PPN INITEIvIreearedidid
$604044684309540400 3484030 3330dd 40043

NSBIINISSe

0850098900 ¢00040nddin e ianiiddsdBing. .

. VOISV ddeididddd.

INTEGRATED
SUPPORT SYSTEM
USER MANUAL
RELEASE 3.7

BRI 4 §

-

’

INTEGRATED
SUPPORT SYSTEM
USER MANUAL
RELEASE 3.7

© Wang Laboratories, Inc., 1978

LABORATORIES . INC.
“ i ANG ONE INDUSTRIAL AVENUE. LOWELL, MASSACHUSETTS 01881, TEL. (617) 85141 0 8769,

Disclaimer of Warranties and Limitation of
Liabilities

The staff of Wang Laboratories, Inc., has taken due care in
preparing this manual; however, nothing contained herein modifies or
alters in any way the standard terms and conditions of the Wang
purchase, lease, or license agreement by which this software package
was acquired, nor increases in any way Wang's liability to the customer.
In no event shall Wang Laboratories, Inc., or its subsidiaries be liable
for incidental or consequential damages in connection with or arising
from the use of the software package, the accompanying manual,
or any related materials.

NOTICE: Vs

All Wang Program Products are licensed to customers in ac-
cordance with the terms and conditions of the Wang Laboratories, Inc.
Standard Program Products License; no ownership of Wang Software
is transferred and any use beyond the terms of the aforesaid License,
without the written authorization of Wang Laboratories, Inc., is
prohibited.

LABORATORIES, INC.

(i IN ANG) ONE INDUSTRIAL AVENUE. LOWELL, MASSACHUSETTS 01851, TEL. (617) 861-4111, TWX 710 343.6789, TELEX 94.7421

HOW TO USE THIS MANUAL

This manual provides a guide for using the collection of software known
as the Integrated Support System - (ISS) Release 3.7. ISS Release 3.7 1is
designed exclusively for use on the Wang 2200MVP Central Processor and
consists of ISS utility programs, the Key File Access Method (KFAM) Release 7,
the ISS Screen/Disk Subroutines, and the SORT-Y4 Disk Sort Subsystem.

This manual is organized as a reference document for performing such
functions as operating a utility program or incorporating supplied subroutines
into an application program. Because of its size and the fact that it is a
reference manual, the Table of Contents should first be consulted when seeking
specific information.

The content of this manual, as revealed by its distinet parts, is
organized as follows:

1. Part I of this manual (Chapters 1-4) 1lists ISS requirements,
provides an overview of all ISS support software, furnishes
partition generation guidelines, and supplies operating procedures
and descriptions necessary to use ISS start-up scftware.

2. Part II of this manual (Chapters 5-16), supplies operating
instructions for each ISS Utility Program. ISS Utility Programs
allow files to be copied from disk to disk, provide printed reports
of a disk file's contents or the contents of a disk's catalog index,
and allow program files to be compressed, decompressed, listed,
ecross-referenced, or compared to other program files. Other
special-purpose utilities are also provided.

3. Part III (Chapters 17-28) describes the Key File Access Method
(KFAM), which consists of utility programs and marked subroutines.
Utility programs, for instance, allow a KFAM key file to be created,
which provides an index (using keys) to records in the parent data
file. KFAM global subroutines allow KFAM files to be opened and
closed, records added or deleted, and other functions performed.
KFAM utility programs create or recreate the key file from the data
file, print the key file's contents and the date file's access
table, convert KFAM-3 or KFAM-4 files to KFAM-7 format, allow
recovery from operational accidents, and reorganize the KFAM file
(data file and key file). KFAM files may be accessed simultanecusly
by multiple memory partitions (multistation).

4, Part IV (Chapters 29-33) describes a variety of marked ISS
Screen/Disk subroutines which provide standard functions necessary
in a disk-based programming environment. The programmer selects
those subroutines required from a displayed 1list, and upon
completion, the subroutines selected are saved into a user-specified
disk file as either global or non-global subroutines. Functions
provided are associated with operator display/keyboard interaction,
disk file access and maintenance, and multistation file access
according to one of four access modes. (Multistation files are

simultaneously accessible to multiple stations, similar to KFAM
files, in several access modes.)

i

5. Part V (Chapter 34) furnishes programming procedures necessary to
use the SORT-4 subsystem, which allows an input file to be sorted
according to the ascending or descending order of up to ten sort key
fields, input records may be screened before inclusion in the sort,
and specification of one of three types of sorts is available.

6. Appendices A, B, and C contain specific information referenced in
preceding portions of the manual.

It is assumed that those using this manual are familiar with the
operation of all hardware involved as described in other manuals (also see
below).

Should a hardware error (ERR 1nn form) ever occur, first consult the
operating instructions for the ISS software in use. If the error is not
listed in the operating instructions error list, consult the error 1list in the
Disk Reference Manual for disk-related errors or the BASIC-2 Language
Reference Manual for other errors.

Programmers using ISS or KFAM-7 subroutines or subsystems should have a
working knowledge of Automatic File Cataloging statements, as well as an
understanding of the Device Table characteristics.

The ISS Release 3.7 package number is 195-0049-3 and consists of four
diskettes and a copy of the Integrated Support System (ISS) Release 3.7 User
Manual.

ISS 3.7 Diskette numbers and names are as follows:

Diskette Number Diskette Name
701-2388 ISS UTILITIES
701-2389 KFAM-7
701-2390 ISS SCREEN/DISK SUBROUTINES
701-2391 SORT-4

ii

TABLE OF CONTENTS

PAGE
PART I OVERVIEW OF ISS AND START-UP SOFTWARE OPERATING INSTRUCTIONS

CHAPTER 1 INTRODUCTION . . . + « v &« & o « . e e e e e e e e 1
1.1 ISS Software Components e e e e e e e 1
1.2 Hardware and Operating Requirements 1
CHAPTER 2 OVERVIEW OF ISS SOFTWARE . . . « + « ¢ &+ o ¢« o & o o & 3
2.1 ISS Start-Up Software . . . « . + ¢« « ¢« « .« . .« e e e 3
2.2 ISS Utility Programs . .« « + « o o o o o o o o s s s & 3
2.3 Key File Access Method (KFAM-7) e e 5
2.4 ISS Screen/Disk Subroutines ¢ ¢ ¢ o 0 44 o 5
2] 5 SORT-" Subsystem ooooooooo 3 7
CHAPTER 3 ISS START-UP INSTRUCTIONS AND RELATED INFORMATION 8
3 . 1 Introduction L] L] L] * L] L] L] * L] L] * L] L] L] L] L] L] L L] * L) 8
3.2 Partition Generation Considerations. 9
3.3 ISS Start-Up Procedures e . 11

3.4 Application Program Requirements and ISS
comon variables L L] L] L] * L] L] L] . L] * L] L] L] * L] L] * L] 19
CHAPTER 4 COPYING ISS TO/FROM DISK AND DISKETTE MEDIA. 21
4.1 Copying the ISS System to a Fixed/Removable Disk . . . 21
4.2 Copying ISS From Disk to Diskette Media 22

PART II THE ISS UTILITY PROGRAMS

CHAPTER 5 INTRODUCTION TO THE ISS UTILITIES . . ¢ ©« « « « « « & 25
CHAPTER 6 THE COPY/VERIFY UTILITY PROGRAM 31
6.1 Introduction e e e e e e e .3
6.2 Operating Instructions: Copy/Verify e e vt e e e e 32
6.3 Execution Error Messages « o 4 e e+ . . 38
CHAPTER 7 THE CREATE REFERENCE FILE UTILITY PROGRAM. 4o
7.1 Introduction v e e e e e e e e e 4o
7.2 Operating Instruetions: Create Reference File 4
7.3 Execution Error Messages B)
CHAPTER 8 SORT DISK CATALOG UTILITY PROGRAM. 46
8.1 Introduction & & v v v v v e e e e e e e e 46
8.2 Operating Instructions: Sort Disk Catalog 47
8.3 Sort Disk Catalog Modifications. 49

i1ii

CHAPTER 9

9.1
9.2

CHAPTER 10

11.1
11.2
1.3
CHAPTER 12
12.1

12.2
12.3

CHAPTER 13

13.1
13.2

CHAPTER 14

CHAPTER 15
15.1
15.2
15.3
CHAPTER 16

16.1
16.2

DISK DUMP UTILITY PROGRAM.

Introduction + ¢« « ¢ ¢ o
Operating Instructions: Disk Dump .

DECOMPRESS UTILITY PROGRAM
Introduction . . . « « « ¢ ¢« ¢ + ¢ .

Operating Instructions: Decompress.
Execution Error Messages

LIST/CROSS - REFERENCE UTILITY PROGRAM

Introduction . &« ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ s ¢ o o o

Operating Instructions:

COMPRESS UTILITY PROGRAM .

Introduction ¢ . .
Operating Instructions: Compress. .

Execution Error Messages
RECONSTRUCT INDEX UTILITY PROGRAM. .

Introduection + « ¢« + . .
Operating Instructions: Reconstruct

FILE STATUS REPORT UTILITY PROGRAM .

Introduction
Operating Instructions: File Status

Index

Report.

PROGRAM COMPARE UTILITY PROGRAM. . . .

Introduction . « « « ¢ ¢ ¢ ¢ ¢ o o o o &

Operating Instructions:

Program Compare

Execution Error Messages + « .« .

FORMAT 2260C DISK UTILITY PROGRAM. .

Introduction
Operating Instructions

PART III THE KEY FILE ACCESS METHOD (KFAM-T7)

CHAPTER 17

171
17.2
17.3
17.4
17.5

17.6

GENERAL INFORMATION. «

Introduction to Disk Access Methods.
What is KFAM?.
KFAM File Structures . . . « « ¢« + &

.The Functional Components of KFAM. .

