the type of variable (alpha or numeric, scalar or
array) should be identical for each argument list. The same argument list is
also required for reading records.

2200 Disk Storage

The 2200 system writes a logical data record comprised of the data
contained in the argument list variables. The logical record is written into
one sector or a number of contiguously numbered sectors, but never less than
one sector. Since the 2200 system regards one 256-byte sector as the smallest
information unit for storage and retrieval, all data transfers to and trom
disk are done in 256-byte (one-sector) blocks.

With the DATASAVE DC and DATASAVE DA statements, system control bytes
are inserted as the record is buffered to be written to disk; with the
DATALOAD DC and DATALOAD DA statements, they are removed as the values just
read from disk are equated to the user's argument list. Control bytes are
thereby detectable only on disk and include two bytes at the beginning of each
sector, one SOV (start-of-value) byte preceding each field (variable or array
element), and an EOB (end-of-block) byte following the last field in any
sector containing less than 256 bytes of information, as shown in Figure 5-3.
The first byte of each sector is byte 000, so the first data byte begins at
byte 003. No system control bytes are present with the DATASAVE BA or
DATALOAD BA statements whose records contain data beginning at byte 000.

C|C
010
N|[N|S|Field |S | Field | S | Field | S |Field | S |Field | E Not
T|T|O 1 0 2 0 3 (0] 4 0 5 (0] Used
R|R |V \Y \Y \Y \Y B
0|0
L|L
000 003 2§;’-1

Figure 5-3. Data Sector with Control Bytes

152

Logical Record Length and Blocked Records

If the combined argument list field lengths and all control bytes exceed
256 bytes, multiple sectors are read or written using a single DATALOAD (DC or
DA) or DATASAVE (DC or DA) statement. With DATASAVE BA and DATALOAD BA
statements, however, only one disk sector can be written or read. If the
combined argument list field lengths and all control bytes are equal to or
less than 256 bytes, only a single sector is required. KFAM supports the use
of multiple logical records per sector, one logical record per sector, and
also multiple sector logical records.

Since the 2200 system reads or writes a minimum of one sector, special
considerations are necessary to handle multiple logical records per sector, or
"blocked records.'" Whether or not blocked records are possible depends upon
the logical record length, as calculated according to KFAM conventions.

With DATASAVE BA records which have no control bytes, the logical record
length is the sum of all field lengths, based upon the dimensioned length of
each variable.* Records may be written as blocked records when the logical

record length is less than 128 bytes. To obtain the number of records per
sector (an integer), divide the logical record length into 256 and truncate
the remainder. Should the calculated logical record length exceed 256, a

multiple sector record is required, as described in the Section 5.5.

With DATASAVE DC or DA records, the logical record length is calculated
as follows:

1. Add the field lengths, based upon the dimensioned length of each
variable.*

2. Add one for each field to account for the SOV control byte which
precedes each field; the two sector control bytes (which begin each
sector) are not included in this calculation.

3. The sum of the field lengths and SOV control bytes determines the
logical record length.

4. Should the calculated record length exceed 254, a multiple sector
record will be written, as further described in Section 5.5.

To obtain the number of records per sector, divide the calculated
logical record length 1into 254. The resultant integer (truncate the
remainder) is the number of records per sector for the given record length.
For instance, if the logical record length is greater than 127 bytes, only one
unblocked record can reside in each sector. Two records can reside in each
sector for record lengths from 85 through 127 bytes, three records can reside
in a sector for record lengths from 64 through 84 bytes, four records can
reside in a sector for record lengths from 51 through 63 bytes, and so on.

* Undimensioned scalar numeric-variables are each eight bytes in length;
undimensioned scalar alpha-variables are each 16 bytes in length.

153

The programmer can reduce the logical record length by "packing" some or
all of the record's fields into a larger alpha-variable of up to 124 bytes, by
using the $PACK statement (or the MATCOPY statement, STR function, or the &
concatenation operator). Packing fields reduces the number of SOV control
bytes and the logical record 1length. Packing a record 1is especially
desireable when it enables a multiple sector record to become a single sector
record or increases the number of records per block, since this conserves disk
space. If the records will be sorted using the SORT-4 Disk Sort Subsystem, it
is recommended that the field form of the $PACK statement be used if the $PACK
statement is employed (see Chapter 4, Section 4.4 for additional information
on SORT-4). A record is typically packed (using $PACK) prior to a DATASAVE
statement and unpacked (using the $UNPACK statement) following a DATALOAD
statement. (See the BASIC-2 Language Reference Manual for an explanation of
the $PACK and $UNPACK statements, the STR function, the MATCOPY statement, and
the & operator.)

5.5 KFAM RECORD TYPES

KFAM supports five User File record types. Two factors that usually
determine the KFAM record type are: (1) whether the records are written with
control bytes using DATASAVE DC or DATASAVE DA statements, or without control
bytes using a DATASAVE BA statement, and (2) whether the records are blocked
records, single sector records, or multiple sector records. Table 5-2 lists
the five record types according to the logical record length (as described in
Section 5.4) and the DATASAVE mode, which is either DC, DA, or BA.

Table 5-2. KFAM Record Types

LOGICAL RECORD LENGTH DATASAVE MODE KFAM RECORD TYPE

127 or less (blocked) DC or DA A or C*

128 or less (blocked) BA B (C with restrictions)
from 128 to 254 DC or DA N

from 129 to 256 BA N

greater than 254 DC or DA M (multiple sector)
greater than 256 BA M* (multiple sector)
*Record type M, BA mode, is not be acceptable to the SORT-4 Disk Sort
Subsystem; record type C may not be acceptable to SORT-4.

154

In each of the six possible combinations, there is usually only one
possible record type, with one major exception. With DC or DA mode blocked
records, there are two possible record types (A or C) where the records are
written either in array or non-array form as specified in the DATASAVE
statement argument list. The differences and the reasons for choosing one or
the other are discussed below.

Each of the five record types are described in the context of certain
parameters required by the Initialize KFAM File utility. These parameters
include the starting position of the key, the key 1length, the number of
records per sector, the number of sectors per record, and certain restrictions
on the key, which must be from two through 30 alphanumeric bytes stored on
disk. (Numeric key field data may be packed using the $PACK statement into
alphanuimeric form before being written to disk.)

User File Record Type A, Array Blocked Records

Record type A, array blocked records, can be written using DATASAVE DC
or DATASAVE DA statements where all variables in the argument list are arrays
with an equal number of row elements. The row element subscript in each array

indicates the record number within the block. That is, Record Number 1 is
contained within Array Element 1 of all argument list arrays, Array Element 3
of all arrays contains Record Number 3, etc. The use of arrays allows a

numeric scalar variable to be substituted for the subscript number to
facilitate efficient processing by setting the numeric scalar variable equal
to the appropriate record number, for instance, within a FOR...NEXT loop.

When dimensioning the arrays to be used as arguments, the number of
records per sector (block), as determined by the logical record length, is
usually equal to the number of array elements. For instance, to write four

records where the logical record length is 59, the following statements may be
used:

20 REM Dimension DATASAVE arguments
30 DIM A$(4)12, B(4), C$(4)36

80 REM Save the Sector Using DATASAVE
90 DATASAVE DC #2, A$(0), B(O), c$()

The block of four records is written noncontiguously within a sector;
that is, all elements of array A$() are sequentially written, followed by all
elements of array B(), followed by all elements of array C$(). Following the
two sector control bytes, each array element is written preceded by an SOV
control byte.

155

Initialize KFAM File requires the following data-related parameters for
this record type: (1) the logical record length (see Section 5.4), (2) the
blocking factor; i.e., the number of records per sector, (3) the key length,
and (4) the starting position of the key. The key length and starting
position of the key must be specified so that the key is entirely contained in
one alphanumeric field and in the same position of each record (see below).
The key may be part of a field (i.e., STR(C$,11,10), but it cannot be a
numeric field nor can it contain control bytes. These restrictions can easily
be avoided simply by packing the field(s) containing the key, or the entire
record, into an alpha~-array. The key must be within the same position of each
record, and all records must be the same length.

The starting position of the key 1is calculated to include the two
control bytes which begin each sector and all SOV control bytes, as if each of
the records were stored contiguously as the only record in the sector. With
the above example, the sector written is shown in Table 5-3.

Table 5-3. Sector Layout for Record Type A Example

BYTES CONTENTS BYTES CONTENTS

0,1 Sector control bytes 73-80 B(3)

2 SOV control byte 81 SOV control byte
3-14 A$(1) 82-89 B(4)

15 SOV control byte 90 SOV control byte
16-27 A$(2) 91-126 c$(1)

28 SOV control byte 127 SOV control byte
29-40 A$(3) 128-163 c$(2)

41 SOV control byte 164 SOV control byte
42-53 A$(4) 165-200 c$(3)

54 SOV control byte 201 SOV control byte
55-62 B(1) 202-237 c$(a)

63 SOV control byte 238 EOB control byte
64-71 B(2) 239-255 Unused

72 SOV control byte

The fact that there are four records per sector should be ignored when
calculating the starting position of the key. The sector should be viewed as
if it contained only one record:

156

BYTES CONTENTS

0,1 Sector control bytes
2 SOV control byte
3-14 A$(1)

15 SOV control byte
16-23 B(1)

24 SOV control byte
25-60 c$(1)

61 EOB control byte
62-255 Unused

If records are stored as a single array, the starting byte relative to
000 for each blocked record can be derived from the following formulae where:
P=starting byte within the block, L=logical record length, and Q=record number
within the block:

As stored in the array: P=(Q-1)*(L-1)

As stored in a disk sector: P=(Q-1)*(L)+3

Record type A is usually preferred over record type C since it is always
acceptable to SORT-4 and is often more efficient. The major reason for type C
records 1is that they can have keys which span fields and contain control
bytes, whereas type A records cannot have keys which span fields or contain
control bytes, since each record is noncontiguous; however, these restrictions
are easily avoided by packing the fields containing the key with type A
records.

User File Record Type C, Contiguous Blocked Records

Record type C, contiguous blocked records, can be written using DATASAVE
DC or DATASAVE DA statements where all variables in the argument list are
written sequentially and are typically scalar variables. The DATASAVE BA
statement may be used, but the file cannot be reorganized using the Reorganize
In Place utility; therefore, type B records are usually specified instead.
The records must be the same length, and the key must be located within the
same position of each record.

All fields are stored contiguously on disk. For instance, the following
statements may be used to write three records where the logical record length
is 78:

20 REM Dimension DATASAVE Arguments
30 DIM K1$12, D1$64, K2$12, D2$64, K3$12, D3$64

80 REM Save the Sector Using DATASAVE
90 DATASAVE DC #4, K1$, D1$, K2$, D2$, K3$, D3$

157

The block of three records are written within a sector contiguously, and
the fields of each record are also contiguous since each argument is written
in sequential order.

Initialize KFAM File requires the following data-related parameters for
this record type: (1) the logical record length (see Section 5.4), (2) the
blocking factor; i.e., the number of records per sector, (3) the key length,
and (4) the starting position of the key. The key length and starting
position of the key must be specified such that the key is not a numeric
field, but it may be part of a field, span fields, and include control bytes.

The starting position of the key is calculated as if there were only one
record in the sector. With DC or DA mode records, the first disk data byte
always begins at byte 003, the second field in the record begins at the value
of: 3 + length of the first field + 1, etc. (see Figure 5-3). With BA mode
records, the first data byte always begins at byte 000, and the second field
begins at the value of the length of the first field, etc.

User File Record Type B, BA Mode Blocked Records

Record Type B, BA mode blocked records, is similar to Type C records,
but can be written only in BA mode. Both are contiguous blocked records,
where all records must have the same length, and the key must be located in
the same position of each record. The DATASAVE BA statement 1is required to
write the record, and the DATASAVE BA argument list should resemble that of
type C records. Arrays may be used only if each record is entirely contained
within a single array element.

The data-related parameters required for Initialize KFAM File are the

same as discussed above for Type C records written in BA mode. However, keep
in mind that control bytes are not present.

The starting byte location of each record relative to 000 stored in a
disk sector or in a single array is as follows, where P=starting byte within
the block, L=logical record length, and Q=record number within the block:

P=(Q-1)*L

User File Record Type N, Single Sector Records, Not Blocked

Record Type N, single sector records which are not blocked, consists of
contiguous fields located in one sector, written using either the DATASAVE DC
or DA statements (with control bytes) or the DATASAVE BA statement (without
control bytes). If arrays are used, elements of each array should be viewed
as contiguous, since this is how they are written on disk. The key, which is
defined during Initialize KFAM File by the starting position of the key and
key length, must be located in the same position of each record and must not
be numeric, but it may be part of a field, span fields, and include control
bytes.

158

Each record must occupy one sector or less. For instance, consider the
following record whose logical record length is 169 bytes:

20 REM Dimension DATASAVE argument list
30 DIM A$25, B, B$40, C, C$40, D$40

80 REM Save record using DATASAVE
90 DATASAVE DC #6, A$, B, B$, C, c$,D$

Initialize KFAM File requires the following data-related parameters: (1)
logical record length (see Section 5.4), (2) the key length, and (3) the
starting position of the key.

The starting position of the key is calculated the same as with type C
records. With DC or DA mode records, the first disk data byte always begins
at byte 003, the second field in the record begins at the value of: 3 + length
of the first field + 1, etc. (see Figure 5-3). With BA mode records, the
first data byte always begins at byte 000, and the second field begins at the
value of the length of the first field, etc.

User File Record Type M, Multiple Sector Records

Record type M, multiple sector records, can be written using either
DATASAVE DC or DA statements (with control bytes) or DATASAVE BA statements
(without control bytes). Type M, BA mode records are not acceptable to the
SORT-4 Subsystem. If arrays are used, elements of each array should be viewed
as contiguous, since this is how they are written on disk. The key, which is
defined during Initialize KFAM File by the starting position of the key and
key length, must be located in the same position of each record, must not span
sectors, and must not be numeric. It may be located in any sector, be part of
a field, span fields, and include control bytes.

Records may be up to 255 sectors in length. However, to run the
Reorganize In Place utility, records must not exceed 40 sectors in length and,
if records exceed eight sectors, the memory required for reorganization will
exceed the memory required for KFAM-7 utilities.

With multiple sector DC or DA mode records, whose logical record length
exceeds 254 bytes, the 2200 system writes only whole fields in a sector. Any
field that cannot be entirely written at the end of a sector is automatically
written at the beginning of the next sector. For this reason, argument list
variables should be arranged to maximize the amount of data stored in each
sector.

Unlike the DATASAVE DC or DA statements where multiple sectors can be
written using one DATASAVE statement, one DATASAVE BA statement is necessary
for each sector to be written. Additionally, for each DATASAVE BA statement
required to write one record, the DATASAVE argument list variables must be

carefully arranged such that each field is entirely written within one sector
to avoid truncation.

159

For example, consider the following two sector record as defined by the
following statements:

20 REM Dimension DATASAVE arguments
30 DIM D$(6)64

80 REM Save the record using DATASAVE
90 DATASAVE DC #8, D$()

The layout of this two sector record appears in Table 5-4.

Table 5-4. Record Layout for Record Type M Example

FIRST SECTOR SECOND SECTOR
Bytes Contents BYTES CONTENTS
0,1 Sector control bytes 0,1 Sector control bytes
2 SOV control bytes 2 S0V control bytes
3-66 D$(1) 3-66 D$(4)
67 SOV control byte 67 SOV control byte
68-131 D$(2) 68-131 | D$(5)
132 SOV control bytes 132 SOV control bytes
133-196 | D$(3) 133-196 | D$(6)
197 EOB control byte 197 EOB control byte
198-255 Unused, insufficient 198-255 Unused

space for D$(4).

Data-related parameters for Initialize KFAM File are: (1) the number of
sectors per record, (2) the key length, and (3) the starting position of the
key. The number of sectors per record, and not the logical record length, is
required. If the key 1is located within the first sector, the starting
position of the key is identical to type C records. However, if the key is
located in a second or subsequent sector, add 256 for each sector preceding
the sector containing the key and add the starting position of the key within
the sector. 1In the above example, if the key resides in the first eight bytes
of D$(4), the starting position of the key is 259 (not 198, which might be
calculated by ignoring the way the 2200 system writes multiple sector records).

5.6 GENERAL REQUIREMENTS AND CONVENTIONS

General requirements for KFAM files include User File requirements, Key
File requirements, file name conventions, certain conventions about the key,
and requirements for copying KFAM files. Specific requirements related to
programming procedures are described in Chapter 7.

160

User File Requirements

If an existing file is to be initialized as a KFAM-7 User File, it must
be a cataloged data file. Existing files which contain data records must
contain an END (end-of-data) control sector if the key is packed or if the
last key is not known when the Build Key File utility is run. The records
need not be in ascending order of their keys. If cataloged, the User File
must contain a sufficient amount of sectors for all data records and the three
control sectors (END, dummy END, and catalog trailer). A cataloged data file
may or may not contain data records, and the Initialize KFAM File utility can
catalog an uncataloged User File if sufficient disk space exists.

In all cases, the User File must be contained entirely on one disk
surface. (See Chapter 8, Section 8.4 for techniques necessary to split one
User File into two User Files.) All records within a User File must adhere to
the requirements of the same record type, as described in Section 5.5.
Variable length records are not supported by KFAM.

All deleted records and, with blocked records, inactive records in a
partially full sector should be flagged as 1inactive with a value of
hexadecimal FF in the first byte of the key. Also, all files must be closed
at the conclusion of processing, which writes certain recovery information
into the User File. Both of these conventions are necessary to run the Key
File Recovery utility, which recreates a Key File based upon this information.

Key File Requirements

If cataloged, a Key File, must contain sufficient disk space. If
uncataloged, Initialize KFAM File can catalog the Key File if sufficient disk

space exists. In either case, the number of sectors needed is calculated as
follows:

1. Calculate the maximum number of KIEs per KIR, using the following
formula:

N = INT(240/(K+3))

where: N = the maximum number of KIEs per KIR,
K the key length, and
3 = the pointer length (sector address).

2. Calculate the average number of KIEs per KIR (A), based on the value
of N from the first calculation:

A = INT(N*.6)
3. Calculate the number of sectors (S) required for the Key File using
the value of A from the previous calculation and the estimated

number of records to be contained in the User File (R):

S = INT(R/(A-1)) + 5

161

Multiple Key Files may be maintained in conjunction with User File
records to provide alternate logical key paths and alternate key retrieval
capabilities. 1In the case of real-time applications using multiple Key Files,
sufficient space must exist for multiple Key Files, since all Key Files must
be on-line whenever User File records are to be added or deleted unless
special programming techniques are employed.

File Name Conventions

The name of any User File is always in the format "bbbbFnbb'", where any
b can be replaced by any character, n must be a digit (from 0 through 9), and
an F must be in the fifth position. The name of any Key File has the
identical sequence of characters as its corresponding User File, but a K in
the fifth position replaces the F, and the digit in the sixth position is the

Key File number, which is required during during Initialize KFAM File. Any
cataloged User File and Key File must conform to these file name
characteristics, or 1t cannot be 1initialized by Initialize KFAM File. For

example, the User File DATAF100, which has a Key File whose number of 1 must
have a Key File name of DATAK100.

The Key

The presence of a key within each User File record allows KFAM to index
each record within a Key File. The key value of a record must be known in
order to delete a record, to locate a given record based on its key value
(instead of searching the entire file), and to add a new record. Especially
for those applications involving record retrieval and updating, the chosen key
should be easy to remember or available on a list for the operator {or
application program) to reference. Each key must have a unique value for each
User File record or special programming considerations must be implemented.

Each key may be from two to 30 bytes of alphanumeric data, including
hexadecimal data and packed numbers. Numeric keys are mnot allowed.
Requirements for the key's location vary with the record type used (see
Section 5.4). Duplicate keys are not allowed. Key sequence is based upon the
2200 ASCII collating sequence (character code assignments).

The first byte in an active record's key must not contain the value of
hexadecimal FF, since that value 1is reserved to indicate (flag) deleted or
inactive User File records. Similarly, the key may not have a value of all
bytes hexadecimal 00 (zero), which is reserved for KFAM use.

Where multiple Key Files are employed to index a single User File, the
record's key indexed by each Key File is typically located within different
positions of a User File record. One of the Key Files is a "Primary Key File"
and 1ts key is referred to as the primary key, which must be unique for all
records within the User File. Other Key Files are referred to as "Secondary
Key Files," and their keys are referred to as secondary keys. Secondary
(alternate) keys need not be unique if certain procedures are employed, which
are described later in this manual.

162

Closing KFAM Files

To retain accurate control information, recovery information, and to
avoid unnecessary delays in file access, each KFAM User File/Key File should
be closed at the conclusion of file access. 1In addition to the automatic
closing of files upon completion of application program execution, an operator
is typically given an SF key which can be touched during program execution to
close the files, allowing unscheduled termination of the application program.

Copying KFAM Files

Backup copies should be made of each KFAM User File and Key File
regularly. To copy an entire disk surface, the COPY or MOVE statement may be
used, followed by the VERIFY statement (see the Wang BASIC-2 Digk Reference
Manual). Alternatively, the 1SS Copy/Verify utility may be used to copy all
or specified files on a file-by-file basis from one disk surface to another.
(a form of the MOVE statement also allows specified files to be copied from
one disk surface to another.)

KFAM maintains an END (end-of-data) control sector in the User File and
the Key File. KFAM maintains critical system information within the Key File
which is directly related to the position of both END sectors, as well as
recovery information in the next-to-last sector in the User File. To ensure
that this system information is not lost or changed when using the Copy/Verify
utility, the specified extra sector value should be the same as the number of
extra sectors in the input User File and Key File. The Copy/Verify utility
allows an extra sector value of -1 to be specified, which indicates that the
same number of extra sectors in the input file are to be copied into the
output file

To lengthen or shorten the size of a User File or Key File, either the
Copy/Verify utility or the Reorganize/Rebuild Subsystem utility should be used
to increase or decrease the number of extra sectors in the User File or Key
File (or both). After completing copy using the Copy/Verify utility, the
Reallocate File Space utility must be run on the output User File and Key File
to reset the critical system information in the Key File which maintains the
position of END (end-of-data) control sector in the User File or Key File. 1If
the Reorganize/Rebuild Subsystem is used, Reallocate File Space is not needed.

NOTE:

An extra sector value of 0 (zero) should never be
specified during copy of a User File, since this value
does not allow sufficient space for the recovery
information in the next-to-last User File sector to be
copied.

163

Changing the Record Layout of an Existing KFAM File

It may become necessary to modify the record layout of a KFAM User File,
for instance, to add a new field or increase the size of an existing field.
Procedures recommended for changing a KFAM file using a simple application
program are provided in Chapter 8, Section 8.9. The procedure involves
reading the old file and writing the modified records into a new file.

Use of Duplicate Keys

A special KFAM convention allows the KFAM requirement of unique keys to
be simulated by concatenating a unique KFAM-supplied pointer onto each key
used as a subroutine argument. This convention allows duplicate keys to be
present for User File storage and user-interface purposes, while meeting the
KFAM requirement of unique keys in the Key File. The Build Key File utility
and the Reorganize/Rebuild Subsystem utility are available with an option
which builds the Key File index by wusing the key-pointer concatenation
convention. User-supplied programs may add records using similar special
programming techniques, which are also required for random record access (by
key) operations. This advanced feature is described in Chapter 7, Section 7.4.

Use of Multiple Key Files

The use of up to nine Key Files 1is supported by Wang Laboratories
(although only eight can be open simultaneously) if the requirements and
conventions described in Chapter 6, Section 6.1 (for utility use) and Chapter
7, Section 7.4 (for subroutine use) are observed. Use of multiple Key Files
allows multiple keys to be used to index User File records. As an alternative
to sorting operations for such tasks as report generation, each key can be
used to output records according to ascending or descending key sequence of
the chosen key, or records may be retrieved randomly based upon any one of the
keys. The efficient searching capabilities provided by multiple keys include
alphanumeric and numeric range search and other custom-tailored applications
under user-supplied program control. Duplicate key use with multiple keys is
supported and thereby expands the scope of potential applications.

Multiple Key File use requires certain special programming procedures
recommended only for advanced programmers with previous experience writing
KFAM-7 application programs. Note that a user-designed record protection
scheme must be implemented if the Multiplexed KFAM-7 version is to be used.
(The different KFAM-7 versions are defined and described in Section 5.7).

In order to reorganize multiple Key Files and to recover from Key File
destruction using the Key File Recovery utility, the User File must contain a
valid END control sector and valid recovery information typically for the
Primary Key File.

164

5.7 CHOOSING THE CORRECT KFAM-7 VERSION

Three versions of KFAM-7 are provided to accommodate various hardware
The storage and maintenance of KFAM file/record
access control information differs for each version, but these differences are
automatically handled internally by KFAM subroutines and are unseen by the

environments and user needs.

user's software. Programming and KFAM utility operation for the different
versions are nearly identical, and the Key File's KIRs and KIEs are always
maintained and searched by KFAM in the same manner. Table 5-5 1lists and

describes the three KFAM-7 versions.

Table 5-5.

KFAM-7 Versions and Applicable Hardware

KFAM-7 VERSION

APPLICABLE HARDWARE

Multiplexed Version

This version 1is typically used with a 2200VP
central processor. This version 1is also
required for each 2200VP or 2200MVP central
processor connected via a disk multiplexer to
the same disk drive containing KFAM-7 files
accessible to other CPUs. It may optionally
be used on a 2200MVP where only one station
will access KFAM-7 files and global subroutine
use is not desired. This version 1is used by
KFAM utilities if the global partition "KFAM"
is not present in that memory bank. This
version does not fully support multiple Key
Files; the wuser. must implement a record
protection scheme (see Chapter 7, Section 7.4).

Single Bank Version

This version 1s typically used on a 2200MVP
central processor with 64K memory or less
(Single Bank 2200MVP). It can also be used on
a 2200MVP with more than 64K memory (Multiple
Bank 2200MVP) if all stations accessing KFAM-7
files are in one and only one memory bank.
This version must not be used with a 2200VP or
2200MVP multiplexed to a disk drive containing
shared KFAM-7 files. This version fully
supports multiple Key Files, including record
protection for multiple Key Files.

Multiple Bank Version

This version 1is usually wused only on a
Multiple Bank 2200MVP (more than 64K memory) .
This version must not be used with a 2200MVP
multiplexed to a disk drive containing shared
KFAM-7 files. This version fully supports
multiple Key Files, including record
protection for multiple Key Files.

165

Multiplexed Version

The Multiplexed version consists of the KFAM subroutines and variables
contained in program file KFAM0207 and the KFAM user variables in program file
KFAM0O007. If global 2200MVP operation is desired, KFAM0207 is loaded and run
in an 8K memory partition (including partition overhead) for each memory bank
accessing KFAM-7 files. Each user-supplied program accessing KFAM-7 files
must have incorporated into it the KFAM user variables in KFAM0O00O7; these
variables require from 1K to 2K memory depending upon the number of files to
be accessed simultaneously (not including partition overhead). With nonglobal
(e.g., 2200VP) operation, both the KFAM0207 and KFAM0OOO7 program files are
incorporated into the user-supplied program.

This version stores and maintains file/record access information in the
Key File, which is read and written more frequently than with other KFAM-7
versions. The Key File's KDR serves as a central communication link among
multiple users; this disk-resident 1link allows multiple CPU's to access the
same KFAM-7 files simultaneously. Record protection for multiple Key Files is
not supported, since record access information 1is maintained in each
individual Key File's KDR, and not in one centralized location; e.g., portion
of memory.

Single Bank Version

The Single Bank version consists of KFAM subroutines and variables
contained in program file KFAMO0107 and the KFAM user variables in program file
KFAMO0OO7. Global operation occurs after KFAMO107 is loaded and run in a 9.75K
partition (including partition overhead). Each user-supplied program
accessing KFAM-7 files must have incorporated into it the KFAM user variables
in KFAM000O7; these variables require from 1K to 2K memory depending upon the
number of files to be accessed simultaneously (not including partition
overhead). With nonglobal (e.g., 2200VP) operation, both the KFAM0207 and
KFAM0007 program files are incorporated into the user-supplied program, and
only that user must be accessing KFAM files.

This version stores and maintains file/record access control information
in certain global variables (not found in the Multiplexed version's
KFAM0207). Global KFAM variables serve as the central communication link for
multiple users, allowing stations within one 2200MVP memory bank to access the
same KFAM files simultaneously. Since file/record access control information
is dynamically maintained in global memory, the Key File is read and written
less frequently than with the Multiplexed version, and multiple Key File
record protection is fully supported. Consequently, the Single Bank version
provides better performance than the Multiplexed wversion. A global queue
ensures that multiuser subroutine execution occurs on a first-in-first-out
basis. With nonglobal operation, this version allows a single station to
access KFAM files without the disk access to the KDR associated with the
Multiplexed version.

166

Multiple Bank Version

The Multiple Bank version consists of the KFAM subroutines contained in
program file KFAM0307, the KFAM variables in program file KFAM0407, and the
KFAM user variables in program file KFAM0O007. Although this version can
operate on a Single Bank 2200MVP, it is designed for Multiple Bank 2200MVP
use. The KFAM variables in KFAM0407 are loaded and run in the wuniversal
global memory area and require a 2.75K partition (including partition
overhead). The KFAM subroutines in KFAM0307 are loaded and run in an 8.5K
partition (including partition overhead) within each memory bank in which
stations may access KFAM-7 files. Each user-supplied program accessing KFAM-7
files must have incorporated into it the KFAM user variables in KFAMO0007;
these variables require from 1K to 2K memory depending upon the number of
files to be accessed simultaneously (not including partition overhead).

This version stores and maintains file/record access control information
in certain global KFAM variables (not found in the Multiplexed version's
KFAM0207). Like the Single Bank version, global KFAM variables serve as the
central communication link for multiple wusers. However, since the global
variables are stored separately in the universal global area, they allow
stations within all 2200MVP memory banks to access the same KFAM files
simultaneously. Since file/record access control information is dynamically
maintained in universal global memory, the Key File is read and written less
frequently than with the Multiplexed version, and multiple Key File record
protection is fully supported. The Multiple Bank version provides
comparatively better performance than the Multiplexed version. A global queue
ensures that multiuser subroutine execution occurs on a first-in-first-out
basis.

Changing the Maximum Number of KFAM Files to be Open Simultaneously

The KFAM-7 variables contained in the global modules KFAM0107, KFAM0207,
or KFAM0407 include two global arrays which handle certain record access
functions, per KFAM file. Should the user need to have more or less than 30
KFAM files open simultaneously, the array elements (preset to 30) in the COM
statement for arrays @T$() and @V4$() may be changed to the desired value;
however, the required global partition size will increase or decrease,
depending on the array element number specified in the COM statement for @T$()
and @va$().

The modified program file can be saved into a separate program file, for
instance, on the 2200MVP operating system diskette, so it can be automatically
loaded and run upon partition execution by the automatic bootstrap feature.

5.8 GETTING STARTED WITH KFAM

KFAM provides a means for accessing data records saved in a disk file.
However, it does not process these User File records in any way. After it has
found a record and moves that station's Current Sector Address to the sector
containing that record, the processing of the record (loading it, updating it,
saving it, etc.) is left to the user-written program. Thus, one must have a
working knowledge of elementary BASIC-2 and the fundamentals of Catalog Mode
disk operations to use KFAM.

167

It is strongly recommended that first-time KFAM users begin by setting
up a dummy KFAM file, and experiment with the subroutines and utilities on

this file

The
KFAM file.

