INTEGRATED

WANG) SUPPORT SYSTEM
USER MANUAL
RELEASE 2

i SR

m:aqd-ti l‘t. iy bk “ ¢ N
- a

v'é-u-up.ttn

caveas: SODORIGORN.

KerErave v Nl

Pevivnene ilom'

'to-o-..t-.cm- ;
) ;‘ m..-u t‘l_ht-vnmm-tcnug;-‘m“

: 3 ; L e i

m'..--‘-..-.q...mm..u---“-“m

Bid v ey i

INTEGRATED

SUPPORT SYSTEM
USER MANUAL
RELEASE 2

©Wang La boratories, Inc., 1976

AAAAAAAAAAAAAAAAA

Disclaimer of Warranties and Limitation of
Liabilities

The staff of Wang Laboratories, Inc., has taken due care in
preparing this manual; however, nothing contained herein
modifies or alters in any way the standard terms and conditions of
the Wang purchase, lease, or license agreement by which this
software package was acquired, nor increases in any way Wang's
liability to the customer. In no event shall Wang Laboratories, Inc.,
or its subsidiaries be liable for incidental or consequential dam-
ages in connection with or arising from the use of the software
package, the accompanying manual, or any related materials.

NOTICE
All Wang Program Products are licensed to customers in accordance
with the terms and conditions of the Wang Laboratories, Inc.
Standard Program Products License; no ownership of Wang Software is
transferred and any use beyond the terms of the aforesaid License,
without the written authorization of Wang Laboratories, Inc., is
prohibited.

LABORATORIES, INC.

(" N ANG) ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 861-4111, TWX 710 343-6769, TELEX 94-7421

s

HOW TO USE THIS MANUAL

This manual is a guide to the use of the Integrated Support System,
(ISS). There are two types of software in ISS: system access software and
support software.

The system access software consists of CPU diagnostic and initialization
routines, and a hierarchy of software menus. This ties together all the
software components of a system, including user written application programs
and the support software of ISS itself. The system access software is
described in Part I of this manual.

The support software of ISS can be broken down into broad groups as
follows:

1. General-purpose utility programs. These are described in Part II of
this manual, "The ISS Utilities."

2. Disk Sort Systems: There are two complete disk sort systems in ISS.
One of these is a stand-alone system that requires operator entry of
sort parameters. It is described in Part III of this manual, "The
ISS Disk Sort Utility." The other is a-subsystem that is called by a
user-written program. It is called SORT-3, and is described in Part
V of this manual, "The Programming Aids."

3. Disk File Access Systems: There are two complete disk file access
systems in ISS. They are similar except that one is designed for
use in a multiplexed disk environment. They are described in Part
IV, "KFAM".

4. Subroutines for Standard Programming Tasks: ISS includes a group of
subroutines which perform the most commonly required program tasks
of a disk-based 2200 system. These are described in Part V of this
manual.

TABLE OF CONTENTS

PART 1 OVERVIEW OF ISS.

CHAPTER 1
CHAPTER 2

CHAPTER

CO~NOYOY R WMN —

CHAPTER

BSOS
-

PART II THE ISS

INTRODUCTION

ISS SUPPORT SOFTWARE . . .
Application Support D1skettes.
Programming Aids Diskette.

ISS SYSTEM ROUTINES. . . .

Overview of IPL and START

IPL.

START.
Operating Instruct1ons - IPL e

The Change System Specs Routine. .
Transferring to an Application Program .
Transferring to Another ISS Diskette .

Copying the ISS System to a Model 2230/é260. o

Disk Drive .

SYSTEM REQUIREMENTS FOR ISS OPERATION.
Hardware Requirements.

Software Requirements for Integrat1ng
Application Program into ISS .

UTILITIES.

CHAPTER 5
CHAPTER 6

[ex e We)]
w N —

CHAPTER

N
—_

CHAPTER

00 0 CO
N —

CHAPTER

ToR Vo Ce)
. —

CHAPTER 10
10.
10.2

—_

INTRODUCTION TO THE ISS UTILITIES.

THE COPY/VERIFY AND CREATE REFERENCE FILE
UTILITIES. < . .
Introduction . . .
Copy/Verify Operat1ng Instruct1ons .
Create Reference File.

THE SORT DISK CATALOG UTILITY.
Introduction
Operating Instructions .

THE DISK DUMP UTILITY.
Introduction . . .
Operating Instruct1ons .

THE DECOMPRESS UTILITY . . .
Introduction . .
Operating Instruct1ons .

THE LIST/CROSS-REFERENCE UTILITY .

Introduction . .
Operating Instruct1ons .

iv

PAGE

20
20
20
24

29
29
29

32
32
32
35
35
35
39

40

PART

PART

CHAPTER 11 THE COMPRESSION UTILITY.
11.7 Introduction
11.2 Operating Instructions
CHAPTER 12 THE LIST UTILITY«
12.1 Introduction
12.2 Operating Instructions
CHAPTER 13 THE RECONSTRUCT INDEX UTILITY.
13.1 Introduction
13.2 Operating Instructions
ITI THE ISS DISK SORT UTILITY.
CHAPTER 14 OVERVIEW
14.1 System Summary
14.2 File Requirements.
CHAPTER 15 DETERMINE WORK FILE SIZE
15.1 Introduction
15.2 Operating Instructions
CHAPTER 16 EXECUTING THE DISK SORT UTILITY.
16.1 Introduction
16.2 Operating Instructions
CHAPTER 17 ISS DISK SORT UTILITY TIMINGS.
IV KFAM . . o e e s e
CHAPTER 18 OVERVIEW OF THE KFAM SYSTEMS
18.1 What is KFAM?. e e e e e e .
18.2 The Functional Components of KFAM-3 and KFAM-4 .
18.3 How to Get Started with KFAM
18.4 Overview of KFAM-4
CHAPTER 19 KFAM REQUIREMENTS AND CONVENTIONS.
19.1T User File. . . . « o v v v v v v o ...
19.2 Key. « .« v v o 0 oo e e e e e e
19.3 Key File v v v v v v v oo
19.4 Device Addresses
CHAPTER 20 THE KFAM SET-UP UTILITIES.
20.1 Overview of Initialize KFAM File (KFAM-3 and
KFAM-4).o e ..
20.2 Initialize KFAM File Operating Instructions
(KFAM-3 and KFAM-4).
20.3 The Key File Creation Utility (KFAM-3 and
KFAM-4).o s e e
CHAPTER 21 THE KFAM-3 SUBROUTINES
21.1 Overview of KFAM-3 Subroutines
21.2 Build Subroutine Module (KFAM-3)
21.3 Calling the Subroutines.
21.4 OPEN

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

23.

24

24.

24.

25

25.
25.

26

26.

26.

OONOOPRWwMN —

_—) — —
wrno — O

DELETE.

FINDOLD

FINDNEW

FINDNEW(HERE) .

FINDFIRST . . .

FINDLAST.

FINDNEXT.

CLOSE . . e e

THE KFAM-4 SUBROUTINES. .. .
Programming with the KFAM-4 Subrout1nes ..
Build Subroutine Module (KFAM=4).
Calling the KFAM-4 Subroutines.
OPEN. . . .

DELETE. . .

FINDOLD . .

FINDNEW . .

FINDNEW(HERE) » . o o

FINDFIRST o o o o o o ..
FINDLAST. e e e .
FINDNEXT .

RELEASE .

CLOSE . . .

THE KFAM REORGANIZE UTILITIES (KFAM-3 AND
KFAM-4)

The Reorganize Sub- system (K#Aﬁ—é én& kFAM;45 :

Overview.
Writing the Set-Up Modu]e .. .
Utility Operation and Error Messages

The Reorganize KFAM File Ut111ty (KFAM 3and

KFAM-4) .
Overview. .
Operating Instruct1ons

THE ADJUST KFAM FILES UTILITIES .

Reallocate KFAM File Space (KFAM 3 and KFAM- 4)f

Overview.

Operating Instruct1ons .. e e e e e
Disk Copy and Reorgan1ze (KFAM-3 and KFAM-4).
Overview. e e e e e e e e
Operating Instruct10ns

THE PRINT KEY FILE UTILITIES.
Print Key File KFAM-3 . .
Print Key File KFAM-4 .

THE RECOVERY UTILITIES.
The Key File Recovery Ut111ty (KFAM 3 and
KFAM-4)o
Overview. C e e

Operating Instructions. . . e e e e
The Reset Access Table Ut111ty (KFAM-4) . .

THE KFAM CONVERSION UTILITIES .

vi

107
108
108
109
110
110
111
111

113
113
118
122
125
126
127
128
129
130
130
131
132
132

133
133
133
134
138

14z
143
144

151
151
151
153
158
158
159

164
164
166

168
168
168
169
172

176

27.1 The KFAM-3 Conversion Utilities 176

Overview.o o000 176
Conversion Procedure. 177
27.2 The KFAM-4 Conversion Utility 181
CHAPTER 28 GENERAL TECHNICAL INFORMATION 184
28.1 Key File Record Layouts 184
28.2 Key File Structure. 188
28.3 Key File Recovery Information 193
28.4 FINDNEW with Blocked Files under KFAM-4 194
28.5 Compatibility between KFAM-1 and KFAM-3 195
CHAPTER 29 KFAM ADVANCED PROGRAMMING TECHNIQUES. 197
29.1 Eliminating the Printer in KFAM-3 and KFAM- 4. . 197
29.2 Files too Large for One Platter in KFAM-3
and KFAM-4. L. .. 199
29.3 Reusing Deleted Space with FINDNEW(HERE). . . . 201
29.4 Multiple Key Files per User File. 203
29.5 Status of the KDR in KFAM-3 203
29.6 Status of the KDR in KFAM-4 206
29.7 File Names for the KFAM Utilities 207
PART V THE PROGRAMMING AIDS 208
CHAPTER 30 OVERVIEW. o o o v ... 209
30.1 Summary L o . o e e e e e e e 209
30.2 How to Load the Subroutines 209
CHAPTER 31 THE SCREEN/DISK SUBROUTINES 211
31.1 Data Entry. e e e e e e e 211
31.2 Free Unused Sectors 213
31.3 Allocate Data File Space 214
31.4 Search Index. . . . -
31.5 Open/Close Qutput 215
31.6 Open/Close Input. 217
31.7 Position Cursor 218
31.8 Alphanumeric Input. 218
31.9 Numeric Input e e e ... 219
31.10 Date Routines 219
31.11 Operator Wait 222
CHAPTER 32 TRANSLATION TABLE SUBROUTINES 223
CHAPTER 33 SORT-3. . . . & . o o e oo e e e e 224
33.1 Introduction. 224
33.2 Input File Requirements 225
33.3 Writing the Set-Up Module 227
33.4 Calculating the Exact Required Work File S1ze . 236
33.5 Normal Operating Procedure. 238
33.6 Writing a Special Input Procedure 239
33.7 MWriting a Special Output Procedure. 24]
33.8 Error Messages and Recovery Procedures. 245
APPENDIX A Conditions Governing Spurious Results from the
List/Cross-Reference Utility. - . 251
APPENDIX B Sort-3 Variable Check-Off List. 253

vii

PART |
OVERVIEW OF ISS

CHAPTER 1
INTRODUCTION

The Integrated Support System (ISS) is a collection of software designed
to make it easier to create and run a disk-based Wang 2200 system. It
provides utility programs to do some of the standard tasks of the system and
subroutines to do some of the standard tasks of programs. It ties together
support and application software. Under ISS, a common system setup tests the
CPU, and then begins the processing day by requesting standard system data.
Beneath this common setup, a hierarchy of accessways links all parts of the
system and makes the standard system data universally available.

The Integrated Support System (ISS) resides on four functionally
organized diskettes. Each contain the daily setup module, called Initial
Program Load (IPL), the master transfer module, called START, as well as a
file of routines.

The IPL module is executed once at the beginning of each day. It first
performs a brief, 30-45 second, CPU diagnostic. If no hardware malfunction is
detected, it begins the processing day by requesting keyboard entry of the
date. The date is saved 1in Gregorian alphanumeric format and in Julian
numeric format for use by any part of the system. IPL then passes control to
START. '

The START modules are the key links of the system. They offer easy
access to the routines on their respective diskettes, as well as transfer
routes to the other START modules and to application software. They execute
an intra-system CPU initialization which makes standard system data available
to all software in the system. At the end of execution, each user program or
ISS routine offers a route back to a START module. START is a major
system-integrating factor which puts all the elements of the system at the
fingertips of the operator.

ISS provides for entry of the system CPU memory size and makes this
information available for use by any part of the system.

ISS is designed so that application programs may be integrated into it
with the minimum constraint of those programs. In addition, all four ISS
diskettes may be copied to a single rigid disk. This automatically brings a
new highest-level menu into the system which preserves the system software
access routes.

CHAPTER 2
ISS SUPPORT SOFTWARE

2.1 THE APPLICATION SUPPQORT DISKETTES

The Application Support Diskettes are so named since they provide
transfer routes to an application program. In addition to this basic
function, they contain ISS Utilities, the Disk Sort Utility, KFAM-3 and
KFAM-4. The ISS Utilities and the Disk Sort Utility reside on Application
Support Diskette #1; the KFAM systems occupy Application Support Diskettes #2
and #3. Each Application Support Diskette provides a routine for changing
certain standard system information, such as the memory size and the ISS
standard loading address.

ISS Utilities

The ISS Utilities are stand-alone routines designed to perform tasks
frequently required in a disk-based data processing system. They reside on
Application Support Diskette #1. Their functions are summarized below:

1) COPY/VERIFY - Copies files from one disk to another and verifies
the copy. Additional sectors may be added to the copied files.
Copied files may be renamed, or may replace existing files on the
output disk. Files to be copied may be specified directly, during
operation of the utility, or indirectly by means of a COPY/VERIFY
Reference File.

2) SORT DISK CATALOG - Prints a disk catalog index, sorted

alphabetically by file name or numerically by starting sector
address.

3) DISK DUMP - Prints the hexadecimal and character equivalents of the
contents of any disk file.

4) DECOMPRESS - Copies a program file and in doing so breaks up all
multi-statement lines, assigning a unique Tine number to each BASIC
statement.

5) LIST/CROSS REFERENCE - Prints a Tist of a program file with each
BASIC statement printed on a separate line. For each input program
file, it prints three cross-reference tables: one which associates
referenced Tine numbers with the lines which refer to them, one
which associates all variables with the lines in which they appear,
and one which associates all DEFFN' subroutines with the 1lines
which refer to them.

CHAPTER 2 - OVERVIEW OF ISS SUPPORT SOFTWARE

6) COMPRESSION - Reduces the size of source program files by
eliminating REM lines, extra spaces, and inessential line numbers.

7) LIST - Prints a list of a program file with each BASIC statement on
a separate line.

8) RECONSTRUCT INDEX - Reconstructs a disk catalog index in the event
of its accidental destruction.

9) CREATE REFERENCE FILE - Creates a reference file for use by the
COPY/VERIFY utility.

KFAM

KFAM is a software system designed to produce, search, and maintain an
index to the records in a disk-based data file. The index is kept as a
cataloged file on disk. KFAM includes subroutines which are incorporated into
user written application programs. These subroutines perform all the routine
operations on the index: random access search, sequential access search,
adding and deleting entries. KFAM also includes utility programs that set-up
a new KFAM index, and programs which carry out a variety of occasional
maintenance tasks on a file.

There are two versions of KFAM in ISS. KFAM-3 is a powerful general
purpose version for use when a file is to be accessed by only one CPU. KFAM-4
is designed for use in a multiplexed disk environment in which several CPU's
may wish to access a file simultaneously.

The ISS Disk Sort Utility

The ISS Disk Sort Utility is a stand-alone system designed to rapidly
sort the records in a cataloged disk data file. It resides on the ISS
Application Support Diskette #1. It has two components. One component is
used to calculate the size of the work file needed for execution; the other
performs the actual sorting. For maximum efficiency the system wuses the
"extended" BASIC statements described in SORT STATEMENTS (Publication
#700-3559A).

2.2 PROGRAMMING AIDS DISKETTE

The Programming Aids diskette offers the ISS programmer a variety of
DEFFN' subroutines which may be incorporated into application programs. These
subroutines are designed to perform standard tasks frequently required within
application programs. In addition to these subroutines, it also offers
SORT-3, a sub-system for sorting records on a disk file. SORT-3 is loaded via
a user written set-up program that provides all the operational parameters for
the sort. After completing its execution, SORT-3 optionally loads a user
application program. SORT-3 is a fast and highly flexible sorting utility.

The Programming Aids diskette includes IPL and a START module and,
therefore, may be used to begin the processing day.

CHAPTER 2 ~ OVERVIEW OF IS5 SUPPORT SOFTWARE

Subroutines

There are two groups of DEFFN' subroutines on the programming aids

diskette.

They are the Screen/Disk subroutines and Translation Tables.

The Screen/Disk subroutines perform standard tasks relating to operator
to CPU and disk to CPU interaction. They include the following:

1)

2)

10)

Search Catalog Index: This subroutine examines the Disk Catalog
Index to see if a particular file has been cataloged.

Allocate Data File Space: This subroutine opens a data file on any
selected disk, and allocates to it the available sectors between
the current end and the end of the cataloged area. It checks the
index to ensure the uniqueness of the file name; it allows a
minimum acceptable file size to be specified.

Free Unused Sectors: This subroutine examines the last file in a
catalog area, de-allocates those sectors between the DATASAVE DC
END trailer and the end of the file, and repositions the end of
file control sector. The de-allocation may be restricted by
specifying that a minimum number of extra sectors be maintained in
the file area.

Data Entry: This subroutine accepts a keyboard entry, using the
KEYIN statement, and checks the entry to ascertain whether it is
within a specified range and whether its Tlength, and number of
places before and after the decimal, is acceptable. It also
displays a prompt and an appropriate entry mask.

Open/Close Output: These subroutines open for output, or close,
data files containing certain, special purpose, software header and
trailer records.

Open/Close Input: These subroutines open for input, or close, data
files containing certain, special purpose, software header and
trailer records.

Alphanumeric Input: This subroutine displays a prompt on line 1 of
the CRT, and a series of prompting dashes on line 2 indicating the
maximum field size to be entered. The entered alphanumeric
information replaces the prompting dashes.

Numeric Input: This subroutine displays a prompt on line 1, and,
on line 2, a series of prompting dashes indicating the maximum
number of digits to be entered before and after the decimal point.
The entered numeric data replace the prompting dashes.

Position Cursor: This subroutine moves the cursor to any point on
the CRT and, optionally, erases characters to the right of the new
cursor position and lines below it.

Date: This is a group of routines which convert and manipulate
dates in Gregorian and Julian form. It includes a routine for
operator entry of the date.

CHAPTER 2 - OVERVIEW OF ISS SUPPORT SOFTWARE

1) Operator Wait: This subroutine displays the message "Key
RETURN(EXEC) TO RESUME" and waits on an INPUT instruction for
depression of RETURN(EXEC).

The Translation Table subroutines set up a table (an alphanumeric array)
for use with the BASIC statement $TRAN. Four subroutines are provided which
assign the proper hex codes for the following translations:

EBCDIC TO ASCII

ASCII TO EBCDIC
2200 TO 1200
1200 TO 2200

CHAPTER 3
ISS SYSTEM ROUTINES

3.1 OVERVIEW OF IPL AND START

IPL and START together Tlink ISS software with user software, and produce
an integrated system with common information available to all system
components. In accomplishing this end, IPL and START maintain a data file
called "MEMORY" on each of the ISS diskettes. Though, for the most part, the
operator is never directly involved in accessing or altering it, "MEMORY" is
an important component in the ISS system.

"MEMORY" is a two-sector cataloged data file maintained on each of the
ISS diskettes. The first sector contains the following fields:

Field Description Type Bytes Comments
Field #1 System Size Numeric 8 (8,12,16...32)
Field #2 Gregorian Date Alphanumeric 8 MM/DD/YY
Field #3 Julian Date Numeric 8 YYDDD
Field #4 Application Disk
Menu Select # Numeric 8 0 if uninitialized

A1l the fields are set to 0 on all ISS diskettes when they are first
delivered, The second sector contains information used for ISS's internal
control.

IPL is used to begin the processing day. The processing day is taken
to include all types of system activity other than hardware diagnosis. IPL
first loads "MEMORY" and checks for a valid memory size specification (8,
12, 16, 20, 24, 28, 32). If the memory size specification is invalid, as it
is when IPL is performed with a new ISS diskette, IPL prompts for operator
entry of a valid memory size. The entered size is saved in "MEMORY". (When
initiaiizing memory size for a 2200 VP, core size entered should be 4K less
than \actua] core size., For example, if core size is 32K, enter 28K as core
size.,)

As soon as a valid memory size is available to IPL, it performs two CPU
diagnostic tests. These tests 1last approximately 30-45 seconds, depending
upon memory size.

The first test is the memory test. If this test finds a problem, the
message STOP MEMORY ERROR appears. The Memory Diagnostic on the 2200 Hardware
Diagnostic System must then be run to pinpoint the nature and location of the
problem; a Wang Service Representative should be summoned.

The syntax check is the second diagnostic test. If a malfunction is
encountered in this test, a "hardware" error of the form ERR XX, is signaled

7

CHAPTER 3 - ISS SYSTEM ROUTINES

which specifies the malfunctioning instruction. For this type of problem,
this test constitutes a complete specification. A Wang Service Representative
should be summoned, but no further diagnostic need be performed.

NOTE:

Any IPL detected CPU problem prevents the processing day
from beginning.

When the diagnostics are completed without error detection, the
processing day begins. "Today's date" is requested, and, once entered,
displayed for verification in Gregorian and Julian formats. (Detailed
specifications of these formats can be found in Section 31.10.) Upon
verification, the date information is saved in "MEMORY" and the START module
is loaded.

NOTE :

Since IPL writes to the data file MEMORY, ISS diskettes
must not have the write protect feature invoked (that is,
on the 2240 series disk drives, the protect tab must not
be affixed. On the 2270 models, the protect hole must be
covered). It is therefore strongly recommended that a
backup copy be maintained of each ISS diskette.

IPL should not be executed more than once in a single day. In the event
of a system error from which no other recovery is possible, START can be
loaded in the immediate mode by keying

SELECT DISK XYY
LOAD DC T "START"

where: XYY is the ISS standard loading address

Before this course is chosen, though, the full effects of the START
intra-system initialization should be considered.

3.3 START
Master Menu

START is the entry point of a hierarchical system of "menus" which
provides access to all the ISS services and to application software. The
START module of each of the ISS diskettes displays the master menu for its
diskette. The operation of START is identical on each of the ISS diskettes;
only the menu content varies. If the ISS system is copied to a single rigid
disk, the START master menu offers access to the software previously stored on
each diskette.

A sample master menu is given below. It specifies the special function
keys to be depressed for access to each of the listed routines.

8

CHAPTER 3 -~ ISS SYSTEM ROUTINES

WANG COMPUTER SYSTEMS
APPLICATION SUPPORT #1.

FN KEY PROGRAM NAME FN KEY PROGRAM NAME
00 ISS UTILITIES 02 CHANGE SYSTEM SPECS
01 DISK SORT 03 APPLICATIONS
15 NOT ON THIS VOL.

Intra-System Initialization

Transfer to START can be effected from four 1locations: from an
application disk, from IPL, from another ISS START module, or from a
subsidiary menu. Regardless of which of these effects the transfer, START
executes the same intra-system initialization as follows:

A11 variables, including COM variables, are cleared. The disk device
table 1is cleared and file number #0 1is set to the ISS standard loading
address. CI and INPUT class I/0 parameters are set to address 001. CO,
LIST, and PRINT class I/0 parameters are set to address 005. COM variables
Q1, Q1$, S and S1 are established and "MEMORY" is loaded into them as follows:

Q1$ - Gregorian Date

Q1 - Julian Date

S - Memory Size in K

ST - Menu Selection Number for Application Disk

The master menu is displayed.

Subsidiary Menus

In most cases an exit from the master menu to one of the ISS support
services results in the display of another subsidiary menu. These subsidiary
menus should not be confused with the master menu; the initialization
procedures of START are not duplicated within these subsidiary menus.

The subsidiary menus all offer return routes to START. In general, the
stand-alone routines, upon completion of their execution, return to the menu
which provided their entry-point. This menu offers return to START via
Special Function Key 15.

ISS Diskette Transfer

‘As a mnemonic convention in ISS, Special Function Key 15 has been
adopted as the standard exit route from one START module to another or from a
subsidiary menu to the next higher level menu. A1l the master menus offer the
selection "NOT ON THIS VOLUME" at Special Function key 15.

When "NOT ON THIS VOLUME" is selected, a mount message is displayed and
the operator mounts the desired ISS diskette. The contents of COM variables
S, Q1$, and Q1 are then written to the "MEMORY" file on the newly loaded ISS
diskette. Control 1is passed to the START module. In this manner, the
continuity of the processing day 1is preserved across ISS diskette
substitutions. IPL is not run a second time. (Note that the variable S1 is
not passed during an ISS diskette substitution.)

9

CHAPTER 3 - ISS SYSTEM ROUTINES

Transfer to Applications

On the three Application Support Diskettes the master menus offer an exit
to Applications. Selection of this route initiates a test on COM variable SI.
If S1 is zero, the display prompts for selection of the disk device address of
the application. Specified by selection numbers 1 through 6, the available
addresses are 310, 320, 330, B10, B20, B30. Once an address has been
selected, it is stored in the device table opposite file number #1. The menu
selection number is stored 1in S1. The operator is prompted to mount the
application program disk at the specified address. When the operator signals
that the disk is mounted, ISS loads a file named START from the address of the
application. If such a file is not in the catalog index of the application
disk, the mount message reappears.

The design of the ISS system suggests that application programs be
accessed via an application menu module, named "START", which is similar in
function and appearance to the subsidiary menus within ISS. Such an
application program menu can only be created by the application programmer.
However, access operations under ISS only require that a program file named
“START" reside on the application disk; this program need not be a menu
program.

[f application programs are always run from the same disk device address,
the address entry operation may be bypassed by specifying the selection number
as part of the ISS system specifications. (The selection number is the number
that appears on the display, opposite the device address.) If the ISS system
specifications in MEMORY include a non-zero selection number, the selection of
"Applications" from a master menu immediately causes the mount message to
appear. The CHANGE SYSTEM SPECS. routines can be used to initialize an ISS
diskette "memory" file with a selection number.

[f applications are processed from one disk address, without exception,
then all three application support diskettes may be initialized to the proper
selection number. If there is an occasional exception, one may be initialized
for routine use, and the others left with the zero that causes the address
entry operation to appear.

To recapitulate from the application program viewpoint, IPL and START
function together to provide application programs with the Gregorian and
Julian dates, the disk address selection number, and the available memory
size. These data are passed to applications in COM variables Q1%, Q1, S1 and
S, respectively. Should these be cleared during application processing, a
return to an ISS START module automatically restores them.

3.4 OPERATING INSTRUCTIONS - IPL

DISPLAY INSTRUCTIONS

1. READY 1. Key CLEAR (EXEC).
: SELECT DISK xyy (EXEC)

where: xyy is the ISS stan-
dard loading address.

10

2. READY
3. READY
4. READY

LOAD DC T "IPL"

5. ENTER MEMORY SIZE IN K
(i.e., 8, 12, 16...32)

6. MEMORY SIZE (IN K) X

= X
LOOP T

7. SYNTAX TEXT

11

CHAPTER 3 - 1SS SYSTEM ROUTINES

Mount any desired ISS
diskette at the ISS standard
loading address.

Key LOAD DC T "IPL" (EXEC).

Key RUN (EXEC).

If this is the first time
that this ISS diskette has
been mounted, go to step 5.
Otherwise, skip to step 6.

Enter the appropriate number
for the memory size available.

Temporary display appears dur-
ing memory test. The memory
size in K is given at XX. The
incrementing of T indicates that
processing is continuing. The
test is complete when T = 10.

NOTE:

If the message STOP MEMORY
ERROR appears, the diagnostic
has detected a malfunction in
memory. The processing day
cannot begin. Load and exe-
cute the memory test of the
2200 Hardware Diagnostic
System. Call your Wang Service
Representative and report the
problem.

Temporary display appears
during Syntax check.

NOTE:

If an automatically reported
error, of the form ERR XX,
appears together with a BASIC
statement, a syntax failure has
been detected. The processing
day cannot begin. Call your
Wang Service Representative to
report the problem,

CHAPTER 3 - ISS SYSTEM ROUTINES

8. CPU VERIFY TEST PASSED

9. ENTER TODAY'S DATE AS
MM/DD/YY

10. OK (Y OR N) MM/DD/YY YYDDD

11.

3.5 CHANGE SYSTEM SPECS

Overview

A11 ISS diskette master menus offer the

10.

1.

CHANGE SYSTEM

Temporary display appears
signifying completion of IPL
diagnostics without detection
of malfunctions.

Enter the date, with slashes
(/). Leading zeros may be
omitted.

The entered date is displayed

in Gregorian and Julian format.
If it is correct, enter Y and go
to the next step. Otherwise,
enter N and go to step 9.

The START master menu for
the resident ISS diskette is
displayed.

SPECS routine.

This routine permits the following standard system data to be changed.

1. The CPU memory size in K.

2. The application-program disk device selection number.

3. The ISS Standard Loading Address

Operating Instructions

2. ENTER THE NUMBER OF THE FIELD
TO CHANGE (0O=END)
2-/

1. MEMORY SIZE =
2. APPLICATION SELECTION NUMBER =

3. ENTER SYSTEM MEMORY SIZE
(8, 12, 16,...32)
2--/

12

From an ISS master menu access
CHANGE SYSTEM SPECS via the
specified Special Function
Key.

Enter 1 to change the speci-
fied system memory size.
Go to step 3.

Enter 2 to select a different
application disk device
selection number. Go to step
4.

Enter 0 if the displayed
specifications are acceptable.
Go to step 5.

Enter 8, 12, 16, 20, 24, 28
or 32. Go to step 2.

3.6 TRANSFERRING TO AN APPLICATION PROGRAM

1.

ENTER THE NUMBER OF THE DESIRED

LOADING ADDRESS OF APPLICATIONS.

ADDRESS AVAILABLE

0-VARIABLE
1-310 4-B10
2-320 5-B20
3-330 6-B30

DO YOU WANT TO CHANGE THE
RUNNING ADDRESS OF ISS? (Y/N)
?

ENTER THE DESIRED LOADING
ADDRESS OF ISS.

Pemm

MOUNT DISK TO BE MODIFIED
AT NEW ISS ADDRESS (0=END)
KEY RETURN(EXEC) TO RESUME?
NEW ISS LOADING ADDRESS=XYY

CHAPTER 3 - ISS SYSTEM ROUTINES

Enter 1-6 to choose one of

the displayed addresses as

the standard application disk
device address. Enter 0 if

you wish the operator to enter

the application address each

time an exit to APPLICATIONS

is made from this disk's ISS START
module. Go to step 2.

Enter Y if you wish to change
the standard address from
which the ISS system is loaded.
Go to Step 6.

Enter N if you do not wish to
change the standard address
from which the ISS system is
loaded. Go to step 8.

Enter the desired ISS standard
loading address. Go to step
7. If RE-ENTER is displayed
the entered address is either
invalid, or there is no disk
drive in the system with that
address.

Successively mount all ISS
disks that are to be loaded
from the new address, at the
new address. Key (EXEC)

after mounting each one.

After all desired ISS disks
have been mounted at the new
address in this fashion, enter
zero to return to ISS master
menu, at the old address.

The system returns to the ISS
master menu at the address from
which CHANGE SYSTEM SPECS was
loaded.

To access an application program from a master menu, follow the instructions
given below.

DISPLAY

(Application Support Diskette
master menu)

13

INSTRUCTIONS

Depress the Special Function
Key stipulated in the menu
for APPLICATIONS.

CHAPTER 3 -~ I5S SYSTEM ROUTINES

If ISS system specifications
have been set to bypass
application disk selection,
skip to step 3. Otherwise,
go on to the next step. (See
Section 3.5 for information
about how to change ISS
system specifications.)

2. ENTER THE DISK DEVICE 2. Enter the selection number
ADDRESS OF APPLICATION for the address from which
? the application program will
1. 310 4. B10 be processed.

2. 320 5. B20
3. 330 6. B30

3. MOUNT APPLICATION PROGRAM 3. If, after mounting the disk
DISK IN UNIT and keying RETURN(EXEC), the
KEY RETURN(EXEC) TO RESUME mount message reappears, then

the application disk does not
contain a module named START.
See Section 4.2 for requirements
for integrating application
programs into ISS.

3.7 TRANSFERRING TO ANOTHER ISS DISKETTE

To transfer to another ISS diskette from START, depress Special Function
Key 15. The message MOUNT DESIRED ISS VOLUME KEY RETURN(EXEC) TO RESUME
appears. After mounting the desired ISS diskette at the standard loading
address, the system automatically transfers the first three fields of the ISS
data file "MEMORY", and passes control to the rewly mounted START module.

3.8 COPYING THE ISS SYSTEM TO A MODEL 2230/2260 DISK DRIVE

The ISS system is designed so that it may be copied to, and operate
from, a single disk platter mounted on Model 2230 or 2260 disk drives. The
procedure outlined below for copying the four ISS diskettes to a single rigid
disk automatically activates an additional master menu. This master menu is
displayed whenever the system executes the START module, and offers access to
the four sets of routines previously stored on four separate diskettes.

1. Mount Application Support Diskette #1 at the ISS Standard Loading
Address. Access the COPY/VERIFY utility.

2. Set the COPY/VERIFY parameters as follows:

FUNCTION = COPY/VERIFY

EXTRA SECTORS = 2

MODE = INDIRECT PART

INPUT ADDRESS = (any diskette drive)
OUTPUT ADDRESS = (the rigid disk drive)

[BN e TN NE o«
e e M e et

14

CHAPTER 3 - ISS SYSTEM ROUTINES

Successively copy each diskette to the rigid disk. The Copy/Verify
reference files provided on each disk must be used to specify the
files to be copied.

The reference file names are:

#1FDFO10 for Application Support Diskette #1
#2FDFO10 for Application Support Diskette #2
#3FDF0O10 for Application Support Diskette #3
PAFDFO10 for Programming Aids

CAUTION:

These reference files are only for the purpose of copying
the complete ISS system to a rigid disk. Backup or other
single copies of diskettes should be made using the COPY
statement or the ALL mode of the COPY/VERIFY utility.

From any ISS diskette menu, access the CHANGE SYSTEM SPECS routine.
Change the ISS Standard Loading Address to the address of the rigid
disk. Mount the rigid disk containing the ISS system at the new ISS
address and initialize it to the new Standard Loading Address.
Leave the ISS diskette mounted, and return to the diskette master
menu.

With the diskette master menu displayed, key SELECT DISK xyy, where
xyy is the new ISS Standard Loading Address.

Depress Special Function Key 15 to transfer to the new rigid disk
copy of ISS.

Copying ISS from a Rigid Disk to Diskette

By switching the input and output addresses in the above proceedings and
using the reference file names given below, the ISS system may be copied from
a rigid disk back to four diskettes. The copy/verify reference file names
that must be used for copying

#1DFFO10
#2DFFO10
#3DFFO10
PADFFO10

Application
Application
Application
Programming

in this direction are:

Support #1
Support #2
Support #3
Aids

15

CHAPTER 4
SYSTEM REQUIREMENTS FOR ISS OPERATION

4.1

4.2

HARDWARE REQUIREMENTS

1. ISS requires dual disk handling rapability with at 1least one
diskette drive.

2. ISS requires a Wang 2200C processor which is equipped with Options 2
and 5. ‘

3. All the ISS Utilities require 8K of memnry, except LIST/CROSS
REFERENCE and COMPRESSION, which require 12K. The KFAM-3
stand-alone utilities require 12K; the KFAM-4 stand-alone utilities
require 16K. The SORT-3 system requires 8K, except if a KFAM file
is being sorted in which case 12K is required.

4. The following programs require a printer (address 215).

DISK DUMP

LIST/CROSS REFERENCE

LIST PROGRAM

KFAM-3 and KFAM-4 Stand-alone Utilities

(With minor programming changes described in Chapter 29, the
printer may be omitted for KFAM.)

SOFTWARE REQUIREMENTS FOR INTEGRATING APPLICATION PROGRAMS INTO ISS

1. The application disk catalog index must contain a program file named
START.

2. If an ISS diskette has been removed from the ISS standard 1loading
address as a vresult of application processing, the application
program must SELECT DISK XYY, where XYY is the ISS standard 1loading
address, and then provide for remounting an ISS diskette. It must
offer a means of loading START from the ISS standard Tloading
address.

3. The START module on the application disk should provide vreturn to
ISS diskette START modules via Special Function key 15 (or 31, if 15
must be wused otherwise). Though this is not strictly required, it
is a recommended system convention.

16

PART Il
THE ISS UTILITIES

17

CHAPTER 5
INTRODUCTION TO THE ISS UTILITIES

The ISS Utilities are a group of programs designed to perform standard
tasks which are frequently required in a disk-based data processing system.
They are referred to as stand-alone routines.

Disk operations in these utilities are performed only on a cataloged
portion of a disk. A catalog must be established prior to execution. AIll
printed (hardcopy) output is via address 215.

When the system is awaiting an operator entry during execution of ISS
Utilities, Special Function Key 15 may be depressed to interrupt utility
execution and return to the ISS diskette's master menu. Keying HALT/STEP
followed by Special Function Key 15 produces the same effect at any time
during ISS utility execution.

If the message ENTER INPUT ADDRESS or ENTER OUTPUT ADDRESS appears
immediately after a wutility is accessed from the master menu, the default
input or output disk addresses are invalid for the system. (In a multiplexed
disk environment this could be caused by the multiplexed disk being hogged by
another CPU.) Enter the disk address requested (it can be changed, if
necessary, after the default parameters have been displayed). If the message
"RE-ENTER" appears after entering a device address, the entered address is
invalid, either because the device is not present in the system or the address
is the same as the other default address (input and output addresses may not
be the same).

In providing step by step operating instructions in this section, the
following conventions have been adhered to.

The verb "enter", used in the INSTRUCTIONS column, as in the sentence
"Enter 1 to list only the active items", means that the keys specified are to
be depressed followed by the standard terminator key RETURN(EXEC).

In contrast to "enter" the verb "key", used in the INSTRUCTIONS column,
as in the sentence "Key H to interrupt execution at the end of the current
file", means that only the keys specified are to be depressed. If any
terminator is required when the verb "key" is used, the terminator is
explicit.

The verb "mount", as in the sentences "mount paper on printer", ‘“mount

output disk at the specified address", refers to the group of actions required
to fully ready the device for its impending function in the system. If the

18

CHAPTER 5 - INTRODUCTION TO THE ISS UTILITIES

operator has any questions about how this 1is done or what the general
requirements are, the appropriate device manual should be consulted.

In general, it is presumed that the operator is familiar with the

operation of the hardware components of the system and has access to the
manuals which describe them.

19

CHAPTER 6
THE COPY/VERIFY AND CREATE REFERENCE FILE

6.1 INTRODUCTION

The COPY/VERIFY utility copies files from one disk to another, and
verifies the copy. Files are copied up to and including the trailer record.
Unused sectors are not copied. Additional sectors may be added to the copied
files. Copied files may be renamed and may replace existing files on the
output disk. Selected files or all files may be processed. Selected files
may be specified directly, during the parameter entry phase, or indirectly, by
means of a COPY/VERIFY reference file. If files are specified directly, up to
100 files may be processed. If files are specified indirectly, in a reference
file, 999 files may be processed. The copy and verify operations may be
executed independently, or sequentially under program control.

Copying is accomplished by read/write operations rather than COPY or
MOVE statements.

The utility can only process files with "hardware" header and trailer
records, i.e., program files, or cataloged data files that have a DATA SAVE DC
END trailer. :

The index of the output disk is checked to ensure the uniqueness of each
incoming file name. Files with names that already appear in the output disk
catalog index are not copied.

The CREATE REFERENCE FILE utility is used to create, edit, and 1list a
reference file for the COPY/VERIFY utility. A reference file is a listing of
the names of files to be copied, and the names to be given to the output
files. If a reference file is used,it must reside on the input disk.

6.2 OPERATING INSTRUCTIONS: COPY/VERIFY

1. 1. From ISS Utilities menu load
COPY/VERIFY via the indicated
Special Function Key.

2. ARE THE PARAMETERS OK? 2. Display shows current default

(Y/N) parameters for the COPY/VERIFY
utility.

1. FUNCTION = I[f all parameters are correct,
2. EXTRA SECTORS = enter Y; then, if MODE is ALL,
3. MODE = go to step 155 if mode is not
4, INPUT ADDRESS = ALL, go to step 10.
5. OQUTPUT ADDRESS =

20

CHAPTER 6 - THE COPY/VERIFY AND CREATE REFERENCE FILE UTILITIES

ENTER ITEM TO BE CHANGED.
(0=END, 6=SWITCH INPUT AND
OUTPUT)?

ENTER THE NUMBER OF THE
FUNCTION DESIRED?

1 - COPY
2 - VERIFY
3 - COPY AND VERIFY

ENTER THE NUMBER OF ADDITIONAL
SECTORS/FILE.
(-1 = LEAVE AS IS)?

ENTER THE NUMBER OF THE
DESIRED MODE?

MODES AVAILABLE

21

(Copy/Verify)

To change any parameters
enter N, and go to the next
step.

To change a parameter, enter its
selection number, and go to the
step listed below.

To exchange the input and out-
put address, enter 6.

TO CHANGE ENTER GO TO
STEP
FUNCTION 1 4
EXTRA SECTORS 2 5
MODE 3 6
INPUT ADDRESS 4 7
OUTPUT ADDRESS 5 8

Enter zero when all parameters
are corrects then go to step 9.

If copy only is desired, enter
1.

If verify only is desired,
enter 2.

If copy and verify are desired,
enter 3.

Go to step 3.

Enter the number of sectors,
to be included in each output
file, in addition to the
number which are listed as
USED in the Catalog Index.

If -1 is entered, all sectors
listed as USED are copied, and
the total size of each output
file is the same as the

input file. However, sectors
beyond the trailer record are
not copied.

If VERIFY only is being per-
formed, this parameter is not
significant.

Go to step 3.

Enter 1 to copy/verify all of
the files on the input platter.
Enter 2 to copy selected files
whose names are to be entered
from the keyboard.

CHAPTER 6 - THE COPY/VERIFY AND CREATE REFERENCE FILE UTILITIES

ALL

PART

REPLACE

RENAME

INDIRECT PART
INDIRECT REPLACE

OO WM~
LI S N R |

7. ENTER THE INPUT ADDRESS?

8. ENTER THE OUTPUT ADDRESS?

9. DO YOU WISH TO SAVE THESE
VALU%S AS THE SYSTEM DEFAULTS?
(Y/N

22

(Copy/Verify)

Enter 3 to replace existing
files on the output disk with
selected files from the input
disk.

Enter 4 to copy selected files
from the input disk, and rename
them on the output disk. . The
old names and new names are
entered from the keyboard.
Enter 5 to copy/verify files
specified in a reference file.
Enter 6 to replace existing
files on the output disk with
files from the input disk, if
the files to be replaced are
specified in a reference file
on the input disk.

Go to step 3.

Enter the device address at
which the input disk is to be
mounted.

If the input disk and the out-
put disk are to be mounted

at a multiplexed disk drive,
then the hog mode address for
the input disk Tocation should
be used.

Go to step 3.

NOTE:

If the input disk is currently
hogged by another CPU, its
address is not acceptable to
COPY/VERIFY.

Enter the device address at
which the output disk is to be
mounted., If the output disk
is to be mounted at a multi-
plexed disk drive, then the
hog mode address for the disk
location should be used.

Go to step 3.

To save the currently dis-
played parameters as the de-
fault parameters for the COPY/
VERIFY utility, enter Y.
Otherwise, enter N,

If mode is ALL go to step 15.
Otherwise, go to the next step.

10.

11.

12.

13.

14.

15.

CHAPTER 6 - THE COPY/VERIFY AND CREATE REFERENCE FILE UTILITIES

MOUNT INPUT PLATTER
KEY RETURN(EXEC) TO RESUME?

ENTER THE NAME OF FILE #X
(0=END)

INPUT FILE = FILE NAME
ENTER THE NAME OF THE OUTPUT
FILE (EXEC = SAME AS INPUT)

ENTER THE NAME OF THE REFERENCE
FILE.

REMOUNT ISS PLATTER IF REMOVED.
KEY RETURN(EXEC) TO RESUME?

MOUNT PLATTERS AT THE INDICATED
ADDRESSES. KEY RETURN(EXEC)
TO RESUME?

10.

11.

12.

13.

14.

15.

23

(Copy/Verify)

Mount the input disk at the
displayed input address. If
MODE parameter is

PART, go to step 11,

REPLACE, go to step 11.

RENAME, go to step 11,

INDIRECT PART, go to step 13,
INDIRECT REPLACE, go to step 13.

Enter the name of the Xth input
file to be copied/verified.

If mode is PART, repeat step

11 until all desired file names
have been entered.

[f mode is REPLACE or RENAME,
go to step 12.

I[f all desired file names have
been entered, enter 0 and go
to step 14.

For the specified input file
enter the name of the new
output file (RENAME mode), or
the name of the output file to
be replaced (REPLACE mode).

Go to step 11.

Key (EXEC) to enter the input
file name as the output file
name.

Enter the name of the COPY/
VERIFY reference file to be
used to specify the files to be
copied/verified.

NOTE:

The reference file must reside
on the input disk.

I[f the ISS disk containing
COPY/VERIFY was removed to
mount the input disk, then
remount the ISS disk at the
ISS Standard Loading Address.

Mount the input and output
disks at the displayed ad-
dresses. (The ISS disk may be
removed if necessary.) Key
(EXEC) to resume processing.

CHAPTER 6 - THE COPY/VERIFY AND CREATE REFERENCE FILE UTILITIES
(Create Reference File)

16. VERIFYING 16. The processing display indi-

COPYING FILE NUMBER XXX cates the file currently being
INPUT FILE NAME = file name copied/verified. After all
OUTPUT FILE NAME = file name files have been copied/veri-

fied, the message appears "MOUNT ISS

PLATTER KEY RETURN EXEC TO
RESUME". If the ISS platter has
been removed, remount it at the
ISS Standard Loading Address.
Key (EXEC) to return to ISS
Utilities menu.

If the message appears:

"FILE - file name - CANNOT BE
COPIED KEY RETURN(EXEC) TO
RESUME

then the named file cannot be
copied for any of the follow-
ing reasons.

1. The file name already
exists on the output
platter.

2. The file does not exist

on the output platter
(REPLACE mode).

3. There are insufficient
sectors in the output

file or disk to accommodate

the input file and the
requested extra sectors.

To continue copying the other
files, key (EXEC).

6.3 CREATE REFERENCE FILE

The CREATE REFERENCE FILE utility is used to create, modify, and 1list a
reference file for the COPY/VERIFY utility. The reference file is stored as a
data file on the disk containing the files to be copied. It specifies the
names of the files to be copied and the name that is to be given to each
copied file on the output disk. Files are copied in the sequence specified in
the reference file. A single input file name may be specified twice if
different output file names are used.

The "create" function creates a new reference file. It catalogs a new
file or reuses a previously cataloged, scratch program or data file. The
operator enters the number of files to appear in the reference file and the
utility calculates the required file size. No extra sectors are included, but
the operator may enter a value that anticipates future expansion,

24

CHAPTER 6 - THE COPY/VERIFY AND CREATE REFERENCE FILFE UTILITIES
(Create Reference File)

The "modify" function allows file references to be changed, added, and
deleted from an already existent reference file. It is recommended that the
operator have a printed listing of the reference file to be modified.

The "1ist" function prints a list of all input and output file names in a
reference file. Output is at device address 215.

A reference file can accommodate 999 file references.
1. From ISS Utilities menu

load CREATE REFERENCE FILE via
the indicated Special Function

Key.

2. ENTER THE DESIRED OPTION 2. Enter 0 to create a new

0 - CREATE reference file. Enter 1 to

1 - MODIFY modify an existing reference

2 - LIST file. Enter 2 to list the

?-/ contents of a reference file.
3. ENTER THE INPUT ADDRESS 3. Enter the device address of the

?=-= the disk which contains the

files to be copied.

4, ENTER THE NAME OF THE REFERENCE 4. If OPTION = MODIFY or LIST,
FILE. enter the name of the reference
P - file to be modified or listed.

If OPTION = CREATE, enter the
name for the new reference file.

NOTE:

If OPTION = CREATE and the
entered name is the name of

an already cataloged scratched
file, that file space is used for
the new reference file.

If OPTION = CREATE go to the
next step; otherwise go to

step 10.
5. ENTER THE NUMBER OF FILE NAMES 5. Enter the number of input
TO BE ENTERED. file names to be in the
?--/ reference file. This value

can be approximate but must
not be less than the actual
number needed. You may enter
a value that allows for
future expansion.

25

MOUNT INPUT DISK
KEY RETURN(EXEC) TO RESUME.

WILL ALL OUTPUT NAMES BE THE SAME
AS THE INPUT NAMES. (Y/N)

?-

ENTER INPUT FILE NAME.
(0 = END)

ENTER OUTPUT FILE NAME
(EXEC = SAME AS INPUT)

26

CHAPTER 6 - THE COPY/VERIFY AND CREATE REFERENCE FILE UTILITIES
(Create Reference File)

NOTE:

The reference file saves 14

file references per sector.
Since actual file length

varies in one sector increments,
the actual file size may be as
much as 13 file references
larger than that requested.

If the message appears "KEY
RETURN(EXEC) TO RESUME? ACTIVE
FILE SPECIFIED FOR REFERENCE
FILE," the file name entered is
the name of a currently active
file and cannot be used. Key
(EXEC) and go to step 17. If
the message "KEY RETURN(EXEC)
TO RESUME? INSUFFICIENT SPACE
FOR FILE" appears, the file is
a scratched file that is

too small to accommodate the
requested reference file size.
Go to Step 17.

If you do not wish to change

the names of any of the copied
files, enter Y. Otherwise, enter
N.

Enter the name of the file to be
copied.

If "Y" was answered at step 7,
repeat this step; otherwise go
to step 9.

When the names of all the files
to be copied have been included
in the refernece file, enter zero
to end entry and go to step 15.

Enter the name to be given to the
copied file.

Key (EXEC) to use the input name
as the output name. Go to step
8.

If the message "DUPLICATE QUTPUT
FILE NAME" appears, the output
file name entered already appears
as an output file name in the
reference file. A different output
file name must be specified. If
the message, "DUPLICATE INPUT FILE

10.

11.

12.

13.

14.

CHAPTER 6 - THE COPY/VERIFY AND CREATE REFERENCE FILE UTILITIES

MOUNT INPUT DISK
KEY RETURN(EXEC) TO RESUME?

ENTER THE FILE NUMBER TO BE
MODIFIED (O = END)

ENTER THE NUMBER OF THE DESIRED

OPTION
?-

OPTIONS AVAILABLE

0 - NO CHANGE
1 - MODIFY
2 - DELETE

ENTER THE INPUT FILE NAME

INPUT FILE NAME = FILE NAME
ENTER OUTPUT FILE NAME.
(EXEC = SAME AS INPUT)

27

10.

11.

12.

13.

14.

(Create Reference File)

NAME KEY RETURN(EXEC) TO RESUME?"

-appears, the input file name

already appears in the reference
file. Key (EXEC) to reenter the
file name; key X (EXEC) to
accept the duplicate input file
name.

Mount the disk containing the
reference file to be modified.
If OPTION = LIST, go to step 16;
otherwise go on to the next
step.

If the message "FILE NOT ON
DISK" appears, an active file
with the entered name does not
exist on the mounted disk.
Either mount the correct disk,
or key Special Function Key 15
to return to ISS utilities menu.

Enter the number of the reference
file entry that is to be
modified. Go to the next step.

If the reference file is now
correct, enter zero and go to
step 15.

The reference file entry is
displayed. For the displayed
entry choose from the available
options.

Enter 0 to accept the displayed
reference file entry. Go to
step 11.

Enter 1 to modify the displayed
reference file entry. Go to
step 13.