How to Get Started with KFAM
KFAM-T Access Modes and Security Features.

iv

List/Cross - Reference.
Execution Error Messages « ¢« ¢ ¢ ¢ « &

51

51
51

54
54
55
58

59

59
61

64
65
65
67
70

T

T
T2

73

73
T4

76

76
77
81

82

82
82

85

85
86
89
91
92
96

[

CHAPTER 18 KFAM REQUIREMENTS AND CONVENTIONS. 98

18.1 The User File. . « «v v v v v v v ¢ o 0 v v v e u . 98
8.2 The Key. . . « e .. . 101
18.3 The Key File © .5 2 4 4 e e e 6 e 4 s 4 e s e e e e s e 102
18.4 Device Addresses . . . « « v v 4 4 4 4 4w u e e .. 102
18.5 Copying KFAM Files . . v v v v 4 4 v v v v v v v v v . 103

CHAPTER 19 THE KFAM SET-UP UTILITY PROGRAMS 104
19.1 Overview of Initialize KFAM File . . . B [0 1]
19.2 1Initialize KFAM File Operating Instruetions. O B B
19.3 Key File Creation Utility. « . . . 114

CHAPTER 20 KFAM-7 SUBROUTINES AND BUILD SUBROUTINE MODULE 117

20.1 Overview of KFAM-7 Subroutines « 117

20.2 KFAM Access Modes. O -]
20.3 Procedures for Programming KFAM-S o e e e e .« « « 123
20.4 Build Subroutine Module Utility Program. 126
20.5 Calling the KFAM-5 Subroutines e o o« s . 129
20.6 Open (DEFFN' 230). v + v & ¢ ¢ o o o o .« 134

20.7 Delete (DEFFN' 231). v v v ¢ o v v v v v v .. e+« « 135
20.8 Findold (DEFFN' 232) e« e s 4 s e e« . . 13
20.9 Findnew (DEFFN' 233)+ 137
20.10 Findnew(Here) (DEFFN' 234) 138
20.11 Findfirst (DEFFN' 235) . . . « « « « o . . e+« « « . 140
20.12 Findlast (DEFFN' 236). « v v « « . . R T4
20.13 Findnext (DEFFN' 237). . . v v ¢ & v o o « . I L 8
20.14 Findprevious (DEFFN' 212). . . . v v v v v v v v « . . 142
20.15 Release (DEFFN' 238) e« o+ o « . 143
20.16 Reopen (DEFFN' 213) O LK
20.17 Write Recovery Information (DEFFN' 214). 143
20.18 Close (DEFFN' 239) . . & v v v v & v v w v v o v v v . 1uYy
20.19 Non-KFAM File Subroutines. + 14y

CHAPTER 21 THE KFAM REORGANIZE UTILITIES. 145

21.1 Introduction v v . v u e e e e e e 145
21.2 Reorganize Subsystem Standalone Routine 146
21.3 Reorganize In Place Utility Program 151

CHAPTER 22 REALLOCATE KFAM FILE SPACE UTILITY PROGRAM 154

22.1 Overview © + s 4 4 e e e 4 s e e e e e . 154
22.2 Operating Instructions D LY

CHAPTER 23 PRINT KEY FILE UTILITY PROGRAM 156

23.1 Overview s« e e e . e . 156
23.2 Print Key File Operating Instructions. c + 4 s e s . . 156

CHAPTER 24

24 .1
24,2

CHAPTER 25

25.1
25.2

CHAPTER 26

26.1
26.2
26.3
26.4
26.5
26.6

CHAPTER 27

27.1
27.2
27.3
27.4
27.5

CHAPTER 28

THE RECOVERY UTILITY PROGRAMS.

Key File Recovery. . . « ¢ ¢ « o ¢ ¢ o o o o o
Reset Access Table . . . « ¢« ¢« ¢ ¢ ¢ ¢ &« + o &

THE KFAM CONVERSION UTILITY PROGRAMS

Overview . . ¢« ¢ ¢ ¢ ¢ 4 ¢« o s o o o 0 e o o
Operating Instructions: Conversion Utilities.

KFAM-7 TECHNICAL INFORMATION

Key File Record Layouts and Storage in Memory
Key Flle Structure . . . « ¢« ¢« « ¢« ¢ v ¢« « o &
Key File Recovery Information.
FINDNEW with Blocked Files Under KFAM-7 . . .
Compatibility Between KFAM-4 and KFAM-7. . . .
Compatibility Between KFAM-S5 and KFAM-7 . . .

KFAM ADVANCED PROGRAMMING TECHNIQUES
Files Too Large for One Disk
Reusing Deleted Space with FINDNEW(HERE) . . .
Multiple Key Files Per User File

Status of the Key Deseriptor Record (KDR). . .
File Names for the KFAM Utilities.

NON-KFAM FILE OPEN/END/CLOSE SUBROUTINES . . .
Overview . « « o ¢ o o ¢ o o o s o 6 4 a8 s s e
Password Use .« « ¢ ¢ ¢ ¢ ¢ o ¢ o o o ¢ o o s o
Converting to Multistation Files
Open Subroutine (DEFFN '217) « « « « . .
End Subroutine (DEFFN '218) « . . .
Close Subroutine (DEFFN '219)

PART IV THE ISS SCREEN/DISK SUBROUTINES

CHAPTER 29

29.1
29.2

CHAPTER 30

30.1
30.2
30.3
30.4
30.5
30.6
30.7

OVERVIEW OF THE SCREEN/DISK SUBROUTINES . . .

Introduction . « « « « o ¢ ¢ ¢ ¢ o 4 e e s e
Choosing and Saving Screen/Disk Subroutines. .

SCREEN SUBROUTINES . . + « ¢« « ¢ o o o ¢ « & &

Introduction . ¢« « ¢ ¢ ¢« 4 ¢ o o + o 0 e s .
Data Entry (DEFFN' 200). .« « « ¢ ¢ « & o o +
Date Routines (DEFFN' 220, 221, 222, 223, 224,
Position Cursor (DEFFN®' 248)
Operator Wait (DEFFN' 254)
Re-enter (DEFFN' 255) . v ¢ « ¢ o o & o o « =
Print Routine (DEFFN' 242)

vi

158

158
160

162

162
162

164

164
1
177
178
178
179

180

180
180
181
181
183

184

184
185
185
185
188
189

191

191
193

196

196
196
198
201
202
202
202

1

CHAPTER 31

™ 31.1

31.2

31.3
31.4

31.5
31.6
31.7
CHAPTER 32

32.1
32.2
32.3
32.4
32.5
32.6
3207

CHAPTER 33

PART V THE SORT-4

DISK SUBROUTINES ¢ « ¢« ¢ ¢ o« o o s s s s o s o

Introduction . .« ¢ ¢ ¢ ¢ ¢ ¢ ¢ 4 e ¢t s e e b e e e e
Search Index (DEFFN' 229).
Allocate Data File Space (DEFFN' 228)

Free Unused Sectors (DEFFN' 227)
Limits Next (DEFFN' 226)
Open/Close Output (DEFFN' 2u40, 241). . .
Open/Close Input (DEFFN' 250, 251) . . .

DISK SUBROUTINES - MULTISTATION OPEN/END/CLOSE

Overview e e o & e 4 e e e e e e e e e e

Password USe . . & ¢ v ¢ o ¢ ¢ ¢ o o o o o o o o v s

Converting to Multistation Files « « . .
Open Subroutine for Multistation Files

(DEFFN' 217) ¢ & v ¢ 4 ¢ ¢ o o o o o o o o o o s o o o
End Subroutine for Multistation Files

(DEFFN' 218) . . .« v v v v v o v v v o e v v e e v o

Close Subroutine for Multistation Files

(DEFFN' 219) . -
Set /Release Hog Mode (DEFFN' 215). . . « « « « « & « &

TRANSLATION TABLE SUBROUTINES. « « + « .« &

SUBSYSTEM

éw“

CHAPTER 34

3.1

3.2

34.3

344

3.5

34.6

34.7

34,8

APPENDICES

) APPENDIX A
APPENDIX B
APPENDIX C

SORT=U . & ¢ ¢ v v v v v v e et e e e e e e e e e

Introduction « ¢« . . e e e e s e e e o e o .

writing the Set-up MOdUJ.e. e o & s e o & & 6 e e s e+

Input File Format Requirements

Input Record Format Requirements

Comments on Writing the Set-up Module

Normal Operating Procedure ¢« « ¢« + « &« o &

Error Messages and Recovery Procedures
SORT-Y4 Timings . . . « « . « « . . e e e e e e e e

KFAM ERROR MESSAGES. . . . « v ¢« v ¢ o ¢ ¢ v ¢ o o o &
SORT-4 VARIABLE CHECK-OFF LIST « « « « + « & &

CONDITIONS GOVERNING SPURIOUS RESULTS FROM THE
LIST/CROSS-REFERENCE UTILITY + ¢« « &« & « &

vii

203

203
203
204
205
205
206
209

210
210
21
21
211
216

217
217

218

220

220
224
228
230
243
262
263
273

275
295

296

NUMERIC LIST OF ISS AND KFAM MARKED (DEFFN') SUBROUTINES

DEFFN' NAME TYPE OF SUBROUTINE
200 Data Entry ISS Screen

201 EBCDIC to ASCII ISS Trans. Table
202 ASCII to EBCDIC ISS Trans. Table
203 2200 to 1200 ISS Trans. Table
204 1200 to 2200 ISS Trans. Table
212 Findprevious KFAM

213 Reopen KFAM

214 Write Recovery Info. KFAM

215 Set/Release Hog Mode ISS Disk

217 Multistation Open ISS Disk®*

218 Multistation End ISS Disk®

219 Multistation Close ISS Disk®

220 Enter Gregorian Date ISS Screen

221 Convert Greg. to Julian ISS Screen

222 Enter Julian Date ISS Screen

223 Convert Julian to Greg. ISS Screen

224 Convert Julian to Proper ISS Screen

225 Calculate Days Betw. Dates ISS Screen

226 Limits Next ISS Disk

227 Free Unused Sectors ISS Disk

228 Allocate Data File Space ISS Disk

229 Search Index ISS Disk

230 Open KFAM

231 Delete KFAM

232 Findold KFAM

233 Findnew KFAM

234 Findnew (Here) KFAM

235 Findfirst KFAM

236 Findlast KFAM

237 Findnext KFAM

238 Release KFAM

239 Close KFaM

240 Open Output ISS Disk

241 Close Cutput ISS Disk

242 Print ISS Screen

248 Position Cursor ISS Screen

250 Open Input ISS Disk

251 Close Input ISS Disk

254 Operator Wait ISS Screen

255 Re-enter ISS Screen

#pPlease note that KFAM-7 includes its own version of the Multistation
subroutines for non-KFAM files in the global program file KFAM0107. Although
the DEFFN' numbers are the same, the subroutines included with KFAM-7 are
indeed different than the corresponding ISS Disk subroutines.

viii

LIST OF ILLUSTRATIONS

Figure 3-1
Figure 3-2
Figure 17-1

Figure

17=2

Figure 19-1
Figure 20-1
Figure 34-1

Figure

34-2

Example of an ISS System Menu

Overview Flowchart of ISS Start-up Operation .

Functional Diagram of a Typical KFAM-7 Partition

Configuration. « . . e e e
User File Structure. e v e e

KFAM Setup Utilities + ¢« ¢« ¢ ¢« ¢« o &

KFAM Subroutine Return Code Logic.
SORT-U4 Sample Operation On Input Records . .
Input Record Selection Flowchart

LIST OF TABLES

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Table
Table

3-1

3-2

5-1

5-2

20-1
20-2
20-3
20-4
27=-1
28-1
32-1
34-1
342
34-3
34-4
34-5

A-1
A-2

ISS Software Components and Partition Considerations

ISS Common Variables « « + « .+ .
ISS Utility Programs and Categories. . .
Open Return Code Error Messages.
KFAM Multistation Access Modes
Build Subroutine Module Options. . . .

KFAM Subroutine Argument Symbolic Variables
KFAM Subroutine Q$ Return Codes.
KFAM=T7 Modules . . « + « ¢ ¢ ¢ ¢ ¢ o o o
Non-KFAM File OPEN Return Codes.
Multistation Open Return Codes
SORT-4 Master Setup Program.
SORT-U4 Input Record/File Format Combinations

Maximum Field Lengths and SORT-4 Field Lengths . .