1.

before attempting to operate on valuable files.

following is a step—-by-step outline of how to begin setting up each

Read Sections 5.5 and 5.6 which describe the five types of User File
records acceptable to KFAM, 1limitations on the size and
characteristics of the key field, and certain KFAM conventions.

A Key File is stored as a cataloged file on a disk. It may reside
either on the same disk as the User File or on another disk, which
must be mounted whenever the User File is accessed. The Initialize
KFAM File utility must be run to save certain information in the Key
File, based upon information supplied by the operator. However, if
a KFAM-3 or -4 file is to be converted to KFAM-7 format, Initialize
KFAM File is not usually required; use the Convert to KFAM-7 utility
instead.

If a previously cataloged User File contains data, a second setup
utility called Build Key File is run following Initialize KFAM File
to build the Key File index based upon the User File records. After
running Build Key File, KFAM subroutines may be used to access User
File records and perform file maintenance tasks. For files
converted to KFAM-7 format using the Convert to KFAM-7 utility,
Build Key File is not usually necessary, and KFAM-7 subroutines may
be used to access the converted file,

If the User File does not contain data, then, after running
Initialize KFAM File, use the KFAM subroutines in a user-written
program to add the corresponding entries into the Key File; KFAM
subroutines can thereafter be used to perform file maintenance tasks.

Once records reside in the KFAM file, it is recommended that the
Print Key File utility be run to ensure that Key File control
information was correctly defined during Initialize KFAM File.

The KFAM subroutines are DEFFN' statement subroutines which perform
standard tasks for files indexed by KFAM. The three versions of
KFAM-7 have different subroutine program files, as listed in Section
5.7. The subroutines contained in KFAM0207 (Multiplexed), KFAMO107
(Single Bank), and KFAM0307 (Multiple Bank) include all KFAM-7
subroutines. Alternatively, the user may select the subroutines
needed for the application(s) to be performed using the Build
Subroutine Module utility, which creates a module (program file)
containing the chosen subroutines corresponding to the specified
KFAM-7 version. The module created by Build Subroutine Module may
be used instead of the supplied module if certain considerations are
observed. Build Subroutine Module is helpful in reducing memory
requirements, especially for nonglobal (e.g., 2200VP) programs where
only those subroutines needed by that particular user-supplied
program need to be included. (See Chapter 6, Section 6.9 for
additional information.)

168

Where global 2200MVP operation 1is desired, certain considerations
related to partition generation are necessary. As described in the
2200MVP Introductory Manual, partition generation is the allocation
of system resources, including memory, to various terminals. Before
KFAM-7 utilities and user-supplied programs can access the KFAM-7
subroutines and variables, the appropriate global partition(s) must
be loaded and run. With the Multiplexed and Single Bank versions,
one global "KFAM" partition is needed per bank. With the Multiple
Bank version, one global (subroutine) KFAM partition is required in
each bank and one global (KFAM variables) KFAMCOM partition 1is
required in universal global memory. Refer to Section 5.7 for
required partition sizes, file names, and related information.

The KFAM-7 subroutines are listed and briefly described in Table
5-1. Chapter 7 of this manual describes each subroutine in detail
and provides programming guidelines, procedures, and techniques
associated with the subroutines.

Although the KFAM subroutines are the heart of the KFAM system and
perform most of the file maintenance, utilities are included to
perform certain tasks that will occasionally be required. The
KFAM-7 utilities are listed and briefly described in Section 5.3.
Chapter 6 of this manual describes each KFAM-7 utility and provides
certain operating guidelines.

169

CHAPTER 6

THE KFAM-7 UTILITIES

6.1 INTRODUCTION

The

KFAM-7 utilities provide a variety of functions related to KFAM-7

files, including the following:

A User File and Key File can be set up based on operator-entered
information. The Key File index can be built if the User File
previously contained data records. These functions are provided by
the setup utilities, Initialize KFAM File and Build Key File.
(Reorganize/Rebuild Subsystem may be used instead of Build Key File.)

A KFAM-3 or -4 file may be converted to KFAM-7 file format using the
conversion utility, Convert to KFAM-7.

The contents of the Key File may be printed or displayed to verify
that the file was set up using the correct information. The Key
File information provided by the Print Key File utility is useful as
a diagnostic tool, especially when delays in accessing KFAM-7 files
become excessive due to access mode conflicts.

KFAM-7 User Files and Key Files may be increased or decreased in
size during copy if the Reallocate File Space utility 1is run
following the copy operation.

When a record is deleted, its key and sector address are removed
from the Key File, which makes the User File record inaccessible;
however, the data record itself is not removed from the User File.
The supplemental maintenance reorganize utilities, Reorganize 1In
Place and Reorganize/Rebuild Subsystem, remove deleted records and
place each record in ascending key sequence. Reorganize/Rebuild
Subsystem can optionally rebuild a Key File, similar to the function
provided by Build Key File.

A subset of subroutines may be chosen, saved to disk in a program
file, and used instead of the complete set of subroutines provided
for each KFAM-7 version, by using the Build Subroutine Module
utility.

In the event of a Key File being accidentally destroyed or KFAM
files being accidentally left open (which renders them inaccessible
due to access mode conflicts), the recovery utilities, Key File
Recovery and Reset Access Tables, are provided.

170

The KFAM-7 Menu

The KFAM-7 menu, as shown in Figure 6-1, may be obtained following
start-up by either specifying KFAM-7 as the MENU TO LOAD or touching the
appropriate SF key in reply to the System menu. Memory requirements (2200MVP
partition sizes) for the KFAM-7 Utilities are provided in Table 1-1.

When using a 2200MVP, if the global KFAM
subroutine partition 1is mnot present,
GLOBAL 'KFAM' SUBROUTINE NOT AVAILABLE -
OVERLAYS WILL BE USED appears here. (See
Appendix A for an explanation.)

SELECT UTILITY

KFAM-7 UTILITIES (STATION #=n)

FN KEY PROGRAM NAME FN KEY PROGRAM NAME

00 INITIALIZE KFAM FILE 04 CONVERT TO KFAM-7

01 BUILD KEY FILE 05 PRINT KEY FILE

02 REORGANIZE IN PLACE 06 RESET ACCESS TABLES

03 REALLOCATE FILE SPACE 07 BUILD SUBROUTINE MODULE
08 KEY FILE RECOVERY
31 SYSTEM MENU

Figure 6-1. The KFAM-7 Utilities Menu

To load one of the KFAM-7 utilities, touch the appropriate SF key. To
load the System menu, touch SF'3l. The Reorganize/Rebuild Subsystem utility
does not appear on the KFAM-7 menu, since it is controlled by a user-supplied
program.

KFAM-7 Utility Default Values and Operating Similarities

For each utility on the KFAM-7 menu, default values are maintained for
each station in its respective station file. When a KFAM-7 utility is loaded,
its default values are loaded from the appropriate station file and displayed
along with the ENTER DESIRED FUNCTION prompt. Like the ISS start-up default
values, each default value appears to the right of a number which allows
modification of the default value when its number entered in reply to the
ENTER DESIRED FUNCTION prompt. If there are no default values for that
utility, entry of each value is requested, beginning with value 1.

171

After modifying and/or entering the required values and verifying that
the displayed values are correct, the user may save the currently displayed
defaults (SAVE DEFAULTS) by touching the corresponding number before entering
0 (zero) to proceed. Other prompts may appear after 0 is entered, and the
user may touch SF'l5 to return the ENTER DESIRED FUNCTION prompt to the screen
and modify the default values before utility processing begins (usually
preceded by a MOUNT DISK prompt).

If the utility default values for one or more disk addresses conflict
with the current ISS start-up disk addresses, entry 1s automatically requested
when that utility is loaded. Whenever a disk address is requested, valid
start—up disk addresses are displayed.

Error Messages and the Start-up Printer Address

During the entry of parameters in reply to prompts, any error message

encountered appears on the screen. Once utility processing (execution) has
begun, however, error messages are output to the printer address specified
during start-up for that station. Refer to Chapter 1, Section 1.4 for

additional information.

Special KFAM Utility Considerations for Multiple Key Files and Duplicate Keys

Readers not using multiple Key Files or duplicate keys should skip to
Section 6.2.

One Key File 1is typically designated as a Primary Key File whose
associated primary key might be a social security number, employee number,
part number, or some other unique identification. The User File records, when
reorganized, are arranged in ascending order of their primary key values. The
primary key is typically wunique and, if unique, does not require the
pointer-key concatenation considerations required for duplicate keys.

The secondary key associated with each Secondary Key File is usually a
different field or portion of the record than other secondary keys and the
primary key. A secondary key might be a name, department number, numeric
quantity, or description needed to access the records in either random order
or logical secondary key sequence. Secondary keys may or may not be unique.
For each secondary key which may be duplicate, a three-byte pointer can be
appended onto the secondary key in the Key File. The pointer is obtained from
KFAM variable T4$, which contains a relative sector address and record number
within that sector of the corresponding User File record. Since the pointer
is unique, when it is appended to a secondary key, the secondary key stored in
the Key File is assured of being unique.

The Initialize KFAM File wutility assigns user-specified values to
certain parameters stored in the Key File, including User File record layout,
key location, and key length. Other user-specified parameters include the Key
File number (which becomes part of the Key File name) and such operational
parameters as disk addresses. Initialize KFAM File 1is always the first step
in setting up a KFAM file, regardless of whether a Primary or Secondary Key
File is to be initialized.

172

A recommended convention is to assign the Primary Key File a Key File
number of 1; for Secondary Key Files, assign Key File numbers of 2, 3, 4, 5,
etc. Another special consideration related to Initialize KFAM File concerns
Secondary Key Files, where the secondary key may be duplicate. The key length
and record layout parameters must account for the presence of the 3-byte
pointer to be concatenated onto the secondary key, which can be added to the
Key File as records are written via either Build Key File or user-supplied
application software.

The Build Key File utility can create the "index" for both primary and

secondary Key Files if the User File already contains data records. The
availability of the Initialize KFAM File and Build Key File utilities allow
the creation of secondary Key Files based upon User File records. Build Key

File automatically concatenates the appropriate pointer onto each secondary
key in the Key File, if the multiple Key File/duplicate key parameter 1is
specified, allowing duplicate secondary keys to be used.

The user must either update all Secondary Key Files whenever the Primary
Key File 1is wupdated, or only access Secondary Key Files after running
Reorganize/Rebuild Subsystem to reorganize the Primary Key File and update
each Secondary Key File to be accessed. If insufficient disk space exists,
the Reorganize In Place utility may be run for the Primary Key File, followed
by Reorganize/Rebuild Subsystem for each Secondary Key File. 1In a real-time
environment, all Key Files should be updated under program control whenever a
record is added or deleted in the Primary Key File. For environments where
week-o0ld information or periodic Secondary Key File use is acceptable, a copy
of the User File and only the Primary Key File might be on-line constantly,
the User File and Primary Key File reorganized and copied to a separate disk,
and the Secondary Key Files created using Reorganize/Rebuild Subsystem on the
separate disk to allow multiple Key File access to the data with a minimum of
special programming considerations.

Table 6-1 lists each KFAM utility and describes the requirements and
restrictions associated with multiple Key File use.

Table 6-1. KFAM Utility Use with Multiple Key Files

KFAM-7 UTILITY PRIMARY KEY FILE SECONDARY KEY FILE
Initialize KFAM File Required, except for Required for each
KFAM-3 or -4 files (use Secondary Key File.

the Convert to KFAM-7
utility instead).

Build Key File Required only if the Required for each
User File contains data Secondary Key File
records. only if the User File

contains data records.

173

Table 6-1.

KFAM Utility Use with Multiple

Key Files (continued)

KFAM-7 UTILITY

PRIMARY KEY FILE

SECONDARY KEY FILE

Print Key File

Recommended after data
records have been added
to verify that the key's
location is correct
before initial program
testing.

Recommended after data
records have been added
to verify that the
key's location 1is
correct before initial
program testing.

Reallocate File
Space

When the User File or the
Primary Key File is copied
and its number of extra
sectors 1s changed, this
utility is required for
the Primary Key File.

When the User File is
copied and its number
of extra sectors
changed this utility
is required for all
Secondary Key Files.
For each Secondary Key
File copied where its
number of extra
sectors is changed,
this utility is
required.

Reorganize In Place

Can be used only for the
Primary Key File. Except
in cases where insuffi-
cient disk space exists,
use Reorganize/Rebuild
Subsystem instead.

Not allowed. Following
reorganization of the
Primary Key File, the
user must run either
the Reorganize/Rebuild
Subsystem or the Build
Key File Utility for
each Secondary Key
File.

Reorganize/Rebuild
Subsystem

Must be executed for the
Primary Key File first,
and then must be executed
for each Secondary Key
File.

Must be executed for
the Primary Key File
first, and then must
be executed for each
Secondary File. 1If
the Reorganize In Place
utility was used for
the Primary Key File,
run either the
Reorganize/Rebuild
Subsystem or the Build
Key File Utility for
each Secondary Key
File.

174

Table 6"10

KFAM Utility Use with Multiple Key Files (continued)

KFAM-7 UTILITY

PRIMARY KEY FILE

SECONDARY KEY FILE

Convert to KFAM-7

Used in place of
Initialize KFAM File and
Build Key File for KFAM-3
or -4 files only. Valid
only for the Primary Key
File.

Not allowed. Use
Initialize KFAM File
and Build Key file for
each Secondary Key
File.

Build Subroutine
Module

Not applicable.

Not applicable.

Key File Recovery

Can be used only for the
Primary Key File, if it
was destroyed. With
multiple Key Files, this
utility must be run first
before running Initialize
KFAM File.

Not allowed, since
recovery information is
maintained only for the
Primary Key File (which
is the Key File closed
with a positive KFAM

ID number). Instead,
use Initialize KFAM
File to recatalog each
destroyed Secondary
Key File, followed

by either the
Reorganize/Rebuild
Subsystem or the

Build Key File Utility
for each Secondary

Key File.

Reset Access Tables

With the Multiplexed
KFAM-7 version, this
utility is required once
for each Key File open at
the time of the accident.
With the other KFAM-7
versions, this utility may
be run once if the mode is
ALL and the station number
is 0 (zero).

Same as for the Primary
Key File.

175

6.2 INITIALIZE KFAM FILE

The Initialize KFAM File utility must be run as the first step 1in
setting up any KFAM file. If the file already contains data records,
Initialize KFAM File should be followed by Build Key File.

Initialize KFAM File optionally catalogs an area on disk for the User
File and/or the Key File, or it operates with an -existing (active or
scratched) User File and/or Key File. It sets up the KDR, which is the first
sector of the Key File and contains vital information about the User File and
the Key File, based on information supplied by the operator. It then creates
a null (empty) Key File. The KDR occuples the first sector, and is followed
by a KIR, in the null Key File's second sector. An END (end-of-data) control
sector 1s written following the first two sectors.

The position of the END control sector in the User File depends upon
whether the User File was previously cataloged. With a previously uncataloged
file just created, the END control sector is written in the first sector.
With a previously cataloged file, the position of the END control sector, if
any, remains unchanged. In both cases, recovery information (KDR) 1is
optionally stored in the next-to-last sector (dummy END control sector) of the
User File, and the access table and password is stored in the User File
catalog trailer control sector. The access table 1s cleared upon being
written.

Initialize KFAM File requires that certain information be supplied by

the operator, some of which 1is not obvious and requires some explanation, as
provided in Table 6-2.

Table 6-2. Information Required by Initialize KFAM File

ITEM EXPLANATION

USER FILE NAME An F is required in the fifth position and a
digit in the sixth position (bbbbFnbb form)
as described in Chapter 5, Section 5.6. If
the User File 1s an active or scratched
cataloged file, 1its exact file name 1is
required; if not <cataloged, a file name
unique to the disk specified is the User File
Address as required.

USER FILE ADDRESS The three-character (xyy form) disk address
indicates the disk where the User File will
reside (or currently resides).

USER FILE Either CATALOGED or NOT CATALOGED is
specified, depending upon whether or not the
User File 1is a cataloged (active or
scratched) file.

176

Table 6-2. Information Required by Initialize KFAM File (continued)

ITEM

EXPLANATION

PASSWORD

If a password was previously assigned to an
active cataloged file, it must be specified
exactly as previously assigned; otherwise,
specify blanks. With a scratched cataloged
file about to be reactivated or a ‘'‘not
cataloged" User File about to be created, the
specified password is assigned to the User
File and must be specified whenever access to
the User File is desired. By convention, a
password of blanks (touch RETURN without
entering any characters) indicates that a
password 1is not used. Up to 16 characters
may be specified.

KEY FILE NUMBER

A digit from 1 to 9 is specified. Typically,
1 is specified unless multiple Key Files are
used. If the Key File 1is an active or
scratched cataloged file, the number entered
must correspond with that Key File's number;
if not cataloged, the number should allow a
unique Key File name to be created on the
specified disk. The number (n) specified
becomes part of the Key File name (bbbbKnbb
form) as described in Chapter 5, Section 5.6.

KEY FILE ADDRESS

The three-character (xyy form) disk address
indicates the disk where the Key File will
reside (or currently resides).

KEY FILE

Either CATALOGED or NOT CATALOGED is
specified, depending upon whether or not the
Key File is a cataloged (active or scratched)
file.

RECOVERY

Either WRITE or NOT WRITE 1is specified.
typically, when initializing a Secondary Key
File, recovery information 1is not written;
for Primary Key Files, it is written.

RECORD TYPE

The five KFAM record types are described in
Chapter 5, Section 5.5.

LOGICAL RECORD LENGTH

Required only for record types A, B, and C,
the logical record length may be calculated
using the procedures provided in Chapter 5,
Section 5.4. Specify 1 for record types M
and N.

177

Table 6-2. Information Required by Initialize KFAM File (continued)

ITEM

EXPLANATION

BLOCKING FACTOR

Required only for record types A, B, and C,
the blocking factor or number of records per
sector may be calculated using the procedures
provided in Chapter 5, Section 5.4. Specify
1 for record types M and N.

SECTORS PER RECORD

Required for record type M only, this
indicates the number sectors in a multiple
sector record, as discussed in Chapter 5,
Section 5.5 under '"User File Record Type M,
Multiple Sector Records.'" TFor other record
types, specify 1.

KEY LENGTH

The key length and starting position of the
key determine the key's location.
Conventions and requirements associated with
the key depend wupon the record type, as
discussed in Chapter 5, Section 5.5. 1In the
case of duplicate keys, the key length must
include the 3-byte pointer concatenated to
each key in the Key File.

STARTING POSITION
OF THE KEY

See KEY LENGTH.

NUMBER OF RECORDS

The estimated number of records determines
the number of sectors required for the User
File and/or Key File. This estimate should
include the probable number of deleted User
File records when the User File is at its
maximum record size. This value 1is not
critical, since the size of the User File
and/or Key File may be changed during file
copy. The value entered here is wused to
allocate file space to the User File and/or
Key File about to be created. With cataloged
files, the value is used to check if enough
space exists in these files.

KEY TYPE

Either STANDARD or DUPLICATE 1is specified.
If the key being defined allows duplicate
keys, the key location plus its key length
may exceed record boundaries (since the
three-byte pointer has been included in the
key length calculation) DUPLICATE adjusts the
checking appropriately

178

Operating Notes

The values for the USER FILE and KEY FILE parameters alternate
(flip-flop) as either CATALOGED or NOT CATALOGED when the appropriate number
is touched in reply to the ENTER DESIRED FUNCTION prompt.

If the Key File is an active cataloged file, after the User File name,
Key File number, and Key File address have been specified, the user may touch
SF'0O to retrieve the following parameters from the Key File's KDR: the record
type, logical record length, blocking factor, sectors per record, key length,
and starting position of the key. The retrieved parameters are displayed and
may be accepted or modified.

After accepting the default parameters, the user may elect to output to
the ISS start-up printer address a hardcopy listing of the specified file
parameters this option is especially recommended for Secondary Key Files (if
used), since recovery information is not maintained for Secondary Key Files.
The KFAM-7 menu appears upon completion of initialization. If an error
message appears, refer to Appendix A.

6.3 BUILD KEY FILE

The Build Key File utility creates a Key File index for the data records
in an existing User File. 1Initialize KFAM File must have been run first, to
initialize both the User File and the Key File.

Build Key File ignores any records that have HEX(FF) in the first byte of
the key, under the assumption that they are deleted or inactive records. It
also ignores records which have duplicate keys unless the user specifies that
duplicate keys are allowed, but outputs to the ISS start-up printer address
the relative sector number and record number where such duplicate keys are
encountered.

The utility optionally allows the operator to enter the key for the last
User File record in physical sequence. The program can use this to detect the
end-of-data. The value of the last key should be made available to the
operator before running this program, unless the User File has a wvalid END
control sector. Furthermore, with blocked records, all inactive records in
any sector must contain the value of hexadecimal (HEX) FF in the first byte of
the key. However, if the key is packed before being written to disk, the file
must contain an END control sector and, with blocked records, all inactive
records in any sector must contain the value of HEX(FF) in the first byte of
the key.

179

The KFAM file is opened in the Exclusive mode.

Operating Notes

Default values include the User File name, User File address, Key File
number, Key File address, the last key (if required), key type, and the
password (if any) assigned to the User File. If the last key is not required,
or if the User File does not have a password, a value need not be entered (or
enter blanks) for this parameter. The key type is either STANDARD (as in
previous versions of KFAM) which indicates unique keys, or DUPLICATE which
indicates that duplicate keys are present and that the 3-byte pointer
concatenated onto the key is to be written into the Key File. The key type
alternates {(flip-flops) as either STANDARD or DUPLICATE when the appropriate
number is chosen in reply to the ENTER DESIRED FUNCTION prompt.

In this wutility, RECOVERY provides the options WRITE/DON'T USE or
USE/DON'T WRITE. Typically, for Secondary Key Files, use (USE/DON'T WRITE)
the recovery information found in the User File. Primary Key Files should
write (WRITE/DON'T USE) the recovery information. Only the FINDNEW SECTOR
portion of the recovery information is used.

After accepting the default values, the record locations and keys of the
User File records are displayed during processing. The KFAM-7 menu appears
upon completion of the utility. If an error message appears, refer to
Appendix A.

6.4 PRINT KEY FILE

The Print Key File utility prints or displays the control information
stored in the specified Key File. The control information output is labeled
with applicable variable names and descriptions.

Three types of control information are output:

1. The contents of the KDR, excluding the access tables, are output.
Each variable's name, description, and value are output. Refer to
Table 8-1 for a list of KDR information.

2. The contents of the KDR access tables and the User File access table
are output per station. The 1list of protected sectors and
completion codes are reflected only for the Multiplexed version of
KFAM-7, since only the disk-resident control information, and not
global control information, 1is output. The access mode number
(ACCESS TYPE), completion code, protected sector, FINDNEW sector,
and FINDNEW record are output per station (1-16); sector addresses
are hexadecimal relative sector addresses. The access mode number,
per station, is helpful in determining the cause of access mode
conflicts. For more information, see Section 6.11.

3. The contents of each KIR, each of which occupy one sector, consists
of multiple KIEs. Each KIE consists of a key value and hexadecimal
relative sector address. Each KIR, and all KIEs contained within
each KIR, are output.

180

The Key File 1index structure employs multiple 1levels of indexing,
designed to minimize Key File search time. Each KIR 1is part of a '"tree
structure," wherein all KIRs on one index level furnish pointers to the next
lower-level KIRs, except for the lowest-level KIRs (Index Level 1). Level 1
KIEs index the actual User File record keys and relative sector addresses,
whereas each higher-level KIE contains the highest key and relative sector
address of lower-level KIRs.

The KDR variable T2$ is the relative sector address of the highest-level
KIR, and the KDR variable TO indicates the number of index levels (1-8). The
user might examine the KIR/KIE structure, as KFAM does, by beginning with the
highest-level KIR and following the search path from the highest-level KIR to
the Level-1 KIR, which points, via a User File relative sector address, to a
particular record's key, as further described in Chapter 8, Section 8.8.

Operating Notes

Default values are maintained for the User File name, address, and
password (if any); the Key File number and address; and the output device.
When the ENTER DESIRED FUNCTION prompt appears, entering the number
corresponding to OUTPUT DEVICE causes the displayed parameter to alternate
(flip-flop) between CRT and PRINTER, where CRT indicates displayed output and
PRINTER indicates output to the ISS start-up printer address.

With printed output, the entire Key File report is printed, followed by
the reappearance of the KFAM-7 menu.

With displayed output, which is user-interactive, the SF keys listed in
Table 6-3 are available. After accepting the displayed parameters, the KDR

variables are displayed.

Refer to Appendix A if an error message appears.

Table 6-3. SF Keys for Print Key File

SF KEY DESCRIPTION
SF'3 In the case of KIEs too long for one 64- or
80-character line, this key switches the

displayed information to enable viewing of
all information.

SF'4 Displays the last physical KIR in the Key
File.

SF'6 Displays the KDR variables.

SF'7 Displays the first physical KIR in the Key
File.

181

Table 6-3. SF Keys for Print Key File (continued)

SF KEY DESCRIPTION

SF'8 Allows entry of the relative KIR to be
displayed, where 0 (zero) displays the access
tables, 1 displays the first KIR, 2 displays
the second KIR, etc.

SF'9 Redisplays the last item chosen.

SF'10 Prints the last item chosen (current sector)
to the ISS start-up printer address.

SF'11 Moves the currently displayed sector five
sectors forward from the previous sector
location; the last KIR sector is redisplayed
when reached.

SF'l2 Moves the currently displayed sector one
sector forward from the previous sector
location; the last KIR sector 1is redisplayed
when reached.

SF'1l3 Moves the currently displayed sector one
sector backward from the previous sector
location; the KDR variables are redisplayed
when reached.

SF'l4 Moves the currently displayed sector five
sectors backward from the previous sector
location; the KDR variables are redisplayed
when reached.

SF'20 Displays the last KIE in the current KIR.

SF'23 Displays the first KIE in the current KIR.

SF'25 Redisplays the last item chosen.

SF'27 Displays the next five KIEs within the current
KIR.

SF'28 Displays the next KIE within the current KIR.

182

Table 6-3. SF Keys for Print Key File (continued)

SF KEY DESCRIPTION

SF'29 Displays the previous KIE within the current
KIR.

SF'30 Displays the previous five KIEs within the

current KIR.

SF'31 Returns the KFAM-7 menu to the screen.

6.5 REALLOCATE FILE SPACE

The Reallocate File Space utility and the ISS Copy/Verify utility can be
used in conjunction with one another to lengthen or shorten KFAM Key Files and
User Files. After one or more KFAM files have been copied using Copy/Verify,
Reallocate File Space must be run for each KFAM file if the position of the
END control sector has been changed in either the User File or Key File. See
Chapter 5, Section 5.6 for KFAM file copy procedures. To prevent the utility
from updating the recovery information and END control sector when a Secondary
Key File is being accessed, a Key File Type option is available as described
under the Operating Notes.

Operating Notes

Default values are maintained for the User File name, address, and
password (if any); the Key File number and address; and the Key File Type
(Primary or Secondary). When the ENTER DESIRED FUNCTION prompt appears,
entering the number corresponding to KEY FILETYPE causes the displayed
parameter to alternate (flip-flop) between PRIMARY and SECONDARY. The KFAM-7
menu appears immediately upon completion of program execution.

6.6 REORGANIZE IN PLACE

Reorganize In Place is an operator-controlled utility chosen from the
KFAM-7 menu, requiring operator-specification of file names, addresses and
other parameters. Unlike Reorganize/Rebuild Subsystem which copies a KFAM
User File and Key File, Reorganize In Place reorganizes a KFAM file in place.
The record which belongs first, in ascending key sequence, is switched with
the record that is physically first. This process is repeated for all other
records, until the entire User File has been placed in sequential order.
During this process, all deleted records are removed. The Key File is then
reinitialized and a new Key File is created in the space formerly occupied by
the old Key File. No additional disk space is required for the User File or
the Key File; a work file, KFAMWORK, is required.

183

This program is four to five times slower than the Reorganize/Rebuild
Subsystem utility and, therefore, should be used only if the file is too large
to permit simultaneous mounting of an output file as required by the
Reorganize/Rebuild Subsystem.

This program reorganizes any KFAM file, with the exception of type M
records with more than 40 sectors per record. However, it should be noted
that multiple-sector records require extra storage space in memory, and that
this program cannot operate in a 10.5K partition if the record length exceeds
8 sectors.

CAUTION:

Before executing Reorganize In Place, backup copies of the
User File and Key File must be made, since certain
hardware or software errors, if encountered, destroy the
KFAM file. Also, this wutility cannot be wused with
duplicate keys or Secondary Key Files; use
Reorganized /Rebuild Subsystem.

Operating Notes

Default values are maintained for the User File name, address, and
password; and the Key File number and address. A prompt appears asking
whether or not backup copies of the User File and Key File have been made; if
not, it is recommended that the user touch SF'31 instead of entering a reply
to that prompt. After completing reorganization, the KFAM-7 menu appears. If
an error occurs, see Appendix A; it may be necessary to use the backup copies.

6.7 REORGANIZE/REBUILD SUBSYSTEM

Reorganize/Rebuild Subsystem performs the following KFAM file
maintenance operations on a single Key File:

1. Based on an input KFAM file (Key File and User File), it constructs
a new output User File which contains active records written into
the output User File in ascending order of their key values. Both
User Files are opened with Exclusive access. All output file
records are reordered according to their ascending key values, and
space previously occupied by deleted records is available following
reorganization.

2. Creates a Key File based on the new output file. Optionally, the
new Key File may occupy the same physical space as the input Key

File, overwriting the input Key File.

3. Optionally, the new output User File may be copied back to the disk
area occupied by the input User File, overwriting the input file.

184

4. Optionally, the utility will build (or rebuild) a Key File without

reordering User File records. This option is especially useful for
Secondary Key Files and is controlled by variable 06$ (line 4290
below).

Where multiple Key Files are used, one setup program must reorganize the
User File according to the Primary Key File, and then rebuild the Primary Key
File. Thereafter, one setup program is required to rebuild each Secondary Key
File based up the reordered User File.

With the rebuild option, the Key File is rebuilt and the User File's
data is not altered; however, a valid END control sector and valid recovery
information (reflecting the Primary Key File) is required.

The modules (program files) that make up Reorganize/Rebuild Subsystem
are as follows:

File Name Description

KFAMREFS Copy/Verify Reference File
KFAM3507 Start up, open files

KFAM3607 Generate code

KFAM3707 Reorganize, parts 1 and 2
KFAM3807 Build Key File

KFAM3907 Reorganize, part 3, close files

KFAM2305, KFAMZBZS,}
KFAM2345, 1SS2175 Overlays

Reorganize/Rebuild Subsystem modules may be copied to the desired
disk(ette) using the supplied ISS reference file KFAMREFS during Copy/Verify
operation. Specify INPUT MODE = INDIRECT to use a reference file during
Copy/Verify operation.

Writing The Setup Module

The user-written setup program which provides reorganization parameters
can be broken down into two parts.

1. Lines 1-110 contain statements executed before Reorganize/Rebuild

Subsystem is loaded. These lines must clear the CRT screen, select
disk file devices, and load KFAM3507. These lines must be cleared
by the LOAD DC statement. They can 1include additional

preprocessing, if desired.

2. Lines 4200-4799 contain statements which assign reorganization

parameters to specific variables. They remain as an overlay to the
first reorganization module and are executed after that module
defines its common variables and sets default values. The variables

and their assigned values are critical to the execution of this
utility; line numbers need not be the same as listed below, but must
be within the required ranges.