Enter 2 to delete the displayed
reference file entry. Go to
step 11.

Enter the name of the file to
be copied.

Enter the name to be given to
the copied file.

Key (EXEC) to use the input

CHAPTER 6 - THE COPY/VERIFY AND CREATE REFERENCE FILE UTILITIES
(Create Reference File)

15.

16.

17.

DO YOU WANT TO PRINT THE

REFERENCE FILE? (Y/N)
-

PRINTING REFERENCE FILE

REMOUNT ISS PLATTER IF REMOVED

28

15.

16.

17.

name as the output name.
Go to Step 11.

If the message "DUPLICATE
OUTPUT FILE NAME" appears, the
output file name entered
already appears as an output
file name in the reference
file. A different output file
name must be specified. If the
message "DUPLICATE INPUT FILE
NAME/KEY RETURN EXEC TO RESUME"
appears, the input file name
already appears in the reference
file. Key (EXEC) to reenter
the input file name, or key X
(EXEC) to accept the duplicate
input file name.

To obtain a printed listing
of the reference file, enter
Y and go to the next step.
Otherwise, enter N and go to
step 17.

Temporary display. If the
processing light is on but
the file is not being printed,
then the printer is not ready.
Ready the printer. 8 1/2" by

11" paper is required.

If the ISS disk was removed,
remount it at the ISS standard
loading address.

CHAPTER 7
THE SORT DISK CATALOG UTILITY

7.1 INTRODUCTION

The SORT DISK CATALOG utility prints a sorted list of the contents of a
disk catalog index. The 1list may be sorted alphabetically by file name or
numerically by starting sector address; it may be output to the display or to
the printer. Active files, scratched files, or both, may be included in the
list. The size of the sort array limits a single list to 255 items. During
processing, if the array is filled before exhausting the selected index items,
a partial list is produced.

7.2 OPERATING INSTRUCTIONS

1. Access the SORT DISK CATALOG
utility from ISS Utilities
menu by depressing the speci-
fied Special Function key.

2. ARE THE PARAMETERS OK (Y/N) 2. Display shows current default
? parameters for the SORT DISK
CATALOG utility. If all para-

1 SORT OPTION = meters are correct, enter Y
2. FILE TYPE = and go to step 9. To change
3. INPUT ADDRESS any or all parameters, enter
4 OUTPUT DEVICE N, and go to the next step.

nou

3. ENTER THE NUMBER OF THE ITEM TO 3. To change a parameter enter
CHANGE. (0=END) its selection number, and go
? to the step listed below.
Enter zero when all parameters
are correct; then go to step 8.

TO CHANGE ENTER GO TO
STEP
SORT OPTION 1 4
FILE TYPE 2 5
INPUT ADDRESS 3 6
OQUTPUT DEVICE 4 7
4, ENTER THE SORTING OPTION. 4. To sort the index into ascend-
0 - NAME 2 - STARTING SECTOR ind order on the file name,
5

enter zero. To sort the index
into ascending order on the

29

CHAPTER 7 - THE SORT DISK CATALOG UTILITY

10.

ENTER TYPE OF FILE
TO LIST.
?

ENTER THE INPUT ADDRESS
?

ENTER THE OUTPUT DEVICE
OPTION O-CRT 1-PRINTER
?

DO YOU WISH TO SAVE THESE
VALUES AS THE SYSTEM DEFAULTS?

ENTER TITLE FOR LIST.
?

MOUNT DISK TO BE LISTED -
UNIT device address.
KEY RETURN(EXEC) TO RESUME?

30

10.

starting sector addresses of
the files, enter 2.
Go to step 3.

Enter zero to include all
cataloged files in the output
1ist. Enter 1 to include only
active files in the output
list. Enter 2 to include only
scratched files in the output
list.

Go to step 3.

Enter the device address at
which the input disk is to be
mounted. If the input disk

is to be mounted at a multi-
plexed disk drive, then the
hog mode address for the input
disk device should be used.

Go to step 3.

NOTE:

If the input disk is currently
hogged by another CPU, its
address is not acceptable to
SORT DISK CATALOG.

Enter zero to output the

sorted catalog index on the
CRT (address 005). Enter

1 to output the sorted catalog
index on a printer (address
215),

Go to step 3.

To save the currently displayed
parameters as the default
parameters for the SORT DISK
CATALOG utility, enter Y.
Otherwise enter N.

Enter a title for the output
sorted catalog index. The
title appears on each page of
output, if a printer is used.

Mount the disk to be 1isted
at the indicated address.
Key (EXEC) to resume.

The ISS system disk may be
removed, if necessary.

CHAPTER 7 - THE SORT DISK CATALOG UTILITY

11. SORTING DISK INDEX 11. Temporary display appears
while the index is being
sorted.

12. 12. The sorted catalog index is

displayed or printed. If it

is displayed on the CRT, key-
ing (EXEC) when the screen is
full displays the next 8

index entries. After all

index entries have been dis-
played, key (EXEC) to continue.

13. MOUNT ISS PLATTER 13. If the ISS system disk was
KEY RETURN(EXEC) TO RESUME? removed during utility proces-
sing, remount it at the standard
loading address. Key (EXEC)
to return to ISS Utilities
menu.

NOTE:

To re-list the sorted catalog
index on a CRT, key Special
Function Key 0. To re-list
the sorted cataiog index on

a printer, key Special
Function Key 1.

31

CHAPTER 8
THE DISK DUMP UTILITY

8.1 INTRODUCTION

The DISK DUMP utility prints the contents of a disk file. Three kinds of
dump can be obtained.

The Vertical and Horizontal dumps print the hexadecimal and alphanumeric
character equivalents of the contents of the file. They differ only in output
format. In the Horizontal dump the alphanumeric values are given on the same
line as the hexadecimal values. In the Vertical dump the alphanumeric
characters are on one line, with the hexadecimal values given on the two lines
immediately below them. Hexadecimal values below 20 cause "." to be printed
in place of an alphanumeric character; values above 7F print "@".

The third kind of dump is the Data File Structure dump. It prints the
contents of a data file, field by field, giving the type of field (numeric or
alphanumeric), the length, and the value represented relative to the type of
field.

8.2 QOPERATING INSTRUCTIONS

DISPLAY INSTRUCTIONS

1. Access the DISK DUMP utility
via the specified Special
Function key from ISS Util-

ities menu.
2. ENTER DISK UNIT NUMBER, SEE 2. Enter the selection number
TABLE BELOW for the desired input disk
? device address.
1-310 5 - B10
2 - 320 6 - B20 NOTE:
3 -330 7 - B30
4 - 350 8 - 360 As parameters are entered for

this utility, they are cum-
ulatively displayed. Prior
to report processing a pro-
cedure is provided for
correcting erroneous entries.

32

MOUNT DISK IN UNIT XXX
KEY RETURN(EXEC) TO RESUME?

ENTER THE NAME OF THE FILE TO

READY PRINTER
KEY RETURN(EXEC) TO RESUME?

DUMP PHYSICAL RECORDS WITHIN

ENTER TYPE OF DUMP, SEE TABLE
BELOW
o

x% DUMPS AVAILABLE *x
1 - HORIZONTAL
2 - VERTICAL
3 - DATA FILE STRUCTURE

PARAMETERS OKAY? (Y OR N)
o

33

CHAPTER 8 - THE DISK DUMP UTILITY

Mount the input disk in the
specified unit. Key RETURN
(EXEC) to resume.

Enter the alphanumeric name
of the file to be dumped.

If the message REENTER ap-
pears, no file with that name
is Tisted in the catalog
index.

Ready the Printer. The vertical
dump requires 8-1/2" x 11"
paper; the others require 11"

x 14",

To dump the entire file enter
ALL. To dump a portion of the
file enter

FFFF*LLLL

where FFFF is equal to the
first sector to be dumped
(expressed as the decimal
value of its displacement
from the start of the file)
and LLLL is the last sector
to be dumped. For example,
to dump the first 9 sectors
of a file, enter 0*8; to dump

.the 402nd to the 1009th, enter

401*1008. Enter no spaces in
this expression.

Enter 1, 2, or 3 to select
the type of dump.

Check the displayed para-
meters. If they are cor-
rect, enter Y and go to the
next step. If they are not,
enter N and go to step 2.

The dump is printed.

To halt execution, key H. At
the end of the sector being
processed, execution ceases and
the processing interrupt mes-
sage appears.

CHAPTER 8 - THE DISK DUMP UTILITY

10. PROCESSING INTERRUPT
KEY T - CONTINUE

2 - MODIFY
3 - REUSE
4 - END

34

10.

At the end of the dump, or
after an H has been keyed, the
processing interrupt selection
is offered. Key 2 to re-
enter program parameters
beginning at step 7. Key 3

to reenter program parameters
beginning at step 2. Key 4

to return to ISS Utilities
menu.

Key 1 is valid only if pro-
cessing was interrupted by
depression of H.

CHAPTER 9
THE DECOMPRESS UTILITY

9.1 INTRODUCTION

The DECOMPRESS utility breaks wup all the multistatement 1lines in a
program so that each statement appears on a numbered line by itself. As input
it accepts any cataloged program file or series of files. It outputs the
decompressed version on another disk as a cataloged program file (or files).

The utility breaks up multistatement Tines by assigning to each BASIC
statement, after the first in a line, a line number one greater than that of
the previous statement in the line.

If there are not enough Tine numbers available between two lines 1in the
input program, the utility decompresses until it runs out of line numbers. A
multistatement line is left at the highest numbered 1ine 1in such a group.
When encountered, this condition is brought to the operator's attention.

In producing the output file, the utility creates a wuniform system of
indentation:

a) A11 REM statements are indented one space from the 1ine number.

b) A11 other statements, except those within a FOR...NEXT 1loop, are
indented 5 spaces.

c) Non-REM statements that are within a FOR...NEXT loop are indented 2
spaces in addition to any indentation they would have otherwise
received.

If selected files are processed, the maximum number of files is 40. Any

number of files may be processed under the ALL option.

9.2 OPERATING INSTRUCTIONS

1. 1. From ISS Utilities menu load
DECOMPRESS via the indicated
Special Function Key.

2. ARE THE PARAMETERS 0K? 2. Display shows current default
(Y/N) parameters for the DECOMPRESS
utility. To change any or all

1. OPTION, = parameters enter N, and go to

2. EXTRA SECTORS
3. INPUT ADDRESS

the next step. If all para-
meters are correct and OPTION=

35

CHAPTER 9 ~ THE DECOMPRESS UTILITY

4, OUTPUT ADDRESS =

3. ENTER THE ITEM TO BE CHANGED.
(0=END, 5=SWITCH INPUT AND
OUTPUT)?

4. ENTER THE DESIRED OPTION

(ALL OR PART)
?

5. ENTER THE INPUT ADDRESS?

6. ENTER THE OUTPUT ADDRESS?

36

PART, go to step 8. If all
parameters are correct and
OPTION=ALL, go to step 11.

To change a parameter enter
its selection number, and go
to the step listed below.

Enter zero when all parameters
are correct; then go to step 8.
To exchange the input and
output address, enter 5.

TO CHANGE ENTER GO TO
STEP
OPTION 1 4
EXTRA SECTORS 2 7
INPUT ADDRESS 3 5
OUTPUT ADDRESS 4 6

Enter ALL to decompress all
files on the input disk.
Enter PART to decompress se-

lected files only.
Go to step 3.

Enter the device address at
which the input disk is to be
mounted. If the input disk
and the output disk are to

be mounted at a multiplexed

disk drive, then the hog mode

address for the input disk
should be used.
Go to step 3.

NOTE:

If the input disk is currently
hogged by another CPU, its
address is not acceptable to
DECOMPRESS.

Enter the device address at
which the output disk is to
be mounted. If the output
disk is to be mounted at a
multiplexed disk drive, then
the hog mode address for the
disk location should be used.
Go to step 3.

10.

11.

12.

13.

ENTER THE NUMBER OF EXTRA
SECTORS FOR EACH FILE (2-50)

?-

DO YOU WISH TO SAVE THESE
VALUES AS THE SYSTEM DEFAULTS?

(Y/N)

?

MOUNT INPUT PLATTER
KEY RETURN(EXEC) TO RESUME?

ENTER THE NAME OF FILE NUMBER
X (0=END)

REMOUNT ISS PLATTER IF REMOVED.

KEY RETURN(EXEC) TO RESUME?

MOUNT DISK PLATTERS AT THE
INDICATED ADDRESS.
KEY RETURN(EXEC) TO RESUME?

DECOMPRESSING FILE NUMBER=XXX
FILE NAME = file name

37

10.

11.

12.

13.

CHAPTER 9 - THE DECOMPRESS UTILITY

Enter the number of sectors
to be included in each file
in addition to those required
to save the file. Go to

step 3.

To save the currently displayed
parameters as the default para-
meters for the DECOMPRESS
utility, enter Y. Otherwise,
enter N.

[f OPTION=PART go to the next
step. Otherwise go to step

12.

Mount the input disk at the
displayed input address.

Enter the name of the Xth
input file to be decompressed.
Repeat step 10 until all file
names have been entered, then
enter zero to end entry.

[f the ISS disk containing
DECOMPRESS was removed, then
remount the ISS disk at its
system standard address.

Mount the input and output

disks at the displayed addresses.

(ISS disk may be removed if
necessary.) Key (EXEC) to
resume processing.

The processing display in-
dicates the file currently
being DECOMPRESSED. After
all files have been DECOMPRESSED
the message "MOUNT ISS PLATTER
KEY RETURN(EXEC) TO RESUME"
appears. If the ISS platter
has been removed, remount it

at its system standard address.
Key (EXEC) to return to ISS
Utilities menu.

If the message appears

"FILE CANNOT BZ PROCESSED,"
the file is either a protected
file or there is insufficient
space on the output disk.

If the message "DECOMPRESSION
WAS INCOMPLETE FOR FILE"

CHAPTER 9 - THE DECOMPRESS UTILITY

appears, there were insuffi-
cient line numbers between

two Tines in the program to
assign a unique line number

to each statement. (If desired,
the program can be RENUMBERED,
saved, and decompressed again

to complete the decompression.)

38

CHAPTER 10
THE LIST/CROSS-REFERENCE UTILITY

10.17 INTRODUCTION

The LIST/CROSS REFERENCE utility consists of two components which may be
executed independently or sequentially under program control.

The LIST component breaks up all the multi-statement 1ines of a program,
printing each BASIC statement on a separate Tine.

For example, the statement line

410COM F$1,T$1,N$(64)8,F,F1,C,0:COM W4$1,06$64,D0$1,D$(2)3:COM L,
E,E1:DIM N$8,B$(16),L$1,H$2,W1$8:G0TO 660

is listed as:

410 COM F$1,7$1,N$(64)8,F,F1,C,0
:COM W4$1,06%64,0$1,08(2)3
:COM L,E,E1
:DIM N$8,B$(16),L81,H$2,W1$8
:GOTO 660

The CROSS REFERENCE component assembles and prints four cross reference
tables: a line number cross reference, a variable cross reference, a DEFFN'
cross reference, and a GOSUB' cross reference.

In the Tine number cross reference table each Tine number referenced in
the program is printed, together with the numbers of the lines that contain
the references. The variable cross reference lists each variable that appears
in the program, and identifies the lines in which it appears.

NOTE:

In the variable cross reference there are certain BASIC statement
forms which cause a non-variable to be referenced as a variable;
there are others which cause array variables to be referenced as
scalar variables. The BASIC statements in which a non-variable can
appear that is referenced as a variable are ADD, ADD C, AND, XOR,
BOOL, INIT, $TRAN, $GIO, PLOT, DATASAVE BT, and DATALOAD BT. Array
variables 1in the matrix statements are referenced as scalar
variables. For a complete specification of the conditions for these
occurrences, see Appendix A.

39

CHAPTER 10 - THE LIST/CROSS-REFERENCE UTILITY

The DEFFN' cross reference table lists the locations of all the DEFFN'
statements. The GOSUB' cross reference table 1ists all the GOSUB' references
to DEFFN' marked subroutines.

The date, file name, and page number appear atop each page of output.

During the program inspection stage of the CROSS REFERENCE utility, an
internal table is built up as variables, subroutines, and line references are
encountered. Should this internal table be filled before the entire program
has been inspected, the wutility prints the three cross reference tables,
clears the internal table, and resumes program inspection from the point at
which it Tleft off. The final result is two sets of partial cross-reference
tables with each set complete for the program section inspected.

Input programs for the LIST/CROSS REFERENCE utility are assumed to be
free of syntax errors.

If only the LIST component is to be executed, the LIST utility generally
offers improved performance over LIST/CROSS REFERENCE. See Chapter 12 for
information about the LIST utility.

A11 the program files on the input disk may be processed, or selected
files may be processed up to a maximum of 40 selected files.

10.2 OPERATING INSTRUCTIONS

1. 1. From ISS Utilities menu load
LIST/CROSS REFERENCE via the

indicated Special Function Key.

2. ARE THE PARAMETERS OK? 2. Display shows current default
(Y/N) parameters for the LIST/CROSS
REFERENCE utility. To change
1. FUNCTION = any or all parameters enter
2. INPUT ADDRESS = N and go to the next step.
3. MODE = If all parameters are correct,
4. MARGIN = and MODE=ALL,go to step 14.
5. LINE LENGTH = If all parameters are correct
6. LINES/PAGE = and MODE=PART, go to step 11.
3. ENTER ITEM TO BE CHANGED. To change a parameter enter
(0=END)? its selection number and go
to the step listed below.
TO CHANGE ENTER GO TO
STEP
FUNCTION 1 4
INPUT ADDRESS 2 5
MODE 3 6
MARGIN 4 7
LINE LENGTH 5 8
LINES/PAGE 6 9

40

CHAPTER 10 - THE LIST/CROSS-REFERENCE UTILITY

ENTER THE NUMBER OF THE
FUNCTION DESIRED?

1. LIST

2. CROSS REFERENCE
3. LIST/CROSS REFERENCE

ENTER THE INPUT ADDRESS?

ENTER THE DESIRED MODE.
(ALL OR PART)?

ENTER THE NUMBER OF SPACES
FOR THE MARGIN.
(1-10)?

ENTER THE LIMZ LENGTH,
INCLUDING MARGIN (70-130)?

ENTER THE NUMBER OF LINES
PER PAGE. (10-55)7?

41

Enter zero and go to step 10
after all desired changes
have been made.

If only a listing is desired,
enter 1. If only a cross
reference is desired, enter 2.
If both a Tisting and a cross
reference are desired, enter
3.

Go to step 3.

Enter the device address at
which the input disk is to be
mounted. If the input disk
is to be mounted at a multi-
plexed disk drive, then the
hog mode address may be

used.

Go to step 3.

NOTE:

If the input disk is currently
hogged by another CPU, its
acdress is not acceptable to
LIST/CROSS REFERENCE.

Enter ALL to perform the

- selected function on all files

on the input disk. Enter
PART to perform the selected
functior <n selected files
from the input disk.

Go to step 3.

Enter a number 1-10 for the
number of spaces to appear
in the left margin of the
printed output.

Go to step 3.

Enter the maximum total line
length, including spaces al-
located to the margin. The
entry must be in the range
70-130.

Go to step 3.

Enter the number of print
lines to be output on each
page, The entry must be in
the range 10-55.

Go to step 3.

CHAPTER 10 - THE LIST/CROSS-REFERENCE UTILITY

10.

11.

12.

13.

14.

15.

16.

DO YOU WISH TO SAVE THESE
¥ALUES AS THE SYSTEM DEFAULTS?
Y/N)

MOUNT INPUT PLATTER
KEY RETURN(EXEC) TO RESUME?

ENTER THE NAME OF FILE #X
(0=END)

REMOUNT ISS PLATTER IF REMOVED.
KEY RETURN{EXEC) TO RESUME?

INITIALIZING TABLES FOR NEXT
MODULE.

MOUNT INPUT PLATTER
KEY RETURN{EXEC) TO RESUME?

PROCESSING FILE X
NAME - file name

ERROR RECOVERY FOR PROCESSING
MODULE

S.F.0 - RE-START EXECUTION
AT BEGINNING OF
CURRENT FILE.

(S.F.1 - RE-PRINT CROSS

REFERENCE TABLES)

KEY "H" TO INTERRUPT EXECUTION
AT THE END OF THE CURRENT FILE.
KEY "P" TO INTERRUPT EXECUTION
AT THE END OF THE CURRENT PAGE.

10.

11.

12.

13.

14.

15.

16.

42

To save the currently dis-
played parameters as the
default parameters for the
LIST/CROSS REFERENCE utility,
enter Y. Otherwise, enter N.
If MODE=ALL,go to step 14.
Otherwise, go on to the next
step.

Mount the input disk at the
displayed input address.

Enter the name of the Xth
program file to be listed/
cross referenced. Enter zero
when all file names have been
entered.

If the ISS disk was removed,
then remount it at the ISS
Standard Loading Address.

Temporary display.
response required.

No operator

Mount the input disk at the
displayed input address.

This display remains throughout
processing. If H is keyed,
processing stops at the end of
the current file. If P is
keyed, processing stops at

the end of the current page of
output.

With processing stopped, keying

Special Function Key 0 causes the

program to re-execute the
selected functions for the
current file. Keying RETURN
(EXEC) causes processing to
resume.

If a cross reference file was
selected for output, the ad-
ditional message "S.F. 1-
RE-PRINT CROSS REFERENCE FILE"
appears. If special function
key 1 is depressed with
processing halted, the cross
reference tables for the cur-
rent file are printed a second
time.

CHAPTER 11
THE COMPRESSION UTILITY

11.1 INTRODUCTION

The COMPRESSION utility reduces the amount of memory occupied by an
application program. In addition to permitting the execution of more powerful
programs, COMPRESSION increases the speed of program execution, and reduces
storage requirements.

The COMPRESSION utility does three things to an input program file:

a) It eliminates all REM statements, except those in the first
statement line.

b) It eliminates all space characters not enclosed by quotation marks.

c) It eliminates as many unnecessary line numbers as possible by

assigning to each 1line number the maximum number of BASIC
statements consistent with program operation.

CAUTION:

A program to be compressed cannot contain branches to
statement Tines beginning with a REM statement, since all
such 1ines (except the first 1line in the program) are
deleted.

To preserve EDIT mode capability, the maximum compressed 1line length may
be restricted to 180 bytes. Though this is less efficient than compressing to
the absolute maximum of 256 bytes per line, it is recommended if maximum
compression is not required. It is impossible to use the EDIT mode on a
statement line containing 193 bytes or more.

The compression utility works in two stages. In the first stage the
input program is examined, and a table is built of all 1ine numbers referred
to by statements in the program. This table is called the ‘protect table",
since, 1if the program is to execute properly, these referenced line numbers
must be preserved.

A convention is observed that allows the programmer to explicitly exempt
any statement 1line from being compressed into another line. A blank REM
statement appearing within an input program causes the next non-REM line to be
protected. Blank REM statements which immediately surround a single Tine

43

CHAPTER 11 - THE COMPRESSION UTILITY

therefore, have the effect of exempting that Tine from compression. (A blank
REM statement is REM followed immediately by RETURN(EXEC).) If a compressed
program is compressed a second time, Tines previously protected by blank REM's
are no longer protected, since the protecting REM's have been eliminated.

The first statement 1ine in a program is wunaltered, regardless of its
content.

During the utility's second stage, called "compression", the compressed
version of the program is produced and written to the output disk.
The output disk:

a) Must have a catalog established on it.

b) Must not have a file with the same name as the input program file.

c) Must have sufficient space to store the input program file in its
pre-compressed state.

The utility compresses selected files or all files from the input disk.

However, the maximum number of selected files for a single execution is 40.
The input disk files must be cataloged.

11.2 OPERATING INSTRUCTIONS

1. 1. From ISS Utilities menu load
COMPRESSION via the indicated
Special Function Key.

2. ARE THE PARAMETERS 0K? 2. Display shows current default

(Y/N) parameters for the COMPRESSION
utility. If all parameters are

1. MODE = correct, enter Y; then, if

2. OPTION = MODE=ALL,go to step 12 or

3. INPUT ADDRESS = if MODE=PART, go to step 9.

4. OUTPUT ADDRESS = To change any or all parameters
enter N, and go to the next
step.

3. ENTER ITEM TO BE CHANGED. 3. To change a parameter enter

(0=END, 5=SWITCH INPUT AND its selection number and go

OUTPUT)? to the step listed below.

To exchange the input and
output address enter 5.

Enter zero when all parameters
are correct; then go to step 8.

TO CHANGE ENTER GO TO
STEP
MODE 1 4
OPTION 2 5
INPUT ADDRESS 3 6
OUTPUT ADDRESS 4 7

44

4. ENTER THE DESIRED MODE.
(ALL OR PART). ?

5. ENTER THE DESIRED COMPRESSION
OPTION.

(1-180 or 2-256).
?

6. ENTER THE INPUT ADDRESS?

7. ENTER THE OUTPUT ADDRESS?

8. DO YOU WISH TO SAVE THESE
VALUES AS THE SYSTEM DEFAULTS?
(Y/N)

45

CHAPTER 11 - THE COMPRESSION UTILITY

(82}

Enter ALL to compress all
program files on the input
disk. Enter PART to compress
selected files on the input
disk.

Go to step 3.

Enter 1 or 2 to select a max-
imum compressed Tine length

of 180 or 256 bytes. Selection
1 restricts the maximum com-
pressed line length to 180
bytes, thereby allowing use

of the EDIT function on the
compressed program. Selection
2 sets the maximum to 256
bytes. Statement lines of 193
bytes or more cannot be
EDITed.

Go to step 3.

Enter the device address at
which the input disk is to be
mounted. If the input disk
and the output disk are to

be mounted at a multiplexed
disk drive, then the hog mode
address for the input disk
should be used.

Go to step 3.

NOTE:

If the input disk is currently
hogged by another CPL, its
address is not acceptable to
COMPRESSION.

Enter the device address at
which the output disk is to be
mounted, If the output disk
is to be mounted at a multi-
plexed disk drive, then the
hog mode address for the disk
device should be used.

Go to step 3.

To save the currently displayed
parameters as the default
parameters for the COMPRESSION
utility, enter Y. Otherwise,
enter N.

CHAPTER 11 - THE COMPRESSION UTILITY

10.

1.

12.

13.

14.

MOUNT INPUT PLATTER
KEY RETURN(EXEC) TO RESUME?

ENTER THE NAME OF FILE NUMBER X
(0=END)

REMOUNT ISS PLATTER IF REMOVED.
KEY RETURN(EXEC) TO RESUME?

MOUNT DISK PLATTERS.
KEY RETURN(EXEC) TO RESUME?

OPERATION FOR FILE X
FILE NAME = file name

BLOCKS READ =
TOTAL BLOCKS =

MOUNT ISS PLATTER
KEY RETURN(EXEC) TO RESUME?

46

10.

11.

12.

13.

14.

Mount the input disk at the
displayed input address.

Enter the name of the Xth
input file to be compressed.
Repeat this step until all
desired file names have been
entered. Enter zero to

end entry.

If the ISS disk containing
COMPRESSION was removed to
mount the input disk, then
remount the ISS disk at the
ISS Standard Loading Address.

Mount the input and output
disks at the displayed ad-
dresses. (ISS disk may be
removed if necessary.) Key
(EXEC) to resume processing.

The processing display shows
the file currently being
processed, its total size, and
the operation currently being
performed on it.

If the message appears:
"FILE CANNOT BE PROCESSED",
either the file is a protected

file or there is insufficient

space on the output disk.

Processing is complete.

Mount the ISS diskette at

the ISS standard loading
address. Key (EXEC) to return
to ISS Utilities menu.

CHAPTER 12
THE LIST UTILITY

12.1 INTRODUCTION

The LIST utility lists a program, with each BASIC statement printed on a
separate line.

For example, the statement line

410COM F$1,T$1,N$(64)8,F,F1,C,0:COM W4$1,Q6%$64,D0$1,D$(2)3:COM L,
E,E1:DIM N$8,B$(16),L$1,H$2,W1$8:GOTO 660

is listed as:

410COM F$1,T$1,N$(64)8,F,F1,C,0
:COM W4$1,Q06%$64,0$1,D$(2)3
:COM L,E,E
:DIM N$8,B$(16),L$1,H$2,W148
:GOTO 660
A1l the program files on a disk may be processed, or up to 40 selected
files, in a single execution of this utility.

12.2 OPERATING INSTRUCTIONS

1. 1. From ISS Utilities menu load
LISTING PROGRAM via the indi-
cated Special Function Key.

2. ARE THE PARAMETERS 0K? 2. Display shows current default
(Y/N) parameters for the LISTING
utility. To change any or
1. MODE = all parameters enter N and go
2. LINE LENGTH = to the next step. If all
3. INPUT ADDRESS = parameters are correct and
4. LINES/PAGE = MODE=PART,go to step 9.

If all parameters are correct
and MODE=ALL,go to step 12.

3. ENTER THE NUMBER OF THE 3. To change a parameter enter
ITEM TO BE CHANGED. (O0=END) its selection number and go
: to the step 1listed below.
Enter zero when all parameters
are correct and go to step 8.

47

CHAPTER 12 - THE LIST UTILITY

10.

ENTER THE DESIRED MODE.
(ALL OR PART).

ENTER THE LINE LENGTH
(64-130)?

ENTER THE INPUT ADDRESS?

ENTER THE NUMBER OF LINES
PER PAGE (30-55)
?

DO YOU WISH TO SAVE THESE
¥ALU§S AS THE SYSTEM DEFAULTS?
Y/N

MOUNT INPUT PLATTER
KEY RETURN(EXEC) TO RESUME?

ENTER THE NAME OF FILE NUMBER X
(0O=END)

10.

ENTER

TO CHANGE GO TO
STEP
MODE 1 4
LINE LENGTH 2 5
INPUT ADDRESS 3 6
LINES/PAGE 4 7

Enter ALL to Tist all programs
on the input disk. Enter PART
to list selected programs on
the input disk.

Go to step 3.

Enter the desired maximum line
length of the printed output.
The entry must be in the range
64-130.

Go to step 3.

Enter the device address at
which the input disk is to be
mounted.

NOTE:

If a disk is currently
hogged by another CPU, its
address is not acceptable to

the LISTING PROGRAM.

Go to step 3.

Enter the maximum number of
lines per page. The entry

must be in the range 30-55.
Go to step 3.

To save the currently displayed
parameters as the default
parameters for the LISTING
utility, enter Y. Otherwise,
enter N. If MODE=ALL,go to
step 12.

Otherwise, go on to the next
step.

Mount the input disk at the
displayed input address.

Enter the name of the Xth in-
put file to be processed.
Repeat this step until all

11.

12.

13.

14.

REMOUNT ISS PLATTER IF REMOVED.

KEY RETURN(EXEC) TO RESUME?

MOUNT INPUT DISK
KEY RETURN(EXEC) TO RESUME?

LISTING FILE NUMBER X
CURRENT BLOCK =
FILE NAME = file name
TOTAL BLOCKS =

MOUNT ISS PLATTER
KEY RETURN(EXEC) TO RESUME.

49

11.

12.

13.

14.

CHAPTER 12 - THE LIST UTILITY

file names have been entered.
Then, enter 0 to end.

If the ISS disk has been
removed, remount it at the
ISS standard loading address.

Mount the disk containing the
files to be listed. The ISS
disk may be removed if
necessary. Ready the printer.

The processing display shows
the file name, the current
block being listed, the total
number of blocks in the file,
and the sequence number of
the file currently being
listed.

NOTE :

The LISTING PROGRAM executes
internal processing, then
prints in bursts. Intermit-
tent inactivity is normal.

Remount the ISS disk at the
ISS Standard Loading Address.

‘Key (EXEC) to return to ISS

Utilities menu.

CHAPTER 13
THE RECONSTRUCT INDEX UTILITY

13.1 INTRODUCTION

The RECONSTRUCT INDEX utility is an aid to the recovery of disk files in
the event of accidental destruction of the disk catalog index. The utility
searches the disk, looking for file control sectors established during catalog
operations. Based on the control sectors found, it attempts to reconstruct a
catalog index for the files on the disk.

CAUTION:

Before executing this utility a backup copy of the disk
should be made.

The utility constructs names for all data files and for duplicate program
file names. The constructed names have the following form:

/*XXXX*/

where: XXXX is a four-digit number. Numbers are assigned consecutively to
files that require constructed names.

13.2 OPERATING INSTRUCTIONS

1. 1. From ISS Utilities menu access
the RECONSTRUCT INDEX utility
via the indicated special
function key.

2. ENTER THE DISK ADDRESS 2. Enter the device address of the
? disk whose catalog index is
to be reconstructed.
3. ENTER THE HIGHEST SECTOR 3. Enter the highest sector
ADDRESS QF THE DISK. address at which files are

known to exist. If this
information is not available,
enter the highest sector ad-
dress of the disk.

4, ENTER THE NUMBER OF 4. Enter the number of sectors in
INDEX SECTORS the original index and go
(0=UNKNOWN) to step 8. Enter zero if

50

10.

MOUNT INPUT DISK
KEY RETURN(EXEC) TO RESUME?

FINDING INDEX SECTORS
REMOUNT ISS PLATTER IF REMOVED.
KEY RETURN(EXEC) TO RESUME

MOUNT INPUT DISK
KEY RETURN(EXEC) TO RESUME?

RECONSTRUCTING DISK INDEX

REMOUNT ISS PLATTER
KEY RETURN(EXEC) TO RESUME

CHAPTER 13 ~ THE RECONSTRUCT INDEX UTILITY

51

10.

this is unknown, and go to
the next step.

Mount the disk whose index

is to be reconstructed.

If number of index sectors is
unknown, go to the next step.
Otherwise go to step 9.

Temporary display; no action
required.

Remount the ISS disk if it
has been removed.

Mount the disk whose index
is to be reconstructed.

Processing display.

Execution is complete. Remount
the ISS disk at the ISS Stand-
ard Loading Address. Key (EXEC)
to return to ISS Utilities
menu.

PART Il
THE ISS DISK SORT UTILITY

52

CHAPTER 14
OVERVIEW

14.1 SYSTEM SUMMARY

The ISS DISK SORT UTILITY is a stand-alone system designed to rapidly
sort the records in a cataloged disk data file. An output file is used to
receive the records written in their new sequence. The new sorted Sequence is
determined by the values of designated key fields in each record.
Collectively, these key fields are referred to as the sort key.

The records to be sorted must have identical formats, that is, the order,
length, type and number of fields in each record must be the same. Additional
file requirements are given in Section 14.2.

The sort key can contain up to ten fields. Its total 1length must not
exceed 64 bytes not counting the control bytes. Sort order can be specified
for each field of the sort key, either ascending or descending for each field.
Numeric and alphanumeric fields may be included in the sort key.

In addition to input and output files, the utility requires a work file.
A stand-alone routine, DETERMINE WORK FILE SIZE,is provided to calculate the
number of sectors which must be allocated to this file.

Though there is no limit to the number of records which can be sorted,
the dinput, output, and work file are each limited to the capacity of a single
disk.

Part of a file may be sorted by specifying starting and ending record
numbers for the sort.

The ISS DISK SORT utility uses the BASIC statements described in SORT
STATEMENTS (Publication #700-3559A).

Depending upon the size of the records to be sorted and the available
disk space, either a full-record or a key sort is performed. The choice of
which type of sort to perform is made by the program. In general, with short
records, a full-record sort is faster than a key sort. In a full-record sort
the input record is reformatted so that the record can be efficiently moved.
When the sort and merge operations take place, the reformatted input record is
used. After all vrecords have been sorted, on the final merge pass, the
records are restored to the input format before being written to the output
file.

In a key sort, only the sort key is extracted from each input record and

carried, with a pointer to the input record, as the sort record. The sort
records are sorted into sorted strings which are merged until all records are

53

CHAPTER 14 - OVERVIEW
(File Requirements)

in the proper sequence. At the end of program execution, the sort records are
read, the appropriate input records are found, and the output file is created.
This method 1is generally used with long records, or when the work file space
on disk is inadequate to hold the entire input file.

The Disk Sort Utility runs in three or four phases, depending on whether
it is performing a full-record sort or a key sort:

1. Accept input specifications, generate code.

2. Perform internal sort (pass 1)

3. Perform merge (if full-record sort, write output file)
(pass 2).

4, (If key sort, write output file) (pass 3).

14.2 FILE REQUIREMENTS

The Input File

The input file must conform to the following specifications:

1) It must be a cataloged file with all records written with DATA SAVE
or DATA SAVE DA. The DATASAVE DC END trailer must be present.

2) It must have all records in the same format (no special header or
trailer records, no variable length records).

3) It may have either blocked or unblocked records; however,
a. If unblocked, it must have not more than 55 fields per record.
b. If blocked, it must be written in érray form, for example
C$(4)
B(), C$()

i. It must not have more than 38 fields per record.

DIM A$(4)20, B(4),
DATASAVE DC A$(),

ii. It must not have more than 255 records per block.
iii. It must have all blocks filled (unused records in the 1last
block must be filled with padding records that will sort
high if used in an ascending sort, or sort low, if used in a
descending sort).
4) It must have all records on a single disk.
5) A record or block of records may occupy more than one sector.

The Qutput File

The output file is a cataloged file. If the file 1is not established
prior to execution, the program can establish the output file. It allocates
to the file the exact amount of space needed. If a need for additional space

54

CHAPTER 14 - OVERVIEW
(File Requirements)

in the output file 1is anticipated, the file must be established prior to
execution.

I[f the input file 1is blocked, the blocking of the output file is
identical to the input file.

The Work File

The work file must be a cataloged file. It must be established on one of
the available disks prior to execution. In most cases the length of the work
file required does not exceed the length of the file being sorted. The ISS
DISK SORT menu offers a utility, DETERMINE WORK FILE SIZE, which calculates
the exact amount of space needed for the file and indicates whether a key sort
or a full—-record sort will be performed. (If the work file size is inadequate
at the time of execution, the operator is informed of the fact and actual
sorting does not begin.)

55

CHAPTER 15
DETERMINE WORK FILE SIZE

15.1 INTRODUCTION

The DETERMINE WORK FILE SIZE utility is used to calculate the size of the
work file needed by the sort utility. It also determines whether a key sort
or a full-record sort will be performed. If it indicates a full-record sort,
then the full-record sort is faster under the given conditions than a key
sort. However, a full-record sort requires a larger work file.

If the required work file size for a full-record sort is larger than can
be provided, it may still be possible to execute a key sort with the available
work file space. Instructions are provided for calculating the key sort work
file size under these circumstances. If, during execution of the sort utility
a full-record sort is indicated, and the work file size is inadequate to
perform it, the utility automatically evaluates the work file needed for a key
sort, and executes it, if sufficient space is available.

To use the DETERMINE WORK FILE SIZE utility an input file containing at
least one record, or block of records, is required. The format of this record
must be the exact format of the actual records to be sorted. If the actual
input file exists, it may be used; otherwise a dummy file can be created by
executing the following 5 line program.

10 DIM (sizes and dimensions of fields)

20 DATASAVE DC OPEN, platter, disk sectors, '"name"
30 DATASAVE DC (write record or block of records)
40 DATASAVE DC END

50 DATASAVE DC CLOSE

The content of the records is irrelevant. Only the format is used in the
calculations.

A minimal work file of 25 sectors is also needed for the calculations. A

statement such as DATASAVE DC OPEN R 25, "WORK" can be executed to establish
this file.

15.2 OPERATING INSTRUCTIONS

DISPLAY INSTRUCTIONS

1. 1. From ISS DISK SORT menu, ac-
cess the DETERMINE WORK FILE
SIZE UTILITY via the appro-
propriate Special Function Key.

56

10.

11.
12.

INPUT FILE NAMES

INPUT FILE DEVICE ADDRESS

RECORDS PER BLOCK

STARTING RECORD # TO BE SORTED?

NUMBER OF RECORDS TO BE
SORTED (OR ALL)?

NUMBER OF KEY FIELDS
(1 to 10)?

ENTER SEQUENCE NUMBER OF KEY
FIELD xx IN RECORD

KEY FIELD xx ASCENDING OR
DESCENDING? (A OR D)?

WORK FILE NAME
WORK FILE DEVICE ADDRESS

57

CHAPTER 15 -~ DETERMINE WORK FILE SIZE

10.

11,
12.

Mount the disks containing
the input and work files.

Enter the name of the input
file. If a dummy file is used
instead, enter its name.

Enter the device address of
the input (or dummy) file.
Valid entries are 310, 320,
B20, B10, 350.

Enter the number of records

per block. Enter 1 if the
records are not blocked.
Enter 1.

Enter 1.

Enter the number of fields to
be included in the sort key.

For example, if the record
contains:

A$ = account

N$ = name

S$ = address

Z$ = zip code

To sort by zip code and name,

-enter 2 for number of key

fields.

The sequence number is the
number of the field within the
record. In the above example,
zip code is sequence number 4.
Since zip code is the first key
field, 4 would be entered here
the first time.

Enter A or D to indicate for
each key field whether it is to
be sorted into ascending or
descending sequence. Repeat
steps 9 and 10 until the last
key field is done.

Enter the name of the work file.
Enter the device address of the

work file. Valid entries are
310, 320, B20, B19, 350.

CHAFTER 15 - DETERMINE WORK FILE SIZE

13.

14.

ENTER THE NUMBER OF RECORDS
TO BE SORTED

o/
KEY RETURN(EXEC) TO RESUME

KEY SORT (OR) FULL-RECORD SORT
NUMBER OF SECTORS FOR THE
SORT-WORK FILE = XXX

58

13.

14.

Enter the best available es-
timate of the number of
records to be sorted.

The type of sort to be performed
as well as the work-file size 1in
sectors is given.

If a full-record sort is indi-
cated and the work file size is
larger than is available, the
work file size for a key sort
may be calculated by keying
RESET RUN 2820 RETURN(EXEC).

CHAPTER 16
EXECUTING THE DISK SORT UTILITY

16.1 INTRODUCTION

Before executing the Sort Utility, the input and work files

should be

cataloged on a disk and available. The output file can be established by the
utility, but if it is desired that it contain extra sectors, then it too must

be established prior to execution.

Each
disk

is permitted. A1l three files must be mounted throughout
the sorting procedure. The Disk Sort Utility modules must

also

mounting the ISS diskette. However, if disk space is
scarce, the utility modules may be copied from the ISS
diskette. The module names are:

NOTE :

file (input, output, and work) must fit on a single
No overlapping of a file from one disk to another

be mounted. Normally, this is accomplished by simply

SORT

DSM200BA
DSM200CA
DSM201AA
DSMZ02AA
DSM202BA
DSM203AA

The following information is required during the parameter entry stage:

PR R —
WN oW~ WwN) —
e s s e e s e s 2 e 4 s »

the
the
the
the
the
the
the
the
the
the
the
the
the

input file name

input file disk device address

number of records per block

number of the first record to be sorted

number of records to be sorted (or all)

number of key fields on which to sort (no more than 10)
sequence number of each key field

sort order on each key field (ascending or descending)
work file name

work file device address

output file name

output file device address

status of the output file, cataloged or not cataloged

59

CHAPTER 16 -~ EXECUTING THE DISK SORT UTILITY

Usually the starting record number is 1, and the number of records to be
sorted is entered as "all". The principal exception to this occurs if the
input file is too large to be sorted with the available disk storage. The
input file can then be sorted in sections, producing separate sections of
sorted output. Merging of these sections must be accomplished in a separate
program (not provided).

Assuming’the records contain the four fields:

A$ = account no.

N$ = name

S$ = address

Z$ = zip code

The sequence number of each field is:

Field Name Sequence no.
A% 1

N$ 2

S$ 3

Z$ 4

To sort on zip code and name, the number of key fields is 2, and the
sequence numbers of these two fields are 4 (keyfield #1, the zip code) and 2
(keyfield #2, name).

16.2 OPERATING INSTRUCTIONS

DISPLAY . INSTRUCTIONS

1. 1. From ISS DISK SORT menu, ac-
cess the Disk Sort via the
specified Special Function
Key.

2. 2. Mount the disks containing the
input and work files. Mount the
disk containing, or to contain,
the output file.

3. INPUT FILE NAME 3. Enter the name of the input
file. If RE-ENTER appears, too
[many characters were entered.
4. INPUT FILE DEVICE ADDRESS 4, Enter the device address of the

input file. Valid entries are
310, 320, B10, B20, 350. If
INPUT INVALID is displayed,
input file is not a data file.

60

CHAPTER 16 - EXECUTING THE DISK SORT UTILITY

RECORDS PER BLOCK

STARTING RECORD # TO BE SORTED?

NUMBER OF RECORDS TO BE SORTED
(OR ALL)?

NUMBER OF KEY FIELDS
(1 to 10)?

61

Enter the number of records per
block. Enter 1 if the records
are not blocked.

If STOP TOO MANY FIELDS is dis-
played, there are more than 38
fields/record (blocked) or 55
fields/record (unblocked) in the
input/file; the program cannot
sort this file. [If STOP INVALID
RECORD FORMAT is displayed, the
program cannot sort this file.
If STOP NOT BLOCKED AS SPECI-
FIED is displayed, the value in-
put is inconsistent with the
actual file format; either re-
run or stop. (If blocking

was not done in array form, the
program cannot sort the file.)

To sort the entire file,

enter 1.

To sort part of the file, enter
the number of the first record
to be sorted,

To sort the entire file, or all
the remaining records starting
with the record specified in
Step 6, above, enter ALL.

To sort a specific number of

‘records, enter the number of

records to be sorted.

If STOP INVALID RECORD FORMAT is
displayed, the program cannot
sort the input file; you must
use another file and return to
Step 1.

If a number is specified which
is greater than the number of
records in the file, starting
with the record specified in
Step 6, above, then all the
remaining records will be
sorted.

Enter the number of fields to be
included in the sort key.

For example, if the record
contains:
A% = account

CHAPTER 16 - EXECUTING THE DISK SORT UTILITY

N$ = name

S$ = address

Z$ = zip code
To sort by zip code and name,
enter 2 for number of key

fields.
9. ENTER SEQUENCE NUMBER OF KEY 9. The sequence number is the
FIELD xx IN RECORD number of the field within the

record. In the above example,
zip code is sequence number 4.
Since zip code is the first key
field, 4 would be entered here
for the example case; 2 would
be entered the second time for
name.

If STOP SORT KEY TOO LONG is
displayed, the sort key fields
exceed 64 bytes total; this

is outside program limits.

10. KEY FIELD xx ASCENDING OR 10. Enter A or D to indicate for
DESCENDING? (A OR D)? each key field whether it is
to be sorted in its ascending
or descending sequence. Re-
peat steps 9 and 10 until the
last key field is done.

11. WORK FILE NAME 11. Enter the name of the work file.

12. WORK FILE DEVICE ADDRESS 12. Enter the device address of the
work file. Valid entries are
310, 320, B10, B20, 350.

13. OUTPUT FILE NAME 13. Enter the name of the output
file.
14. OUTPUT FILE DEVICE ADDRESS 14. Enter the device address of the

output file. Valid entries are
310, 320, B10, B20, 350.

15. IS OUTPUT FILE CATALOGED? 15. If the named output file is al-
(Y OR N) ready cataloged, enter Y.

Otherwise, enter N to let the
utility establish the file.
If the message OUTPUT SPACE T0O
SMALL appears, the size of the
specified file is inadequate.
Repeat step 15 with a new out-
put name and let the utility
establish the file.

The utility executes without
further operator attention.

62

16.

17.

18.

PASS 1 - INTERNAL SORT

PASS 2 - MERGE

PASS 3 - OQUTPUT

INPUT RECORDS

OUTPUT RECORDS

STOP END OF SORT

CHAPTER 16 - EXECUTING THE DISK SORT UTILITY

63

16.

17.

18.

Messages indicate the "pass"
in operation.

If ERR 43 occurs, the input
file is not all the same format
and cannot be sorted.

If STOP SEQUENCE ERROR is dis-
played, the program must be
rerun from the beginning.

This message appears only if a
key sort is performed. If
STOP SEQUENCE ERROR is dis-
played, the program must be
rerun from Step 1. If this er-
ror persists even when rerun-
ning, call your Wang Service
Representative.

CHAPTER 17
ISS DISK SORT UTILITY TIMINGS

Sort times depend on the number of records to be sorted, the size of each
record, the length and position of the sort key in the record and the amount
of available RAM (random access memory) in the CPU. In the table below,
approximate empirically determined times for sorting sample data files wusing
the Disk Sort Utility are given; the Model 2230-3 disk was used. Time to
enter sort parameters is not included.

K = key sort, R = full—record sort. A = alphanumeric only, N = numeric only,
A/N = mixed alphanumeric and numeric.

Input Record Key cPU Type Time

Records Length Blocked Length Memory Size of Sort (min)

2000 24 10 24A 8K R 8.22

20000 24 10 24A 8K R 92.00

2000 24 10 24A 32K R 7.02

8000 24 10 24A 32K R 27.27

1000 120 2 8N 8K K 7.83

1000 120 2 8N 32K K 7.50

4000 120 2 8N , 32K K 29.42

1000 120 2 64A/N 8K K 12.35

1000 120 2 64A/N 32K R 9.22

4000 120 2 64A/N 32K R 41.62

64

PART IV
KFAM

65

CHAPTER 18
OVERVIEW OF THE KFAM SYSTEMS

18.1 WHAT IS KFAM?

The 2200 BASIC language includes a group of statements used for disk
operations that are known as the Catalog Mode statements. They are given this
name because they create and maintain on a disk, a catalog, or index, of the
files which are stored on the disk. This catalog includes, among other
things, the name given to the file and the file's starting and ending sector
addresses. The catalog system allows a file to be found by simply supplying
its)name (a service performed for data files by the statement DATA LOAD DC
OPEN).

Though the catalog system keeps track of where each file is located on a
disk, and thereby allows files to be easily found, it does not keep track of
the individual records within a file. For example, a given disk may have an
employee file called "PAY", an accounts receivable file called "A/R", and an
inventory file called "INVT". The disk catalog system keeps track of where
each of these files is located. However, the "PAY" file may consist of 250
employee records, the "A/R" file of 400 customer records, and the "INVT" file
of 5000 product records. KFAM is a system for keeping track of and locating
these individual records within a file.

For each file of records, KFAM creates and maintains an index of the
individual records and their locations in the file. For the purpose of this
index, each record is identified by some key field that can serve to mark it
off from all other records. For example, for a payroll file, the employee
name or number might be designated as the key field; for an inventory file a
product number might be the key field. A record's key field is called its
"key". The index constructed and maintained by KFAM can be thought of as a
list of all the keys for a given file. Associated with each key in the index
is the Tocation of the record that the key identifies.

The index that KFAM constructs and maintains 1is itself kept as a
cataloged file on a disk. It is called the Key File to distinguish it from
the file of records that it indexes. The latter is called the User File.

When a file is indexed by KFAM, you can say in a program, "Find me the
record for product AB-4975-1." KFAM subroutines, incorporated into the
program, then search the Key File index and put the sector address of record
AB-4975-1 into the User File's Current Sector address parameter in the Device
Table. The program can then simply execute a DATA LOAD DC statement to read
the desired record.

KFAM subroutines, incorporated into the user's programs, do all the work
of searching and updating the Key File. There are KFAM subroutines to find

66

CHAPTER 18 - OVERVIEW OF THE KFAM SYSTEMS

records in a random sequence, and in ascending key sequence; there are
subroutines to delete records, and to find a Tocation for a new record and add
the new key to the Key File. Thus, the programmer who uses KFAM need never
know how the Key File is constructed. KFAM subroutines carry out all the
necessary operations on the Key File.

The Key File that KFAM constructs 1is a sophisticated tree structure,
designed so that keys can be found quickly in a random sequence, and even more
quickly 1in ascending key sequence. It allows keys to be added and deleted
easily, without disturbing the organization of the Key File.

Whenever a KFAM subroutine is to find a record, or add a new key to the
key file and find a Tlocation for the record in the User File, the KFAM
subroutine puts the User File record location into the Current Sector address
parameter of the Device Table, opposite the file number (#0-#6) being used for
the User File. Thus, on return from the subroutine, an ordinary Catalog Mode
DATA LOAD DC or DATA SAVE DC can be executed, and will take place at the
desired sector location.