Alphabetic List of SORT-4 Error Messages .
Numeric List of SORT-U Error Messages

and Recovery Procedures .
Error Message Categories and Recovery Options
KFAM Utility Error Messages

ix

PAGE

15
18

88
90
104
126
252
258

10

19

25

29
121
127
130
132
183
188
215
225
238
241
265

266
276
277

PART I
OVERVIEW OF ISS
AND START-UP SOFTWARE

OPERATING INSTRUCTIONS

CHAPTER 1
INTRODUCTION

1.1 ISS SOFTWARE COMPONENTS

The Integrated Support System (ISS) provides a Wang 2200MVP system with
a combination of utility programs, subroutines, program-controlled routines,

and system start-up software which collectively fulfill a wide range of data
processing and programming needs.

Utility programs supply aids essential to productive programming, as
well as providing standard functions necessary for disk file maintenance and
use. Subroutines, chosen from a displayed subroutine 1list, simplify all
programming tasks. There are ISS utility programs and subroutines, and there
are the utility programs and subroutines which make up the Key File Access
Method (KFAM) Release 7 (usually referred to as KFAM-T).

Sorting disk file records is accomplished by a fast and extremely
versatile subsystem called SORT-U4. SORT-4 is loaded by a user-written program
and thus does not appear on a menu. Another program-controlled routine is
included as part of the KFAM system, called Reorganize Subsystem, which 1like
SORT-4 does not appear on a menu.

ISS start-up software is accessible via the module "START", which
facilitates updating standard system data, allows menu access to ISS software

components and application programs, and makes standard system data available
to all software in the 2200MVP memory partition in use.

1.2 HARDWARE AND OPERATING REQUIREMENTS

1. ISS requires dual platter handling capability with at least one
diskette drive. All platters other than the four diskettes upon
which ISS software is prerecorded must be formatted and scratched

using the SCRATCH DISK statement prior to use. A "platter" can be a
disk or diskette.

2. ISS Release 3.7 requires a Wang 2200MVP Central Processor. -

All ISS Utility Programs require a 12K memory partition, with the

exception of Program Compare which requires 16K. The KFAM-7 Utility
Programs require a 9K partition and one 9K global partition. More
detailed information applicable to all ISS software is provided in
Chapter 3.)

A printer is required for all ISS Utility Programs and for the
KFAM-7 Utility Programs. Other hard copy output devices may be

used, but because top~of-form use is not supported, multipage output
is not recommended.

Requirements for KFAM-T are listed in Chapter 18.

To make a copy of a disk containing multistation files, use either a
COPY statement or the ISS Utility Copy/Verify (input mode = ALL).
If KFAM files are copied, see Section 18.5 in this manual. The use
of a MOVE statement or a DATASAVE DC END will destroy the
multistation file's access table and thus destroy the multistation
file. Note that program files cannot be multistation files.

CHAPTER 2
OVERVIEW OF ISS SOFTWARE

2.1 ISS START-UP SOFTWARE

ISS provides station (partition) start-up software in the form of a
program module called "START", Station start-up procedures provide access to
all ISS support software and to user application programs. Standard data
related to the partition in use i1s made available to ISS support software and
application programs.

ISS start-up software is contained on the ISS UTILITIES diskette, on the

KFAM-7 diskette, on the ISS SCREEN/DISK SUBROUTINES diskette, but not on the
SORT-4 diskette,

2.2 ISS UTILITY PROGRAMS

ISS Utility Programs are operator-controlled routines. Each processing
operation performed by ISS Utility Programs (except Disk Dump) can be
performed on multiple files. All are compatible with mltistation or disk
miltiplexed files. Their functions are summarized below:

1) COPY/VERIFY - Copies files from one platter to another and verifies
the copy. Media conversion may occur during platter-to-platter copy
by simply specifying the appropriate device addresses of the drives
to be used. Additional sectors may be added to the copied files.
Copied files may be renamed, or may replace existing files on the
output platter. Files to be copied may be specified directly during
Copy/Verify operation, indirectly by means of a reference file, or
by means of alphabetical file name limits. Also, all files may be
copied from a specified platter.

2) CREATE REFERENCE FILE - Creates a reference file which contains

pairs of file name entries for indirect use by the Copy/Verify or
Program Compare Utility Programs.

3) SORT DISK CATALOG - Prints a disk catalog index report, with files
sorted (1) alphabetically by file name, (2) numerically by starting
sector address, or (3) by file sequence in the index.

4)

5)

6)

7)

8)

9)

10)

11)

DISK DUMP - Prints the hexadecimal code and graphic character
equivalents of the contents of any one disk file. In addition, a

data file's contents may be printed with a field-by-field
description.

DECOMPRESS ~ Copies a program file and in doing so breaks up all
mlti-statement lines, assigning a unique line number to each BASIC
statement. Files may be specified by file name or by alphabetical
file name 1limits. Also, all program files on a disk may be
decompressed.

LIST/CROSS-REFERENCE - Prints a list of a program file with each
BASIC statement printed on a separate line. For each input program
file, it prints four cross-reference tables: one which associates
referenced line numbers with the lines which refer to them, one
which associates all variables with the lines in which they appear
one that identifies the 1locations of all marked (DEFFN'S
subroutines, and one which associates all DEFFN' subroutines with
the lines which refer to them. Files may be specified by file name

or by alphabetic file name limits. Also, all program files on a
platter may be listed/cross-referenced.

COMPRESS - Reduces the size of socurce program files by eliminating
REM lines, extra spaces, and inessential line numbers. Files may be

specified by file name or by alphabetic file name limits. Also, all
program files on a platter may be compressed.

RECONSTRUCT INDEX - Reconstructs a disk catalog index in the event
of its accidental destruction.

FILE STATUS REPORT - Performs several functions tailored to a
mltistation disk environment, including closing one or all files
open to a station, printing the station status of one or all files,
and printing all files currently open to a station.

PROGRAM COMPARE - Compares two program files on a line-by-line
basis, and indicates statements that do not match, if a statement
number exists in one program but not in another, if one program ends
before another, and if they end at the same statement (statement
numbers, file names, and device addresses are listed). The pairs of
program files to be compared reside on different platters and may be
specified directly by file name, indirectly by a reference file, by
alphabetic file name limits, or all program files. With the latter
two, files of the same name are compared.

FORMAT 2260C DISK - Formats the specified fixed/removable disk in a
Model 2260C Disk Drive. '

ta

2.3 KEY FILE ACCESS METHOD (KFAM-T7)

KFAM Release 7 (KFAM-7) is a software system designed to efficiently
produce, search, and maintain an index to the records in a disk-based data
file, The index (Key File) is kept as a cataloged file on disk. KFAM-7
includes global subroutines which are accessible to all KFAM utility programs
and user written application programs. These marked subroutines perform all
the routine operations on the index: random access search, sequential access
search, adding and deleting entries.

Because KFAM-7 maintains an indexed entry for each record in the data
file, records may be added in random order of their keys. Supplied utility
software reorders the data file records and their corresponding index entries
into ascending key sequence order for efficient ascending or descending key
sequence access using KFAM-7 subroutines. KFAM-7 also includes utility
programs that set-up a new KFAM-7 index and carry out recovery and occasional
maintenance tasks on a file.

KFAM-7 is fully compatible with multistation disk file operation and

controls file access for all stations with control information in global
memory. KFAM-7 does not support multiplexed disk file access.

2.4 ISS SCREEN/DISK SUBROUTINES

There are three groups of marked (DEFFN' statement) subroutines which
collectively are known as the ISS Screen/Disk subroutines. They are the
Screen, the Disk, and the Translation Table subroutines. The subroutines
desired from any of the three groups may be selected and saved into a disk
file for subsequent 1loading. The subroutines may be specified as either
non-global subroutines, which are incorporated into a user's application
program, or global subroutines where only certain variables are incorporated
into the user's application program. The actual global subroutines are loaded
and run in a background (non-interactive) partition and are accessible to all
partitions in the 2200MVP system.

1) Search Index: This Disk subroutine examines the Disk Catalog Index
to determine if a particular file: (1) has been cataloged, (2) is
scratched or active, and (3) is a data or program file. The
function performed is similar to the LIMITS statement.

2) Allocate Data File Space: This Disk subroutine opens a data file on
any selected disk, and allocates to it the available sectors between
the current end and the end of the cataloged area. It checks the
index to ensure the uniqueness of the file name and allows a minimm
acceptable file size to be specified.

3) Free Unused Sectors: This Disk subroutine examines a selected file
in a catalog area, de-allocates those sectors between the DATASAVE
DC END trailer and the end of the file, and repositions the end of
file control sector. The de-allocation may be restricted by
specifying that a minimm number of extra (reserved) sectors be
maintained in the file area,.

4)

5)

6)

7

8)

9)

10)

11)

12)

13)

Data Entry: This Screen subroutine accepts a numeric or
alphanumeric keyboard entry, using the LINPUT statement, and checks
a numeric entry to ascertain whether it is within a specified range
and whether its length, and number of places before and after the
decimal, is acceptable. It also displays a prompt and optionally an
operator-modifiable default value.

Open/Close Output: These Disk subroutines open for output or close

data files containing certain special purpose, software header and
trailer records.

Open/Close Input: These Disk subroutines open for input, or close,

data files containing certain, special purpose, software header and
trailer records.

Position Cursor: This Screen subroutine moves the cursor to any
point on the CRT and, optionally, erases characters to the right of
the new cursor position and the 1lines below it. The functions
available are similar to the PRINT AT function. Usually a PRINT or
LINPUT statement follows cursor positioning.

Date: This group of Screen subroutines converts and manipulates
dates in Gregorian and Julian form. It includes a subroutine for
operator entry of the date.

Operator Wait: This Screen subroutine displays the message "KEY
RETURN(EXEC) TO RESUME" and waits on an INPUT instruction for
depression of RETURN(EXEC).

Limits Next: This Disk subroutine returns the name of the next
file, in the order of file entries in the disk index, and indicates
whether the file is a program or data file and either scratched or
active.

Multistation Open/End/Close: These Disk subroutines provide a
controlled file access system for data files on a multistation disk
drive. This access system is made possible by maintaining file
access information in the file's (hardware-generated) catalog
trailer record. Four access modes are available including Exclusive
file access. Multistation file Open/End/Close subroutines support
creation of a new file, accessing an existing file, changing access
modes without closing a file, writing an END record, closing a file,
and file password protection. Multistation Disk subroutines are
compatible with multiplexed disk file access. A disk hog mode
option using the $OPEN and $CLOSE statements is available.

Print: This Screen subroutine allows a specified character to be
printed a specified number of times.

Reenter: This (internal) Screen subroutine displays REENTER to
indicate invalid operator entries. :

The Translation Table subroutines set up a table (an alphanumeric array)
for use with the BASIC-2 statement $TRAN. Four subroutines are provided which
assign the proper hex codes for the following translations:

EBCDIC TO ASCII

ASCII T0 EBCDIC
2200 TO 1200
1200 T0 2200

2.5 SORT-4 SUBSYSTEM

SORT-4 is a program-controlled routine for sorting records in a disk
file. A user's set-up program provides parameters for the sort operation and
loads the SORT-4 module. Up to ten ascending or descending sort key fields
determine output record order. SORT-4 provides fast and versatile sort
operations including tag sorts, key sorts and full-record sorts, a variety of
acceptable input file and input record formats, input record selectivity
features, and other options.