185

The master setup program is shown below. A line may be omitted if the
default value shown is the desired value. A LINPUT or INPUT statement may be
used if a parameter must be determined by the operator at run-time. Read all
comments before writing a setup module.

Default See
Line Contents Value Comment
10 REM program identification
20 PRINT HEX(03) - 1
50 SELECT DISK (disk address for -
Reorganize/Rebuild Subsystem disk)
60 SELECT #1 input User File device address -
70 SELECT #2 input Key File device address -
80 SELECT #3 output User File device address - 2
90 SELECT #4 output Key File device address - 3
100 SELECT #5 user program device address - 4
110 LOAD DC T#0, "KFAM3507" 10,4199 - 5
4210 N1$ = input User File name. -
4220 P1$ = input User File device address as "xyy". - 6
4230 N2 = input Key File number. 1 7
4240 P2$ = input Key File device address as '"xyy".
4250 N3$ = output User File name. - 8
4260 P3$ = output User File device address
as "xyy". -
4270 03$ = "C" catalog output User File if c 9
uncataloged.

= "Y" output User File already cataloged,
do not catalog it.
= "N" output User File is not already
cataloged, catalog it.
4280 C3 = number of sectors to allocate to output * 9
User File. This statement not needed
if 03% = "Y" (above).
*If the utility catalogs the file, the
default value for C3 is the number of
sectors in the input User File.
"C" to copy back output User File over blank 10
input User file when reorganization
completed.
= blank to leave input User File intact.
= "B" to rebuild Secondary Key File only.

4290 06$

4300 N4 = output Key File number. 1 11
4310 P4$ = output Key File device address as 'xyy".

186

Line

Default

Contents Value

4320

4330

4340

4350

4360
4370
4380

4390

4410

4420

04$

04

N5$

P5$

P$
P9$
s2

See
Comment

"'C" catalog output Key File, if C
uncataloged.

"Y" output Key File cataloged, do not
catalog 1it.

"N" output Key File not cataloged,

catalog it.

number of sectors to allocate to the *
output Key File. Omit this if

048 = "y".

*I1f the utility catalogs the file,

the default value is calculated in
proportion to the input Key File

size times the increase or decrease

in User File size.

name of program to be loaded blank
following reorganization.

blank - no program to be loaded.

device address of user program as
leyy"

input User File password blank
output User File password blank
Station (partition) number *

*1SS start-up common variable for this
station is the default value.

For type "C" files previously written
in BA mode, set M6=1

07%

08%

either (1) write END control blank
sector and recovery information;

i.e., Primary Key File, if 07§=" "

(blank), or (2) do not write the

END control sector and recovery

information; i.e., Secondary Key

File, if 078§=" ".

either (1) standard, unique keys blank
if 08%= " " (blank), or (2) use

duplicate key convention if 08$='"D".

187

12

12

13

14
14

15

15

Comments

1.

The CRT screen should be cleared prior to calling Reorganize/Rebuild
Subsystem. Lines 0-3 are used by the routine for messages. Lines 4-15
may be used for a user-written display. For example, Line 20 might be:

20 PRINT HEX(030A0AOAOA); "REORGANIZE INVENTORY FILE."

The output User File device address may be the same as the input User
File device address, if the two files have different names.

If the output Key File device address is the same as the input Key File
device address, and the output Key File name is the same as the input
Key File name, then the output Key File replaces the input Key File.
See Comment 10.

If Reorganize/Rebuild Subsystem 1is to call another program when it
completes execution, the device address of this program file must be
selected for file number #5.

The last statement to be executed in the range 1-110 must be a LOAD DC
that loads Module 1 of the utility and clears Lines 1-110 as it does
so. The module name is KFAM3507.

Example:

4220 P1$ = "BlO"

This number is assigned during Initialize KFAM File and appears as the
6th character in the input Key File name (normally, it is 1).

The output User File name need not conform to the KFAM file naming
conventions. This relaxation of normal KFAM requirements may be useful
if the '"copy back'" option is chosen (line 4290) since, in this case, it
may be desirable to use an established work file that may have any name.

If "C" is assigned to variable 03$, the output User File is cataloged by
this utility if it does not already exist. "C" is the default value of
variable 03$ (line 4270).

If "N" is assigned to variable 03$, the system ensures that the named
output User File does not already exist on the disk and then catalogs
the output User File.

If the utility catalogs the output User File, it allocates to it the
same number of sectors that are in the 1input User File, wunless a
different number is specified by assigning the desired number of sectors
to variable 03.

If "Y" is assigned to variable 03$, the system checks that the named
output file already exists. Variable 03 need not be assigned a value.

The output User File must contain at least 10 sectors.

188

10.

11.

12.

13.

14.

15.

I1f variable 06$ is assigned the value "C" (line 4290), the utility
constructs the output Key File name from the input Key File name and
copies the output User File back into the input User File area,
overwriting the input User File. 1If variable 06$ is assigned a blank,
the output Key File name is constructed from the output User File name
and the output file is not copied back. TIf variable 06$='"B", the User
File is not copied but the Secondary Key File specified is rebuilt
according to the reordered output User File. The Primary Key File must
be reorganized first with 06$="C" or 06$=(blank) and then each Secondary
Key File rebuilt with 06$="B".

If 06$="B", the output file variables need not be included, since there
is no output file. Also see Comment 15.

This number becomes the 6th character in the construction of the output
Key File name. 1If the constructed name is the same as the input Key
File name and the same address is specified for both input and output
Key Files, then the output Key File replaces the input Key File.

The effect of these responses for variables 04$ and 04 is analogous to
variables 03$ and 03 discussed in comment 9. However, if the utility
catalogs the Key File, its size is proportional to the input Key File
size times the increase or decrease in User File size.

If N5 is assigned a program name, the program is loaded upon completion
of the utility. The program must reside at the address selected for
file number #5 (line 100).

The input User File password, and the output User File password if the
output User File is already cataloged, is checked against variables P$
and P9$ respectively. These values must be identical or an error
message appears. If the output User File is not cataloged and P9$ is
blank, a password of blanks 1is assigned to the User File. With an
uncataloged output User File, the password assigned is later required
when the file is opened. For example, if P9$ contains anything other
than blanks, then the assigned password must be provided for any station
to open that file.

The parameters for variables 06$%, 07§, and 08% are critical when
multiple Key Files are used. Although Reorganize In Place is allowed to
reorganize and rebuild the Primary Key File according to reordered User
File record sequence, use of Reorganize/Rebuild Subsystem is required
following Key File Recovery and is recommended unless insufficient disk
space exists to run Reorganize/Rebuild Subsystem.

The typical procedure 1is to run Reorganize/Rebuild Subsystem (or
Reorganize In Place, if allowed) for the Primary Key File first, with
06$="C" or " " (blank), 07$=" " (blank), and 08%=" " (blank). Each
Secondary Key File can then be rebuilt based on the reordered User File
records, with the reorganized User File specified as the input User File
(lines 4210 and 4220), 068="B", 07$="S", and either 08$="D" if keys have
been defined as duplicate or 08%" " (blank) if keys are unique.

189

Shown below is an example of a KFAM-7 setup program.

10 REM EXAMPLE OF A REORGANIZATION SETUP PROGRAM

20 PRINT HEX(030A0AOAOA); 'REORGANIZE INVENTORY FILE"
50 SELECT DISK 310 :REM REORGANIZE/REBUILD SUBSYSTEM
60 SELECT #1/320 :REM INPUT USER FILE

70 SELECT #2/B20 :REM INPUT KEY FILE

80 SELECT #3/320 :REM OUTPUT USER FILE

90 SELECT #4/B20 :REM OUTPUT KEY FILE

100 SELECT #5/310 :REM USER PROGRAM

110 LOAD DC T#0, "KFAM3507" 10,4199

4210 N1$ = "INVTFO40"

4220 P1$ = "320"

4240 P2$ = "B20"

4250 N3$ = "WORK"

4260 P3$ = "320"

4290 06$ = "C" :REM COPY BACK OUTPUT USER FILE

4310 P4$ = "B20"

4340 N5$ = "START"

4350 P5$% = "310"

Reorganize/Rebuild Subsystem Operation

The operation of Reorganize/Rebuild Subsystem may be divided into three
parts:

1. The User File is read sequentially, using FINDFIRST/FINDNEXT, and
copied to the output file, so that the records are physically in
sequential order and deleted records are eliminated.

2. A new Key File is built, using a special procedure, based on the
keys in the output User File. The new Key File, optionally, may
occupy the same physical space as the old Key File.

3. If indicated by the setup program, the output User File is copied
back to the input User File, overwriting the original.

4. With the rebuild option (06$="B"), instead of the preceding steps,
the input User File is read and the Key File is built.

The original Key File and User File are not altered until the output
User File has been written, complete with the necessary information to restore
the Key File. Therefore, it is not essential to have backup copies of the
User File and Key File. If the system £fails during Part 1 of the
reorganization, the original Key File and User File are intact. If the system
fails during Part 2, both the input and output User Files are intact, and a
Key File may be built for either one, using the Key File Recovery utility.
During Part 3, both the output User File and the Key File remain intact.
Although backup disks are not necessary for this operation, it is good
practice to make backup copies regularly, especially of the User File.

There are no operating instructions for this program because no operator

intervention is normally required. However, there are recovery procedures for
certain error conditions. These are described in Appendix A.

190

6.8 CONVERT TO KFAM-7

Since the Key File structure employed for KFAM-3 and -4 differs from the
KFAM-7 Key File structure, the Convert to KFAM~7 utility 1is provided to
convert KFAM-3 or -4 files into KFAM-7 format. KFAM-5 and -7 Key Files are
identical,

Backup copies of the User File and Key File must be made prior to
conversion, and both the User File and Key File must be on-line during program
execution. After conversion, the file may be accessed by KFAM-~7 software;
Initialize KFAM File and Build Key File are not needed.

CAUTION:

Make backup copies of the KFAM-3 or -4 User File and Key
File prior to executing this program. Certain errors can
destroy the file being converted.

Operating Notes

Default values are maintained for the User File name, address, and
password; the Key File number and address; and the input file type. The input
file type alternates (flip~flops) between KFAM-3 and KFAM-4 when the
appropriate number is entered in reply to the ENTER DESIRED FUNCTION prompt.

The KFAM-7 menu appears upon completion. Should an error message
appear, refer to Appendix A.

6.9 BUILD SUBROUTINE MODULE

Build Subroutine Module creates a module (program file) containing the
KFAM subroutines chosen by the programmer. It allows the programmer to
include in the module only those subroutines and subroutine capabilities
actually needed, thereby minimizing the amount of memory required for KFAM
subroutines. For each KFAM-7 version, a subset of subroutines may be saved to
disk and subsequently wused, as an alternative to the complete set of
subroutines contained in program files KFAM0107 (Single Bank version),
KFAM0207 (Multiplexed verions), or KFAM0307 (Multiple Bank versionm).

The module containing the subroutines can be assigned any file name and

saved at any IS8S start-up disk address. However, if a file (active or
scratched, data or program) of the same name exists at the specified address,
it will be overwritten (replaced) with the chosen subroutines. If extra

sectors are desired for the subroutine module, it may be cataloged in advance
as a data file.

191

Operating Notes

Default values are maintained for the output file name and address, and
the KFAM-7 version desired. The output file name and output file address
determine whether a new file is created or whether an existing file is reused
and possibly converted to an active program file.

After accepting the displayed values, a list of subroutines and options
appear. Each displayed subroutine may be chosen by touching the corresponding
SF key, which causes an asterisk (*) to appear to the left of its SF key
number and name. All KFAM-7 subroutines are functionally described in Table

5-1, while Table 6-4 1lists the SF keys available during Build Subroutine
Module operation.

Please note the operational function performed by SF'29, SF'30, and
SF'31. After SF'30 is touched, PHASE 2 - BUILDING MODULE appears briefly and
is soon replaced by the KFAM-7 menu.

NOTE:

KFAM-7 utilities require the following subroutines to be
contained within the global partition KFAM: OPEN,
FINDOLD, FINDNEW (HERE), FIRSTFIND, FINDNEXT, and CLOSE
WITH RECOVERY INFORMATION. Also, there must be only one
global partition "KFAM'" per 2200MVP bank at any one time.

192

Table 6-4.

Build Subroutine Module Options

SF KEY/SUBROUTINE

DESCRIPTION

SF'01 through SF'10

KFAM subroutines (see Table 5-1).

SF'11/239 CLOSE

KFAM Close subroutine which writes
neither recovery information nor
the END control sector necessary
for Key File Recovery (and the
rebuild option of Reorganize/
Rebuild Subsystem). Usually only
chosen 1if records will not be
added or deleted.

SF'12/CLOSE WITH RECOVERY
INFO

KFAM Close subroutine which writes
neither recovery information (KDR)
nor the END control sector in the
User File, which is necessary for
Key File Recovery.

SF'13 and SF'l4

KFAM subroutines

SF'15/217 MUX OPEN

For non-KFAM files (sequential
files), this subroutine opens a
file if it is cataloged.

SF'16/ MUX OPEN NEW

For non-KFAM files (sequential
files), this subroutine opens and
catalogs (creates) the file.

SF'17/218 MUX END

For non-KFAM files, this
subroutine writes an END control
sector.

SF'18/219 MUX CLOSE

For non-KFAM files, this
subroutine closes the file.

SF'29 Cancels the subroutines previously
chosen (erases all asterisks).

SF'30 Processes the chosen subroutines
and saves them as a disk program
file.

SF'31 Aborts this wutility and returns

the KFAM-7 menu to the screen.

193

6.10 KEY FILE RECOVERY

If a Key File is destroyed, the Key File Recovery utility permits it to
be fully reconstructed from the data in the User File, provided application
programs operating on the file adhere to the following conventions:

1. All deleted records must be flagged in the User File with HEX(FF) in
the first byte of the key. Otherwise, both active and deleted
records will be included in the Key File, necessitating the deletion
of unwanted keys.

2. With KFAM-7, CLOSE is a system requirement. If Build Subroutine
Module was used and the Close with Recovery Information option was
not selected, the user must include the Write Recovery Information
subroutine and must execute the Write Recovery Information
subroutine before closing a KFAM file whenever FINDNEW has been used.

If the Key File already exists on the designated disk, this utility
reuses that file; otherwise, it catalogs a new file with sufficient space to
index the maximum number of records in the User File. The User File 1is opened
in the Exclusive mode and the recovery information (most of the KDR) in the
next-to-last sector is accessed.

If multiple Key Files existed for the User File, the following procedures
are recommended:

1. If the Primary Key File was destroyed, run the Key File Recovery
utility to recatalog and rebuild the Primary Key File.

2. For each destroyed Secondary Key File, run the Initialize KFAM File
utility.
3. Run the Reorganize/Rebuild Subsystem first to reorganize and rebuild

the Primary Key File. Then run Reorganize/Rebuild Subsystem to
rebuild each destroyed Key File.

Operating Notes

Default values are maintained for the User File name, address, and
password (if any); the Key File number and address; key type; and whether the
Key File is cataloged. The Key- File option alternates (flip-flops) between
CATALOGED and NOT CATALOGED when the appropriate number is chosen in reply to
the ENTER DESIRED FUNCTION prompt. Similarly, the Key Type option alternates
(flip-flops) between STANDARD (unique keys) and DUPLICATE (duplicate keys).

Upon successful completion of wutility execution, the KFAM~7 menu
appears. Error messages include a list of duplicate keys and are described in
Appendix A.

194

6.11 RESET ACCESS TABLES

An entry is maintained in the User File's access table for each possible

station's current access mode for this file. 1If a station is accessing the
file, either 1, 2, 3, or 4 appears, depending on the access mode; if the
station is not currently accessing the file, a blank appears. Other access

tables are maintained in the KDR and in global memory, but these depend upon
the KFAM-7 version currently in use. The User File and KDR access tables may
be printed by the Print Key File utility for all KFAM-7 versions.

For each station (1-16) the Access Type listed by Print Key File shows

the access mode for each station accessing the file. The numbers are as
follows:

1 - Inquiry does not allow Exclusive file access.

2 - Read Only does not allow Shared or Exclusive file access.

3 - Shared does not allow Read Only or Exclusive file access.

4 - Exclusive does not allow any other file access.

NONE ~ This file is not currently open by any station.

With this information, one can determine which station has the file open
in the access mode that conflicts with the desired access mode. If that
station is not accessing the file, the entry in the access table may be caused
by the file not being closed by that station, thus creating the "phantom"
entry in the access table; this must be corrected by running Reset Access
Table.

Other information is also cleared, depending upon the KFAM-7 version in
use. With the Multiplexed version, the KDR, program hog (global variable @T),
and the User File access table are cleared. With the Single Bank and
Multibank versions, the table of open files (global array variable @T$()), the
queue (global wvariables @Q$ and @Q9%$), protected sectors (global array
variable @V4$()), program hog (global variable @T), and the User File access
table are cleared.

Access table information can be cleared for all stations (1-16) or a
specified station number. All files listed in the global table of open files
may be cleared with the Single Bank or Multiple Bank versions, or specified
files may be cleared with all versions. The work file, KFAMWORK, located at
the ISS loading address is automatically cleared if all files are to be
cleared, and it may be one of the specified files to be cleared at any address.

CAUTION:

This utility should be used with extreme caution. When a
specified station number is used, make sure the station is
no longer accessing KFAM files before using this utility.
If all station numbers are specified, be sure that all
stations are no longer accessing KFAM files before using
this utility. Reset Access Tables indiscriminately sets
all access table information blanks, whether the entries
are valid or the result of an accident.

195

Operating Notes

Default values are maintained for the mode and station number. The mode
indicates whether all or specified files are to be reset. Consistent with its
use with the ISS utilities, the mode is specified as one of the following:

1.

If the mode is ALL, all files listed as open in global memory are
reset (valid only for the Single Bank and Multiple Bank versions).

If the mode is PART, specified files are reset. After accepting the
displayed values, the User File name, the disk addresses of the Key
File and (for the Multiplexed version only) the User File (xyy/xyy
form), and the Key File number are requested for each KFAM User
File/Key File to be reset (or KFAMWORK). Enter 0 (zero) instead of
a file name to indicate completion.

If the mode is INDIRECT, the files specified by means of a reference
file are reset. The ISS utility, Create Reference File, allows a
reference file to be created, edited, or printed. The reference
file must have been created using Create Reference File (see Chapter
2, Section 2.3) prior to running Reset Access Tables, and the
entries must be in the same form (filename, xyy/xyy, n) as in the
PART mode. During Reset Access Tables, only the reference file name
and its disk address need to be specified, thereby eliminating
operator entry of each file's parameters.

The station number can be specified as 0 (zero) or any number from 1
through 16. If 0 (zero) is specified, access tables are reset for all station

numbers ;

otherwise, only the access tables for the specified station number

are reset.

Following completion of utility execution, the KFAM-7 menu appears.
Error messages are listed and described in Appendix A.

196

CHAPTER 7
THE KFAM-7 SUBROUTINES

7.1 INTRODUCTION

The KFAM subroutines simplify KFAM file access and perform the
maintenance operations most frequently performed on files organized by KFAM.
Included are DEFFN' statement subroutines to add new records to a file, delete
existing records, locate existing records, and access a file's records in
ascending or descending key sequence.

Each KFAM subroutine is marked with a DEFFN' statement and performs a
unique function. User-supplied programs call a KFAM subroutine via a GOSUB'
statement. Certain parameters which exactly define the function to be
performed are included in the GOSUB' statement in an argument list passed to
the subroutine. After completing the prescribed task, the subroutine provides
a return code in KFAM user variable Q$, which indicates whether or not the
subroutine was executed successfully and if a special condition was
encountered. Certain subroutines also set other KFAM user variables.

Reserved Variables and DEFFN' Statements

The KFAM subroutines collectively maintain control information in
memory-resident variables in conjunction with disk-resident control
information stored mostly in the Key File. It is extremely important that the
values of the KFAM variables never be altered by a user-supplied program,
except for the special cases discussed in Chapter 8 of this manual.
Compatible with the general convention of reserving all variables and arrays
in the range of Q through W for 1ISS-5 software (with the exception of SORT-4),
KFAM subroutines use variables and arrays (alpha and numeric) whose first
letter begins with Q, R, T, or V, including global variables and arrays @Q,
@T, and @V. These variables are reserved for KFAM-7 use and must be handled
as Read Only variables by user-supplied software.

Similarly, the 1IS8S-5 convention of reserving DEFFN' statements from
DEFFN'200 through DEFFN'255 for 1SS software applies to KFAM-7, which reserves
DEFFN'212 through '219 and DEFFN'230 through '239 (inclusive) for KFAM-7
subroutines. The need for user-supplied software to observe this convention
is especially important with global 2200MVP operation, where the calling
partition 1is searched for the corresponding DEFFN' statement before the
currently selected global partition is searched for the corresponding DEFFN'
statement.

197

Identification of KFAM Files

According to 2200 device table characteristics, each User File and each
Key File are identified by one slot, or file number, from #0 through #15. The
file number and its address are entered into the device table via a SELECT
statement within the Open subroutine for both the User File and Key File. The
User File number is specified in the DATALOAD and DATASAVE statements
incorporated into user-supplied software, whereas the Key File number is used
exclusively by KFAM subroutines.

Since a User File and Key File must be open simultaneously for indexed
record access to occur, a User File and its Key File are considered by KFAM to
be one KFAM file. The KFAM OPEN subroutine argument list includes the User
File number (used by KFAM record access subroutines to set the Current Sector
Address), the Key File number (used by most KFAM subroutines), and a unique
digit from 1 through 8, which uniquely identifies this User File/Key File;
this number is referred to as the KFAM ID number.

Since the KFAM ID number is specified as an OPEN subroutine argument,
subsequent references to KFAM subroutines need only include the KFAM 1ID
number, and not the User File's name, file number, disk address, and similar
Key File parameters.

If multiple Key Files are used to provide alternate key paths to the
same User File, each User File/Key File pair requires a different KFAM ID
number, the User File must have different file numbers for each User File/Key
File pair with DC mode access, each Key File must have different file numbers,
and other special considerations must be observed (see Section 7.4).

KFAM Subroutine Calling Sequences and DATALOAD/DATASAVE Statement Use

As described in Table 5-1, there are the following groups of KFAM-7
subroutines:

® The General Purpose subroutines are OPEN, CLOSE, RE-OPEN, and WRITE
RECOVERY INFORMATION.

e The Key Sequence Access subroutines are FINDFIRST, FINDNEXT,
FINDLAST, and FINDPREVIOUS.

® The Random Access subroutine is FINDOLD.

® The Add and Delete subroutines are FINDNEW, FINDNEW(HERE), and
DELETE.

e The Special Purpose subroutine is RELEASE.

For each KFAM file, the OPEN subroutine must be the first KFAM
subroutine called. All other subroutines require that the specified KFAM file
is already open. After access operations on a KFAM file are complete, the
CLOSE subroutine should be called promptly, since other stations may be
waiting to access that KFAM file. Once closed, that KFAM file can no longer
be accessed until the OPEN subroutine is called again.

198

The General Purpose and Special Purpose subroutines are called without
any associated DATALOAD or DATASAVE statements. These subroutines include
OPEN, CLOSE, RE~OPEN, WRITE RECOVERY INFORMATION, and RELEASE, none of which
pertain directly to record access.

The Key Sequence Access and Random Access subroutines provide record
access functions, as denoted by the prefix "FIND” in their names. Following
each successful record access subroutine call, KFAM resets that station's
Current Sector Address (for DC mode access), equates the KFAM variable T6 to
the relative sector address (for DA or BA mode access), and returns the record
number for blocked records in the KFAM variable Q. (See "Programming
Considerations for BA and DA Mode Access'" for more information.) With this
information, the user-supplied program executes a DATALOAD statement to read
the appropriate User File record. When records are to be updated, certain
considerations must be observed, as discussed later in this section. Record

access subroutines include FINDFIRST, FINDNEXT, FINDLAST, FINDPREVIOUS, and
FINDOLD.

The Add and Delete subroutines are used to perform the following
functions: (1) add a new User File record, (2) delete a User File record no
longer needed, and (3) change the key of an existing User File record. The
sequence in which these subroutines are used along with DATALOAD and DATASAVE
statements depends upon the function to be performed. Subroutines in this
group include FINDNEW, FINDNEW(HERE), and DELETE.

To add a new User File record, the FINDNEW subroutine is called,
followed by a DATASAVE statement. The FINDNEW subroutine locates the key in
the Key File and sets the Current Sector Address (DC mode) and variable Té
(BA, DA modes); the DATASAVE statement writes the record at the appropriate
position. With blocked records, special considerations are required (see
"Programming Considerations for Blocked Records').

To delete a User File record, the DELETE subroutine is called to remove
the key from the list of KIEs in the Key File and sets the Current Sector
Address and KFAM variable T6 to allow User File access. The record should be
flagged as deleted with a hexadecimal (HEX) FF value in the first byte of its
key. The deleted record 1is typically read using a DATALOAD statement, its
key's first byte is changed to HEX(FF), and the record is written into the
same sector using a DATASAVE statement. With DC mode access, a DBACKSPACE
statement is required between the DATALOAD and DATASAVE statements to offset
the automatic incrementing of the Current Sector Address by the DATALOAD
statement.

To update a record's key, the following subroutine and statement
sequence is required:

1. A FINDOLD subroutine 1s optionally executed to ensure the new key

does not already exist in the Key File. If found, this sequence is
aborted.

2. A DELETE subroutine is executed to remove the old key from the Key
File, and sets the Current Sector Address and KFAM variable Té6 to
the record location.

199

3. A FINDNEW(HERE) subroutine is executed to add the new key to the Key
File, without altering the User File record's address.

4. The record is read using a DATALOAD statement, the key value is
changed, and a DATASAVE 1is executed to save the updated record.
With DC mode access, a DBACKSPACE statement is executed between the
DATALOAD and DATASAVE statements to offset the automatic
incrementing of the Current Sector Address by the DATALOAD statement.

To wupdate a record without altering its key, any record access
subroutine may be wused to locate the appropriate record, and step 4 1is

performed except that any record's key may not be changed.

Programming Considerations for Blocked Records

When a file contains blocked records {(multiple records per sector),
special precautions are required whenever records are to be written, since a
DATASAVE statement writes over the entire sector, any valid data record
already written into that sector would be irretrievably lost.

In order to save two or more records -into the same sector, the argument
lists for those records must be strung together in a single DATASAVE statement
argument list. A DATALOAD statement with the same argument list can be used
to read the variables back into memory. A drawback of such an arrangement is
that it forces the programmer to work with all the records in a sector when
records are to be written.

When a KFAM record access subroutine is called, in addition to setting
the User File Current Sector Address to the appropriate sector (for DC mode
access) and setting KFAM variable T6 to the relative sector address (for DA,
BA mode access), KFAM accommodates blocked records by returning a variable Q,
whose value indicates the record within the sector to be processed. The value
of variable Q must never be changed by user-supplied software, but it can be
used as a subscript to determine those array elements containing the desired
record, for instance, A$(Q), B$(Q), and N(Q). With nonarray, contiguous
records, variable Q may be used to calculate the relative byte location of the
appropriate record.

Reading the file presents no problem since the programmer can use any of
the multiple records and ignore the others. To read each record, (1) the
appropriate KFAM record access subroutine is called, and (2) a DATALOAD
statement is executed.

However, writing one record requires that the entire sector be written
due to the 2200 disk data handling characteristics. A record may be written
either as a new data record added to the file or as an existing data record
whose contents have been updated.

200

When adding new records to a KFAM file, a new key is first added to the
Key File via a FINDNEW subroutine call. KFAM assigns each station number
executing a FINDNEW subroutine to a different sector, each of which contains
enough space for at least one record. Within each sector, KFAM assigns record
numbers (the variable Q) in ascending order beginning with 1. Only if FINDNEW
returns a value of Q=1, the programmer need not be concerned about overwriting
active records in that sector (since there are none); however, all inactive
records should be flagged with a hexadecimal FF in the first byte of the key.

The steps involved in writing new records into a file are as follows:

1. The FINDNEW subroutine is called, which adds a key to the Key File.
KFAM resets the User File Current Sector Address (and variable T6)
and returns the record number in variable Q.

2. 1f Q=1, the program need not read the sector; skip to Step 6.

3. To prevent overwriting wvalid records, a DATALOAD statement 1is
executed which reads all possible records from the sector into its
argument list. These records are saved along with the new record
when it is written.

4. Following the DATALOAD statement, the User File Current Sector
Address 1is automatically incremented by the system. With DC mode
access, a DBACKSPACE statement is executed to position the User File
Current Sector Address to the previous sector location.

5. The record to be added is equated to the appropriate array elements
by wusing variable Q as a subscript; for instance, A$=A$(Q):

B$=B$(Q): N=N(Q).

6. All inactive records must be flagged by equating the first byte of
each inactive record's key to HEX(FF).

7. The entire sector is then saved by a DATASAVE statement.

8. The record's key has been added to the Key File (Step 1), and the
User File now contains the record at the appropriate User File
location (Step 7). For an example of this procedure, refer to the
description of the FINDNEW subroutine in Section 7.12.

When updating blocked records, a similar procedure is necessary. A KFAM
record access subroutine (e.g., FINDOLD) is called, which sets the User File
Current Sector Address (and KFAM variable T6) and returns the record number in
variable Q. Unlike adding new records, the sector containing the record to be
updated always contains active records. Therefore, the entire sector 1is
always read using a DATALOAD statement, and a DBACKSPACE statement is then
executed with DC mode access. The appropriate array elements are updated and
the entire sector is then resaved using a DATASAVE statement. Care must be
taken to change only those variables which correspond to the record to be
updated.

201

Programming Considerations for BA and DA Mode Access

Because absolute sector addressing is used with BA and DA mode access,
the starting address of the file must be obtained by a LIMITS statement
inserted after the OPEN subroutine has been successfully executed, such as:

LIMITS T#U, N§, B, E, X

where: U = File Number, User File.

N$= User File Name.

B, E, X = variables set to receive User File starting sector, ending
sector, and number of sectors used.

Upon return, the value B should be saved. When B is added to the
record's relative sector address returned by a KFAM subroutine, variable T6,
the sum provides the absolute sector address necessary for the x value of the
DATALOAD BA statement shown in the example below:

DATALOAD BA T#U, (x,y) A$Q)

File Number User File.

where: U

X = T6+B (absolute sector address, numeric form).

If KFAM returns an error condition (Q$ not blank), relative sector
addresses returned in variables T6 and T4$ are not defined. (T4$ is simply
the value of Té and Q in hexadecimal (hex) form; however, the value of B must
be converted to hex form before adding T4$ and B, to produce a hex value of x.)

7.2 KFAM ACCESS MODES

There are four KFAM file access modes designed for efficient
multistation shared file operation. The chosen access mode can be changed
once file access is gained by calling the RE-OPEN subroutine. Each access
mode is listed in Table 7-1 with a description of record access conventions to
be followed, as well as those file access modes allowed and not allowed by
other stations attempting to access the file. Under the Record Access
Description column in Table 7-1, "read" and "write'" apply to both the User
File and the Key File. It is the user's responsibility not to update a file
opened in the Inquiry or Read Only access modes.

202

Table 7-1. KFAM Multistation Access Modes

ACCESS MODE

RECORD ACCESS
DESCRIPTION

DOES ALLOW

(OPEN SUCCESSFUL)

DOES NOT ALLOW
(ACCESS CONFLICT)

Inquiry (1)

Indicates this station
will read omly, but
other stations may
read or write.