There are two versions of KFAM included in ISS. KFAM-3 is the general
purpose KFAM system for use when a file is to be accessed by only one CPU at a
time. KFAM-4 is a modification of the KFAM-3 system designed for a
multiplexed disk environment, in which more than one CPU may wish to access a
file simultaneously. The key file structures built by KFAM-3 and KFAM-4 are
identical, and operations performed by the utilities and subroutines are very
similar. The chief difference is that KFAM-4 includes special protective
procedures to prevent destructive conflict by different CPU's. Though the
main functions performed by KFAM-4 software are very similar to those of
KFAM-3, once a file 1is organized under one version, only the software
associated with that version may be used on 1it. A conversion program is
provided to convert a KFAM-3 Key File to a KFAM-4 Key File. KFAM-3 offers
better performance than KFAM-4, and should be used whenever it is certain that
a file is used by only one CPU at a time.

There are two versions of KFAM not included in 1ISS. These are the
original KFAM, (referred to as KFAM-1 in this document) and KFAM-2. Unlike
these versions of KFAM, KFAM-3 and KFAM-4 use the BASIC statements described
in SORT STATEMENTS (Publication #700-3559A). This permits improvements in
execution speed, memory requirements, program simplicity, and system
flexibility which could not otherwise be achieved. Utility programs are
provided to convert to KFAM-3 from KFAM-T1 and KFAM-2.

18.2 _THE FUNCTIONAL COMPONENTS OF KFAM-3 AND KFAM-4

KFAM-3 and KFAM-4 can each be broken down into the following functional
types of software.

1. Set-up Utilities: Stand-alone programs used to initialize a new
Key File, and to create a Key File for an already existent User
File.

2. KFAM Subroutines: DEFFN' subroutines which are incorporated into a

User program. These are used to locate records in the user file
and to add and delete keys from the Key File. These are the
operational heart of KFAM.

67

CHAPTER 18 - OVERVIEW OF THE KFAM SYSTEMS

3. Supplementary Maintenance Utilities: Stand-alone programs which
perform a variety of tasks related to the maintenance of a Key File
and User File.

18.3 HOW TO GET STARTED WITH KFAM

KFAM provides a means for accessing records that are saved in a disk
file. However, it does not process these records in any way. After it has
found a record, the processing of the record, (loading it, updating it, saving
it, etcetera) is left to the user-written program. Thus, to use KFAM one must
have a working knowledge of elementary BASIC and of the fundamentals of
Catalog Mode disk operations.

It is strongly recommended that the first-time user of KFAM begin by
setting up a dummy KFAM-3 file, and experiment with the subroutines and
utilities on this file before attempting to operate on valuable files.

The following is a step-by-step outline of how to begin setting up KFAM
files.

1. Decide whether to use KFAM-3 or KFAM-4. If your system includes
just one CPU then you should use KFAM-3. If your system includes
more than one CPU attached to a multiplexed disk drive, and the
file to be accessed may be accessed by several CPU's
simultaneously, then you must use KFAM-4. If you are a first time
user and wish to learn to use KFAM-4, it may be advisable for you
to begin by experimenting with a dummy KFAM-3 file and then
graduate to KFAM-4 as you gain confidence.

2. Read Chapter 19, KFAM Requirements and Conventions. This chapter
describes the four types of User File records which are acceptable
to KFAM, Timitations on the size and characteristics of the key
field, and certain KFAM conventions which must be adhered to.

3. A Key File is stored as a cataloged file on a disk. It may reside
on the same disk as the User File, or on another disk (which must
be mounted whenever the User File is accessed). A set-up utility
called INITIALIZE KFAM FILE must be run whenever a new KFAM file
(Key File and User File) is to be established.

INITIALIZE KFAM FILE calculates the required size of the Key File,
given an estimate of the maximum number of records to be saved in
the User File, and will catalog a Key File with the required number
of sectors. It saves in the Key File some vital information about
the User File, based on information supplied by the operator.
Optionally it will also catalog a User File with the proper number
of sectors, if the User File does not already exist.

A guide to the information required by INITIALIZE KFAM FILE and
detailed operating instructions are provided in Chapter 20.

4. If your User File already exists, a second set-up utility program

can be run after INITIALIZE KFAM FILE. It reads your User File and
creates an entry in the Key File for each record in the User File.

68

CHAPTER 18 - OVERVIEW OF THE KFAM SYSTEMS

This utility is called KEY FILE CREATION. Operating instructions
are provided in Chapter 20.

5. [f your User File does not already exist, then after running
INITIALIZE KFAM FILE you will use the KFAM subroutines in a program
you write to build your User File and Key File simultaneously.

6. The KFAM subroutines are DEFFN' subroutines which are incorporated
into an application program (written by the KFAM user) to perform
standard tasks for files indexed by KFAM. Before writing a
program, or program module, you should determine the KFAM
subroutines that will be needed. You should then run the Utility
BUILD SUBROUTINE MODULE. This lets you choose what subroutines,
and optional subroutine features, you wish to have. It builds a
program file on disk which contains the selected subroutines.
(BUILD SI'BROUTINE MODULE for KFAM-3 is described 1in Chapter 21.
The KFAM-4 version appears in Chapter 22.)

Subroutines are available to perform the following tasks.
TYPE AND NAME FUNCTION

General Purpose

OPEN Open specified User File and com-
panion Key File.

CLOSE Close User File and companion Key
File.

Random Access

FINDOLD Locate specified key in the Key File;
set User File Current Sector Address
to record in User File with that key.

Key Sequence Access

FINDFIRST Locate record with lowest key in
User File; set User File Current
Sector address to that sector.

FINDNEXT Locate next record in User File in
logical key sequence; set User File
Current Sector Address to that sector.

FINDLAST Locate record with highest key in
User File; set the User File Current
Sector Address to that sector.

Add and Delete

FINDNEW Add specified key to Key File; al-
locate space for a new record in the
User File, and set the User File
Current Sector Address to that sector.

69

CHAPTER 18 - OVERVIEW OF THE KFAM SYSTEMS

FINDNEW (HERE) Add specified key to Key File;
set the User File Current Sector
Address to the sector where the
new record is to be written.

DELETE Remove specified key from Key File;
set the User File Current Sector
Address to the record that has the
deleted key.

Special Purpose (KFAM-4 ONLY)

RELEASE Allow a User File record, previously
protected by one CPU, to be
accessed by any CPU.

Since the KFAM subroutines allow records to be added and deleted,
as well as accessed, all routine file maintenance takes place in
application programs which use KFAM subroutines. As a general rule
all operations on the Key File are accomplished by the KFAM
subroutines, while all operations on the User File are accomplished
by user written statements in the application program.

Detailed descriptions of the GOSUB' statements needed to call each

of the KFAM subroutines are given in Chapter 21 for KFAM-3 and 22
for KFAM-4.

7. Though the KFAM subroutines are the heart of the KFAM system, and
perform most of the file maintenance, a group of Supplementary
Maintenance Utilities are included to carry out certain maintenance
tasks that will occasionally be required.

a) The REORGANIZE Utilities: When a record is '"deleted" by
using the DELETE subroutine, its key and location are simply
removed from the Key File. It then cannot be accessed by
KFAM. The record itself in the user file is not removed. It
is possible to reuse the spaces occupied by deleted records
in the User File, but if this 1is not done, the User File
gradually becomes bloated with DELETED records. The
reorganize utilities reorganize the User File putting its
records into key sequence and eliminating DELETED records.
They then automatically construct a new Key File for
accessing the reorganized User File. KFAM-3 and KFAM-4 each
have two versions of REORGANIZE utilities.

THE REORGANIZE SUB-SYSTEM: Is a three-module utility
program which reorganizes a file by outputting a new
reorganized User File and Key File. The old Key File
and User File are left intact. It is called by a user
written set-up module which provides parameters for the
reorganization.

REORGANIZE KFAM FILE: Is a wutility program which

reorganizes the User File and Key File in place. It
should be wused only for a file so large that adequate

70

CHAPTER 18 - OVERVIEW OF THE KFAM SYSTEMS

output files could not be mounted at the same time as
the file to be reorganized.

Detailed instructions for KFAM-3 and KFAM-4 Reorganize
utilities are given in Chapter 23.

b) The Adjust Files Utilities include two utilities which can be
used together to copy a KFAM file and dincrease or decrease
the amount of disk space allocated to the file. These
utilities are called REALLOCATE KFAM FILE SPACE and DISK COPY
AND REORGANIZE. The latter can be used alone to copy any
cataloged file to another disk.

c) PRINT KEY FILE: This utility prints the complete contents of
the Key File with appropriate labeling of data. It can be
useful as a diagnostic tool, and helpful to advanced
programmers who may wish to examine the Key File structure.

d) Recovery Utilities: A KEY FILE RECOVERY utility is provided
to reconstruct a Key File 1in the event of its accidental
destruction. The User File must be intact for this program
to operate successfully.

For KFAM-4 only, there is a second kind of recovery utility
called RESET ACCESS TABLE. KFAM-4 maintains in the Key File
information about which CPU's are operating on the file.
This information is kept in a part of the Key File called the
"access table". This access table will contain erroneous
information if a CPU fails to CLOSE a file it has opened. due
to power failure or program error. The RESET ACCESS TABLE
utility 1is provided to clear this erroneous information from
the access table.

e) The KFAM Conversion Utilities. Utility programs are provided
with KFAM-3 to convert from KFAM-1 to KFAM-3, and from KFAM-2
to KFAM-3. A utility program is provided with KFAM-4 to
convert from KFAM-3 to KFAM-4,

18.4 OVERVIEW OF KFAM-4

KFAM-4 is a modification of the KFAM-3 system, designed for a disk
multiplexed environment. It allows wup to four CPU's to access a KFAM disk
file, and includes protective procedures designed to prevent destructive
intrusions of one CPU into the file operation of another CPU. These
procedures are designed to offer the minimal protection consistent with the
type of operation being performed, so that other CPU's can have the safe
maximum availability of the disk and the file.

To use KFAM-4 in a multiplex environment one must have some understanding
of the types of problems presented by this environment. To 1illustrate these
problems, assume that several CPU's attempt to use KFAM-3 to access a User
file, via a single Key File. Serious problems can occur at several different
levels:

71

CHAPTER 18 - OVERVIEW OF THE KFAM SYSTEMS

The key file can be accidentally destroyed simply by two CPU's
executing KFAM subroutines contemporaneously. Recall that the disk
multiplexer (Model 2224 or 2230MXA/B) allows a CPU to execute a
single disk instruction, and then polls the other CPU's to see if
they are waiting to execute a disk instruction. Since a single
KFAM-3 subroutine (FINDNEW, FINDOLD, DELETE, etc.) may execute many
disk instructions, its disk instructions could be interspersed with
those of another CPU. Several of the KFAM-3 subroutines can alter
the Key File structure, and require that that structure be stable
from the time the key file is read until it 1is successfully
restructured. Two such subroutines operating on the key file
contemporaneously could result in an illegitimate Key File
structure, which would destroy its effectiveness as an index to the
User File.

If one CPU is attempting to access records sequentially using
FINDNEXT, and, during record processing, another CPU accesses the
file, then a subsequent execution of FINDNEXT by the first CPU will
not access the next sequential record.

If one CPU is attempting to perform an operation on an entire User
File, (Print Closing Balances, etc.) and another 1is updating
records in the file, then the overall file status reported may, in
fact, have never existed at any one point in time.

If two or more CPU's contemporaneously access the same User Record
for wupdating, so that, from the point of view of the disk, the
accessing sequence looks like this:

DATALOAD DC X (CPU #1)
DATALOAD DC X (CPU #2)
DATASAVE DC X+4 (CPU #1)
DATASAVE DC X+7 (CPU #2)

The record is now erroneous. It should contain X+11 but instead
contains X+7.

There are, of course, other problems which can occur, but these problems
may be taken as characteristic of the types of problems involved. KFAM-4
offers solutions to these types of problems by several different means:

1.

KFAM-4 subroutines hog the disk during their execution. Before
passing control back to the User program, the KFAM subroutine
returns the disk to normal, non-hog, mode. This solves the problem
of key file destruction caused by simultaneous execution of KFAM
subroutines.

Information which pertains to the program accessing the file rather
than to the Key File itself is maintained in the CPU's by KFAM-4,
rather than in the Key File (KDR) as in KFAM-3. This information
includes last key accessed, 1imb path, file numbers, etcetera. By
keeping the information for a CPU, in the respective CPU, one CPU

72

CHAPTER 18 ~ OVERVIEW OF THE KFAM SYSTEMS

can be accessing the file sequentially with FINDNEXT while another
is accessing it, and the FINDNEXT from the first CPU always
accesses the next sequential record.

In KFAM-4 an additional GOSUB' parameter is required to call the
OPEN subroutine. With this additional parameter a CPU initiating
operations on a KFAM-4 file can request exclusive access to the
entire file for the duration of its operation. When exclusive
access is requested, the OPEN subroutine checks to see if any other
CPU currently has the file open; if not, it grants exclusive
access. Once exclusive access is granted, no other CPU can open
the file until the CPU with exclusive access has executed the CLOSE
subroutine. This permits operations on an entire file to be
completed with the file protected from outside alteration. Files
may also be opened in a non-exclusive mode which permits other
CPU's to open the file.

The information as to how many of the four possible CPU's have
opened the file, and whether it is open 1in exclusive or
non-exclusive mode is saved in an access table. The access table
is part of the KDR record in the Key File. In order that this
information be accurate, it is essential that each CPU execute the
CLOSE subroutine when its program is finished with the file. If
the file is not CLOSED, the entry will remain in the KDR. Four
non-exclusive entries fill the access table and bar any CPU from
opening it; one exclusive entry, left in file, has the same effect.

KFAM-4 includes a utility called RESET ACCESS TABLE. The purpose
of this wutility 1is to clear the access table in the event of a
power failure or other disaster. This utility clears the entire
access table, and therefore should be run only when no CPU has the
file open. :

In KFAM-4 an additional GOSUB' parameter is required to call each
record-access subroutine. With this parameter the CPU accessing a
record can set a protect flag for the accessed record. If a CPU
has set a protect flag for a record, then that record may be
accessed only by that CPU, until the protect flag is turned off.
If records are blocked, setting a protect flag for one record in
the block prevents other CPU's from accessing any of the records in
the block.

When a CPU performs an update of a record, it must set a protect
flag for that record. This ensures that it can complete its update
operation before another CPU can access the record, and thereby
eliminates the problem of simultaneous updates described as problem
4, above.

The protect flag on a record (or block of records) is automatically
turned off when the CPU that set the protect flag executes any
other KFAM subroutine on the same file. Thus, for example, if a
series of updates are being performed by a CPU, each access of a
record turns off the protect flag for the record previously
accessed by that CPU, and, optionally, sets the protect flag for
the new record.

73

CHAPTER 18 ~ OVERVIEW OF THE KFAM SYSTEMS

KFAM-4 includes a subroutine called RELEASE. When executed by a
particular CPU, this subroutine simply turns off a protect flag
previously set by that CPU. This subroutine should be wused if

there may be a substantial delay before the next KFAM subroutine
call.

It is not possible for a single CPU to have open a KFAM-4 file and a
KFAM-3 file at the same time.

74

CHAPTER 19
KFAM REQUIREMENTS AND CONVENTIONS

19.1 USER FILE

The User File must be a cataloged disk file. It must be wholly contained
on one disk platter. (See KFAM Advanced Programming Techniques for files too
large to fit on one platter.) A1l records must be of a fixed length. Four
record types are supported. All records in a file must be the same type. The
record types are:

Type "N" - No Blocking

Each record occupies exactly one sector.
The key must be located in the same position within each record.

Records may be written in the "DC" mode, with control bytes, or in the
"BA" mode, without control bytes.

(This corresponds to record type "F" in KFAM-1.)

Type "A" - Array Type Blocked Records

Records must be written in array form:

DIM A$(4)3, B(4), C$(4)20
DATASAVE DC n, A$(), B(), C$()

indicating 4 records per block, each containing an A$, B, and C$. The
block of records must be written with control bytes; DATASAVE BA may not
be used.

ATl records must have the same format.

The key must be Tocated in the same position within each record. The key
may be a part of a field, i.e., STR(C$, 11, 10), but may not span fields,
may not include control bytes, and may not be a numeric field or any part
of a numeric field.

The block of records may not exceed one sector in length.

There may not be more than 38 fields per record.

75

CHAPTER 19 - KFAM REQUIKREMENTS AND CONVENTIONS (KFAM-3 AND KFAM-4)

Type "C" - Contiguous Blocked Records

A1l records must be the same length.

A11 the fields of a given record are stored contiguously on the disk, for
example:

DIM A1$3, C1$20, A2$3, C2$20, A3$3, C3$20, A4$3, C4$20
DATASAVE DC#n, A1$, B}, C1$, A2$, B2, C2%, A3$, B3, C3$,
A4$, B4, C4%

indicating 4 records per block, each containing an Aj$, Bj, and Cj$.
(This corresponds to record type "FB" in KFAM-1.)

The key must be located in the same position within each record.

The block of records may not exceed one sector in length.

Records may be written in the "DC" mode, with control bytes, or in the
"BA" mode without control bytes. However, if the file must be
reorganized in place using the REORGANIZE KFAM FILE utility, it must be
written with control bytes.

Type "M" - Multiple Sector Records

Each record occupies more than one sector.
Each record occupies the same number of sectors.

The key must be located in the same position within each record. The key
may be located in any sector of the record, but may not span sectors.

Records may be written in the "DC" mode, with control bytes, or in the
"BA" mode, without control bytes.

Records may be up to 255 sectors 1in 1length. However, the following
restrictions apply in REORGANIZE KFAM FILE:

a. Records may not exceed 40 sectors in length.

b. Reorganization cannot be executed in 12K of memory if the
record length exceeds 8 sectors.

(This corresponds to record type "FM" in KFAM-1.)

User File Name

The User file name, as recorded in the disk catalog, must conform to the
following conventions:

The 5th character must be the letter "F".

The 6th character must be a digit 0-9.

76

CHAPTER 19 - KFAM REQUIREMENTS AND CONVENTIONS (KFAM-3 AND KFAM-4)

19.2 KEY

The record key as it appears in the User File may be from 1 to 30 bytes
of alphanumeric data (including hexadecimal data or packed numbers). The key
may not be a numeric field.

The first byte of an active key may not contain the value HEX(FF). The
value HEX(FF) in the first byte of a key in the User file indicates that the
record has been deleted from the Key File.

The key may not contain a value of all bytes HEX(0Q). (This corresponds
to the packed number 0, or the binary number 0, as a key value.) This lowest
possible value is reserved for the system.

Duplicate keys are not allowed.

19.3 KEY FILE

The Key File name is constructed by INITIALIZE KFAM FILE from the User
File name, as follows:

The 5th character in the User File Name is changed from "F" to "K".

The 6th character is assigned the Key File number. This is always 1
unless multiple Key Files are maintained for the one User File, in which case
it may be any digit 1-9.

Size of the Key File

The first sector of the Key File contains the Key Descriptor Record
(KDR). The KDR contains control information necessary for KFAM.

The remaining sactors of the Key File are available for Key Index Records
(KIR's). Each KIR occupies one sector and contains Key Index Entries (KIE's).
The KIE is a field containing a key and a 3-byte pointer. The key is the same
as one of the keys in the User File. The pointer points to a User record on
the disk, either directly or indirectly. The maximum number of KIE's per KIR
is given by:

N = INT (240/(K+3))
where: K = Key length
3 = pointer length

—_—

{ = maximum KIE's per KIR

The average number, A, of KIE's per KIR is calculated (conservatively) as
follows:

A = INT(N*.6)

The number of sectors required for the Key File, for a given number of
records, R, is as follows:

S = INT(R/(A-1))+5

77

CHAPTER 19 - KFAM REQUIREMENTS AND CONVENTIONS (KFAM-3 AND KFAM-4)

19.4 DEVICE ADDRESSES

Device addresses, 310, 320, 330, 350, B20, B30 and B10, are recognized by
KFAM as valid disk device addresses. KFAM-4 also uses the hog mode versions
of these addresses.

/8

CHAPTER 20
THE KFAM SET-UP UTILITIES

20.1 QVERVIEW OF INITIALIZE KFAM FILE (KFAM-3 and KFAM-4)

INITIALIZE KFAM FILE must be run, as the first step in setting up a KFAM
file.

INITIALIZE KFAM FILE optionally catalogs an area on disk for the User
File, or the Key File, or both, or operates with an existing User File, or Key
File, or both. It sets up the KOR record (the first record of the Key File,
containing vital information about the User File and the Key File), based on
information supplied by the operator. It then creates a "null" (empty) Key
File.

The DATASAVE DC END trailer is set to the next to last sector in the User
File, regardless of whether or not the User File was cataloged prior to
running the utility.

Information Required by The Utility

The utility requires that the following information be supplied by the
operator: A

User File Name

Device Address for User File: 310, 320, 330, 350, B10, B20, B30
Is User File Cataloged?: (Y OR N) N

Key File Number: 1-9 i

Device Address for Key File: 310, 320, 330, 350, B10, B20, or B30
Is Key File Catalogued?: Y or N

Record Type: A, C, M, or N

Logical Record Length (Type A or C): nnn

Blocking Factor (Type A or C): nn

Sectors per Record (Type M): nnn

Key Length: 1-30

Starting Position of Key: nnnnn

Estimated Number of Records: nnnnn

Are File Specifications OK?: Y or N

Hard Copy Printout?: Y or N

Do Another File: Y or N

This is a formidable set of questions for an operator. It 1is suggested
that this utility be run by the application programmer, or that the programmer
write a set of specific answers for a specific KFAM file, as a supplement to
the general operating instructions below.

79

CHAPTER 20 - THE KFAM SET-UP UTILITIES
(Initialize KFAM File)

Some of the answers to the above questions are not obvious, and require
some discussion:

User File Name

The User File Name must conform to the KFAM naming convention. The 5th
byte must be "F". The 6th byte must be a digit 0-9. The remaining bytes may
be any alphanumeric characters.

An existing User File may be renamed to conform to KFAM's requirements by
executing the following two commands in immediate mode:

SCRATCH d "old name"
DATASAVE DC OPEN d "old-name", "new-name"

where d = the disk platter, F or R
old-name = the original file name
new-name = new name, conforming to KFAM convention

The data trailer record, or "END" record, is 1lost following this
procedure. This should do no harm if the file is to be used strictly as a
KFAM file, because INITIALIZE KFAM FILE always sets the "END" record at the
next-to-last sector of the cataloged space, regardless of where it was before,
and the Key File Creation Utility uses the last key, not the "END" record, to
determine end-of-file.

Key File Number

Normally, 1 should be entered. However, if multiple Key Files are to be
used to index the same User File, they must be uniquely identified by the Key
File Number, which can be any digit from 1 to 9.

The Key File name is derived from the User File name, by vreplacing the

"F' in position 5 with "K", and the digit in position 6 with the Key File
Number.

Record Type
KFAM supports four different record types:

Type A: Array type blocked records.

More than one data record is contained in a sector. The block of records
is written as an array, i.e.:

DIM A$(4)12, B(4), C$(4)36
DATASAVE DC #n, A$(), B(), C$()

indicating 4 records per sector, each record containing an A$, B, and C$.
Type C: Contiguous blocked records.

More than one data record is contained in a sector. Each record occupies
a contiguous amount of space on the disk. For example, there are three

records per sector, each containing a key (K$) and data (D$):

80

CHAPTER 20 - THE KFAM SET-UP UTILITIES
(Initialize KFAM File)

DIM K1$12, D1%$64, K2$12, D2%$64, K3$12, D3%64

DATASAVE DC #n, K1$, D1$, K2$, D2$, K3$, D3$
This corresponds to record type "FB" in the original KFAM.
Type N: No blocking
Each data record occupies one sector. This corresponds to record type
"F" in the original KFAM, except that in KFAM-3 data may begin at byte 0
and extend to byte 255.
Type M: Multiple Sectors per record.

Each data record occupies two or more sectors. This corresponds to
record type "FM" in the original KFAM.

Logical Record Length

The Togical record length for record types A and C 1is calculated as
follows:

a. Add up the lengths of the fields contained in a single record
(numeric fields are 8 bytes long).

b. Add 1 per field of the record, for control bytes.

For example, in the above example for type A records, the record Tlength
is 59. In the above example for type C records, the record length is 78.

A1l records of the file must have the same length. For type A, all
records must also have the same format, for example, a 12-byte alpha field,
followed by a numeric field, followed by a 36-byte alpha field, each field
contained in an array of 4 elements.

Blocking Factor

The blocking factor is the number of records per sector (Type A and C).

Starting Position of Key

This is the absolute starting position of the key within the sector or
sectors, except for type A records, where it is the position within the record
plus two for sector control bytes. This requires some explanation.

When a record is written on disk, in the normal mode (DATASAVE DC or
DATASAVE DA), two control bytes are written at the start of the sector.
Following these two control bytes, the Start-of-Value (SOV) control byte for
the first data value is written, followed by the data itself. Then the SOV
control byte for the second value, and the second value itself, are written,
and so on. An end-of-block (EOB) control byte is written following the last
data value written.

81

CHAPTER 20 - THE KFAM SET-UP UTILITIES
(Initialize KFAM File)

Th2 layout of the sector on disk looks like this:

c|C

010

NIN| S| Field| S| Field | S| Field| S| Field| S| Field| E | Not
TIT{O 1 0 2 0 3 0 4 0 5 0] Used
RIR] V v v v v B

010

LiL

01 23

For the purposes of determining the starting position of the key, the
bytes of the sector are numbered from 0 to 255. The starting control bytes
are bytes 0 and 1. The SOV control byte for the first field is byte 2. The
first byte of data 1is byte 3. The second field starts in byte 3 + L1 + 1,
where L1 is the length of the first field, and so on.

The starting position of the key is the number of the first byte of the
key. For blocked records, the blocking s ignored when calculating the
starting position of the key. It is calculated as if there were only one
record per block. The KFAM wutilities make the necessary adjustments to
calculate the position of the key in subsequent records within the sector.

In particular, with type A records, the blocking should be ignored when
calculating the starting position of the key. Given the record in the
example:

DIM A$(4)12, B(4), C$(4)36
DATASAVE DC #n, A$(), B(), C$()

32

CHAPTER 20 - THE KFAM SET-UP UTILITIES
(Initialize KFAM File)

the actual layout of the sector is as follows:

Bytes Contents
0,1 Control bytes
2 SOV
3-14 A$(1)
15 N
16-27 A$(2)
28 SOV
29-40 A$(3)
41 SOV
42-53 A$(4)
54 Sov
55-62 B(1)
63 Sov
64-71 B(2)
72 SOV
73-80 B(3)
81 Sov
82-89 B(4)
90 SOV
91-126 c$(1)
127 Sov
128-163 C$(2)
164 Sov
165-200 C$(3)
201 SOV
202-237 C$(4)
238 EOB

The fact that there are four records per ‘sector should be ignored in
determining the starting position of the key. The sector should be seen as if
it contained only one record, as follows:

Byte Contents

0,1 Control bytes
2 Sov

3-14 A$(1)

15 sov

16-23 B(1)

24 Sov

25-60 C$(1)

61 EOB

If the key starts in the first byte of C$(), the starting key position is
25, and not 91, as would be indicated by the actual blocking.

For record types C, M and N, it is possible to have records written in
the DATASAVE BA mode. In that case, no control bytes are inserted, and the
starting position of the key is exactly where it is located in the array
defining the record (starting byte 0).

83

CHAPTER 20 - THE KFAM SET-UP UTILITIES
(Initialize KFAM File)

For record type M, it is possible to have the key begin in the second, or
higher, sector of the record. In that case, add 256 for each sector preceding
the one containing the key, and then add the starting position of the key
within the sector (first byte of the sector = 0).

When writing multiple sectors in the normal mode (DATASAVE DC or DATASAVE
DA), it is necessary to determine which field will begin the second sector,
etc. The 2200 System does not write partial fields in a sector. Where there
is not room to write the next field in the current sector, the 2200 System
writes an EOB control byte, leaves the rest of the space unused, and starts
another sector. For example, if the record is defined:

DIM D$(6)64
DATASAVE DC #n, D$()

the record occupies 2 sectors, as follows:
Bytes Contents

First sector:

0,1 Control bytes
2 Sov

3-66 D$(1)

67 SOV

68-131 D$(2)

132 Sov

133-196 D$(3)

197 EOB

198-255 Not used (58 bytes, not room to write next
complete field)

Second sector:

0,1 Control bytes
2 Sov

3-66 D$(4)

67 Sov

68-131 D$(5)

132 Sov

133-196 D$(6)

197 EOB

198-255 Not used (end of data)

Once the actual record layout is determined, then the starting position
of the key can be calculated. If the key occupies, for example, the first 8
bytes of D$(4), then the starting position of the key is 259, and not 198 as
might be calculated by ignoring the actual way that the system writes records.

Estimated Number of Records

This is the maximum number of records that the User File will contain.
If the User File is not yet cataloged, the program will catalog enough sectors
to hold this many records. If the User File is already cataloged, the program
checks that enough space is cataloged to contain this many records.

84

CHAPTER 20 - THE KFAM SET-UP UTILITIES
(Initialize KFAM File)

The program also calculates the size of the Key File, based on the
estimated number of vrecords. If the Key File is not yet cataloged, the
program catalogs the required number of sectors. If the Key File is already
cataloged, the program checks to see that enough space is cataloged. If there
is not enough space cataloged, the program issues a warning message.

The estimated number of records should be calculated in advance, as the
maximum number of records which the User File will contain, plus an estimate
of the number of deleted records which will be in the file when it is at its
maximum size.

This estimate is not critical. It can be revised later, using the
REALLOCATE KFAM SPACE and DISK COPY/REORGANIZE utilities.

Hard COPY Printout

If the configuration of the available 2200 system does not include a
printer, the answer to this question should always be "N".

NOTE:

In the KFAM-4 version of this utility, hog mode is
selected for the disks containing the Key File and User
File. To operate the KFAM-4 utility in non-hog mode or to
execute it at a non-multiplexed disk drive, key

M§ = "X" (EXEC)

at KFAM-4 utilities menu, prior to loading the utility.

20.2 INITIALIZE KFAM FILE OPERATING INSTRUCTIONS (KFAM-3 and KFAM-4)

DISPLAY INSTRUCTIONS

1. 1. From KFAM-3 or KFAM-4 menu,
access the INITIALIZE KFAM
FILE utility via the specified
Special Function Key.

2. 2. Mount the disk platter(s)
containing, or to contain,
the User File and Key File.

3. ENTER USER FILE NAME STUB O 3. Enter the name of the User
(SSSSFJNN) File.

MESSAGE: 2,4,5

85

CHAPTER 20 - THE KFAM SET-UP UTILITIES

(Initialize KFAM File)

ENTER THE NUMBER FOR THE
DATA FILE DEVICE ADDRESS

310 5. BI10
320 6. B20
330 7. B30
350

Bwh—

IS DATA FILE CATALOGED?
(Y OR N)

ENTER KEY FILE NUMBER

ENTER NUMBER OF THE KEY FILE
DEVICE ADDRESS

1. 310 5. BI10
2. 320 6. B20
3. 330 7. B30
4. 350

IS KEY FILE CATALOGED?
(Y OR N)

ENTER RECORD TYPE
(A,C,N{M)

86

NOTE:

Error messages and recovery
procedures follow the
operating instructions.

Enter the selection number
for the user file disk device
address.

MESSAGE: 2, 6, 7

Enter "Y" if the User File
already exists. Enter "N" if
the User File does not exist.

MESSAGE: 2, 9, 10
Normally enter 1.

If there is more than one

Key File for a single user file,
the Key File Number is used to
distinguish the Key Files.

The Key File Number can be any
digit from 1 to 9.

MESSAGE: 2, 3, 11

Enter the selection number for
the key file device address.

MESSAGE: 2, 6, 7

Enter "Y" if space has already
been cataloged for a Key File.
Enter "N" if the Key File has

not been cataloged.

Enter A, C, N or M.
A=array type blocking
C=contiguous blocking
N=no blocking

M=multiple sector records

If record type A or C, proceed
with Step 10, below.
If record type M, proceed with

10.

11.

12.

13.

14.

15.

16.

ENTER LOGICAL RECORD LENGTH

ENTER BLOCKING FACTOR

ENTER NUMBER OF SECTORS
PER RECORD

ENTER KEY LENGTH

ENTER STARTING POSITION
OF KEY

ENTER ESTIMATED NUMBER
OF RECORDS

&

87

CHAPTER 20 - THE KFAM SET-UP UTILITIES

10.

11.

12.

-~ 13.

14.

15.

16.

(Initialize KFAM File)

Step 12, below.
If record type N, proceed with
Step 13, below.

MESSAGE: 2. 14

Enter Togical record length.
See above for calculation
of logical record length.

MESSAGE: 2, 3

Enter number of records
per sector.

Proceed with Step 13, below.
MESSAGE: 2, 3, 15

Enter the number of Sectors
per record. Record Type M
only.

MESSAGE: 2, 3, 16

Enter key length (! to 30).
A1l record types.

MESSAGE: 2, 3, 17

Enter starting position of
key field within sector.

Sre above for calculation
of starting position of key.

MESSAGE: 2, 3, 7, 8
18, 19

Enter estimated maximum
number of records in User
File.

See above for calculation
of number of records.

MESSAGE: 2, 3, 20

The system calculates
disk space required for
User File and Key File.

MESSAGE: 21, 22

CHAPTER 20 - THE KFAM SET-UP UTILITIES

17.

18.

19.

20.

21.

22.

23.

(Inittalize KFAM File)

ARE FILE SPECIFICATIONS
0K (Y OR N)

DO YOU WANT A HARD COPY
PRINTOUT OF FILE DESCRIPTION?
(Y OR N)?

DO YOU WISH TO DO ANOTHER
FILE (Y OR N)

Error Messages

2.

ERROR MESSAGE
RE-ENTER

88

17. The system displays file
specifications on the screen.

MESSAGE: 23

18. Check file specifications
displayed on the screen.
Enter Y to continue.
Enter N to start again at
Step 3.

MESSAGE: 2

19. For a hard copy printout,
mount paper on printer
and enter Y.

For no hardcopy, enter N.

MESSAGE: 2, 24

20. The system prints file
specifications on the
printer.

This is an exact duplicate
of the screen display,
Step 17.

21. The system initializes
the User File and Key File.

MESSAGE: 7, 8

22. Enter Y to do another file.
Enter N to stop.

If Y is entered, the program
repeats from Step 3, above.

MESSAGE: 2

23. The system returns to the
KFAM menu.

EXPLANATION/RECOVERY
Too many characters were entered.

RECOVERY: Repeat the step,
entering not more than the
number of characters indicated
on the screen.

3. ERR29

4. FILE NAME MUST HAVE F
IN POSITION 5

5. FILE NAME MUST HAVE NUMBER
IN POSITION 6

6. INVALID DEVICE ADDRESS

7. ERR72

8. ERR85

9. FILE NOT FOUND

10. FILE ALREADY CATALOGED

11. ZERO INVALID .

89

CHAPTER 20 - THE KFAM SET-UP UTILITIES

(Initialize KFAM File)

Not "Y" or “N", in response to a
"yes" or "no" question.

RECOVERY: Repeat the step, entering
HYII or lINII .

A non-numeric quantity was entered
when a numeric quantity was
requested.

RECOVERY: Reenter numeric quantity.

User File name must have an "F" in
the 5th position.

RECOVERY: Repeat Step 3 with
correct User File name.

User File name must have a digit,
0-9, in the 6th position.

RECOVERY: Repeat step 3 with cor-
rect user file name.

RECOVERY: Number entered not an
integer 1-7. Repeat the step,
entering a valid selection number.

Disk read error.

RECOVERY: Rerun the program. If
the -error persists, recreate the
platter from a backup copy (#1 = Key
File, #2 = User File).

Disk write error.

RECOVERY: Rerun the program. If
the error persists, the platter has
a bad sector and must be replaced.

The User File is not cataloged on
the specified device.

RECOVERY: Repeat from Step 3.

The User File, specified as not
cataloged, is cataloged on the
specified device.

RECOVERY: Repeat from Step 3.

The Key File Number may not be 0.

CHAPTER 20 - THE KFAM SET-UP UTILITIES

12.

13.

14.

15.

16.

17.

18.

19.

(Initialize KFAM File)

FILE NOT FOUND

FILE ALREADY CATALOGED

INVALID RECORD TYPE

BLOCKING FACTOR OR RECORD
LENGTH INCORRECT

INVALID-MUST BE 2 TO 255

INVALID-KEY MUST BE 1 TO 30

KEY OVERLAPS END OF RECORD

KEY MAY NOT SPAN SECTORS

90

RECOVERY: Repeat Step 6, entering a
Key File Number from 1 to 9.

The Key File is nct cataloged on the
specified device.

RECOVERY: Repeat from Step 6.

The Key File, specified as not
cataloged, is <cataloged on the
specified device.

RECOVERY: Repeat from Step 6.
Record type must be A, C, M, or N.

RECOVERY: Repeat Step 9.
Enter A, C, M or N.

Record Length times blocking factor,
for record type A, may not be

greater than 253; for type C may not
be greater than 256.

RECOVERY: Repeat from Step 10.
Recalculate record length or
blocking factor if the product

is too large.

Type M: Number of sectors per
record must be 2-255.

RECOVERY: Repeat Step 12 with
correct value.

The key length must be 1-30.

RECOVERY: Repeat Step 13 with
correct value.

The key goes beyond the boundaries
of the record, as determined by the
record type and record length.

RECOVERY: Recalculate starting

position of key and reenter (Step
14).

Type M: The key dgoes over a
boundary between sectors.

RECOVERY: Recalculate starting
position of key and reenter (Step
14),

CHAPTER 20 - THE KFAM SET-UP UTILITIES
(File Creation Utility)

20. USER FILE TOO SMALL The User File, which is already
cataloged, does not have room for
the estimated number of records.

RECOVERY: Repeat Step 15 with a
smaller estimate. If necessary,
reallocate KFAM space and DISK/COPY
REORGANIZE can be run Tlater to
increase the size of the User File
and Key File.

21. STOP NO ROOM FOR KEY FILE The User File is already cataloged.
There is not sufficient space on the
designated platter to catalog the
Key File.

RECOVERY: The Key File must be
cataloged on another platter, or the
User File must be shortened.

22. See error display There is not enough available space
SECTORS AVAILABLE on the designated platter(s) to
SECTORS REQUESTED catalog User File and/or Key File.

RECOVERY: Repeat Step 15 with a
smaller estimate. If necessary,
rerun the program, using disk
platters with more available space,
or split the User File into 2 parts
(see "KFAM Programming Techniques").

23. WARNING--KEY FILE TOO SMALL An existing Key File is too small to
accommodate the estimated number of
records. The program continues with
a warning message.

RECOVERY: Run REALLOCATE KFAM SPACE
and DISK/COPY REORGANIZE to increase
the size of the Key File.

24. System hangs up - no message. Printer not turned on, or no device
215.

RECOVERY: Turn on printer.

20.3 THE FILE CREATION UTILITY (KFAM-3 AND KFAM-4)

Program Description

The KEY FILE CREATION utility creates a Key File for the records in an
existing User File. INITIALIZE KFAM FILE must have been run first, to
jnitialize both the User File and the Key File.

91

CHAPTER 20 - THE KFAM SET-UP UTILITIES
(File Creation Utility)

KEY FILE CREATION ignores any records which have HEX(FF) in the first
byte of the key, under the assumption that they are deleted records. It also
ignores records which have duplicate keys, but 1lists the relative sector
number and record number where such duplicate keys are encountered.

The utility requires the operator to enter the key for the last record in
the User File in physical sequence. The program uses this to detect the
end-of-file condition. The value of the last key should be made available to
the operator before running this program.

For KFAM-4 only, the file is opened in the exclusive mode.

KEY FILE CREATION Operating Instructions

DISPLAY INSTRUCTIONS
1. 1. From KFAM-3 or KFAM-4 menu,
access KEY FILE CREATION
utility via the specified
Special Function Key.
2. ENTER USER FILE NAME (SSSSFJNN) 2. Enter the name of the User File.

MESSAGE: 2.4

NOTE:

Error messages and recovery
procedures follow the operating
instructions.

3. ENTER THE NUMBER OF THE USER FILE 3. Enter the selection number

DEVICE ADDRESS for the user file disk device
1. 310 5. Bl10 address.

2. 320 6. B20 MESSAGE: 2, 3, 5

3. 330 7. B30

4. 350

4. ENTER KEY FILE NUMBER (NORMAL=1) 4, Enter the Key File Number.
The Key File Number should
always be 1, unless there are
multiple key files for a
single User File, in which
case the Key File Number may
be any digit from 1 to 9. In
any case it must have been
initialized.

MESSAGE: 2, 3, 6

92

CHAPTER 20 - THE KFAM SET-UP UTILITIES
(File Creation Utility)

5. ENTER THE NUMBER OF THE KEY 5. Enter the selection number

FILE DEVICE ADDRESS for the Key File Device address.

1. 310 5. BIO MESSAGE: 2, 3, 5

2. 320 6. B20

3. 330 7. B30

4, 350

6. ENTER LAST KEY 6. Enter the key of the last
record in the User File.
MESSAGE: 2

7. TURN ON PRINTER 7. Mount paper on printer;

KEY RETURN(EXEC) TO RESUME key RETURN(EXEC) to resume.
Duplicate keys, if any exist,
are printed.

If the system configuration
does not include a printer,
ignore this instruction, key
RETURN(EXEC).
MESSAGE: 2
8. Record locations and keys are 8. The system opens the files,
displayed on the screen so sets up the screen display,
that the operator can check and creates the Key File.

the progress of the program.

MESSAGE: 7, 8, 9, 10
1, 12,13, 14
15, 16, 17. 18

9. 9. The system returns to KFAM
subsidiary menu.

Error Messages

ERROR MESSAGE EXPLANATION/RECOVERY
2. RE-ENTER Too many characters were entered.
RECOVERY: Repeat the step, entering
not more than the number of char-
acters indicated on the screen.

3. ERR29 A non-numeric quantity was entered
when a numeric quantity was requested.

RECOVERY: Reenter numeric quantity.

93

CHAPTER 20 - THE KFAM SET-UP UTILITIES
(File Creation Utility)

4. NOT KFAM FILE NAME

5. INVALID DEVICE ADDRESS

6. INVALID

7. ERR80

8. STOP ERROR OPENING FILES

9. KEY FILE NOT INITIALIZED
(STOP)

10. INVALID RECORD FORMAT
(STOP)

94

The User File name must have an "F"
in position 5 and a digit 0-9 in
position 6.

RECOVERY: Repeat Step 2. Enter
correct User File name.

The device address is invalid.

RECOVERY: Repeat the step. Enter
correct device address selection
number.

The Key File Number may not be 0.

RECOVERY: Repeat step 4. Enter a
Key File Number 1-9.

File not found. Either the User
File or the Key File specified is
not on the device specified.

RECOVERY: Rerun the program, making
sure the platters containing the
User File and Key File are mounted,
and that User File name, Key File
number, and device addresses are
specified correctly.

File could not be opened. Possible
cause: The program was stopped and
restarted after processing had
begun.

RECOVERY: Rerun [INITIALIZE KFAM
FILE. Rerun this utility. If the
error persists, notify Wang
Laboratories, Inc.

Either INITIALIZE KFAM FILE was not
run, or an attempt was made to rerun
this utility without rerunning
INITIALIZE KFAM FILE.

RECOVERY: Run INITIALIZE KFAM FILE
for this User File and Key File.
Rerun this utility.

Record type A, array-type blocking:
more than one sector per block, more
than 38 fields per record, or not
written with correct control bytes.

RECOVERY: See "KFAM Specifications."
Recreate User File according to spe-
cifications for A-type records.

1.

12.

13.

14.

15.

16.

NOT BLOCKED AS SPECIFIED

RECORD LENGTH NOT SPECIFIED
CORRECTLY (STOP)

KEY FIELD OUT OF BOUNDS (STOP)

NUMERIC KEY INVALID (STOP)

PROGRAM ERROR

NO SPACE

95

CHAPTER 20 - THE KFAM SET-UP UTILITIES

(File Creation Utility)

Record type A, array-type blocking:
records per block specified
incorrectly, or records not written
in array format.

RECOVERY: See "KFAM Specifi-

cations." Recreate User File
according to specifications or
correct blocking factor in

INITIALIZE KFAM FILE. Rerun
INITIALIZE KFAM FILE. Rerun this
utility.

Record type A, array-type blocking:
record Tength specified in
INITIALIZE KFAM FILE does not equal
record length of sample record.

RECOVERY: See instructions for
INITIALIZE KFAM FILE. Recalculate
record length. Rerun INITIALIZE
KFAM FILE. Rerun this utility.

Record type A, array-type blocking:
the key must be wholly contained
within one field of the record.

RECOVERY: See instructions for
INITIALIZE KFAM FILE. Recalculate
starting position of key. Rerun
INITIALIZE KFAM FILE. Rerun this
utility.

Record type A, array-type blocking:
the key falls within a numeric
field.

RECOVERY: See "KFAM Specifi-
cations." See instructions for
INITIALIZE KFAM FILE. Recalculate
starting position of key so that it
falls within an alphanumeric field.
Rerun INITIALIZE KFAM file. Rerun
this utility.

Should not occur.

RECOVERY: Notify Wang Laboratories,
Inc.

Not sufficient space for Key File.
Possibly last key was entered
incorrectly.

CHAPTER 20 - THE KFAM SET-UP UTILITIES
(File Creation Utility)

17.

18.

SYSTEM HANGS

LAST KEY NOT FOUND

96

RECOVERY: Run DISK/COPY/REORGANIZE
to increase Key File space.
INITIALIZE KFAM FILE. Rerun this
utility.

Printer not turned on or not
selected manually, or no device 215
in system.

RECOVERY: Turn printer on and press
“SELECT". If no device 215, this
program will not run without
modification. (See "KFAM Program-
ming Techniques"- Eliminating the
Printer.)

The program has reached the physical
end of the User File without finding
the "last key." Last key was entered
incorrectly.

RECOVERY: Rerun INITIALIZE KFAM
FILE. Rerun this utility with
correct "last key" entered.

CHAPTER 21
THE KFAM-3 SUBROUTINES

21.1 OVERVIEW OF KFAM-3 SUBROUTINES

The KFAM-3 subroutines are designed to simplify the file access and
maintenance operations most frequently performed on files organized by KFAM-3.
Included are GOSUB' subroutines to add new records to a file, delete old
records, and locate existing records.

A single KFAM-3 file consists of two cataloged disk files, a User File
and its Key File. KFAM subroutines never alter the data in the User File.
They operate upon the data in the Key File, locate a record, update the Key
File whenever a record is to be added or deleted. Their function in relation
to the User File is only to set the User File's Current Sector address to the
location of the desired record in the User File, and, for blocked records, to
pass back to the application program the record location within the sector.
This process 1is initiated when the application program passes a key to the
KFAM subroutine in one of the GOSUB' arguments. Upon completion of the KFAM
subroutine, the application program must perform the proper operation on the
User File.

Just as KFAM-3 does not operate upon the User File, so the application
program should never operate directly upon the Key File. A1l operations
involving the Key File, including OPEN and CLOSE, should be accomplished via
the KFAM-3 subroutines.

The functions performed by the KFAM-3 subroutines are:

Name Function

OPEN Open specified User File and com-
panion Key File.

DELETE Remove specified key from Key File;

' set User File Current Sector address
to record in User File whose key has
been deleted from the Key File.

FINDOLD Locate specified key in the Key
File; set Current Sector address to
record in User File with that key.

FINDNEW Add specified key to Key File; al-

locate space for a new record in the
User File, and set User File Current

97

CHAPTER 21 - KFAM-3 SUBROUTINES

(Overview)
Sector address to the location for
the new record.

FINDNEW (HERE) Add specified key to Key File; set
Current Sector address to User File
sector where the new record is to be
written.

FINDFIRST Locate record with Tlowest key in
User File; set User File Current
Sector address to that sector.

FINDLAST Locate record with highest key in
User File; set User File Current
Sector address to that sector.

FINDNEXT Locate next record in User File in
logical key sequence; set User File
Current Sector address to that
sector.

CLOSE Close User File and companion Key
File.

Programming Procedure

The first step for the programmer is to decide what subroutines will be
required for a given program or program module. The utility program BUILD
SUBROUTINE MODULE is used to build a cataloged program file containing the
desired subroutines.

The subroutines occupy statement Tines 200-3075. It is recommended that
the user-written application program follows them, beginning at a line number
greater than 3075. If necessary, KFAM-3 subroutines can be renumbered taking
care that the rules of BASIC be observed for COM and DIM statement location.

KFAM-3 subroutines use Q, T, and V variables and arrays (alpha and
numeric) for storage of critical internal pointers. The user-written program
should, therefore, strictly avoid the use of a Q, T, or V variable.

Identification of KFAM Files

A User File and Key File can be thought of collectively as a KFAM file.
To use a KFAM file, the User File and the Key File must be open
simultaneously. Thus, each KFAM file requires two "slots" or "rows" in the
processor's Device Table. The 2200 system offers a total of seven Device
Table slots, each identified by a "file number" symbol #0-#6. Since each KFAM
file uses two file numbers, and there are seven file numbers available, a
total of three KFAM files can be open concurrently.

The OPEN subroutine must be used to open a Key File and User File, before
any KFAM file access operations can take place. The user-written application
program must pass to the OPEN subroutine the file numbers (#0-#6) to be used
for the Key File and User File. The application program also passes to OPEN a
digit, 1-3, which will be used to identify this KFAM file (User File/Key File)

98

CHAPTER 21 -~ KFAM-3 SUBROUTINES
(Build Subroutine Module)

for all other KFAM subroutines. This digit, 1-3, is called the "KFAM 1ID
number." When passed to OPEN, OPEN establishes this number as the single
identifier for the pair of cataloged files being opened. In subsequent
operations, while these files are open, they are identified collectively
simply by passing the KFAM I.D. Number to the desired KFAM subroutine.

The file number for the User File is employed only when a record is to be
written to or read from a User File. Then, the file number of the User File
(#0 - #6) must be specified in the DATASAVE DC or DATALOAD DC statement. The
KFAM I.D. Number is not used. In general, the file number of the Key File is
never used, since any reference to the Key File should be via a KFAM
subroutine. Note that accidental use of the Key File's file number in place
of the User File's file number in a DATASAVE DC statement causes the user data
to be written over data in the Key File. This destroys the Key File.

The same User File may be open concurrently with more than one Key File,
but .each such pair (User File/Key File) must have a different KFAM I.D.
Number, and the User File must be referenced by a different file number in
each case.

Key File Recovery Information

The KFAM maintenance utilities include a program called KEY FILE
RECOVERY. The purpose of this program is to reconstruct a Key File from an
existing User File, in the event that the Key File is accidentally destroyed.
Unlike the program KEY FILE CREATION, it does not require that the key of the
last physical record in the User File be known. However, it does require that
all user-written application programs operating on the file adhere to two
conventions:

1. A1l DELETE'ed records in the User File must have hex FF as the
first byte of the key. This means.that after a program calls the
DELETE subroutine, it must then save hex FF into the first byte of
the record's key.

2. If FINDNEW is to be executed on a file, the RECOVERY option must be
included in the OPEN, FINDNEW, and CLOSE subroutines, and the file
must be closed with the CLOSE subroutine at the conclusion of
operations on the file. (The RECOVERY OPTION is offered in BUILD
SUBROUTINE ~ MODULE as one of several optional additional
capabilities for the selected subroutine.)

21.2 BUILD SUBROUTINE MODULE

BUILD SUBROUTINE MODULE builds a module of selected KFAM subroutines for
use in an application program. It allows the programmer to include in an
application program module only those subroutines and subroutine capabilities
which actually are used in the application program module, and, thereby, keeps
to a minimum the amount of memory occupied by KFAM subroutines.

Each KFAM subroutine may be included or excluded independently of the

others. After selecting the desired subroutines, the capability to operate on
multiple files (two or three KFAM files open at the same time) may be included

99

CHAPTER 21 - KFAM-3 SUBROUTINES
(Build Subroutine Module)

or excluded for the chosen subroutines. If only one KFAM file is to be open
at any one time, then excluding the multiple file capability further reduces
memory requirements.