CHAPTER 3
ISS START-UP INSTRUCTIONS AND RELATED INFORMATION

3.1 INTRODUCTION

ISS start-up operation allows the user to view and optionally modify
certain information pertaining to the 2200MVP memory partition currently in
use. Following ISS start-up operation, the information pertaining to that
memory partition, including available peripheral addresses and the date, is
made available to all software running in that memory partition (via common
variables). For instance, during the operation of an ISS utility program, the
ISS start-up disk addresses are used to determine if an operator-entered disk
address is valid, and the date appears on most utility program printouts.

ISS start-up operation typically occurs only at the start of the working
day, that is, after a 2200MVP partition configuration has been executed.
During the working day, however, if a 2200MVP partition configuration 1is
re-executed or if the user needs to change a peripheral address, ISS start-up
operation must occur again.

ISS start-up information pertaining to a partition is called a system
configuration table and consists of certain values obtained either through
testing performed internally by ISS during start-up operation or by operator
entries in reply to ISS start-up prompts. Information in the system
configuration table obtained from operator entries may be stored (recorded)
whenever desired during ISS start-up operation on the ISS disk(ette) within a
"station file." The values currently stored within a "station file" are
recalled (loaded) and used as default values for operator entries during
subsequent ISS start-up operations. For example, the default values stored
from a previous day's start-up are usually acceptable with the exception of
the current date.

A station file may be created during ISS start-up operation for a
particular STATION NUMBER and occupies 10 disk "sectors." Because ISS-3.7
operates only on the 2200MVP, it is recommended that the STATION NUMBER be the
partition number currently in use. The first prompt which appears during ISS
start-up operation requests entry of the STATION NUMBER. Based on the STATION
NUMBER entered, the corresponding station file is recalled to obtain default
values for ISS start-up operation. In addition, the STATION NUMBER entered is
equated to a common variable (scalar variable S2) which is used by ISS utility
programs running in that partition and also may be used by application
programs. Because the STATION NUMBER is used to determine which user is
accessing a multistation disk file, problems may result if the station numbers
in use at any time are not unique.

NOTE:

Although ISS start-up operation allows station numbers from
1 through U8, the SORT-4 Subsystem and ISS utility programs
are operable only with station numbers 1 through 4, and
KFAM-7 utility programs and subroutines are operable only
with station numbers 1 through 16.

3.2 PARTITION GENERATION CONSIDERATIONS

As discussed in the 2200MVP Introductory Manual, the 2200MVP system disk
contains the 2200MVP Operating System as well as other software associated
with partition generation. During partition generation, available 2200MVP
memory is allocated to the partitions to be used, and each terminal may be
assigned to one or more partitions. A program file residing on the 2200MVP
System disk may be automatically loaded into the partition specified and run
if the automatic bootstrap feature has been implemented. Programming may be
enabled or disabled for any partition desired. Prior to its execution, a
partition configuration may be stored (recorded) on the 2200MVP system disk
for future recall and use.

When assigning partition numbers during partition generation, it 1is
recommended that the wuser assign partitions 1 through 4 to individual
terminals which are most 1likely to use ISS utility programs. In addition,
partitions within which interactive programming will oceur or
operator-interactive software will be run (i.e., foreground programs) should
be assigned a lower partition number than application programs requiring
little or no operator interaction (i.e., background programs). In general
when assigning partition numbers, the user should keep in mind the recommended

partition number/station number convention and plan what software will run in
which partition according to station number limitations.

Table 3-1 1lists each ISS-3.7 software component and indicates the
minimum partition memory size and considerations necessary to - run that
software component.

Table 3-1. ISS Software Components and Partition Considerations

ISS SOFTWARE

PARTITION SIZE AND CONSIDERATIONS

ISS Start-up
Operation

The partition size must be at least 6.75K.

ISS Utility
Programs

All require 12K memory with the exception of PROGRAM
COMPARE which requires 16K memory. A global partition
is not needed.

KFAM-7 Utility
Programs

All require 9.0K memory. A 9.0K global partition
is required to contain the supplied global program file
KFAMO107 (or customized equivalent; see Chapter 18).

KFAM-T
Subroutines

The same KFAMO107 global partition is needed as in the
KFAM-T utility programs. About 1000 bytes plus 87
bytes per KFAM file accessed is needed for KFAM-7
variables in addition to the memory required for the
user-written application program statements.

ISS Screen/Disk
Subroutines

ISS Screen/Disk Subroutines may be specified as global
or non-global. If all ISS Screen/Disk subroutines are
chosen for non-global (local) use, a 10.0K partition is
needed while saving them to a disk file, and they
require 8.25K when RUN, in addition to the memory
required for the user's program text. However, it is
not 1likely that all Screen/Disk subroutines will be
required, therefore the actual partition size needed
will likely be less than 10.0K or 8.25K respectively.

If all ISS Screen/Disk subroutines are chosen for
global use, a 10.0K partition is required while saving
them into two disk files (one file contains the global
subroutines, the other contains variables to be added
to the user's program). The global subrcutines require
an 8.25K partition when RUN. The variables require
2.0K when RUN, in addition to the memory required for
the user's program text. However, it is not 1likely
that all Screen/Disk subroutines will be required,
therefore the actual partition size needed will likely
be less than 10.0K, 8.25K, or 2.0K respectively.

SORT-4

If a sequential file is to be sorted, at least a 9K
partition is required; if a KFAM file is to be sorted,
at least an 11 to 12K partition size is required,
depending on the size of the user's set-up program.
Also, keep in mind that SORT-Y4 adjusts itself to the
amount of memory available and will provide better
throughput if RUN in a larger size partition.

10

3.3 ISS START-UP PROCEDURES

Prior to ISS start-up operation, the following must have occurred as
described in the 2200MVP Introductory Manual.

1. The 2200MVP must be Master Initialized.

2. If the peripheral addresses have not yet been defined in the 2200MVP
Master Device Table, choose the "Edit Device Table" option following
Master Initialization. This option allows entry of device addresses
into the Master Device Table which should subsequently be saved as
the default Master Device Table values on the 2200MVP system disk by
saving a partition configuration ("Save Partition Configuration”
option) before a partition configuration is executed. Once entered
into the Master Device Table, the 2200MVP Operating System allows
the peripherals specified to be used from the terminals specified.
The "Edit Device Table"™ option is only necessary following Master
Initialization if the default Master Device Table values are not
acceptable.

3. Create and execute a partition configuration. The automatic
bootstrap feature cannot be implemented until the program files
(such as KFAM0107) to be automatically bootstrapped (loaded into a
partition and run) have been copied to the 2200MVP system disk. To
copy program files to the 2200MVP system disk, use Copy/Verify, an
ISS utility program, after completing start-up procedures.

4, After executing a partition configuration, "READY (BASIC-2)
PARTITION nn" appears in the upper-left corner of the terminal's
Screen, where nn is the partition number assigned during partition
generation. If the terminal in use has been assigned more than one
partition, the $RELEASE TERMINAL statement may be necessary to
change the partition number currently attached to this terminal.
(Refer to the BASIC-2 Language Reference Manual,)

5. ISS start-up operation may now begin.

Please note that the top row of keys on the keyboard are referred to as
Special Function Keys. When the SHIFT key is not depressed (the SHIFT 1light
is not illuminated), Special Function Keys '0 through '15 are available; when
the SHIFT key is depressed (the SHIFT light is illuminated), Special Function
Keys '16 through '31 are available. If the operating instructions below
request the operator to touch any Special Function (S.F.) Key, the cursor must
not be blinking on the terminal used. A blinking cursor indicates that Edit
mode is active. Touching the Edit key once will switch Edit mode off if it
was active and replace the blinking cursor with a steady (non-blinking)
cursor. A steady cursor indicates that the operator may touch the requested
S.F. Key. (Also, refer to the 2200MVP Introductory Manual for related
information.)

1

In the instructions which follow, the word "enter" indicates touching

the appropriate keyboard characters, visually verifying the displayed entries,
possibly touching the BACK SPACE key to correct a character, and, when
correct, touching the RETURN key to indicate completion.

Loading ISS Start-up Software

ISS start-up operation requires the program file START to be loaded as
described below following execution of a partition configuration. Once ISS
start-up operation has occurred, it is usually not necessary to reload ISS
software unless a partition configuration is re-executed.

To load the START program file, complete the following instructions:

1. If an ISS diskette is to be used, the ISS diskette chosen should be
the ISS diskette containing the ISS software to be used, and the
Write Protect tab must be in place. ISS start-up software is
contained on all ISS diskettes with the exception of the SORT-lU
diskette. Mount the ISS disk(ette) preferably at disk device
address 310.

2. Touch the CLEAR key, and then touch the RETURN key.

3. If the ISS disk(ette) is mounted at disk address 310, complete the
procedures which follow. Otherwise, skip to step 4.

a. Touch the LOAD key, touch the RUN key, and then touch the
RETURN key.

b. Refer to "ISS Start-up Operating Instructions" below.

4. Enter the following commands (terminate each 1line by touching the
RETURN key):

SELECT DISK xyy
LOAD DC T "START"

(where xyy indicates the disk device address where the ISS
disk(ette) has been mounted.)

5. Refer to "ISS Start-up Operating Instructions" below.

ISS Start-up Operating Instructions

After loading ISS start-up software, the following prompt appears in the
upper-left corner of the screen:

ENTER STATION NUMBER

?

This prompt requests entry of a station number. Also, it (1) allows a
station file to be created for a new station number and (2) allows the
operator to view existing station files and the default ISS start-up values
contained within each station file. Note that a station file for station
number 1 is contained on each ISS disk(ette) containing START.

12

<o

In reply to the ENTER STATION NUMBER prompt, the following options are
available:

a. To view existing station files on the ISS disk(ette) in use and the
defaults contained within- each, touch S.F. Key '00. "SEARCHING FOR
ACTIVE STATIONS"™ briefly appears, followed by the prompt "ENTER
STATION NUMBER TO REVIEW DEFAULTS (0=END)." The EXISTING STATIONS
(numbers 01-48) are also displayed. Enter the station number
(01-48) whose defaults are to be viewed. Repeat as desired. After
viewing the defaults for the appropriate stations, enter 0 (zero);
the "ENTER STATION NUMBER" prompt reappears.

The defaults displayed include the DATE 1last entered (preset to
05/01/78), the PRINTER ADDRESS (preset to 215), the DISK ADDRESSES

(preset to B10), and the LOADING ADDRESS where ISS start-up software
was loaded from.

b. To create a station file for a station number on the ISS disk(ette)
in use, touch S.F. Key '16. "ENTER STATION NUMBER TO CREATE"
appears requesting entry of the station number for whiech a station
file is to be created. Enter the station number; the "ENTER STATION
NUMBER" prompt reappears after the new station file has been created.

¢c. To proceed with ISS start-up operation, enter the STATION NUMBER
from 1 through 48, however, it is recommended the station
number/partition number convention be adhered to, as described in
Section 3.1. If the prompt reappears, this indicates that a station
file does not exist on the ISS disk(ette) in use for the station
number entered (see paragraph b). Otherwise, the ENTER DESIRED
FUNCTION prompt appears (see below).