User File sector
protection avail-
able. No updating
allowed.

Inquiry,

Read Only,

Shared

Exclusive

Read Only
(2)

Indicates this station
will read only, and
other stations may
read only. User

File sector protec-
tion does not apply.
No updating allowed.

Inquiry,
Read Only

Shared,
Exclusive

Shared (3)

Indicates this station
may read or write,

and other stations

may read or write.
User File sector
protection available.

Inquiry,
Shared

Read Only,
Exclusive

Exclusive

(4)

Indicates that only
this station has the
file open. Other
stations cannot access
this file. User

File sector protec-
tion does not apply.

None

Inquiry,
Read Only,
Shared,
Exclusive

Inquiry-and ‘Shared Access Modes

Inquiry and Shared access modes assume that another station may be updating
records and/or changing the Key File structure. Record protection 1is
available for use. Record protection is indicated by a protect flag argument
and 1is available for the following record access subroutines: FINDOLD,
DELETE, FINDNEW, FINDNEW(HERE), FINDFIRST, FINDLAST, FINDNEXT, FINDPREVIOUS.

203

NOTE:

The following subroutines require files they access to be
Opened in Shared or Exclusive mode: DELETE, FINDNEW,
FINDNEW (HERE) .

Other Access Modes

In the Read Only and Exclusive access modes, the Key File cannot be
changed by another station because (1) in the Read Only mode only reading is
allowed and (2) in the Exclusive mode only one station can access the KFAM
file. Record protection of the User File is ignored. This saves processing
time over the Inquiry or Shared modes and is made possible by the protection
of the KFAM file built into these access modes.

KFAM Utility Access Modes

Should it be necessary to run an application program simultaneously with
other application programs or with KFAM utility programs, some planning of
multistation file use may prove helpful. The following KFAM utility programs
access KFAM files in the Exclusive mode:

Build Key File

Reallocate File Space
Reorganize In Place
Reorganize/Rebuild Subsystem
Convert to KFAM-7

Reset Access Tables

Key File Recovery

Print Key File uses the Read Only access mode. Build Subroutine Module
hogs the disk during its execution.

7.3 GENERAL PROGRAMMING REQUIREMENTS

In addition to the calling sequences, access mode selection, and the
conventions necessary for Key File recovery and identification of KFAM files,
the following list of considerations should be 1ncorporated into KFAM
application programs.

1. Each KFAM-7 application program must contaln the KFAM-7 variables
from the module KFAM00O7. The array elements of the arrays on line
225 may be changed to any value from 1 through 8 to allow more than
3 KFAM files to be open at any one time (preset to 3). The KFAM-7
variables in KFAM0007 require about 1,000 bytes plus 87 bytes for
each KFAM file to be open. Also, if the user needs more than 30
files open per 2200MVP System, see Chapter 5, Section 5.7.

204

It is recommended that the user load KFAMO007 from the KFAM-7
diskette and edit line 225 as required before entering the program
text. The statement lines originating from KFAM00O7 should be saved
along with the user's program text and are thus incorporated into
the user's application program. The programmer should observe the
BASIC-2 language conventions applicable to COM and DIM statements
and may renumber the KFAMOOO7 statement lines if required.

With nonglobal application programs, both variables and KFAM
subroutines are contained in the application program.

Before opening any KFAM file, the variable S2 must be equated to the
station number currently in use. Station numbers may range from 1
through 16 and may be equated either by the program or by an
operator entry during ISS start-up.

Before calling any global KFAM-7 subroutine, the appropriate global
subroutine modules must be loaded and run (see Chapter 5, Section
5.7), and the application program must execute the following program
statement within the program and any associated overlays.

SELECT @PART "KFAM"

This program statement selects the global partition KFAM for this
user partition. If any other SELECT @PART statement 1is executed
afterwards within the user's application program (e.g., to reference
global variables stored in the Multibank version's KFAMCOM global
partition), the SELECT @PART "KFAM" statement must be re-executed to
reselect the global partition KFAM before any KFAM-7 subroutines are
called (only one global partition may be selected by each partition).

It is recommended that during program initialization, the user-
supplied program check 1if the global partition KFAM 1is running
before continuing program execution, for instance, via:

50 SELECT @PART "KFAM": ERROR $BREAK: GO TO 50

The $OPEN and $CLOSE statements are available to respectively
activate and deactivate hogging of a particular peripheral such as a
disk drive or a printer connected to the CPU. For example, because
a printer connected to the CPU may be accessible to multiple
partitions, the printout from one partition may be interspersed with
the printout £from another partition. To avoid this situation, a
partition should hog the printer ($OPEN) until printing has been
completed, and then release the printer hog ($CLOSE). Similarly, an
application program may take advantage of the CPU's programmable
interrupt feature to determine when a currently hogged printer (or
any other peripheral) 1is available and take advantage of its
availability.

205

10.

The user-supplied program should provide an error recovery procedure
that will close all open KFAM files or provide the operator with a
means of closing files. The ERROR or SELECT ERROR statements may be
used in conjunction with the ERR function to provide access to error
recovery routines which might be self-correcting and thereby avoid
the need to close KFAM files (especially for '"background'" user
partitions).

In the Shared access mode, the record protect option should be
implemented on a record if a DATASAVE will be executed on the record
following return from that subroutine. Updating records, adding new
records, and flagging deleted records all require that DATASAVE be
executed; therefore, the protect flag should be set for all of these
operations. Operations which only execute DATALOAD on the record
should not set record protection.

A DATASAVE DC END statement must not be used to write the END
control sector (following the last sector of live data records).
KFAM maintains the END control sector's position automatically in
the Key File's KDR and updates the END control sector's position in
the User File when the file is closed. A DATASAVE DC END would
destroy the User File access table and password. User-supplied

programs must never write trailer records of any kind into the User
File.

The KFAM application program, when accessing User File records, must
check for a return code of Q$="B", indicating that the record sought
is protected. On a Q$="B" condition, the application program, if
running in a 2200MVP, should execute the $BREAK statement before
reexecuting the subroutine. For example,

4230 GO TO 4250

4240 $BREAK 5 :REM WAIT FIVE "TURNS"

4250 GOSUB'237 (2,1):REM FINDNEXT

4260 IF Q$ = "B" THEN 4240: REM IF BUSY, WAIT AND RETRY

For 2200VP-resident programs, a delayed retry is recommended.

User-supplied programs must never make any assumptiomns about the
status of User File sectors other than those specifically returned
by a subroutine. For example, it 1is ©possible for the next
sequential record location, after that returned by a FINDNEW, to be
already occupied by a live record written by another station.

In general, a file should not be opened in Exclusive mode, except in
the following circumstances:

a. A time-related operation must take place with the file status

fixed as of the beginning of the operation (for example,
printing a report at the end of an accounting period).

206

11.

12.

13.

14.

b. If maximum file access speed is needed. When a file is open in

Exclusive mode, the KFAM subroutines can search the Key File
without concern for protected records.

c. As an altermative to disk hog mode use.

If the previous subroutine call set the protect flag and there may
be a long delay before the next KFAM subroutine call on that file,
application programs should execute the RELEASE subroutine.

One might consider any keyboard entry operation as a long delay and
execute RELEASE prior to the keyboard entry. Alternatively, a
Special Function key subroutine (i.e., use the RETURN or RETURN
CLEAR statement after the DEFFN' statement) that executes RELEASE
may be made available during all keyboard entry operations. The
operator would then be instructed to touch the specified Special
Function key if there is any delay prior to responding.

The CLOSE subroutine must be executed at the conclusion of
operations on any KFAM file. A Special Function key subroutine
might be made available to close a file at any time. The operator
should always have a procedure for closing the file available in the
event of program malfunctions or other disaster. (If the CPU's
power 1s turned off without closing the file, the access table
retains a notation for a '"phantom'" station; the Reset Access Tables
utility must be run.)

Similarly, it 1s recommended that KFAM subroutine calls involving
FINDNEW, FINDNEW(HERE), and DELETE immediately precede their
associated DATALOAD and/or DATASAVE statements. By reducing the
time 1in which an accident could occur; the probability of User

File/Key File incongruence or losing a record due to error or power
failure is also reduced.

The Multiplexed KFAM-7 version allows the option of hogging the
current key file's disk drive for this station. KFAM also maintains
a "Key File busy/free" flag in the KDR which ensures that only one
KFAM subroutine will be executed on any one Key File at any time.

If the programmer specifies the Key File disk drive hog, an
additional return code of "X" may indicate that, if the Key File hog
was requested, the Key File is currently busy (hogged) due to
another statiom. In this case, either a retry without hogging
requested or a delayed retry with hogging requested after at least a
200 ms. delay is recommended.

After calling any KFAM subroutine, the value of KFAM variable Q$
must be checked upon return. I1f Q$ does not return a blank,
unsuccessful subroutine execution occurred, or a special condition
was encountered, and the appropriate error or special condition

routine should be accessed. If Q$="B" on a record access
subroutine, a protected (busy) sector was encountered, and a delayed
retry is recommended. For other values of Q$, line numbers or other

means of isolating the probable cause might be displayed.

207

Using GOSUB' Statements and Argument Lists

The DEFFN' statement which marks each KFAM subroutine requires certain
parameter values to be passed from the GOSUB' statement which calls it.
Passed parameter values are assigned to certain variables within the
subroutine. The parameters (arguments) required are denoted in this manual as
"symbolic variables" (i.e., dummy variables) following the appropriate GOSUB'
statement. Symbolic variables are not the actual variables required in an
argument list. Instead, symbolic variables indicate whether a numeric or an
alphanumeric expression is required in place of the symbolic variable.

If a symbolic variable's name is numeric, a numeric expression such as a
number or a user-defined numeric variable or array is required in its place.
If a symbolic variable's name is alphanumeric, an alphanumeric expression such
as an alphanumeric literal (in quotes) or a user-defined alphanumeric variable
or array element is required in its place. This convention attempts to ensure
that an alphanumeric expression (argument) 1is not assigned to a numeric
variable in a subroutine, and vice versa.

Generally, the name chosen for a symbolic variable is the first letter
of the associated parameter's name. In the actual program, the programmer may
use any value or expression valid for use in a GOSUB' statement. Zeros in the
general statement represent parameters which are not used by KFAM; they
should be included as zeros in the GOSUB' statement.

For example, the general statement:
GOSUB'233 (1,P,A$,0)

may be written as:
GOSUB'233(1,P,K$,0)
GOSUB'233 (2,1,"A48-3029",0)
GOSUB'233(F1+1,0,STR(P1$,7,8),0)

etc.

The symbolic variable names and their meanings are described in Table
7-2.

208

Table 7-2.

KFAM Subroutine Argument Symbolic Variables

SYMBOLIC VARIABLE

MEANING

1 KFAM 1D number (usually 1-8,
CLOSE requires a negative KFAM ID number
for Secondary Key Files, -1 through -8).
Each KFAM User File/Key File open must be
assigned a unique KFAM ID number,
is a required argument for
subroutines.

K Device table file number assigned to the
Key File.

U Device table file number assigned to the
User File.

F Key File number (usually 1-9, although -1
through -9 1is valid for Secondary Key
Files) specified as the 6th character in
the Key File name (usually
during Initialize KFAM File).

A$ The record's key (alphanumeric).

N$ User File name.

A Access mode as described in Table
(1-4).

P$ File password, if any (usually assigned
during Initialize KFAM File).

P Protect flag. If P=0 or P=2,
protect this record. If P=1
protect this record. With
Multiplexed KFAM-7 version, P=2 or
indicates hold hog mode of the Key File's
disk drive.

Yxxx" Device address, Key File.

"yyy" Device address, User File.

209

Return Codes Q and Q%

Upon returning to the user program from the subroutines, the variables Q
and Q$ contain the following information:

Q returns the record position indicator for blocked files (i.e., files
with more than one record per sector). The record position indicator is a
numeric value which specifies the position of a desired record within a block.
For example, if Q=2, the key passed to the subroutine specifies the second
record in the block. For unblocked records, Q is returned as 1 and may be
ignored. Q 1is not defined following the OPEN, WRITE RECOVERY INFORMATION,
RELEASE, RE-OPEN, or CLOSE subroutines.

Q$ contains the completion return code. It indicates the result of the
particular operation. The possible values of Q$ and their meanings are
described in Table 7-3.

Table 7-3. KFAM Subroutine Q$ Return Codes

Q$ VALUE MEANING
blank The subroutine execution was successful.
"p" Duplicate key (attempting to add a
duplicate key to the file). The Key File
is unchanged. For OPEN User File not

found, OPEN issued to open file, or other
file disposition conflict.

"e" End of file (FINDNEXT), or beginning of
file (FINDPREVIOUS).

™" On an Open, the User File is not a
Multiplexed /Multistation File.

"N" Key not found (FINDOLD). Also '"null"
file.
ngt No more space, either for the User File

or the Key File, or 8 levels of index
have been exhausted attempting to add a

record to the file. The Key File 1is
unchanged. (FINDNEW and FINDNEW(HERE)
only.)

For an OPEN, this indicates too many
files open to accommodate opening this
file (global memory tables are full).

210

Table 7-3. KFAM Subroutine Q$ Return Codes (continued)

Q$ VALUE MEANING

""" Busy Signal. The User File record or
block of records being accessed has been
"protected" by another station.

A" Access Mode conflict (OPEN only). See
Table 7-1.

"p! Invalid password.

"X Improper <call to a KFAM subroutine,
(argument values erroneous, etc.). Also,

if the Key File hog was requested, the
Key File is currently hogged by another
station. A retry with hog requested
after a 200 ms. wait 1s recommended, or
an immediate retry without hog requested
may be performed.

I1f Qf is anything other than blank, the User File Current Sector Address
parameter and KFAM variables T6 and Q are undefined. Immediately upon return
from any of the subroutines, the user-supplied program should check Q$ for
possible error indications. For instance, Q$ " " indicates an error or
special condition.

The system assumes there are no programming errors in the wuser's
program. The KFAM subroutines can perform improperly and destroy a file if
the parameters supplied by the application program are erroneous. Therefore,
during the testing stage, it is recommended that the user keep a backup file
so that test data can be recovered if it is destroyed.

The subroutines check data errors and the kinds of errors likely to
occur during normal operation such as duplicate key, key not found, or no more
space. Errors resulting in Qf = "X", ERR P37, or other ERR codes may occur if
the global subroutine module, as generated in Build Subroutine Module, does
not contain all subroutines referenced by the user program. The following
errors, which are programming errors, may or may not be caught by the
subroutines:

Q$ Value
Error or ERR Code
KFAM ID number not an integer X
between 1 and 8. ERR P34
KFAM ID number is the same X

as ID number for a file
already open.

211

Q$ value

Error or ERR Code
File to be opened is already X

open.

Individual file numbers not ERR P57
integers between 0 and 15. ERR P34
Individual file number is X
duplicate of another file

number.

File name not in proper format, ERR D82
with 5th byte="F" and 6th ERR D84

byte a 0 (zero).

Key File number not an integer ERR X72
from 1 to 9.

File to be accessed has not X
been opened.

File names are not correct ERR D82
or do not exist on the disk ERR D84
platters specified.

7.4 GUIDELINES FOR MULTIPLE KEY FILE AND DUPLICATE KEY USE

Multiple Key Files can be maintained by user-supplied programs for a
single User File, if certain guidelines are observed. 1If different Key Files
index different key locations within each User File record, multiple key paths
can be used to access the User File records; for instance, in ascending key
sequence or by whichever key is known.

NOTE:

Multiple Key File use should be attempted only by advanced
programmers who have prior experience using KFAM-7.
Others should skip to Section 7.5. Advanced programmers
investigating multiple Key File and duplicate key use
should carefully read the information in this section
before designing a multiple Key File application program.
Refer to Table 6-1 before using a KFAM utility on a
Secondary Key File.

212

KFAM-7 Provisions for Multiple Key Files and Duplicate Keys

KFAM provides for multiple Key Files in the following ways:

1. The Initialize KFAM File utility and other KFAM-7 utilities allow a
Key File number from 1 through 9 to be specified. Typically, only
Key File number 1 is used unless multiple Key Files are present.

2. The KFAM-7 OPEN subroutine allows the same User File to be reopened
for multiple Key Files. The first Key File, the Primary Key File,
is opened along with the User File. For each subsequent Key File to
be open (each Secondary Key File), the OPEN subroutine argument for
the Key File number must be a negative digit, -1 through -9, to
indicate that the User File 1s to be reopened while opening the
specified Key File, as further described in Section 7.5. The
absolute value of Key File numbers used for the same User File must
be unique.

3. The KFAM-7 CLOSE subroutine allows a Key File (usually a Secondary
Key File) to be closed without closing the User File and writing the
END control sector and recovery information into the User File.
This option is specified by a negative KFAM ID number in the CLOSE
argument list. To close the Key File whose recovery information 1is
most important (usually the Primary Key File but never a Key File to
which new records have been added using FINDNEW(HERE)), a positive
KFAM ID number is used in the CLOSE argument list, which writes the
END control sector and recovery information into the User File, and
closes that Key File and the User File.

4. Sector (record) protection is supported for multiple Key Files with
the Single and Multiple Bank versions only.

5. The KFAM utilities Build Key File, Reorganize/Rebuild Subsystem, and
Key File Recovery support duplicate keys, as described in Chapter

6. Other utilities allow entry of a Key File number 1-9.

Functions Not Performed by KFAM-7 for Multiple Key Files and Duplicate Keys

The user who desires to maintain multiple Key Files must be aware of the
functions KFAM-7 does not perform and provide these functions 1in user
programs. Each User File/Key File pair requires a unique KFAM ID number.
Each Key File must have a unique file number; the User File must have a unique
file number for each KFAM ID number.

KFAM maintains separate global access table entries for each open Key
File, and each Key File is maintained independently of other Key Files,
regardless of whether they index the same User File.

KFAM-7 does not provide the following functions necessary for multiple
Key Files:

1. All Key Files are not updated simultaneously. Since each Key File
is independent of others and KFAM does not provide cross-Key File
updates, the wuser's program must update multiple Key Files by
calling a subroutine once for each Key File.

213

2. With the Multiplexed KFAM-7 versiom, sector (record) protection is
maintained independently for each Key File. The user's program must
employ its own record protection technique and might open the files
in the Exclusive mode to perform updates.

3. Recovery information can only be stored for one Key File. The Key
File closed with a positive KFAM ID number has its recovery
information stored in the User File by overwriting previously saved
recovery information; this is typically the Primary Key File.

4, After reorganizing the User File in primary key sequence or after
running the Key File Recovery utility, the Secondary Key Files must

be rebuilt using Reorganize/Rebuild Subsystem.

Opening Multiple KFAM Files

In a multiple Key File environment, the Primary Key File must be opened
first. A positive (normal) Key File number is specified in the OPEN argument
list for the Primary Key File.

For each Secondary Key File, OPEN is called with a negative Key File
number argument after the Primary Key File has been opened. The negative Key
File number causes the User File to be reopened (instead of opened).

An example of opening multiple Key Files follow:

100 GOSUB'230 (1,1,2,1,"KFAMF0O10",3,"D10","D10") :REM PRIMARY
110 GOSUB'230 (2,3,4,-2,"KFAMFO10",3,"D10","D10") : REM SECONDARY

Adding Records

In order to preserve the User File/Key File congruence needed to allow
access to User File records via multiple key paths in an on-line, real-time
environment, when a record is to be added to the User File, the keys
corresponding to each Key File must be added via KFAM subroutine calls. If a
secondary key which is not necessarily unique, the user must create the unique
key using the KFAM-7 key/pointer concatenation convention.

The primary key must first be added to the Primary Key File using the
FINDNEW subroutine. Upon return, the pointer (KFAM variable T4$) contains the
appropriate record location information for key/pointer concatenation. A
FINDNEW(HERE) call for each Secondary Key File is executed. If duplicate keys
are allowed, the keys must first be concatenated with the variable T4$. Use
of the FINDNEW subroutine for Secondary Key Files is not recommended, since
using FINDNEW(HERE) adds the key to the Secondary Key File and uses the sector
and record number preset in variable T4$; with FINDNEW, however, the sector
and record number returned by FINDNEW must be checked against the address and
record location returned in variable T4$ for the previous FINDNEW for the
Primary Key File. Using FINDNEW(HERE) is therefore recommended for adding
KIEs to Secondary Key Files. The User File record may be written after all
Key Files have been updated.

214

An example of adding a record to multiple Key Files follows. The
following variables are used: K1§ is the primary key, K2§ is a secondary key,
T4 is a KFAM variable for key length, T4$ is the KFAM variable for sector
address and record location (the pointer), and T5$() is an array containing
several KFAM variables where the array element is the KFAM ID number. At the
location STR(T5$(n),1,3), is the variable T4$ for the file with the KFAM ID
number of n, which must be preset before calling FINDNEW(HERE) for the
Secondary Key File. Statement line 220 below is only required if duplicate
keys are specified; this line uses the key length variable L as defined by the
user (without the three-byte printer).

200 GOSUB'233(1,1,K1$,0):REM FINDNEW, PRIMARY KEY FILE

210 REM SAVE RECORD USING DATASAVE

220 STR(K2$,L+1,3)=T4$:REM SETUP UNIQUE KEY, K2§

230 STR(T5$(2),1,3)=T4$:REM PREPARE SECOND FILE

240 GOSUB'234(2,1,K2$,0):REM FINDNEW(HERE), SECONDARY KEY FILE

Deleting Records

Deleting records requires that DELETE be called first for the Primary Key
File, and then called for each Secondary Key File. After calling DELETE for
all Key Files, the deleted record should be flagged with HEX(FF) in the first
byte of each key (or the user may flag the entire record as ALL(HEX(FF)) using
the ALL function). All variables are KFAM variables except variable L, the
key length (not including the three-byte pointer).

300 GosuB'231(1,1,K1$):REM DELETE, PRIMARY KEY FILE
310 STR(K2$,L+1,3)=T4$:REM SETUP UNIQUE KEY, K2§
320 GOSUB'231(2,1,K2$):REM DELETE, SECONDARY KEY FILE

Locating Random Records

If the primary key associated with a record is known, the record location
can easily be obtained by calling the FINDOLD subroutine. If only a secondary
key is known and it is unique, the record location may easily be returned by
calling FINDOLD. However, if the secondary key is a duplicate key, the lowest
possible pointer (HEX(000000)) must be concatenated onto the secondary key
before FINDOLD is called. FINDNEXT returns the position of the secondary key
with the lowest pointer value. The record may be read using a DATALOAD
statement. If it is not the desired record, FINDNEXT can be repeatedly called
and read to locate the next highest key value. When the key value contained
in KFAM variable T7$ changes (excluding the last three bytes), indicating a
new secondary key value has been encountered and the record just located need
not be read.

215

400 STR(K2$,L+1,3)=HWX (000000) :REM LOWEST POINTER

410 GOSUB'232 (2,1,K2$) :REM FINDOLD (SECONDARY)

420 IF Q$="X" OR Q$='""B" THEN 600 :REM TEST RETURN CODE

430 GOSUB'237(2,1) :REM FINDNEXT (SECONDARY)

440 IF Q$="E" THEN 490 :REM TEST FOR LAST RECORD

450 IF Q$="X" OR Q$b="B" THEN 620 :REM TEST RETURN CODE

460 IF STR (K2$,1,L) <> STR (T75,1,L) THEN 490 :REM TEST IF NEW KEY
470 REM PROCESS RECORD

480 GOTO 430 :REM FIND NEXT RECORD

490 REM PERFORM NEXT TASK, SUCH AS INPUT NEXT KEY

600 IF Q$ <> "B" THEN 640 :REM TEST IF BUSY

610 $BREAK 5: GOTO 410 :REM BUSY, RETRY

620 IF Q% <> "B" THEN 640

630 $BREAK 5: GOTO 430

640 REM ERROR HANDLING. SIGNAL, ERROR, POSSIBLY CLOSE FILES

Sector Protection with Multiple Key Files

Sector protection with multiple Key Files allows only the same station
number protecting a sector to access that sector, regardless of whether the
sector is protected for one or more KFAM files (KFAM ID number) by that
station. To release sector protection, the RELEASE subroutine should -be
called once for each KFAM ID number accessing that sector.

Recommendation for Protecting Sectors with the Multiplexed KFAM-7 Version

Since the Multiplexed KFAM-7 version does not support sector protection
when multiple Key Files are used, the user must implement a sector protection
scheme. A list of protected sectors in a disk file can be maintained, or a
flag indicating whether that record is protected might be provided for in each
User File record. Before the sector is protected or while the flag is being
set, either the disk or program execution (2200MVP only) should be hogged.
Alternatively, updates might be performed using the Exclusive access mode.

Other Record Access Operations

Record access operations, such as reading a file in ascending logical key
sequence, require that only the Key File whose key path is to be used be
opened. Any operations involving updating records may require DELETE and
FINDNEW(HERE) calls for each Key File whose key was changed when the record
was updated. As with any KFAM file, any operations affecting the User
File/Key File congruence require special considerations to preserve the
congruence, as noted in this section.

216

Closing Multiple KFAM Files

Since there is only one next-to-last sector in the single User File, Key
File recovery information may be saved for only one Key File, wusually the
Primary Key File, and always the Key File on which FINDNEW is used to add

records. A negative KFAM 1D number used as an argument indicates that
recovery information is not to be saved for this Key File, and is typically
used for all Secondary Key Files. Since records added to the Secondary Key

File should be indexed via FINDNEW(HERE) calls which do not update the control
information about the END location, the END control sector otherwise written
during CLOSE would overwrite valid User File records in the first User File
sector. When a negative KFAM ID number argument is present, the END control
sector is not written. The Primary Key File is closed with a positive KFAM ID
number, which writes the END control sector and recovery information into the
User File.

7.5 OPEN (DEFFN'230)

The OPEN subroutine is used to open a User File and its companion Key
File which were previously created by Initialize KFAM File. OPEN must be
executed prior to execution of any other KFAM subroutine. In the OPEN
subroutine, a pair of modified ISS Screen/Disk Open subroutines are executed
to open the specified User File and Key File, and a SELECT statement 1is
executed to associate each file number with its corresponding disk address.
OPEN assigns a specified KFAM ID number to the pair of files. If multiple Key
Files are to be used, the primary Key File is opened first, and each Secondary
Key File is then opened with a negative Key File number (argument).

To call the OPEN subroutine, the following statements are necessary
within the user's program (note the presence of symbolic variables):

S2 = station number (1-16)
GOSUB'230 (I,K,U,F,N$,A,P$, "xxx", "yyy")

For The GOSUB' Statement

"I" is the KFAM ID number (1-8) is to be associated with the newly opened
file, and must be used to reference the specified User File and Key File
in subsequent KFAM subroutines.

"K" is the file number to be assigned to the Key File, 1 through 9,
except for Secondary Key Files where a negative number (-1 through -9)

must be specified. The absolute value of the Key File numbers used must
be unique.

"U" is the file number to be assigned to the User File.

"F" is the Key File number (the sixth character in the Key File name).
If only one Key File is used to index a single User File, it may be an
integer from 1 to 9; it is normally 1. If multiple Key Files are to be
used, the Primary Key File has a positive Key File number (1-9), and each
Secondary Key File is opened with a negative Key File number (-1 through
-9). For any User File, the absolute value of F must be unique.

217

"N$" is the name of the User File to be opened. The Key File name need
not be specified; it is built from the User File name and the Key File
number by KFAM itself,

“A'" is the Access Mode as described in Table 7-1:

- Inquiry
Read Only
Shared
Exclusive

LW N~
[

"p§" is the file password assigned to this file (usually during
Initialize KFAM File).

"xxx" is the disk device address, Key File. Hog mode addresses are
invalid.

"yyy" 1is the disk device address, User File (required by KFAM-7 in
1SS-5). Hog mode addresses are invalid.

NOTE:

The User File device address is a required argument
value. With multiple Key Files, argument values for I, K,
U, and F must be unique.

Return Codes for QOPEN

Q =" " (space) if the subroutine execution was successful.

Q = "X" if the station number (S2) is not 1-16, if the file is already
open, if there is a duplicate file number, if the access mode is
invalid, if the Key file is not found, or if the disk device
address is illegal (hog mode addresses are invalid).

Q = "D" if the named User File is a program file, scratched, or not
found.

= "M" if the named User File is not a Multiplexed/Multistation file.
= "P" if the password is invalid.

= A" if there is an access mode conflict (see Table 7-1).

o0 L0 L0
)

= "s" if the internal global table of open files is full (Single Bank
and Multiple Bank versions only). See Chapter 8, Section 8.1,
global array @T$(), for additional information.

ERR P34 KFAM ID number not 1-8.

218

ERR P57 File # not 0-15.

ERR X71 Key File Number not 0-9 or -1 through -9 (0 is invalid but not
checked).

Changing Access Modes

To change a KFAM file's access mode, the station may either call the
RE-QPEN subroutine or close the file and open it with a different access mode.

7.6 DELETE (DEFFN'231)

The DELETE subroutine deletes from the Key File a specified key and its
associated record location pointer. The Current Sector Address for the User
File 1is set to the 1location of the record whose key has been deleted; for
blocked records, the variable Q indicates the record within the sector (KFAM
variable Té6 is set for DA and BA mode access use). The record itself in the
User File 1is not altered or removed. Thus, although the record is not
physically removed from the User File, its key entry is removed from the Key
File, and the record can no longer be accessed through KFAM. Shared or
Exclusive access 1s required. This subroutine's execution subtracts one
record from the record count.

The calling sequence for DELETE is:
GOSUB' 231 (I, P, A$)

where: '"I" is the KFAM ID number assigned to the file in an OPEN
subroutine.

"P" is the record protect option. P = to 1 or 3 indicates
record protection; P = to O or 2 indicates no record
protection. With the Multiplexed KFAM-7 version, P = 2 or 3
also indicates hog request for the Key File's disk drive.

"A$" is the key of the record that is to be deleted from the
file.

DELETE Return Codes

Q$ = "B" busy signal. The record sought 1is protected by another station.

Q$ = "N" if the key passed cannot be found in the Key File.

Q$ = "X" for file not open, invalid key containing HEX(FF), or access
mode not Shared or Exclusive. Also, if the Key File hog was
requested, the Key File's disk drive is hogged; retry after a 200 ms.
wait.

Q$ = " " (space) if the subroutine executed properly.

219

After calling a DELETE subroutine and checking for 1its successful
completion, the application program should flag the deleted record in the User
File by changing the first byte of the deleted record's key to hex (FF). Note
the use of the DBACKSPACE statement in statement line 4100; this statement 1is
necessary to access the record just deleted because the DATALOAD DC
statement's execution causes the Current Sector Address to be automatically
increased by one sector. For unblocked files, this can be done as follows:

Suppose the statements:

DIM A$15, H(4,4), J(6)
and

DATA SAVE DC #1, A$, uH(), JO)
define a type '"N" record where A$ is the key field.
The DELETE and flag operation might look like this:

4040 GOTO 4060

4050 $BREAK 5:REM IF BUSY, WAIT BEFORE RETRY (2200MVP)
4060 GOSUB'231 (1, 1, A$): REM DELETE

4065 IF Q$ = '"B" THEN 4050:REM BUSY TRY AGAIN

4070 IF Q$ <> " " THEN 6000:REM UNSUCCESSFUL

4080 DATA LOAD DC #1, A$, H(O), JO)

4090 STR(A$,1,1)=HEX(FF):REM HEX(FF) IN 1ST BYTE OF KEY
4100 DBACKSPACE #1,1S:REM RECORDS ARE 1 SECTOR LONG
4110 DATA SAVE DC #1,A$,H(),J()

6000 STOP "DELETE UNSUCCESSFUL"

The space occupied by deleted records in the User File can be
immediately reused; this normally requires the use of special techniques and
the FINDNEW(HERE) subroutine. For 1information on these techniques, see
Section 7.9 and Chapter 8, Section 8.5.