Finally, the RECOVERY OPTION is offered. Whenever FINDNEW is executed,
the RECOVERY OPTION must be included 1in the OPEN, FINDNEW, and CLOSE
subroutines, if the ability to execute KEY FILE RECOVERY is desired. If the
ability to use KEY FILE RECOVERY is not desired, the RECOVERY OPTION need not
be included.

The OPEN subroutine, when chosen for a module, includes all the common
variables needed for subroutine operation, except those for FINDNEW and
FINDNEW(HERE). The utility separately asks whether the variables for FINDNEW
and FINDNEW(HERE) are to be included in the OPEN subroutine. These variables
must be included in the OPEN subroutine, if it is to be used to OPEN a file on
which, subsequently, FINDNEW or FINDNEW(HERE) is executed.

NOTE:

A11 subroutine modules operating on a given open KFAM file
must include the same options. (Options are OPEN FOR
FINDNEW, MULTIPLE FILES, RECOVERY.) For example, if
RECOVERY is chosen, it must be chosen for the module that
contains OPEN, any processing modules, and the module that
contains CLOSE.

To illustrate how BUILD SUBROUTINE MODULE might be used to maximize
available memory, suppose that a file is to be "purged" in key sequence,
deleting all obsolete records. The subroutines which are needed are:

OPEN
FINDFIRST
FINDNEXT
DELETE

These subroutines require 3370 bytes, approximately, if Tloaded at the same
time. Suppose, further, that there 1is not enough memory available to
accomplish the processing and include all of these subroutines. Two separate
modules could be built, the first to contain OPEN and FINDFIRST, the second to
contain the rest. The first two of these subroutine modules would then become
part of a start-up module in the application program which would open the KFAM
file, perform other preliminary processing, and then FINDFIRST. This start-up
module would then overlay the processing module, clearing the OPEN and
FINDFIRST subroutines as it does so. The processing module would contain
FINDNEXT and DELETE. Memory overhead at any one time, due to subroutines, is
thereby reduced from 3370 bytes to:

OPEN
FINDFIRST} 2975 bytes

FINDNEXT
DELETE } 2380 bytes

100

CHAPTER 21 - KFAM-3 SUBROUTINES'
(Butld Subroutine Module)

modules are as follows:
MODULE NAME
KFAMOQO03

KFAMO103

NOTE :

There are two modules of KFAM-3 subroutines included with
the KFAM-3 system. If desired, the programmer may simply
use one of these modules rather than building a custom
module with the BUILD SUBROUTINE MODULE utility. The

INCLUDES

A11 subroutines and
subroutine options.

A11 subroutines and
options except: DELETE,
FINDNEW, FINDNEW(HERE),

RECOVERY, OPEN FOR FINDNEW.

Operating Instructions - BUILD SUBROUTINE MODULE

DISPLAY

ENTER THE NAME OF PROGRAM
TO BE GENERATED?

101

INSTRUCTIONS

From KFAM subsidiary menu ac-
cess its "BUILD SUBROUTINE
MODULE" utility via the speci-
fied Special Function key.

Enter the name of the program

file which is to contain the

selected subroutines, maximum
. of 8 characters.

If a file of the same name is
not already cataloged, the
utility allocates just enough
space for the selected
subroutines.

If a file of the same name is
already cataloged, that file is
used for the output program and
overwritten. If the file is

a data file, it is changed to

a program file.

CAUTION:

Before entering a name, ensure
that the name entered is not
the name of a valuable data
file or program file. If a
file already exists with the
same name, its contents are

destroyed by this utility.

CHAPTER 21 - KFAM-3 SUBROUTINES
(Build Subroutine Module)

3. ENTER THE NO. OF THE
OUTPUT PROGRAM DEVICE?

1. 310 5. B10
2. 320 6. B20
3. 330 7. B30
4. 350

4. 230 OPEN (Y OR N)?
OPEN FOR FINDNEW (Y

231 DELETE (Y OR N)7

232 FINDOLD (Y OR N

233 FINDNEW (Y OR N

234 FINDNEW (HERE)

235 FINDFIRST (Y O

236 FINDLAST (Y OR

R

)?

OR N)?
’

)
)?
(

237 FINDNEXT (Y O
239 CLOSE (Y OR N
MULTIPLE FILES (Y
RECOVERY OPTION (

QO v

R N)?
Y OR N)?
5. 0K TO PROCEED?

6. PHASE 2 - BUILDING PROGRAM
NAME

Error Messages

ERROR MESSAGE
1. RE-ENTER

If extra space is desired in
the output file, it should be
cataloged in advance as a data
file. For example,

DATASAVE DC OPEN T/B10, 50,
"FILE"

3. Enter the selection number
for the device address at
which the subroutines are to
be saved.

ERROR MESSAGE: 1,2,3

4. Each of the listed prompts is
displayed sequentially. For
each subroutine or subroutine
capability enter Y to include
it in the output module;
to exclude it, enter N.

ERROR MESSAGE: 1

5. Enter Y to accept selected
subroutines, or N to return to
step 4.
ERROR MESSAGE: 1

6. The output module is generated.
ERROR MESSAGE: 4, 5, 6, 7

7. The system returns to the
KFAM-3 subsidiary menu.

EXPLANATION/RECOVERY

Too many characters were entered, or
an invalid character was entered in
response to a "yes" (Y) or "no" (N)
question.

RECOVERY: Repeat the step. Re-enter
the data.

102

2. INVALID DEVICE ADDRESS 2.
3. ERR29 3.
4. INVALID DELIMITER (STOP) 4.

5. OUTPUT PROGRAM SPACE EXCEEDED
(STOP)

6. SYSTEM ERROR (STOP)

7. NO ROOM ON DISK FOR OQUTPUT 7.
PROGRAM (STOP)

21.3 CALLING THE SUBROUTINES

Dummy Variable Names

In defining the argument lists for

CHAPTER 21 - KFAM-3 SUBROUTINES
(Calling the Subroutines)

The numbers 1-7 may be used to
specify a device address, according
to the table of device addresses
displayed.

RECOVERY: Repeat the step. Re-enter
the data.

A non-numeric quantity was entered
when a numeric quantity was requested.

RECOVERY: Repeat the step. Enter a
number.

Errors 4,5, and 6 are hardware or
software errors. They should not
occur.

RECOVERY: Rerun the program. If
the error persists, notify Wang
Laboratories.

There is not room enough on the disk
for the output program to be
cataloged.

RECOVERY: Rerun the program, with

an output disk with more free space
(25 sectors maximum requirement).

the subroutines, certain standard

dummy variable names are used. These dummy names are used only to describe
the general forms of the respective GOSUB' statements. In the actual program,
the programmer may use any value or expression valid for wuse in a GOSUB'
statement. Zeros in the general statement represent parameters which are not

used by KFAM-3. They should be included,
For example, the general statement:
GOSUB'232 (I, 0, A$)
may be written as:

GOSUB'232(1,0,K$)
GOSUB'232(2,0,"A48-3029")
GOSUB'232(F1+1,0,STR(P1%$,7,8))
etc.

103

as zeros in the GOSUB' statement.

CHAPTER 21 - KFAM-3 SUBROUTINES
(Calling the Subroutines)

The dummy variable names for KFAM-3, and their meanings, are as follows:

Dummy Variable Meaning
I KFAM I.D. Number (1, 2, or 3).
K File number assigned to the Key

File (#0-#6).

U File number assigned to the User
File (#0-#6).

F Key File number (1-9), specified
as the 6th character in the Key
File name, as assigned in INITIALIZE

KFAM FILE.
A$ The record key (alphanumeric).
NS User File name.

Return Codes

Upon returning to the main 1line program from the subroutines, the
variables Q and Q% contain the following information:

Q returns the record position indicator for blocked files (i.e., files
with more than one record per sector). The record position indicator is a
numeric value which specifies the position of a desired record within a block.
For example, if Q=2, the key passed to the subroutine specifies the second
record in the block. For unblocked records Q is returned as 1, and may be
ignored.

Q is not defined following the OPEN or CLOSE subroutines.

Q$ contains the completion return code. It indicates the result of the

particular operation. The possible values of Q$, and their meanings, are as
follows:
Q% Vvalue Meaning
blank The subroutine execution was OK.
D Duplicate key (attempting to add a

duplicate key to the file). The
Key File is unchanged.

E End of file (FINDNEXT only).
N Key not found.
S No more space, either for the User

File or the Key File, or 8 levels
of index have been exhausted
attempting to add a record to the
file. The Key File is unchanged.
4 (FINDNEW and FINDNEW(HERE) only.)
10

CHAPTER 21 - KFAM-3 SUBROUTINES
(Calling the Subroutines)

X Improper call to a KFAM subroutine
(argument values erroneous, etc.).

If QF is anything other than blank, the User File Current Sector address
parameter is undefined, and the value of Q is undefined.

Immediately upon return from any of the subroutines, the main Tline
program should check Q$ for possible error indications.

The system assumes there are no programming errors in the main line
program. The KFAM Subroutines can perform improperly, and can destroy a file,
if the parameters supplied by the main line program are erroneous. Therefore,
during the testing stage, it is recommended that the user keep a backup file
so that test data can be recovered in the event that it is destroyed.

The subroutines check data errors, and the kind of errors 1ikely to occur
during normal operation, such as duplicate key, key not found, or no more
space. The following errors, which are programming errors, may or may not be
caught by the subroutines:

Q$ value,
Error or ERR Code

KFAM I.D. Number not an integer X
between 1 and 3. ERR 18

KFAM I.D. Number is the same X
as I.D. Number for a file
already open.

File to be opened is already X
open.

Individual file numbers not ERR 18
integers between 0 and 6. ERR 41

Individual file number is X
duplicate of another file
number.

File name not in proper format, ERR 78
with 5th byte="F" and 6th ERR 80
byte a 0 (zero).

Key File number not an integer ERR 56
from 1 to 9.

File to be accessed has not X
been opened.

SELECT statements and file none

numbers do not actually
correspond.

105

CHAPTER 21 - KFAM-3 SUBROUTINES
(OPEN)

File names are not correct, ERR 78
or do not exist on the disk
platters specified.

21.4 OPEN

The OPEN subroutine is used to open a User File and its companion Key
File. OPEN must be executed prior to execution of any other KFAM-3
subroutine. In the OPEN subroutine, a pair of DATALOAD DC OPEN statements are
executed to open the named User File and its companion Key File. Specified
file numbers are assigned to each file. OPEN also assigns a specified KFAM
I.D. Number to the pair of files. To call the OPEN subroutine you must write
two statements of the following general form:

SELECT #K XXX, #U YYY
GOSUB' 230 (I,K.U,F,N$)

For the SELECT Statement

"#U" is the file number to be associated with the User File; "U" can be a
number from 1 to 6. "#U" must be used in all subsequent DATASAVE DC or
DATALOAD DC statements to reference the User File.

"XXX" is the device address of the platter on which the User File is
stored.

"#K" is the file number to be associated with the Key File; "K" can be a
number from 1 to 6.

"YYY" is the device address of the platter on which the Key File is
stored.

For The GOSUB' Statement

"I" is the KFAM I.D. Number to be associated with the newly opened pair
of files and must be wused to vreference the KFAM file in subsequent KFAM
subroutines. "I" can be a number from 1 to 3.

“K" is the file number to be assigned to the Key File (see "#K" above).

"U" 1is the file number to be assigned to the User File (see "#U" above).

"F" is the Key File number (the sixth character in the Key File name). It
may be an integer from 1 to 9, but normally is 1.

“N$" is the name of the User Fiie to be opened. The Key File name need
not be specified; it is built from the User File name and the Key File number
by KFAM itself.

Return Codes for OPEN

Q$ = " " (space) if the subroutine execution was 0.K.

106

CHAPTER 21 - KFAM-3 SUBROUTINES
(DELETE)

Q$ = "X" for an improper call (i.e., one of the arguments in the GOSUB'
230 argument Tist was incorrect, or the file is already open). Note, if a
file is already open, or the KFAM I.D. number is already in use, OPEN returns

Q$ - an .

21.5 DELETE

The DELETE subroutine deletes from the Key File a specified key and its
associated record location pointer. The Current Sector address for the User
File is set to the location of the record whose key has been deleted, and for
blocked records the variable Q 1is set to the record position within the
sector. The record itself, in the User File, is not altered or removed.
Thus, although the record is not physically removed from the User File, its
key entry is removed from the Key File, and the record can no longer be
accessed through KFAM.

The calling sequence for DELETE is:

GOSUB' 231 (I, 0, A$)

"I" is the KFAM I.D. Number, assigned to the file in an OPEN subroutine.
"A$" is the key of the record that is to be deleted from the file.
DELETE Return Codes

Q$ = "N" if the key passed cannot be found in the Key Fi'e.
Q$ = "X" for an improper call.
Qf = " " ("space") if the subroutine executed properly.

After calling a DELETE subroutine and checking for its successful
completion, the application program should flag the DELETED record in the User
File by changing the first character of the deleted record's key to hex FF.
For unblocked files this can be done as follows:

Suppose:

DIM A$15, H(4,4), J(6)
and
DATA SAVE DC #1, A$, H(), J()

define a type "N" record where A$ is the key field.
The DELETE-and-flag operation might look like this:
4060 GOSUB' 231 (1, 0, A$): REM DELETE
4070 IF Q$<>" " THEN 6000:REM ERROR?
4080 DATA LOAD DC #1, A$, H(), J()
4090 STR(A$,1,1)=HEX(FF):REM HEX(FF) IN 1ST BYTE OF KEY

4100 DBACKSPACE #1,1S:REM RECORDS ARE 1 SECTOR LONG
4110 DATA SAVE DC #1,A$,H(),J()

éOOO STOP "DELETE UNSUCCESSFUL"

107

CHAPTER 21 - KFAM-3 SUBROUTINES
(FINDOLD-FINDNEW)

Instead of flagging deleted records, the space in the User File can be
reused; however, this normally requires special techniques together with the
use of FINDNEW(HERE). For information on these techniques see Chapter 29.

21.6 FINDOLD

The FINDOLD subroutine is used to locate a desired record in the User
File. Following subroutine execution, the Current Sector address for the User
File 1is set to the address of the record whose key was passed to the
subroutine. For blocked records, variable Q is set to the record position
within the sector. The record can then be read with a DATALOAD DC statement.
The calling sequence is:

GOSUB' 232 (I, 0, A$)
"I" is the KFAM I.D. Number assigned to the file in the OPEN subroutine.
"A$" is the key of the record being sought.

FINDOLD Return Codes

"N" if the specified key is not Tocated in the Key File.
"X" for an improper call.
" " ("space") if the key was located without difficulty.

Q$
Q$
Q$

21.7 FINDNEW

The FINDNEW subroutine is used to enter a new key in the Key File and to
find a Tlocation for the new record in the User File. FINDNEW enters the key
passed to it in the Key File, then sets the Current Sector address for the
User File to the next sequential sector available for writing a new record.
For blocked records, variable Q is set to the record position within the
sector. The calling sequence is:

GOSUB' 233 (I1,0,A$,0)
“I" is the KFAM I.D. Number, assigned to the file in an OPEN subroutine.
"A$" is the new key to be entered in the Key File.

FINDNEW Return Codes

Q$ = "D" if the key specified is a duplicate of one already in the Key

File.

Q$ = "S" if there is no space in the User File for another record, or in
the Key File for another key entry, or 8 index levels have been
exhausted.

Q$ = "X" for an improper call.

Q$ = " " ("space") if the key was entered without difficulty.

The following example illustrates the procedure for adding a record to a
type A blocked file following FINDNEW. Note the test on Q before the DATA
SAVE.

108

CHAPTER 21 - KFAM-3 SUBROUTINES

(FINDNEW (HERE))
4100 INPUT "KEY FIELD", A$:REM OPERATOR ENTERS KEY
4120 GOSUB '233 (1,0,A$,0) :REM FINDNEW
4130 REM TEST COMPLETION CODE
4140 IF Q$ = "D" THEN 5010 :REM DUPLICATE KEY?
4150 IF Q = "S" THEN 5050 :REM FILE FULL?
4160 IF Q$ <> " " THEN 5060 :REM ERROR?
4170 REM NEW BLOCK OR OLD?
4180 IF Q = 4 THEN 4220 :REM FIRST RECORD IN NEW BLOCK?
4185 REM READ EXISTING RECORDS IN BLOCK
4190 DATA LOAD DC #2, A$(),.B$().C(),D()
4200 DBACKSPACE #2, 1 S :REM BACKSPACE AFTER DATALOAD
4210 REM ASSIGN RECORD VALUES TO PROPER ARRAY ELEMENTS
4220 A$(Q) = A$
4230 INPUT "SECOND FIELD", B$(Q)
4240 INPUT "THIRD FIELD", ¢(Q)
4250 INPUT "FOURTH FIELD", D(Q)
4260 REM SAVE BLOCK IN USER FILE

4270 DATA SAVE DC #2, A$().B$(),C(),D()

5000 REM ERROR MESSAGES

5010 STOP "KEY ALREADY EXISTS"
5050 STOP "KEY FILE OR USER FILE IS FULL"
5060 STOP "FINDNEW ERROR"

21.8 FINDNEW(HERE)

The FINDNEW(HERE) subroutine is a specialized routine whose primary use
is 1in changing the keys of existing keyed records. It can only be used
following the DELETE subroutine. (To get around this rule, see Chapter 29)
Once DELETE has removed the old key from the Key File, FINDNEW(HERE) enters
the new key, along with the location of the deleted record, in the Key File.
The Current Sector address is unchanged. For blocked records, the variable Q
is set to the record position within the block.

The difference between FINDNEW and FINDNEW(HERE) is that FINDNEW makes
available the next available free space for the new record, whereas FINDNEW
(HERE) enables the user to use the space occupied by a DELETED record.

The calling sequence is:

GOSUB' 234 (I,0,A$,0)

The FINDNEW(HERE) argument list is identical to the argument 1ist for
FINDNEW (see FINDNEW).

FINDNEW(HERE) Return Codes

Q§ = "X" for an improper call.

Q§ = "D" if the key specified is a duplicate of a key already in the Key
File.

Q$ = "S" if there is no space in the Key File for another entry, or if 8
index levels have been exhausted.

Q$ = " " (space) if the subroutine executed properly.

109

CHAPTER 21 -~ KFAM-3 SUBROUTINES
(FINDFIRST-FINDLAST)

The following example illustrates the use of FINDNEW(HERE) following
DELETE:

5000 GOSUB '231 (1,0,"ABCD") :REM DELETE "ABCD" FROM KEY FILE

5010 IF Q$ = "X" THEN 5130
5040 IF Q$ = "N" THEN 5150
5050 GOSUB '234 (1,0,"EFGH",0) :REM INSERT "EFGH" IN KEY FILE

5060 IF Q% = "X" THEN 5140

5070 IF Q% = "D" THEN 5160

5075 IF Q$="S" THEN 5170

5080 DATALOAD DC #2,A$,B$,C$,N

5090 A$ = "EFGH" :REM CHANGE KEY TO "EFGH"
5100 DBACKSPACE #2, 1S

5110 DATASAVE DC #2,A$,B$,C$,N

5115 GOSUB'239(1) :REM CLOSE FILES

5120 END

5130 STOP "ERROR IN 'DELETE' CALLING SEQUENCE"
5140 STOP "ERROR IN 'FINDNEW(HERE)' CALLING SEQUENCE"
5150 STOP "KEY NOT FOUND"

5160 STOP "DUPLICATE KEY"

5170 STOP "NO SPACE"

21.9 FINDFIRST

The FINDFIRST subroutine sets the Current Sector address for the User
File to the first record in 1logical key sequence. For blocked records,
variable Q is set to the record position within the sector. A DATALOAD DC
statement can be wused after FINDFIRST to read the record. The calling
sequence is:

GOSUB' 235 (I)
"I" is the KFAM I.D. Number, assigned to the file in an OPEN subroutine.
FINDFIRST Return Codes

Q$ = "N" if the User File contains no records.
Q$ = "X" for an improper call.
Q% = " " (space) if the subroutine executed properly.

21.10 FINDLAST

Th2 FINDLAST subroutine sets the Current Sector address for the User File
to the last record in logical key sequence. For blocked records, the variable
Q is set to the record position within the sector. A DATALOAD DC statement
can be executed following FINDLAST to read the record. The calling sequence
is:

GOSi'B' 236 (I)

“I" is the KFAM I.D. Number assigned to the file in an OPEN subroutine.

110

CHAPTER 21 - KFAM-3 SUBROUTINES
(FINDNEXT-CLOSE)

FINCLAST Return Codes

Q$ = "N" for a null file.
Q$ = "X" for an improper call.
Q$ = " " (space) if the subroutine executes normally.

21.11 FINDNEXT

The FINDNEXT subroutine sets the Current Sector address for the User File
to the record immediately following (in logical key sequence) the last record
accessed by KFAM. For blocked records, the variable Q is set to the position
of the record within the sector. A DATALOAD DC statement can be executed
following FINDNEXT to read the record. FINDNEXT is useful for processing
files in key sequence. The calling statement is:

GOSUB' 237 (I)
"I" is the KFAM I.D. Number assigned to the file in an OPEN subroutine.
FINDNEXT Return Codes

Q$
Q$

“X" for an improper call.
"E" if the previous reference was to the last record in logical key
sequence.

Otherwise, Q$ = " " (space).

NOTE :

FINDNEXT cannot be executed as the first subroutine
following an OPEN routine. Also, FINDNEXT cannot normally
be executed immediately following any subroutine which
returned an error code (Q$ other than blank). Otherwise
FINDNEXT will locate the next sequential key, following
any subroutine.

If FINDNEXT is executed following a FINDOLD that returned
Q8 = "“N" (not found), then FINDNEXT finds the next
sequential record which would follow the record sought in
the FINDOLD, were that record actually in the file.

21.12 CLOSE

The CLOSE subroutine is used to close a currently open User File and its
companion Key File. The KFAM I.D. Number assigned to a closed file can then
be reassigned to another file in an OPEN routine. Similarly, the file numbers
assigned to a User File and Key File can be reassigned in an OPEN routine once
the files have been closed. The CLOSE subroutine also saves certain critical
information for the KEY FILE RECOVERY utility, provided that the RECOVERY
OPTION was included during BUILD SUBROUTINE MODULE execution. The calling
sequence is:

GOSUB' 239 (I)
111

CHAPTER 21 - KFAM-3 SUBROUTINES
(FINDNEXT-CLOSE)

"I" is the KFAM I.D. Number assigned to the file 1in an OPEN routine.
Following execution of the CLOSE routine, this number can no longer be used to
access the User File and its associated Key File.

CLOSE Return Codes

Q$ = "X" for an improper call.
Otherwise, Q% = " " (space).

112

CHAPTER 22
THE KFAM-4 SUBROUTINES

22.1 PROGRAMMING WITH THE KFAM-4 SUBROUTINES

22.1.1 Differences Between KFAM-4 Subroutines and KFAM-3 Subroutines

The KFAM-4 subroutines perform the same functions as those of KFAM-3.
Before using KFAM-4, the programmer should become familiar with the use of
KFAM-3. Except as noted in this chapter, the elementary KFAM subroutine
programming conventions and procedures described in Section 21.1, apply to
KFAM-4 as well as KFAM-3.

The subroutine RELEASE is added in KFAM-4 to turn off a protect flag on a
record. The principal differences between the other KFAM-3 and KFAM-4
subroutines fall into four categories:

1. Two additional arguments to be supplied in the GOSUB' statements
which call the subroutines.

2. Two additional return codes which indicate that the subroutine
operation could not be carried out, due to a protective procedure
invoked by another CPU. :

3. A completely different procedure for SELECTing the Key File device
address.

4. The CLOSE subroutine must be executed at the conclusion of file
operations.

Additional Arguments

In the OPEN subroutine a class-of-access argument 1is required.
Symbolized by the dummy variable C$, an argument value of "A" means that any
other CPU's may open the file while this CPU has the file open. An argument
value of "X" means that this CPU seeks exclusive access to the file.

In general, exclusive access should not be sought, except for those
operations which must be carried out on an entire file with the entire file
protected from alteration by another CPU. For example, printing an end of
period status report might be an appropriate use of exclusive access, when it
is important that the report reflect the file status at one particular time.
However, 1in addition to this use, exclusive access may be sought whenever
maximum access speed is required.

113

CHAPTER 22 - KFAM-4 SUBROUTINES
(Programming with the Subroutines)

A protect-flag argument is required for the subroutines.

DELETE
FINDOLD
FINDNEW
FINDNEW(HERE)
FINDFIRST
FINDLAST
FINDNEXT

The dummy variable P is used to represent this argument. If an argument value
of 1 is passed to the subroutine, then the protect flag is turned on for the
record or block or records accessed by this subroutine call. As long as the
protect flag is on for a record or block of records, that record or block
cannot be accessed by any CPU other than the CPU which turned on the protect
flag. A1l other records in the file may, however, be accessed. If an
argument value of 0 is passed to the subroutine, then the protect flag is not
turned on.

Once turned on, a protect flag is automatically turned off as soon as the
CPU that turned on the flag executes another KFAM-4 subroutine on the same
file. The subroutine RELEASE can be used if there may be a long delay before
another subroutine is executed. RELEASE simply turns off the protect flag.

Additional Return Codes

As a result of the OPEN subroutine, Qf may be returned with the value
"C". This 1indicates access-class conflict. Either this CPU is seeking
exclusive access when another CPU has the file open, or this CPU seeks access
when another CPU has exclusive access.

After executing any of the subroutines, except OPEN, CLOSE, and RELEASE,
Qf§ may be returned with the value "B". This is the busy signal. It means
that the User File record which was sought has had its protect flag turned on
by another CPU. The User File's Current Sector address is unchanged.

SELECT Procedure

In KFAM-3 the user program executes a SELECT statement for the key file
device address as well as the user file device address, immediately prior to
calling the OPEN subroutine. The KFAM-3 subroutines themselves never have to
SELECT a device address. However, this situation is changed for KFAM-4. A
KFAM-4 subroutine must SELECT a hog mode address for the key file, hog the
disk during its execution, and then SELECT the non-hog mode address and leave
hog mode before returning control to the user program.

The KFAM-4 subroutines select hog mode and non-hog mode by calling short
subroutines that reside 1in the user program. These subroutines must be
written by the application programmer, and dincluded in every module which
accesses a KFAM-4 subroutine.

For example, suppose that a program accesses just one KFAM file, that the
Key File is at device address 320, and that file number #2 is used for the Key

File. The following two subroutines must be included somewhere 1in the user
program.

114

CHAPTER 22 - KFAM-4 SUBROUTINES
(Programming with the Subroutines)

4000 REM SELECT HOG MODE

4010 DEFFN' 210 (T6)

4020 SELECT #2 3A0

4030 RETURN

4040 REM SELECT NON-HOG MODE

4050 DEFFN' 211 (T6)

4060 SELECT #2 320

4070 RETURN

Shortly after it is called, the KFAM-4 subroutine calls DEFFN'210 to

select hog mode for 1its operations on the Key File. When the KFAM-4
subroutine is nearly complete, it calls DEFFN'211 to select non-hog mode.

After selecting non-hog mode, the subroutine executes a disk statement so that

the hog mode 1is actually released before control is passed back to the user
program.

Thus, the SELECT subroutines are the reverse of the normal KFAM
subroutines. In general, the user program calls a KFAM subroutine; however,

these particular subroutines are written by the user, and called by the KFAM-4
subroutines.

Notice in the SELECT subroutines shown above, that the variable T6 is
assigned a value by the GOSUB' statement which calls the subroutine. This
variable must always appear 1in the DEFFN' statements of the SELECT
subroutines; however, the value of this variable becomes significant only if

several KFAM files are to be accessed by the user program. The variable T6 is

assigned the KFAM I.D. Number when the SELECT subroutines are called by a
KFAM subroutine. It is used as follows.
Suppose that there are three KFAM files (Key File/User File) to be

accessed by the user program. The pertinent information is

KFAM Key File Key File
I.D. NO. File Number Device Address
1 #2 B20
2 #4 B20
3 #6 320

115

CHAPTER 22 - KFAM-4 SUBROUTINES
(Programming with the Subroutines)

The SELECT subroutines should be written as follows:

4000 REM SELECT HOG MODE

4010 DEFFN'210 (T6)

4020 ON Té6 GOTO 4030, 4040, 4050
4030 SELECT #2 BAO: RETURN

4040 SELECT #4 BAQG: RETURN

4050 SELECT #6 3A0: RETURN

4060 REM SELECT NON-HOG MODE
4070 DEFFN'211 (T6)

4080 ON Té6 GOTO 4090, 4100, 4110
4090 SELECT #2 B20: RETURN

4100 SELECT #4 B20: RETURN

4110 SELECT #6 320: RETURN

Notice that T6, which is the KFAM I.D. number, is used to control which
of the Key Files is SELECTed for hog (or non-hog) mode.

The KFAM-4 subroutines cannot operate successfully without the SELECT
subroutines included in the application program.

The CLOSE Subroutine

When the KFAM-4 OPEN subroutine is executed, the CPU opening the file is
assigned to a slot in the Access Table of the Key File's KDR record. It
"occupies” this slot until it executes the CLOSE subroutine. If a CPU opens a
file and fails to execute the CLOSE subroutine at the conclusion of its file
operations, the Access Table retains the open file notation for that slot.
This false notation in the Access Table prevents the file from being opened in
the exclusive mode. Four such false notations, or one false '"exclusive
access" notation, prevent the file from being opened at all, by any CPU. It
is therefore imperative that the CLOSE subroutine be executed at the
conclusion of operations on a KFAM-4 file.

22.1.2 Procedural Notes For Programming With KFAM-4 Subroutines

In general the programming procedures used with KFAM-4 subroutines are
not wunlike those used with KFAM-3. In addition to the differences in calling
sequences, return codes, and SELECT procedures, the following difference
should be noted.

1. The protect flag should be set for a record if a DATA SAVE is to be
executed on the record. (The protect flag is set by specifying a 1
for the dummy variable "P" in the GOSUB' argument 1lists of the
KFAM-4 subroutines.) Updating records, adding new records, and
flagging deleted records all require that a DATA SAVE DC be
executed; therefore, the protect flag should be set for all these
operations. Operations which only execute DATA LOAD DC on the
record should not set the protect flag.

2. Application programs should not attempt to hog the disk

continuously. The user file address should be a normal disk
address, not a hog mode address.

116

CHAPTER 22 - KFAM-4 SUBROUTINES
(Programming with the Subroutines)

The application program must check for a return code of Q¢ = "B",
indicating that the record (or block of records) sought is
protected. On a Q% = "B" condition the application program can

simply reexecute the subroutine. For example,

4250 GOSUB' 237 (2,1):REM FINDNEXT
4260 IF Q% = "B" THEN 4250: REM KEEP TRYING

In general a file should not be opened in exclusive mode, except in
either of the following circumstances:

a) The operation on the file must take place with the file
status fixed as of the beginning of the operation. For
example, printing a report as of the end of an accounting
period.

b) Maximum file access speed is needed. (When a file is
open in exclusive mode, the KFAM-4 subroutines can search
the key file without first reading and writing the KDR
record. This allows subroutine execution speed to
approximate that of KFAM-3.)

Application programs must never write trailer records of any kind
into the user file. The RECOVERY OPTION should be used to provide
recovery capability for the possibility of accidental Key File
destruction. In general, application programs must never make any
assumptions about the status of user file sectors other than those
specifically returned by a subroutine. For example under KFAM-4,
it is possible for the next sequential record location, after that
returned by a FINDNEW, to be already occupied by a 1ive record,
written by another CPU.

Application programs should execute the RELEASE subroutine if the
previous call set the protect flag, and there may be a long delay
before the next KFAM-4 subroutine call on that file.

You may wish to consider any keyboard entry operation as involving
a long delay, and execute RELEASE prior to the keyboard entry.
Alternatively, a Special Function Key subroutine that executes
RELEASE may be made available during all keyboard entry operations.
The operator would then be instructed to depress the specified
Special Function Key if there is any delay prior to responding.

The CLOSE subroutine must be executed at the conclusion of
operations on a KFAM-4 file. The operator should always have
available a procedure for CLOSING the file in the event of program
malfunctions, or other disaster. (If the CPU power is turned off
without CLOSING the file, the Access Table retains a notation for a
"phantom" CPU; the RESET ACCESS TABLE wutility must be run.) A
Special Function key subroutine such as DEFFN' 31 might be made
available to CLOSE a file at any time.

117

CHAPTER 22 - KFAM-4 SUBROUTINES
(Build Subroutine Module)

22.2 BUILD SUBROUTINE MODULE (KFAM-4)

BUILD SUBROUTINE MODULE builds a module of selected KFAM subroutines for
use in an application program. It allows the programmer to include in an
application program module only those subroutines and subroutine capabilities
which actually are used in the application program module, and, thereby, keeps
to a minimum the amount of memory occupied by KFAM-4 siibroutines.

Each KFAM subroutine may be included or excluded independently of the
others. After selecting the desired subroutines, the capability to operate on
multiple files (two or three KFAM-4 files open at the same time) may be
included or excluded for the chosen subroutines. If only one KFAM-4 file is
to be open at any one time, then excluding the multiple file capability
further reduces memory requirements. Finally, the RECOVERY OPTION is offered.
It must be included in order for the KEY FILE RECOVERY program to execute
successfully 1in the event of accidental Key File destruction. If the ability
to use KEY FILE RECOVERY is not desired, the RECOVERY OPTION need not be
included.

The OPEN subroutine, when chosen for a module, includes all the common
variables needed for subroutine operation except those for FINDNEW and
FINDNEW(HERE). The utility separately asks whether the variables for FINDNEW
and FINDNEW(HERE) are to be included in the OPEN subroutine. These variables
must be included in the OPEN subroutine, if it is to be used to OPEN a file on
which, subsequently, FINDNEW or FINDNEW(HERE) is executed.

NOTE:

A1l subroutine modules operating on a given open KFAM file
must include the same options. (Options are OPEN FOR
FINDNEW, MULTIPLE FILES, RECOVERY.) For example, if
RECOVERY is chosen, it must be chosen for the module that
contains OPEN, any processing modules, and the module that
contains CLOSE.

To illustrate how BUILD SUBROUTINE MODULE might be used, to maximize
available memory, suppose that a file is to be "purged" in key sequence,
deleting all obsolete records. The subroutines which are needed are:

OPEN
FINDFIRST
FINDNEXT
DELETE
CLOSE

These subroutines require 4406 bytes, approximately, if loaded at the same
time. Suppose, further, that there 1is not enough memory avaijlable to
accomplish the processing, and include all of these subroutines. Two separate
modules could be built, the first to contain OPEN and FINDFIRST only, the
second to contain the rest. The first of these subroutine modules would then
become part of a start-up module in the application program which would open
the KFAM file and perform other preliminary processing. This start-up module
would then overlay the processing module, clearing the OPEN and FINDFIRST

118

CHAPTER 22 - KFAM~4 SUBROUTINES
(Butld Subroutine Module)

subroutines as it does so. The processing module would contain the second
group of subroutines: FINDNEXT, DELETE and CLOSE. Memory overhead at any one
time, due to subroutines, is thereby reduced from 4406 bytes to

OPEN
FINDFIRST} 3830 bytes
FINDNEXT
DELETE 3255 bytes
CLOSE
Note 1:

There are two modules of KFAM-4 subroutines included with
the KFAM-4 system. If desired, the programmer may simply
use one of these modules rather than build a custom module
with the BUILD SUBROUTINE MODULE utility. The modules are

as follows:
MODULE NAME INCLUDES
KFAM0004 A11 subroutines and
subroutine options.
KFAMO104 A11 subroutines and options

except: DELETE, FINDNEW,
FINDNEW(HERE), RECOVERY,
OPEN FOR FINDNEW.
NOTE 2:
BUILD SUBROUTINE MODULE selects hog mode for the output
disk device. To execute it in non-hog mode, or to execute
it at a non-multiplexed disk drive, key:

M§ = "X" (EXEC)

at KFAM-4 utilities menu, prior to accessing the utility.

Operating Instructions - BUILD SUBROUTINE MODULE KFAM-4

DISPLAY INSTRUCTIONS

1. 1. From KFAM-4 subsidiary menu ac-
cess its "BUILD SUBROUTINE
MODULE" utility via the speci-
fied Special Function key.

2. ENTER THE NAME OF PROGRAM 2. Enter the name of the program
TO BE GENERATED? file which is to contain the
FE T selected subroutines, maximum

of 8 characters.

119

CHAPTER 22 - KFAM-4 SUBROUTINES
(Buzld Subroutine Module)

3. ENTER THE NO. OF THE
OUTPUT PROGRAM DEVICE?

1
2
3.
4

4. 230

OPEN FOR FINDNEW

231
232
233
234
235
236
239

. 310 5. B10
. 320 6. B20
330 7. B30

. 350
OPEN (Y OR N)?

Y OR N)?
)?
FINDOLD (Y OR i)
FINDNEW (Y OR N)
FINDNEW (HERE) (
FINDFIRST (Y OR
FINDLAST (Y OR N
CLOSE (Y OR N)?

(
DELETE (Y OR N

?
?

Y OR N)?
N)?

)?

120

If a file of the same name is
not already cataloged, the
utility allocates just enough
space for the selected
subroutines.

If a file of the same name is
already cataloged, that file is
used for the output program and
overwritten. If the file is

a data file, it is changed to

a program file.

CAUTION:

Before entering a name, ensure
that the name entered is not
the name of a valuable data
file or program file. If a
file already exists with the
same name, its contents are
destroyed by this utility.

If extra space is desired in
the output file, it should be
cataloged in advance as a data
file. For example,

DATASAVE DC OPEN T/B10, 50,
"FILE"

Enter the selection number

for the device address at
which the selected subroutines
are to be saved.

NOTE:

The utility operates in hog
mode on the output disk drive
unless M$ is set to "X".

ERROR MESSAGE: 1,2,3

Each of the Tisted prompts is
displayed sequentially. For
each subroutine or subroutine
capability enter Y to include
it in the output module;
otherwise, enter N.

237 FINDNEXT (Y OR N)?
238 RELEASE (Y OR N)?
MULTIPLE FILES (Y OR N)?
RECOVERY OPTION (Y OR N)?

5. 0K TO PROCEED? (Y OR N)

6. PHASE 2 - BUILDING PROGRAM
NAME

Error Messages

ERROR MESSAGE
1. RE-ENTER

2. INVALID DEVICE ADDRESS

3. ERR29

4. INVALID DELIMITER (STOP)

5. OUTPUT PROGRAM SPACE EXCEEDED
(STOP)

121

CHAPTER 22 - KFAM-4 SUBROUTINES
(Buzld Subroutine Module)

ERROR MESSAGE: 1

5. Enter Y to accept selected
subroutines, or N to return to
step 4.

ERROR MESSAGE: 1
6. The output module is generated.
ERROR MESSAGE: 4, 5, 6, 7

7. The system returns to the
KFAM subsidiary menu.

EXPLANATION/RECOVERY

Too many characters were entered, or
an invalid character was entered in
response to a "yes" (Y) or "no" (N)
question.

RECOVERY: Repeat the step. Re-enter
the data.

The numbers 1-7 may be used to
specify a device address, according
to the table of device addresses
displayed.

RECOVERY: Repeat the step. Re-enter
the data.

A non-numeric quantity was entered
when a numeric quantity was requested.

RECOVERY: Repeat the step. Enter a
number.

Errors 4,5, and 6 are hardware or
software errors. They should not
occur.

RECOVERY: Rerun the program. If
the error persists, notify Wang
Laboratories.

CHAPTER 22 - KFAM-4 SUBROUTINES
(Calling the Subroutines)

6. SYSTEM ERROR (STOP)

7. NO ROOM ON DISK FOR OUTPUT 7. There is not room enough on the disk
PROGRAM (STOP) for the output program to be
cataloged.

RECOVERY: Rerun the program, with
an output disk with more free space
(25 sectors maximum requirement).

22.3 CALLING THE KFAM-4 SUBROUTINES

Dummy Variable Names

In defining the argument 1lists for the subroutines below, certain
standard dummy varjable names are used. These dummy names are used only to
describe the general forms of the respective GOSUB' statements. In the actual
program, the programmer may use any value or expression valid for use in a
GOSUB' statement. Zeros in the general statement represent parameters which
are not used by KFAM-4. They should be included, as zeros in the GOSUB'
statement.

For example, the general statement:
GOSUB' 233 (I,P,A$,0)
may be written as:
GOSUB'233(1,P,K$,0)
GOSuB'233 (2,1,"A48-3029",0)
GOSUB'?233(F1+1,0,STR(P1$,7,8),0)
etc.

The dummy variable names for KFAM-4, and their meanings, are as follows:

Dummy Variable Meaning
I KFAM I.D. Humber (1, 2, or 3).
K File number assigned to the Key

File (#0-#6).

U File number assigned to the User
File (#0-#6).

F Key File number (1-9), specified
as the 6th character in the Key
File name, as assigned in INITIALIZE

KFAM FILE.
AS The record key (alphanumeric).
NS User File name.

122

CHAPTER 22 - KFAM-4 SUBROUTINES
(Calling the Subroutines)

P Protect flag. If P=0, then other
CPU's may access this record or
block of records. If P=1,
then only this CPU may access this
record or block of records.

c$ Class of access desired in opening
the file. "A" means any CPU may
access the file. "X" means this CPU
seeks exclusive access to the file.

Return Codes

Upon returning to the main 1line program from the subroutines, the
variables Q and Q$ contain the following information:

Q returns the record position indicator for blocked files (i.e., files
with more than one record per sector). The record position indicator is a
numeric value which specifies the position of a desired record within a block.
For example, if Q=2, the key passed to the subroutine specifies +#he second
record in the block. For unblocked records Q is returned as 1, and may be
ignored.

Q is not defined following the OPEN or CLOSE subroutines.
Q% contains the completion return code. It indicates the result of the

particular operation. The possible values of Q$%, and their meanings, are as
follows:

Q% Value Meaning
blank The subroutine execution was
successful.
D Duplicate key (attempting to add a

duplicate key to the file). The
Key File is unchanged.

E End of file (FINDNEXT only).
N Key not found.
S No more space, either for the User

File or the Key File, or 8 levels
of index have been exhausted

attempting to add a record to the
file. The Key File is unchanged.
(FINDNEW and FINDNEW(HERE) only.)

B Busy Signal. The user file record
or block of records being accessed
has been "protected" by another CPU.

C Access Class conflict (OPEN only).
Either this CPU is asking for

123

CHAPTER 22 - KFAM-4 SUBROUTINES
(Calling the Subroutines)

exclusive access when another CPU

has the file open, or this CPU is

asking for access when another CPU
has exclusive access.

X Improper call to a KFAM subroutine,
(argument values erroneous, etc.).

If Q¥ is anything other than blank, the User File Current Sector address
parameter is undefined, and the value of Q is undefined.

Immediately upon return from any of the subroutines, the main 1line
program should check Q$ for possible error indications.

The system assumes there are no programming errors in the main Tline
program. The KFAM Subroutines can perform improperly, and can destroy a file,
if the parameters supplied by the main line program are erroneous. Therefore,
during the testing stage, it is recommended that the user keep a backup file
so that test data can be recovered in the event that it is destroyed.

The subroutines check data errors, and the kind of errors Tikely to occur
during normal operation, such as duplicate key, key not found, or no more
space. The following errors, which are programming errors, may or may not be
caught by the subroutines:

0$ Value,
Error or ERR Code

KFAM I.D. Number not an integer X
between 1 and 3. ERR 18

KFAM I.D. Number 1is the same X
as I.D. Number for a file
already open.

File to be opened is already X
open.

Individual file numbers not ERR 18
integers between 0 and 6. ERR 41

Individual file number is X
duplicate of another file
number.

File name not in proper format, ERR 78
with 5th byte="F" and 6th ERR 80
byte a 0 (zero).

Key File number not an integer ERR 56
from 1 to 9.

File to be accessed has not X
been opened.

124

CHAPTER 22 - KFAM-4 SUBROUTINES

(OPEN)
SELECT statements and file none
numbers do not actually
correspond.
File names are not correct, ERR 78
or do not exist on the disk ERR 80

platters specified.

22.4 OPEN

The OPEN subroutine is used to open a User File and its companion Key
File. OPEN must be executed prior to execution of any other KFAM subroutine.
In the OPEN subroutine, a pair of DATALOAD DC OPEN statements are executed to
open the named User File and its companion Key File. Specified file numbers
are assigned to each file. OPEN also assigns a specified KFAM I.D. Number to
the pair of files. To call the OPEN subroutine you must write two statements
of the following general form:

SELECT #U XXX
GOSUB' 230 (I,K,U,F,N$,C$)

For The SELECT Statement

"#U" is the file number to be associated with the User File; "U" can be a
number from 1 to 6. "#U" must be wused in all subsequent DATASAVE DC or
DATALOAD DC statements to reference the User File.

"XXX" is the device address of the platter on which the User File is
stored.

For The GOSUB' Statement

“I" is the KFAM I.D. Number which is to be associated with the newly
opened file, and must be used to reference the file in subsequent KFAM
subroutines. "I" can be a number from 1 to 3.

"K" is the file number to be assigned to the Key File (see NOTE below).

"U" is the file number to be assigned to the User File (see "#U" above).

"F" is the Key File number (the sixth character in the Key File name, it
may be an integer from 1 to 9, but normally it is 1).

"N$" is the name of the User File to be opened. The Key File name need
not be specified; it is built from the User File name and the Key File number
by KFAM itself.

"C$" is the class of access desired. If C$§ = "A",then any CPU may open
the file. If C$ = "X",then only this CPU may access the file.

Return Codes for OPEN

Q$ = " " (space) if the subroutine execution was 0.K.

125

CHAPTER 22 - KFAM-4 SUBROUTINES
(DELETE)

Q% = "C" if there is an access class conflict. Either this CPU seeks
exclusive access (C$ = "X") when another CPU has the file open, or
another CPU has exclusive access.

Q$ = "X" for an improper call (i.e., one of the arguments in the GOSUB'
230 argument 1list 1is incorrect, or the file is already open). Note, if a
file is already open or the KFAM I.D. number is already in use, OPEN returns

Q$ = “X“.

NOTE:

The application program must include the SELECT
subroutines DEFFN'210 and DEFFN'211 to select hog mode and
non-hog mode for the Key File device address. Al11 KFAM-4
subroutines require that these subroutines be included in
the application program. See Section 22.1 for information
about how to write these subroutines.

22.5 DELETE

The DELETE subroutine deletes from the Key File a specified key and its
associated record location pointer. The Current Sector address for the User
File is set to the location of the record whose key has been deleted, and for
blocked records the variable Q 1is set to the record position within the
sector. The record itself, in the User File, 1is not altered or removed.
Thus, although the vrecord is not physically removed from the User File, its
key entry 1is removed from the Key File, and the record can no longer be
accessed through KFAM.

The calling sequence for DELETE is:

GOSuUB' 231 (I, P, A$%)

"I" is the KFAM I.D. Number, assigned to the file in an OPEN subroutine.
"P" is the protect flag option. If P=0, other CPU's may access this
record of block of records. If P=1,only this CPU may access this record
or block of records.

"AS" 1is the key of the record that is to be deleted from the file.

DELETE Return Codes

Q% = "B" Busy Signal. The record sought is protected by another CPU.
Q% = "N" if the key passed cannot be found in the Key File.

Q$ = "X" for an improper call.

Q =" " ("space") if the subroutine executed properly.

After calling a DELETE subroutine and checking for its successful
completion, the application program should flag the DELETED record in the User
File by changing the first character of the deleted record's key to hex FF.
For unblocked files this can be done as follows:

126

CHAPTER 22 - KFAM-4 SUBROUTINES
(FINDOLD)

Suppose:

DIM A$15, H(4,4), J(6)
and
DATA SAVE DC #1, A$, H(), J()

define a type "N" record where A$ is the key field.
The DELETE and flag operation might look 1ike this:

4060 GOSUB' 231 (1, 1, A$): REM DELETE

4065 IF Q$ = "B" THEN 4060:REM BUSY TRY AGAIN

4070 IF Q$<>" " THEN 6000:REM UNSUCCESSFUL

4080 DATA LOAD DC #1, A%, H(), J()

4090 STR(A$,1,1)=HEX(FF):REM HEX(FF) IN 1ST BYTE OF KEY
4100 DBACKSPACE #1,1S:REM RECORDS ARE 1 SECTOR LONG
4110 DATA SAVE DC #1,A$,H(),J()

éOOO STOP "DELETE UNSUCCESSFUL"

The space occupied by DELETED records in the User File can be reused;
this normally requires special techniques together with the use of
FINDNEW(HERE). For information on these techniques see Chapter 29.

22.6 FINDOLD

The FINDOLD subroutine is used to locate a desired record in the User
File. Following subroutine execution, the Current Sector address for the User
File is set to the sector address of the record whose key was passed. For
blocked records, variable Q is set to the record position within the sector.
The record can then be read with a DATALOAD DC statement. The calling
sequence 1is:

GOSUB' 232 (I, P, A%)

"T" is the KFAM 1.D. Number assigned to the file in the OPEN subroutine.
"p" js the protect flag option. If P=0,then other CPU's may access this
record or block of records. If P=1,only this CPU may access this record
or block of records.

“A$" is the key of the record being sought.

FINDOLD Return Codes

Q$="B" Busy Signal. The record sought is protected by another CPU.

Q$ = "N" if the specified key is not located in the Key File.
Q$ = "X" for an improper call.
Q$ = " " ("space") if the key was located without difficulty.

127

UHAPTER 22 - KFAM-4 SUBROUTINES
(FINDIHEW)

22.7 FINDNEW

The FINDNEW subroutine is used to enter a new key in the Key File and to
find a Tlocation for the new record in the User File. FINDHNEW enters the key
passed to it in the Key File, then sets the Current Sector address for the
User File to an available User File location for writing a new record. For
blocked records, variable §§ is set to the record position within the sector.

GOSuB' 233 (1,P,A%$,0)
“1" is the KFAM I.D. Number, assianed to the file in an NPEN subroutine.
“P" js the protect flag option. If P=0, other CPU's may access this
record or block of records. If P=1, only this CPU may access this record
or block of records.

"AS" is the new key to be entered in the Key File.

FINDMEW Return Codes

0$ = "B" Busy Sianal. The record (or block) sousht is obrotected by
another CPU.

nN$ = "D" if the key specified is a duplicate of one already in the Key
File.

N$ = "S" if there is no space in the User File for another recorc, or in
the Key File for another key entry, or 8 index Tevels have been
exhausted.

NS = "X" for an improper call.

Qs = " " (“space") if the key was entered without difficulty.

NOTE :

The User File location returned by FINDNEW is unoccupied
by live data, but is not necessarily at the end of all
live data in the User FiTe.

The following example illustrates the procedure for addinc a record to
type A blocked files followina FINDHEW. Hote the test on O before the
DATASAVE, and that the protect flac is set by FINDNEY.

4100 INPUT “KEY FIELD", AS RE!Y OPERATOR ENTFRS KEY
4120 GOSUB '233 (1,1,45,0) :REM FINDNFU

4730 REM TEST COMPLETION CODE

4135 IF 0% = "B" THEN 4120 ‘REM BUSY TRY ARAIN

4140 IF 0$ = "D" THEN 5010 ‘REM DUPLIGCATE KFY?

4150 IF 08 = "S¥ THEN 5050 REM FILE FULL?

4160 IF 0$ <> " " THEN 5060 :REM ERRNR?

4170 REM NEW BLOCK OR OLD?

4180 IF Q = 1 THEN 4220 :REM FIRST RECORD IN HEW BLOCK?
4185 REM READ EXISTING RECORDS IN BLOCK

4190 DATA LOAD DC #2, AS$(), B&(), c(), D()

4200 DBACKSPACE #2, 1 S: REM BACKSPACE AFTER DATA LOAD
4210 REM ASSIGM RECORD VALUES TO PROPER ARRAY ELEMENTS
4220 AS(Q) = AS

4230 INPUT "SECOND FIELD", B$(Q)

4240 INPUT “THIRD FIELD", C(Q)

128

CHAPTER 22 - KFAM-4 SUBROUTINES

(FINDNEW(HERE))
4250 INPUT "FOURTH FIELD", D(Q)
4260 REM SAVE BLOCK IN USER FILE
4270 DATA SAVE DC $2, A$(),B$(),c(),D()
5000 REM ERROR ROUTINES
5010 STOP "KEY ALREADY IN KEY FILE"
5050 STOP "KEY FILE OR USER FILE IS FULL"
5060 STOP "FINDNEW ERROR"

A similar procedure must be used for type C files, for which Q represents
a record location rather than a subscript.