After a valid station number has been entered, the following prompt
appears:

ENTER DESIRED FUNCTION (0=END)

2
~ STATION #n

1. DATE - mm/dd/yy
2. PRINTER ADDRESS - abe

3. DISK ADDRESS - xXyy

4. LOADING ADDRESS - Xyy

In reply to this prompt, the user views the station number entered (n
above) and the default values displayed. If the wrong STATION NUMBER is
displayed, touch S.F. Key '31 to re-enter the STATION NUMBER. Otherwise, the
user may change any of the displayed defaults desired. When the dispiayed
defaults are acceptable, the user may (1) save the defaults (if changed) into
the station file, (2) obtain the Applications menu from which an application
program may be loaded, or (3) obtain the menu corresponding to the software
contained on the ISS disk(ette) in use.

The user may change one, some, or all of the displayed defaults by
completing the following procedures in reply to the "ENTER DESIRED FUNCTION"
prompt.

13

c.

.To change the DATE, enter 1. The prompt "ENTER TODAY'S DATE"

appears requesting entry of the date in the form MM/DD/YY
(month/day/year). After entering the date, the "ENTER DESIRED
FUNCTION" prompt reappears and the DATE entered is displayed.

To change the PRINTER ADDRESS, enter 2. The prompt "ENTER PRINTER
ADDRESS" appears and supported printer device addresses are
displayed. The printer address entered determines the cutput device
used during ISS utility program operation for certain functions. If
a printer is not available, touch RETURN without entering any
characters (BLANK or 000). If a printer connected to this terminal
is available, enter 204. Otherwise, enter the 3-digit printer
address which has been previously set in the Master Device Table.
Note that the printer whose address is entered must be ON and
SELECTed or else the address is not acceptable (the prompt
reappears). After entering the printer address, the "ENTER DESIRED
FUNCTION" prompt reappears and the PRINTER ADDRESS entered is
displayed.

To change the DISK ADDRESSES, enter 3. The prompt "ENTER DISK
ADDRESS" appears requesting entry of the disk device addresses to be
used by this station, in addition to the ISS LOADING ADDRESS.
Supported disk addresses are displayed and any of the displayed disk
addresses are accepted with the exception of the ISS LOADING
ADDRESS. Please note that ISS start-up operation does not verify
(check) that the disk device whose address has been entered is
on-line or exists in the Master Device Table. Enter the disk
addresses in the form xyy; the entry made is displayed. Enter each
disk address desired. Enter 0 (zero) after the last DISK ADDRESS

has been entered and displayed; the "ENTER DESIRED FUNCTION" promp
reappears. _

To change the ISS LOADING ADDRESS, enter 4, The prompt "ENTER ISS
LOADING ADDRESS" appears. The ISS LOADING ADDRESS is the address
ISS software is to be loaded from, i.e., the disk device address
where the ISS disk(ette) is to be mounted. Enter the ISS LOADING
ADDRESS; if the disk address entered is one of the displayed DISK
ADDRESSES, it is deleted from the DISK ADDRESSES list and displayed
as the LOADING ADDRESS. After entering the LOADING ADDRESS, the
"ENTER FUNCTION NUMBER" prompt reappears. The ISS disk(ette) should
be mounted at its new disk address at this time.

When the displayed defaults are acceptable, the user has the following
options available in reply to the "ENTER DESIRED FUNCTION" prompt.

1'

To store the currently displayed defaults into the station file,
touch S.F. Key '00; the "ENTER DESIRED FUNCTION" prompt reappears.
This option allows the displayed defaults to be recalled and used
during subsequent ISS start-up operations.

To obtain the Application menu, from which an Application program
may be loaded, touch S.F. Key '16. Refer to "Loading an Application
Program" below for instructions. If the ISS diskzetteg is not
mounted at the ISS LOADING ADDRESS, the prompt "ENTER ISS LOADING
ADDRESS" appears; refer to paragraph d. above for instructions.

14

13

1}

3.. To obtain the menu corresponding to the software contained on the
ISS disk(ette) in use, enter 0 (zero). The appropriate menu appears
unless the ISS disk(ette) is not mounted at the ISS LOADING ADDRESS,
which results in the appearance of the "ENTER ISS LOADING ADDRESS"
prompt. Refer to paragraph d. above for instructions.

ISS Menu Hierarchy

The ISS menu which appears upon completion of ISS start-up dynamically
reflects the ISS software contained on the ISS disk(ette). For instance, if
the ISS diskette containing KFAM-T is in use, the KFAM-7 menu appears and
allows selection of a KFAM-7 utility program. Similarly, the ISS UTILITIES
menu appears if that ISS diskette is used, or the ISS SCREEN/DISK SUBROUTINES
menu appears 1if that ISS diskette is used. However, if two or more ISS
diskettes are copied to a single fixed/removable disk, a higher-level menu
called a SYSTEM MENU (see Figure 3-1) appears and allows selection of the
software available on the ISS disk. All menus list the options available,
which are chosen by touching the S.F. Key corresponding to the desired
option. ISS software may be copied to a fixed/removable disk using the
instructions provided in Chapter Y.

The SORT-U4 subsystem does not appear on any ISS menu because it is not
an operator-controlled utility program. SORT-4 is instead controlled by a
short, user-written set-up program,

Figure 3-1 shows an example of an ISS SYSTEM MENU, for an ISS disk to
which the SCREEN/DISK SUBROUTINES and KFAM-7 have been copled. In reply to
the SYSTEM MENU shown, the user would touch S.F. Key '02 to obtain the
SCREEN/DISK SUBROUTINES menu or S.F. Key '0O4 to obtain the KFAM-7 menu. S.F.

Key '31 returns the previous menu or prompt (in this case the "ENTER DESIRED
FUNCTION"™ prompt) to the screen.

WANG COMPUTER SYSTEMS (STATION # = 1)
SYSTEM MENU

FN KEY PROGRAM NAME FN KEY PROGRAM NAME

02 SCREEN/DISK SUBROUTINES 31 RE-START SYSTEM
ol KFAM-7

Figure 3-1. Example of an ISS System Menu

15

NOTE:

Following ISS start-up, never remove a disk or diskette
containing data or switch.the CPU's power OFF unless the
ISS Utilities menu, KFAM-T menu, ISS Screen/Disk
Subroutines menu, or the System menu appears on the
screen., Similarly, an ISS disk(ette) must not be replaced
by another ISS disk(ette) unless the "ENTER STATION NUMBER"
prompt appears on the screen, which may be obtained by
touching S.F. Key '31 several times.

Loading an Application Program

After correcting the defaults displayed along with the "ENTER DESIRED
FUNCTION" prompt, the user may touch S.F. Key '16 to obtain the Applications
menu, as shown below:

ENTER OPTION TO CHANGE (0=LOAD APPLICATION)

1. APPLICATION TO LOAD - filename
2. APPLICATION DISK ADDRESS - xyy

(all common variable values are also displayed.)

The default application program file name (filename above) appears to
the right of APPLICATION TO LOAD, and the default disk device address from
which the application will be loaded (xyy above) appears to the right of
APPLICATION DISK ADDRESS. All ISS start-up common variables are displayed
(also see Section 3.4).

To change the APPLICATION TO LOAD, enter 1. Enter the file name of the
application program to be loaded in eight characters or less. The entry made
is displayed and the Applications menu ("ENTER OPTION TO CHANGE"™ prompt)
reappears.

To change the APPLICATION DISK ADDRESS, enter 2. Enter the disk address
the application program is to be loaded from. The entry made is displayed and
the Applications menu reappears.

If any of the other displayed defaults are incorrect, depress S.F. Key
'31 to obtain the "ENTER DESIRED FUNCTION" prompt (see above).

When the displayed defaults are all acceptable, enter 0 (zero) to load
the application program specified.

16

(4

Flowchart of ISS Start-up Operation and Operating Notes

Certain conventions are adhered to by all ISS software. In particular,
S.F. Key '31 is available in reply to any prompt during ISS start-up operation

to obtain the previous prompt and also allows a user to abort operation of a
utility program.

For example, in the flowchart of ISS start-up operation shown in Figure
3-2, touching S.F. Key '31 in reply to an ISS menu (e.g., ISS Utilities menu)
returns the "ENTER DESIRED FUNCTION" prompt to the screen (which, for
instance, might be needed to change the ISS start-up PRINTER ADDRESS).

It 1is important to note that S.F. Key '31 is available during the
operation of any ISS or KFAM-T7 utility program to abort the program instead of
entering a reply to a prompt. S.F. Key '31, for instance, should be touched
to return the appropriate menu to the screen if the wrong utility program was
accidentally chosen (in reply to the ISS Utilities or KFAM-7 menu.) S.P. Key
'31 also closes any files left open if a program is aborted.

NOTE:

S.F. Key '31 is valid only if the terminal in use is not in
Edit mode. Edit mode, if active, is indicated by a
blinking cursor and may be deactivated by manually touching

the EDIT Key once (a steady cursor indicates Edit mode is
not active).

17

LOAD RUN "START"

ENTER STATION
NUMBER

~—»S5.F.'00 (DISPLAY EXISTING STATIONS)—®»
~=95.F.'16 (ADD NEW STATION) ==

A

ENTER DESIRED
FUNCTION
(0 = END)

ENTER STATION
NUMBER TO RE-
VIEW DEFAULTS
(0 = END)

ENTER STATION
CREATE

(8)

--»5.F.'00 (SAVE DEFAULTS)—#(B)

P

--»S.F. '31

—-»S.F.'16 (LOAD APPLICATION MENU)-L

ENTER OPTION
TO CHANGE
(0=LOAD APPL.)

-

ENTER TODAY'S DATE

~®

--»S.F.'31

ENTER PRINTER ADDRESS

APPLICATION
TO LOAD

S

ENTER DISK ADDRESS

APPLICATION

DISK ADDRESS

(0 = END)

Y

ENTER LOADING ADDRESS

1

MENU APPEARS

--»5.F. '31—(B)

Dashed lines indicate optionms.

Figure 3-2.

18

LOAD APPLICATION
PROGRAM SPECIFIED

Flowchart of ISS Start-up Operation

3.4 APPLICATION PROGRAM REQUIREMENTS AND ISS COMMON VARIABLES

Table 3-2 1ists the 1ISS common variables whose values are determined

during ISS start-up operation.

Following ISS start-up operation, these common

variables are available for use in. application programs and their values are
displayed along with the Application menu.

Table 3-2. ISS Common Variables

DESCRIPTION

Julian Date
Gregorian Date

Memory Size (K)
CRT width (64,80)
Application Loading

VARIABLE NAME

Scalar variable Q1.
Alpha-variable Q1$, dimensioned
as Q148.

Scalar variable S.

Scalar variable SO.

Scalar variable S1.

Number (1=310, 2=320,
3=330, 4=B10, 5=B20,

6=B30, 7=350, 8=360).
Station Number (1-48)
CPU Type (4=MVP)

ISS Loading Address

Scalar variable S2,
Scalar variable S3.
Alpha-variable S$, dimensioned

Printer Address

Disk Addresses

as S$3.

Array element S$(1), dimensioned
as array S$(9)3.

Array elements S$(2) through S$(9),
dimensioned as array S$(9)3.

Application Program Requirements

Application programs running under ISS should adhere to the following
requirements.

1.

All numeric and alphanumeric, scalar and array variables whose first
letter begins with Q, R, S, T, U, V, or W are reserved exclusively
for ISS system use. The variables reserved for SORT-4 are listed in
Appendix B.

All DEFFN' statements from DEFFN'
similarly reserved for ISS system use.

200 through DEFFN' 255 are
Also see paragraph 5 below.