7.7 FINDOLD (DEFFN'232)

The FINDOLD subroutine is used to locate a desired record in the User
File. Following subroutine execution, the Current Sector Address for the User
File is set to the sector address of the record whose key was passed (KFAM
variable Té 1is set for DA and BA mode access use). For blocked records,
variable Q indicates the record within the sector. The record can then be
read with a DATALOAD statement. The calling sequence is:

GOSUB'232 (I, P, A$)

where: "I" is the KFAM ID number assigned to the file in the OPEN
subroutine.

220

"P" is the record protect option. P = 1 or 3 indicates record
protection; P = 0 or 2 indicates no record protection. With the
Multiplexed KFAM-7 version, P = 2 or 3 also indicates Key File
disk drive hog request.

"A$" is the key of the record being sought.

FINDOLD Return Codes

Q$ = "B" Busy Signal. The record sought is protected by another station.

Q$ = "N" if the specified key is not located in the Key File.

Q$ = "X" for file not open. Also, if the Key File hog was requested,
the Key File's disk drive is hogged; retry after a 200 ms. wait.

Q$ = " " ("space") if the key was located successfully.

7.8 FINDNEW (DEFFN'233)

The FINDNEW subroutine is used to enter a new key in the Key File and to
find a location for the new record in the User File. FINDNEW enters the key
(argument) into the Key File and then sets the Current Sector Address for the
User File to an available User File location for writing a new record (KFAM

variable T6 is set for DA and BA mode access use). For blocked records,
variable Q indicates the record within the sector. Refer to Section 7.1 for
precedures involved with adding records. Shared or Exclusive access 1is

required. This subroutine adds one record to the record count.

GOSUB'233 (1,P,A$,0)

where: "I" 1is the KFAM ID number assigned to the file in an OPEN
subroutine.
"p" is the record protect option. P = 1 or 3 indicates record

protection; P = 0 or 2 indicates no record protection. With the
Multiplexed KFAM-7 version, P = 2 or 3 also indicates Key File
disk drive hog request.

"A$" is the new key to be entered in the Key File.

"0" (zero) is required in the argument list.

FINDNEW Return Codes

Q$ = "B" Busy Signal. The record (or block) sought is protected by
another station.
Q$ = "D" if the key specified is a duplicate of one already in the Key

File.

221

"S$" if there is no space in the User File for another record or in
the Key File for another key entry, or 1if eight index levels have
been exhausted,

Q$

Q6 = "X" if file not open, invalid key of HEX(FF) or zeros, or if access
mode is not Shared or Exclusive. Also, if the Key File hog was
requested, the Key File's disk drive 1is hogged; retry after a 200 ms.
wait.

Q6 =" " (space) if the key was entered without difficulty.

NOTE:

The User File location returned by FINDNEW is unoccupied by
live data, but is not necessarily at the end of all live
data in the User File.

Key File sectors (KIRs) are normally split 50/50, where the full KIR is
split into two KIRs, each containing a nearly equal number of KIEs. KFAM
provides an adjustable '"bias" in the form of the user partition KFAM variable
V8, which can range from .2 to .8. KFAM sets the bias at .5 when each file is
opened. An experienced programmer may set the bias following each Open for
subsequent FINDNEW or FINDNEW(HERE) operations; the bias affects all KFAM
files accessed by that partition. The variable V8 may be set to any value
between .2 and .8. Records entered in ascending key sequence order are packed
best at .2, in random order at .5, and in descending key sequence at .8. Also
see Chapter 8, Section 8.8.

The following example illustrates the procedure for adding a record to

type A blocked files following FINDNEW. Note the test on Q before the
DATASAVE, and that the protect flag is set by FINDNEW.

222

4100 INPUT "KEY FIELD", A$:REM OPERATOR ENTERS KEY

4120 GOSUB'233 (1,1,A$,0) :REM FINDNEW

4130 REM TEST COMPLETION CODE

4135 IF Q$ = "B" THEN 4120 :REM BUSY TRY AGAIN
4140 IF Q§ = "D" THEN 5010 :REM DUPLICATE KEY?
4150 IF Q6 = "S" THEN 5050 :REM FILE FULL?

4160 IF Q§ <>'" " THEN 5060 :REM ERROR?

4170 REM NEW BLOCK OR OLD?

4180 IF Q = 1 THEN 4220 :REM FIRST RECORD IN NEW BLOCK?
4185 REM READ EXISTING RECORDS IN BLOCK

4190 DATA LOAD DC #2, A$(), B$(), c(), D()

4200 DBACKSPACE #2, 1S: REM BACKSPACE AFTER DATA LOAD
4210 REM ASSIGN RECORD VALUES TO PROPER ARRAY ELEMENTS
4220 A$(Q) = A$

4230 INPUT "SECOND FIELD", B$(Q)

4240 INPUT "THIRD FIELD", C(Q)

4250 INPUT "FOURTH FIELD", D(Q)

4260 REM SAVE BLOCK IN USER FILE

4270 DATA SAVE DC #2, A$(),B$(),c(),D()

5000 REM ERROR ROUTINES

5010 STOP "KEY ALREADY IN KEY FILE"

5050 STOP "KEY FILE OR USER FILE IS FULL"

5060 STOP "FINDNEW ERROR"

7.9 FINDNEW(HERE) (DEFFN'234)

The FINDNEW(HERE) subroutine can be implemented (1) to reuse the User
File space occupied by deleted records, (2) to change the value of the key of
an existing record, or (3) for adding records to Secondary Key Files. It adds
a new key to the Key File. Unlike FINDNEW, however, the User File location
which it associates with that key, is the User File location returned by the
last KFAM subroutine call, which must be the Delete subroutine unless multiple
Key Files are used. To use FINDNEW(HERE) to reuse the User File space
occupied by deleted records, see Chapter 8, Section 8.5. An 1illustration of
the use of FINDNEW(HERE) to change the value of the key of an existing record
is shown below. Shared or Exclusive access is required. This subroutine adds
one to the record count.

The calling sequence is:
GOSUB'234 (1,P,A$,0)

The FINDNEW(HERE) argument list is identical to the argument list for
FINDNEW (see Section 7.8).

FINDNEW (HERE) Return Codes

Q$ = "B" Busy Signal. The record or block sought is protected by
another station.
Q$ = "X" if file not open, invalid key HEX(FF), if pointer (T4$) is out

of bounds, or if file not opened with Shared or Exclusive access.
Also, if the Key File hog was requested, the Key File's disk drive
is hogged; retry after a 200 ms. wait.

223

Q$ = "D" if the specified key is a duplicate of a key already in the Key

File.

Q$ = "S" if there is no space in the Key File for another entry, or if 8
index levels have been exhausted.

Q$

" " (space) if the subroutine executed properly.

The following example illustrates the use of FINDNEW(HERE) following
DELETE:

5000 GOSUB'231 (1,0,"ABCD") :REM DELETE "ABCD" FROM KEY FILE

5005 IF Q = "B" THEN 5000:REM BUSY
5010 IF Q$ = "X" THEN 5130
5040 IF Qb = "N" THEN 5150

5050 GOSUB '234 (1,1,"EFGH",0) :REM PROTECT, INSERT "EFGH" IN KEY FILE
5060 IF Q§ = "X" THEN 5140

5070 IF Q$ = "D" THEN 5160

5075 IF Qb ="s" THEN 5170

5080 DATALOAD DC #2,A$,B$§,C$,N

5090 A$ = "EFGH" :REM CHANGE KEY TO "EFGH"

5100 DBACKSPACE #2, 18

5110 DATASAVE DC #2 ,A$,B$,C$,N

5115 GOSUB'239(1) :REM CLOSE FILES

5120 END

5130 STOP "ERROR IN 'DELETE' CALLING SEQUENCE"

5140 STOP "ERROR IN 'FINDNEW(HERE)' CALLING SEQUENCE"
5150 STOP "KEY NOT FOUND"

5160 STOP "DUPLICATE KEY"

5170 STOP "NO SPACE"

In the preceding example, a single Key File's key is updated. In the
case of multiple Key Files where a record's key is being added to a Secondary
Key File, extreme care is required if the KFAM ID number has changed. If the
last KFAM subroutine call preceding the FINDNEW(HERE) call was for a different
KFAM 1D number, immediately before calling FINDNEW(HERE), set STR
(T5$(i),1,3)=T4$, where i is the KFAM ID number to be accessed during the
FINDNEW(HERE) call. See Chapter 8, Section 8.5 for additional information.

Key File sectors (KIRs) are normally split 50/50, where the full KIR is
split into two KIRs, each containing a nearly equal number of KIEs. KFAM
provides an adjustable "bias" in the form of the user partition KFAM variable
V8, which can range from .2 to .8. KFAM sets variable V8 to .5 when each file
is opened. Following each Open, an experienced programmer may set it to any
value in the range .2 to .8 for subsequent FINDNEW or FINDNEW(HERE)
operations; the bias affects all KFAM files accessed by that partition.
Records entered in ascending key sequence order are packed best at .2, in
random order at .5, and in descending key sequence at .8, Also see Chapter 8,
Section 8.8.

224

7.10 FINDFIRST (DEFFN'235)

The FINDFIRST subroutine sets the User File Current Sector Address to
the first record in logical key sequence (KFAM variable T6 is set for DA and

BA mode access use). For blocked records, variable Q indicates the record
within the sector. A DATALOAD statement can be used after FINDFIRST to read
the record. In order to access a KFAM file in ascending key sequence,

FINDFIRST is called followed by FINDNEXT calls until the end of file 1is
reached (FINDNEXT return code Qf = "E"). The calling sequence is:

GOSUB'235 (1I,P)

where: "I" is the KFAM ID number assigned to the file in an OPEN
subroutine.
"P" is the record protect option. P = 1 or 3 indicates record

protection; P = 0 or 2 indicates no record protection. With the
Multiplexed KFAM-7 version, P = 2 or 3 also indicates Key File
disk drive hog request.

FINDFIRST Return Codes

Q$ = "B" Busy Signal. The record sought is protected by another stationm.

Q$ = "N" if the User File contains no records.

Q$ = "X" if file not open. Also, if the Key File hog was requested, the
Key File's disk drive is hogged; retry after a 200 ms. wait.

Q$ = " " (space) if the subroutine executed properly.

7.11 FINDLAST (DEFFN'236)

The FINDLAST subroutine sets the User File Current Sector Address to the
last record in logical key sequence (KFAM variable T6 is also set for DA and
BA mode access use). For blocked records, the variable Q is set to the record
position within the sector. A DATALOAD statement can be executed following
FINDLAST to read the record. 1In order to access a KFAM file in descending key
sequence, FINDLAST 1is called followed by FINDPREVIOUS calls until the
beginning of the file is reached (FINDPREVIOUS returns Q$="E"). The calling
sequence is:

GOSUB'236 (1,P)

where: "I" is the KFAM ID number assigned to the file in an OPEN
subroutine.
"p" is the record protect option. P = 1 or 3 indicates record

protection; P = 0 or 2 indicates no record protection. With the
Multiplexed KFAM-7 version, P = 2 or 3 also indicates Key File
disk drive hog request.

225

FINDLAST Return Codes

Q$
Q$

"B" Busy Signal. The record sought is protected by another station.

"N" for a null file.

Q$ = "X" if file not open. Also, if the Key File hog was requested, the
Key File's disk drive is hogged; retry after a 200 ms. wait.

Q$

(space) if the subroutine executes normally.

7.12 FINDNEXT (DEFFN'237)

The FINDNEXT subroutine sets the User File Current Sector Address to the
record immediately following (in logical ascending key sequence) the last
record accessed by KFAM (KFAM variable T6 is also set for DA and BA mode
access use). For blocked records, the variable Q indicates the record within
the sector.

FINDNEXT must be preceded by a FINDNEXT, FINDFIRST, FINDOLD, FINDNEW,
FINDNEW(HERE), DELETE, or FINDPREVIOUS subroutine call executed on the
specified KFAM file, which did not have a return code of Q$="X" or Q$="E".
For instance, when preceded by FINDFIRST, repeated FINDNEXT calls allow
ascending key sequence access to the entire file. If FINDNEXT is executed
following a FINDOLD call that returned Q$="N" (key not £found), FINDNEXT
locates the record whose key logically follows the key passed via FINDOLD. If
FINDNEXT returns Q$="B" (busy signal), a subsequent FINDNEXT accesses the same
(previously busy) record. A DATALOAD statement is executed following FINDNEXT
to read the record. The calling statement is:

GOSUB' 237 (I,P)

where: "I" is the KFAM ID number assigned to the file in an OPEN
subroutine.
"pP" is the record protect option. P = 1 or 3 indicates record

protection; P = 0 or 2 indicates no record protection. With the
Multiplexed KFAM-7 version, P = 2 or 3 also indicates Key File
disk drive hog request.

FINDNEXT Return Codes

Q$ "B" busy signal. The record sought 1is protected by another
station. A retry 1s recommended. FINDNEXT goes back to the
original key, so that the same record that caused the busy signal

is accessed on a retry.

Qb = "X" if file not open or if next record not defined because previous
operation returned an error condition (Q$ not blank). Exception:
FINDOLD returning Qf = "N" may be followed by FINDNEXT. Also, if
the Key File hog was requested, the Key File's disk drive 1is
hogged ; retry after a 200 ms. wait.

226

Q$ = "E" if the previous reference was to the last record in logical key
sequence (end of file).

Otherwise, Q$=" " (space).

7.13 TFINDPREVIOUS (DEFFN'212)

FINDPREVIOUS is the same as FINDNEXT except that it finds the previous
record in the file, in descending key sequence.

FINDPREVIOUS must be preceded by a FINDPREVIOUS, FINDLAST, FINDOLD,
FINDNEW, FINDNEW(HERE), DELETE, or FINDNEXT subroutine call executed on the
specified KFAM file, which did not have a return code of Q$="X" or Q$="E".
For instance, when preceded by FINDLAST, repeated FINDPREVIOUS calls allow
descending key sequence access to the entire file. If FINDPREVIOUS 1is
executed following a FINDOLD call that returned Q$='"N" (key not found),
FINDPREVIOUS locates the record whose key logically precedes the key passed
via FINDOLD. If FINDPREVIOUS returns Q$="B" (busy signal), a subsequent
FINDPREVIOUS accesses the same (previously busy) record.

The calling sequence is:

GOSUB'212 (I1,P)

where: "I" is the KFAM ID number assigned in an OPEN subroutine.
"p" is the record protect option. P = 1 or 3 indicates record
protection; P = 0 or 2 indicates no record protection. With

the Multiplexed KFAM-7 version, P = 2 or 3 also indicates Key
File disk drive hog request.

FINDPREVIOUS Return Codes

Q$

"X" file not opened or a current key is not defined because of no
previous access or a prior error condition. Also, if the Key File
hog was requested, the Key File's disk drive is hogged; retry after
a 200 ms. wait.

Q$

"E" end of file. 1In this case, the dummy key marking the beginning
of the file has been reached.

Q$ “B" busy signal. The User File sector found has been protected by
another station. In the case of a busy signal, FINDPREVIOUS goes
back to the original key, so that a subsequent FINDPREVIOUS will

find the same record again that caused the busy signal.

Q$

"pblank" indicates successful completion.

7.14 RELEASE (DEFFN'238)

The RELEASE subroutine turns off the record protect flag previously set
by the calling station.

227

Any call to a KFAM subroutine for a particular file turns off any
protect flag for that file. RELEASE should be used only if there may be a
long delay before the next KFAM subroutine is called, which automatically
releases the protected record.

Where multiple Key Files are used, the RELEASE subroutine must be called
once for each KFAM ID number.

The calling sequence 1is:
GOSUB'238 (1)

where: "I" is the KFAM ID number assigned to the file in an OPEN
subroutine.

RELEASE Return Codes

"X" if file not open.

Q$
Q$

" " (space) after successful execution.

7.15 RE-OPEN (DEFFN'213)

RE-OPEN changes the access mode of a currently open file.
The calling sequence is:
GOSUB'213 (1,A,P$)
where: "I" is the KFAM ID number.
"A" is the new access mode (1, 2, 3, or 4).
"P$" is the file password.

RE-OPEN Return Codes

Q$ = "A" if the file could not be opened in the new access mode because
of an access mode conflict (see Table 7-1). It remains open in the
previous access mode.

Q$ = "P" if the password (P$) was invalid.

Q$ = "X" if file not open or if the access mode is invalid.

7.16 WRITE RECOVERY INFORMATION (DEFFN'214)

WRITE RECOVERY INFORMATION writes the END control sector and the
recovery information (most of the KDR) to the next-to-last sector of the User
File. Whenever a FINDNEW subroutine is called, the recovery information
should be rewritten either automatically when the CLOSE subroutine is called
or via WRITE RECOVERY INFORMATION before closing a KFAM file. This operation

228

is normally done when the file is closed if using the KFAM0107, KFAM0207, or
KFAM0307 module or if the Close with Recovery Information option was chosen
during Build Subroutine Module. The file remains open upon completion.

The calling sequence is:

GOSUB'214 (1)

where: "I" is the KFAM ID number.

WRITE RECOVERY INFORMATION Return Codes

"X" if file not open.

Qs

Qb

"blank" if executed successfully.

7.17 CLOSE (DEFFN'239)

The CLOSE subroutine is used to close a currently open User File and its
companion Key File. The KFAM ID number assigned to a closed file can then be
reassigned to another file in an OPEN subroutine. Also, the file numbers
assigned to a User File and Key File can be reassigned. CLOSE alters all
access table information to indicate that the station no longer has the file
open. The CLOSE subroutine also saves certain c¢ritical information when
operating in the Shared or Exclusive access modes for the Key File Recovery
utility, unless the Close with Recovery Information option was not included
when (and if) Build Subroutine Module was used. When using multiple Key
Files, the primary Key File should be closed with a positive KFAM ID number,
while all Secondary Key Files are closed with a negative KFAM ID number (see
Section 7.4). The calling sequence is:

GOSUB' 239 (I)

where: "I" 1is the KFAM ID number assigned to the file in an OPEN
subroutine. Following execution of CLOSE, this number can no
longer be used to access the User File and its associated Key
File unless the file is reopened. A negative value of argument
I indicates the END control sector and recovery information are
not to be written.

CLOSE Return Codes

Qs

"X" if file not open.

" " (space) if successful.

Q$

229

NOTE:

CLOSE must be executed promptly at the conclusion of file
access operations. If multiple Key Files are used, the
file in which FINDNEW is used to add records must be closed
with a positive KFAM ID number; this 1is typically the
Primary Key File.

7.18 NON-KFAM FILE SUBROUTINES INCLUDED WITH KFAM-7

Please note that the following subroutines are described in Chapter 3 of
this manual. These subroutines are available for cataloging KFAM files or for
use with non-KFAM data files. Similar access mode capabilities are provided.
These subroutines include the following:

DEFFN'217 OPEN a new or existing file.
DEFFN'218 Write an END record in a file.
DEFFN'219 CLOSE an open file.

230

CHAPTER 8
KFAM-7 TECHNICAL INFORMATION AND ADVANCED PROGRAMMING

8.1 KEY FILE AND MEMORY-RESIDENT CONTROL INFORMATION

The first sector of the Key File contains the KDR, which is rewritten
when a FINDNEW, FINDNEW(HERE), DELETE, or CLOSE subroutine is executed. The
remaining sectors contain as many KIRs, as are necessary to index the User
File up to the maximum of eight index levels. An END (end-of-data) control
sector and a catalog trailer (end-of-file) control sector follow the last KIR.

Key Descriptor Record (KDR)

KDR contents occupy the first sector of the Key File, as well as the
next-to-last sector (dummy END control sector) of the User File (bytes 3-146,
T$2()). These two sectors are identical except for variable V, which is
always zero (0) in the KDR on disk, unless the Multiplexed KFAM-~7 version is
in use. With the Multiplexed KFAM-7 version, the variable V serves as a Key
File busy/free flag with the following possible values:

file not busy

busy, FINDNEXT

busy, FINDPREVIOUS

busy, FINDNEW(HERE)

busy, FINDNEW

busy, any other subroutine.

wowon

SPONNDDEHO

The value of variable V stored in memory (for all versions but the
Multiplexed KFAM-7 version), indicates the subroutine being executed (except
for its use as a working variable during OPEN) as follows:

busy, FINDNEXT

busy, FINDPREVIOUS

default, FINDOLD, FINDFIRST, FINDLAST, RELEASE
= RE-OPEN, WRITE RECOVERY INFO, CLOSE

busy, FINDNEW(HERE)

busy, FINDNEW

[« IRV, RN L o
i

T$(3) 48 contains KDR information and is packed as described in Table

231

Table 8-1.

The KDR Control Information

START

LENGTH

$UNPACK
VARIABLE

IMAGE

CODE

DESCRIPTION

16

Indicates completion codes per
station (1-16) except: In-
itialized to "2" by some
utilities (KFAM1007, KFAM7007).
Following FINDOLD, not found,
., Following FINDNEW,
FINDNEW(HERE), or DELETE, all
values of "9" or less are set
to "3". TFollowing a successful
Open, set to letter o',
Following successful CLOSE, set
to "2". 1If Q$="B", set to "9".

17

32

station.
protected

Protected sectors per
HEX(FFFF) if no
sector.

49

TO

5001

Number of index levels.

50

T2$2

A0O2

Relative sector address,
highest level index sector.

52

Q2$2

A002

User File sectors used, minus 1.

54

v2$2

A002

Key File sectors used, minus 1.

56

T8

5004

Count of active records in the
file.

60

ve$l

A0O01

Sectors per logical record.

61

v3$2

A002

Key File, last available

relative sector.

63

Q3$2

A002

User File, starting relative
sector of last available record
position.

65

v8$1

A0O01

Records per block.

232

Table 8-1. The KDR Control Information (continued)

$UNPACK
START LENGTH VARIABLE IMAGE CODE DESCRIPTION
8 v1$8 - - Per byte (not used by
' subroutines):
1 = record type is
A,B,C,M, or N.
2 = record length.
3,4 = starting position of
key.
5 = key length.
6 = number of entries in
KIR.
7,8 = unused
* T3$3 - S | For all versions but the
Multiplexed KFAM-7 version:
User File, current relative
sector for FINDNEW, per
station, in first two bytes;
also, current record within
block for FINDNEW, per station,
in last byte.
* Qu$2 - S | For the Multiplexed KFAM-7
version, this 1indicates the
User File current relative
sector for FINDNEW, per station.
* Vs$1 - S | For the Multiplexed KFAM-7
version, this 1indicates the
User File current record within
block for FINDNEW, per station.

All numbers are hex except TO and T8 in the preceding table of the
KDR.

CODES in the preceding table are indicated as follows: X=unpack
always, N=unpack for FINDNEW and DELETE, P=pack £for FINDNEW and
DELETE, S=unpack and pack, FINDNEW, for this station only.

3§ (or Q4% and VS5$) 1is stored per station. The 1location is
STR(T$(3), 3*%S2-2, 3) where S2=station number, in the preceding table.

233

Key Index Record (KIR)

Each KIR occupies one sector in the Key File. The number of KIRs in a
Key File depends upon the number of Key Index Entries (KIEs), as discussed in
Section 8.8. Table 8-2 describes KIR control information.

Table 8-2. KIR Control Information

VARIABLE BYTES
NAME ON DISK CONTENTS

T9$2 3 Sector address (hex), this sector, relative to
first sector of Key File = 0.

TO$(4) 60 244 A 240-byte array containing KIEs. Number of KIEs
per KIR can vary from 7 to 48. Unused KIEs are
filled with all bytes HEX(FF). Active KIEs are
packed as follows:

K bytes: key
3 bytes: pointer

Pointer points to next lower index level KIR or
User File record if lowest level. The first two
bytes of the pointer contain the sector address
(hex) relative to the start of the file. The
last byte contains the record number (hex) within
the sector 1if the pointer points to a data
record, and is not defined if the pointer is to a
lower level KIR.

OTAL 247 bytes

Internal Storage: User Partition with the Non-Multiplexed KFAM-7 Versions

Certain information stored in the KDR is also stored internally in user
partition memory for the last file accessed with all versions but the
Multiplexed version.

Variables for KFAM files that are open but not the last file accessed
are stored in two arrays, T5$() and VO$() whose array elements in the
dimension statement may be set to a value other than 3 (number of KFAM files
open). The array element is the KFAM ID number. Variables are packed in
field format. V0$(3)21 contains variables set during the OPEN, which remain
unchanged (see Table 8-3). @Q8$20 is the hex image for unpacking.

234

Table 8-3. User Partition Storage of Array VO$() with the
Non-Multiplexed KFAM-7 Versions

VARIABLE START IMAGE DESCRIPTION

vo§$2 1 A002 Absolute starting sector of Key File.

V6 3 5002 Internal File 1ID.

v4$a 5 AOO4 Hex image for unpacking entry from
KIR, HEX(AOXXA003), where XX = Kkey
length.

Vo 9 5001 Access Mode (1,2,3, or 4).

Tl 10 5002 File number, Key File.

T2 12 5002 File number, User File.

T4 14 5002 Key length.

T5 16 5002 KIE length = T4 + 3,

v7 18 5002 KIR bytes used = INT (240/T5)*T5.

V1 20 5002 Last key location = V7 - T5 + 1.

T5$(3)58 contains variables which change with each access, saved every
time files are switched (see Table 8-4). @T5$10 is the hex image for
unpacking.

Table 8~4. User Partition Storage of Array T5$() with the
Non-Multiplexed KFAM~7 Versions

VARIABLE START IMAGE DESCRIPTION

T4$3 1 A003 Pointer to record accessed, bytes:

1 - 2 = relative sector address within
user file, set equal to
variable T6.

3 = record within block, set equal
to variable Q.
T7$30 4 AOlE Last key accessed.
T8$1 34 A001 Internal completion code.
T$8 35 A008 Path to last record accessed,
pointers to entry within KIR.
T2$(8)2 43 A002 Path to last record accessed, KIR

relative.

235

Internal Storage for the Multiplexed KFAM-7 Version

Certain information stored in the KDR is also stored internally in user
partition memory for the last file accessed.

Variables for KFAM files that are open but not the last file accessed
are stored in two arrays, T5$() and VO0$() whose array elements in the
dimension statement may be set to a value other than 3 (number of KFAM files
open). The array element is the KFAM ID number. Variables are packed in
field format. V0$(3)24 contains variables set during the OPEN, which remain
unchanged (see Table 8-5). Q8$22 is the hex image for unpacking.

Table 8-5. User Partition Storage of Array VO$() with the
Multiplexed KFAM-7 Version

VARIABLE START IMAGE DESCRIPTION
vo$2 1 A002 Absolute starting sector of key file.
Q0$3 3 A003 Key File device address.
va$a 6 A004 Hex image for wunpacking entry from
KIR, HEX(AOXXA003), where XX = key
length.
VO 10 5001 Access mode (1,2,3,4).
Tl 11 5002 File number, Key File.
T2 13 5002 File number, User File.
T4 15 5002 Key length.
T5 17 5002 KIE length = T4 + 3.
vé 19 5002 Number of entires in KIR.
V7 21 5002 KIR bytes used = T5 * V6.
vl 23 5002 Last key location = V7 - TS5 + 1.

The array T5$(3)58 contains variables which change with each access,
saved every time files are switched (see Table 8-6). T5$10 is the hex image
for unpacking.

236

Table 8-6. User Partition Storage of Array T5$()
with the Multiplexed KFAM-7 Version

VARIABLE START IMAGE DESCRIPTION
T4$3 1 A0Q03 Pointer to record accessed, bytes:
1 - 2 = relative gector address

within User File, set equal
to variable T6

3 = record within block, set
equal to variable Q.

T7$30 4 AOlE Last key accessed.

T8$1 34 A001 Internal completion code.

T$8 35 A008 Path to last record accessed, pointers
to entry within KIR.

T2$(8)2 | 43 A002 Path to last record accessed, KIR
relative.

Internal Storage: Global Memory with the Non-Multiplexed Versions of KFAM-7

All KFAM-7 versions except the Multiplexed KFAM-7 version control access
to the disk internally through global tables rather than by reading and
writing the KDR (as is done in the Multiplexed KFAM-7 version). This not only
saves disk access time but also saves time by not hogging the disk except on
OPEN, RE-OPEN, CLOSE, and WRITE RECOVERY INFO. All KFAM accesses go through
the same global partition, which is called KFAMCOM with the Multiple Bank
version and KFAM with the Single Bank version.

In the global area is a table of open files, global array @T$(30)14.
The number of table entries can be increased or decreased from 30, depending
on the maximum number of KFAM files that can be open at any one time, by all
stations on a given system. Global memory size must be increased if more than
30 KFAM files are to be open. The contents of this table, per entry, are
provided in Table 8-7:

237

Table 8-7. Table of Open Files, Array AT$(), per Entry

START LENGTH | CONTENTS

1 2 KDR sector (VO$) - starting absolute sector address
of Key File.
3 1 One~byte packed disk device address of Key File,

packed as described below.

4 2 Catalog trailer (end-of-file) control sector of the
User File, where the Multiplexed/Multistation access
table is stored. This is an absolute sector address.

6 1 One-byte packed disk device address of the User File,
packed as described below.

7 1 Number of index levels, TO, in IBM packed format.

8 2 Relative sector address of highest level index

sector, T2§.

10 8 Per station 1 - 16, one half byte for internal
completion code.

Disk device addresses in global array @T$() are packed as follows: 1)
if the first byte of the address is "3'", make the third byte = "1", and 2) the
second and third bytes are HEXPACKed, which forms a unique identifier.

Note that the internal completion code is used for two purposes: 1) to
determine whether a particular file is open or closed to a particular station
and 2) to determine whether internal variable TO (number of index levels),
variable T2$ (sector address of highest level index), array T2$() (path
through index to current record, in terms of KIR sectors read), and variable
T$ (path to current record, in terms of KIE starting location within KIR) are
all currently valid.

Bit settings within the current completion code are as follows:

0 Normal completion; above variables valid.
1 Path not defined (T2$() and T$); KDR OK.
2 Path not defined (T2$() and T$); reread KDR (changed by

another station).

4 Index level added; get new values of TO, T2$ from table
@T$(), above.

238

8 Error condition; next and previous records not defined.
E File open.
F File closed.

The above bit settings are unpacked into variable T8$. 1In access modes
1 (Inquiry) and 3 (Shared), internal completion codes are packed into table
@T$(). In access modes 2 (Read Only) and 4 (Exclusive), the only values
appearing in table @T$() are E for open or F for closed.

An internal file ID, V6, is maintained by KFAM-7 to indicate the entry
number for a given file within array @T$(). Array @T$(V6) is the table entry
for the particular file. The internal file ID should not be confused with the
KFAM ID, the Key File number, or the file numbers of the Key File and User
File in the Device Table (the latter are specified by the user and OPEN
parameters). The internal file ID is another number assigned by KFAM-7 for
its own internal use when the file is opened.