22.8 FINDNEW(HERE)

The FINDNEW(HERE) subroutine is a special purpose subroutine which can be
used to reuse the User File space occupied by DELETE'd records or to change
the value of the key of an existing record. It adds a new key to the Key
File, but, unlike FINDNEW, the User File location, which it associates with
that key, is the User File location returned by the last KFAM subroutine call.
To use FINDNEW(HERE) to reuse the User File space occupied by DELETE'd
records, see Chapter 29. An illustration of the use of FINDNEW(HERE), to
change the value of the key of an existing record, is shown below.

The calling sequence is:
GOSuUB' 234 (I,P,A$,0)

The FINDNEW(HERE) argument list is identical to the arqument 1list for
FINDNEW (see FINDNEW). ,

FINDNEW (HERE) Return Codes

Q$ = "B" Busy Signal. The record or block sought is protected by
another CPU.

Qf = "X" for an improper call.

Q% = "D" if the key specified is a duplicate of a key already in the Key
File.

Q$ = "S" if there is no space in the Key File for another entry, or if 8
index levels have been exhausted.

Q$ = " " (space) if the subroutine executed properly.

The following example illustrates the use of FINDNEW (HERE) following
DELETE:

129

CHAPTER 22 - KFAM-4 SUBROUTINES
(FINDFIRST-FINDLAST)

5000 GOSUB '231 (1,0,"ABCD") :REM DELETE "ABCD" FROM KEY FILE

5005 IF Q$ = "B" THEN 5000:REM BUSY
5010 IF Q$ = "X" THEN 5130
5040 IF Q$ = "N" THEN 5150

5050 GOSUB '234 (1,1,"EFGH",0) :REM SET "PROTECT", INSERT "EFGH" IN KEY FILE

5060 IF Q$ = "X" THEN 5140

5070 IF Q$ = "D" THEN 5160

5075 IF Q$="S" THEN 5170

5080 DATALOAD DC #2,A%$,B$,C$,N

5090 A$ = "EFGH" :REM CHANGE KEY TO "EFGH"
5100 DBACKSPACE #2, 1S

5110 DATASAVE DC #2,A$,B$,C$,N

5115 GOSUB'239(1) :REM CLOSE FILES

5120 END

5130 STOP "ERROR IN 'DELETE' CALLING SEQUENCE"
5140 STOP "ERROR IN 'FINDNEW(HERE)' CALLING SEQUENCE"
5150 STOP "KEY NOT FOUND"

5160 STOP "DUPLICATE KEY"

5170 STOP "NO SPACE"

22.9 FINDFIRST

The FINDFIRST subroutine sets the Current Sector address for the User
File to the first record in Tlogical key sequence. For blocked records,
variable Q is set to the record position within the sector. A DATALOAD DC
statement can be wused after FINDFIRST to read the record. The calling
sequence is:

GOSUB' 235 (I,P)

“I" is the KFAM I.D. Number, assigned to the file in an OPEN subroutine.
"P" is the protect flag option. If P=0 other CPU's may access this
record or block of records. If P=1 only this CPU may access this record

or block of records.

FINDFIRST Return Codes

Q$ = "B" Busy Signal. The record sought is protected by another CPU.
Q% = "N" if the User File contains no records.

Q$ = "X" for an improper call.

Q$ = " " (space) if the subroutine executed properly.

22.10 FINDLAST

The FINDLAST subroutine sets the Current Sector address for the User File
to the last record in logical key sequence. For blocked records, the variable
Q is set to the record position within the sector. A DATALOAD DC statement
can be executed following FINDLAST to read the record. The calling sequence
is:

GOSUB' 236 (I,P)

130

CHAPTER 22 - KFAM-4 SUBROUTINES
(FINDNEXT)

"I" is the KFAM I.D. Number assigned to the file in an OPEN subroutine.
"P" is the protect flag option. If P=0, other CPU's may access this
record or block of records. If P=T1gonly this CPU may access this record

or block of records.

FINDLAST Return Codes

Q$ = "B" Busy Signal. The record sought is protected by another CPU.
Q$ = "N" for a null file.

Q% = "X" for an improper call.

Q$ = " " (space) if the subroutine executes normally.

22.11 FINDNEXT

The FINDNEXT subroutine sets the Current Sector address for the User File
to the record immediately following (in logical key sequence) the last record
accessed by KFAM. For blocked records, the variable Q is set to the cosition
of the record within the sector. A DATALOAD DC statement can be executed
following FINDNEXT to read the record. FINDNEXT is useful for processing
files in key sequence. The calling statement is:

Gosu' 237 (I,P)

“I" is the KFAM I.D. Number assigned to the file in an OPEN subroutine.
"P" is the protect flag option. If P=0,other CPU's may access this
record or block of records. If P=1,0nly this CPU may access this record

or block of records.

FINDNEXT Return Codes

Q% = "B" Busy Signal. The record sought is protected by another CPU.
Q% = "X" for an improper call.
Q$ = "E" if the previous reference was to the last record in logical key
sequence.
Otherwise, Q% = " " (space).

NOTE:

FINDNEXT cannot be executed as the first subroutine
following an OPEN routine. Also, FINDNEXT cannot normally
be executed immediately following any subroutine which
returned Q% = "X" or "E". Otherwise FINDNEXT will locate
the next sequential key, following any subroutine.

If FINDNEXT is executed after a FINDNEXT which returned Q%
= "B" (the Busy Signal), it will attempt to access the
same record that it previously found to be protected.

I[f FINDNEXT is executed following a FINDOLD that returned
Q$ = "N" (not found), FINDNEXT Tlocates the record whose
key logically follows the key passed to FINDOLD.

131

CHAPTER 22 - KFAM-4 SUBROUTINES
(RELEASE-CLOSE)
22.12 RELEASE

The RELEASE subroutine turns off the protect flag previously set by the
calling CPU.

Any call to a KFAM-4 subroutine for a particular file turns off any
protect flag for that file. RELEASE should be used only if there may be a
long delay before the next KFAM-4 subroutine is called.

The calling sequence is:

GOSUB'238 (I)
"I" §s the K°AM I.D. Number assigned to the file in an OPEN subroutine.

RELEASE Return Codes

Q%
Q$

"X" for an improper call,
" " (space) after successful execution.

22.13 CLOSE

The CLOSE subroutine is used to close a currently open User File and 1its
companion Key File. The KFAM I.D. Number assigned to a closed file can then
be reassigned to another file in an OPEN routine. Also, the file numbers
assigned to a User File and Key File can be reassigned. CLOSE alters the
Access Table in the Key File's KDR record to indicate that the CPU no 1longer
has the file open. The CLOSE subroutine also saves certain critical
information for the KEY FILE RECOVERY utility, provided that the RECOVERY
OPTION was included during BUILD SUBROUTINE MODULE execution. The <calling
sequence is: ‘

GOSUB' 239 (I)
"I" s the KFAM I.D. Number assigned to the file in an OPEN routine.
Following execution of the CLOSE routine, this number can no longer be used to
access the User File and its associated Key File.

CLOSE Return Codes

Q$ = "X" for an improper call.
Otherwise, Q% = " " (space).

NOTE:

CLOSE must be executed at the conclusion of operations
on a file.

132

CHAPTER 23
THE KFAM REORGANIZE UTILITIES (KFAM-3 AND KFAM-4)

23.1 THE REORGANIZE SUB-SYSTEM

23.1.1 OQverview

The REORGANIZE SUB-SYSTEM performs the following KFAM file maintenance
operations:

1. Based on an input KFAM file (Key File and User File) it constructs
a new output User File which contains active records only, written
in ascending key sequence.

2. Creates a Key File based on the new output file. Optionally the
new Key File may occupy the same physical space as the input Key
File, overwriting the input Key File.

3. Optionally, the new output User File may be copied back to the disk
area occupied by the input User File, overwriting the input file.

Unlike other KFAM maintenance utilities, the REORGANIZE SUB-SYSTEM is
loaded by means of a user-written set-up b program that specifies all the
parameters for the reorganization. The REORGANIZE SUB-SYSTEM can, optionally,
call another user program module after completing execution. Since it must be
loaded via a user-written set-up module, the REQRGANIZE SUB-SYSTEM does not
appear on the KFAM-3 or KFAM-4 menus. However, the three modules of the
utility are included on Application Support Diskette #2 for KFAM-3, and
Application Support Diskette #3 for KFAM-4. Also included on each diskette is
a module of KFAM subroutines used by the utility. Finally, on each diskette a
COPY/VERIFY reference file is included to facilitate copying the complete
utility. The names of the reference files and modules are as follows:

KFAM-3 VERSION

COPY/VERIFY Reference File Name = K-3RF010

REORGANIZE SUB-SYSTEM modules = KFAM3503
= KFAM3603
= KFAM3703

Module of Subroutines = KFAMO103

KFAM-4 VERSION

COPY/VERIFY Reference File Name = K-4RF010

REORGANIZE SUB-SYSTEM Modules = KFAM3504

133

CHAPTER 23 - THE KFAM REORGANIZE UTILITIES (KFAM-3 AND KFAM-4)
(Reorganize Sub-system)

Module of Subroutines

{12 |

23.1.2 Writing The Set-up Module

To use the REORGANIZATION SUB-SYSTEM you

program which provides the operating parameters and
The set-up program can be broken down into two parts, with a third part used
only for KFAM-4.

1.

KFAM3604
KFAM3704
KFAMO104

must write a brief set-up

Toads the first module.

Lines 1-3499 contain statements executed before the REQRGANIZATION

SUB-SYSTEM 1is Tloaded. These Tines must

clear the CRT screen,

select disk file devices, and Tload KFAM3503 (or KFAM3504 for
KFAM-4). These 1lines must be cleared by the LOAD DC statement.

They can include additional preprocessing, i

Lines 4200-4799 contain statements which
parameters to specific variables. They rema

f desired.

assign reorganization
in as an overlay to the

first reorganization module. They are executed after the first
reorganization module defines its common variables and sets default

values.

(KFAM-4 ONLY) Lines 3500-3699 must contain the subroutines
DEFFN'210 (T6), to select hog mode, and DEFFN'211 (T6) to select

non-hog mode. These Tines are not cleared
overlay to the first module.

A skeleton of the set-up program is shown below.

if the

Line

10
20
50

60
70
60
90
100
110

4210
4220
4230
4240
4250
4260
4270

; they remain as an

A Tine may be omitted

default value shown is the desired value. Read all comments before
writing a set-up module.

Default See
Contents Value Comment

REM program identification
PRINT HEX(03)

SELECT DISK (disk address for
REORGANIZATION SUB-SYSTEM disk)

SELECT #1 input User File device address
SELECT #2 input Key File device address
SELECT #3 output User File device address
SELECT #4 output Key File device address
SELECT #5 user program device address
LOAD DC T#uU, "KFAM3503" 1,3499

N1$ = input User File name

P1$ = input User File device address as "xyy"
N2 = input Key File number

P2$ = input Key File device address as "xyy"
N3$ = output User File name

P35 = output User File device address as "xyy"
03% = "C" catalog output User File if

uncataloged,

134

1
> WM

1
~ O

CHAPTER 23 ~ THE KFAM REORGANIZE UTILITIES (KFAM-3 AND KFAM-4)
(Reorganize Sub-system)

= "Y" output User File already cataloged,
do not catalog it.
= "N" output User File is not already
cataloged, catalog it.
4280 S3 = number of sectors to allocate to output * 9
User File. This statement not needed
if 03% = "Y" (above).
*If the utility catalogs the file, the
default value for S3 is the number of
sectors in the input User File.
"C" to copy back Output User File over blank 10
Input User file when reorganization
completed.
= blank to leave input User File intact.

4290 06$

4300 N4
4310 P4$%
4320 04%

output Key File number 1 11
output Key File device address as "xyy"
"C" catalog output Key File, if C 12
uncataloged.
= "Y" output Key File cataloged, do not
catalog it,
= "N" output Key File not cataluged,
catalog it.

o ou

4330 S4 number of sectors to allocate to the * 12
output Key File. Omit this if

O4$ - I|YII'

*If the utility catalogs the file,

the default value is calculated in

proportion to the input Key File

size times the increase or d=crease

in User File size.

il

4340 N5% = name of program to be loaded blank 13
following reorganization

= blank - no program to be loaded

4350 P5% = device address of user program as

Xyy
Additional Lines For KFAM-4 Only

Default See
Line Contents Value Comment
3510 DEFFN'210 (T6) - 14

3520 SELECT #2 input Key File hog mode address

3530 RETURN

3540 DEFFN'211 (T6) 14
3550 SELECT #2 input Key File non-hog mode address

3560 RETURN

135

CHAPTER 23 - THE KFAM REORGANIZE UTILITIES (KFAM-3 AND KFAM-4)
(Reorganize Sub-system)

Comments

1. The CRT screen should be cleared prior to calling the REORGANIZATION
SUB-SYSTEM. Lines 0-3 are used by the utility for messages. Lines 4-15
may be used for a user written display. For example, 1ine 20 might be:

20 PRINT HEX(O30AOAOAQA); "REORGANIZE INVENTORY FILE."

2. The output User File device address may be the same as the 1input User
File device address, if the two files have different names. (For KFAM-4
see comment 15.)

3. If the output Key File device address is the same as the input Key File
device address, and the output Key File name is the same as the input Key
File name, then the output Key File replaces the input Key File. See
comment 10.

4, If the REORGANIZATION SUB-SYSTEM is to <call another program when it
completes execution, the device address of this program file must be
selected for file number #5.

5. The last statement to be executed in the range 1-3499 must be a LOAD DC
that loads module 1 of the utility and clears lines 1-3499 as it does so.
If the KFAM-4 utility is being usedsthe module name is "KFAM3504".

6. Example:
4220 P1§ = "B10"

7. This number is assigned during INITIALIZE KFAM FILE and appears as the
6th character in the input Key File name (normally it is 1).

8. The output user file name need not conform to the KFAM file naming
conventions. This relaxation of normal KFAM requirements may be useful
if the "copy back" option is chosen (line 4290), since in this case it
may be desirable to use an established work file that may have any name.

9. If "C" is assigned to 03%, the output User File 1is cataloged by this
utility, 1if the output file does not already exist. "C" is the default
value of 03%.

If "N" is assigned to 03%, the system ensures that the named output User
File does not already exist on the disk, and catalogs the output User
File.

If the utility catalogs the output User File, it allocates to it the same
number of sectors that are in the input User File, unless a different
number is specified by assigning the desired number of sectors to S3.

If "Y" is assigned to 03$%, the system checks that the named output file
already exists. S3 need not be assigned a value.

The output User file must contain at least 10 sectors.

136

10.

11.

12.

13.

14.

15.

CHAPTER 23 - THE KFAM REORGANIZE UTILITIES (KFAM-3 AND KFAM-4)
(Reorganize Sub-system)

If 063 is assigned the value "C", then the utility constructs the output
Key File name from the input Key File name, and copies the output User
File back into the input User File area, overwriting the input User File.
If 06% is assigned a blank, then the output Key File name is constructed
from the output User File name, and the output file is not copied back.

This number is used in the construction of the output Key File name, in
which it becomes the 6th character. If the constructed name is the same
as the input Key File name, and the same address is specified for both
input and output Key Files, then the output Key File replaces the input
Key File.

The effect of these responses for 04$ and S4 is analogous to 03$ and S3
discussed in comment 9. However, if the utility catalogs the Key File,
its size is proportional to the input Key File size times the increase or
decrease in User File size.

If N5% is assigned a program name, the program is loaded upon completion
of the utility. The program must reside at the address SELECTed for file
number #5 (line 100).

(KFAM-4 ONLY) Lines 3500-3699 must contain the KFAM-4 SELECT subroutines.
These subroutines are discussed in detail in Chapter 22. These 1lines
must not be cleared by the LOAD DC statement at line 110. If the
programmer wants the entire utility to execute in hog mode, or non-hog
mode, lines 3520 and 3550 may be omitted, leaving the subroutines to
consist merely of a RETURN statement. However, the subroutines
themselves must be present. (See Comment 15.)

ADDITIONAL PROGRAMMING NOTES FOR KFAM-4 - The REORGANIZATION SUB-SYSTEM
restricts access to the input files (Key File and User File) by opening
the input file in exclusive mode. However, access to the output files
cannot be controlled in this manner. If the user's own conventions
cannot assure the integrity of the output files during the
reorganization, then hog mode addresses should be specified for file
numbers #0-#4 (1ines 50-90) and the subroutines (1ines 3510-3560) should
omit the SELECT statements at Tlines 3520 and 3550. When the
reorganization is complete, hog mode can be deselected by loading a user
program that turns off hog mode, or RESET can be keyed.

Shown below are two set-up programs, one for KFAM-3 and another for

KFAM-4.

137

CHAPTER 23 - THE KFAM REORGANIZE UTILITIES (KFAM-3 AND KFAM-4)
(Reorganize Sub-system)

Example 23-1 A Set-Up Program To Call KFAM3503

10 REM EXAMPLE OF A REORGANIZATION SET-UP PROGRAM FOR KFAM-3
20 PRINT HEX(030A0AOAQA); "REORGANIZE INVENTORY FILE"

50 SELECT DISK 310 :REM REORG. SUB-SYSTEM

60 SELECT #1 B10 :REM INPUT USER FILE

70 SELECT #2 B10 :REM INPUT KEY FILE

80 SELECT #3 B10 :REM OUTPUT USER FILE

90 SELECT #4 B10 :REM OUTPUT KEY FILE

110 LOAD DC T#0, "KFAM3503" 1, 3499

4210 N1$ = "INVTFO10"
4220 P1$ = "B10"
4240 P2$ = "B10"
4250 N3$ = "INVTFO11"
4260 P3% = "B10"
4310 P4$ = "B10"

Example 23-2 A Set-Up Program To Call KFAM3504

10 REM EXAMPLE OF A REORGANIZATION SET-UP PROGRAM FOR KFAM-4
20 PRINT HEX(O30A0AOAQA); "REORGANIZE INVENTORY FILE"
50 SELECT DISK 310 :REM REORG. SUB-SYSTEM

60 SELECT #1 320 :REM INPUT USER FILE

70 SELECT #2 B20 :REM INPUT KEY FILE

80 SELECT #3 320 :REM OUTPUT USER FILE

90 SELECT #4 B20 :REM OUTPUT KEY FILE

100 SELECT #5 310 :REM USER PROGRAM

110 LOAD DC T#0, "KFAM3504" 1, 3499

3510 DEFFN' 210 (T6)

3520 SELECT #2 BAO

3530 RETURN

3540 DEFFN' 211 (T6)

3550 SELECT #2 B20

3560 RETURN

4210 N1$ = "INVTF040"

4220 P1$ = "320"

4240 P2$ = "B20"

4250 N3$ = "WORK"

4260 P3$ = "320"

4290 06% = "C" :REM COPY BACK QUTPUT USER FILE
4310 P4$ = "B20"

4340 N5$ = "START"

4350 P5% = "310"

23.1.3 Utility Operation and Error Messages

The operation of the utility may be divided into three parts:

1) The User File is read sequentially, using FINDFIRST/FINDNEXT, and
copied to the output file so that the records are physically in
sequential order, and DELETED records are eliminated.

2) A new Key File is built, based on the keys in the output User File,

using a special procedure. The new Key File, optionally, may
occupy the same physical space as the old Key File.

138

CHAPTER 23 - THE KFAM REORGANIZE UTILITIES (KFAM-3 AND KFAM-4)
(Reorganize Sub-system)

3) If indicated by the set-up program, the output user file is copied
back to the input user file, overwriting the original.

The original Key File and User File are not altered until the output User
File has been written, complete with the necessary information to restore the
Key File. Therefore, it is not essential to have backup copies of the User
File and Key File. If the system fails during Part 1 of the reorganization,
the original Key File and User File are intact. If the system fails during
Part 2, both the input User File and the output User File are intact, and a
Key File may be built for either one, using the Key File Recovery Utility.
During Part 3, the output User File remains intact, as well as the Key File.
Although backup disks are not necessary for this operation, it is good
practice to make backup copies reqularly, especially of the User File.

There are no operating instructions for this program, because normally no
operator intervention is required. However, there are recovery procedures,
for certain error conditions. These are described below:

ERROR MESSAGE EXPLANATION/RECOVERY

1. ERR 72 Disk read error.
Part 1: Input User File or Key
File has an unreadable sector.
Part 2: Output User File or Key
File has an unreadable sector.
Part 3: Output User File has an
unreadable sector.

RECOVERY: Part 1: Run Key File
Recovery Utility. Rerun.

Part 2: Run Key File Recovery
Utility.on input User File, if
input Key File is being overwritten.
Rerun.

Part 3: Run Key File Recovery
Utility on output User File. Set
up Reorganize Subroutine to
reorganize output User File, giving
input User File.

2. ERR 85 Disk write error.
Part 1: Output User File contains
a bad physical sector.
Part 2: Output Key File contains a
bad physical sector.
Part 3: Input User File contains a
bad physical sector.

RECOVERY: Part 1: Replace the
output disk, or recreate file to
bypass the bad sector. Rerun.

Part 2: Replace the disk containing
the output Key File, or recreate the
file to bypass the bad sector. If

139

CHAPTER 23 - THE KFAM REORGANIZE UTILITIES (KFAM-3 AND KFAM-4)
(Reorganize Sub-system)

3. ERR 80

4. FILE ######## NOT FOUND ON

DEVICE ###

5. INPUT AND OUTPUT USER FILE MAY
NOT BE THE SAME FILE

6. ######## NOT KFAM FILE NAME

7. INVALID KEY FILE NUMBER #

8. INSUFFICIENT SPACE FOR FILE
######4# ON DEVICE ###

9. FILE ######## ALREADY CATALOGED
ON DEVICE ###

140

input and output Key File are the
same, run Key File Recovery. Rerun.
Part 3: Replace input disk or
recreate input User File to bypass
the bad sector. See recovery
procedure for ERR 72, Part 3.

Program not on disk. The four
modules listed in 23.1.1 must
reside on the device specified by
"SELECT DISK". Correct and rerun.

Required KFAM file (User File or
Key File) is not on designated
disk.

RECOVERY: Mount disk containing the
designated file. Rerun.

Both input and output User Files
are designated by the same file
name, on the same device.

RECOVERY:
nations.

Correct the file desig-
Rerun.

File name must have "F" in position
5, and a digit 0-9 in position 6.

RECOVERY: Correct the file name.
File name may be changed on disk
using. SCRATCH and DATASAVE DC OPEN.
Rerun.

Key File number not 1-9, or not an
integer.

RECOVERY:
number.

Correct the Key File
Rerun.

There is not enough space on the
designated disk device to catalog the
file.

RECOVERY: Mount an output disk with
enough free space to accommodate the
output User File and/or Key File.
Rerun.

A file designated as "not cataloged"
is already cataloged, or another
file exists of the same name.

RECOVERY: Mount a scratch disk or
other disk which does not already

CHAPTER 23 - THE KFAM REORGANIZE UTILITIES (KFAM-3 AND KFAM-4)
(Reorganize Sub-system)

have this file name cataloged.
Rerun.

If this is a rerun, change the
values of 03% and 04% (user set-up
module) to "C", and run.

10. ERROR QPENING FILES KFAM "“OPEN" subroutine returns an
error indication.

RECOVERY: If this is a rerun, set
V9=0 and rerun.

11. INVALID RECORD FORMAT Type A records: Invalid control
byte or more than 38 fields per
record.

RECOVERY: The program will not
reorganize this file.

12. NOT BLOCKED AS SPECIFIED Type A records: Blocking of record
not the same as blocking specified
in the KDR.

RECOVERY: MWrite a program to open
the file, change V8% in the KDR,
and close the file. Run it. Then
rerun the reorganization.

13. RECORD LENGTH NOT SPECIFIED Type A records: Record length not
CORRECTLY the same as specified in the KDR.

RECOVERY: Change STR(V1$,2,1) in
the KDR (see 12, above). Rerun.

14. KEY FIELD OUT OF BOUNDS Type A records: The starting
position of the key and/or key length
are such that the key is not wholly
included within a field of the
record.

RECOVERY: Change the starting
position of the key, STR(V1$,4,1),
or the key length, STR(V1$,5,1), in
the KDR (see 12, above). Rerun.

15. NUMERIC KEY INVALID Type A records: The key field is
indicated as lying within a numeric
variable.

RECOVERY: See 14, above, to change
key field position. The key may not
be a numeric variable. Rerun.

141

CHAPTER 23 - THE KFAM REORGANIZE UTILITIES (KFAM-3 AND KFAM-4)
(Reorganize Sub-system)

16.

17.

18.

19.

20.

21.

22.

23.

NULL FILE

FINDFIRST ERROR

FINDNEXT ERROR

OQUTPUT USER FILE SPACE EXCEEDED

OUTPUT KEY FILE SPACE EXCEEDED

8 LEVELS OF INDEX EXCEEDED

SEQUENCE ERROR, HEX KEY = (key
value)

INVALID KEY, HEX VALUE =
(key value) KEY RETURN(EXEC)
TO SKIP RECORD

142

There are no active records in this
file.

RECOVERY: Run "INITIALIZE KFAM FILE"
to reorganize this file.

Hzrdware or software error.

RECOVERY: Rerun. Notify Wang
Laboratories if the problem persists.

Hardware or software error.

RECOVERY: Rerun. Notify Wang
Laboratories if the problem
persists.

Qutput User File is too small to
contain all the active records from
the input User File.

RECOVERY: Allocate more space for
the output User File, and rerun.

Qutput Key File is too small.

RECOVERY: If the output Key File
is the same as the input Key File,
run KEY FILE RECOVERY on the input
User File. Allocate more space for
the output Key File, and rerun.

More than 390,625 30-byte keys,
or more than 429,981,696 12-byte
keys, etc. This error should not
occur.

RECOVERY: Notify Wang Laboratories.

The key contained in the input
User File is not the same as the
key in the input Key File.

RECOVERY: Check for errors in
application programs that may cause
this condition. Run KEY FILE
RECOVERY on input User File. Rerun.

The record is included as active
in the input Key File, but flagged
as deleted in the input User File.
RECOVERY: See 22, above.

The option is also provided to skip
the record and continue.

CHAPTER 23 ~ THE KFAM REORGANIZE UTILITIES (KFAM-3 AND KFAM-4)
(Reorganize KFAM File Utility)

24. MOUNT DISK CONTAINING PROGRAM The reorganization is finished
#H44#44### ON DEVICE ### KEY and ready to load the next program,
RETURN(EXEC) TO RESUME which is not found on the

designated device.

RECOVERY: Mount the disk containing
the next program on the designated
device. KEY RETURN(EXEC).

25. ACCESS NOT EXCLUSIVE The input KFAM File is currently
open by another CPU.

RECOVERY: Other CPU's must close the
file.

23.2 REORGANIZE KFAM FILE

23.2.1 Overview

This program reorganizes a KFAM File in place. The record which belongs
first, 1in ascending key sequence, 1is switched with the record that is
physically first. This process is repeated for the second record, and so
forth, until the entire User File has been placed in sequential order. In the
process, all DELETED records are removed. Then, the Key File is reinitialized
and a new Key File is created in the space formerly occupied by the old Key
File. No additional disk space is required for the User File or the Key File;
a 15 sector work file is required. This program is 4 to 5 times slower than
the REORGANIZATION SUB-SYSTEM utility, and therefore should be used only if
the file is too large to permit simultaneous mounting of an output file as
required by the REORGANIZATION SUB-SYSTEM.

Because this program destroys both the User File and the Key File, as
they formerly existed, there is no possible recovery in the event of hardware
or software error. For that reason, backup copies of the User File and the
Key File must be made before running this program.

This program reorganizes any KFAM file, with the exception of type M
records with more than 40 sectors per record. However, it should be noted
that multiple-sector records require extra storage space in memory, and that
this program cannot operate in a 12K system if the record length exceeds 8
sectors.

NOTE:
For KFAM-4 only, hog mode is automatically selected for
the disk drives containing the User File, Key File, and
Work File. To operate the utility at a non-multiplexed
disk drive key:
M$ = "X"(EXEC)

at KFAM-4 utilities menu, prior to loading the utility.

143

CHAPTER 23 - THE KFAM REORGANIZE UTILITIES (KFAM-3 AND KFAM-4)
(Reorganize KFAM File Utility)

23.2.2 Operating Instructions

DISPLAY

ARE THERE BACKUP COPIES OF
USER FILE AND KEY FILE?
(Y OR N)

The system displays: ’
ANY ERROR DURING THE RUNNING OF
PROGRAM FILE WILL DESTROY BOTH
FILES. MAKE COPIES OF THE DISK
PLATTER(S) CONTAINING THE USER
FILE AND THE KEY FILE BEFORE
RUNNING THIS PROGRAM. STOP

ENTER USER FILE NAME (SSSSFJINN)

ENTER THE NO. OF THE USER FILE
DEVICE ADDRESS

1. 310 5. B10
2. 320 6. B20
3. 330 7. B30
4. 350

144

INSTRUCTIONS

Make backup copies of both
the User File and the Key
File.

If anything goes wrong during
the execution of the utility,
both files are destroyed.

Mount disk platter(s) con-
taining the User File and the
Key File.

To access the REORGANIZE

KFAM FILE utility, depress

the specified Special Function
key from KFAM-3 or KFAM-4
subsidiary menu.

Enter Y if backup copies
exist. Proceed with Step 6
below.

Enter N for "no" or "don't
know". Proceed with Step 5.

Make backup copies of both the
User File and the Key File.

‘Key CONTINUE RETURN(EXEC) and

go to step 4.

Enter the name of the User
File.

MESSAGE: 2, 4
Enter the selection number

for the device address of the
User File.

NOTE:

Error messages and recovery
procedures follow the operator
instructions.

MESSAGE: 2, 5

8.

10.

11.

The system displays:
ENTER KEY FILE NUMBER (NORMAL=1)

The system displays:
ENTER THE NUMBER OF THE KEY FILE

CHAPTER 23 - THE KFAM REORGANIZE UTILITIES (KFAM-3 AND KFAM-4)

DEVICE ADDRESS

1. 310
2. 320
3. 330
4. 350

ENTER WORK FILE NAME

5. B10
6. B20
7. B30

ENTER THE NUMBER OF THE WORK FILE
DEVICE ADDRESS

310
330
. 330
350

BN —

5. B10
6. B20
7. B30

145

8.

10.

11.

(Reorganize KFAM File Utility)

Enter the Key File Number.

The Key File Number should
always be 1, unless there
are multiple key files for

a single User File, 1in

which case, the Key File
Number can be any digit from
1 to 9.

MESSAGE: 2, 3, 6

Enter the selection number
for the device address of
the Key File.

MESSAGE: 2, 5

15 sectors are required for

a work file. This work file
may be a cataloged file,
either a scratch file that
already exists or a new file
created by this program, or it
may reside in the temporary
work file area (if any)

beyond the cataloged area

of one of the disk platters.

If the work file is a file
already cataloged, or if it
is to be cataloged, enter
the name of the work file.

If the work file is to reside
in the uncataloged area of one
of the disk platters, key
RETURN(EXEC) alone.

Enter the selection number
for the work file device
address.

If no name was entered for

the work file, the program
proceeds to Step 13, below.

MESSAGE: 2, 5, 7

CHAPTER 23 - THE KFAM REORGANIZE UTILITIES (KFAM-3 AND KFAM-4)
(Reorganize KFAM File Utility)

12. IS WORK FILE CATALOGED? (Y OR N)

13.

14. REORGANIZE KFAM FILE

15.

Error Messages

ERROR MESSAGE
2. RE-ENTER

3. ERRZ29

4. NOT KFAM FILE NAME

146

12. Enter Y if the work file has
been previously cataloged.

Enter N if the work file has
not been previously cataloged.

MESSAGE: 2, 8, 9, 10

13. The system opens the Key File
and User File and begins
processing.

No operator intervention is
required from this point on.

MESSAGE: 8, 11, 12, 13, 14
15, 16, 17, 18, 19

14. This file is being reorganized.
Any error from this point on
effectively destroys both the
User File and the Key File.
Both files should be re-
created from backup copies
before attempting to rerun.

MESSAGE: 1, 12, 13, 20,
21, 32

15. The number of records in the
User File is displayed and
the system returns to KFAM
subsidiary menu.

EXPLANAT ION/RECOVERY

Too many characters were entered, or
not "Y" or "N" in response to a
"yes" or "no" question.

RECOVERY: Repeat the step, entering
the correct value.

A non-numeric quantity was entered
when a numeric quantity was
requested.

RECOVERY: Reenter numeric quantity.
The User File name must have an "F"

in position 5 and a digit (0-9) in
position 6.

10.

1.

CHAFPIER 23 - THE KFAM REORGANIZE UTILITIES (KFAM-3 AND KFAM-4)

INVALID DEVICE
ADDRESS

INVALID

ERR64

ERR80O

ERR79

WORK FILE TOO SMALL

STOP ERROR OPENING FILES

147

(Reorganize KFAM File Utility)

RECOVERY: Repeat Step 6. Enter
correct User File name.

The device address for User File,
Key File, or work file was invalid.

RECOVERY: Repeat the step. Enter
correct device address selection
number.

The Key File number may not be 0.

Repeat Step 8. Enter Key File
number 1-9,

Sector not on disk. The temporary
work file area on the specified
platter is not large enough to hold
the work file (15 sectors).

RECOVERY: Rerun the program from
Step 4. Specify a different platter
or a cataloged file for the work
file.

File not found. User File, Key
File, or work file.

RECOVERY: LISTDCF and/or LISTDCR.
Check which file 1is not there.
Correct and rerun the program.

File already cataloged. The work
file is already cataloged.

RECOVERY: Rerun the program from
Step 4. Pick another name for the
work file, or answer "Y" to "IS WORK
FILE CATALOGED?".

The cataloged file named as a work
file contains less than 15 sectors.

RECOVERY: Repeat from step 10.
Enter a new name for the work file.

File could not be opened. Possible
cause: The program was stopped and
restarted after processing had
begun.

RECOVERY: Recreate User File and
Key File from backup copies. Rerun
this program. If the error
persists, notify Wang Laboratories,
Inc.

CHAPTER 23 - THE KFAM REORGANIZE UTILITIES (KFAM-3 AND KFAM-4)
(Reorganize KFAM File Utility)

12.

13.

14.

15.

ERR72

ERR85

STOP MORE THAN 40 SECTORS
PER RECORD

INVALID RECORD FORMAT (STOP)

148

Disk read error. See accompanying
program statement for file being
read:

#1 = Key File

#2 = User File

#3 = Program File
#4 = Work File
#T1= Key File

#T1(T9)=Key File

If "REORGANIZE KFAM FILE (KFAM3203)"
is displayed on the screen, the User
File and Key File must be recreated
from backup copies. Rerun the
program. If the error persists, the
file being read is permanently
damaged, or there 1is a hardware
malfunction.

Disk write error. See accompanying
program statement for file being
written:

#1=Key File

#2=User File

#4=Work File

#T1=Key File

RECOVERY: If "REORGANIZE KFAM FILE"
is displayed on the screen, the User
File and Key File must be recreated
from - backup copies. Rerun the
program. I¥ the error persists,
either the disk platter is
permanently damaged, or there 1is a
hardware malfunction.

This program will not reorganize a
file with a record length of more
than 40 sectors.

RECOVERY: This program may be
modified by the wuser for the
particular application, by dropping
ISS module KFAM3103 (or KFAM3104 for
KFAM-4) and coding the necessary
statements in KFAM3203 (or KFAM3204
for KFAM-4) (see KFAM "Programming
Techniques" - Generated Code).

Record type A, array-type blocking:
more than one sector per block, more
than 38 fields per record, or not
written with correct control bytes.

RECOVERY: The program will not
reorganize this file.

16.

17.

18.

19.

20.
21.
22.

CHAPTER 23 - THE KFAM REORGANIZE UTILITIES (KFAM-3 AND KFAM-4)

NOT BLOCKED AS SPECIFIED (STOP)

RECORD LENGTH NOT SPECIFIED
CORRECTLY (STOP)

KEY FIELD OUT OF BOUNDS (STOP)

NUMERIC KEY INVALID (STOP)

The following errors are
preceded by the general
message:

RESTORE BOTH USER FILE AND

KEY FILE FROM BACKUP COPIES
BEFORE ATTEMPTING TO RE-RUN
THIS PROGRAM

PROGRAM ERROR
or
SEQUENCE ERROR
or
LAST KEY NOT FOUND

149

(Reorganize KFAM File Utility)

Record type A, array-type blocking:
records per block specified in-
correctly, in INITIALIZE KFAM FILE
or records not written 1in array
format.

RECOVERY: The program will not
reorganize this file.

Record type A, array-type blocking:
record length specified in
INITIALIZE KFAM FILE does not equal
record length of sample record.

RECOVERY: The program will not
reorganize this file.

Record type A, array-type blocking:
the key must be wholly contained
within one field of the record.

RECOVERY: The program will not
reorganize this file.

Record type A, array-type blocking:
the key falls within a numeric
field.

RECOVERY: The program will not
reorganize this file.

The status of the User File and Key
File, being partially reorganized,
is not defined at this point. Both
files are effectively destroyed.

RECOVERY: Recreate User File and
Key File from backup copies.

a) The keys in the Key File do not
match the keys in the corresponding
User File records.
b) Machine error,

RECOVERY :

a) The applications programmer
should write a small program to
determine which keys do not match.
Following FINDFIRST or FINDNEXT, T7$
contains the key value from the Key
File. This can be compared to the
corresponding key value in the User
File. The non-matching keys should

CHAPTER 23 - THE KFAM REORGANIZE UTILITIES (KFAM-3 AND KFAM-4)
(Reorganize KFAM File Utility)

23.

STOP ACCESS NOT EXCLUSIVE

150

be corrected or deleted before the
reorganization program is run.
b) Rerun the program,

KFAM-4 ONLY. The User File is in
use by another CPU, or a "phantom"
entry exists in the ACCESS TABLE.

RECOVERY: Wait until other CPU's
close the file, or if an erroneous
entry is in the ACCESS TABLE,run
RESET ACCESS TABLE utility.

CHAPTER 24
THE ADJUST KFAM FILES UTILITIES

24.1 REALLOCATE KFAM FILE SPACE (KFAM-3 AND KFAM-4)

24.1.1 OQverview

The utility programs REALLOCATE KFAM FILE SPACE and DISK COPY AND
REORGANIZE can be used in conjunction with one another to lengthen or shorten
KFAM Key Files and User Files. The latter program can be used alone to copy
any disk file.

Non-KFAM data files, maintained with the Catalog Mode statements, keep
track of the end of live data with a special trailer record written by the
statement DATA SAVE DC END. When saved, this record updates the USED
parameter in the disk catalog. The value of this parameter appears in the
USED column of a catalog listing. The absolute end of the file area is marked
by a fixed control sector whose address appears as "END" in a catalog listing.

KFAM does not use this system for keeping track of the end of 1ive data
in the User File, but it does operate within the framework of Catalog Mode
files. KFAM automatically puts the DATA SAVE DC END trailer in the next to
last sector of the file (the sector immediately preceding the end-of-file
control sector). This is done during INITIALIZE KFAM FILE, for both the Key
File and the User File. During normal operations KFAM leaves the end-of-data
trailer in this Tocation.

KFAM keeps its own file boundary information in the Key File's first
record, the KDR. It keeps two items of information for each file: the total
number of available sectors and the total number of sectors presently
occupied by data. The first item, the total number of available sectors, can
have an absolute maximum value which is two less than the total number of
sectors allocated to the cataloged file. This is because the DATA SAVE END
trailer and the control sector at the end of the file are always present, and
can never be used for file records.

Thus, for each file, Key File and User File, there exist four values:
Two Catalog system values:
T = total space allocated for the file. This is the total number
of sectors occupied by the file, from the starting sector
through the ending sector, as recorded in the disk catalog.

T = "END" - "START" + 1. T is established by DATA SAVE DC
OPEN, and can only be changed by copying the file.

151

CHAPTER 24 - THE ADJUST KFAM FILES UTILITIES
(Reallocate KFAM File Space)

U = sectors used by the file. This is the number recorded in the
disk catalog for the number of sectors used. With KFAM, this
value does not reflect the number of sectors occupied by live
data. It is established by the location of the DATA SAVE DC
END TRAILER. This 1is automatically put 1into the sector
immediately preceding the control sector, at the end of the
file, by INITIALIZE KFAM FILE.

Two KFAM-maintained values (kept in the KDR record):

K = total number of sectors available for file records, K=U-2,
since the value of U includes the two sectors of "overhead"
(the control sector, and the DATA SAVE DC END trailer
sector).

L = number of sectors occupied by live data (index records, for
the Key File) din a KFAM File. This value is regularly
updated by the FINDNEW subroutine. The difference, K-L, is
sectors which presently contain no data, but have been set
aside for future expansion by KFAM, based on the wuser's
specification of the maximum number of records the file may
contain.

REALLOCATE KFAM FILE space changes the value of K, and rewrites the
DATASAVE DC END trailer to adjust U, so that the relationship U-2=K is
preserved. K may not be made less than L nor greater than T-2. Thus, the
purpose of this program is to change the size of a file from the point of view
of KFAM's internal control of file space. Of itself, this does not change the
cataloged disk space, T, allocated to the file. It is one phase of a
two-phase operation to change the actual size of a KFAM file. The other phase
is performed by DISK COPY AND REORGANIZE which, by copying a file, can change
the value of T. ‘

REALLOCATE KFAM FILE SPACE can change the value of K and U for both a Key
File and User File in a single execution of the utility. Generally, if one
file size is changed, the other should be changed, proportionally. The files
may be on the same disk or different disks. The program displays the
"LENGTH", K, "LOW LIMIT", L, and "HIGH LIMIT", T-2, for both the user file and
the key file. It then provides the option to change the length, K, of either
or both.

To Shorten a KFAM File:

1. Run REALLOCATE KFAM FILE SPACE decreasing the values of K as
desired.

2. Run DISK COPY AND REORGANIZE to copy the files into new files that
have fewer total sectors, T.

NOTE :

To preserve RECOVERY capability when copying the User
File, copy the exact number of sectors specified as
"SECTORS USED".

152

CHAPTER 24 - THE ADJUST KFAM FILES UTILITIES

To Lengthen a KFAM File:

1.

For KFAM-4 only, hog mode is selected for the disks containing the
File and the Key File.

key

Run DISK COPY AND REORGANIZE to copy the files into new files

have more sectors, T.

(Reallocate KFAM File Space)

that

Run REALLOCATE KFAM FILE SPACE to increase K for each of the copied

files.

To preserve RECOVERY capability set the User File size to
the exact number of sectors specified as "HIGH LIMIT."

NOTE:

M$ = "X" (EXEC)

User

To execute the utility at a non-multiplexed disk drive

at KFAM-4 utilities menu, prior to loading the utility.

24.1.2 Operating Instructions REALLOCATE KFAM FILE SPACE

DISPLAY

2. ENTER USER FILE NAME (SSSSFJNN)

ENTER THE NO. OF THE USER FILE

DEVICE ADDRESS

1. 310
2. 320
3.

4. 350

330

5. B10
6. B20
7. B30

153

INSTRUCTIONS

Mount the disks containing the
user file and key file. From
KFAM subsidiary menu, access
REALLOCATE KFAM FILE SPACE

via the indicated Special
Function key.

Enter the name of the file.

MESSAGE: 2, 4, 5

NOTE:

Error messages and recovery
procedures follow the operator
instructions.

Enter the selection number for
the user file device address.

MESSAGE: 2, 6

CHAPTER 24 - THE ADJUST KFAM FILES UTILITIES
(Reallocate KFAM File Space)

4. ENTER THE NO. OF THE KEY FILE 4.
DEVICE ADDRESS.
1. 310 5. B10
2. 320 6. B20
3. 330 7. B30
4. 350
5. ENTER NUMBER OF KEY FILE 5.
6 6.
7. DO YOU WISH TO REALLOCATE UF 7.

SPACE? (Y OR N)

8. INPUT NEW UF SECTOR ALLOCATION 8.

154

Enter the selection number for
the device address of the key
file.

MESSAGE: 2, 6

Normally, enter 1.

If there is more than one key
file associated with the user
file, enter the number of the
key file to be accessed.

MESSAGE: 2, 3, 7

The system reads the KDR
record of the specified index
and displays the current space
allocation. It also displays
the low and high limits to
which it may be changed, for
both the user file and the

key file.

MESSAGE: 8, 9, 10

To change the user file space
allocation,
enter Y or nothing.

To leave the user file space
allocation unchanged,
enter N.

If N is entered, the
program proceeds to Step 10
below.

Enter the number of sectors
to be allocated to the user
file for the use of KFAM.

NOTE:

To preserve RECOVERY capa-
biTlity when lengthening the
file, enter the number of sec-
tors specified as "HIGH LIMIT".

To increase the physical size
of a disk file, run the "Disk
Copy and Reorganize" program

10.

11.

12.

13.

14.

CHAPTER 24 -~ THE ADJUST KFAM FILES UTILITIES

9.
DO YOU WISH TO REALLOCATE 10.
SPACE FOR KF? (Y OR N)
ENTER NEW KF SECTOR 11.
ALLOCATION

12.

13.
DO YOU WISH TO DO ANOTHER FILE? 14.
(Y OR N)

155

(Reallocate KFAM File Space)

first; then run this program to
make the increased number of
sectors available to KFAM.

This program does not increase
the space allocated to the file
on the disk. It only adjusts
internal pointers so that

KFAM is able to use more, or
less, of that space.

MESSAGE: 2, 3, 12

The system displays the new
sector allocation.

To change the key file space
allocation,
enter Y or nothing.

To leave the key file space
allocation unchanged,
enter N.

If N is entered, the
program proceeds to Step 14
below.

MESSAGE: 2, 11

Enter the number of sectors
to be allocated to the key
file for the use of KFAM.

This program only adjusts
internal pointers in the

KFAM file. To increase the
physical size of a disk file,
run "Disk Copy and Reorganize"
first.

MESSAGE: 2, 3, 12

The system displays the
new sector allocation.

The program makes the
internal adjustments to the
user file and the key file.

MESSAGE: 9, 13

To do another file, if both
user file and key file are
already mounted,

enter Y or nothing.

CHAPTER 24 - THE ADJUST KFAM FILES UTILITIES
(Reallocate KFAM File Space)

15.

Error Messages

ERROR MESSAGE
RE-ENTER

ERR29

FILE NAME MUST HAVE F IN
POSITION 5

FILE NAME MUST HAVE NUMBER
IN POSITION 6

INVALID DEVICE ADDRESS

INVALID

156

To stop, or to do another
file which is not already
mounted,
enter N.

If "Y" is entered, or
RETURN(EXEC) alone is keyed,
the program proceeds to

Step 2 above.

If "N" is entered, the
program continues with Step 15
below.

MESSAGE: 2, 11

15. The system returns to KFAM
subsidiary menu.

EXPLANATION/RECOVERY
Too many characters were entered.

RECOVERY: Repeat the step,
entering no more than the number
of characters indicated on the
screen.

A non-numeric quantity was entered
when a numeric quantity was requested.

RECOVERY: Reenter numeric quantity.

The file name entered does not
conform to KFAM naming convention.

RECOVERY: Repeat Step 2, entering
the name of a KFAM file.

The file name entered does not
conform to KFAM naming convention.

RECOVERY: Repeat Step 2 entering
the name of a KFAM file.

An invalid selection number was
entered.

RECOVERY: Repeat the step, entering
a valid selection number.

The number 0 is not valid for
a key file number.

8.

10.

11.

12.

13.

ERR80

ERR72

STOP RUN KFAM2003 FIRST

ANSWER Y OR N

INVALID-0OUT OF BOUNDS

ERR85

CHAPTER 24 - THE ADJUST KFAM FILES UTILITIES

157

(Reallocate KFAM File Space)

RECOVERY: Repeat Step 5, entering
a number from 1 through 9.

Either the user file or the key
file was not found on the
designated platter.

RECOVERY: PRINT U1$ for the name of
the user file. PRINT K1$ for the

name of the key file. Execute LIST

DC to determine what files are present
on the disk platters. Rerun the
program.

Disk read error, either a machine
error or bad data on disk.

RECOVERY: Recreate the KFAM file
from a backup volume, and rerun
the program.

Internal pointers indicate the
KEY FILE CREATION UTILITY has

not been run to build the key

file.

RECOVERY: Run the KEY FILE
CREATION UTILITY; then rerun
this program.

The answer to a "yes" or "no"
question must be Y or N, or
RETURN(EXEC) alone, indicating
IlyeSII .

RECOVERY: Repeat the step with
the correct response.

The new length specified for the
file is greater than the high
1imit or less than the Tow Timit.

RECOVERY: Repeat the step, entering
a number which is within the Timits
displayed on the screen, for the
file (key file or user file).

Disk write error. The key file
and/or user file are destroyed.

RECOVERY: Recreate the KFAM
files from a backup volume, and
rerun this program.

CHAPTER 24 - THE ADJUST KFAM FILES UTILITIES
(Disk Copy and Reorganize)

NOTE:
FOR KFAM-4 ONLY

If a file (User File or Key File) is not found, the
message FILE NOT FOUND is generated, and not ERR80, as
with KFAM-3.

If the file is flagged as being in use, the error message
"FILE BUSY" is generated.

"HARDWARE" error messages of the type "ERR XX" are
intercepted by the program and the message "ERR XX LINE
XXXX" is generated.

Any of the above errors cause the program to stop. To
return to the menu following such a stop, key CONTINUE,
(EXEC).

24.2 DISK COPY AND REORGANIZE (KFAM-3 AND KFAM-4)

24.2.1 Overview

This program copies a file from one disk to another. It can be used in
conjunction with REALLOCATE KFAM FILE SPACE to copy a KFAM file and change its
length. It can be used alone to copy any cataloged file to another disk, and
in this way can be used to rearrange disk files.

The input disk contains the files to be copied. Files are copied one at
a time with intervening operator parameter entries. Any cataloged file may be
copied including program files. The wutility provides for operator
specification of the number of sectors in the output file. However, if the
input file s a program file, or a data file with a DATASAVE DC END trailer,
the output sectors may not be less than the number of Used sectors in the
input file. A data file without a DATASAVE DC END trailer may be copied
without this restriction.

The output disk receives the copied files. It must have been initialized
before running this program, using the SCRATCH DISK statement. It may contain
other files written on it in Catalog Mode prior to execution of this program.

The program uses the cataloging mechanism provided by the system. Copied
files begin at the next free sector. File names are entered in the index of
the output disk.

This program is an addition to, but not a replacement of, existing
hardware functions such as MOVE, COPY, and VERIFY.

To copy complete KFAM files, the key file and the user file must both be
copied. However, since Key File and User File can reside on separate disks,
this program permits rearranging these files into the most advantageous
combinations.

158

CHAPTER 24 - THE ADJUST KFAM FILES UTILITIES
(Disk Copy and Reorganize)

NOTE:
For KFAM-4 only, hog mode is selected for the input disk
and output disk. To execute the utility at a
non-multiplexed disk drive key
M$ = hyn

at KFAM-4 utilities menu, prior to loading the utility.

24.2,2 Operating Instructions

DISPLAY

3. ENTER THE NO. OF THE INPUT
PLATTER DEVICE ADDRESS

1. 310 5. B10
2. 320 6. B20
3. 330 7. B30
4. 350

4. ENTER THE NO. OF THE OUTPUT
PLATTER DEVICE ADDRESS

1. 310 5. B10
2. 320 6. B20
3. 330 7. B30
4. 350

5. ENTER FILE NAME

159

INSTRUCTIONS

Mount the input and output
disks.