If an ISS disk(ette) has been removed from the ISS loading address
due to application program processing, upon its completion, the
application program should furnish a return to ISS by providing the
following: (1) issue a SELECT DISK xyy statement, where xyy is the
ISS loading address, (2) provide the operator with a means of
remounting the ISS disk(ette), e.g., a prompt, and (3) LOAD and RUN
the ISS "START" file when the operator signals that the ISS
disk(ette) is ready.

19

It is recommended that disks or diskettes containing application

programs contain a "START" program file (module) which provides
return links to the ISS disk(ette) "START"™ module via S.F. Key '31
(use a DEFFN' 31 and a RETURN CLEAR statement). Although not
required, this is a recommended system convention.

Programming conventions applicable to the 2200MVP Operating System
should be adhered to. For instance, the current global partition
selected is determined via a SELECT @PART statement in the user's
application program which allows DEFFN' statement subroutines in the
selected global partition to be accessed via GOSUB' statements in
the user's application program(s).

20

CHAPTER 4
COPYING ISS TO/FROM DISK AND DISKETTE

4.1 COPYING THE ISS SYSTEM TO A FIXED/REMOVABLE DISK

Follow the procedures provided below to copy the prerecorded contents of
one, two, three, or all four ISS diskettes to a single fixed/removable (hard)
disk. The dynamic ISS menu structure will automatically provide a SYSTEM MENU
if the fixed/removable disk at the ISS loading address contains the software
prerecorded on any two or three of the following ISS diskettes: ISS Utilities
Diskette, KFAM-T Diskette, and the ISS Screen/Disk Subroutines Diskette. Once
copied to a single disk, all ISS software may be copied back to individual
diskettes as described in Section 4.2.

NOTE:

Prior to copy, any output disk or diskette platter to
receive ISS software should be reformatted and have the
SCRATCH DISK statement executed for that platter. This is
strongly recommended prior to performing the procedures
outlined below and in Section 4.2.

1. It 1is recommended that the ISS start-up Printer Address be set to
000 (blank) before beginning the procedures that follow. This
action 1is not necessary if (1) the ISS Printer Address is 000
already, or (2) the user does not mind wasting a few sheets of
printer paper. To change the ISS Printer Address: load and run
START from an ISS diskette located at the ISS loading address,
change the Printer Address to 000, and proceed to step 2 below.
Error messages (see step 4) will be displayed instead of printed.

2. Mount the ISS Utilities Diskette at the ISS loading address. Obtain
the ISS Utilities menu.

21

4.2

5.

From the ISS Utilities menu, load the COPY/VERIFY Utility Program by

touching the indicated Special Function Key. Set the Copy/Verify
parameters as follows (refer to Chapter 6 for operating
instructions):

FUNCTION = COPY/VERIFY

INPUT ADDRESS = xyy (diskette address)

INPUT MODE = ALL

EXTRA SECTORS = 2

OUTPUT ADDRESS = xyy (fixed/removable disk address)
OUTPUT MODE = ADD

When the prompt "MOUNT PLATTERS AT INDICATED ADDRESSES, KEY
RETURN(EXEC) TO RESUME?" appears, mount the ISS diskette to be
copied from at the INPUT ADDRESS; mount a recently formatted and
scratched disk at the OUTPUT ADDRESS. Begin Copy/Verify execution
by touching the RETURN key when ready. During program execution,
ignore messages in the form "FILE - filename - CANNOT BE COPIED" if
encountered and "FILE - KFAMWORK - DOES NOT VERIFY" if encountered.

Upon completion of copy, the ISS Utilities menu reappears. Repeat
steps 3 and 4 above for each ISS diskette. After completing
Copy/Verify operations for all ISS diskettes, refer to step 6 below.

Obtain the ISS Utilities menu and touch S.F. Key '31. In reply to
the "ENTER DESIRED FUNCTION" prompt, enter 4 to obtain the prompt
"ENTER ISS LOADING ADDRESS"., Change the ISS loading address to the
disk address of the hard disk. If not already mounted, mount the
disk containing the newly copied ISS software at the new ISS loading
address.

In reply to the "ENTER DESIRED FUNCTION" prompt, touch S.F. Key '00
to save the new defaults.

Enter 0 (zero) in reply to the "ENTER DESIRED FUNCTION" prompt; the
SYSTEM MENU may appear at this time (see Figure 3-1).

If the ISS Printer Address was changed to 000 in step 1 above,
repeat the procedures in step 1 to change the ISS Printer Address
back to its original value.

COPYING ISS FROM HARD DISK TO DISKETTE MEDIA

To copy ISS software from a disk to diskette, refer to the steps below.

1.

Mount the ISS disk(ette) which contains the ISS Utilities. Obtain
the ISS Utilities menu.

22

~ From the ISS Utilities menu, load the COPY/VERIFY Utility Program by

touching the indicated Special Function Key. Set the Copy/Verify

parameters as follows (refer to Chapter 6 for o t
instructions): P perating

FUNCTION = COPY/VERIFY

INPUT ADDRESS = xyy (hard disk address)
INPUT MODE = INDIRECT

EXTRA SECTORS = 2

OUTPUT ADDRESS = xyy (diskette address)
OUTPUT MODE = ADD

When the prompt ®"ENTER THE NAME OF THE REFERENCE FILE" appears,
refer to the table below for (1) the file name to enter, and (2) the

corresponding name to be written on the diskette label upon
completion of copy (use a felt-tip pen).

When the prompt "MOUNT PLATTERS AT INDICATED ADDRESSES. KEY RETURN
(EXEC) TO RESUME?" appears, mount the ISS hard disk at the INPUT
ADDRESS and a recently formatted and scratched (SCRATCH DISK)

platter at the OUTPUT ADDRESS. Begin program execution by keying
RETURN when ready.

Output Medium Reference File Name Diskette Name

Diskette ISS.REF1 ISS Utilities

ISS.REF2 ISS Screen/Disk Subroutines
ISS.REFY KFAM=-T
ISS.REFS SORT-Y4

Upon completion of copy, the ISS Utilities menu reappears. Remove
and label the new ISS diskette. Repeat steps 3 and Y4 above for each
ISS diskette. After completing Copy/Verify operations for all ISS
diskettes, refer to step 6 below.

Mount a newly copied ISS diskette (at any valid disk address) and
reload ISS software from the new ISS diskette. It may be necessary
to create a station file(s) and change the ISS Loading Address. See
Chapter 3 for instructions.

23

- - PART I

THE ISS UTILITY PROGRAMS %

24

CHAPTER 5
INTRODUCTION TO THE ISS UTILITIES

The ISS utility programs provide several standard functions necessary
for a disk-based data processing environment. Categories of the functions
performed by ISS Utility Programs include Copy Functions, Programming
Functions, Catalog Index Functions, Formatting a Disk (Model 2260C only) and
Special Purpose Functions.

Table 5-1 shows the categories of ISS utility program functions relative
to the basic elements of disk storage. For instance, Catalog Index Functions
apply to all files in the Catalog Index. Programming Functions apply only to
Program Files, and the Copy Functions apply to both Data Files and Program
Files (All Files).

Table 5-1. ISS Utility Programs and Categories

FUNCTIONAL CATEGORY | STORAGE ELEMENT UTILITY PROGRAM(S)
Copy Functions

All Files Copy/Verify
Programming Functions Program Files Decompress

Program Files Compress

Program Files List/Cross-Reference

Program Files Program Compare
Catalog Index Functions Catalog Index Sort Disk Catalog

Catalog Index Reconstruct Index
Special Purpose Functions | All Files Create Reference File

All Files Disk Dump

Data Files File Status Report
Formatting a Disk Disk Format 2260C Disk

25

All. ISS Utility Programs provide displayed messages called "prompts”
that require (1) information to be entered, or (2) a manual operation to be
performed. Each utility consists of a series of prompts which appear in a
given order. The step-by-step instructions which follow for each utility
correspond to the prompt-by-prompt display sequence associated with each
utility. All ISS Utilities are selected from the ISS Utilities menu by
touching the corresponding Special Function (S.F.) Key, after which the
selected utility is automatically loaded into memory.

Note that if an ISS utility is chosen from the ISS Utilities menu and

the ISS start-up printer address is 000, when attempting to load that program

the following may appear:

PRINTER REQUIRED FOR THIS PROGRAM
KEY RETURN(EXEC) TO RESUME

To remedy this situation, touch the RETURN key and then touch S.F. Key
'31 repeatedly as needed to obtain the "ENTER DESIRED FUNCTION" prompt.
Change the start-up PRINTER ADDRESS to a valid printer device address if a
printer is available (ON and SELECTed). Obtain the ISS Utilities menu and
reload the desired program.

A similar message may appear if a printer is not SELECTed. A printer is
required for all ISS utility programs.

Because of the consistency of ISS utility program operation, the
following general rules apply:

a. For numeric-only entry fields, leading zeros are not required.

b. Disk addresses (i.e., xyz form) are flexible according to how the
equipment is configured when installed. Therefore, it 1is
recommended that labels showing disk addresses be placed on each
disk drive housing soon after installation. Valid disk addresses
are determined during the ISS start-up operation and include the ISS
loading address.

¢. Unless indicated otherwise, if an invalid entry is keyed, the
erroneous field is erased, the cursor is repositioned and REENTER
appears below the entry field. With disk addresses, this occurs (1)
if the entered address is not a valid ISS address, (2) if the
address was already entered (input and cutput addresses may not be
the same), or (3) the default value used by the program is now
invalid, in which case the prompt with RE-ENTER will appear when the
program is first loaded. When an entry is made outside its limits,
valid limits are also displayed. With file name entry, REENTER may
indicate that the input file cannot be accessed due to access mode
conflicts if a multistation file is accessed.

26

In the prompt-by-prompt instructions which follow, there are two
cases where the prompts indicated may not appear. With default
values, the prompt which requests whether these values should be
saved appears in all cases except, of course, when the previous
default values were not changed. REMOUNT ISS PLATTER appears only
if the program file (module) required is not on the platter at the
ISS loading address.

A printer is recommended for multiple-file processing and unattended
operation to record error messages. Several programs will load only
if the ISS Printer Address is not blank (000) including Disk Dump,
List/Cross-Reference, and Program Compare. Execution error messages
are discussed under each ISS Utility Program following the Operating
Instructions.

For printed 1listings produced by ISS Utility Programs, the page
number and ISS start-up date appear in expanded print at the top of
each page. The file name, if applicable, also appears at the top of
each printed page.

With multistation files, ISS utility programs assume that the file
will not be scratched between the time the file name is entered
until processing has been completed. This includes Copy/Verify and
all utility programs in the Programming Functions category; all of
which use the Shared file access mode once file processing has
begun. The Create Reference File Utility uses Exclusive access.
With the Disk Dump Utility, when entering a file name currently
being accessed by another station, RE-ENTER will appear if a
confliet occurs.

Files to be processed by a selected utility program may be specified
as follows:

1) ALL indicates that all files on the selected input disk will be
processed.

2) PART indicates that selected files, but not all files, will be
processed. File names are specified during operation of the
given ISS utility program, and are subject to on-line checking
by the program to ensure, for example, that the input file name
Just entered is actually on the input disk. Other checks are
also performed as explained in each utility program's operating
instructions.