In the non-interactive modes (2=Read Only, 4=Exclusive), KFAM-7 simply
makes an entry in array @T$() to indicate that the file has been opened. Tt
also stores TO and T2$ in @T$(V6) to save reading the KDR when files are
switched. It then operates very much as KFAM-3, where no interaction 1is
possible, because in Exclusive mode no other station can access the file, and
in Read Only mode no other station can change the Key File.

The interactive modes are defined as 1 = Inquiry and 3 = Shared. KFAM-7
maintains a queue to regulate access to files in the interactive modes. The
queue contains two entries: the station number (S2), in hex, in one byte of
@Q$, and the internal file ID (V6), in hex, in the corresponding byte of
@Q9$. Upon entry to a KFAM-7 subroutine in an interactive mode, the station
number and the internal file ID are placed at the end of the queue. The queue
(@Q9$) is then searched for the internal file ID, and the station number in
the corresponding position of @Q$ has access to the file. All other statioms
requesting the file must wait. When the station accessing the file is
finished, its entry is dropped from the queue, and the next station in the
queue requesting that file is allowed to access it.

The queue allows access to the file on a first-in-first-out (FIFO)
basis. Under KFAM-7, access is allowed from the various stations in the order
requested. The KFAM-7 queue is not to be confused with the delegation of
program execution time between different partitions under the control of the
2200MVP itself. The queue is provided by KFAM-7 and is used only for KFAM-7
files.

There is only one queue for all stations requesting all files. This
does not inhibit different stations from accessing different files at the same
time. For example, if the queue looks like this:

@Q$(station) 1 3 5 4 2
@Q9$(file) 4 2 1 2 3

Then Station 1 can access File 4, Station 3 can access File 2, Station 5
can access File 1, and Station 4 must wait to access File 2 until Station 3 is

finished.

239

KFAM-7 maintains a table of protected sectors, protecting a sector of
the User File from access by another station if the protect flag is set
(argument symbolic variable P = 1 or 3) for single Key File access to a User
File. The table of protected sectors 1s stored in a global wvariable,
@v4$(30)4. This global table contains all protected sectors for all stations
accessing all files. The array dimension can be changed upwards or downwards
from 30 if necessary. If the table is full, the station requesting sector
protection simply waits until there is a vacant slot in the table. Sector
protection is only effective in the interactive modes (1 and 3).

The contents of @V4$(), per entry, are provided in Table 8-8:

Table 8-8. Table of Protected Records, Array @V4$, per Entry

START LENGTH CONTENTS

1 1 Station number, common variable S2, in
hexadecimal form.

2 1 Internal KFAM file ID number, variable V6
from array Q@T$(), the table of open files.

3 1 User file device address, packed.

4 2 User File sector identifier, obtained by

taking the catalog trailer control sector
absolute sector address minus (SUBC) the
relative sector address within the User
File.

Through the use of these internal tables, reading and writing the KDR
and hogging the disk are kept at a minimum. Instead of the KDR being the
communications link between different stations accessing the same file, this
communication information is held internally, thus eliminating disk access
time and making throughput more efficient.

Global variables are also used as program constants and working
variables, in order to cut down on the space required for KFAM variables in
the user partitions. In order to update global variables, the program is
hogged at certain critical times. This means that there are certain points in
global memory which can only be executed by the one station which has gained
access; normally, the code may be executed at the same time (logically) by
several different stations. At these critical points, all stations other than
the one which has gained access must wait.

240

Points at which program execution is hogged are as follows:

Non-KFAM OPEN (217)

Non-KFAM END (218)

Non-KFAM CLOSE (219)

OPEN (230): Setting up table @T$(), executing non-KFAM OPEN (217)

CLOSE (239): Setting table @T$(), executing non-KFAM END (218) and
non-KFAM CLOSE (219)

RE-OPEN (213): Executing non-KFAM OPEN (217)

WRITE RECOVERY INFO (214): Executing non-KFAM END (218)

FINDNEW (233) and FINDNEW(HERE) (234): Whenever a KIR sector is
split, or about one time in eight depending on key length and other

factors.

Any subroutine: Adding or deleting a queue entry, updating internal
completion codes.

The times when the program is hogged are either infrequent or brief, and
should therefore not slow down performance very much.

8.2 KFAM-7 FILE NAMES

File names for the KFAM-7 diskette are provided in Table 8-9. All files
are program files (modules) unless indicated otherwise.

Table 8-9. Description of the Files on the KFAM-7 Diskette

DESCRIPTION FILE NAME

Work file used to generate code and store messages KFAMWORK
to be printed by KFAM2107. This is a data file.

ISS start-up station file, used to create other 1S5.000D
station files. This is a data file.

ISS start-up station file, contains utilities I1SS.0nnD
default values for this station number (nn). This
is a data file.

KFAM variables and subroutines, Single Bank version. KFAM0107*

KFAM variables and subroutines, Multiplexed version. KFAM0207*

241

Table 8-9. Description of the Files on the KFAM-7 Diskette (continued)

DESCRIPTION FILE NAME
KFAM subroutines, Multiple Bank version. KFAM0307%*
KFAM variables, Multiple Bank version. KFAMO4Q7%%
ISS start-up, application loading menu. ISS.000A
1SS start-up, station number. 1SS.000M
1SS start-up, station parameters. ISS.001M
I18S start-up, system menu. ISS.002M
1SS Data Entry subroutine. ISS.200S
1SS Date subroutine. I1SS.220S
1SS Operator Wait subroutine. 1S5.254S
ISS start—up load module. START

(Other file names are the KFAM Utilities)
* Indicates self-designated "KFAM" global partition, a global partition.
**Indicates self-designated '"'KFAMCOM" global partition, a universal
global partition.

8.3 FINDNEW WITH BLOCKED FILES

FINDNEW always sets the Current Sector Address for the User File to the
next available sector at the end of the live data in the User File. 1If
records are blocked (type A, B, or C), it passes back the next record location.

Up to sixteen stations can have a KFAM file open simultaneocusly. When a
station executes OPEN for a file, it is assigned a slot from one to sixteen in
the KDR's access table. Associated with each slot in the access table is a
relative sector location and, for blocked files, a record number within that
sector. The sector location and record number always point to the last
location in the User File assigned when a station, occupying that access table
slot, executed a FINDNEW. I1f, after opening a blocked file, a station
executes FINDNEW, the location passed to it (sector and record location within
the sector) will be the next available location after the last location given
to a stationm occupying the same access table slot. This new location will be
the sector following the last sector of live data in the file only if a new
block must be started.

242

In summary, whenever a new block must be used, FINDNEW assigns an entire
block to a particular access table slot. That block then becomes the
exclusive property of that slot in the access table for the purpose of
FINDNEW. It can only be filled by FINDNEWs executed by a station occupying
that slot. The result is that all record locations up to the end of live data
in the User File may not be filled at any one time.

For blocked files under KFAM, the User File might look like this:

RRRR| |RRRR| |[R RRRR| [RRR RRRR| |RRRR| [RR| RRRR | [RR
record location record location record end of live data
to be filled by to be filled by location in entire User File,
station 3 station &4 to be and record location

filled by to be filled by
station 1 station 2

where: R record

unoccupied record locations

8.4 FILES TOO LARGE FOR ONE DISK

A cataloged disk file must be entirely contained on one disk. If the
User File is too large for one disk, it must be broken 1into two separate
files. Both files may have the same name, since they are on different disks.
One Key File must be created for each User File. (If both Key Files are on
the same disk, they may not have the same name.)

Perhaps the simplest scheme for splitting the User File is to determine
a cutoff point. A key value is picked, somewhere in the middle, which will be
the highest key in User File #l. Records with lower keys are stored in User
File #1, and records with higher keys are stored in User File #2.

If each User File and its Key File are stored on the same disk, both
User Files may have the same name, as may both Key Files. 1In that case, the
same routines can be used to access both files by simply changing the disk
address designation and using a variable for the KFAM ID number in argument
lists for record access subroutine calls.

For example, an inventory file is split into two files; all keys lower
than 400962-B4 reside in the first file at disk address 320, while higher keys
reside in the second file at address B20. The variable X is used to denote
the KFAM ID number (argument) for a FINDOLD subroutine call, and the value X+Z
identifies the corresponding User File (UF) number, as selected at line 500.
Note the presence of the DEFFN'31 statement followed by a RETURN CLEAR
statement (lines 760-780) to allow SF'31 to be touched to indicate
completion. Error handling routines (not shown) could be provided beginning
at line 800, which might display the subroutine's name and the error code (Q$)
associated with the error, and then close the files.

243

8.5 REUSING DELETED SPACE WITH FINDNEW(HERE)

Immediately following a DELETE, a FINDNEW(HERE) call may be used to
insert a new record in the space just vacated by the deleted record. This
function is useful for changing a key, but is not generally useful to reuse
the deleted space because a new record is not generally available immediately
following a DELETE.

The user may, however, store the pointer to the deleted record in a
separate file for later use. The procedures are given below.

KFAM-7 does not check that FINDNEW(HERE) follows DELETE. Under KFAM-7,
the pointer to a deleted record may be saved as follows:

1. DELETE a record.
2. Test to make sure that Q§ = blank.

3. Save the contents of T4$ in some file or list external to KFAM.
(See Section 8.1).

To re-use the space at some later time:
1. Move the saved record pointer to T4$. (See Note below.)
2. Use FINDNEW(HERE) with the new record key.

3. FINDNEW(HERE) will return with the Current Sector Address set to
read the correct sector and Q = the record number within the sector.

NOTE:

If the file to be accessed is not the same as the file
last accessed by a KFAM subroutine, move the saved record
pointer to STR(T5$(i),1,3), where i = this file's KFAM ID
number. If not sure which file was last accessed, test T9
= KFAM ID number last accessed.

8.6 STATUS OF THE KEY DESCRIPTOR RECORD (KDR)

The fields which are of most interest to the user, T4$ (current pointer)
and T7$ (current key), are stored internally. (See Section 8.1.)

There are legitimate reasons why a user may wish to change information
in the KDR. One problem which could occur is that the starting position of
the key or the record length is wrong, causing a reorganization program to
fail. These fields are critical in reorganizing the KFAM file and cannot
really be checked prior to reorganizing. At the point of reorganizing, it is
not generally feasible to re-create the Key File from the beginning. 1If these

244

or similar problems occur, the contents of the KDR can be changed by the user
via a very simple procedure:

§2 = (Station #)

SELECT (User File #, Key File #)

OPEN the file, Exclusive mode

Modify the appropriate KDR variable, e.g., T$()
CLOSE the file

This will read in the KDR, change it, and write it back on the disk.

The KDR is always read by the OPEN subroutine and always written by the CLOSE
subroutine in the Exclusive access mode.

8.7 KEY FILE RECOVERY INFORMATION

Key File Recovery allows reconstruction of a Key File in the event of
its accidental destruction. In reconstructing the Key File, information saved
by the CLOSE (WITH RECOVERY INFORMATION) or the WRITE RECOVERY INFORMATION
subroutines in the next-to-last sector of the User File enables reconstruction
of the Key File.

At the end of a User File are two sectors of '"overhead." The last
sector is a control sector written by the OPEN statement. 1In the next-to-last
sector 1is control information originally written during the Initialize KFAM
File utility. Two control bytes in this control sector mark it as an END
control sector for the 2200 system; however, the remaining bytes are ignored
by the 2200 system logic. Some of these remaining bytes are used by KFAM to
store recovery information. The information 1s stored each time the CLOSE
subroutine is executed in the Shared or Exclusive access mode if the KFAM0107,
KFAM0207, or KFAM0307 module is in use or if a Build Subroutine Module program
was used and the CLOSE WITH RECOVERY INFO option was chosen.

The data saved by CLOSE in the next-to-last sector of the User File 1is
the Key File's KDR record and is as follows:

Bytes Contents
1-2 HEX(AOFD)
3-146 T$(3)48 as listed in Section 8.1 for the KDR.

8.8 KEY INDEX RECORDS AND THE ADJUSTABLE BIAS

The Key File structure is similar to the structure called a B-tree,
which 1is discussed on pages 473-479 of The Art of Computer Programming:
Volume 3/Sorting and Searching, by Donald E. Knuth.

A Key File must permit rapid access to any particular User File record
and may also be updated at any time without a major reorganization of the
file. The B-tree structure, as modified, satisfies this double requirement.

245

The structure of the Key File is best described by showing how the file
is constructed. The first step in Initialize KFAM File is to create one KIR
record, which contains one dummy KIE with a key value of binary zero (all
bytes HEX(00)). This dummy KIE serves to "prime" the system so that the same
program logic can be applied to a null or empty file as is applied to a file
containing active records. Being the lowest possible key, it also serves to
mark the lower limit of the Key File. For example, FINDFIRST is done by
searching for the binary zero key and then doing FINDNEXT. This dummy key can
be thought of as the Oth entry in the Key File and represents nothing, except
as the marker of the lower boundary.

In the examples below, this dummy key is designated as '"000". Please
note that the actual value is binary zero, HEX(000000), and not the characters
"000" or HEX(303030). The characters "000" may be used as an active key and
will not conflict with the dummy key.

The unused KIEs in any KIR always have all bytes set to HEX(FF). Thus
the original KIR record has the first key set to all HEX(00) and the remaining
keys set to all HEX(FF).

In the examples below, these unused keys are designated as "FFF".
Please note that the actual value is HEX(FFFFFF...) and not the characters
"FFF" or HEX(464646).

Two items in the KDR record are essential to searching the Key File.
One is the number of index levels, TO. To start with, TO = 1, because there
is only one level of index. The other item is the relative sector address of
the highest level index, T2§. At the starting point, there is only the one
index sector, the KIR record described above, and its sector address is always
HEX(0001). (The KDR record always occupies sector HEX(0000) or the first
sector of the Key File, and the initial KIR follows it in the second sector at
relative address HEX(0001).)

The Key File is now set up to begin entering active KIEs. As new keys
are added to the file, their KIEs are inserted in the KIR in their proper

sequential order. Higher keys are moved up one position, and one HEX(FF) key
is dropped off the end.

For example, 1f the first three keys to be inserted are 276, 913, and
198, the KIE's would be arranged as follows:

Start: 000, FFF, FFF, etc.

First Key: 000, 276, FFF, etc.

Second Key: 000, 276, 913, FFF, etc.
Third Key: 000, 198, 276, 913, FFF, etc.

Keys are inserted in the first KIR in this manner until it is filled.
The number of keys per KIR depends upon the size of the key. For this
example, it has been assumed that the first KIR has been completely filled by
one dummy key plus 14 active keys:

000, 009, 147, 198, 276, 292, 589, 591, 671, 710, 730, 809, 851, 903, 913

246

At this point the key 796 is to be added. Since there is no room in the
one KIR to add another key, the KIR is split in two. A new KIR is created,
and the KIE's are divided between the old KIR and the new KIR:

0l1d KIR: 000, 009, 147, 198, 276, 292, 589, 591, FFF, etc.
New KIR: 671, 710, 730, 796, 809, 851, 903, 913, FFF, etc.

The new KIR occupies relative sector HEX(0002). Note that the added
key, 796, is inserted in its proper sequential order and falls in the new KIR.

With more than one KIR now in the file, the concept of "level" must be
introduced. Both KIRs so far created are on Level 1, the lowest level. The
lowest level is defined as the level containing the pointers to the data
records in the User File. Whenever a KIR is split, the new KIR is on the same
level as the old KIR.

Rather than search each KIR sequentially for a given key, the system
builds a tree structure to minimize search time. There is one and only one
KIR at the highest level, whose sector address is recorded in the KDR. The
search is started by reading this sector. Prior to the creation of the second
KIR, the search was completed by locating the position of the key within the
one sector. But at this point, there are two KIRs on Level 1, and a
higher-level index must be created to reference them.

Therefore, a third KIR is created. It is a Level-2 index and contains
two keys, 000 and 671, which are the first keys of each of the two level-l
KIR's. The pointers associated with these two keys are the relative sector
addresses of the two Level-1 KIRs, HEX(0001) and HEX(0002). This level-2 KIR
is stored in relative sector HEX(0003) of the Key File, and its contents are:

Keys: 000, 671, FFF, etc.
Pointers: 1, 2, FFF, etc.

The KDR is now updated. Variable TO is now = 2, to show that the index
now has 2 levels. Variable T2$ = HEX(0003), to show that the highest level
index is located at relative sector HEX(0003).

Assuming that the next key to be added is 562, the search now proceeds
as follows. The key 562 is compared to the entries in the Level-2 index to
see where it falls. It is greater than or equal to 000, but less than 671;
and it therefore falls in the range 000 to 670. Since the pointer associated
with 000 in the Level-2 index is HEX(000l), and therefore the Level-1 index
stored in relative sector HEX(0001) is read. Then, 572 is inserted in its
proper place in the Level-1 index, as before. The system knows when it has
reached level 1 because it is counting down from the value of variable TO to 1
as each level is read and searched.

When the key 562 has been added, the Key File structure looks like this:

Sector Level Keys

1 1 000, 009, 147, 198, 276, 292, 562, 589, 591, FFF, etc.
2 1 671, 710, 730, 796, 809, 851, 903, 913, FFF, etc.
3 2 000, 671, FFF, etc.

247

As further keys are added, the KIRs on Level 1 will again become full,
and the KIR must again be split to provide room for all the keys. Let us
assume that keys 401, 402, 403, 404, 405, 406, and 407 are added. The first
six keys cause Sector 1 to become full, and the addition of 407 makes a split
necessary. Relative sector HEX(0004) will be assigned to the new KIR, and the
resulting structure will look like this:

Sector Level Keys
1 1 000, 009, 147, 198, 276, 292, 401, 402, FFF, etc.
2 1 671, 710, 730, 796, 809, 851, 903, 913 FFF, etc.
3 2 000, 403, 671, FFF, etc.
4 1 403, 404, 405, 406, 407, 562, 589, 591, FFF, etc.

Note that a new level is not yet necessary. In this example, there 1is
room in the Level-2 index to reference up to 15 level-1l KIEs. Therefore, at
least 15 x 8, or 120 records (and probably more, up to 225) can be accessed by
a two-level index search.

Once the Level-2 index is full, it is split in the same way the original
KIR was split, and a third level is created, pointing to two Level-2 KIRs,
which in turn point to the Level-1 KIRs. The Level-1 KIRs always contain the
pointers to the actual data records. As new levels are added, more
superstructure is added, but the bulk of the Key File remains the same.

Assuming a Key File has an average of 10 KIEs per KIR, the average
number of records accessed by a given number of index levels is as follows:

INDEX LEVELS NUMBER OF RECORDS
9
99
999
9,999
99,999
999,999
9,999,999
99,999,999

OOV P WN -

For the largest possible key (30 bytes), each KIR holds a maximum of
seven KIEs and a guaranteed average minimum of four KIEs; the maximum eight
levels of index access at least 65,535 records for a "worst case'" 30-byte key.

Perhaps the best illustration of the Key File structure for a large file
could be obtained by running Print Key File with an actual KFAM file. The
structure can then be traced from the highest-level index sector (T2$, in KDR)
down to the Level-l pointers to the actual data record.

The general procedure for locating a key in KFAM is as follows:

1. The number of index levels (TO) and the relative sector address of
the highest-level index (T2$) are taken from the KDR.

2. The index sector (KIR) is read from disk.

248

3.

A search of the KIR is made to locate the key. The search returns a
pointer (T) to the key in the KIR which is equal to, or lower than,
the key being searched.

The relative sector address of the KIR and the pointer to the KIE
found (T) are stored in tables, T2$(T3) and VAL(STR(T$,T3)),
defining the path taken to locate the particular key, where T3 is
the current index level.

If the current index level is greater than 1, the sector address for
the next lower level index is taken from the KIE found (T), and the
process is repeated from Step 2 (above) for the next lower level.

If the current index level is 1, the search is finished. T points
to a KIE on level 1, and V indicates whether the key found is equal
to or lower than the key being searched. Control is returned to
the particular subroutine (FINDOLD, FINDNEW, DELETE, etc.).

The general procedure for inserting a key is as follows:

1.

The proper position for the key 1is determined by the search
procedure (above).

If the KIR is not full, the key and its associated record pointer
are inserted at location T+l in the KIR. All KIEs from location T+l
and up are moved up one position.

If the KIR is full, a new KIR is created on the same level as the
old KIR. The KIEs are divided between the old and new KIRs. The
new key and its associated record pointer are inserted in proper
sequential order in either the old KIR or the new KIR, depending on
where the new key happens to fall. The next available sector
address in the Key File is assigned to the new KIR.

If the split is not at the highest index level, the first key and
the sector address of the new KIR are inserted in proper key
sequence in the next highest level KIR (as determined by tables
T2$() and T$). If the next highest level KIR is full, Step 3 is
repeated at that level.

If the split is at the highest index level, a new level is created.
A new KIR 1s created, with two KIEs. The first KIE contains the
binary zero key and the relative sector address of the old KIR
(formerly the highest level KIR). The second KIE contains the first
key and sector address of the new KIR (created by the split). The
next available sector in the Key File is assigned to this new
highest level index. The KDR is updated (TO and T2$) to reflect the
new level.

249

When the KIR is split, its KIEs are always divided equally unless a
programmer sets the adjustable bias. Consider keys which are being added
sequentially. Again assume the first index sector is filled by 14 active KIEs
and one dummy KIE.

000, 001, 002, 003, 004, 005, 006, 0OO7, 008, 009, 010
011, 012, 013, Ol4

The next key added, 015, causes a split:

01d XIR: 000, 001, 002, 003, 004, 005, 006, 007, FFF, etc.
New KIR: 008, 009, 010, 011, OQOl2, 013, 0l4, Ql5, FFF, etc.
Level 2: 000, 008, FFF, etc.

The next keys added, 016, 017, etc., are all added to the new KIR,
eventually causing it to be split:

Sector Level Keys

ooo, oo1, 002, 003, 004, 005, 006, 007, FFF, etc.
008, 009, o010, 011, 012, 013, 0l4, O0l5 FFF, etc.

000, 008, 0l6, FFF, etc.

o016, 017, 018, 019, 020, 021, 022, 023, FFF, etc.

PO
N

The process continues, always adding to the latest KIR and splitting it,
leaving behind a residue of half-full KIRs (50% full). It should be clear .in
this case that if the split were 12/4 instead of 8/8, the process of indexing
a sequential file would leave behind a residue of KIRs each containing 12 KIEs
or approximately 80% full. This would result in better utilization of Key
File space and also tend to reduce the number of index levels required to
access a given file.

However, a 12/4 split would be disastrous if the keys were being added
at random. There would be a greater probability of new keys being added to
the KIRs already containing 12 entries because of the greater range of values
represented. Consequently, the Key File could actually fall below 8 keys per
sector, and a very inefficient skew distribution would be the result.

Therefore, there is no particular split that is best in all cases.
Because of this, a bias has been included in the system. The bias is a
percentage of the maximum number of KIEs which, for a particular key size, can
be contained in a KIR. When a KIR must be split, the current bias percentage
is multiplied by the maximum number of KIEs per KIR to give the split; i.e.,
the number of KIEs which go into the new KIR. The adjustable bias may range
from .2 to .8 and is set at .5 following the Open by KFAM.

Following each KFAM OPEN, the programmer may set the adjustable bias,
user partition variable V8, to a value from .2 to .8. However, remember that
KFAM resets V8 following each OPEN to .5 and be aware that V8 is used as the
adjustable bias for all KFAM files being accessed by that partition. In
general, consider resetting V8 before each series of FINDNEW or FINDNEW(HERE)
subroutines are to be performed.

250

On the basis of past experience, the bias should approach .2 as keys are
added in ascending key sequence, should stay at .5 if keys are added in random
order, and should be at .8 if records are added in descending key sequence.
The bias affects disk space use and thus influences access times.

In Reorganize 1In Place, where it is known that keys will be added
sequentially, the bias is set to .2 at the beginning. It is reset to .5
following the reorganization.

In Build Key File, the bias is initially set to .5 and reset to .5 when
the program is finished because the order of keys added when initially
creating the Key File could very well be different than the order of keys
added at some later time (for example, sequential vs. random). The random
hypothesis is always the '"safest" to start with, unless experience proves
differently.

Between the creation of the Key File and the reorganization (if any),
the bias is allowed to fluctuate on the basis of how keys are added. It 1is
stored in the KDR and preserved as a permanent record; i.e., not reset every
time the program is reloaded.

In summary, for KFAM, there are two minor departures from the B-tree

structure as described in Knuth: keys are duplicated in higher level indexes,
and a bias is available for the splitting of KIRs.

8.9 PROCEDURES FOR CHANGING USER FILE RECORD LAYOUT

When a KFAM file's data record layout is to be changed, (to accommodate
the addition of a new field, for instance) it is generally recommended that a
new KFAM file be created to accommodate the new record format. Such a change
requires modification of the argument list used for DATASAVE and DATALOAD
statements for the User File, and wusually affects the critical system
information defined during Initialize KFAM file and stored in the Key File's
KDR.

The procedure requires that the new KFAM file be initialized using
Initialize KFAM File to define the new logical record length, file type, key
location, etc., and create (catalog) the new User File and Key File. A simple
user-supplied program can be written to read the records from the old User
File using the old DATALOAD argument list, and save the records into the new

User File using the new DATASAVE statement argument list by using the
following procedure:

1. Open the two KFAM files by calling the OPEN subroutine once for each
file. Set the adjustable bias, variable V8, to .2.

2. Call the FINDFIRST subroutine for the old KFAM file to locate its
first record.

3. Execute a DATALOAD statement for the old User File using the old
argument list to read the first record.

4. Update the values of the variables to be used in the new DATASAVE
statement argument list, if necessary.

251

5. Call the FINDNEW subroutine for the new file, which adds its key to
the new Key File and returns the position where it is to be written.

6. Execute a DATASAVE statement for the new User File using the new
argument list to write this record.

7. Call the FINDNEXT subroutine for the old KFAM file to locate its new
record in logical key sequence.

8. Check if Q$="E" upon return. If Q$="E'" skip to Step 10. Otherwise,
continue with Step 9.

9. Execute a DATALOAD statement for the old Key File to read the next
record. Go to Step 4.

10. When Q$="E" after a FINDNEXT subroutine call, this indicates the
record previously read had the highest key value. Both files should
now be closed by calling the CLOSE subroutine once for each file.

The new KFAM file should be checked by running the Print Key File
utility. The new KFAM file might be copied using the ISS Copy/Verify utility
to the disk address of the old KFAM file, and replace the old KFAM file using
the output mode of replace, followed by the Reallocate File Space utility.

Applications software written for the old file would require changes to
the DATALOAD and DATASAVE statements used to access User File records and
possibly to the DIM and COM statements used to dimension argument list
variables. The LIST T form of the LIST command is helpful in locating the
live numbers containing these statements; for instance, entering: LIST T
"DATA" 1lists all line numbers containing the four letters DATA (as found in
DATALOAD and DATASAVE statements) for the program text currently in memory.
Each line might then be recalled and modified if required, before resaving the
program text to disk.

252

APPENDIX A - KFAM UTILITY ERROR MESSAGES AND RECOVERY PROCEDURES

KFAM Utilities provide many error messages, each of which indicate a
different condition. In general, these error messages fall into one of three
error categories, as listed in Table A-1.

Display Condition A indicates that a prompt and its associated entry
field accompany the recoverable error message, allowing continuation of the
program in progress. Display Condition B indicates an non-recoverable error
message (such as an ERR 1lnn type error), is rarely encountered, and requires
the operator to touch SF'31 to close all system and KFAM files. Display
Condition C indicates an non-recoverable error and a STOP condition. If STOP
is displayed, the files are closed. Display Conditions B and C wusually
require program reload, as well as other procedures.

Table A-2 provides specific recovery procedures for each possible error
message.

Special 2200MVP Considerations

The 2200MVP partition configuration executed may specify that one
terminal number is assigned to multiple partitions. If an error occurs, the
corresponding error message immediately appears on the assigned terminal's
screen only if the terminal is currently attached to the partition which
encountered the error. Otherwise, the error message is displayed when the
terminal becomes attached to the partition encountering the error; e.g., by
means of a $RELEASE TERMINAL statement.

NOTE:

KFAM-7 hogs program execution of portions of global text
at critical times for a particular station number. Should
a program's execution be aborted during this 'program
hog," the "program hog" flag (global variable @T) is left
equal to the station number which causes all other program
execution to "hang." To correct this 'hanging" condition,
run the Reset Access Tables utility.

253

Table A-1.

KFAM Error Message Categories and Recovery Options

DISPLAY CONDITION

RECOVERY OPTIONS

A. Error messsage appears
with prompt

The operator usually re-
enters the requested informa-
tion and then continues with
the next step according to
the program being run.

To escape from (abort) this
program, touch SF'31l once to
close all files and obtain
the KFAM-7 menu.

B. Error message appears
without any prompt, and
STOP is not displayed

Touch SF'31 once to close all
files. Refer to Condition C.

C. STOP appears on screen,
or Recovery Option A-2 or
B just completed. (STOP is
usually accompanied by an
error message and indicates
that all files are closed.)

If this program was loaded
from the KFAM menu, the
operator may load a KFAM
utility by touching SF'31l to
bring the KFAM menu to the
screen.

Otherwise, the operator may
touch CLEAR and RETURN and
then load a program.

NOTE:

If the error recovery procedures
touched, Edit mode (blinking cursor) must be switched off
(steady cursor) before SF'31l is
manually switchable by means of the EDIT key.

require

touched.

SF'31 to be

Edit mode 1s

254

All KFAM utility error messages are listed below in alphabetical order.

For general recovery procedures, refer to Table A-1 before attempting recovery

from any error message.

Table A-2.

KFAM Utility Error Messages

ERROR MESSAGE

DESCRIPTION

RECOVERY

ACCESS ERROR

RESTORE BOTH USER FILE
AND KEY FILE FROM BACKUP
COPIES BEFORE ATTEMPTING
TO RE-RUN THIS PROGRAM
(sTOP).

Could be due to
no records in the
User File.

Could also be a
machine error or

Key File problem.
The partially copied
User File and Key
File are partially
reorganized and are
thus destroyed.

See Table A~1. Copy
the backup User File
and Key File, as
partially reorganized
files are destroyed.
After copying, run
Key File Recovery.
Rerun this utility.

ADDRESS ' ' HAS NOT BEEN
INCLUDED IN ISS START-UP

Reset Access Tables
requires and 1SS start
up printer address other
than blank.

Touch SF'31
repeatedly until the
start-up display
appears. Change the
printer address and
retry.

ANY ERROR DURING THE
RUNNING OF KFAM3207 WILL
DESTROY BOTH FILES.

MAKE COPIES OF THE DISK
PLATTERS CONTAINING THE
USER FILE AND KEY FILE
BEFORE RUNNING THIS
PROGRAM.

Running this program
requires that back-
up copies were
previously made.

See Table A-1. Make
backup copies of the
User File and Key
File. Then rerun
this utility.

BLOCKING FACTOR OR
RECORD LENGTH INCORRECT

Record length times
blocking factor, plus
all control bytes

(DC, DA access only),
must not exceed 256.

See Chapter 5, Section
5.5 for further
explanation; applies

to record types A, B, C.

Recalculate record
length, blocking
factor, if required.
Re-enter the logical
record length and
continue.

255

Table A-2.

KFAM Utility Error Messages (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

DUPLICATE KEY IGNORED
(printed)

Duplicate keys, when
encountered, are
excluded from the KFAM
File. Their (hex)
relative sector
location is also
printed as it exists
in User File, but
the key isn't
entered in the

Key File. Record
number also appears
with pointer.