From KFAM-3 or KFAM-4 menu
access DISK COPY/REORGANIZE
via the specified Special
Function key.

Enter the selection number
of the input disk device
address.

Enter the selection number

of the output disk device
address.

MESSAGE: 2, 4, 5

NOTE:

Error messages and recovery
procedures follow the operating
instructions.

Enter the name of the file
to be copied.

To end the program, key
RETURN(EXEC) and go
to step 11.

CHAPTER 24 - THE ADJUST KFAM FILES UTILITIES

10.

11.

12.

6.

7.
ENTER NUMBER OF SECTORS TO BE 8.
COPIED

9.

10.

MOUNT SYSTEM DISK KEY RETURN(EXEC) 17.

TO RESUME

(Disk Copy and Reorganize)

12.

160

NOTE:

A new input or output platter
may be mounted at this point.

MESSAGE: 2, 6, 7, 14

The system displays the input
platter designation, the

output platter designation,

and the number of sectors
available on the output platter.

The system displays the name
of the file to be copied, the
number of sectors it occupies
on the input platter, and the
number of sectors used for
program or data storage.

Enter the number of sectors
to be allocated to the file
on the output platter.

MESSAGE: 2, 3, 8, 9, 10

NOTE:

To preserve KEY FILE RECOVERY
capability when decreasing the
size of User Files, specify the
exact number of sectors shown
as "SECTORS USED".

The program copies the file
from the input platter to
the output platter.

MESSAGE: 11, 12, 13

The program displays the num-
ber of sectors now available
on the output platter.

Go to step 5.

Mount the KFAM ISS disk.
Key (EXEC).

The system returns to the KFAM
menu.

CHAPTER 24 - THE ADJUST KFAM FILES UTILITIES
(Disk Copy and Reorganize)

Error Messages

ERROR MESSAGE EXPLANATION/RECOVERY
2. RE-ENTER Too many characters were entered.

RECOVERY: Repeat the step,
entering not more than the number
of characters indicated on the
screen.

3. ERRZ29 A non-numeric quantity was
entered when a numeric gquantity
was requested.

RECOVERY: Reenter numeric
quantity.

4, INVALID Platter address designation
invalid.

RECOVERY: Repeat the step
entering a valid selection

number.
5. INPUT AND OUTPUT PLATTERS The same platter designation
MUST BE DIFFERENT was entered for both input and
output.

RECOVERY: Repeat from Step 3
entering different platter
designations for input and output.

6. FILE NOT FOUND Input file not found.

RECOVERY: Repeat from Step 5.
Enter correct input file name.

7. STOP NO ROOM TO COPY The number of sectors used by
the input file is greater
than the number of cataloged
sectors available on the output
platter. Therefore there is not
enough room on the output
platter to copy the file. For
KFAM-4 only, key (EXEC) to
return to the KFAM-4 menu.

RECOVERY:
1. Replace the output platter

with another platter, with
more space available.

161

CHAPTER 24 -~ THE ADJUST KFAM FILES UTILITIES
(Disk Copy and Reorganize)

8.

9.

10.

LESS THAN SECTORS USED

GREATER THAN AVAILABLE SPACE

ERR79

162

2. Or, use MOVE END to increase
the cataloged area on the
output platter,

3. LIST DC may be used at this
point to determine the
contents of the output
platter.

4. SCRATCH may be used to remove
unwanted files from the
output platter. This will
not free any space, however.
To free the space occupied by
scratched files, remove the
input platter and replace it
with a scratch disk, use MOVE
to copy the output disk to
the scratch disk, and use
COPY to copy the new contents
of the scratch disk back to
the output disk.

To resume, begin at step 1.

This program will not copy less
than the number of sectors used.

RECOVERY: Repeat Step 13. Enter
a number at least as large as
sectors used.

To shorten sectors used in a KFAM
file, see REALLOCATE KFAM FILE SPACE.

The number of sectors to be copied
is greater than the number of
sectors available on the output
platter.

RECOVERY: Repeat Step 8. Enter a
number not greater than available
space, as shown in the screen
display.

To increase the size of the
output cataloged area, see Error
Message 7, above.

A file of the same name is already
cataloged on the output platter.
Two files of the same name may not
be cataloged on the same platter.

RECOVERY: To replace the existing
file on the output platter with a
new file of the same name,

11.

12.

13.

14.

ERR72

ERR85

STOP DISASTER

PROTECTED PROGRAM

CHAPTER 24 - THE ADJUST KFAM FILES UTILITIES

163

(Disk Copy and Reorganize)

enter: SCRATCH T#2, N$

key: RETURN(EXEC)

enter: DATASAVE DC OPEN
T$#2,N$, "dummy name"

key: RETURN(EXEC)

repeat from Step 1 reentering
the name and length of the new
file to be copied.

To Teave the existing file on
the output platter and proceed
on to the next file, repeat from
Step 1.

Disk read error.

RECOVERY: For either ERR 72 or
ERR85, the procedure is as follows:
To retry the disk read or write
operation, enter RUN XXXX, where
XXXX is the Tline number shown with
the error message.

If the error persists,

either:

a. There is a hardware
malfunction,

b. If ERR 72, the input sector
is recorded in error, or

c. If ERR 85, the output sector

is physically no good.

The presence of a bad sector on
either the input or output platter
can be detected by using the
VERIFY command.

Program error. The copy of the
file is not completed.

RECOVERY: Rerun from Step 1.

Recopy the same file again. If
ERR79 occurs, follow the Scratch and
Rename Recovery procedure.

An attempt is being made to copy a
protected program.

RECOVERY: This program will not
copy a protected program.

CHAPTER 25
THE PRINT KEY FILE UTILITIES

25.1 PRINT KEY FILE KFAM-3

This program prints the current contents of the Key Descriptor Record
(KDR) and the Key Index Records (KIR) for any KFAM-3 Key File.

Operating Instructions

DISPLAY
1 1
2 2
3. ENTER FILE NAME 3.
4. ENTER KEY FILE # 4.
5. ENTER THE NO. FOR THE KEY FILE 5.

DEVICE ADDRESS

164

INSTRUCTIONS

Mount the disk platter contain-
ing the KFAM-3 Key File to be
printed; mount paper on the
printer.

Access PRINT KEY FILE via the
appropriate Special Function key
from the KFAM-3 menu.

Enter the name of the User File
with which this Key File is
associated, or the name of the
Key File itself.

Enter the number of the Key File
to be printed.

The Key File Number is normally
1, but may be any digit from 1

to 9 if there are multiple Key

Files for one User File.

MESSAGE: 3

NOTE:

Error messages and recovery
procedures follow the operating
instructions.

Enter the selection number for
the device address of the Key
File.

CHAPTER 265 - PRINT KEY FILE UTILITIES
(Print Key File KFAM-3)

1. 310 5. B10
2. 320 6. B20 MESSAGE: 2, 3, 4
3. 330 7. B30
4. 350
6. 6. The program prints the contents
of the Key File.
MESSAGE: 5, 6, 7
7. 7. The system returns to KFAM-3
menu.
Error Messages
ERROR MESSAGE EXPLANATION/RECOVERY
2. RE-ENTER Too many characters were entered.

RECOVERY: Repeat the step entering
the correct information.

3. ERR 29 A non-numeric quantity was entered
when a numeric quantity was requested.

RECOVERY: Reenter numeric quantity.
4. INVALID DEVICE ADDRESS Device address entered was invalid.

RECOVERY: Repeat the step. Enter
correct device address selection

number.

5. ERR80 File not found. The specified file
does not exist on the specified
platter.

RECOVERY: Make sure the correct
platter is mounted. Rerun from Step
2, entering the correct information.
6. ERR72 Disk read error.
RECOVERY: Rerun from Step 2.
7. ERR43 Wrong file format read,
RECOVERY: This program will only

print a Key File created under
KFAM-3.

165

CHAPTER 25 - PRINT KEY FILE UTILITIES
(Print Key File KFAM-4)

25.2 PRINT KEY FILE KFAM-4

This program prints the current contents of any KFAM-4 Key File.

NOTE:
Hog mode is selected for the device containing the Key
File. To execute the utility at a non-multiplexed disk
drive key
M$ = "X" (EXEC)

at KFAM-4 utilities menu, prior to loading the utility.

DISPLAY INSTRUCTIONS

1. 1. From KFAM-4 menu access the
PRINT KEY FILE utility via the
indicated special function
key.

2. ENTER USER FILE NAME (SSSFJNN) 2. Enter the name of the User
File with which the Key File
is associated.

MESSAGE: 4,5

3. ENTER THE KEY FILE NUMBER 3. Enter the Key File Number of
(NORMAL=1) the Key File to be printed.
MESSAGE: 4,6,7
4. ENTER THE NO. OF THE KEY FILE 4, Mount the disk containing the
DEVICE ADDRESS. Key File. Enter the selection
number (1-7) to choose the
1. 310 5. B10 device address of the Key File.
2. 320 6. B20
3. 330 7. B30 MESSAGE: 4,6,8
4. 350
5. 5. The program prints the contents

of the Key File.
MESSAGE: 1,2,3

()]
()]

The system returns to KFAM-4

menu.
MESSAGE: 2
Error Messages
MESSAGE EXPLANATION/RECOVERY
1. ERRECO Fi*e: not found.

RECOVERY: Mount disk containing
Key File. Rerun.

166

(RN

ERR72

ERK85

RE-ENTER

NOT KFAM FILE NAME

ERR29

INVALID

INVALID DEVICE ADDRESS

167

CHAPTER 25 - PRINT KEY FILE UTILITIES
(Print Key File KFAM-4)

Disk read error.

RECOVERY: Rerun the program. If
error persists, program or Key File
will have to be recreated from
backup.

Disk write error.

RECOVERY: Rerun the program. If
error persists, the disk containing
the Key File is bad.

Too many characters were entered,
or an invalid character was entered
in response to a "yes" (Y) or "no"
(N) question.

RECOVERY: Repeat the step.
Re-enter the data.

The 5th character of the file name
must be "F", and the 6th character
must be a zero.

RECOVERY: Repea? the step.
a valid KFAM file name.

Enter

Non-numeric data was entered when
a numeric quantity was requested.

RECOVERY:
a number.

Repeat the step. Enter

Key File number may rot be zero.

RECOVERY: Repeat the step.
a number 1-9,

Enter

The numbers 1-7 may be used to
specify a device address, according
to the table displayed.
RECOVERY: Repeat the step. Enter
a number 1-7.

CHAPTER 26
THE RECOVERY UTILITIES

26.1 KEY FILE RECOVERY (KFAM-3 AND KFAM-4)

26.1.1 Overview

If a Key File is destroyed, the Key File Recovery utility permits it to
be reconstructed from the data in the User File, provided that application
programs that operate on the file adhere to the following conventions:

1) A11 DELETED records are flagged in the User File with HEX(FF) in
the first byte of the key.

2) Programs that execute FINDNEW on the file include the RECOVERY
OPTION in all subroutines, and subsequently close the file with the
CLOSE subroutine. (Note that under KFAM-4, CLOSE is a system
requirement, apart from the RECOVERY requirements.)

The information required to operate the utility is:

User File name

User File device address

Key File number (normally = 1)

Key File device address

Is the Key File already cataloged?

G why —
— e e e e

If the Key File already exists on the designated disk, this utility
reuses that file; otherwise, it catalogs a new file with sufficient space to
index the maximum number of records in the User File.

If more than one Key File exists for this one User File, it may be
impossible to use this utility.

The utility uses a printer (address 215) to list duplicate keys. If no
printer is available, or a different printer device address is desired, see
Chapter 29.

For KFAM-4 only, the utility selects hog mode for the disk containing the
Key File, initializes the Key File, then deselects and leaves hog mode. (To
execute the utility at a non-multiplexed disk drive, key

M$ = "X" (EXEC)

at KFAM-4 utilities menu, prior to loading the utility.) The file 1is then
opened in exclusive mode and the disk is not hogged.

168

26.1.2 OQOperating Instructions

DISPLAY

ENTER USER FILE NAME (SSSSFJNN)

ENTER THE NO. OF THE US&R FILE
DEVICE ADDRESS

1. 310 5. B10
2. 320 6. B20
3. 330 7. B30
4. 350

ENTER THE KEY FILE NUMBER

ENTER THE NO. OF THE KEY FILE
DEVICE ADDRESS.

1. 310 5. BIO
2. 320 6. B20
3. 330 7. B30
4. 350

IS KEY FILE CATALOGED (Y OR N)

169

3.

CHAPTER 26 - THE RECOVERY UTILITIES

(Key File Recovery Utility)

INSTRUCTIONS

Mount the disk containing the
User File, and the disk to
contain the reconstructed Key
File.

From KFAM-3 or KFAM-4 menu
load KEY FILE RECOVERY via

the indicated Special Function
Key.

Enter the name of the User
File for which the Key File
is to be reconstructed.
MESSAGE: 2,4

NOTE:

Error Messages and recovery
procedures follow the
operator instructions.

Enter the selection number
(1-7) to choose the device
address of the User File.
MESSAGE: 2,5

The Key File Number should
always be 1, unless there are
multiple key files for a
single User File, in which
case the Key File Number may
be any digit from 1 to 9.
MESSAGE: 2,6

Enter the selection number
(1-7) to choose the device
address of the Key File.
MESSAGE: 2,3,5

If the Key File is cataloged
at the address selected in
step 6, enter Y; otherwise
enter N.

MESSAGE: 1,2,7,8,9

CHAPTER 26 - THE RECOVERY UTILITIES
(Key File Recovery Utility)

8. TURN ON PRINTER
KEY RETURN(EXEC) TO RESUME

10.

Error Messages

ERROR MESSAGE
1. ERROR ## LINE ####

2. RE-ENTER

3. ERROR 80 LINE 6190

4. NOT KFAM FILE NAME

5. INVALID DEVICE ADDRESS

6. INVALID

170

8. Ready the printer. The
printer is used to list
duglicate keys ¢r unreadable
sectors, if any. (If no
printer is available, this
program rust be slightly
modified; see Chapter 29.)
MESSAGE: 2

9. The system recreates the Key
File.
MESSAGE: 1,10,11,12,13,14,
15,16,17,18

10. The system returns to the
KFAM menu.

EXPLANATION/RECOVERY
This is the same as ERR ## in BASIC.

RECOVERY':
type.

Appropriate to error

Too many characters ware entered, or
the entry was invalid.

RECOVERY: Repeat the step, cor-
recting the entry.
The User File is not mounted on the

device specified.

RECOVERY: Mount the disk contain-
ing the User File and rerun the
program.

The User File name must have an "F"
in position 5 and a 0 in position 6.

RECOVERY: Repeat step 3. Enter
correct User File name.
The device address for a KFAM file

must be 310, B10, 320, B20, 330,
B30, or 350.
RECOVERY: Repeat the step. Enter

correct device address.
The Key File Number may not be 0.

RECOVERY: Repeat step 5.
Key File Number 1-9.

Enter a

10.

11.

12.

13.

14,

FILE ALREADY CATALOGED

FILE NOT FOUND

NO SPACE ON DISK FOR KEY FILE
(STOP)

STOP ERROR OPENING FILES

INVALID RECORD FORMAT (STOP)

NOT BLOCKED AS SPECIFIED

RECORD LENGTH NOT SPECIFIED

(STOP)

KEY FIELD OUT OF BOUNDS (STOP)

171

CHAPTER 26 - THE RECOVERY UTILITIES
(Key File Recovery Utility)

Key File already exists.

RECOVERY: Repeat from step 1.
Mount new disk if necessary.

Key file does not exist on the
specified device.

RECOVERY: Repeat from step 1.
Mount new disk if necessary.

There is not sufficient space on
disk to catalog the Key File.

RECOVERY: Mount new disk and rerun.

Return code "X" from "OPEN" sub-
routine. Possible cause: The
program was sStopped and restarted
after processing had begun.

RECOVERY: Load and rerun from menu.
If the error persists, notify Wang
Laboratories.

Record type A, array-type blocking:
more than one sector per block, more
than 38 fields per record, or not
written with correct control bytes.

RECOVERY: None. "END" record
invalid.

Recovery type A, array-type
blocking: records per block
specified incorrectly, or records
not written in array format.

RECOVERY: None. "END" record
invalid.

Record type A, array-type blocking:
record length specified in
INITIALIZE KFAM FILE does not equal
record length of sample record.

RECOVERY: None. "END" record
invalid.

Record type A, array-type blocking:
the key must be wholly contained
within one field of the record.

RECOVERY: None. "END" record
invalid.

CHAPTER 26 - THE RECOVERY UTILITIES
(Reset Access Table)

15. NUMERIC KEY INVALID (STOP) Record type A, array-type blocking:
the key falls within a numeric
field.

RECOVERY: None. "END" record
invalid.

16. NO SPACE (STOP) Return code "S" from FINDNEW(HERE).

Not sufficient space for Key File.

RECOVERY: Allocate more space for
the Key File. Rerun.

17. INVALID POINTER (STOP) Sector accessed is not in the User
File. Probably the "END" record
does not contain the necessary
information to rebuild the Key File.

RECOVERY: Rerun the program. If
the error persists, no recovery is

possible.

18. SYSTEM HANGS Printer not turned on or not se-
lected manually, or no device 215 in
system.

RECOVERY: Turn printer on and press
"SELECT". 1If no device 215, this
program will not run without modi-
fication. (See "Eliminating the
Printer", Chapter 29.)

26.2 RESET ACCESS TABLE (KFAM-4 ONLY)

For KFAM-4 only there is an Access Table included in the Key File (in the
KDR). This table is 4 bytes Tong, one byte for each possible CPU accessing
the file. If no CPU is accessing the file, all 4 bytes should be blank. If
one or more CPU's are accessing the file, then one byte is set in the Access
Table for each CPU currently accessing the file. It is set to "A" or "X"
depending on whether the access is shared or exclusive.

When the file is closed, by a particular CPU, the corresponding byte in
the Access Table 1is set back to blank. If, for any reason, such as system
failure or power failure, the program is terminated without closing the file,
there will remain, in the Access Table, bytes which are not set to blank. If
this happens, the file cannot subsequently be opened in the exclusive mode.
If a byte happens to remain set to "X" in the Access Table, the file cannot
subsequently be opened in either exclusive or shared mode. Also the number of
files which can be opened in the shared mode is cut down by the number of
bytes in the Access Table which remain set to "A". (The programs assume that
these slots represent CPU's which are currently accessing the file.)

This utility is provided to reset the Access Table to blanks, in the
event of a program failure or system failure that has left the access table
with erroneous non-blank characters. The utility also turns off any "protect

172

B,

CHAPTER 26 - THE RECOVERY UTILITIES
(Reset Access Table)

flags" that may be 1left on. PRINT KEY FILE (KFAM-4) shows the current
settings of the Access Table.

This utility should not be run if any other CPU 1is currently accessing
the file. The utility has no way of knowing whether entries in the Access
Table are "live" or "dead", and resets all access table bytes to blanks
indiscriminately. Before running this program, the user should check to make
sure that no other CPU 1is currently accessing the file. Otherwise there could
be an unpredictable scrambling of results.

Hog mode is selected for the disk containing the Key File, while it is
being read and re-written. To execute the utility at a non-multiplexed disk
key

M$ = "X" (EXEC)
at KFAM-4 utilities menu, prior to loading the utility.

The User File is not accessed by this program. Only the Access Table 1in
the KDR is altered.

Operating Instructions

DISPLAY INSTRUCTION

1. 1. From KFAM-4 subsidiary menu
access RESET ACCESS TABLE
via the indicated specified
Special Function Key.

ERROR MESSAGE: 2

2. ENTER USER FILE 2. "Enter the User File name.
NAME (SSSFJNN)
RESET ACCESS TABLE ERROR MESSAGE: 4,5

3. ENTER KEY FILE 3. Enter the Key File number.
NUMBER (NORMAL=1) Normally this is 1, unless

there are multiple Key Files
indexing the same User File.

ERROR MESSAGE: 4,6,7

4. ENTER THE NUMBER OF THE 4. Enter the selection number
KEY FILE DEVICE ADDRESS. for the address at which the
Key File is mounted.
1. 310 5. B10
2. 320 6. B20
3. 330 7. B30 ERROR MESSAGE: 4,6,8
4. 350
5. 5. The Access Table is reset,

ERROR MESSAGE: 1,2,3

173

CHAPTER 26 - THE RECOVERY UTILITIES
(Reset Access Table)

6. DO YOU WISH TO DO ANOTHER FILE?
(Y OR N)

Error Messages

ERROR MESSAGE

1. ERR 80
2. ERR 72
3. ERR 85
4. RE-ENTER

5. NOT KFAM FILE NAME

6. ERR 29

7. INVALID

174

6. If the Access Table of another
Key File must be reset, enter
Y and go to step 2. Other-
wise, enter N to return to
KFAM-4 subsidiary menu.

ERROR MESSAGE: 2

EXPLANATION/RECOVERY
File not found.

RECOVERY:
File.

Mount disk containing Key
Rerun.

Disk read error.

RECOVERY: Rerun the program. If
error persists, program or Key File
will have to be recreated from
backup.

Disk write error.

RECOVERY: Rerun the program. If
error persists, the disk containing
the Key File is bad.

Too many characters were entered,
or an invalid character w2s entered
in response to a "yes" (Y) or "no"
(N) question.)

RECOVERY:
the data.

Repeat the step. Re-enter

The 5th character of the file name
must be "F", and the 6th character
must be a number 0-9.

RECOVERY: Repeat the step.
a valid KFAM file name.

Enter

Non-numeric data was entered when
a numeric quantity was requested.

RECOVERY:
a number.

Repeat the step. Enter

Key File number may not be zero.

CHAPTER 26 - THE RECOVERY UTILITIES
(Reset Acress Table)

RECOVERY: Repeat the step. Enter
a number 1-9.

3. INVALID DEVICE ADDRESS 8. The numbers 1-7 may be used to
specify a device address, according
to the table displayed.

RECOVERY: Repeat the step. Enter
a number 1-7.

CHAPTER 27
THE KFAM CONVERSION UTILITIES

27.1 The KFAM-3 CONVERSION UTILITIES

27.1.1 QOverview

KFAM-3 includes two KFAM conversion utilities. These are CONVERT KFAM-1
to KFAM-3 and CONVERT KFAM-2 to KFAM-3. They are provided to convert a file
created under one of the earlier KFAM's to the format of KFAM-3. The
procedures and operating instructions for these programs are the same
regardless of which one is being used.

The structure and format of the Key File is not the same for KFAM-3 as
for KFAM-1 or KFAM-2. Therefore, the conversion process consists of dropping
the o1d Key File and creating a new Key File, in the KFAM-3 format.

Certain information must be preserved before the old Key File is dropped.
Deleted records must be identified, so that they will not be included in the
new Key File. The Tocation of the last physical record in the User File must
be determined, and the value of the last key must be displayed to define the
end of the file. The utility performs these two functions. It does this by
using the KFAM subroutines of the KFAM version originally used to organize the
file. It extracts the key from each record in the User File. It then
executes "FINDOLD" for that key. If the key is not found, or if the pointer
in the Key File points to a different location in the User File, it assumes
that vrecord is deleted. It flags each deleted record with HEX(FF) in the
first byte of the key. 1In a printed report, it 1ists the location and key of
each deleted record.

If the record is not deleted, the utility checks the key to see whether
it violates the restrictions of KFAM-3 (first byte HEX(FF) or the entire key
binary zero). It 1ists on the printed report, as "“invalid", any key which
violates these restrictions, together with the record location. It also lists
on the report the last valid key, so that it may be used to set up the new Key
File.

Once the User File has been conditioned in this manner by the conversion
utility, INITIALIZE KFAM FILE (KFAM-3 version) and KEY FILE CREATION (KFAM-3
version) utilities are run, to create the new Key File. Any key that is
flagged HEX(FF) in the first byte is ignored by KEY FILE CREATION, thereby
creating the new Key File only from the active records in the User File.

176

CHAPTER 27 ~ THE KFAM CONVERSION UTILITIES
(FFPAM=3 Conversion Utilities)
27.1.2 Conversion Procedure
To convert a file to KFAM-3, three programs must be run, the appropriate
"CONVERT" program, INITIALIZE KFAM FILE and KLY FILFE CREATION. The overall
procedure is as follows:
1. Backup copies should be made of the User File and the old Key File.

l. Mount the User File and the old Key File.

[xecute the appropriate "COWVERT" program.

(&%)

Initialize the new (KFAM-3) Key File:

Lnad and execute INITIALIZL KFAM FILL.

4. Build the new Key File:

Load and execute KLY FILL CREATION UTILITY.

The User File and Key File are now converted and can be accessed via
KFAM-3.

1f converting from KFAM-1, modifications may be required to user programs
to run under KFAM-3. The return codes from the KFAM-1 subroutines have been
changed as follows:

KFAM-1 KFAM-3
Subroutines Subroutines
Subroutine Condition Return ___ Return ____
231 DLLETE Key not found L, H, or N N
232 FINDOLD ey not found L, H, or Qi N
235 FINDFIRST Hormal L blank
236 FINDLAST ormal H blank

A1l other return codes are the same as before.

KFAM-2 and KFAM-3 have identical subroutine return codes.

Operating Instructions

DISPLAY INSTRUCTIONS
1. 1. Make backup copies of the
User File and Key File to be
converted.

~o
~No

Mount the disk platters con-
taining the User File and Key
File to be converted.

3. 3. From KFAM-3 menu, depress
the appropriate Special

177

CHAPTER 27 - THE KFAM CONVERSION UTILITIES
(KFAM-3 Conversion Utilities)

Function key to access CONVERT
KFAM-1 to KFAM-3 or CONVERT
KFAM-2 to KFAM-3.

4. ENTER USER FILE NAME (SSSSFJNN) 4. Enter the User File name.

MESSAGE: 2, 4

NOTE:

Error messages and recovery
procedures follow the operating

instructions.
5. ENTER THE NO. OF THE USER FILE 5. Enter the selection number for
DEVICE ADDRESS the user file device address.
1. 310 5. B10
2. 320 6. B20
3. 330 7. B30
4. 350

MESSAGE: 2, 3, 6

6. ENTER KEY FILE NUMBER (NORMAL=1) 6. Enter the Key File Number.

The key file number should
always be 1, unless there are
multiple key files for a single
User File, in which case, the
Key File Number may be any digit
from 1 to 9.

MESSAGE: 2, 3, 5

7. ENTER THE NO. OF THE KEY FILE 7. Enter the selection number of
DEVICE ADDRESS the key file device address.

MESSAGE: 2, 3, 6

1. 310 5. B10

2. 320 6. B20

3. 330 7. B30

4. 350
8. "KFAM FILE CONVERSION (KFAM5000)" 8. The files are opened.

etc.

MESSAGE: 7, 8, 9, 10, 15

9. TURN ON PRINTER 9. Mount paper in the printer.

KEY RETURN(EXEC) TO RESUME Key RETURN(EXEC) to resume.

MESSAGE: 2

178

CHAPTER 27 - THE KFAM CONVERSION UTILITIES

10.

11. DO YOU WISH TO DO ANOTHER FILE?
(Y OR N)

12.

Error Messages

ERROR MESSAGE

2. RE-ENTER

3. ERR29

4. NOT KFAM FILE NAME

5. INVALID

6. INVALID DEVICE ADDRESS

7. STOP ERROR OPENING FILES

179

(KFAM-3 Conversion Utilities)

10. The system proceeds with the
conversion.
MESSAGE: 12, 13

11. To convert another file, enter
Y and go to step 4. Otherwise,
enter N and go to the next step.
MESSAGE: 2

12. The system returns to the
KFAM-3 menu.
EXPLANATION/RECOVERY

Too many characters were entered,
or an invalid character was entered
in response to a "yes" (Y) or "no"
(NO) question.

RECOVERY: Repeat the step, entering
the correct value.

A non-numeric quantity was entered
when a numeric quantity was requested.

RECOVERY: Reenter numeric quantity.

The User File name must have an "F"
in position 5 and a zero in position
6.

RECOVERY: Repeat Step 4.
correct User File name.

Enter

The Key File number may not be O.

RECOVERY: Repeat Step 6.
Key File number 1-9.

Enter

The device address is invalid.

RECOVERY:
number.

Reenter correct selection

This should not occur. Either the
program is being rerun without closing
the file, or there is an error in the
Key File.

RECOVERY:
a backup.
1.

Recreate the Key File from
Rerun the program from Step

CHAPTER 27 - THE KFAM CONVERSION UTILITIES
(KFAM-3 Conversion Utilities)

8. NOT EVEN MULTIPLE This should not occur. The total
sectors occupied by the User File
is not an even multiple of the number
of sectors per record.

RECOVERY: Recreate the Key File from
a backup copy. Rerun the program
from Step 1.

9, ERR80 Files not found. Either the User File
or the Key File does not exist on
the specified platter.

RECOVERY: Rerun the program from
Step 4. Enter correct information.

10. ERR72 Disk read error. If the error per-
sists, either the User File (#1) or
the Key File (#2) is permanently

damaged.
RECOVERY: Rerun the program from
Step 1.

11. ERR85 Disk write error. If the error per-
sists, the platter is physically
damaged.

RECOVERY: Recreate both the User File
and the Key File from bzckup copies.
Rerun the program from Step 1.

12. System hangs Eithek the printer is not turned on,
or there is no device 215 in the
system.

RECOVERY: Press both "ON/OFF" and
“SELECT" to turn on the printer.

Both should be Tighted. If no
printer, the program must b- modified
in order to run (see Chapter 29,
"Eliminating the Printer").

13. ERROR X This should not occur. The FINDOLD
subroutine reports an improper call.

RECOVERY: Rerun from Step 1. If
the error persists, notify Wang
Laboratories, Inc.

14. ERR 43 Wrong record format read. The Key
File is not in the original KFAM
format.

180

CHAPTER 27 - TRE KFAM CONVERSION UTILITIES
(KFAM~-4 Conversion Utility)

RECOVERY: Check the system which
created the Key File. Rerun from

Step 3.
15. INVALID RECORD FORMAT Record type A array type blocking:
or record format or key position is
NOT BLOCKED AS SPECIFIED invalid.
or
RECORD LENGTH NOT SPECIFIED RECOVERY: File cannot be converted.
CORRECTLY

or

KEY FIELD OUT OF BOUNDS
or

NUMERIC KEY (STOP)

27.2 THE KFAM-4 CONVERSION UTILITY

The KFAM-4 system includes a utility program to convert from KFAM-3 to
KFAM-4. The structure of the Key File's key index entries is identical from
KFAM-3 to KFAM-4. Only the Key File's special header vrecord, the KDR,
differs, and, therefore, only this needs to be altered to convert a KFAM-3
file to a KFAM-4 file. The utility CONVERT KFAM-3 TO KFAM-4 performs the
necessary alteration of the KDR.

To convert a file from KFAM-1 or KFAM-2 to KFAM-4, it must first be
converted to KFAM-3 using the KFAM-3 conversion utilities.

Application programs written for KFAM-3 will require modification to
operate on KFAM-4 files. See Chapters 18, 22 and 29 for KFAM-4 programming
procedures.

NOTE:
The utility selects hog mode for the disk device
containing the key file to be converted. To execute the
utility at a non-multiplexed disk drive key

M$ = "X" (EXEC)

at KFAM-4 utility menu, prior to loading the utility.

Operating Instructions

1. 1. From the KFAM-4 menu access
CONVERT KFAM-3 TO KFAM-4
via the specified Special
Function Key.

2. ENTER USER FILE 2. Enter the name of the User

NAME (SSSSFJNN) File to be converted.
MESSAGE: 4.5

181

CHAPTER 27 - THE KFAM CONVERSION UTILITIES
(KFAM-4 Conversion Utility)

3. ENTER KEY FILE 3. Enter the Key File Number.
NUMBER (NORMAL=1) Normally this is 1, except if
there is more than one Key
File for the User File.
MESSAGE: 4,6,7

4. ENTER THE NO. OF THE 4, Enter the selection number
KEY FILE DEVICE ADDRESS (1-7) to choose the Key File
device address.
1. 310 5. B10 MESSAGE: 4,6,8
2. 320 6. B20
3. 330 7. B30
4. 350
5. 5. The utility converts the Key
File from KFAM-3 to KFAM-4
format.

MESSAGE: 1,2,3

6. DO YOU WISH TO DO ANOTHER 6. Enter Y to repeat program for
FILE (Y OR N) another file; go to step 2.
Enter N to return to KFAM-4
menu.
MESSAGE: 4

Error Messages

ERROR MESSAGE EXPLANATION/RECOVERY
1. ERR 80 File not found.

RECOVERY: Mount disk containing
Key File. Rerun.

2. ERR72 Disk read error.

RECOVERY: Rerun the program. If
error persists, program or Key
File will have to be recreated.

3. ERR85 Disk write error.

RECOVERY: Rerun the program. If
error persists, the disk containing
the Key File is bad.

4. RE-ENTER Too many characters were entered,
or an invalid character was entered
in response to a "yes" (Y) or "no"
(N) question.

RECOVERY: Repeat the step.
Re-enter the data.

182

CHAPTER 27 - THE KFAM CONVERSION UTILITIES
(KFAM-4 Conversion Utility)

NOT KFAM FILE NAME The 5th character of the file name
must be "F", and the 6th character
must be a number 0-9.

RECOVERY: Repeat the step. Enter
a valid KFAM file name.

ERR29 Non-numeric data was entered when
a numeric quantity was requested.

RECOVERY: Repeat the step.
Enter a number.

INVALID Key File number may not be zero.

RECOVERY: Repeat the step.
Enter a number 1-9.

INVALID DEVICE ADDRESS The numbers 1-7 may be used to
specify a device address, according
to the table displayed.

RECOVERY: Repeat the step. Enter
a number 1-7.

183

CHAPTER 28
GENERAL TECHNICAL INFORMATION

28.1 KEY FILE RECORD LAYQUTS

The first sector of the key file contains the Key Descriptor Record
(KDR). The remaining sectors contain Key Index Records (KIR's), as many as
are necessary to index the User File. The layouts of the KDR's of KFAM-3 and
KFAM-4 are different; both are given below. The layouts of the KIR's are
identical for KFAM-3 and KFAM-4.

Key Descriptor Record (KDR)--KFAM-3

Variable Bytes

Name On Disk Contents

Q2%2 3 Last data sector (last sector used for data in User
File, relative to starting sector = 0, hex number).

Q3%2 3 Data sector limit (last sector available for data
in User File, relative to starting sector = 0, hex
number).

V5$1 2 Record number within sector, last slot used for
data in User File, hex number. (First record
within sector = 1.)

V8$1 2 Records per block, hex number. (Set to 1 for type
M or N records.)

V03$2 3 Key File, absolute address (hex) of starting
sector. ,

V1$8 9 Byte 1: Record type, A, C, M, or N.
Byte 2: Record length (hex) if type A or C.
Bytes 3, 4: Starting position of key (hex)
relative to first byte of first sector of record =
0.
Byte 5: Key length (hex).
Byte 6: The number of KIE's per KIR (hex).
Bytes 7, 8: Not used.

V2$2 3 Key File, 1last sector used (hex), relative to
starting sector = 0.

V3$2 3 Key File, last sector available (hex), relative to
starting sector = 0.

V6§l 2 Sectors per logical record (hex). (Set to 1 for
type A or C records.)

T2%2 3 Sector address of highest level index sector (hex),

relative to starting sector of Key File = 0.

184

CHAPTER 28 - GENERAL TECHNICAL INFORMATION
(Key File Record Layouts)

T0 9 Number of index levels.
T1 9 Current Key File # (file number assigned in SELECT
statement).
T2 9 Current User File # (file number assigned in SELECT
statement).
V8 9 Bias for splitting KIR expressed as a percentage of
the number of KIE's which can be contained in the
KIR, range .2 to .8.
T4%$3 4 Last record accessed, pointer: Bytes 1, 2:
Relative sector within User File.
Byte 3: Re-ord number (hex) within sector.
T5%$30 31 Last key added to file.
T7$30 31 Last key accessed.
T2$(8)2 24 Path to last record accessed:
Sector address, of KIR's,
from level TO down to Tevel 1.
T(8) 72 Path to last record accessed.

Number of KIE within KIR, from
level TO down to level 1.

T8$1 2 Internal completion code:
Same as Q$, except:
Following DELETE, 0.K., T8%="1".
Following FINDOLD, not found,

T8% = "2".

Following FINDNEW or FINDNEW (HERE),
0.K., T8% = "3".

Following OPEN, 0.K., T8%=letter
IIOII.

Following CLOSE, 0.K. T8% not
defined.

TOTAL 233 bytes

Key Descriptor Record (KDR) (KFAM-4)

Variable Bytes

Name on Disk Contents

Q2%2 3 Last live data sector (last sector used for data in
User File, relative to starting sector = 0, hex
number).

Q3%2 3 Data sector 1imit (last sector available for data in
User File, relative to starting sector = 0, hex
number). :

v5$(4)1 8 Per CPU, record number within sector, last slot used

for data in User File, hex number, (First record
within sector = 1.) Initialized to V8%.

V8$1 2 Records per block, hex number. (Set to 1 for type M
or N records.)

185

CHAPTER 28 - GENERAL TECHNICAL INFORMATION
(Key File Record Layouts)

V1$8

v2s$2
V3$2
V6$1
T2%2

TO0
T8$(4)1

Qo$4

V4§(4)2
V2$(4)2

Total

00w

12
12

82 bytes

Byte 1: Record type, A, C, M, or N.

Byte 2: Record length (hex) if type A or C.

Bytes 3, 4: Starting position of key (hex) relative
to first byte of first sector of record = 0.

Byte 5: Key length (hex).

Byte 6: Number of KIE's per KIR.

Bytes 7-8: Not used.

Key File, last sector used (hex), relative to
starting sector = 0.

Key File, last sector available (hex), relative to
starting sector=0.

Sectors per logical record (hex). (Set to 1 for type
A or C records.)

Sector address of highest level index sector (hex),
relative to starting sector of Key File = 0.

Number of index levels.

Per CPU, internal completion code: Same as Q$,
except:

Initialized to "Z" by KFAM1004, KFAM1005, or KFAM7004.
Following FINDOLD, not found, = "2". Following
FINDNEW, FINDNEW(HERE), or DELETE, all slots with a
value of "9" or less are set to "3". Following OPEN,
successful, set to letter "0". Following CLOSE,
successful, set to "Z". If Q$="B", set to "9".
Access table: one byte slot per CPU.

Byte is blank if this slot not used.

"A" if access is shared.

“X" if access is exclusive.

The slot assigned to a particular CPU varies. It is
determined by the first blank character of Q0% at the
time the particular CPU opens the particular file.
This slot number also becomes the subscript for
V5$(), T8%(), V4$(), and V2$().

Per CPU, protected sector.

Hex (FFFF) if no protected sector.

Per CPU, data sector for FINDNEW.

V5$() defines the record within the sector. The
combination of V2$() and V5%() defines the last
physical location assigned to a new record by this
CPU via FINDNEW. The value of V2$(), per CPU, is
taken from Q2%, which is the last sector address used
by any CPU.

Key Index Record (KIR) (KFAM-3 AND KFAM-4)

Variable
Name

T9$2

T0$(4)60

Bytes
On Disk

Contents

3

244

Sector address (hex), this sector, relative to
first sector of Key File = 0.

A 240 byte array containing KIE's. Number of KIE's
per KIR can vary from 7 to 60. Unused KIE's are

136

CHAPTER 28 - GENERAL TECHNICAL INFORMATION
(Key File Record Layouts)

filled with all bytes HEX(FF). Active KIE's are
packed as follows:

K bytes: key

3 bytes: pointer

Pointer points to next lower index 1level KIR or
User File record if lowest level. The first two
bytes of the pointer contain the sector address
(hex) relative to the start of the file. The last
byte contains the record number (hex) within the
sector if the pointer is to a data record, and is
not defined if the pointer is to a lower level KIR.
TOTAL 247 bytes

Internal Storage Under KFAM-4

Certain information that is stored in the KDR under KFAM-3 is stored
internally in CPU memory under KFAM-4. It is stored in 3-element arrays for
which the KFAM ID number serves as a subscript, (T9=KFAM ID Number), and in
some cases is stored in scalar variables for the most recently active file.
The internal storage fields are as follows:

Most Recently Per KFAM

Active File [.D. Number Contents

VO VO(3) CPU number assigned when the file was opened
(see KDR, Q0%).

V0$2 V0$(3)2 Absolute starting sector (hex) of the Key
File, or HEX(FFFF) if file not open.

Tl T1(3) Key File # (file number assigned 1in SELECT
statement).

T2 T2(3) User File # (file number assigned in SELECT

statement).

T4$3 T4%$(3)3 Last record accessed, pointer: Bytes 1,2:
Relative sector within User File. Byte 3:
Record number (hex).

T7%30 T7$(3)30 Last record accessed, key.

T25(8)2 T6$(3)16 Path to last record accessed: Sector
addresses of KIR's from highest level down
to level 1.

Subscript of T2$%() corresponds to index
level. Subscript of T6$() is file I.D.

T$8 T$(3)8 Path to last record accessed: Starting byte
of KIE within KIR, from highest 1level down
to level 1 (hex). Byte within TS

corresponds to index level.

- V3$(3) Access mode, "A" = shared, "X" = exclusive.

187

CHAPTER 28 - GENERAL TECHNICAL INFORMATION
(Key File Structure)

- V8(3) Bias for splitting KIR. Reset to .5 when
the file is opened.

-- T5$(3)30 Last key added to file.

28.2 KEY FILE STRUCTURE

The structure of the Key File in KFAM-3 and KFAM-4 is the same. It s
similar to the structure called a B-tree, which is discussed on pages 473-479
of THE ART OF COMPUTER PROGRAMMING: Volume 3/Sorting and Searching, by Donald
E. Knuth.

The problem is to create a Key File that permits rapid access to any
particular User File record, and may also be updated at any time without a
major reorganization of the file. The B-tree structure, as modified,
satisfies this double requirement.

The structure of the Key File is best described by showing how the file
is constructed. The first step, in INITIALIZE KFAM FILE, is to create one KIR
record, which contains one dummy KIE with a key value of binary zero (all
bytes HEX(00)). This dummy KIE serves to "prime" the system so that the same
program logic can be applied to a null, or empty, file as is applied to a file
containing active records. Being the lowest possible key, it also serves to
mark the Tower Timit of the Key File. For example, FINDFIRST (see KFAM
subroutines in Programming Aids Section) is done by searching for the binary
zero key and then doing FINDNEXT. This dummy key can be thought of as the Oth
entry in the Key File. Of itself, it represents nothing, except as the marker
of the Tower boundary.

In the examples below, this dummy key is designated as "000". Please
note that the actual value is binary zero, HEX(000000), and not the characters
000", or HEX(303030). The characters "000" may be used as an active key, and
will not conflict with the dummy key.

The unused KIE's in any KIR always have all bytes set to HEX(FF). Thus
the original KIR record has the first key set to all HEX(00) and the remaining
keys set to all HEX(FF).

In the examples below, these unused keys are designated as "FFF." Please
note that the actual value is HEX(FFFFFF...) and not the characters "FFF," or
HEX (464646).

Two items in the KDR record are essential to searching the Key File. One
is the number of index levels, TO. To start with, TO = 1, because there is
only one level of index. The other item is the relative sector address of the
highest Tevel index, T2$. At the starting point, there is only the one index
sector, the KIR record described above, and its sector address is always
HEX(0001). (The KDR record always occupies sector HEX(0000), or the first
sector of the Key File, and the initial KIR follows it, in the second sector,
at relative address HEX(0001).)

188

CHAPTER 28 - GENERAL TECHNICAL INFORMATION
(Key File Structure)

The Key File is now set up to begin entering active KIE's. As new keys
are added to the file, the respective KIE's are inserted in the KIR in their
proper sequential order. Higher keys are moved up one position, and one
HEX(FF) key is dropped off the end.

For example, if the first three keys to be inserted are 276, 913, and
198, the KIE's would be arranged as follows:

Start: 000, FFF, FFF, etc.

First Key: 000, 276, FFF, etc.

Second Key: 000, 276, 913, FFF, etc.
Third Key: 000, 198, 276, 913, FFF, etc.

Keys are inserted in the first KIR in this manner until it is filled.
The number of keys per KIR depends upon the size of the key. Let us assume
for this example that the first KIR has been completely filled by one dummy
key plus 14 active keys:

000, 009, 147, 198, 276, 292, 589, 591, 671, 710, 730,
809, 851, 903, 913

At this point the key 796 is to be added. Since there is no room in the
one KIR to add another key, the KIR is split in two. A new KIR is created,
and the KIE's are divided between the old KIR and the new KIR:

01d KIR: 000, 009, 147. 198. 276, 292, 589, 591, FFF, etc.
New KIR: 671, 710, 730, 796, 809, 851, 903, 913, FFF, etc.

The new KIR occupies relative sector HEX(0002). HNote that the key added,
796, is inserted in its proper sequential order, which 1in this case just
happens to fall in the new KIR.

With more than one KIR now in the file, the concept of "level" enters in.
Both KIR's so far created are on level 1, the lowest Tevel. The lowest Tlevel
is defined as the level which contains the pointers to the data records in the
User File. Whenever a KIR is split, the new KIR is on the same level as the
old KIR.

Rather than search the KIR's sequentially for a given key, the system
searches via a tree structure. There is one and only one KIR at the highest
level. Its sector address is recorded in the KDR. The search is started by
reading this sector. Up to this point, the search has been complete by
locating the position of the key within the one sector. But at this point,
there are two KIR's on level 1, and a higher level index must be created to
reference them.

Therefore a third KIR is created. It is a Tevel 7 index. It contains
two keys, 000 and 671, which are the first keys of each of the two Tevel 1
KIR's. The pointers associated with these two keys are the relative sector
addresses of the two 1level 1 KIR's, which happen to be, by coincidence,
HEX(0001) and HEX(0002). This 2nd-level KIR is stored in relative sector
HEX(0003) of the Key File, and its contents are:

189

CHAPTER 28 - GENERAL TECHNICAL INFORMATION
(Key File Structure)

Keys: 000, 671, FFF, etc.
Pointers: 1, 2, FFF, etc.

The KDR is now updated: TO = 2, to show that the index now has 2 levels;
T2$ = HEX(0003), to show that the highest level index is located at relative
sector HEX(0003).

Assuming that the next key to be added is 562, the search now proceeds as
follows. 562 1is compared to the entries in the level 2 index, to see where it
falls. It is greater thar or equal to 000, but less than 671. Therefore it
falis in the range 000 to 670. The pointer associzted with 000 in the level 2
index is HEX(0031), and therefore the level 1 index stored in relative sector
HEX(0001) is read. Then 572 is inserted in its proper place in the level 1
index, as before. The system knows when it has reached level 1, because it is
counting down from TO to 1 as each level is read and searched.

When the key 562 has been added, the key file structure looks like this:

Sector Level Keys

1 1 000, 009, 147, 198, 276, 292, 562, 589,
591, FFF, etc.

2 1 671, 710, 730, 796, 809, 851, 903, 913,
FFF, etc.

3 2 000, 671, FFF, etc.

As further keys are added, the KIR's on level 1 will again become full,
and again the KIR must be split to provide room for all the keys. Let us
assume that keys 401, 402, 403, 404, 405, 406, and 407 are added. The first
six keys will cause sector 1 to.be full, and the addition of 407 will make a
split necessary. Relative sector HEX(0004) will be assigned to the new KIR,
and the resulting structure will Took 1ike this: .

Sector Level Keys

1 1 000, 009, 147, 198, 276, 292, 401, 402,
FFF, etc.
2 1 671, 710, 730, 796, 809, 851, 903,

913 FFF, etc.

3 2 000, 403, 671, FFF, etc.
4 1 403, 404, 405, 406, 407, 562, 589, 591,
FFF, etc.

Note that no new level has been added this time. In this example, there
is room 1in the level 2 index to reference up to 15 level-1 KIE's. Therefore
at least 15 x 8, or 120 records (and probably more, up to 225) can be accessed
by a two-level index search.

Once the second Tlevel index is full, it 1is split, the same way the
original KIR was split, and a third Tlevel 1is created, pointing to two
2nd-level KIR's, which in turn point to the first-level KIR's. The first
level KIR's always contain the pointers to the actual data records. As new
levels are added, more superstructure is added, but the bulk of the Key File
remains the same.

190

CHAPTER 28 - GENERAL TECHNICAL INFORMATION
(Key File Structure)

If for a given key file there is an average of 10 KIE's per KIR, the
number of records which can be accessed by a given number of levels of index
is as follows:

INDEX LEVELS NUMBER OF RECORDS

14

150

1500

15,000
150,000
1,500,000
15,000,000
150,000,000

O~NOYOT B wihN —

For the largest possible key (30 bytes), each KIR holds a maximum of 7
KIE's and a guaranteed average minimum of 4 KIE's. For such a file the
maximum 8 levels of index access at least 114,687 records.

Perhaps the best illustration of the Key File structure for a large file
could be obtained by running PRINT KEY FILE with an actual KFAM file. The
structure can then be traced from the highest level index sector (T2$, in KDR)
down to the level 1 pointers:to the actual data record.

The general procedure for locating a key in KFAM is as follows:

1) The number of index levels (TO) and the relative sector address of
the highest level index (T2$%) are taken from the KDR.

2) The index sector (KIR) is read from disk.

3) A search of the KIR is made to locate the key. The search returns

a pointer (T) to the key in the KIR which is equal to, or next
lower than, the key being searched.

4) The relative sector address of the KIR and the pointer to the KIE
found (T) are stored in tables, T2$(T3) and T(T3), defining the
path taken to locate the particular key, where T3 is the current
index level.

5) If the current index level is greater than 1, the sector address
for the next lower level index is taken from the KIE found (T). and
the process 1is repeated from Step 2, above, for the next lower

level.

6) If the current index level is 1, then the search is finished. T
points to a KIE on Tevel 1, and V indicates whether the key found
is equal to or lower than the key being searched. Control is
returned to the particular subroutine (FINDOLD, FINDNEW, DELETE,
etc.).

The general procedure for inserting a key is as follows:

1) The proper position for the key 1is determined by the search
procedure, above.

191

CHAPTER 28 ~ GENEFAL TECHNICAL INFORMATION

(Key File Structure)

If the KIR is not full, the key and its associated record pointer
are inserted at location T+1 in the KIR. A1l KIE's from location
T+1 and up are moved up one position.

If the KIR is full, a new KIR is created, on the same level as the
old KIR. The KIE's are divided between the old KIR and the new
KIR. The new key and its associated record pointer are inserted in
proper sequential order in either the old KIR or the new KIR,
depending on where the new key happens to fall. The next available
sector address in the Key File is assigned to the new KIR.

If the split is not at the highest index level, the first key and
the sector address of the new KIR are inserted in proper key
sequence in the next highest Tevel KIR (as determined by tables
T2$() and T()). If the next highest level KIR is full, Step 3 is
repeated at that Tevel.

If the split is at the highest index level, a new level is created.
A new KIR is created, with two KIE's. The first KIE contains the
binary zero key and the relative sector address of the old KIR
(formerly the highest level KIR). The second KIE contains the
first key and sector address of the new KIR (created by the split).
The next available sector in the Key File is assigned to this new
highest level index. The KDR is updated (TO and T2%) to reflect
the new Tevel.

When the KIR is split, it is not always divided equally. There is a
reason for this. Consider keys which are being added sequentially. Again
assume the first index sector is filled by 14 active KIE's and one dummy KIE.

000,
011,

001, 002, 003, 004, 005, 006, 007, 008, 009, 010
012, 013, 014 :

The next key added, 015, causes a split:

01d KIR: 000, 001, 002, 003, 004, 005, 006, 007, FFF, etc.
New KIR: 008, 009, 010, 011, 012, 013. 014, 015, FFF, etc.
Level 2: 000, 008, FFF, etc.

The next keys added, 016, 017. etc. are all added to the new KIR
eventually causing it to be split:

Sector Level Keys

1
2

3
4

1 000, 001, 002, 003, 004, 005, 006, 007,
FFF, etc.

1 008, 009, 010, 011, 012, 013, 014, 015
FFF, etc.

2 000, 008, 016, FFF, etc.