3) INDIRECT indicates that selected files will be processed, and
that the file names are specified in a reference file created
previously by the Create Reference File Utility. INDIRECT is
similar to PART in that selected files are processed. INDIRECT
specification eliminates the need for on-line file name entry
during operation (not available with all utilities).

27

4) RANGE indicates that input file names that fall within specified

’ alphabetic limits (upper-lower 1imits) will be processed. This
technique of file name specification allows file names, encoded
within certain alphabetic file name 1limits upon their creation,
to be processed without the need to enter the individual file
names (not available with all utilities).

i. Should an error occur which interrupts processing, the following
operator actions are advised:

1) If a prompt appears or reappears, refer to the appropriate
Operating Instructions and (1) reenter the requested information
and continue or (2) refer to the next paragraph.

2) To abort the current operation, or if a hardware-related (ERR
inn form) error or one of the error messages shown in Table 5-2
occurs, unless the Operating Instructions for that utility
specify otherwise, touch Special Function Key 31. Touch Special
Function Key 31 again if the ISS Utilities menu does not appear.

j. For multistation files, a password is assigned to that file upon
creation. If the file does not require password protection, a
password of blanks should be assigned to that file. Otherwise, a
password other than blanks may be assigned.

k. During the processing of a utility, after all parameters have been
entered, an execution error message may be printed to the ISS
printer address. These execution error messages are listed and
explained after the Operating Instructions for each utility, if any
such execution error messages exist for that utility program.

In providing step-by-step operating instructions in this section, the
following conventions have been adhered to. The verb "enter", used in the
INSTRUCTIONS column, as in the sentence "Enter 1 to 1list only the active

items", means that the key specified (1) should be touched followed by the
standard terminator key RETURN.

Note that all references to the (EXEC) key indicate the RETURN key.

In contrast to "enter'" the verb "key", used in the INSTRUCTIONS column,
as in the sentence "Key H to interrupt execution at the end of the current
file", means that only the keys specified are to be depressed. If any

terminator is required when the verb '"key" is used, the terminator 1is
explicit.

The verb "mount", as in the sentence "mount output disk at the specified
address", refers to the group of actions required to fully ready the device
for its impending function in the system. In general, it is presumed that the
operator is familiar with the operation of the hardware components of the
system and has access to the manuals which describe them.

28

The amount of file space cataloged for a file and the file space "used"
by a file are established by two control records, each of which occupies a
whole sector. The data END record is the sector whose position marks the
end-of-live-data in a file and establishes the USED sectors value for a file,
and is written by a DATASAVE DC END statement or subroutine equivalent. The
catalog trailer (file end) record is the last sector of the file, whose
position 1is established by the DATASAVE DC OPEN statement or subroutine
equivalent based on the sectors allocated for this file.

Table 5-2. Open Return Code Error Messages

MESSAGE CAUSE
ERROR RETURN CODE Access mode conflict
FROM OPEN = A with other stations

prevents the requested

file from being opened
at this time by this

station.
ERROR RETURN CODE Requested file was not
FROM OPEN = D found at the entered

address, attempted to
open a file already

open to this station, or
other file disposition
conflict. This error
could be caused by
using station numbers
which are not unique
(see Section 3.1).

29

RECOVERY

If "KEY RETURN(EXEC) TO
RESUME" accompanies this
error message, touch the
RETURN key; otherwise, touch
S.F. Key '31 to obtain the
ISS Utilities menu. Retry,
or wait and retry. If this
error message persists, use
the File Status Report
Utility to determine if the
file was left open
accidentally by another
station and close the file
if it was left open
accidentally.

If "KEY RETURN(EXEC) TO
RESUME" accompanies this
error message, touch the
RETURN key; otherwise, touch
S.F. Key '31 to obtain the
ISS Utilities menu. Retry
taking care to correctly
enter the file name and
platter address. If this
error persists, use LIST DC
command to determine if the
file exists. If the file
does not exist, mount the
correct platter or recreate
the file. If it exists,

use File Status Report to
determine if this station
left the file open
accidentally and correct the
file disposition conflict.

Table 5-2. Open Return Code Error Messages (Cont'd)

ERROR RETURN CODE Password conflict for If "KEY RETURN(EXEC) TO
FROM OPEN = P a file requested during RESUME" accompanies the
this operation. error message, touch the

_ RETURN key; otherwise, touch
S.F. Key '31 to obtain the
ISS Utilities menu. Retry
the attempted operation.

ERROR RETURN CODE Insufficient disk space If "KEY RETURN(EXEC) TO

FROM OPEN = S on the specified platter RESUME" accompanies the error
to catalog the file to message, touch the RETURN
be created. key; otherwise, touch S.F.

Key '31 to obtain the

ISS Utilities menu. Retry
using a different platter,
or retry after making more
disk space available on a

copy of the same platter.

30

CHAPTER 6
THE COPY/VERIFY UTILITY PROGRAM

6.1 INTRODUCTION

The COPY/VERIFY utility program copies files from one disk platter to
another, and verifies the copy. Files are copied up to and including the data
END record. Unused sectors are not copied, and additional (reserve) sectors
may be added to the output files. Copied files, as specified by the output
mode, may be added to the output disk, or they may replace existing files on
the output disk. Selected files, all files within alphabetic limits, or all
files may be processed, as specified by the input mode. Selected files may be
specified directly, during the parameter entry phase, or indirectly, by means
of a reference file. If files are specified directly, up to 50 files may be
processed. If files are specified indirectly, in a (CREATE REFERENCE FILE)
reference file, 999 files may be processed. The copy and verify operations
may be executed independently, or sequentially under program control.

With selected file direct copy, input files to be copied/verified are
identified by entering input file names. As each file name is entered, the
input disk's catalog index is checked to ensure that each input file is indeed
an active cataloged file. The same input file name may be entered, thus the
same file may be copied as several output files. Entry of an output file name
is rejected only if an identical output file name was already entered. Most
file name entry errors are thus corrected before processing begins. Extra
(reserve) sectors may be individually assigned to each output file with direct
copy only.

Output files may replace existing (active or scratched) files, or they

may be new files added to the output disk's catalog, or both, during one
operation.

Copying is accomplished by read/write operations rather than COPY or

MOVE statements. Input files must be cataloged. The "USED" portion of the
file is copied, except if used = 1, in which case the entire file is copied.

31

6.2

NOTE:

To copy KFAM-5 files, see Section 18.5 prior to
attempting copy.

NOTE:

With multistation disk files, caution should be observed
when using Copy/Verify, because it does not check whether
another user is accessing that file. For example, while
one station is printing a file, another station using
Copy/Verify may use that file as an output file in the
REPLACE output mode. Also, while a file 1is being
Copy/Verified, it could be accidentally scratched by

another user.

OPERATING INSTRUCTIONS:

COPY/VERIFY

DISPLAY

32

INSTRUCTIONS

From the ISS Utilities menu
load COPY/VERIFY by touching

the indicated Special Function
Key.

NOTE:

If the default INPUT ADDRESS
or OUTPUT ADDRESS is not a
valid ISS disk address, the
prompts shown respectively in
step 4 or step 7 will appear
instead of the prompt in step
2; also, REENTER appears
below the prompt. After
completing step U4, step 7, or
both, go to step 2. Also, all
references to the (EXEC) key

indicate the RETURN key in the
following instructions.

ENTER THE NUMBER OF THE DESIRED 2.
FUNCTION

2/

(Functions 1-8 appear with
default values for 1-6)

ENTER THE NUMBER OF THE 3.
FUNCTION DESIRED?
?/

1 - COPY
2 - VERIFY
3 - COPY AND VERIFY

ENTER THE INPUT ADDRESS 4,
y S

ADDRESSES AVAILABLE = XYY

ENTER THE NUMBER OF THE 5.
DESIRED INPUT MODE
?_/

INPUT MODES AVAILABLE

1-ALL 3-RANGE
2-PART 4-INDIRECT

33

To change a parameter, enter
its respective number and go
to the step listed below.
To exchange the input and
output addresses, enter 7.

TO CHANGE ENTER GO TO
STEP
FUNCTION 1 3
INPUT ADDRESS 2 4
INPUT MODE 3 5
EXTRA SECTORS i 6
OUTPUT ADDRESS 5 7
OUTPUT MODE 6 8

Enter 8 when all parameters
are correct. Go to step 9.

If copy only is necessary,
enter 1.

If verify only is required,
enter 2.

If copy and verify are
desired, enter 3.

Go to step 2.

Enter the device address at
which the input disk will be
mounted. Valid ISS disk
addresses are displayed.

Go to step 2.

Input mode defines what
input files will be copied.
Enter 1 to copy all files on
the input disk to the ocutput
disk.

Enter 2 to copy some but not
all files on the input disk.
Enter 3 to copy input files
whose names fall within the
alphabetical limits.

Enter 4 to copy all files
whose names are listed in a
reference file on the input
disk.

Go to step 2.

6.

7.

ENTER THE NUMBER OF EXTRA
SECTORS/FILE (-1 = LEAVE AS IS)

ENTER THE OUTPUT ADDRESS

ADDRESSES AVAILABLE = XYY

34

Enter the number of sectors,
in addition to those listed

as USED in the Catalog

Index, to be included in each
copied output file. The
entered value of extra sectors
applies to all output files,
with the following exception:
With INPUT MODE = PART

(step 5), any value entered
other than -1 becomes the
default value in step 13

and allows each output file to
individually be assigned extra
sector values.

For all INPUT MODES, the
following applies: If -1 is
entered, all sectors listed
as USED are copied, and the
size of each ocutput file is
identical to its input file
counterpart (UNCHANGED is
displayed). Otherwise, any
entry up to 65,535 is valid.
Sectors beyond the data END
record are not copied. If the
(Catalog Index) value of USED
SECTORS equals 1, this
indicates no catalog trailer
record, in which all sectors
are copied automatically. If
VERIFY only was chosen in step
3, this parameter is
irrelevant. Go to step 2.

Enter the device address at
which the cutput disk will
be mounted. Valid ISS disk
addresses are displayed.

Go to step 2.

10.

ENTER THE NUMBER OF THE 8.
DESIRED OUTPUT MODE
?-/

OUTPUT MODES AVAILABLE
1-ADD

2-REPLACE
3-ADD/REPLACE

DO YOU WISH TO SAVE THESE 9.
VALUES AS DEFAULTS -

(Y/N)

T=

MOUNT INPUT PLATTER 10.

KEY RETURN(EXEC) TO RESUME?

35

Enter 1 to choose the ADD
mode, where all output files
copied have unique file names
and are allocated unoccupied
disk space. Enter 2 to
REPLACE files on the

output disk, whose file names
will be entered in step 12,
with active files copied

from the input disk.

Enter 3 to ADD cutput files
whose names are unique to the
output disk, and also REPLACE
files on the output disk with
active files with identical
output file names.

Go to step 2.

To save the currently
displayed parameters as the
default values for the
COPY/VERIFY utility, enter
Y. Otherwise, enter N. If
INPUT MODE is ALL, (entered
in step 5) go to step 18.

If input mode is RANGE,

go to step 14. Otherwise go
to the next step.

Mount the input disk at

the device address displayed.
(The ISS disk may be

removed if necessary.)

When ready, key (EXEC).

If the INPUT MODE parameter
is:

PART, go to step 11.
INDIRECT, go to step 15,

1.