Execution error, no
operator action is
required unless ISS
printer address
blank. 1If blank, key
RETURN to resume. The
erroneous key and its
record should be
corrected and later
added to file.

END NOT DEFINED

An END record does
not exist for this
User File.

Enter a reply to
ENTER LAST KEY and
continue. If RETURN
was just entered,
this error indicates
that no END record
found, or all deleted
records not flagged
with hex FF in first
byte of key; thus,
the last key's value
must be entered.

ERROR OPENING FILES
(sToP)

An error condition
other than access
mode conflict was
encountered while
attempting to open
KFAM files.

See Table A-1.
Rerun this program.
If this error
message persists,
contact Wang
Laboratories, Inc.

ERR l1lnn

Indicates an error

as described below

for certain conditions,
as denoted by different
error codes (lnn format).
Should a statement line
beginning with an "at"
sign (@) appear, the
error was encountered
during global program
text execution and may be
caused by an application
program error Or an
erroneous KDR.

See Table A-1 and
the errors listed
below for certain
conditions; refer to
the Wang BASIC-2
Language Reference
Manual for other
errors.

256

Table A-2.

KFAM Utility Error Messages (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

ERR 196 Disk read error (sector Note the file number,
cannot be read. In then touch SF'31 to
program statement, #1 close file. See
displayed indicates Table A~1. 1In
sector contained in general, restore same
Key File; #2 displayed disk or create new
indicates User File disk from backup
sector, {(except for copy. Rerun the
Reorganize /Rebuild Sub- utility.

System where #1
indicates User File With Reorganize/
and #2 indicates Key Rebuild Subsystem,
File). For all run Key File
utilities, #0 indicates recovery oninput User
sector in KFAM system File. 1If Part 3,
disk, #T1 or T1(T9) reorganize output
indicates sector in Key User File, assigning
File. This indicates its name as the input
which disk may be User File name, and
defective. Also, could then rerun
be a hardware error, Reorganize/Rebuild
especially if operating | Subsystem. If error
environment and persists, file 1is
humidity). permanently damaged,
or hardware malfunc-
tion has occurred.
ERR I99 Disk write error Record the file

(sector cannot be
written). Most

likely caused by a bad
physical sector.

In program statement,

#1 displayed indicates
Key File sector. #2
displayed indicates

User File sector (except
for Reorganize Subsystem
where #1 indicates

User File and #2
indicates Key File).

For all utilities,

#0 indicates sector

on KFAM system disk;

#T1 or #T1(T9)

indicates Key File
sector. This

number, and depress
SF'31 to touch files.
See Table A-1.
Restore backup copy
to new disk; the old
disk 1s not useable
for this file and
should be discarded
(after all files are
copied from it if not
on backup). Rerun
this program. With
Reorganize/Rebuild
Subsystem, Part 1:
Output User File
contains a bad
physical sector.

Part 2: Output Key
File contains a bad

257

Table A-2. KFAM Utility Error Messages (continued)

ERROR MESSAGE DESCRIPTION RECOVERY
indicates which disk physical sector.
may be defective. Part 3: Input User

File contains a bad
physical sector. For
Key File Recovery;
Part 1: Replace the
output disk or
recreate file to
bypass the bad
sector. If input and
output Key File are
the same, run Key
File Recovery. Rerun
Part 3: Replace input
disk or recreate
input User File to
bypass the bad
sector. See recoyvery
procedure for ERR

196, Part 3.

ERR X74 A KFAM file which 1is Touch SF'31 to close
not a KFAM-~5/KFAM-7 file| files, then see Table
was accessed, e.g., A-1. Either use the
KFAM-3, KFAM-4 file. Convert To KFAM-7

utility to convert
this to KFAM-7 format
and then rerun this
program, or if wrong
file name, disk
address, or disk on-
line, rerun this
program taking care
correct file is

accessed.
ERR X77 Attempted to select Touch SF'31. Load
a global subroutine and run the
which has not been appropriate global
loaded and run. program file before
reattempting this
operation.

258

Table A-2.

KFAM Utility Error Messages (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

ERROR#XX LINE XXXX
(also ERR XX)

The error code

and line number

are displayed.

Refer to typical

ERR 1lnn codes listed
above.

See Table A-1l. Rerun
this program. If
this error persists,
notify Wang
Laboratories, Inc.

FILE ALREADY CATALOGED

The User File or

the Key File, whose
file name was created
from the User File
name and Key File
number, already exists
at the specified

disk address. Prompt
indicates which file
was already cataloged.

Re-enter the user
file name, or key
file number, de-
pending on which file
is already cata-
loged.

FILE XXXXXXXX ALREADY

CATALOGED ON DEVICE XYY

A file designated as
"not cataloged" is
already cataloged,
or a file with the
same name exists at
the specified disgk
address. (File

name and address are
displayed.)

See Table A-1.

Mount a scratch disk
or a disk that does
not have this file
cataloged and rerun
this program. If
this error recurs,
change the values of
03$ and 04$ (user
setup module) to

"c" and rerun.

259

Table A-2.

KFAM Utility Error Messages (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

FILE NOT AVAILABLE

The KFAM file is
currently being
accessed by another
station whose access
mode conflicts with
that required by this
KFAM utility. For all
utilities but Print
Key File, exclusive
access is required.
For Print Key File,
Read Only is required.
Exclusive access
requires that no other
stations are accessing
the file. Read Only
requires no stations in
Shared or Exclusive
access modes.

See Table A-1. Rerun
this program. If
unsuccessful after
several reentries,
run Print Key File to
determine if Reset
Access Tables 1is
required. Run Reset
Access Tables if the
file was accidentally
left open. Rerun
this program.

FILE NOT FOUND

The specified User
File or Key File
could not be located
at the specified disk
address. The file
that could not be
located is indicated
by the prompt accom-
panying this error
message.

If User File not
found, re-enter the
user file name and
continue. TIf Key
File not found, re-
enter the key file
number and con-
tinue. If this
error persists,
check if correct
disk is at the
specified disk
address.

FILE NOT FOUND
USE 1SS FILE STATUS
REPORT TO CLOSE FILES

The utility could not
locate the catalog
trailor control sector
of one of the files.

Touch SF'31. Use
the File Status
Report I8S utility
to close all files
which are open to
this station number.

FILE XXXXXXXX NOT FOUND
ON DEVICE XYY

A file designated as
“"cataloged" is not
cataloged at the
specified disk address.
(File name and disk
address are displayed.)

See Table A-1. Mount
the correct disk at
appropriate address
and rerun this
program. Enter
correct file name if
incorrect.

260

Table A-2.

KFAM Utility Error Messages (continued)

ERROR MESSAGE

DESCRIPTION

FINDFIRST ERROR

Hardware or software
error.

RECOVERY
See Table A-1. Rerun
this program. If

this error persists,
contact Wang
Laboratories, Inc.

FINDNEXT ERROR

Hardware or software
error.

See Table A-1.
Rerun this program.
If this error
persists, contact
Wang Laboratories,
Inc.

GLOBAL 'KFAM' SUBROUTINES
NOT AVAILABLE - OVERLAYS
WILL BE USED

A global "KFAM" partition
is not running. If
overlays are to be used,
sufficient memory is
required.

To proceed using
overlays, continue.
To load and run the
appropriate global
"KFAM" program file,
touch SF'31 to obtain
the system menu.
From the appropriate
partition, clear,
load, and run the
global file. Then
retry.

INPUT AND OQUTPUT USER FILE
MAY NOT BE THE SAME FILE

Both input and out-
put User Files are
designated by the
same file name

at the same disk
address.

See Table A-1.
Correct the file name
designations within
program (user setup
module). Rerun this
program.

INPUT FILE NOT AVAILABLE

The requested input
file is currently
being accessed by
another station (files
are opened in
Exclusive access
mode) .

See Table A-1.
Rerun, or wait and
rerun. If this error
persists, use Print
Key File to list
access table. If
the file was
accidentally left
open, run Reset
Access Tables; then
rerun this program.

261

Table A-2.

KFAM Utility Error Messages (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

INSUFFICIENT SPACE FOR
FILE XXXXXXXX ON DEVICE
XYy

There is not enough
disk space on the
designated disk
device to catalog
the file.

See Table A-1. Mount
an output disk with
enough space to
accomodate the output
User File and/or Key
File. Rerun this
program.

INVALID

The Key File number
entered is not a
digit from 1-9.

Re-enter the key file
number and continue.

INVALID DELIMITER

Hardware or software
error.

See Table A-1. Rerun
this program. 1If
this error persists,
contact Wang
Laboratories, Inc.

INVALID DEVICE ADDRESS

The xyy form of the
disk device address
is not a valid

disk address.

Re-enter the device
address for the User
File or Key File
(indicated in the
prompt) and continue.

INVALID KEY FILE

The Key File number

See Table A-1.

NUMBER was not a number Correct Key File
from 1-9 or not number in the user
an integer. setup module

(program). Rerun
this program.

INVALID KEY Keys within the Key See Table A-1.

RESTORE BOTH USER FILE
AND KEY FILE FROM BACKUP
COPIES BEFORE ATTEMPTING
TO RUN THIS PROGRAM

File do not match
keys within User File
records, or active
key in Key File is
flagged as deleted

in User File, or
record length
(blocked records)
specified wrong,

or starting position
of key specified
wrong. Could be
caused by an applica-
tion program error.

Attempt to determine
the problem (one of
the items listed
under the Description
column) by completing
the recovery
procedures described
for SEQUENCE ERROR
(Reorganize In
Place)(e.g., write

a program to compare
keys, or to correct
record length, key
position in KDR).

262

Table A-2.

KFAM Utility Error Messages (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

INVALID KEY, HEX VALUE=

XXXXXXX...
KEY RETURN (EXEC) TO
SKIP RECORD

The hex value of

the invalid key is
displayed, which
differs from the
value of the key

in the Key File. The
record 1is active in
the Key File, but
flagged as deleted

in the User File.

To skip this record,
key RETURN. Other-
wise, touch SF'31l

to abort this
program. Check for
errors in application
programs that may
have caused this con-
dition. Run Key File
Recovery on input
User File. Rerun
this program. If
unsuccessful, see
INVALID KEY. Rerun
this program.

INVALID--KEY MUST BE
2 TO 30

The entered value for
key length must be
between 2 and 30

inc lusive,

Re-enter the key
length with a correct
value and continue.

INVALID - MUST BE 2
TO 255

The value for the
number of sectors
per record must be
between 2 and 255
(inclusive) for
type M records.

Re—enter the number
of sectors per
record and continue.

INVALID PASSWORD
(appears with prompt)

The password entered
for this User File
is not identical to

the password previously

assigned to this file.
May be caused by
entering a password
where blanks are
required.

Re-enter the
password, if one 1is
required, and
continue.

INVALID PASSWORD
(sTOP)

The password entered
for this User

File is incorrect.
The password entered
must be identical to
the one assigned to

this file upon creation.

See Table A-1. Rerun
this program, taking
special care in
entering the
password. Repeated
attempts met with
failure may indicate
wrong User File name
being entered or
wrong disk on-line.

263

Table A-2.

KFAM Utility Error Messages (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

INVALID PASSWORD, INPUT

The password specified
for the input User File
is incorrect (does not
match password
previpusly assigned to
this User File).

See Table A-1l.
value of P§; if
wrong, correct value
of P$. Rerun this
program.

Check

INVALID PASSWORD, OUTPUT

The password specified
for the previously
cataloged output

User File is incorrect
(does not match
password previously
assigned this User
File).

See Table A-1.
value of P9§; if
wrong, correct value
of P9$. Rerun this
program,

Check

INVALID POINTER

Sector accessed 1is
outside of User File
boundaries. Probably
the dummy END control
sector does not contain
the information
necessary to build/
rebuild the Key File.

See Table A-1. Rerun
this program. If
this error persists,
contact Wang
Laboratories, Inc.
(recovery may not be
possible).

INVALID RECORD TYPE

The entry made for
record type was
invalid. Valid entries
include A, B, C, M, and
N.

Re-enter the record
type and continue.

INVALID RECORD FORMAT

Applies to Type A
records; either more
than one record per
sector, more than

38 fields per record,
or record written
without the correct
control bytes. End
record may be
invalid.

See Table A-1. With
Build Key File or
Reorganize In Place,
this utility cannot
be run until User
File records are
rewritten (file

is re-created). With
Key File Recovery,
run Initialize KFAM
File and Build Key
File, then rerun.
With Reorganize/
Rebuild Subsystem,
the applications
programmer should

264

Table A-2.

KFAM Utility Error Messages (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

re-create the file if
the User File is
wrong or re-create
file parameters in
the KDR (see Chapter
8, Section 8.6).

Then rerun.

INVALID STATION
NUMBER

The station number
designated is
invalid.

See Table A-1.
Change the station
number (S2) to a
value 1-16 in

the setup module
(program). Rerun.

KEY FIELD OUT OF BOUNDS

Applies to record
type A: the key
must be wholly con-
tained within one
field. End record
may be invalid.

See Table A-1. 1If
this is a duplicate
key and the key
length and starting
position of the key
were carefully calcu-
lated, touch RETURN,
touch SF'l to change
the key type to
Duplicate, and then
retry. Otherwise,
check key length,
starting position
using Print Key File.
Then refer to re-
covery procedures
described for
INVALID RECORD
FORMAT for the
program in use.

KEY FILE NOT INITIALIZED

The specified Key File

has not been initialized.

See Table A-1. Run
Initialize KFAM File.
Then reun this
utility.

265

Table A-2.

KFAM Utility Error Messages (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

KEY FILE SPACE EXCEEDED

RESTORE BOTH USER FILE
AND KEY FILE FROM
BACK-UP COPIES BEFORE
ATTEMPTING TO RE-RUN
THIS PROGRAM (STOP)

Allocated space in
the Key File is
exhausted, and both
User File and Key
File are partially
reorganized, and
thus destroyed.

See Table A-1. Copy
User File and Key
File from backup
copies; with Key
File, increase space
allocated by either
(1) increasing extra
sectors with Copy/
Verify and then run
Reallocate File
Space, or (2) run
Reorganize/Rebuild
Subsystem with
variables 04$% and 04
set to create a
larger output Key
File. Rerun this
program.

KEY MAY NOT SPAN SECTORS

The key location, as
specified by the
starting location,
will span two sectors
and 1is thus invalid.
Applies only to M
type records.

Recalculate the
starting location or
length of the key.
If this is a dupli-
cate key and the
starting position of
the key and the key
length were calcu-
lated carefully,
touch RETURN, touch
SF'l to change the
key type to
Duplicate, and then
retry. Otherwise,
re-enter the starting
position of the key
or key length and
continue,

KEY OVERLAPS END RECORD

The key goes beyond
the boundaries of
the record, as
determined by the
record type and
record length.

Recalculate the key
length or starting
position of the key.
If this is a dupli-
cate key and the
starting position of
the key and the key
length were calcu-
lated carefully,

266

Table A-2.

KFAM Utility Error Messages (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

touch RETURN, touch
SF'l to change the
key type to
Duplicate, and then
retry. Otherwise,
re-enter the starting
position of the key
and continue.

KFAM-4 FILE BUSY

The specified KFAM-4

input file is currently

being accessed by
another station.

See Table A-1. Rerun
this program. If
this error persists,
run KFAM-4 version of
Print Key File to
determine the

station (or CPU)
accessing the

file; if the file

was accidentally left
open, run KFAM-4
version of Reset
Access Tables. Rerun
this program.

LAST KEY NOT FOUND

RESTORE BOTH USER FILE
AND KEY FILE FROM
BACKUP COPIES BEFORE
ATTEMPTING TO RE-RUN
THIS PROGRAM (STOP)

Reorganize In Place:
the User File and Key
File are partially
reorganized and

thus are undefined.
The last key in

the Key File could
not be located in

the User File, or
vice versa.

See Table A-1. Copy
the backup Key File
and User File as the
partially unorganized
files are undefined.

The applications
programmer should
write a small program
that will determine
the values of the two
keys that do not
match. Following
FINDFIRST or
FINDNEXT, T7$
contains the key
value from the Key
File. This can be
compared to the
corresponding key
value in the User
File. The

267

Table A-2.

KFAM Utility Error Messages (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

non-matching keys
should be corrected
or deleted. Then
rerun this program.

LAST KEY NOT FOUND

Build Key File:

The value of the key
entered as the last
key does not match
the actual value of
the last key.

See Table A-1. Run
Initialize KFAM File.
Then rerun Build Key
File and take care in
entering the last
key, if required.

MORE THAN 40 SECTORS
PER RECORD

Applies to type M
records. This program
will not reorganize a
file whose records
exceed 40 sectors

in length.

Touch SF'31l, then see
Table A-1. Use
Reorganize/Rebuild
Subsystem instead of
Reorganize In Place.

NO ROOM ON DISK FOR
OUTPUT PROGRAM

There is not enough
room on the disk
for the output
program to be
cataloged.

See Table A-1. Rerun
this utility, and
mount a disk with
enough space to
accommodate the
output program (52
sectors maximum
requirement) .

NO SPACE

Not sufficient space
for Key File. Possibly
last key was incorrect-
ly entered.

See Table A-1. With
Build Key File, run
Initialize KFAM File,
then rerun this
program. With Key
File Recovery, run
Copy/Verify on Key
File increasing extra
sectors value; then
run Reallocate File
Space. Rerun this
program.

268

Table A-2.

KFAM Utility Error Messages (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

NO SPACE ON DISK FOR
KEY FILE

There is insufficient
space on this disk

to catalog the Key
File.

See Table A-1. With
Build Key File, run
Initialize KFAM File,
then rerun this
program. With Key
File Recovery, mount
a disk with enough
free space to
accommodate the Key
File. Rerun this
program.

NOT BLOCKED AS SPECIFIED

Record type A:

records per block
specified incorrectly,
or records not
written in array
format.

See Table A~1. With
Build Key File or
Reorganize In Place,
this utility cannot
be run until User
File records are
rewritten (file is
re-created). With
Key File Recovery,
run Initialize KFAM
File and Build Key
File, then rerun.
With Reorganize/
Rebuild Subsystem,
the application
programmer should
re-create the User
File if it is wrong,
or re-create file
parameters in the KDR
(see Chapter 8,
Section 8.6). Then
rerun.

NOT DATA FILE

The User File
specified is a
program file, whereas
only data files are
valid as KFAM User
Files. Either the
User File Name or
the User File device
address is invalid,
or the wrong disk

is on-line.

Re-enter User File
name. If
unsuccessful again,
mount correct disk if
wrong disk is
on-line, check if
disk address

entered is correct,
and rerun.

269

Table A-2.

KFAM Utility Error Messages (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

NOT KFAM FILE NAME

The User File name
entered does not
conform to KFAM

file name conventions,
which require that (1)
an "F'" must be in
position 5 and (2)

a digit 0-9 must be in
position 6.

Re-enter User File
name according to
KFAM naming
conventions
(SSSSFNSS) .

NULL FILE

There are no active
records in this KFAM
file.

See Table A-1.
Probably wrong KFAM
file name entered; if
8o, rerun with
correct file name.

NUMERIC KEY INVALID

Type A records:
The key field is
indicated as lying
within a numeric
variable. The key
may not be a
numeric variable.

See Table A-1.
Recovery procedures
same as for NOT
BLOCKED AS SPECIFIED.

OPERATOR INTERRUPT

Program was interrupted
by the operator de-
pressing SF'31.

See Table A-1.
Rerun this
program.

OUTPUT FILE NOT
AVAILABLE

The specified output
file is currently being
accessed by another
station and is there-
fore not available at
this time.

See Table A-1.

Rerun this program.
If this error
persists, rerun Print
Key File and
determine if the

file was accidentally
left open, run Reset
Access Tables, and
then rerun this
program.

270

Table A-2.

KFAM Utility Error Messages (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

OUTPUT KEY FILE SPACE
EXCEEDED

OQutput Key File is
too small.

See Table A-1l. 1If
output Key File is
the same as the input
Key File, then run
Key File Recovery on
input User File.
Allocate more
cataloged space for
output Key File.
Rerun this program.

OUTPUT PROGRAM SPACE
EXCEEDED

Output program too
big for allocated
file space (file
cataloged success-
fully).

See Table A-1.
Reselect Build
Subroutine Module
from KFAM menu.
During rerun, either
asgign a different
program file name, or
mount a disk that
does not contain this
file name.

OUTPUT USER FILE SPACE
EXCEEDED

Space allocated for
output User File

in setup module 1is
too small.

See Table A-l.
Correct setup module
program. Either let
Reorganize/Rebuild
Subsystem catalog a
new file, or manually
catalog a new output
User File. Rerun.

PRINTING ERROR
REPORT

Appears while
an error report
is being printed.

No operator action
is necessary. The
error report should
be examined after
printing.

’

RECORD LENGTH NOT
SPECIFIED CORRECTLY

Type A records:
record length
specified in
Initialize KFAM
File does not

equal record length
of actual record.

See Table A-1.
Recovery procedures
are the same as for
NOT BLOCKED AS
SPECIFIED.

271

Table A-2.

KFAM Utility Error Messages (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

RE-ENTER

Entry made is invalid
because it contained
too many characters,
a "Y" or IINII was

not entered in reply
to a yes/no question,
numeric/alphanumeric
field conflicts with
entry made, entry
outside of range for
this field, etc.

Re-enter a reply to
the same prompt
field.

RESTORE BOTH USER FILE
AND KEY FILE FROM
BACK-UP COPIES BEFORE
ATTEMPTING TO RERUN
THIS PROGRAM

Refer to other message
displayed with this
error message, which
is listed elsewhere

in this table in
alphabetical order.

See accompanying
message for specific
recovery procedures.
This indicates KFAM
files are destroyed
and backup copies are
required.

SECTORS AVAILABLE,
DEVICE XYY...
SECTORS REQUESTED,
DEVICE XYY...

There is not enough
room on this disk to
catalog Key File
and/or User File.
(Device, sectors
available, sectors
requested are dis-
played.)

See Table A-1l.

Mount a different
disk with enough free
sectors to accommo-
date both files.
Rerun this program.

SEQUENCE ERROR

Reorganize/Rebuild
Subsystem: indicates
the key contained in th
input User File does
not match the key
contained in the

input Key File (KDR).

)y

See Table A-1. Run
Key File Recovery on
User File; rerun.

272

Table A-2.

KFAM Utility Error Messages (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

SEQUENCE ERROR

RESTORE BOTH USER FILE
AND KEY FILE FROM BACKUP
COPIES BEFORE ATTEMPTING
TO RE-RUN THIS PROGRAM.

Reorganize In Place:
indicates the keys in
the User File do not
match the keys in

the Key File (KDR).
Could also be machine
error. Both User
File and Key File

are partially re-
organized and thus
are effectively
destroyed.

See Table A-1l. Copy
backup copies of
User File and Key
File. The
applications
programmer should
write a small program
to determine which
keys do not match.
Following FINDFIRST
or FINDNEXT, T7$
contains the key
value from the Key
File. This can be
compared to the
corresponding key in
the User File. The
non-matching keys
should be corrected
or deleted; then,
rerun this program.

STOP NO ROOM FOR
KEY FILE

The User File is
already cataloged.
There is insufficient
space on this disk

to catalog the Key
File.

See Table A-1.
Mount a different
disk with enough
free space to
accommodate the Key
File. Rerun this
program.

STOP WORK FILE
FULL

The work file KFAMWORK
is full and cannot
contain aditional
error messages to be
printed.

Refer to Table A-1.
Run the ISS utility
Disk Dump to print
the contents of
KFAMWORK on the KFAM
disk.

SYSTEM ERROR

Hardware or software
error.

Touch SF'31

and see Table A-1.
Rerun this program.
Notify Wang
Laboratories, Inc.,
if this error
persists.

273

Table A-2.

KFAM Utility Error Messages (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

UNREADABLE SECTOR NNNNN,
NNN RECORDS LOST
(printed)

A sector of the

User File cannot

be read. The sector
number and number

of records lost due
to the unreadable
sector are displayed.
This message replaces
ERR I96 for Key

File Recovery only.

Execution error, no
operator action
required unless
printer address is
blank; if blank, key
RETURN to resume.

USER FILE TOO SMALL

The User File, which
is already cataloged,
does not have enough
room for the estimated
number of records.

Re-enter the
estimated number of
records with a
smaller number and
continue. After
completion of this
program, to increase
the allocation for
this User File, use
either Reorganize/
Rebuild Subsystem
with variables 03§
and 03 set to create
a larger output User
File, or Copy/Verify
followed by
Reallocate File
Space. After
completion, the file
is available for use
by other software.

WAITING FOR PRINTER

The printer is not
ON and SELECTed, or
the printer is
currently being
used by another
station.

Ready the printer if
it is not ON and
SELECTed, or wait
until it becomes
available. When
ready and available,
printing automatic-
ally begins and
continues without
operator inter-
vention.

274

Table A-2.

KFAM Utility Error Messages (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

WARNING -~ KEY FILE 1S
TOO SMALL
(also printed)

The already cataloged
Key File is too small
to accommodate the
estimated number of
records. This is
only a warning.

Either let program
continue until Key
File is full, then
reorganize, or the
program may be
stopped by touching
SF'31. Then run
ISS Copy/Verify
with enough extra
sectors to increase
allocation of Key
File; then run
Reallocate File
Space. Rerun this
program,

WORK FILE NOT AVAILABLE

Work file KFAMWORK
is either currently
being accessed by
another station or
does not exist.

See Table A-1.

Rerun this program.
If this error
persists, check if
other stations are
running KFAM utility
programs. If other
stations are running
KFAM utility
programs, keep trying
or wait until they
are done. 1If no
other stations are
running KFAM utility
programs, run ISS
File Status Report
utility to obtain

the file access
status of KFAMWORK;
if the file was
accidentally left
open, either use
Reset Access Tables,
File Status Report,
or execute a non-KFAM
file Close subroutine
to close KFAMWORK.
Rerun this program.

275

Table A-2. KFAM Utility Error Messages (continued)

ERROR MESSAGE DESCRIPTION RECOVERY
8 LEVELS OF INDEX More than 390,625 See Table A-1. Run
EXCEEDED 30-byte keys, or Print Key File for
more than 429,981,696 the Key File in
12-byte keys, etc. Use examine the
This error should not printed report and
occur. notify Wang
Laboratories, Inc.

276

APPENDIX B - SORT-4 VARIABLE CHECK-OFF LIST

M
RABCDEFGHIJKLMNOPORSTUVWXYZ

: xmx%xxxxmxﬂxmxx XXX NUMERIC SCALARS
N o X X‘_, XX FORMAT = MN
| S XX X X J

: PN mf ou.rfur XX _ % J

‘ NN N KJ.(__ X |

5 ﬁ-u& FEXLE XX

6 L § _ X X

7 TR .

8 L !

9 i L ! :—-j— §§: |

L | L XX '“I Q 'XJ X
NMABCDEFGHIJKLMNOPORSTUVW)(YZ

IR T X T Y ‘ X NUMERIC ARRAYS
: H ' N ! FORMAT = MN(
2 R i

: :Iueuf o e |

; lrfl-&' [Frul _

? | }1 ,4‘ T[

8 | | | L L]

o | | | ! |

o L1 ANEENEN

M

N

= ALPHA NUMERIC SCALARS
! FORMAT = MN$
3

4

5

6

7

8

9

0

D F

AN K N TM'__DCXW Y. ALPHA NUMERIC ARRAYS
o IR .) ¢,9,9, 1] FORMAT = MNS(
g EREERN RN) ¥ 5.9, A
? [anpkt__| oarPdr .))((’Yzﬁ_i_r_le;_

L Lo L IARAN
: [LPEE T FELE. _x.xg_}.]
’ EENEN EEN YN
Ry R e
J EREEEE BRI e g
o Li bt ‘RX,, .4

277

APPENDIX C - CONDITIONS GOVERNING SPURIOUS RESULTS FROM THE LIST/CROSS-
REFERENCE UTILITY

Under certain conditions, the variable cross-reference table printed by

the List/Cross-Reference utility may be erroneous. Specifically, certain
BASIC-2 statements 1in the 1input program can cause nonvariables to be
referenced as variables. A second condition causes array variables to be

referenced as scalar variables. A third condition occurs where variables are
not referenced. :

Because BASIC-2 is a flexible high-level language, it is not possible to
check each statement's possible syntax as with Assembler languages. Instead,
the Cross-Reference checks the current and the previous byte, and looks in a
table for possible variable and nonvariable values as it reads each statement
line.

The BASIC-2 statements and accompanying conditions for these errors are
given below.

Non-Variables Referenced as Variables by List/Cross—-Reference

STATEMENT CONDITION AND VARIABLE POSITION
PLOT All b, U, C, S, and R pen control
characters.
DATASAVE BT The N of the N parameter specifying

block size. The H parameter
specifying the header block mark.
The R which specifies resave.

DATALOAD BT The N of the N parameter specifying
block size.

ADD, ADD C, AND, OR, XOR, In these statements, if hexadecimal

BOOL, INIT, $TRAN, POS, digits (X;, X,) appear where:

X; = A, B, C...F
and

Xp =0, 1, 2...9
then the hexadecimal digits are

referenced as if they collectively
represent a variable. If X =0, 1,

278

SAVE, LOAD, MOVE, COPY
(DC followed by platter parameter)

SAVE S F "FILE"

$PACK, $UNPACK

DSKIP()S, DBACKSPACE()S

SKIP()F, BACKSPACE() F

2,...9, then these are not
interpreted as a variable. Examples
include:

AND (A$,XX) and

TRANS(A$,B$) XX R

The platter parameter (F, R, T) is
interpreted as a variable if followed
by a slash "/" or parentheses "(".
For example, LOAD DC F/B10, "FILE"
and SAVE DC F(), "FILE" F/Bl10 cause

F to be referenced as a variable.

In this example of the SAVE (BASIC-2)

statement, S is interpreted as a
variable.

If F or D follows $PACK or $UNPACK,
the F or D is interpreted as a
variable.

References S as a variable.

References F as a variable.

Array Variables Referenced as Scalar Variables

STATEMENT

All the MATH MATRIX Statements

CONDITION AND VARIABLE POSITION

All array variables appearing in
these statements are referenced as if
they are scalar variables, unless a
variable is followed by a left
parenthesis. For example, MAT A=B

is interpreted as if A and B both
were scalars; whereas MAT A=B(4,64)
is interpreted as if A is a scalar
and B is an array.

Variables Not Referenced By List/Cross—Reference

STATEMENT

SCRATCH followed by platter parameter

279

CONDITION AND VARIABLE POSITION

The first variable following the
platter parameter is not interpreted
as a variable. For example, the
statement SCRATCH F, A$, B$, C$ is
interpreted A$ were not a variable
however, B$ and C$ are interpreted
as variables.

APPENDIX D - TRANSLATION TABLES: ASCII TO EDCBIC AND EBCDIC TO ASCII

The Translation Table subroutines facilitate character code conversion
between ASCII and EBCDIC (see Chapter 3). Supported character conversions
appear in Table D-1.

Table D-1. ASCII/EBCDIC Translation

CATEGORY DESCRIPTION
Alphanumeric All uppercase letters (A-Z), lowercase
Characters letters (a-z), and digits (0-9) are
translated.
Punctuation The following punctuation characters are
Symbols successfully translated: period (.),

question mark (?), comma (,), colon
(:), semicolon (;), double quotation
mark ("), and single quotation mark or
apostrophe (').