1 ol6, 017, 018, 019, 020, 021, 022, 023,
FFF, etc.

The process continues, always adding to the latest KIR and splitting it,
leaving behind a residue of KIR's which are only half full. It should be
clear in this case that if the split were 12/4 instead of 8/8, the process of

192

CHAPTER 28 - GENERAL TECHENICAL INFORMATION
(Key File Recovery Information)

indexing a sequential file would 1leave behind a residue of KIR's each
containing 12 KIE's or 80% full. This would result in better wutilization of
Key File space and also tend to reduce the number of index levels required to
access a given file.

But a 12/4 split would be disastrous if the keys were being added at
random. There would be a greater probability of new keys being added to the
KIR's already containing 12 entries, because of the greater range of values
represented. So the Key File could actually fall below 8 keys per sector, and
a very inefficient skew distribution would be the result.

Therefore there is no particular split that 1is best 1in all cases.
Because of this, a moving bias has been included in the system. As each new
key is added, the program checks whether it 1is higher or Tlower than the
previous key added. If it is higher, the bias is adjusted downward. If it is
lower, the bias is adjusted upward. The bias is a percentage of the maximum
number of KIE's which, for a particular key size, can be contained in a KIR.
When a KIR must be split the current bias percentage is multiplied by the
maximum number of KIE's per KIR to give the split, i.e., the number of KIE's
which go into the new KIR. The range of the bias is .2 to .8.

On the basis of past experience, the system determines the best possible
split, based on the order 1in which keys are added sequentially, mostly
sequentially, random or backwards. The bias tends to approach .2 as keys are
added sequentially, and tends to stay at .5 if keys are added in random order.

The bias, V8, is initially set to .5. It is adjusted upwards or
downwards by 2% of the distance to .8 or .2 as each new key is added,
depending on whether the key is lower or higher than the previous key added.

In REORGANIZE KFAM FILE where it 1is known that keys will be added
sequentially, the bias is set to .2 at the begining. It is reset to .5
following the reorganization.

In KEY FILE CREATION the bias is set to .5 initially, and reset to .5
when the program is finished, because the order of keys added when initially
creating the Key File could very well be different than the order of keys
added at some later time (for example, sequential vs. random). The random
- hypothesis is always the "safest" to start with, unless experience proves
differently.

Between the creation of the Key File and the reorganization, if any, the
bias is allowed to fluctuate on the basis of how keys are added. It is stored
in the KDR, and preserved as a permanent record, i.e., not reset every time
the program is reloaded.

In summary, for KFAM, there are two minor departures from the B-tree

structure as described in Knuth: First, keys are duplicated in higher level
indexes, and second, a bias is introduced for the splitting of KIR's.

28.3 KEY FILE RECOVERY INFORMATION

KEY FILE RECOVERY wutilities are provided for KFAM-3 and KFAM-4 to
reconstruct a Key File in the event of its accidental destruction. In

193

CHAPTER 28 - GENERAL TECHNICAL INFORMATION
(FINDNEW with Blocked Files under KFAM-4)

reconstructing the Key File these utilities use information saved by the CLOSE
subroutine in the next-to-last sector of the User File.

At the end of a User File are two sectors of "overhead". The last sector
is a control sector written by the DATA SAVE DC OPEN statement. In the
next-to-last sector is a "trailer" record written by DATA SAVE END during the
INITIALIZE KFAM FILE utility. Two control bytes in this trailer record mark
it as a trailer record for the 2200 system; however the remaining bytes are
ignored by the 2200 system logic. Some of these remaining bytes are used by
KFAM to store recovery information. The information is stored each time the
CLOSE subroutine is executed (provided that the RECOVERY OPTION has been
chosen during BUILD SUBROUTINE MODULE).

The data saved by CLOSE in the next-to-last sector of the User File is
taken from the Key File's KDR record, and is as follows:

KFAM-3
Bytes Contents
1-2 HEX (AOFD)
3-4 Q2%$2 = last sector used, User File
5 V5$1 = last record within last sector
6 V831 = records per block
7-14 V1$8 = record type, record length, starting position of key,
key length, number of KIE entries per sector
15 V6$1 = sectors per record
KFAM-4
Bytes Contents
1-2 HEX(AOFD)
3-4 Q2$2 = last sector used, User File
5-8 V5$(4)1 = per CPU, last record used in sector assigned for
FINDNEW
9 V8$1 = records per block
10-17 V1$8 = record type, record length, starting position of
key, key length, number of KIE entries per sector
18 V6$1 = sectors per record
19-26 V2$(4)2 = per CPU, sectors assigned for FINDNEW

This data saved by CLOSE is written in the next-to-last sector of the
User File. This should always be the DATA SAVE DC END trailer. However, if
the rules for shortening and lengthening files given in Chapter 24 are not
carefully adhered to, the "trailer"” may end up in some other sector. This
could cause the RECOVERY utility to fail in some cases.

28.4 FINDNEW WITH BLOCKED FILES UNDER KFAM-4

Under KFAM-3 FINDNEW always sets the Current Sector address for the User
File to the next available sector at the end of the live data in the User
File. If records are blocked (type A or C), 1t passes back the next record

194

CHAPTER 28 - GENERAL TECHNICAL INFORMATION
(Compatibility between KFAM-1 and KFAM-3)

location as well. With blocked files under KFAM-4, the operation of FINDNEW
is more complex.

Under KFAM-4 up to four CPU's can have a KFAM file open simultaneously.
When a CPU executes OPEN for a file,it is assigned one of the four slots in
the KDR's Access Table. Associated with each slot in the Access Table is a
relative sector location, and, for blocked files, a record number within that
sector. This sector location and record number always point to the Tlast
location in the User File assigned when a CPU, occupying that Access Table
slot, executed a FINDNEW. If, after OPENing a blocked file, a CPU executes
FINDNEW, the 1location passed to it (sector and record location within the
sector) will be the next available location after the last Tocation given to a
CPU occupying the same Access Table slot. This new location will be the
sector following the last sector of live data in the file only if a new block
must be started.

In summary, when using blocked files with KFAM-4, whenever a new block
must be used, FINDNEW assigns an entire block to a particular Access Table
slot. That block then becomes the exclusive property of that slot in the
Access Table for the purpose of FINDNEW. It can only be filled by FINDNEW's
executed by a CPU occupying that slot. The result 1is that all record
Jocations up to the end of live data in the User File may not be filled at any
one time.

For blocked files under KFAM-4, the User File might Took Tike this, for
example,

. A PN

record location record location record end of Tive data

to be filled by to be filled by location in entire User File,

CPU occupying CPU occupying to be and record location

slot 3 slot 4 filled by to be filled by CPU
CPU occupying slot 2
occupying
slot 1

where: R = record

unoccupied record locations

28.5 COMPATIBILITY BETWEEN KFAM-1 AND KFAM-3

KFAM-3 is upwards - compatible with the original KFAM-T1 with the
following exceptions:

1. The structure of the Key File has been completely revised. There is a
conversion program to facilitate the conversion of files organized under
KFAM-1 to KFAM-3.

2. Restrictions are placed on the key. The first byte of the key may not be

HEX(FF). The entire key may not have a value of binary-zero (the Towest
possible value).

195

CHAPTER D¢ - JENERAL TECHNICAL INEFORMATION
(Compal POLLDty between KEAM=1 and KFAM=0)

3. The following alterations have been made to the Return Codes in the
KFAM-3 incorporable subroutines.

a.

C.

KFAM-3 returns 0Q$=blank in all cases if the subroutine was executed
properly. Formerly, FINDFIRST returned "l" and FINDLAST returned
"H" for normal execution. This will require a program chanae in
any user program using FIHDFIRST or FINDLAST.

Error codes "H" and "L" have been dropped in KFAM-3. Code "N"
means "Not Found" in DELETC and FINDOLD. This will require a
change to any user program testing (%= "H" or 0%= "L" following a
DELETE or FINDOLD.

A1l other Return Codes remain as before.

196

CHAPTER 29
KFAM ADVANCED PROGRAMMING TECHNIQUES

29.1 ELIMINATING THE PRINTER IN KFAM-3 AND KFAM-4

Certain utilities in KFAM use a printer (device 215). The printer is
used only for marginal functions, and can be eliminated with some slight
modifications if the particular System does not include a printer.

The printer is used in the following modules, for the following purposes:

INITIALIZE KFAM FILE: Hard copy printout of file description.

KEY FILE CREATION: Print duplicate keys and record locations.

CONVERT KFAM-1 TO KFAM-3, CONVERT KFAM-2 TO KFAM-3: Prints deleted keys

and invalid keys and their respective record locations. Prints last key.

Prints record counts.

KEY FILE RECOVERY: Prints duplicate keys and unreadable sectors.

PRINT KEY FILE: Print the contents of the Key File.

PRINT KEY FILE must be eliminated entirely if there is no printer, since
its sole function is to print the contents of the Key File. This function is
useful when programs are being tested, but is not necessary for the running of
KFAM.

INITIALIZE KFAM FILE may be run as written, but when the system asks "DO
YOU WANT A HARD COPY PRINTOUT OF FILE DESCRIPTION? (Y OR N)", the operator
must always enter "N" for "no".

The other utilities must be modified, though the changes, as described
below, are minor.

KEY FILE CREATION

The KEY FILE CREATION uses a printer to log duplicate keys, because
duplicate keys are otherwise ignored in the construction of the Key File.
Without some indication that a duplicate key was encountered, and some record
of where it was encountered, the data identified by the duplicate key would be
lost. Because duplicate keys are not allowed in KFAM, the recovery procedure
is left to the user. This utility only assumes the responsibility to log
them, if they occur.

The suggested modification to it is to display a message on the screen,
and stop, if a duplicate key occurs. The operator then has the option of

197

CHADPTER 29 = KFAM ADVANCED PROGRAMMING TECHNIQUES
(Eliminat ing the Printer)

keying CONTINUE (EXEC) to continue, once the duplicate key and its location is
manually recorded. The program changes to module KFAM2003 (or KFAM2004 for
KFAM-4) to accomplish this are as follows:

CLLARP 5396, 5400
6194 GOSUB'248(12,0,0)
6960 GOSUB'248(7,0,4
CLEARP 7100, 7120

7100 STOP

7105 GOTO 5770

Key File Recovery

The printer is used to list duplicate keys and unreadable sectors. The
prompt and operator entry for "TURN ON PRINTER" can be eliminated by deleting
line 7010. To display on the CRT, and stop, following a duplicate key or
unreadable sector, make the following changes to KFAM9003 (or KFAM9004 for
KFAM-4) :

3285 GOSUB' 248 (7,0,4)
8345 STOP

This displays the duplicate key in the center of the screen (lines 7-10)
erasing the fixed information there. Following the STOP, the operator can key
CONTINUE (LXEC) to resume processing.

The KFAM-3 Convert Utilities

The KFAM-3 "CONVERT" utilities use the printer to 10q9 deleted records,
invalid keys, and the last key, and to print record counts. It is not really
necessary lo log deleted records, nor is it necessary to print record counts.
Since this information fits on the screen, it can be displayed.

Invalid keys are keys which violate the KFAM-3 restrictions. (The first
byte of the key wmay not be HLX(FF). The entire key may not be binary zero, or
all bytes HEX(OD).) If such keys exist under KFAM-1, their values should be
Changed before conversion to KFAM-3. Invalid keys should not occur, but if
they do, some provision should be wmade to log their occurrence, berause
otherwise data could be Tost. The suggested procedure to handle invalid keys
is the same as with duplicate keys in KFY FILE CREATION: an error messade is
displayed on the screen, and the program stops. The operator should record,
manually, the key value (hex) and the record location. Then, optionally, the
operator way continue hy keying CONTINULD (CXrr).

The last key is necessary in order to run FKIY TIIT CRFATION Jater.
Therefore, the last key must be displayed on the screen and the operator must
record its value before clearing the screen.

The suggested changes to the KFAM-3 "CONVERT" utilities to eliminate the
printer are:

1. Ho display of deleted records.

2. Display invalid key and record Jlocation and stop sn that the
information can be written down. Optionally continue.

194

CHAPTER 29 - KFAM ADVANCED PROGRAMMING TECHNIQUES
(Files too Large for One Platter)
3. Display record counts on the screen.

4. Display the last key. The last key should be written down before
the screen is cleared.

Program changes to CONVERT KFAM-1 TO KFAM-3 (KFAM5000) to accomplish the

above are as follows:

above

a lin

CLEARP 7545, 7574
CLEARP 7765, 7775

7765 D=D+1: GOTO 7795
CLEARP 7815, 7825

7315 GOSUB'248(4,0,11)
CLEARP 7935, 7940
CLEARP 7955, 7970

7935 GOSUB'248(4,0,11)
8004 STOP

Program changes to CONVERT K*"AM-2 TO KFAM-3 (KFAM5002) to accomplish the
are as follows:

CLEARP 5510, 5544

CLEARP 6030, 6040

6030 D=D+1: GOTO 6060
CLEARP 6080, 6090

6080 GOSUB' 248 (4,0,11)
CLEARP 6200, 6205

CLEARP 6220, 6235

6200 GOSUB' 248 (4, 0, 11)
6314 STOP

The Model 2201 Qutput Writer

The Model 2201 Output Writer can perform any of the functions assigned to

e printer in KFAM. The "SELECT PRINT 215" statements need merely be
changed to “SELECT PRINT 211". For the listed programs, these statements
occur on the following lines.

PROGRAM LOCATION

PRINT KEY FILE KFAM-3 240

PRINT KEY FILE KFAM-4 810

KEY FILE CREATION (KFAM-3 and KFAM-4) 6194, 6960

CONVERT KFAM-1 TO KFAM-3 7545

CONVERT KFAM-2 TO KFAM-3 5510

INITIALIZE KFAM FILE KFAM-3 2710

INITIALIZE KFAM FILE KFAM-4 2860

29.2

File
(Both

KEY FILE RECOVERY (KFAM-3 AND KFAM-4) 8285

FILES TOO LARGE FOR ONE PLATTER IN KFAM-3 AND KFAM-4

A cataloged disk file must be wholly contained on one disk. If the User
is too large for one disk, it must be broken into two separate files.
files may have the same name, since they are on different disks.)

199

CHAPTER 29 - KFAM ADVANCED PROGRAMMING TECHNIQUES
(Files too Large for One Platter)

Separate Key Files must be created, one for each User File. (If both Key
Files are on the same disk, they may not have the same name.)

Perhaps the simplest scheme for splitting the User File is to determine
a “"cutoff" point. A key value is picked, somewhere in the middle, which will
be the highest key in User File #1. Records with lower keys are stored in
User File #1, and records with higher keys are stored in User File #2.

If each User File and its companion Key File are stored on the same
platter, both User Files may have the same name, as may both Key Files. In
that case, the same routines can be used to access both files, simply by
changing the platter designation. For example, suppose that the User Files
"FILEF1" are open on the 'F' and 'R' platter, as are the Key Files "FILEKT".
Assume that these files are parts of a single inventory file, and that the
part number of the last record in UF #1 (on the 'F' platter) is "9006AS-B4".
Under KFAM-3 the following routine could then be used to open both files,
accept an input key, determine which file the record associated with this key
is in, and read the record from the appropriate file for processing.

1 GOTO 4000

4000 SELECT #1 320 :REM KF #1

4010 SELECT #2 B20 :REM KF #2

4020 SELECT #3 320 :REM UF #1

4030 SELECT #4 B20 :REM UF #2

4040 REM QPEN BOTH FILES

4050 GOSUB'230(1,1,3,1,"FILEF1")

4060 GOSUB'230(2,2,4,1,"FILEF1")

4070 REM NOW PROCESS

4080 INPUT "PART NUMBER", P$

4090 X=2: REM ASSUME PART # BELONGS IN FILE #2

4100 IF P$ > "9006AS-B4" THEN 4130

4110 X=1: REM IF PART # SMALLER THAN 9006AS-B4 IT GOES
IN FILE #1

4120 REM FINDOLD

4130 GOSUB'232(X,0,P$): REM SEARCH FOR KEY. IN APPROPRIATE KF

4140 IF Q§<> " " THEN 6020

4150 REM GET DATA RECORD

4160 X=X+2: REM COMPUTE UF FILE 10O. BY ADDING 2 TO KFAM ID
NUMBER

4170 DATALOAD DC#X, Data Record

4180

Process Data

5990
6000 GOTO 4080: REM LOOP BACK TO INPUT NEXT PART NO.
6010 REM ERROR PROCEDURE

6020 PRINT "PART # NOT ON FILE"
6030 GOTO 4080

200

CHAPTER 289 = KEAM ADVANCED PROGRAMMING TLCHNTQUES
(reusing Deleted Space)

ifotes:

1) Line numbers less than 4000 should not be used in the program (since
KFAM subroutines end at line 3075), with the exception of Line 1
(GOTO 4000), which makes it possible to execute the program simply
by keying RUN, EXEC.

/) Line 4130: Alpha variables can be wused as valid parameters for
alphanumeric arguments, and numeric expressions can be used as
numeric arquments.

3) Line 4170: A numeric variable is valid as a file number in the
DATALOAD DC (or DATASAVE DC) statement. A variable cannot be used
for the file number in a SELECT statement. however.

4) For KFAM-4, the SELECT subroutines DEFFN' 210 and DEFFN' 211 must be
included in the program, and the GOSUB' arguments must be changed to
conform to KFAM-4 specifications.

29.3 REUSING DELETED SPACE WITH FINDNEW(HERE)

Inmediately following a DELETE, FINDNEW(HERE) may be used to insert a
new vrecord in the space just vacated by the deleted record. This function is
useful for changing a key, but is not generally useful to reuse the deleted

space because a new record is not generally available immediately following a
DELETE.

The user may, however, store the pointer to the deleted record 1in a
separate file for later use. The procedures, for KFAM-3 and KFAM-4, are given
below.

KFAM-3 Procedure

1. DELETE a record.

2. Test T8%. [If T83="1", then T4$ contains a valid pointer to a
deleted record, and may be saved.

3. If T8%="1", save the contents of T4% in some file or 1list external
to KFAM. (T4% is a 3-byte pointer containing the relative sector
address (2 bytes, hex) and record number (1 byte, hex) of the
deleted record.)

To reuse the space at some later time:
1. Set T8% = "1".
2. Move the saved record pointer to T4§.

3. Use FINDNEW(HERE) with the new record key.

4. FINDNEW(HERE) will return with the Current Sector address of the
correct sector and Q = the record number within the sector.

201

CHAPTER 29 - KFAM ADVANCED PROGRAMMING TECHNIQUES

Notes:

(Reusing Deleted Space)

T8% is an internal return code. T8% = "1" indicates that the 1last
operation was a DELETE, which was successfully executed.
FINDNEW(HERE) will not be executed unless T8% = "1".

T4$ always points to the record being accessed, following normal
execution of any subroutine except OPEN and CLOSE. T4$ is the
source field from which the disk read/write head is positioned and Q
is extracted. The first two bytes of T4$ can be used as an absolute
sector address by adding the starting sector (hex) of the User File.

T8% and T4$ are both contained in the KDR. When more than one file
is open concurrently, the KDR residing in memory is the KDR of the
last file accessed and not necessarily the next file to be accessed.
Therefore, when more than one file is open, care should be taken in
modifying variables in the KDR. The current KDR in memory may
belong to another file.

The 1.D. HNumber of the currently active file is in T9. If there is
any question, T9 can be tested. To ensure that the proper KGR is in
memory, the following statements should be executed:

Té = (I.D. Number)
GOSUB 920
IF Q§ = "X" THEN (file not open)

The subroutine at line 920 checks T6 = T9. If they are not the same, it

writes the current KDR and reads the KDR belonging to file T6, and then sets

T9 = T6.

If they are the same, it does nothing.

Once the proper KDR is in memory, then the values of T8% and T4$ can be
modified for the correct file.

KFAM-4 Procedure

Unlike KFAM-3, KFAM-4 does not check that FINDNEW(HERE) follows DELETE.

Under KFAM-4, the pointer to a deleted record may be saved as follows:

1.
2.
3.

DELETE a record.
Test to make sure that Q% = blank.
Save the contents of T4% in some file or 1list external to KFAM.

(See Section 28.1, "Internal Storage KFAM-4" for definition of
T4S.)

To re-use the space at some later time:

1.
2.

Move the saved record pointer to T4$. (See Note 1 below.)

Use FINDNEW(HERE) with the new record key.

202

CHAPTER 29 - KFAM ADVANCED PROGRAMMING TECHNIQUES
(Multiple Key Files per User File - Status of the KDR in KFAM-3)

3. FINDNEW(HERE) will return with the Current Sector address set to
read the correct sector and Q = the record number within the
sector.

NOTE:

If the file to be accessed is not the same as the file
last accessed by a KFAM subroutine, move the saved record
pointer to T4$ (i), where i = this file's KFAM I.D.
Number. If not sure which file was last accessed, test T9
= KFAM I1.D. Number last accessed.

29.4 MULTIPLE KEY FILES PER USER FILE

KFAM does not support multiple Key Files for a single User File. Though
the Key File number provides a means of identifying different Key Files for a
single User File, the subroutines and utility programs are designed for
operations in which there is only one Key File per User File. The Programming
Department of Wang Laboratories, Inc. does not support KFAM based file access
systems that attempt to maintain multiple Key Files for a single User File.

29.5 STATUS OF THE KEY DESCRIPTOR RECORD (KDR) IN KFAM-3

The Key Descriptor Record (KDR) contains vital information pertaining to
a KFAM file. The contents of the KFAM-3 KDR have been described in Section
28.1, but the dynamics of the KDR, namely when it is read, when it is written,
and when certain fields are updated, may be of interest to the applications
programmer. :

The contents of the KFAM-3 KDR can be split into the following
categories:

a. Fields which are set up in INITIALIZE KFAM FILE and remain

unchanged:

Q3% Ending (relative) sector address, upper bound, User File
(may be changed with REALLOCATE KFAM FILE SPACE).

V8$ Records per block, user file.

V1§ File type, Record Length, Starting position on key, Key

length, Number of entries in KIR.

V3§ Ending (relative) sector address, upper bound, Key File (may
be changed with REALLOCATE KFAM FILE SPACE).

V6$ Sectors per logical record or block.

b. Fields which are set up by the OPEN subroutine and remain set until
the file is opened again:

203

CHAPTER 29 - KFAM ADVANCED PROGRAMMING TECHNIQUES

VO$

T
T2

(Status of the KDR in KFAM-3)

Starting (absolute) sector address, Key File. This field i3
set at OPEN time to allow for moving the Key File to a
different location on disk.

Current Key File #.

Current User File #.

c. Fields which are initialized in INITIALIZE KFAM FILE and changed (or
subject to change) whenever a record is added to the file:

Q2%
V5§

T2%
TO

V8
T5%

Last (relative) sector address assigned, User File.

Record number within sector, last record of User File.

When a record is added via the FINDNEW subroutine, V5% s
incremented by 1. If V5% exceeds V8% (records per block),
Q2% is incremented by V6% (sectors per block) and V5% is set
to 1. When a record 1is added via the FINDNEW(HERE)
subroutine, Q2% and V5% are not changed.

Last (relative) sector address assigned, Key File. This
will be updated only when the KIR is split, requiring a new
sector (or sectors) for the Key File.

Relative sector address of highest level index, Key File.
Number of index levels in Key File.

T2$% and TO are only updated when a new level is added to the
key index.

Bias percentage for KIR split.
Last key added to the file.

V8 and T5$ are updated every time a record is added to file.

d. Fields which are changed every time a record is accessed:

T4$

T7$

T2%()

Pointer to record found 1in User File. Corresponds to
pesitioning of disk read/write head and Q value.

Last key accessed. In the case of "key not found", this is
the key value specified by the user. In the case of
FINDFIRST, FINDLAST, or FINDNEXT, it is the key found in the
Key File.

Path to locate key, in terms of sector addresses of KIR's
searched.

Path to locate key, in terms of KIE within KIR per Tevel
searched.

204

CHAPTER 29 - KFAM ADVANCED PROGRAMMING TECHNIQUES
(Status of the KDR in KFAM-3)

T2$() and T() are not defined following FINDNEW,
FINDNEW(HERE), or DELETE.

8% Internal completion code.

The KFAM-3 KDR is resident in memory once the file 1is opened. It
remains resident in memory, as long as the file is "current", and is written
back onto disk when the file ceases to be "current".

The distinction between "open" and ‘“current" is necessary because more
than one file may be open concurrently. The "current" file is defined as the
last file accessed by a KFAM-3 subroutine. Following a CLOSE of any file, no
file is "current".

Regardless of how many files are open, there is only one space in memory
for the KDR, that space being defined by the variables Q2%$, Q3%, ..., T8$,
that define the KDR. The KDR of the current file occupies these variables.
When another file is specified by the user, the KDR for the current file is
written onto the disk, the KDR for the new file is read into memory, and the
new file becomes "current".

Therefore care should be taken, in the multi-file situation, in
modifying any of the variables in the KDR. The KDR residing 1in memory may
belong to another file. I[f there is any doubt, the following instructions
will invoke the subroutine which checks which file 1is current and switches
KDR's if necessary.

Té = (I.D. number of file to be accessed)
GOSUB 920
IF Q$ = "X" THEN (file not open)

In addition to being written every time the file ceases to be current,
the KDR is also written every time a record is added to the file, either by
FINDNEW or FINDNEW(HERE). In other words, the KDR is written every time that
critical information 1is wupdated. This is a safety factor, so that the file
will not be destroyed in the event of system fajlure. (However, this 1is not
an absolute guarantee that the file cannot be destroyed. A system failure
during the critical rewrite operations of FINDNEW, FINDNEW(HERE), or DELETE
can cause the key index itself to become invalid. Also a hardware malfunction
can make the disk unreadable. It is a good practice to make a back-up copy of
the disk at regular intervals.)

The fields of the KDR which are changed with every record accessed are
not critical, and therefore the KDR is not rewritten every time a record is
accessed. When the contents of the KDR is printed, these fields may or may
not reflect the Tatest status of the KDR. (In the event of system failure,
they will not generally reflect the latest status of the KDR.) They are
printed only because they are there, and they may or may not be meaningful.
The PRINT KEY FILE program prints the latest version of the KDR written on
disk, which means the status of the KDR either the last time a record was
added or the last time the file ceased to be current.

There are legitimate reasons why a user may wish to change information

in the KDR. One problem which 1is 1ikely to occur is that the starting
position of the key or the record length is wrong, causing the Reorganization

205

CHAPTER 29 - KFAM ADVANCED PROGRAMMING TECHNIQUES
(Status of the KDR in KFAM-4)

program to fail. These fields, which are critical in reorganizing, cannot
really be checked prior to reorganizing. And at the point of reorganizing, it
is not generally feasible to recreate the Key File from the beginning. If
such problems, or similar problems, occur, the contents of the KDR can be
changed by the user, via a very simple procedure:

SELECT (Key File#, User File#)

OPEN the file

Modify the appropriate variable in the KDR
CLOSE the file

This will read in the KDR, change it, and write it back on the disk.

29.6 STATUS OF THE KEY DESCRIPTOR RECORD (KDR) KFAM-4

In KFAM-4, the KDR is not so easy to modify, via user program, as in
KFAM-3, nor is it necessary or recommended to modify the KDR.

The fields which are of most interest to the user, T4$ (current pointer)
and T75 (current key), are stored internally. (See the Section 28.1 on '"File
Layouts" and "Internal Storage.")

In KFAM-4, the KDR serves as the communications 1link between multiple
CPU's accessing the file. In shared mode ("A"), it is read at the start of
each KFAM subroutine, updated, and rewritten at the end. In exclusive mode
("X") it is read and written the same as in KFAM-3, except that it is written
in the OPEN subroutine to indicate to other CPU's that the file 1is held
exclusively.

There are legitimate reasons why a user may wish to change information
in the KDR. One problem which 1is 1likely to occur is that the starting
position of the key or the record length is wrong, causing the Reorganization
program to fail. These fields, which are critical in re-organizing, cannot
really be checked prior to re-organizing. At the point of re-organizing, it
is not generally feasible to re-create the Key File from the beginning. If
such problems, or similar problems, occur, the contents of the KDR can be
changed by the user, via a very simple procedure:

SELECT (User File #)

OPEN the file, exclusive mode

Modify the appropriate KDR variable
CLOSE the file

(DEFFN'210, 211 to SELECT Key File #)

This will read in the KDR, change it, and write it back on the disk.

206

CHAPTER 29 - KFAM ADVANCED PROGRAMMING TECHNIQUES
(File Names)

29.7 FILE NAMES FOR THE KFAM UTILITIES

File names for the KFAM-3 and KFAM-4 Utilities are as follows:

UTILITY KFAM-3 KFAM-4
INITIALIZE KFAM FILE - KFAM1003 KFAM1004
KEY FILE CREATION - KFAM2003 KFAM2004
REORGANIZE KFAM FILE

DIALOG - KFAM3003 KFAM3004

GENERATE CODE - KFAM3103 KFAM3104

MAIN PROGRAM - KFAM3203 KFAM3204
REALLOCATE KFAM FILE SPACE - KFAM4003 KFAM4004
DISK COPY/REORGANIZE - KFAM4103 KFAM4104
CONVERT KFAM-1 TO KFAM-3 - KFAM5000 -
CONVERT KFAM-2 TO KFAM-3 - KFAM5002 -

PRINT KEY FILE - KFAM6003 KFAM6004
BUILD SUBROUTINE MODULE - KFAM8003 KFAM8004
REQORGANIZE SUB-SYSTEM

MODULE 1 KFAM3503 KFAM3504

MODULE 2 KFAM3603 KFAM3604

MODULE 3 KFAM3703 KFAM3704
KEY FILE RECOVERY KFAM4003 KFAMS004
RESET ACCESS TABLE - KFAM7004
CONVERT KFAM-3 TO KFAM-4 ~ KFAM5004

207

PART V
THE PROGRAMMING AIDS

208

CHAPTER 30
OVERVIEW

30.1 SUMMARY

The Programming Aids Diskette contains a library of DEFFN' subroutines
designed to reduce the time required to develop application programs. It also
contains SORT-3, a disk scrt subsystem that is called by a user written set-up
program. Since it must be called by a user written program, SORT-3 does not
appear in a Programming Aids menu.

There are two groups of subroutines: the SCREEN/DISK subroutines and
the TRANSLATION TABLES subroutines. The SCREEN/DISK subroutines perform
standard tasks related to operator to CPU, and CPU to disk interaction. The
TRANSLATION TABLES subroutines initialize 256-byte arrays with the proper hex
codes for four standard code translations. The arrays are designed for use
with the BASIC statement $TRAN.

ATl of the subroutines may be loaded at once. They are numbered within
the range 3000-9899. The program lines associated with the menus are outside
this range.

A1l scalar and array, alpha and numeric variables used by the
subroutines have their initial symbol within the range Q - W. AT11 DEFFN'
routines are identified by numbers 200-255. While individual items within
these ranges may not be used by any given release of ISS, in supporting ISS it
is assumed that no variables or DEFFN' subroutines in these ranges are used
for application purposes unrelated to the subroutines.

ATl the subroutines are compatible with one another in regard to usage
of wvariables. However, all the translation table subroutines load the same
array variable.

In the descriptions of the various programming aids, a familiarity with

the BASIC Tlanguage 1is assumed, in particular with the DEFFN' and GOSUB'
statements.

30.2 HOW TO LOAD THE SUBROUTINES

Subroutines should be Toaded before you begin to key in the application
program.

To Toad subroutines the recommended procedure is:

1. From the Programming Aids Master Menu access the appropriate menu
for the desired subroutines.

209

CHAPTER 30 - OVERVIEW

2. Key the specified Special Function keys for all the desired
subroutines on the menu. For the translation tables menu, after
each key depression be sure the processing Tight goes out before
depressing the next key. For the SCREEN/DISK menu be sure to key
Special Function Key 16 after selecting the desired subroutines. If
subroutines from only one menu are required, go to step 6;
otherwise, go to the next step.

3. Save the gathered subroutines with a SAVE DC command, restricting
the line numbers to be saved to 3000-9899. For example,

SAVE DC R "AID1" 3000, 9899.

This preserves only the lines associated with the programming aids
themselves, since the "menu" lines lie outside this range.

[f another menu is needed, depress Special Function key 15 to return
to the START module, and go to step 1.

Otherwise, go on to the next step.

NOTE:

Loading a subsidiary menu clears from memory all program
text and non-common variables.

4. Depress CLEAR, RETURN(EXEC).

5. In the immediate mode, load all the fi]es that have been created.
For example, execute

LOAD DC R "AIDT"
LOAD DC R "AID2"

6. If translation table subroutines have been loaded, a DIM statement
appears at line 9700. It must be moved to a line number lower than
that on which the $TRAN statement is to appear. A1l DIM statements
for the SCREEN/DISK subroutines lie in the range 3000-3050. They
should be moved to the beginning of the application program. If
more than one translation table 1is used, it may be desirable to
change one of the designating array variables.

7. Save the adjusted programming aids collectively. For example,
SAVE DC R "AIDS"
Though not strictly required, this step will ensure that steps 5 and
6 will not have to be repeated, should the memory be accidentally
altered or destroyed.

8. Key in the application program.

210

CHAPTER 31
THE SCREEN/DISK SUBROUTINES

The Screen/Disk subroutines are DEFFN' subroutines which can be
incorporated into application programs. They each accomplish a standard task
relating to system to disk, or system to operator, interaction.

None of the Screen/Disk subroutines destructively overlap one another;
therefore, all may be used in a single program if that is desired. ATl Toad
within the line numbers 3000-9599, though only DIM statements appear below
line 7000.

The subroutine arguments are shown as variables; however, any valid
GOSUB' argument form may be used by the application programs. The variables
shown as subroutine arguments have been chosen for mnemonic reasons; they are
not the variables actually used by the subroutines.

[f a subroutine argument specifies a disk file number, the file number
must be associated with a device address prior to calling the subroutine. For
file numbers other than 0, this must be accomplished by executing a SELECT
statement such as 50 SELECT #3 310.

31.1 DATA ENTRY

This subroutine accepts a keyboard entry and checks that its value,
length, and number places before and after the decimal fall within specified
limits. It uses the KEYIN statement. Therefore, the possibility of a
hardware-signaled data input error is eliminated. It can be used for
alphanumeric or numeric input. It displays a prompt and creates an
appropriate entry mask with decimal location indicated by a slash (/), and all
other entry positions indicated by a hyphen (-). Note that the significance
of the subroutine arguments, as given below, depends upon whether the field to
be entered is numeric or alphanumeric. T is the argument that specifies which
type of field is to be entered.

Transfer to the subroutine is via the statement:
GOSUB' 200 (L$, H$, L1, R1, P$, T)

where: L$ - If the field to be entered is alphanumeric, L$ is the lowest
acceptable alphanumeric string value of the entry. If the
field to be entered is numeric, L$ is the lowest acceptable
numeric value of the entry. Since the argument L$ is itself
alphanumeric, it must always be expressed as an alphanumeric
string, even if the field to be entered is numeric, e.g., L$
= "-99,99",

211

CHAPTER 31 - SCREEN/DISK SUBROUTINES

(Data Entry)

H$ - If the field to be entered is alphanumeric, H$ is the highest
acceptable alphanumeric string value of the entry. If the
field to be entered is numeric, H$ is the highest acceptable
numeric value of the entry, expressed as an alphanumeric

string.
L1 - If the field to be entered is alphanumeric, L1 is the maximum
number of characters it may contain. If the field to be

entered is numeric, L1 is the maximum number of digits to the
left of the decimal.

R1 - If the field to be entered is alphanumeric, Rl should be
entered as 0. If the field to be entered is numeric, R1 is
the maximum number of digits to the right of the decimal.

P$ - is the prompt. Maximum of 64 characters.

T - 1is the operation type.
If the field to be entered is alphanumeric, T s

2. If the field to be entered is numeric, T is
1.

The prompt is displayed on line 1, and the mask on line 2.

Two types of checks on the entry are performed: checks on each character
as it is entered, and checks on the entire response after the depression of
RETURN(EXEC).

The character checks are:

1.

Is the character a RETURN(EXEC)? A RETURN(EXEC) signals the end of
the response.

Is the character a BACKSPACE? A BACKSPACE erases the previous
character from memory, and replaces it on the display with the
proper mask character.

Is the character a LINE ERASE? A LINE ERASE wipes out all entered
characters and reconstructs the mask.

Is the hexadecimal value of the entry less than 20 (space) or
greater than 7F? If so, the error message is displayed.

After RETURN{(EXEC) 1is keyed, the following checks are performed on the
entire response:

1.

Does the response conform to the minimum and maximum value
specifications?

If the entry is alphanumeric, is its Tlength within the maximum

length? If the entry is numeric, is the number of digits before
the decimal within the maximum?

212

CHAPTER 31 - SCREEN/DISK SUBROUTINES
(Free Unused Sectors)

3. If the entry is numeric, is the number of digits to the right of
the decimal within the maximum?

If these tests reveal that the response does not meet the specifications
detaiied in the GOSUB' arguments, then the error message is displayed.

The error messaae 1is "INVALID. RE-ENTER", displayed on Tline 3,
accompanied by the audio alarm. V‘hen the error messaae is displayved, the mask
is reconstructed and the subroutine is readied to reaccept data.

A valid response is returned to the proaram in

Q9 - for numerics

N6S - for alphanumerics

31.2 FREE UNUSED SECTORS

This subroutine examines the last file in a disk catalog area. It
de-ailocates those sectors between the end of the file and the DATASAVE DC END
traiier. It repositions the end of file control sector. The de-allocation
may be restricted by specifying that a minimum number of extra sectors be
maintained in the file.

The file must have been ended with a DATASAVE DC END statement. If this
subroutine 1is executed on a file which lacks a DATASAVE DC END trailer, the
fiie is destroyed.

This subroutine is designed as a counterpart to Allocate Data File Space.
The subroutine is called by

SELECT #F xyy
GOSUB' 227 (F, W$, S1)

where:

Xyy is the disk device address,

F is the File Number.

N$ is the name of the file to be examined.

S1 is the number of extra sectors to be maintained in the

file,
There are three independent conditions under which the file will not be
altered. In the sequence of their evaluation, they, and their return codes,
are:

If the file does not exist, the return code R2$ is set to 3.

If the specified file is not the last file 1in the catalog area, the
subroutine returns 2 in R2$.

If the number of extra sectors found in the file is less than or equal

to the number of extra sectors to be maintained in the file, the
subroutine returns 1 in R25.

213

CHAPTER 31 - SCREEN/DISK SUBROUTINES
(Allocate Data File Space - Search Index)

If none of the above conditions occurs, the file is altered and the
subroutine returns 0 in R2$.

31.3 ALLOCATE DATA FILE SPACE

This subroutine opens a data file on any selected disk and allocates to
it the available sectors between the current end of cataloged files and the
end of the cataloged area. It checks the catalog index to ensure the
uniqueness of the file name; it allows a minimum acceptable file size to be
specified.

This subroutine is designed to be a counterpart to Free Unused Sectors.
The subroutine is called by

SELECT #F xyy
GOSUB' 228 (F,N$,S)

where:
Xyy is the disk device address.
F is the File Number.
N$ is the name of the new file.
S is the minimum acceptable number of sectors for the file.

There are three conditions sufficient to prevent the file from being opened.
In the sequence of their evaluation they, and their return codes, are:

If the file name is the same as an indexed scratched file, the return
code R2$ is set to 3.

If the file name is the same as an indexed active file, the return code
R2$ 1is set to 2.

If there are insufficient sectors in the catalog area, beyond the current
end, to open the specified minimum file, the return code R2% is set to 1.

If none of these conditions occurs, the file is opene? and the return
code R2$ is set to O.

31.4 SEARCH INDEX

The Search Index subroutine searches a disk catalog index for a specified
file name. It returns the status of the file as active, scratch-d or
nonexistent.

The subroutine is called by:

SELECT #F xyy
GOSUB' 229 (F, N$)

where:
xyy is the disk device address.

F is the File Number.
N$ is the file name.

214

CHAPTER 31 - SCREEN/DISK SUBROUTINES
(Open/Close Output)

R2$ returns the file status code.

R2$ = HEX(10) the file is active.
R2¢ = HEX(11) the file is scratched.
R2$ = HEX(00) the named file does not exist.

31.5 OPEN/CLOSE QUTPUT

These subroutines open for output, and subsequently close, disk data
files which utilize special header and trailer information. In addition to
satisfying the file open and close requirements fer disk catalog operation,
they produce single sector software header and trailer records with the
following fields:

ELEM DISK
FIELD TYPE LENGTH LENGTH CONTENTS
1 Alphanumeric 3 4 HDR-indicates header
EOF-indicates end of file
EOR-indicates end of volume
2 Alphanumeric 8 9 file name
3 numeric 8 9 creation date (Julian format)
4 numeric 8 9 number of days to
retain file (the “retention
period")
5 numeric 8 9 volume number

Based on the data in the header and trailer records, these subroutines
enforce certain system standards. For example, when a file is opened for
output, a life span in days is specified for it. The file, then, cannot be
opened for output again until this Tife span has expired.

Open Output

The subroutine is called by

SELECT #F xyy
GOSUB' 240 (F,N$,D,V)

where:

xyy is the disk device address.

F is the file number.

N$ is the name of the file to be opened.

D is. the number of days the file is to be preserved (the "retention
cycle"),

V is the volume number of the file.

215

CHAPTER 31 - SCREEN/DISK SUBROUTINES
(Open/Close Output)

The subroutine displays the message MOUNT DISK TO CONTAIN VOL. XX OF
FILE (FILE NAME) UNIT X. After the specified disk is mounted, the catalog
index is searched for the file name.

If the file is not listed in the disk 1index, it 1is opened using the
technique of the Allocate Data File Space subroutine.

If the file is indexed but scratched, the scratched file is reopened as
an active file.

If the file is indexed and active and the retention period has expired,
the file is reopened.

Regardless of which one of the above conditions is found, the subroutine
writes the software header record in the first available file sector. The
Julian date is obtained from Q1. Control returns to the application program
with the read/write head at the first available file sector after the software
header.

If the file name is indexed and active but the volume number is different
from argument V, then, the mount message is redisplayed. If the file name is
in the index, active, but the retention period has not expired, the message
RETENTION CYCLE NOT EXPIRED appears together with the mount message. If there
is insufficient space to open a file, the message INSUFFICIENT SPACE appears
together with the mount message.

NOTE:

Keying X RETURN(EXEC) in response to the mount message
causes any file with the same name to be reopened.

Close Qutput

The subroutine is called by

SELECT #F xyy
GOSUB' 241 (F, T9%)

where:

xyy is the disk device address.

F is the file number.

T$ is the software trailer indicator
"EQF" for end of file, or
"EOR" for end of volume.

The subroutine writes the software trailer followed by the hardware
(DATASAVE DC END) trailer.

If the file is the last file in the catalog area, the techniques of the
Free Unused Sectors subroutine are employed to return the unused sectors to
the available disk catalog area.

216

CHAPTER 31 - SCREEN/DISK SUBROUTINES
(Open/Close Input)

The file is closed and a message requests removal of the disk.
If T$ is set to "EOF", control is returned to the application program.

If T$ is set to "EOR", the volume counter is incremented for the next software
header, and the Open Output subroutine is called again.

31.6 OPEN/CLOSE INPUT

These subroutines open for input and subsequently close disk data files
which utilize special header and trailer information. They are designed to
work in conjunction with the Open/Close Output subroutines and depend upon
properly structured software headers and trailers. (See Section 31.5 for this
structure.)

Open Input

The subroutine is called by

SELECT #F xyy
GOSUB' 250 (F, N$, V)

where:

Xxyy is the disk device address.
F is the file number.

N$ is the file name.

V is the volume number.

The subroutine displays the prompt MOUNT VOL. XX OF FILE _
- UNIT X. After the proper disk is mounted, the catalog index is searched for
the file name. If the file name is found, the software header 1is read to
determine if the volume number is correct. A correct volume number causes the
subroutine to return control to the application program with the file open.

If the file is scratched, or cannot be found, or the volume number of the
file is not the specified volume number, an error message is displayed
together with the mount prompt.

Close Input

The subroutine is called by
GOSUB' 251(F)
where: F is the file number.

The subroutine reads the software trailer and checks whether it specifies
an end of file or end of volume. An end of file trailer causes the subroutine
to close the file and return control to the application program. An end of
volume trailer causes the subroutine to increment the volume counter by one,
and initiate the Open Input subroutine with the same file name and the new
volume number specified.

217

CHAPTER 31 - SCREEN/DISK SUBROUTINES
(Position Cursor - Alphanumeric Input)

31.7 POSITION CURSOR

This subroutine moves the cursor to any location on the display and,
optionally, erases the characters to the right of the new cursor position, and
the lines below it.

Transfer to the subroutine is via the statement:

GOSUB' 248 (R, C, E)

where:
R = row (0-15).
C = column (0-63).
E = number of lines to erase.
The cursor is moved to the specified position. If E is zero, no

characters are erased. If E is one, characters to the right of the cursor on
the specified row are erased. If E is greater than one, an additional number
of lines equal to the value E-1 are erased.

31.8 ALPHANUMERIC INPUT

These two subroutines allow keyboard entry of alphanumeric data. One
displays a message on line 1 as well as prompting dashes; the other displays
only the prompting dashes. The prompting dashes appear on line 2 and indicate
the maximum field size which can be entered. They are replaced by the entered
information. The routines use the INPUT statement of the BASIC Tlanguage.
Line 3 1is cleared on exiting the subroutines. If the entry exceeds the
maximum field size, "RE-ENTER" appears on line 3; the prompting dashes are
reconstructed on line 2.

With message the subroutine is entered via
GOSUB' 243 (P$, L1)

where:
P$ is the prompt up to 63 characters.
LT is the maximum number of characters to be entered. If it is 0,
no prompting dashes appear and the field size check is omitted.
The maximum value of L1 is 62.

Without message the subroutine is entered via
GOSUB' 244 (L1)

where:
LT is the maximum number of characters to be entered. If it is 0,
no prompting dashes appear and the field size check is omitted.

The maximum value of L1 is 62.

Both subroutines return the entered data in Q6$.

218

CHAPTER 31 - SCREEN/DISK SUBROUTINES
(Numertc Input - Date Routines)

31.9 NUMERIC INPUT

These two subroutines allow keyboard entry of numeric data. One displays
a message on line 1 as well as prompting dashes; the other displays only the
prompting dashes. The prompting dashes appear on line 2 and indicate the
maximum number of digits to be entered before and after a decimal point. The
decimal point position is indicated by a slash (/). The entered numeric data
replace the prompting dashes. Line 3 is cleared on exiting the subroutine.

With message the subroutine is entered via

GOSUB' 245 (P$, L1, RI1)
Where: P$ is the prompt up to 64 characters.
L1 is the maximum number of digits left of the decimal point.
R1 is the maximum number of digits right of the decimal point.
Without message the subroutine is entered via
GOSUB' 246 (L1, R1)

where L1 and R1 are defined as above.

The following applies to both subroutines. If L1 1is positive, only a
positive number may be entered. If it is negative, a negative or a positive
number may be entered, and the absolute value of L1 specifies the number of
digits left of the decimal.

I+ L1 and R1 are zero, no prompting dashes are displayed, and any numeric
entry is accepted.

Three error conditions cause "RE-ENTER" to be displayed on 1line 3, and
the prompting dashes to be recreated on line 2. These error conditions are:

a) The number of digits entered exceeds that specified by L1 or R1.
b) No digits are entered.

c) The entry is negative and L1 is positive.
Numeric input is returned by the subroutines in Q9.

31.10 DATE ROUTINES

The Special Function Key Tisted for "DATE" in the SCREEN/DISK menu brings
in a group of independently accessible subroutines which facilitate the entry
and use of dates.

Dates may assume two forms. These are known as the "Gregorian" and
"Julian" forms, respectively. Gregorian form is alphanumeric MM/DD/YY

219

CHAPTER 31 - SCREEN/DISK SUBROUTINES
(Date Routines)

Where: YY is the 2 Tow order digits of the year.
MM is the number of the month such that 1 < MM < 12.
DD is the day of the month 1 < DD < 3I.
Julian form is numeric YYDDD.
Where: YY is the 2 low order digits of the year.
DDD is number days since the beginning of YY counting
January 1 as 1.
A Julian date is in proper form if

YY > 0 and
1 < DDD < 365 whenever YY specifies a non-leap year,

or 1 < DDD < 366 whenever YY specifies a leap year.

A Julian date must be 1in proper form to be correctly converted to
Gregorian form by any of the subroutines.

A1l the routines are designed to automatically account for leap years.

Enter Date - Gregorian Form

This subroutine provides for keyboard entry of a Gregorian date. It
returns the entered date in Gregorian and Julian form. A prompt must be
specified. The entered date is displayed in Gregorian and Julian form for
operator verification before the subroutine is exited.

The subroutine is entered via
GOSUB' 220 (P$)
Where: P$ is the prompt, 64 characters maximum.

The prompt ic displayed on line 1. On line 2 "? _" appears

indicating the maximum number of characters to be entered.

Entered characters replace the prompting dashes. The slashes (/) in the
date must be entered, though leading zeroes need not be. If MM or DD assume
values outside their valid ranges, the prompting dashes will reappear after
depression of RETURN(EXEC). Otherwise, the message is DATE OK (Y/N) appears
on line 2 with the entered date in its Gregorian and Julian forms. If N s
entered, the prompting dashes reappear. If Y ic¢ entered, the Gregorian date
is returned in U9$ and the Julian in U9; the subroutine is exited.

Convert Date - Gregorian to Julian

This subroutine converts a date from Gregorian to Julian format. It s
entered via

GOSUB' 221 (G$)

G$ is the Gregorian date to be converted.

220

CHAPTER 31 - SCREEN/DISK SUBROUTINES
(Date Routines)

The routine returns U9% with the Gregorian date and U9 with the Julian
equivalent of G$. If G$ could not be converted because the values of MM or DD
were outside the valid range, Q6$ is returned as "E".

Enter Date - Julian Form

This subroutine provides for keyboard entry of a Julian date. A prompt
must be specified. The entered date is displayed in Gregorian and Julian form
for operator verification.

The subroutine is entered via
GOSUB' 222 (P$)
where:
P$ is the prompt, 64 characters maximum.

The prompt is displayed on line 1. On 1line 2"?_ _ _ _ _/" appears
indicating the maximum number of characters to be entered. Entered digits
replace the prompting dashes. No check is performed to ensure the proper form
of the entered Julian date. The message IS DATE OK (Y/N) appears on line 2
with the entered date in its Gregorian and Julian forms. If a Julian date was
entered which was not in proper form, the Gregorian date is incorrect. If N
is entered, the prompting dashes reappear. If Y 1is entered, the Gregorian
date is returned in U9% and the Julian in U9; the subroutine is exited.

Convert date - Julian to Gregorian

This subroutine converts a date from Julian to Gregorian form. It s
entered via

GOSUB' 223 (J)
Where: J is the Julian date to be converted.

The routine returns U9% with the Gregorian equivalent of J and U9 with
the entered Julian date. No check is performed on J. A Julian date not in
proper form will produce a Gregorian date with MM or DD outside the valid
range.

Convert Julian Date to Proper Form

This subroutine converts any 5 digit Julian date to a Julian date in
proper form. It is entered via

GOSUB' 224 (J)
Where: J is a Julian date.
The subroutine returns the entered date in Q9 in proper form.
For example:

72367 is returned as 73001
71733 dis returned as 73002

221

CHAPTER 31 - SCREEN/DISK SUBROUTINES
(Operator Wait)

Calculate Days Between Two Dates

This subroutine calculates the number of days between two Julian dates.
It is entered via

GOSUB' 225 (J1, J2)

Where:

J1 is the earlier date.

J2 is the later date.

U3 1is returned equal to the number of days between J1 and J2.
For example:

If J1 = 75004 and J2 = 75009,

then U3 is returned as 5.

If J1 = 71360 and J2 = 72060, then U3 is returned as 65.

31.11 OPERATOR WAIT

This subroutine displays the message "KEY RETURN(EXEC) TO RESUME?" on
line 2. Execution dis halted on an INPUT instruction until RETURN(EXEC) is
depressed. Up to one entered character is returned in variable Q6$.