Special Characters¥* The following special graphic characters
are successfully translated: pound or
number sign (#), dollar sign (§),
percent sign (%), ampersand (&),
asterisk (*), slash or division sign
(/), at sign (@), plus sign (+), hyphen
or minus sign (-), equal sign (=), left
parenthesis ((), right parenthesis ()),
underscore (_), 1less than sign (<),
greater than sign (>), left brace ([),
right brace (]), back slash (\), grave
accent ('), tidle (~), and split
vertical line ().

|

Control Characters The following control characters are
successfully translated: ACK, NUL, SO,
SOH, SsuB, BS, SI, STX, ESC, HT, DC1,
EOT, DEL, CR, DC2, NAK, BEL, LF, DC3,
EM, VT, DC4, FS(IFS), FF, GS(IGS), CAN,
SUB, RS(IRS), US(IUS), ETB, ETX, ENQ,
SYN, and DLE.

280

Table D-1. ASCII/EBCDIC Translation (continued)

* The up arrow, left bracket, and right bracket in the ASCII set and have no
EBCDIC counterparts, whereas the logical NOT sign (if defined), cents sign,
and logical OR sign in the EBCDIC set have no ASCII counterparts.
Therefore, during ASCII to EBCDIC translation, an ASCII up arrow (f) is
translated to EBCDIC hexadecimal S5F (sometimes defined as a logical NOT sign
(—)), a 1left bracket ([) 1s translated to hexadecimal AD, and a right
bracket (]) is translated to hexadecimal BD. Conversely, during EBCDIC to
ASCII translation, an EBCDIC hexadecimal 5F is translated to an ASCII up
arrow (}), a cent sign (¢) is translated to a hexadecimal FF, and a logical
OR sign (|) is translated to a hexadecimal FF,

281

APPENDIX E - ISS UTILITIES ERROR MESSAGES AND RECOVERY PROCEDURES

ISS utilities error messages are listed in Table E-1. If an error
message includes a file name, '"filename" appears in the listed error message
indicating where the actual file name would appear. Similarly, error messages
which include a line number are listed with '"'nnnn" to indicate where the line
number would appear. Error messages are listed in alphabetical order.

Table E-1. 1ISS Utilities Error Messages and Recovery Procedures

ERROR MESSAGE DESCRIPTION RECOVERY

ALL SPECIFIED
PROGRAMS PROCESSED

None. This is an
informative message.

The specified pairs of
program files were
identical.

CRT ALLOWS
VERTICAL DUMP ONLY.
KEY RETURN(EXEC)
TO RESUME?

With displayed (CRT),
output, only the Vertical
dump is allowed.

Touch the RETURN key.
Change the Dump Option
to vertical and retry or
change the output device
to printer and retry.

CURRENT MEMORY
SIZE TOO SMALL
BY nnn ENTRIES.

The requested number of
entries exceeds the
capabilities of this
station's memory size
by nnn entries.

Retry with a reduced
number of entries or, if
using a 2200MVP, retry
later using a larger
partition size.

DATA STRUCTURE
FOR DATA FILES

Re-enter the correct
file name.

Program files cannot be
dumped using the Data File

ONLY. Structure dump option or if
the input mode is Range.
ERR A0l Insufficient memory If a 2200MVP is in use,

available to perform
the specified operation.

refer to Table 1-1 for
the partition size
necessary to execute the
operation chosen.

Touch SF'31. 1If
possible, use a station
with a greater memory
ize and retry.
Otherwise, if using a
2200MVP, either execute
a different partition
configuration after all
stations have completed
their operations or wait

282

Table E-1. 1ISS Utilities Error Messages and Recovery Procedures (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

until the next time a
partition configuration
is to be executed and
increase the partition
size allocated to this
station, then retry.

ERR D82

One of the ISS program
files is not contained on
the ISS disk(ette) in use.
This error should not
occur if ISS was copied
properly to the disk(ette)
in use, if the ISS loading
address is correct, and if
the correct disk address
was selected via a SELECT
DISK statement prior to
loading ISS software.

Note the file name being
pointed to by the error
message. Touch SF'31,
and reload ISS software;
if unsuccessful, make a
backup copy of 1SS soft-
ware from the issued
diskette to a different
disk(ette) following the
procedures in Chapter 1
and use the new ISS
disk(ette). If this
error persists, contact
Wang Laboratories.

ERR D85

Either the output
disk(ette) accessed has a
disk catalog index, or a
disk(ette) accessed has
not been scratched since
it was last formatted.

Touch SF'31. 1In most
cases, retry using a
different disk(ette).
Later, in the Immediate
mode, use the LIST DC
statement to list the
catalog of the
disk(ette) causing this
error. If INDEX
SECTORS = 00000 appears,
this indicates that the
disk has not been
scratched (use SCRATCH
DISK statement). If the
disk(ette) has a full
catalog index, scratch
unwanted files, and use
the Copy/Verify utility
to copy all files (MODE=
ALL) to an output disk
with a greater index
sectors value.

283

Table E-1. 1ISS Utilities Error Messages and Recovery Procedures (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

ERR I93 The disk(ette) accessed Touch SF'31. If using a
was either not formatted, diskette, remove and
was incorrectly formatted, gently remount the
or has a format error. diskette; retry the

attempted operation.
Otherwise, retry using a
different disk(ette).

As a last resort,
reformat the disk(ette)
causing this error.

ERR 195 A tab was not in place Touch SF'31l. Remove the
over the write protect diskette and place a tab
hole while attempting on the diskette; remount
to write on the the diskette and retry
specified diskette. the attempted operation.
This error can occur If the tab was in place,
during ISS start-up carefully remount the
or utility operation when diskette and retry. 1If
defaults are saved if the unsuccessful, retry
diskette is write using a different
protected (tab not in disk(ette). Should this
place). This error could error persist when using
also be caused by a disk the same drive, contact
hardware (seek) problem. a Wang Service

Representative.
ERR 198 A disk(ette) was accessed Touch SF'31l. Check if

which was not mounted or,
if a diskette drive was
specified, the drive door
was not closed. Also
could be caused by using a
diskette in a Model 2270
Diskette Drive where the
diskette had been
scratched (SCRATCH DISK
statement) using a Model
2270A (or 2270AD) Diskette
Drive.

the diskette is mounted.
Retry taking care when
specifying the disk
address(es). 1If using a
diskette in a Model 2270
Diskette Drive and it
may be possible that the
diskette was formatted
on a different diskette
drive, run the Sort Disk
Catalog utility; 1f the
END CAT. AREA is
greater than 1023, the
operation requested can
only be performed on a
Model 2270A (or 2270AD).

284

Table E-1.

ISS Utilities Error Messages and Recovery Procedures (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

ERR P48

A peripheral device
address was specified
which does not exist

in this 2200MVP's Master
Device Table.

Touch SF'31. Do not use
the specified address
until it has been
entered into the Master
Device Table; i.e.,
during partition
generation.

ERROR IN OPEN

Either the INPUT ONE

or INPUT TWO file

is (1) a data file,

(2) does not exist at its
respective disk device
address, or (3) exists
as a scratched file at
its respective device
address. The file names
specified for INPUT ONE
and INPUT TWO and their
respective disk device
addresses precede this
error message. Only
program files may be
compared.

Were the correct file
names specified? Was
the correct disk
accessed? Run the Sort
Disk Catalog utility
for both disk addresses
to determine the status
of the files causing the
error message. Retry
with correct file names
or disks if appropriate.

ERROR IN REFERENCE
FILE OPEN = A

KEY RETURN(EXEC)
TO RESUME?

The reference file whose
name was entered is
currently being accessed
by another user or the
file was left open due to
an operational accident.

Check if another station
is accessing the
specified reference
file. Either wait

until that station is
done and touch RETURN

or touch SF'3l and
perform other processing
(retry later). If no
station is accessing the
specified reference
file, touch SF'31 and
use File Status Report
to close the file
accidentally left open.

ERROR IN
REFERENCE FILE
OPEN = M

KEY RETURN (EXEC)
TO RESUME?

The file whose name was
entered is not a reference
file and not a
multiplex/multistation
file.

Either mount the correct
disk, touch the RETURN
key, or touch SF'31 and
retry entering the
correct reference file
name.

285

Table E-1. ISS Utilities Error Messages and Recovery Procedures (continued)

ERROR MESSAGE DESCRIPTION RECOVERY

ERROR IN The reference file whose Either mount the correct
REFERENCE FILE name was entered is not disk and touch the

OPEN = P an ISS-4 reference file; RETURN key or touch

KEY RETURN(EXEC) it is an 0ld (pre-1SS-4) SF'15 and retry with

TO RESUME? reference file. correct disk address or

reference file name. 1If
unsuccessful, load the
Create Reference File
utility and choose the
edit option. Specify
the same file name and
the type as old/new.
Touch SF'l6. When the
Utilities menu appears,
retry the previous

operation.
FILE filename When creating a new Retry either choosing
ALREADY EXISTS reference file, the the edit option instead
ON PLATTER specified file name of the create option
(which appears in the (touch SF'15) or specify
error message) already a different file name.
exists at the specified If the correct disk was
disk address. not accessed, mount the
correct disk and then
retry.
FILE-filename CANNOT | There are two several
BE COMPRESSED - ERROR|possible reasons why the
IN OPEN filename appearing in the
error message could not be
compressed:
With MODE = INDIRECT, Check if the correct
the file whose input file input disk was accessed.
name appears in the error Run the Sort Disk
message may not be an Catalog utility to list
active program file on the input disk's
the input disk. The file catalog. Run the Create
was not compressed. Reference File utility

to print the contents of
the specified reference
file. Was the correct
reference file name
specified? 1Is a
reference file of the
same name contained on a

286

Table E-1.

ISS Utilities Error Messages and Recovery Procedures (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

The program file whose
output file name appears
in the error message
could not be compressed
possibly because of one
of the following reasons
related to the output
disk: (1) insufficient
disk space on the

output disk, or (2) the
output file name already
exists on the output
disk.

different disk? If
wrong disk or reference
file name, retry using
correct disk or
reference file name.

If the program file has
been scratched, check
whether a new file name
was assigned to that
program.

Check 1f the correct
output disk was
accessed. Run the Sort
Disk Catalog utility to
list the output disk's
catalog. Compare the
sector numbers for END
CAT. AREA and CURRENT
END; if their difference
is less than the number
of sectors required by
the file, retry using a
different output disk.
If the specified output
file name already exists
on the output disk,
retry using a different
output file name.

FILE-filename CANNOT
BE COMPRESSED ~ FILE
LENGTH ERROR

This is a program error
caused by numerous
statements in the

input program file
(filename) which

cannot be appended onto
other lines in the
program text. This
causes the output file
allocation estimate made
by the Compression
utility to be too small
to copy the compressed
program text.

It is recommended that
blank REM statements be
eliminated from the
input program file and
the program file be
resaved to disk. Retry
the compression. If un-
successful, the user may
modify ISS module
IS85.031U, statement line
550. The statement

El = MAX(1.1%A3,A3+5)
should be altered to
increase the value of
El, e.g., E1l =
MAX(A3*1.2, A3+15) and
the program file
1S5.031U resaved in

287

Table E-1.

ISS Utilities Error Messages and Recovery Procedures (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

place of the original
file; e.g., SCRATCH
T/xyy, "ISS.031U":SAVE
DC T/xyy, () "ISS.031u".

FILE-filename CANNOT
BE COMPRESSED - LINE
LENGTH ERROR (nnn)

A statement line
exceeding 180 bytes was
encountered in the input
file when the maximum
compressed line length
was specified as 180.
The byte length of the
statement line which
exceeds the 180 byte limit
appears in parentheses;
e.g., (nnn).

Either specify the
maximum line length as
256 or decompress this
program file before
compressing it (or
both).

FILE-filename-
CANNOT BE COPIED

There are four possible
reasons why the file name
appearing in the error mes-
sage could not be copied:

With OUTPUT OPTION = ADD,
the cause may be
insufficient disk space
on the output disk to
copy the file whose input
file name appears in

the error message.

Check if the correct
output disk was
accessed. Run the Sort
Disk Catalog utility to
list the catalog of the
output disk. Compare
the numbers for END

CAT. AREA and CURRENT
END; if their difference
is less than the number
of sectors required for
the file, retry using a
different output disk or
specify MODE = PART and
specify fewer extra
sectors.

288

Table E-1. 1SS Utilities Error Messages and Recovery Procedures (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

With OUTPUT OPTION = ADD,
the specified output file
name may already exist

on the output disk.

The file whose input

file name appears in the
error message was not
copied.

With OUTPUT OPTION

= REPLACE, the specified
output file name may

not exist on the output
disk. The file whose
input file name appears
in the error message

was not copied.

With OUTPUT OPTION

= REPLACE, the specified
output file may be

too small to contain

the contents of the input
file and the requested
number of extra sectors.
The file whose input

file name appears in

Check if the correct
output disk was
accessed. Use Sort Disk
Catalog to list the
output disk's catalog.
If the output file name
exists on the output
disk, retry retry using
either a different
output file name or a
different output disk.
Also, if the file on the
output disk may be
replaced (overwritten)
by the input file,
specify the output
option as replace or
add/replace and retry
using MODE = PART.

Check if the correct
output disk was
accessed. Run the
Sort Disk Catalog
utility to list the
catalog of the output
disk. 1If the output
file name does not
exist on the output
disk, retry using a
different output disk
or output file name;
or, specify output
option = add or add/
replace with the same
parameters and retry.
Specify MODE=PART.

Run the Sort Disk
catalog utility to list
the catalog of the
output disk. If the
output file name exists
on the output disk,
either retry with a
reduced number of extra
sectors or retry

289

Table E-1.

ISS Utilities Error Messages and Recovery Procedures (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

the error message was
not copied.

specifying output option
= add or add/replace and
a different output file
name. Specify MODE =
PART.

FILE-filename—CANNOT
BE DECOMPRESSED -
ERROR IN OPEN

With MODE = INDIRECT,

the file whose output
file name appears in

the error message

may not be an active
program file on the input
disk. The file was not
decompressed. Other
possible reasons appear
below:

The program file whose
output file name appears
in the error message
could not be decompressed
possibly because of one
the following reasons
related to the output
disk: (1) insufficient
disk space on the output
disk, or (2) the output
file name already

exists on the output
disk.

Check if the correct
Input disk was accessed.
Run the Sort Disk
catalog utility to list
the output disk's
catalog. Run the
Create Reference File
utility to print the
contents of the
specified reference
file. Was the correct
reference file name
specified? Is a ref-
erence file of the same
name contained on a
different disk? If
wrong disk or reference
file name, retry using
correct disk or ref-
erence file name.

If the program file

has been scratched,
check whether a new file
name was assigned to
that program.

Check if the correct
input disk was accessed.
Run the Sort Disk
Catalog utility to list
the output disk's
catalog. Compare the
sector numbers for END
CAT. AREA and CURRENT
END; if their difference
is less than the number
of sectors required for
the, retry using a
different output disk.
If the specified output
file name already exists

290

Table E-1. 1SS Utilities Error Messages and Recovery Procedures (continued)

ERROR MESSAGE DESCRIPTION RECOVERY

on the output disk,
retry using a different
output file name. 1If
the output disk was not
on-line, retry using the
same parameters.

FILE-filename CANNOT | Due to the presence of If sufficient space

BE DECOMPRESSED - numerous multistatement exists on the output

FILE LENGTH ERROR lines in the input disk, increase the extra
program file, the sectors value and retry.
output file could not As an alternmative to
be decompressed using greatly increasing the
the extra sectors value required number of extra
specified. sectors, after the

Utilities menu appears,
clear the station in
use, load the specified
program file, renumber
the program text, break
up some of the multi-
statement lines, save
the modified program to
disk, and then
decompress the program

file.
FILE - filename - Either the input and/or Check if the correct
DIFFERENT NUMBER OF output file does not have disk was accessed.
SECTORS USED an END control sector Retry taking care when
written by a DATASAVE DC entering the input and
END or subroutine output file names to be
equivalent, or the number verified. If un-
of used sectors (as successful, Copy/Verify

determined by the position | the file.
of the END control sector)
is not the same in the
input file and output
file. The pair of files
indicated by the input
file name which appears in
the error message do not
verify.

291

Table E~1. ISS Utilities Error Messages and Recovery Procedures (continued)

ERROR MESSAGE DESCRIPTION RECOVERY
FILE - filename - The specified input file Check if the correct
DOES NOT EXIST ON name does not exist on input disk was accessed.
INPUT PLATTER the specified input disk. Run the Sort Disk
The file whose input Catalog utility to list
file name appears in the catalog of the input
the error message could disk. Run the Create

not be copied or verified. Reference File utility
to print the contents of
the specified reference
file. Was the correct
reference file name
specified? 1Is a ref-
erence file of the

same name contained on a
different disk? 1If
wrong disk, retry using
different input disk.
Otherwise, retry with
the correct reference
file name.

FILE - filename - During the attempted Check if the correct

DOES NOT EXIST ON Verify operation, the output disk was

OUTPUT PLATTER output file name accessed. Run the Sort
specified does not exist Disk Catalog utility to
on the output disk. list the output disk's
The file whose output catalog. If the output
file name appears in file name does not exist
the error message could on the output disk,
not be verified. retry using either a

different output file
name or output disk.

FILE - filename - The data contained within Check if the correct

DOES NOT VERIFY the pair of files disk was accessed.
indicated by the input Retry taking care when
file name appearing in entering the input and
the error message does and output names to be
not verify. The pair of verified.

files does not verify.

292

Table E-1.

ISS Utilities Error Messages and Recovery Procedures (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

FILE filename IS
NOT AN ACTIVE DATA
FILE

When editing or printing
(edit or print option)

a reference file, the
specified reference

file name (appearing in
the error message) is not
an active data file
located at the specified
disk address, i.e., it
is not cataloged,
scratched, or is a
program file.

Check if the correct
disk accessed. Change
the specified file name
and retry. If un-
successful, touch SF'l5
and run the Sort Disk
Catalog utility to list
the specified disk's
catalog. Retry either
using the correct ref-
erence file name or
disk, or choose the
create option.

FILE filename IS
PROTECTED.

The file whose file name
appears in the error
message 1s a protected
or scrambled program
file and cannot be
accessed by this utility.

Check if the correct
disk was accessed and
file name was specified.
If incorrect, retry with
correct parameters.
Otherwise, skip this
protected program file.

FILE-filename - LINE
nnnn NOT FULLY

DECOMPRESSED

The program file whose
input file name appears
in the error message has
a line number (nnnn)
containing a multistate~-
ment line which could
not be decompressed
because a unique line
number could not be
assigned to each state-
ment. This is not an
error message; it merely
indicates where multi-
statement lines exist

in the decompressed file
due to a lack of available
line numbers.

After the Utilities
menu appears, the user
may clear the station in
use, load the decom-
pressed program, re-—
number the program text,
save the renumbered
program to disk, and
then decompress the
program file.

293

Table E-1. 1ISS Utilities Error Messages and Recovery Procedures (continued)

ERROR MESSAGE DESCRIPTION RECOVERY
File-filename - REM [During Compression, a Examine a recent cross-
REFERENCED LINE statement line containing reference listing or run
nnnn a REM statement was the List/Cross-Reference
deleted and a statement utility to determine the
line elsewhere referenced statement line(s) refer-
the deleted line. encing the deleted REM

statement. Edit those
statement lines refer-
encing the deleted line
and resave the program

file.
FILE SPECIFIED 1S The reference file Touch the RETURN key.
NOT AN ISS-4 specified is a pre-ISS-4 Retry with type set at
REFERENCE FILE. reference file (old) and 01d/0l1d or Old/New or
KEY RETURN(EXEC) the type was specified specify the correct file
as 01d/01d or 01ld/New. name or disk if
incorrectly specified
before.
FILE SPECIFIED IS The reference file Touch the RETURN key.
NOT A PRE ISS-4 specified is not a pre- Retry with the mode set
REFERENCE FILE. 1SS-4 (new) reference file at New/New or New/0Old or
KEY RETURN(EXEC) and the type was specified specify the correct file
as 01d/0l1d or 0Old/New. name or disk if
incorrectly specified
before.
FILE SPECIFIED IS The specified file name Check if the correct
NOT A REFERENCE is not a reference file. disk was accessed.
FILE. KEY It is, however, an Retry with the correct
RETURN(EXEC) TO active data file. disk or file name. Run
RESUME? the Sort Disk Catalog

utility to list the
disk's catalog if unsure
of the reference file
file name.

294

Table E-1. 1ISS Utilities Error Messages and Recovery Procedures (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

FILE SPECIFIED WAS
NOT CLOSED
PROPERLY.

The reference file
specified is either being
accessed by another
station or was
accidentally left open
during previous
operations.

Check if another station
is accessing the refer-
ence file specified.
Either wait until that
station is done and
touch RETURN or touch
SF'31 and perform other
processing (retry
later). 1f no station
is accessing the
specified file, touch
SF'31 and run the File
Status Report utility to
close the reference file
accidentally left open.

INACTIVE FILE

The specified file is not
an active file at the
specified disk address.

Touch the RETURN key.
Reenter the correct file
name, specify the
correct disk address, or
mount the correct disk.
In the case of an
accidentally scratched
file, touch SF'31l, run
Alter Disk Index to
change the file status
from scratched to
active, and retry.

INACTIVE NAME

When searching for a file
name, the specified disk
does not contain the
specified file name.

Re-enter the correct
file name. If the
correct disk was not
accessed, mount the
correct disk or touch
SF'31 to obtain the ISS
Utilities menu. Retry,
specifying the correct
disk address.

INSUFFICIENT MEMORY
FOR FULL INDEX
LISTING. KEY
RETURN(EXEC) TO
RESUME?

Insufficient memory exists
for this station to perform
the requested operation.

To obtain a partial
list, touch the RETURN
key. Otherwise, touch
SF'31. With a 2200MVP,
retry after a larger
partition size has been
allocated to this
station or, for any CPU

295

Table E-1. 1SS Utilities Error Messages and Recovery Procedures (continued)

ERROR MESSAGE DESCRIPTION RECOVERY

type, use a station with
a larger memory size to
perform this operation.

INPUT aaa ENDS The program file identified |None. This is an
AT LINE nnnn as INPUT ONE or INPUT informative message.
BUT INPUT bbb TWO (e.g., aaa=ONE) ends

CONTINUES at statement line nnnn,

but the program file iden-
tified as INPUT TWO or INPUT
ONE (e.g., bbb=TWO) has
additional program text
beyond statement nnnn.

INVALID RANGE The entered upper limit Touch the RETURN key and
of the file names is re-enter the upper limit
lower according to the correctly or touch
2200 ASCII collating SF'15.

sequence (character code
assignments) than the
entered lower limit of
file names.

LINE nnnn MISSING Statement line number None. This is an
IN INPUT aaa nnnn exists in only one informative message.
program file; it does
not exist in the program
file identified as INPUT
ONE or INPUT TWO (e.g.,

aaa=TW0)
MOUNT message The word ''message' is Either mount the disk
KEY RETURN (EXEC) replaced by INPUT DISK, and touch the RETURN
TO RESUME? 1SS PLATTER, etc. The key, or touch SF'l5 to
disk requested should change the address if
be mounted. incorrect, or touch

SAF'31 to abort this
utility. After touching
the RETURN key, the
reappearance of this
prompt indicates the
disk has not yet been
mounted. In most cases,
touch SF'31, reload the
utility, and carefully
enter the disk address.

296

Table E-1.

ISS Utilities Error Messages and Recovery Procedures (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

nnnn BOTH
FILES END

The two program files
being compared both end at
statement line number nnnn.

None. This is an
informative message.

NAME ALREADY
IN INDEX

When renaming a file, the
specified file name already
exists on this disk.

Re-enter a unique file
name. Was the correct
disk accessed? If not,
touch SF'31 to obtain
the ISS utilities menu
and retry.

NEXT SECTOR NOT
WRITTEN IN DC MODE
(expanded print)

During a Data File
Structure Dump, the next
sector does not contain
control bytes written by
DATASAVE DC (or DA)
statements; it cannot be
dumped using the Data File
Structure Dump option, but
may be dumped using other
dump options.

Retry, but dump the file
or range of sectors
using the Horizontal or
Vertical dump options.

NOT AN ACTIVE
FILE

The file specified is
scratched or does not
exist.

Only active files can be
processed by this
utility. Specify the
correct file name.

PRINTER ALLOWS
'FILE' DUMP ONLY

The output device is
specified as printer,
and the input mode is
specified as RANGE.

Touch the RETURN key.
Change the output device
to CRT or the input mode
to file.

PRINTER REQUIRED
KEY RETURN(EXEC)
TO RESUME?

The utility chosen or the
option (e.g., output
device) of the utility
program chosen requires

a printer. The start-up
printer address must be
changed to an actual
printer address (not
blank or 005) in order to
perform this function.

If a printer is
currently available,
touch SF'31l as required
to obtain the start-up
ENTER DESIRED OPTION
change the printer
address to reflect the
availability of a
printer, and retry. If
a printer is not
available, either touch
SF'15 (if allowed by
this utility) and choose

297

Table E-1.

1SS Utilities Error Messages and Recovery Procedures (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

CRT output or wait until
it is available, change
the printer address (see
above) and retry.

PROGRAMS COMPARE -
ARE SAME

The two program files
being compared are
identical.

None. This is an
informative message.

RANGE NOT With the input mode of Touch the RETURN key.

SPECIFIED RANGE, the sectors to Specify the sector
dump 1is specified as ALL numbers to be dumped or
or has been omitted. change the input mode to

File.

RE-ENTER During entry of either Re—enter the correct
a reference file name or input file name. Check
an input file name when if the correct disk is
MODE=PART, the file name being accessed. Retry.
entered does not exist, If unsuccessful, run the
is a scratched file, or Sort Disk Catalog
is a program file instead utility to determine the
of a reference file correct file name and
on the input disk. then retry.

RE-ENTER During entry of a numeric Re-enter a numeric value

nn xx / uu (ddd.)

value, the number entered
(xx) falls outside of the
acceptable upper and lower
numeric limits (range)
which are displayed. The
(ddd.) indicates the number
of digits and decimal point
position.

within the displayed
upper (uu) and lower
(nn) numeric limits.

RE-ENTER, The input or output (aaaaa) | Re—enter a correct file
DUPLICATE aaaaa file name entered has name.

FILE NAME. already been entered.

RE-ENTER, The specified file name Check if the correct
FILE ALREADY already exists on the disk has been specified.
EXISTS ON specified output disk. Re-enter the correct

OUTPUT DISK

output file name or
touch SF'l5 to change
the disk address or
SF'31 to abort.

298

Table E-1.

ISS Utilities Error Messages and Recovery Procedures (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

RE-ENTER,
INPUT FIELD
NOT DEFINED

The input file name has
not yet been defined when
attempting to enter the
output file name.

Touch SF'O and select an
input file name. Then
touch SF'l and re-enter
the output file name.

RE-ENTER,
INVALID NAME

The output file entered
was 0 (zero).

Enter a valid output
file name.

RE-ENTER,
INVALID RANGE

The entered upper limit of
of file names is lower
than the entered lower
limit of file names,
according to the 2200
ASCII collating sequence.

See INVALID RANGE;
however, the RETURN key
need not be touched.

RE-ENTER, MODE
AND ADDRESSES
INCOMPATIBLE

The specified mode was
ALL, DATA, PROGRAM, or
RANGE and the input and
output disk addresses
are the same.

Change the mode or
change either the input
or output disk address.

RE-ENTER, NAMES
AND ADDRESSES

The input and output
file names are identical

Change the output file
name and/or disk

INCOMPATIBLE when the same disk was addresses. Retry.
specified for the input
and output disk.
RE-ENTER, The file specified is Only active files can be
NOT AN scratched or does not processed by this
ACTIVE FILE exist. utility. Specify the

correct file name.

RE-ENTER, NOT
AN ACTIVE FILE
ON aaaaa DISK.

The file whose file name
was specified does not
exist or is a scratched
file on the input or out-
put (aaaaa) disk accessed.

Enter the correct file
name.

RE-ENTER,
OUTPUT FIELD
NOT DEFINED

The input and/or output
file name has not yet
been defined when
attempting to enter an
extra sectors value.

Touch the LINE ERASE
key and then touch
SF'0. Select an input
file name. Touch SF'1l
and re~enter the output
file name and extra
sectors value.

299

Table E-1.

ISS Utilities Error Messages and Recovery Procedures (continued)

ERROR MESSAGE

DESCRIPTION

RECOVERY

RE-ENTER,
WRONG FILE TYPE.

The file whose file name
was entered is a program
file when only data files
are acceptable or a data
file when only program
files are acceptable.

Enter the correct
file name.

RE-ENTER,
WRONG PASSWORD

The password entered is
not valid for this file.
Up to 16 characters are
allowed per password.

Re-enter the correct
password.

RE-MOUNT ISS DISK
AT xyy

The ISS disk has been
removed from the ISS
loading address (xyy).

Mount the ISS disk at
the specified address
and touch RETURN.

SECTORS MUST BE
WITHIN DISK LIMITS

With the input mode of
Range, the sector numbers
specified for sectors to
dump are outside to sector
number boundaries of the
specified disk.

Touch the RETURN key.
Change the sector
numbers to values
contained within the
specified disk's catalog
area.

SECTORS MUST BE
WITHIN FILE LIMITS

The specified sector
numbers for the sectors to
dump are not within the
boundaries of the specified
file. This applies to an
output device of printer
only.

Touch the RETURN key.
Change the sector
numbers to values
contained within file
boundaries.

SELECT PRINTER
KEY RETURN(EXEC)
TO RESUME?

The printer specified as
the ISS start-up Printer
Address is not powered on,
not selected, or is
currently being used by a
different station.

Check if the printer is
currently powered on,
selected, or being used
by another station.
When ready, touch the
RETURN key to continue.

TEXT DOES NOT
MATCH ON LINE
nnnn

Statement line number nnnn
exists in both program
files INPUT ONE and INPUT
TWO, but their content
differs.

None. This 1s an
informative message.

300

T — ————— o o o o o S A . — ———— A T S T Y - -

To help us to provide you with the best manuals possible, please make your comments and suggestions
concerning this publication on the form below. Then detach, fold, tape closed and mail to us. All
comments and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to
include your name and address. Your cooperation is appreciated.

700-5010A
TITLE OF MANUAL INTEGRATED SUPPORT SYSTEM (ISS) RELEASE 5 USER MANUAL
COMMENTS:
Fold
Fold

{Please tape, Postal regulations prohibit the use of staples.)

(WANG)

Fold

FIRST CLASS
PERMIT NO. 16
Lowell, Mass.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES
I

— POSTAGE WILL BE PAID BY —

WANG LABORATORIES, INC.
ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851

Attention: Technical Writing Degartment

Fold

Printed in U.S.A.
13-1019

Cut along dotted line.

	Cover
	Table of Contents
	Chapter 1: General Information
	Chapter 2: The ISS Utilities
	Chapter 3: The Screen/Disk Subroutines
	Chapter 4: The SORT-4 Disk Sort Subsystem
	Chapter 5: KFAM-7 General Information
	Chapter 6: The KFAM-7 Utilities
	Chapter 7: The KFAM-7 Subroutines
	Chapter 8: KFAM-7 Technical Information and Advanced Programming
	Appendix A: KFAM Utility Error Messages and Recovery Procedures
	Appendix B: SORT-4 Variable Check-Off List
	Appendix C: Conditions Governing Spurious Results from the LIST/Cross-Reference Utility
	Appendix D: Translation Tables: ASCII to EBCDIC and EBCDIC to ASCII
	Appendix E: ISS Utilities Error Messages and Recovery Procedures