Transfer to the subroutine is via the statement:

GOSUB' 254

222

CHAPTER 32
TRANSLATION TABLE SUBROUTINES

The transiation table subroutines assign specific sets of hex codes to an
array so that it may be used as a translation table with the BASIC statement
$TRAN. The subroutines do not actually accomplish the translation; they
merely initialize the array. The array is Q9%(). It may be initialized for
any of the following translations by means of the indicated GOSUB' subroutine
call.

TABLE SUBROUT INE
EBCDIC TO ASCII GOSUB'201
ASCII TO EBCDIC GOSUB'202
2200 TO 1200 GOSUB'203
1200 TO 2200 GOSUB'204

The subroutines load into program lines 9700-9900 without overlap; they may
all be loaded at once.

A11 the subroutines initialize the same array variable, dimensioned as
Q9¢(8)32. If more than one table is to be used in an application, either the
array variable must be changed by modifying the subroutines, or the
application program must execute the appropriate subroutine each time a
different translation is to be effected.

When translating 1200 to 2200, all non-translatable codes are translated
into hexadecimal FF.

Assuming that D$ contains data to be translated from ASCII to EBCDIC and
the program contains the ASCII to EBCDIC translation table subroutine, the
following statement sequence could be used to translate D$:

20 DIM Q9$(8)32 :REM MOVED FROM LINE 9700
110 GOSUB' 202 :REM INITIALIZE TABLE

120 $TRAN (D$,Q9$()):REM TRANSLATE

130 STOP "D$ TRANSLATED"

9748 DEFFN'202

: (translation table subroutine ASCII to EBCDIC)

9780 ... :RETURN

223

CHAPTER 33
SORT-3

33.1 INTRODUCTION

SORT-3 is a subsystem for sorting the records in a disk data file. It is
loaded from disk by a user written set-up program. The set-up program
provides the parameters for the sort, and thereby eliminates a lengthy screen
dialog that would otherwise be required for operator entry of the sort
parameters. When sorting is complete, SORT-3 can load a specified application
program module. SORT-3, therefore, can be wused as a subsystem to an
application program. It requires very little operator attention.

SORT-3 offers the following operational features.

1. For maximum efficiency it uses the extended BASIC statements
described in SORT STATEMENTS (Publication #700-3559A).

2. The programmer may specify whether a key sort or a full-record sort
is to be performed, or let SORT-3 decide.

3. Four input file formats are accepted.

a) an ordinary cataloged data file,

b) a BAS-1 data file,

c) a KFAM-3 file,

d) A data file opened and closed with ISS OPEN/CLOSE subroutines.
4. The sort key can contain up to 10 fields. They may be alphanumeric

or numeric, but their total Tength must not exceed 64 bytes, not
counting control bytes. Sort order may be specified as ascending
or descending for each field.

5. If a key sort is specified, the sort keys may be partial fields,
that is, a STR() function of an alphanumeric variable.

6. If a full-record sort is specified, the mounting of the output
platter may be deferred until the last pass, at which time the
input platter may be removed. This permits the sorting of a full
disk platter 1in a dual platter system. (A full record sort can
only be performed if the record length is less than 128 bytes.)

7. The -programmer may write a special input procedure, to be overlaid
in Pass 1, to process or screen individual records before input to
the sort.

224

CHAPTER 33 - SORT-3
(Input File Requirements)

8. If a key sort is specified, the programmer may write a special
output procedure to be used instead of the normal Pass 3 program.
Such an output procedure can be used to screen sorted records,
print them, or output them to other media.

In addition to the cataloged input file, SORT-3 requires a cataloged work
file. Section 33.4 describes a procedure for calculating the exact number of
sectors required for the work file.

SORT-3 may be loaded directly from the Programming Aids Diskette at the
time of execution. In this case the Programming Aids Diskette must remain
mounted throughout the sorting procedure. However, it is not recommended that
the unused sectors of the Programming Aids Diskette be used for the work file.
Therefore, to maximize available disk space, it is recommended that SORT-3 be
copied from the Programming Aids diskette prior to use. A Copy/Verify
reference file has been included on the Programming Aids diskette to
facilitate copying SORT-3. The name of the reference file is SRT3F010.

The SORT-3 system consists of the following modules:
SORT3 Check sort parameters, get record 1layout from sample
record, calculate sort and merge array sizes, calculate
work file space.

SORT3008B Calculate output file space, generate code for internal
sort (SORT301A).

SCRT300C Generate code for merge (SORT302B, full-record sort).

SORT300D Generate code for output pass (SORT303A, key sort
only).

SORT301A Pass 1, Internal Sort.

SORT 302A Pass 2, Merge (key sort only).

SORT302B Pass 2, Merge (full-record sort only).

SORT 303A Pass 3, locate original input record, using pointer
attached to sort key, and write output records (key
sort only).

KFAMO103 KFAM-3 subroutines.

SRT3F010 Copy/Verify Reference File to copy all the above SORT-3

modules.

33.2 INPUT FILE REQUIREMENTS

Four kinds of input files may be sorted. These are known as file formats
0, 1, 2 and 3.

File Format 0 - A normal cataloged file conforming to the following
specifications:

225

CHAPTER 33 - SORT-3
(Input File Requirements)

1) It must be a cataloged file with all records written using DATASAVE
DC or DATASAVE DA. The DATASAVE DC END trailer must be present.

2) It must have all records in the same format (no special header or
trailer records, no variable length records).
3) It may have either blocked or unblocked records; however,
a. If unblocked, it must have not more than 55 fields per
record.

b. If blocked,
i. It must be written in array form, for example

DIM A$(4)20, B(4), C$(4)2
DATASAVE DC A$(), B(), C$()

ii. It must not have more than 38 fields per record.
iii. It must not have more than 255 records per block.

iv. It must have all blocks filled (unused records in the
last block must be filled with padding records that will
sort high if used in an ascending sort, or low, if used
in a descending sort).

4) It must have all records on a single disk.

5) The record or block of records may occupy more than one sector.
File Format 1 - A BAS-1 File:

1) The file name in the disk catalog is "SCRATCH".

2) The first sector of the file contains a BAS-1 format header record
which contains the file name.

3) With the exception of the header record and the trailer record, all
records must have the same format.

4) The first field in each record must be a 2 byte alphanumeric field,
the "RECORD ID". An end-of-file condition is recognized when the
second byte of the RECORD ID is either 2 or 3. The record with a
RECORD ID of 2 or 3 is not included in the sort; it merely signals
the end of the file. For multi-volume files, Sort-3 treats each
volume as a separate file. It does not sort more than one volume.

5) Sorted output is always written in Format O. The blocking of
output records is identical to the input blocking.

File Format 2 - A KFAM-3 File

1) Files organized by KFAM-3 may be sorted, provided a minimum of 12K
of memory is available.

226

CHAPTER 33 - SORT-3
(Writing Set-up Module)

2) Records may be KFAM type N (one record per sector), type A
(array-type blocking), or type M (multiple sectors).

3) Records must be of the same format and be written in normal (DC or
DA) mode.

4) Unblocked records may not contain more than 55 fields, blocked.
5) Sorted output is always written in Format O.

6) The KFAM user file is read using "FINDFIRST" and "FINDNEXT". This
adds about 300 ms per record or 5 minutes per 1000 records to the
sort time.

7) Deleted records are not included in the sort, regardless of whether
or not they are flaaged in the user file as deleted.

File Format 3 - An ISS OPEN/CLOSE Data File, With a Special End of File
Indicator

1) The first sector of the file contains a header record as definad by
ISS subroutine DEFFN'240 (see Section 31.5 for a description of the
contents of this sector).

2) A one sector software trailer record precedes the DATA SAVE DC END
trailer. The content of this software trailer is defined by ISS
subroutine DEFFN'241 (see Section 31.5 for a description of the
contents of this trailer).

3) It conforms to specifications 1, 4 and 5 of format 0.
4) Sorted output is written in format O.

5) Sort-3 does not use the software trailer to determine the end-of-
file condition. Instead end-of-file is determined as follows: If
the first field of the record is numeric, a value of 9E99 in the
first field signals end-of-file. If the first field of the record
is alphanumeric, a value of HEX(FF) in the first byte of the first
field signals end-of-file. The record containing the end-of-file
indicator is not included in the sort.

33.3 WRITING THE SET-UP MODULE

In order to use SORT-3, you must write a set-up program which provides
the operating parameters for the sort, and loads the first module.

This set-up program has two parts. Statements in the first part must be
assigned line numbers 10 to 179. The statements in this part are executed
when the set-up program is executed, and cleared by it as it 1loads SORT-3.
Included in this part of the set-up program are REM statements, SELECT
statements, and a DIM statement. The second part of the set-up program must
use line numbers between 3400 and 3699. The statements in this part of the
set-up program are not cleared when SORT-3 is loaded. They become a part of
the first module of the SORT-3 system, and are not executed until that module

227

CHAPTER 33 - SORT-3
(Writing Set-up Module)

is executed. They include, in assignment statement form, most of the
parameters for the sort.

The following is a skeleton of the set-up program used to call SORT-3. A
line may be omitted if the default value is the desired value. Be sure to
read all the comments the first time you write a set-up program.

Default See
Line Contents Value Comment

10 REM program identification -
50 SELECT #1 input file device address -

60 SELECT #2 work file device address - 1
70 SELECT #3 output file device address - 2
80 SELECT DISK system program device address for - 3
SORT-3 programs
90 DIM K(10), B(10), N(10) - 4
178 LOAD DC T#0, "SORT3" 10, 178 - 5
179 LOAD DC T#0, "KFAMO103" 10, 179 - 6
3400 M = memory size, K bytes S 7
3410 F = input file format 0,1,2,3 0 8
0 - ordinary file
1 - BAS-1 file
2 - KFAM-3 file
3 - ISS OPEN/CLOSE file
3420 I$ = "input file name" -
3430 J = key file number (if KFAM-3 input file) -
3440 SELECT #5 key file device (if KFAM-3 input file) - 9
3450 RO = records per block 1 10
3460 LO = starting record # to be scrted 1 11
3470 L$ = "number of records to be sorted" "ALL" 11
(always in quotes)
3480 KO = number of sort key fields ' - 12
3490 Per key field, n:
K(n) = sequence number of key field - 13
B(n) = starting byte (if partial field) - 13
N(n) = number of consecutive bytes (if - 13
partial field)
STR(X9%$,n,1) = HEX (01) (if descending HEX(00) 14
sort on this field)
= HEX(00) if ascending
3550 F$ = work file name -]
3560 C$ = "Y" output file cataloged fy 15
"N output file not cataloged
"X" no output file
3570 0% = output file name - 15
3580 P8% = "K" to force key sort blank 16
"R" to force full-record sort
blank - program decides
3590 D$ = "D" deferred mounting of output blank 17
(full-record sort only)
blank - normal mounting
3600 G$ = "name of special input procedure" bTank 18

(if blank, none)

228

3610
3620
3630
3640

CHAPTER 33 - SORT-3
(Writing Set-up Module)

K5 = number of bytes occupied by special 0 18
input procedure

H$ = "name of special output procedure" blank 19
(if blank, none)

M$ = "name of program to return to following blank 20
the sort” (if blank, none)

SELECT #6 user program device (device address - 21

for G$, H$, and M$ modules)

Comments

1. WORK FILE: The work file must be a cataloged disk file, and must
be cataloged in advance of running the program. To catalog a disk
file, the following can be executed in immediate mode:

DATASAVE DC OPEN platter sectors, "name"
The work file must remain mounted throughout the sort and any
output procedure. The number of sectors required for the work file
can be calculated approximately as follows:
K.= number of bytes in the sort key
I = number of bytes in the input record (not including control bytes)
N = number of numeric fields in the sort key
R = number of input records
W = work file space in sectors
If key sort:

W = 20 + R/INT(250/(K+5))
If full-record sort:

W =20 + R/INT(250/(K+1)) + R/INT (253/(I-K+1+N*8))
This figure should be accurate to within 10% of the actual work
space required. For a more exact calculation, the SORT-3 program
may be used to calculate the work file space. See Section 33.4.

2. SELECTING OUTPUT DEVICE ADDRESS: This SELECT statement may be
omitted 1if a special output procedure eliminates the need for an
output file. Otherwise, select the device at which the output file
resides, or is to reside. (See comment 15 for more information on
the output file.)

3. SELECTING THE SYSTEM DEVICE ADDRESS: This SELECT DISK statement
selects the device address at which the SORT-3 system resides. The
SORT-3 system includes KFAM module KFAM 0103 which must be present
at this device address, if a KFAM-3 file is being sorted.

4. DIMENSIONING THE KEY SPECIFICATION ARRAYS: Arrays B() and N() are

required only if the key is formed from partial fields. Array K()
must always be dimensioned here as shown.

229

CHAPTER 33 - SORT-3
(Writing Set-up Module)

10.

11.

LOADING SORT-3: In this statement, 10 must be the starting 1line
number. The ending 1line number must be the line number of this
statement.

LOADING THE KFAM SUBROUTINES: This statement is used only if the
input file is a KFAM-3 file. The starting line number must be 10;
the ending line number must be the 1ine number of this statement.
Module SORT3 must be loaded before KFAMO103 is loaded.

MEMORY SIZE: SORT-3 calculates the size of work arrays and the
sort blocking based on the memory size. The program can run in 8K
with a non-KFAM input file, but runs faster 1if more memory is
available.

If this statement is omitted, SORT-3 obtains the system memory size
from ISS COM variable S. If this statement is omitted and S=0, a
default memory size 1is obtained from module SORT3. This final
default is set to 8K initially but may be changed as follows in the
immediate mode:

CLEAR

LOAD DCF "SORT3"

3150 M = memory size, k bytes
SCRATCH F "SORT3"

SAVE DC F ("SORT3") "SORT3"

This change need not be made for 8K systems, or for operations
under ISS, or if a value for M is specified in each set-up module.

SORT-3 uses all the memory space available to it. If there are
common variables from the wuser program resident in memory while
SORT-3 is being run, a value of M should be specified which
accounts for these common variables. For example, on a 16K system,
if 500 bytes of common variables are resident while the sort is
being performed, set M=15.5. The SORT-3 variable check-off 1ist
(Appendix B) should be consulted to ensure the compatibility of
user COM variables with SORT-3 variables. Variable S should only
be used for system memory size.

FILE FORMAT: Set F equal to the input file format 0, 1, 2 or 3.
See Section 33.2 to determine the proper format. If the format is
0, this statement may be omitted.

KEY FILE DEVICE ADDRESS: Select the device address at which the
key file vresides. This statement may be omitted for a non-KFAM
input file.

RECORDS PER BLOCK: Assign to RO the number of records per block in
the input file. Output file blocking is always the same as input
blocking (normal output procedure). There may not be more than 255
records per block. If records are unblocked, no assignment need be
made.

STARTING RECORD and NUMBER OF RECORDS TO BE SORTED: 1In the case of
particularly large files, for file space reasons it may be

230

12.

13.

CHAPTER 33 - SORT-3
(Writing Set-up Module)

necessary to split the file in half in order to sort it. For
example, if the file contains 9000 records, the first half would be
sorted by specifying LO = 1 and L$ = "4500". The second half would
be sorted by specifying LO = 4501 and L$ = "ALL". A program to
merge the two halves must then be written.

In the normal case, these parameters need not be specified. The
starting record is always 1, and the number of records is always
'ALL'. There is no 1imit to the number of records that may be
sorted.

NUMBER OF SORT KEY FIELDS: The maximum number of sort key fields
is 10. The sort key fields collectively make up the sort key. The
maximum number of bytes in the sort key is 64. Numeric key fields
count as 8 bytes.

SPECIFYING THE SORT KEY FIELDS: Key field 1 assumes the most
significant position in the sort key. Key field 2 assumes the next
most significant position, and so on to key field 10 which assumes
the Teast significant position in the sort key. In specifying the
key fields, K(1), B(1), N(1), and STR(X9%,1,1) define key field 1.
Similarly K(2), B(2), N(2), and STR(X9$,2,1) define key field 2;
and so on.

The sequence number of the sort key field is the position of the
sort key field in the record. For example, if the record contains:

A$ = account

C$ = customer name
S$ = address

Z$ = zip code

To sort by zip code (Z$) and customer name (C$), ascending on both,

3490 K(1)

1 4
3492 K(2)

2

fton

defining the high order sort key as the 4th field in the record,
and the next highest key as the 2nd field in the record.

B(n) and N(n) should only be used for sort key fields which are
partial fields.

To use a partial field for a sort key B(n) is assigned the position
of the starting byte in the field and N(n) is assigned the number
of consecutive bytes to be included, beginning at the starting
byte. For example, assume that bytes 47 and 48 of the address (S$)
contain the postal abbreviation for state. To sort in ascending
order by state and customer name, the following assignments would
be made.

3
47
2
2

w

i~

O

i~

=
P~~~
N =t —d
S e
W nn

Partial fields may not be specified for numeric fields.
231

CHAPTER 33 - SORT-3
(Writing Set-up Module)

14.

15.

SPECIFYING ASCENDING OR DESCENDING ORDER FOR EACH SORT KEY FIELD:
If a sort key field is to be sorted in ascending order, this
assignment may be omitted. For each sort key field, n, to be
sorted in descending order, an assignment of the form

STR(X9%,n,1) = HEX(01)

must be made. Modifying the last example, to sort descending by
state and ascending by customer name:

3490 K(1) = 3
3492 B(1) = 47
3494 N(1) = 2
3496 STR(X9$%,1,1) = HEX(01)
3498 K(2) = 2

THE QUTPUT FILE: If the output file 1is not cataloged prior to
executing the sort, SORT-3 catalogs it. In this case write

3560 C$ = "N"

If the input file is format 0, SORT-3 catalogs the file with
exactly the number of sectors required for output.

If the input file is format 1 or 3, SORT-3 catalogs the file with 4
extra sectors beyond those required for output. Note, however,
that normal output procedure does not write header or trailer
records. If the input file is format 2, a KFAM file, SORT-3
catalogs the file with the number of sectors actually occupied by
data in the input file. This size is sufficient to accommodate all
the "live" as well as DELETE'ed input file records, even though
only live records are included in the sort. This size may be less
than the number of sectors shown as "used" in the input file disk
catalog since KFAM maintains its own "end of data" information.

If SORT-3 catalogs the output file, it gives it the name assigned
to 0%, (maximum of 8 characters). For example

3570 0% = "NEWOUT"

If the output file 1is cataloged prior to executing the sort,
indicate this by assigning "Y" to C$, and the name of the file to
0$

IIYH
"OLDOUT"

3560 C$
3570 0%

[

Normally, SORT-3 checks the specified output file to determine if
it contains enough sectors for the sorted output (that is, it
checks if it contains as many sectors as SORT-3 would assign were
SORT-3 cataloging the file). If a special idinput or output
procedure is specified (see comments 18 and 19), SORT-3 does not
check the number of sectors in the output file; the programmer must
ensure that the output file size is adequate.

232

gl

16.

CHAPTER 33 -~ SORT-3
(Writing Set-up Module)

If a special output procedure is specified, the output file may not
be necessary (printing only, etc.) in which case C$ should be
assigned the value "X".

3560 C$ = "x"
The output file name should be omitted.

KEY SORT or FULL-RECORD SORT: Normally the program is allowed to
decide which sort 1is more efficient. In this case, the default
value of P8% may be used; no assignment need be made. However, in
some cases it may be desirable to specify either a key sort or a
full-record sort. For example, if a special output procedure is
used, a key sort must be specified. If deferred mounting of the
output file is desired, a full record sort must be chosen.
Finally, under some circumstances a particular type of sort may
happen to run faster than the one the program would normally pick.
In any of these cases, a statement such as

3580 P8% = "K"

is used to force a key sort, or
3580 P8% = "R"

to force a full record sort.

A key sort can be performed for any file. A full-record sort can
be performed only when these conditions are met:

a. Total length of fields not included in the sort key, plus
numeric sort key fields does not exceed 64 bytes.

b. No partial sort key field specified.
C. Sufficient work file space exists.
d. No special output procedure is specified.

Generally a key sort is more efficient with large records, and a
full-record sort is more efficient with short records, where the
sort key is a significant portion of the total record. If P8% does
not specify a sort type, SORT-3 performs a full record sort when
the sort key is at least 40% of the total record length, and the
bytes not included in the sort key do not exceed 64 (provided that
partial fields are not specified and provided that there is
sufficient space in the sort work file). In calculating the total
record length of the sort record, numeric sort key fields must be
counted twice.

To maximize efficiency in a full-record sort, it is useful to know
how the sort record 1is constructed. The input record is packed
into one or two "buckets" to form the sort record. Bucket "S"
contains the sort key. Bucket "R" contains the remainder of the
record. Numeric fields are converted to alphanumeric via "MAT

233

CHAPTER 33 - SORT-3
(Writing Set-up Module)

CONVERT" if they are sort key fields, or "PACK" if they are not
sort key fields. Numeric sort key fields are stored both ways, MAT
CONVERT'ed in bucket S and PACK'ed in bucket R. (This 1is because
there is no "MAT UN-CONVERT" to restore them at the end.)

However, the full-record sort does not always require both buckets.
If every field in the input record 1is specified as a sort key
field, and there are no numeric fields, and the total record length
is less than 64 bytes, then only bucket "S" is used. If the input
record is less than 64 bytes, and contains all alphanumeric fields,
it may produce a faster sort to specify all fields as part of the
sort kﬁy (the previously non-key fields becoming low-order sort key
fields).

If two buckets must be used for the full-record sort, there are
certain bucket 1lengths which are more efficient than others, in
terms of sort record blocking. This is because certain size fields
fit more efficiently in a sector than others.

The first sector of the sort block contains a 2-byte chain pointer,
which Teaves 250 bytes for data. The remaining sectors have 253
bytes for data. The number of sectors can be from 2 to 17,
depending on memory size. The "S" bucket array is written first,
which means that the sort key should be tailored to fit into 250
bytes, and the "R" bucket tailored to fit into 253 bytes. Certain
bucket lengths fit more efficiently than others, for example:

BUCKET CONTROL NUMBER TOTAL
LENGTH BYTE PER SECTOR BYTES
62 + 1 X 4 = 252
61 1 4 248
49 1 5 250
48 1 5 245
41 1 6 252
40 1 6 246
35 1 7 252
34 1 7 245
30 1 8 248
29 1 8 240
27 1 9 252
26 1 9 243
24 1 10 250

Certain bucket lengths are very inefficient, for example:

BUCKET CONTROL NUMBER TOTAL
LENGTH BYTE PER SECTOR BYTES
64 + 1 X 3 195
63 + 1 X 3 192
50 + 1 X 4 204
42 + 1 X 5 215

If the record can be split between key and non-key fields to
produce efficient bucket sizes, some sort time will be saved. If

234

S
g

17.

18.

19.

CHAPTER 33 - SORT-3
(Writing Set-up Module)

the contents of a full disk platter are to be sorted, it may be
necessary to have efficient bucket sizes, so that the work file
space required does not exceed one platter.

DEFERRED MOUNTING OF OUTPUT: Deferred mounting of the output file
can be a useful technique when the records to be serted occupy a
large portion of the available disk space. Deferred mounting of
the output file 1is possible only if a full record sort is
performed.

If deferred mounting is used with a fixed/removable disk system,
the input file occupies the removable disk while the work file is
cataloged on the fixed disk. The SORT-3 system must also be
available, on a third flexible disk drive, or on one of the rigid
disks. When Pass 1 is finished, the input disk is removed and a
scratch disk is mounted for the output.

A key sort, by contrast, requires that all three files, input,
output and work be present during the last pass.

To choose deferred mounting you must first specify a full record
sort, (see comment 16 for the conditions under which a full record
sort may be performed). This is specified by

3580 P8$ = "R"
Deferred mounting is then specified by
3590 D$ = "D"

If deferred mounting is not desired,a value for D$ need not be
specified. y

SPECIAL INPUT PROCEDURE: A special input procedure may be
specified. A spzcial input procedure is a user-written module
which is overlaid into Pass 1 (module SORT301A). This procedure is
executed after the input record has been read, but before the
record 1is entered into the sort. It can be used to sort records
selectively, or for any other input processing that does not
interfere with the functioning of the sort. See Section 33.6 for
information about how to write a special input procedure, and how
to calculate the number of bytes it uses.

[f no special input procedure is used, values for G$ and K5 need
not be spzacified.

SPECIAL OUTPUT PROCEDURE: A special output procedure may be
specified if a key sort is performed. A special output procedure
is either a user-written module, or a user-modified version of
module SORT303A, the normal output procedure. This special output
procedure is used instead of the normal SORT303A. For information
on how to write a special output procedure see Section 33.7. To
specify a special output procedure, assign its name (8 characters
maximum) to H$. For example,

3620 H$ = "SP.OUT"

235

CHAPTER 33 - SORT-3
(Calculating Work File Size)

If the normal output procedure is used, no assignment need be made.

20. RETURN AFTER SORT: When sorting is complete, SORT-3 can load, and
initiate execution of, a user program module. It does so if M$ is
assigned the name of the program. Thus, to return to an
application program following the sort one might write

3630 M$ = "APPLPROG"

where "APPLPROG" dis the name of the application program, 8
characters maximum. When transfer is made, the only remaining COM
variables (if any) are those which were present when the set-up
module called SORT 3. Al1l other variables are cleared. Execution
of the application program begins at the Towest numbered line.

If no value is assigned to M$, the message

STOP END OF SORT

is displayed, when the sort is complete.

21. SELECTING A USER PROGRAM DEVICE: If a special input or output
procedure is used, or return to an application program is desired,
the disk device address at which these modules reside must be
selected for file number #6. If none of these are used, this
select statement may be omitted.

33.4 CALCULATING THE EXACT REQUIRED WORK FILE SIZE

In Section 33.3 Comment 1, formulas for estimating the size of the work
file are given. The exact calculation of the number of sectors required for
the work file is a long and complicated one, and the formulas given above may
yield vresults which are off by about 10%. For exceptionally large files, or
when disk space is scarce, a more exact figure may be required.

Since the first module of the program calculates the work file space
required, this module can be used, by itself, to calculate the work file space
required for a given number of records of a particular file. The procedure to
do this is as follows:

1) Create a cataloged file on disk containing at least one record or
block of records in the exact format of the records to be sorted.
This can be done by wusing an existing file, or writing and
executing a program of only 5 statements:

DIM (sizes and dimensions of fields)

DATASAVE DC OPEN (space, file name)

DATASAVE DC (write record or block of records)
DATASAVE DC END

DATASAVE DC CLOSE

The content of the records is unimportant. Only the format is
important, because the sort program analyzes the format of the

236

CHAPTER 38 - SORT-3
(Caleulating Work File Size)

first data record or block of records, to determine field 1lengths,
code to be generated, etc.
Set up a sort work file of at least 25 sectors.

Write a set-up module containing the specifications for the sort.
Add the following two statement lines to the set-up module:

7150 STOP "7750"
7830 STOP "7830"

Run the program.

When the system displays "STOP 7750", change the number of records
to be sorted to any desired value, by executing in the immediate
mode.

R2 = number of records to be sorted

Key: CONTINUE
RETURN(EXEC)

When the program displays "STOP 7830", key:
PRINT 15 + Z + Q8 RETURN(EXEC)
Where:

15 = sectors required for generated code

Z = sectors required for String Index

Q8 = sectors required for Sort Records
The number displayed will be the size of the sort work file, in
sectors. Given a significant file size (R2 = 1000 or more), the

value Z + Q8 will increase almost exactly in proportion to R2.

To calculate exact work file space required for other file sizes,
key:

RUN 7750 RETURN(EXEC)
The program will resume at Step 5, above.

Other values which might be of interest at either of these stopping
points:

R1$ = "K" key sort
"R" full-record sort

K = sort key length

L3 = sort record length

P2 = sort blocking, records per block
B = sort blocking, sectors per block
P6 = power of the merge, Pass 2

P4*P9 = records per sorted string, Pass 1

S9 = work file sectors available

237

CHAPTER 33 - SORT-3
(Operating Procedure)

9) If a full-record sort is indicated (R1$ = "R"), it may be of
interest to know how much work file space is necessary to do a key
sort, especially in the case of exceptionally 1large files, where
disk space 1is Tlimited. To force the program to recalculate work
file space for a key sort, key:

RUN 6780 RETURN(EXEC)
Resume at Step 5, above.

10) To calculate work space for another file, repeat from Step 3,
above.

CAUTION:

Do not continue sorting beyond this point. Once program
variables have been modified, results are unpredictable.

33.5 NORMAL OPERATING PROCEDURE

Prior to executing the set-up module, the disks containing the SORT-3
system, the input file, the work file and the output file must be mounted.
(For deferred mounting of the output file see below.)

The set-up module must be executed to load module SORT3.

Module SORT3 displays "SORT=3 SPECIFICATIONS" followed by the sort
parameters specified in the set-up module. These remain on the screen fav
about one minute, for a visual check. ‘

The screen is cleared, and the system displays "PASS 1 - INTERNAL SORT"
at the start of the internal sort phase.

If deferred mounting of the output file has been specified, the system
displays the following, at the end of the internal sort phase:

REMOVE INPUT VOLUME AND MOUNT OUTPUT VOLUME
ENTER 'GO' TO RESUME

At this time the operator should remove the disk containina the jnout file and
mount the disk to contain the output file. The SORT-3 system may also be
removed at this time. When this 1is complete, the operator should key
"GO" (EXEC).

The system displays "PASS 2 - MERGE" at the start of the merge phase.

If a key sort is being performed, the system displays "PASS 3 - OQUTPUT"
at the start of the final (output) phase.

After the final pass is complete,the system displays

STOP END OF SORT

238

CHAPTER 33 - SORT-3
(Writing a Special Input Procedure)

or, if the set-up module specified that an application program is to be
called, the system clears all program text and non-common variables, loads the
specified application program and initiates execution of it at its lowest line
number.

A 1ist of possible error messages and recovery procedures is included in
Section 33.8.

33.6 WRITING A SPECIAL INPUT PROCEDURE

The set-up module may specify that a special input procedure 1is to be
used. (See Comment 18, Section 33.3.) A special input procedure is a
user-written program module which is overlaid into a specific location within
the pass 1 module (SORT301A). The special input module is overlaid into
SORT301A, Tocated so that its principal portion is executed for each input
record, before the record is entered into the sort.

A special input procedure can be used to selectively delete records from
the sort, modify record values prior to sorting, or for any processing which
does not interfere with the functioning of the sort.

When writing a special input procedure the following rules must be
observed:

1. The first Tine number which can be used is 3200. There must be a
statement at this Tine. It may be a REM, DIM or initialization
procedure. Lines 3200-3249 may be wused for these purposes;
however, at this point in the program the records are not yet
available.

2. Lines 3460-3499 are available for recgrd processing. If more space

is needed lines 8000-9999 may also be used. At Tine 3460 the input
record has been read and is available, but has not yet been entered
into the sort. To include a record in the sort, let the normal
execution sequence prevail, or GOTO 3500. To delete the record
from the sort, GOTO 3430.

The fieids in the input record are given variable names by SORT-3
according to the following convention. Variable names are AQ0-A9,
B0-B9, ..., FO-F4. The first field in the record is A0, the second
field is Al, ..., the tenth field is A9, the eleventh field is BO,
and so on, in the order that the fields appear in the record. If
the field is alphanumeric, $ is added to the field name. If
records are blocked, the subscript (Q) is added to the field name.

For example, if the block of records was originally written as:
DIM R1$(4)8, N(4), C$(4)20
DATASAVE DC R1$(), N(), C$()

then at successive executions of line 3460, each record will be
known as:

A0$(Q), AT(Q), and A2$(Q)
239

CHAPTER 33 - SORT-3
(Writing a Spectial Input Procedure)

Numeric sort keys are a special case. They are always designated
:s an array, whether or not the record is blocked. For example, if
one record per sector was originally written,

DATASAVE DC A%, B$, C$, D, E, F, G, H, I$

and the sort key fields arz 1 and 5 (A$ and E), then the fields
will be identified by the sort as:

A0S, A1%, A2$, A3, A4(Q), A5, A6, A7, A8S

At line 3460, numeric sort keys have already been converted to
sortable form via MAT CONVERT. The sortable form resides in an
alpha array of the same name. (IF A4(Q) is the numeric sort key
then A4$(Q) 1is the key in converted form.) If, for any reason, a
numeric key is altered at this point, the MAT CONVERT should be
repeated, for example:

MAT CONVERT A4() TO A4S$()

It should be noted that, if a key sort is performed, changing a
value 1in the input record will not change the value in the output
file, since the output file is created by accessing the original
input file in sorted key sequence.

If working variables are needed, other than the fields in the input
record, the variable names G0-G9, HO-H9,...L0-L9 may be used. They
may not be COM designated. These variable names are reserved for
the output record, which is not referenced in Pass 1.

3. If a special input procedure is to be added to Pass 1, a value must
be assigned to K5 in the set-up module.” That value must be equal
to cr greater than the number of bytes occupied by the special
input procedure. The value of K5 is necessary so that SORT-3 can
calculate the memory space available in Pass 1.

To calculate the value of K5:

CLEAR

END (total space)

LOAD DC (name of special input procedure)

END (space left)

subtract space left from total space.

Add number of bytes in working variables, plus 5 for each
scalar variable and 7 for each array.

¥5 may be approximate, but should not be Tless than the space
occupied by the special input procedure.

Example 33-1 shows a special input procedure module. This module was
designed to operate on a file with blocked records written:

240

CHAPTER 33 - SORT-&
(Writing a Special Output Procedure)

DIM 1$(4)8, D$(4)30, B(4), C(4)

DATA SAVE DC I$(), D$(), B(), C()

[ts purpose is to delete from the sort all input records for which the value
of the second field is greater than "N".

Example 33-1 A Special Input Procedure Module

3200 REM "SPCLINPT"

3205 REM ** SP. INPUT PROC'S MUST HAVE A STMT. AT LINE 3200 **
3210 REM THIS SPECIAL INPUT PROCEDURE DROPS ALL RECORDS

IN WHICH FIRST CHARACTER OF SECOND FIELD IS GREATER THAN “N"
3460 IF A1$(Q) > "N" THEN 3430 :REM DELETE FROM SORT?

3470 REM DROP THROUGH TO INCLUDE IN SORT

33.7 WRITING A SPECIAL QUTPUT PROCEDURE

If a key sort is performed;a special output procedure may be substitute:
for SORT303A, the normal output procedure. If such a special output procedure
is to be wused, it must be specified in the set-up module (see Section 33.3,
Comment 19).

There are two possible approaches to writing a special output procedure.
The existing output procedure (module SORT303A) may be modified, or an
entirely new procedure written. If a disk output file 1is not going to be
created (for example, only printing the sorted records), then an entirely new
module should be written. If a disk output file will be created, then it s
generally easier to modify SORT303A.

Modifying SORT303A

During the normal execution of the SORT-3 system, module SORT300D
generates certain program statements and saves them 1in the work file.
SORT303A 1loads these statements during its execution. The statements
generated by SORT300D depend upon the format of the file being sorted.
Without these statements generated by SORT300D, SORT303A is incomplete, and
cannot function. Therefore, if SORT303A s to be modified into a special
output procedure, SORT300D must first be allowed to generate the program
statements required by SORT303A, and SORT303A must load these generated
statements.

The recommended procedure is to execute SORT-3 on a file with the same
format as that to be used with the special output procedure. Be sure that a
key sort is performed, and do not specify an application program to be loaded
at the end of the sort. When the sort is complete, the SORT303A module, is in
memory and contains the statements generated by SORT300D. It may then be used
as a basis for modification; however, the statements it contains, that were
generated by SORT300D, are valid only for the specific format of the input
records it operated upon.

YR.

When a special output procedure is specified in the set-up module,
SORT300D 1is not executed. It is assumed that the special output procedure
241

CHAPTER 33 - SORT-3
(Writing a Special Output Procedure)

contains all the program statements it needs for successful execution. Since
a special output procedure may result in there being fewer output records than
input records, the normal check on the output file size is omitted, if the
output file was cataloged prior to calling SORT3.

In module SORT303A Tines 1000-5999 are available for a special output
procedure. The program structure is such that a statement appearing at line
1000 is executed once for each of the potential output records. The varjable
names GO0-G9, HO-H9,...,L0-L4 are used for the output record. The first field
in the record is GO, the second field is Gl,..., the tenth field is G9, the
eleventh is HO, and so on, in the order that the fields appear in the record.
[f the field is alphanumeric, $ is added to the field name. If records are
blocked, the subscript "(0)" (numeric variable 0) is added to the field name.
There is no special treatment of numeric sort keys.

SORT303A must also read input records. The variable names assigned to
the input file are AQ0-A9, BO0-B9, ..., FO-F4. § is added for alphanumeric
fields. The subscript "(X)" is added if records are blocked.

Thus, at line 1000 each data record becomes available, 1in its sorted
sequence, 1in both the output variables and input variables, according to the
assignment scheme presented above. To delete a particular output record from
the output file, GOTO 6100. To include the record, let the normal sequence of
execution prevail, or GOTO 6010.

Example 33-2 shows a special output procedure which consists of SORT303A,
with 1ines 1000-1050 added to perform the special processing. It is important
to note that the SORT303A statements which appear here include those generated
by SORT300D, and are valid only for the specific record shown. For this
reason the file should not be saved under the name SORT303A.

242

e

CHAPTER 33 - SORT-3
(Writing a Special Output Procedure)

Example 33-2 A Special Output Procedure Written as a Modification to SORT303A

This special output procedure deletes from the output file all records in
which the 30 character second field ends with an "X". Deleted records are
output to the CRT. The file is a blocked file and, therefore the subscript
(0) is added to all variable references.

Writing An Entirely New Qutput Procedure

If none of the input records are to be written to a disk output file,
then it 1is necessary to write a new output procedure, and not simply add
statements to SORT303A as shown above. Specifically, if, in the set-up
module, C$ is assigned "X" indicating no output file, then SORT303A may not be
used.

When a special output procedure is loaded by the SORT-3 system, SORT-3
has created special sort vrecords in the work file. These sort records are
blocked in a way determined by SORT-3. Each sort record contains a sort key,
and the sector address (and block Tocation, if blocked) of the key's input

243

CHAPTER 33 - SORT-3
(Writing a Special Output Procedure)

record in the input file. The sort records within each block are in key
sequence at the time the output procedure is called. Each block of sort
records carries an additional chain pointer to the next, key sequential, block
of sort records. The general task of an output procedure, then, is to read
the sort records in sequence, and, using the pointers contained in each sort
record, access the input file.

Critical initial values are passed to the output procedure in COM
variables as follows:

0$8 = output file name, if any

RO = vrecords per block in input file

P2 = sort records per sort (work) file block

S7$2 = sector address of first block of sort records (in binary)
S8$3 = number of sort records (in binary)

In addition, the following arrays are COM, and dimensioned to receive the
sort records:

S1$(P2)K = sort keys, where P2 = sort records per block, and K =
key length

R1$(P2)3 = dimensioned to receive pointers to input records,
where P2 = sort records per block, and each element of
R1$ receives values as follows: Bytes 1 and 2:
sector address of input record (in binary). Byte 3:

location of input record within block (in binary).
Byte 3 is undefined for unblocked input records.

File number #2 contains the device address of the sort (work) file. File
number #1 contains the device address of the input file.

COM CLEAR M$ can be executed to designate as non-common all variables COM
designated by the SORT-3 system.

A block of sort records should be read as follows:
DATALOAD DA T#2, (S7%,X1$) S7%, S1$(), R1$()
In each block of sort records, S7¢ 1is the starting sector address (chain
pointer) of the next key sequential block of sort records. There is no end of
file marker in the sort (work) file. End-of-file must be determined by
counting the number of sort records, and comparing it to the total (S8$5).
(Note, S8S% contains the number of sort records, not the number of sort record
blocks.)

A special output routine that prints a file is shown 1in Example 33-3.
The input records were written as:

DIM A$(4)8, B$(4)30, C(4), D(4)
DATA SAVE DC A$(), B$(), C(), D()

244

CHAPTER 38 - SORT-8
(Error Messages)

Example 33-3 A Special OQutput Routine That Prints The Sorted File

.

33.8 ERROR MESSAGES AND RECOVERY PROCEDURES

Error Message

ERR 47

ERR 80

STOP INPUT INVALID

245

Explanation/Recovery
File number not selected.

RECOVERY: Include SELECT statement
in set-up module.

File not found.

RECOVERY: A1l program files and
data files must be mounted at the
start of the sort. (Exception:
deferred mounting of output.)

STOP INVALID FORMAT File format must
be 0, 1, 2, or 3.

RECOVERY: Correct file format 1in
set-up module.

No END record found on format O
input file, or file is not a data
file.

RECOVERY: SORT-3 will not sort this
file.

CHAPTER 33 - SORT-3
(Error Messages)

STOP WRONG INPUT FILE

STOP ERROR OPENING KFAM-3 FILE

STOP KFAM FINDFIRST ERROR

STOP TOO MANY FIELDS

STOP INVALID RECORD FORMAT

STOP NOT BLOCKED AS SPECIFIED

STOP STARTING RECORD TOO HIGH

246

Format 1, header record does not
contain correct file name.

RECOVERY: Rerun the program, using
the correct input file.

Error detected in KFAM-3 OPEN
subroutine.

RECOVERY: Rerun. If error
persists, check key file number in
set-up module.

No records in file.

RECOVERY: SORT-3 will not sort this
file.

More than 55 fields per record, if
unblocked, or 38 fields per record,
if blocked.

RECOVERY: The program will not sort
this file.

The sample record being examined
(first record of the input file) is
not in the proper format for a data
record.

RECOVERY: The program will not sort
this file.

The sample record, or block of
records, being examined, does not
have the same number of records per
block as specified 1in the set-up
module, or the blocking is not in
array form,

RECOVERY: Correct records per block
in set-up module.

If blocking is not in array form,
the program will not sort this file.

Starting record # specified s
greater than the number of records
in the file.

RECOVERY:
a. Correct set-up module.
b. There is nothing to sort.

STOP

STOP

STOP

STOP

STOP

STOP

STOP

STOP

STOP

INVALID STARTING RECORD

INVALID NUMBER OF RECORDS

INVALID RECORDS PER BLOCK

INVALID NUMBER OF KEY FIELDS

INVALID KEY FIELD NUMBER

INVALID PARTIAL FIELD

SORT KEY TOO LONG

INVALID ASCENDING/DESCENDING

FULL RECORD SORT NOT POSSIBLE

247

CHAPTER 33 - SORT-3
(Error Messages)

Starting record number specified is
less than 1 or not an integer.

RECOVERY: Correct set-up module.

Number of records specified was less
than 1, or not an integer, or not a
number and not "ALL".

RECOVERY: Correct set-up module.

Records per block specified was less
than 1, or greater than 255, or not
an integer.

RECOVERY: Correct set-up module.

Number of key fields specified is
less than 1, or greater than 10.

RECOVERY: Correct set-up module.

Key field number dis Tless than 1,
greater than the number of fields in
the record, or not an integer.

RECOVERY: Correct set-up module.

Starting byte less than 1, number of
bytes less than 1 or greater than
remaining bytes in the field.

RECOVERY: Correct set-up module.

The total length of the sort key
exceeds 64 bytes.

RECOVERY: The program will not
operate with a sort key longer than
64 bytes.

Ascending and descending keys
incorrectly specified.

RECOVERY: Correct set-up module.

A full-record sort has been
specified but is not possible
because the vrecord dis too 1long,
memory space is too small, work file
space is too small, or a partial
field has been specified for the
sort key.

RECOVERY: Correct set-up module.

CHAPTER 33 - SORT-3
(Error Messages)

STOP NO ROOM TO SORT

STOP WORK SPACE TOO SMALL

PRI

STOP DEFERRED MOUNTING INVALID

OUTPUT SPACE TOO SMALL

STOP NO RECORDS

STOP WO OUTPUT FILE

STOP SEQUENCE ERROR

ERR 01

ERR 43

248

Memory size specified is less than
8K, or input record (or block) is so
large that there is not sufficient
work space in memory.

RECOVERY: Correct set-up module.

The program will not sort very large
records (or blocks) if there is not
enough work space in memory.

The area specified for the sort work
file is too small.

RECOVERY: Create a Tlarger work
file. Correct set-up module, if
necessary.

Deferred mounting of the output file
may only be specified for a
full-record sort.

RECOVERY: Correct set-up module.

A previously cataloged output file
is too small to contain the present
output.

RECOVERY: Correct set-up module or
create a larger output file.

There are no records to be sorted.
RECOVERY: None.

No output file has been specified.
RECOVERY: Correct set-up module.
The final output of the sort is not
in sequence. This could be caused
by a hardware or software

malfunction.

RECOVERY: If the problem persists,
notify Wang Laboratories.

Memory capacity exceeded.

RECOVERY: Correct memory size (see
Section 33.3).

Input records, or blocks of records
are not all of identical format.

ERR7?2

ERR 85

STOP KFAM READ ERROR

249

CHAPTER 33 - SORT-3
(Error Messages)

RECOVERY: The program will not sort
this file.

Disk read error.

RECOVERY: Rerun the program.

Disk write error.

RECOVERY: Rerun the program.

KFAM FINDNEXT returns error code
HXII .

RECOVERY: This should not happen.

iy

250

APPENDIX A - cONDITIONS GOVERNING SPURIOUS RESULTS FROM THE LIST/CROSS
REFERENCE UTILITY

Under certain conditions the variable cross reference table printed by
the LIST/CROSS REFERENCE wutility may be erroneous. Specifically, certain
BASIC statements in the input program can cause non-variables to be referenced
as variables. A second condition causes array variables to be referenced at
scalar variables.

The BASIC statements and accompanying conditions for these errors are
given below.

Non-Variables Referenced as Variables by List/Cross Reference

STATEMENT CONDITION AND VARIABLE POSITION
PLOT A11 D, U, C, S, and R pen control
characters.
DATASAVE BT The "N" of the "N" parameter

specifying block size. The H
parameter specifying the header

block mark.
DATALOAD BT The "N" of the "N" parameter
specifying block size.
ADD, ADD C, AND, OR, XOR, In these statements, if hexadecimal
BOOL, INIT, $TRANS, $GIO, : digits (X1X,) appear where X;= A, B,
POS C...F
and

X, =0, 1, 2...9,

then the hexadecimal digits are
referenced as if they collectively
represent a variable.

$GIO If arg - 1 1is represented by
hexadecimal digits (X, X,),

where

then the hexadecimal digits are
referenced as if they collectively
represent a variable.

251

APPENDIX A - CONDITIONS GOVERNING SPURIOUS RESULTS FROM LIST/CROSS REFERENCE UTILITY

Array Variables Referenced as Scalar Variables

STATEMENT ' VARIABLE

A11 the MAT statements A11 the array variables
described in MATRIX STATEMENTS which appear in these
(Publication #700-3332B). statements are referenced

as if they are scalar variables.

252

APPENDIX B

SORT-3 VARIABLE CHECK-OFF LIST

m;
W x

G H
S| S

(7,1l

c
S

[7: 109
[7,)

(7, 1

W c

wniN

wnln o

RiR| <

N <

nn® =

nlnh =z

NN x

RESERVED

wnun=—X o

FOR INPUT

Nnnnn| o

NN e=i== n

AND OUTPUT

RECORD

DEFINITION

w0 nnnnunnunn o

wninunin
wn

O W W N, s WN =D

wnnwm

RIR|AR|ARRRR|RBXR[X -

RRXRRIR

v (NDXW

p-d
=
>
@
O
[w]
m
m
("]
I
[

<
=

AR~

RESERVED

1

FOR INPUT

AND OUTPUT

R

RECORD
DEFINITION

T Ty

|

0 W ®~NO b WN =D

z
=
>

E

<

mt_

G H
SS

[, 1l

c D
S|S

N o

N =

wm -

w| o

1

|

|
RESERVED
| FOR INPUT
- AND OUTPUT
— RECORD
| DEFINITION

O W W ~NOM b WN -~ D

w»n |»=

wnwmwm| o

nunnwn| o

wninmon| «

ninl n N

nnnunnm =z

RR[AR|=R| O

DD BN NV <

\Nin

p o)

wunnun

XXXXXXK*XXX —

AR RRXRRXRR XX

unlnln] vninnlnnin x

[%2]

p-d
=
>
@
O
[w]
m
m
("]
I
[
x

-

<

x

| »

RESERVED

RIAR[R

FOR INPUT

L LT

AND OUTPUT
RECORD

DEFINITION

C W ®~NO A WN - D

ninlnnninnn On v

253

NUMERIC SCALARS
FORMAT = MN

NOTE:

| USED BY ISS

R USED BY RPL

S USED BY SORT-3
K USED BY KFAM

W u h

NUMERIC ARRAYS
FORMAT = MN(

ALPHA NUMERIC SCALARS
FORMAT = MN$

ALPHA NUMERIC ARRAYS
FORMAT = MN$(

:To help us to provide you with the best manuals possible, please make your comments and suggestions
! concerning this publication on the form below. Then detach, fold, tape closed and mail to us. All comments
:and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to include your
§ name and address. Your cooperation is appreciated.

|
]
]
: 700-3657C
]
i
: TITLE OF MANUAL: INTEGRATED SUPPORT SYSTEM REFERENCE MANUAL (ISS)
)
! COMMENTS:
|
]
1
'
1
]
| Fold
)
1
\
]
]
[]
0
1
]
1
)
|
]
[]
[]
[]
'
'
'
1
'
\
'
'
'
'
|
]
|
1
[]
1
'
' —_—
1 Fold
]
1
\
]
[}
1
]
1
]
'
1
]
\
]
1
'
[]
)
1
1
'
0
[]

{Please tape. Postal regulations prohibit the use of staples.)

v

WANG)

Fold

FIRST CLASS
PERMIT NO. 16
Tewksbury, Mass.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

— POSTAGE WILL BE PAID BY —

WANG LABORATORIES, INC.
ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851

Attention: Technical Writing Department

Foid

Printed in U.S.A.
13-1019

Fr 2 r X 8 ¥ X K N L L X ¢ K _E X J - DR IS ED D G DS SIS e PE P EE@EEE @ e o S A S oS A G G S S A L r r ¥ ¥ ¥ X ¥ ¥ XK ¥ X N _N_ ¥ ¥ T]
Cut along dotted hine

g

	Table of Contents
	Part I: Overview of ISS
	Chapter 1: Introduction
	Chapter 2: ISS Support Software
	Chapter 3: ISS System Routines
	Chapter 4: System Requirements for ISS Operation

	Part II: The ISS Utilities
	Chapter 5: Introduction to the ISS Utilities
	Chapter 6: The Copy/Verify and Create Reference File
	Chapter 7: The Sort Disk Catalog Utility
	Chapter 8: The Disk Dump Utility
	Chapter 9: The Decompress Utility
	Chapter 10: The List/Cross-Reference Utility
	Chapter 11: The Compression Utility
	Chapter 12: The List Utility
	Chapter 13: The Reconstruct Index Utility

	Part III: The ISS Disk Sort Utility
	Chapter 14: Overview
	Chapter 15: Determine Work File Size
	Chapter 16: Executing the Disk Sort Utility
	Chapter 17: ISS Disk Sort Utility Timings

	Part IV: KFAM
	Chapter 18: Overview of the KFAM Systems
	Chapter 19: KFAM Requirements and Conventions
	Chapter 20: The KFAM Set-Up Utilities
	Chapter 21: The KFAM-3 Subroutines
	Chapter 22: The KFAM-4 Subroutines
	Chapter 23: The KFAM Reorganize Utilities (KFAM-3 and KFAM-4)
	Chapter 24: The Adjust KFAM Files Utilties
	Chapter 25: The Print Key File Utilties
	Chapter 26: The Recovery Utilties
	Chapter 27: The KFAM Conversion Utilities
	Chapter 28: General Technical Information
	Chapter 29: KFAM Advanced Programming Techniques

	Part V: The Programming Aids
	Chapter 30: Overview
	Chapter 31: The Screen/Disk Subroutines
	Chapter 32: Translation Table Subroutines
	Chapter 33: Sort-3

	Appendix A: Conditions Governing Spurious Results from the List/Cross Reference Utility
	Appendix B: Sort-3 Variable Check-Off List