12.

ENTER THE NAME OF FILE #N
(0=END)

INPUT FILE = FILENAME
ENTER THE NAME OF THE OUTPUT
FILE (EXEC = SAME AS INPUT)

36

1.

12.

Enter the file name of the
Nth input-file to be
copied/verified. After
entering all input and cutput
file names, enter 0 (zero)
and go to step 17.

As each file name is entered,

v COPY/VERIFY checks to ensure

the file name is cataloged

as an active file on the input
disk. If not, the file name
entered and NOT ACTIVE FILE
appear. Reenter a valid

file name.

If the file name was
previously entered, the file
name entered and IS A DUPLICATE
INPUT FILE NAME appear with
KEY RETURN(EXEC) TO RESUME?
To reenter a different

input file name, key (EXEC).
Go to step 11. To use the
file name just entered (i.e.,
copy one file several times),
key X and (EXEC). Go to
step 12.

For the specified input file,
enter its corresponding
output file name. With the
ADD ocutput mode, this is a
unique file name on the
output disk. With REPLACE
output mode, this file name
is identical to an existing
file's name on the output
disk., If EXTRA SECTORS = -1,
go to step 11, Otherwise, go
to the next step.

If the ocutput file name
entered is identical to an
output file name previously
entered, the file name entered
and IS A DUPLICATE FILE NAME
appear. Reenter a valid

file name.

-

13.

14.

15.

16.

170

ENTER THE NUMBER OF FREE 13.
SECTORS FOR THIS FILE. (DEFAULT

=N)

-/

ENTER LOWER LIMIT OF FILE NAMES 14,

ENTER UPPER LIMIT OF FILE NAMES 15.

ENTER THE NAME OF THE 16.
REFERENCE FILE

?2—=

REMOUNT ISS PLATTER 17.

KEY RETURN(EXEC) TO RESUME?

37

Enter the number of sectors,
in addition to those listed
as USED in the Catalog Index,
to be included in this output
file. The default value
displayed (N) is the reply
entered to step 6. Up to

999 may be entered. Go to
step 11; the input and ocutput
file names Just entered are
displayed above the step 11
prompt.

Enter the lower alphabetical
limit of the file names to be
copied/verified. The lower
limit and upper limit entries
need not be file names, but
the lower limit must be
alphabetically less than the
upper limit, else INVALID
RANGE and REENTER appears

(in step 15). File names
entered as limits are
ineluded in copy/verify.

Enter the upper alphabetical
limit of the file names to
be copied/verified. Go to
step 17.

Enter the name of the
COPY/VERIFY reference

file to be used to specify
the files to be copied/
verified. (INDIRECT

input mode).

NOTE:

The reference file must
presently reside on the
input disk. If not, ERROR
RETURN CODE FROM 'OPEN'=D,
KEY RETURN(EXEC) TO RESUME?
appears. Key (EXEC) and
reenter the reference file
name.

If removed, this prompt appears
requesting that the ISS disk

be mounted at the ISS loading
address. When ready, key
(EXEC).

18. MOUNT PLATTERS AT THE INDICATED 18. Mount the input and output
ADDRESSES. KEY RETURN(EXEC) disks at the displayed
TO RESUME? addresses. (The ISS disk
: may be removed.) When both
disks are ready, key (EXEC).

19. VERIFYING 19. The processing display
COPYING FILE NUMBER XXX indicates the file currently
INPUT FILE NAME = FILENAME being copied/verified. With

the RANGE input mode,

SCANNING INDEX FOR FILE NAME
first appears. After all files
have been copied/verified,

the Utilities menu will appear
unless the ISS disk was removed
in step 18. 1If removed, MOUNT
ISS PLATTER, KEY RETURN(EXEC)
TO RESUME appears. Mount the
ISS disk at the ISS loading
address. When ready, key
(EXEC) to obtain the

Utilities menu.

6.3 EXECUTION ERROR MESSAGES

During the actual execution of the Copy/Verify Utility, error
conditions, if encountered, are printed. The next file operation begins
without interruption.

MESSAGE DESCRIPTION
FILE - filename - This message indicates that
CANNOT BE COPIED. the filename shown cannot be
copied for one of the following
reasons:
1. The file name already exists

on the output disk, if ADD
output mode.

2. The file name does not exist
on the output disk, if REPLACE

output mode.

3. There is insufficient disk
space in the output file or on
the output disk to copy the
input file with requested

extra sectors.

38

FILE - filename - DOES NOT
VERIFY

39

This message indicates that
the filename shown does not
verify. The KFAM-7 file
KFAMWORK, a work file, will
not verify properly.
Otherwise, the operation
should be reattempted for any
other file name.

CHAPTER 7
THE CREATE REFERENCE FILE UTILITY PROGRAM

7.1 INTRODUCTION

The CREATE REFERENCE FILE creates, modifies, or lists a reference file.
Once created, a reference file is used by either the COPY/VERIFY or PROGRAM
COMPARE utility program to indirectly specify what disk file will be used in
their respective operations. The sequence the file names are entered in
during CREATE REFERENCE FILE operation determines their (later) sequence of
use by the COPY/VERIFY or PROGRAM COMPARE utility programs. For each copy/
verify operation, or each program compare operation, a pair of file names are
required. Up to 999 pairs of file names may be processed.

For COPY/VERIFY operations, the name of the file to be copied from the
input disk and the file name given to the copied file on the output disk are
required for each file to be copied/verified. These file names are hereafter
referred to as "input file name" and "output file name." One input file name
may be entered more than once, thus the same input file may be copied as
several output files. A uniform number of extra (free) sectors may be
reserved for each file copied indirectly, if specified during COPY/VERIFY. The
reference file must reside on the input disk, which is required during CREATE
REFERENCE FILE operation to ensure valid input file name entry.

For PROGRAM COMPARE operations, the name of the program file resident on
the first input disk and the name of the program file on the second input disk
determine the two program files that are compared. These file names are
hereafter referred to as "first file name" and "second file name." One "first
file name" may be entered more than once, thus the same program may be
compared to more than one program. However, to compare a program to more than
one program, it must, of course, reside on the first input disk. Also, the

reference file must reside on the first input disk. The first input disk is
required during CREATE REFERENCE FILE operation to insure valid first file
name entry.

The "create" function creates a new reference file and catalogs it, or
reuses a previously-cataloged scratched program or data file. The operator
enters the number of file names to be placed in the reference file, and the
utility automatically calculates the required file size.

40

”

]

The ™modify" function allows modification of an existing reference
file's contents by changing, adding, or deleting file name references. It is
recommended that the operator have a printed listing of the reference file to
be modified.

The "list"™ function prints a 1list of all pairs of file names in the
specified reference file. Output is to the address specified as the ISS
printer address.

A reference file can accommodate 999 file references.

7.2 OPERATING INSTRUCTIONS: CREATE REFERENCE FILE

DISPLAY INSTRUCTIONS

1. 1. From the ISS Utilities menu,
load CREATE REFERENCE FILE
by touching the indicated
Special Function Key.

2. ENTER THE DESIRED OPTION 2. Enter 0 (zero) to create a
2=/ new reference file. Enter
1 to modify an existing
OPTIONS AVAILABLE reference file. Enter 2
0 -~ CREATE to list the contents of
1 - MODIFY an existing reference file.
2 - LIST (PRINTER REQUIRED)
3. ENTER THE INPUT ADDRESS. 3. Enter the device address of
Pome/ the input disk, which
contains the files to be
ADDRESSES AVAILABLE = XYY copied for COPY/VERIFY, or

is the first input disk for
PROGRAM COMPARE.

y, ENTER THE NAME OF THE REFERENCE y, If the selected OPTION is
FILE MODIFY or LIST, enter the file
S, name of the reference file to

be modified or listed. For

the CREATE option, enter a
unique file name for the new
reference file to be created.
Go to step 10, unless the
OPTION is CREATE, in which case
go to the next step.

41

5.

ENTER THE NUMBER OF FILE NAMES 5.
TO BE ENTERED.

2=/

MOUNT INPUT DISK 6.

KEY RETURN(EXEC) TO RESUME.

WILL ALL OUTPUT NAMES BE THE SAME 7.
AS THE INPUT NAMES. (Y/N)
?2-

42

NOTE:

If the selected OPTION is
CREATE and the entered file
name is the name of an
existing scratched file, that
file's space will be occupied
by the new (active) reference
file.

Enter the number of pairs

of file names to be in the
reference file, from 1 to
999. This value can be
approximate but must

not be less than the actual
number needed. You may enter
a value that allows for
future expansion. This entry
determines FILE SIZE of the
reference file, which is

‘always in multiples of 14.

NOTE:

The reference file saves 14
file references per sector.
Since actual file length
varies in one sector
increments, the actual file
size may be as much as 13
file references larger than
that requested.

Mount the input disk at
the device address entered

in step 3. Go to step 7.

An error message in form of
"ERROR RETURN CODE FROM OPEN"
and either "=S" or "=D"
indicates an error opening the
reference file. See Table 5-2.

If you do not wish to change
the names of any of the copied
files, enter Y. Otherwise,
enter N.

-
=

(]

8.

10.

ENTER INPUT FILE NAME. 8.
(0 -= END)
Pommcm———
INPUT FILE NAME = FILENAME 9.

ENTER OUTPUT FILE NAME
(EXEC = SAME AS INPUT)

MOUNT INPUT DISK 10.
KEY RETURN(EXEC) TO RESUME?

43

Enter the name of the file to
be copied.

If "Y" was answered at step 7,
repeat this step; otherwise go
to step 9.

When the names of all the files
to be copied have been included
in the reference file, enter
zero to end entry and go to
step 15.

If the input file name entered
is not cataloged, or active,
the file name entered and NOT
AN ACTIVE FILE appear.

Reenter a valid file name.

If the input file name entered
is identical to one previously
entered, DUPLICATE INPUT FILE
NAME, and KEY RETURN(EXEC) to
RESUME appear. To accept the
duplicate input file name, key
X (EXEC). To reenter the
input file name key (EXEC).

Enter the name to be given to
the copied file, or key (EXEC)
to use the input name as the
output name. Go to step 8.

If the output file name entered
is identical to one previously

entered, the file name entered

and IS A DUPLICATE FILE

appear. Key (EXEC) and enter a
different output file name.

Mount the disk containing the
reference file to be modified.
If OPTION = LIST, go to step
16; otherwise go on to

the next step.

If the message "FILE NOT ON
DISK" appears, an active file
with the entered name does not
exist on the mounted disk.
Either mount the correct disk,
or key Special Function Key 31
to return to the ISS utilities
menu.

11. ENTER THE FILE NUMBER TO BE

MODIFIED (0 = END)
I

12. ENTER THE NUMBER OF THE DESIRED

OPTION
2=/

OPTIONS AVAILABLE

0 - NO CHANGE
1 - MODIFY
2 - DELETE

13. ENTER THE INPUT FILE NAME

1.

12.

13.

Iy

If "ERROR RETURN FROM OPEN='D!
KEY RETURN (EXEC) TO RESUME?"
appears, this indicates a file
disposition conflict, such as
file not found, was
encountered. Either (1) mount
the correct disk and the key
(EXEC) to retry, or (2) to
return to the ISS menu, enter
X, (EXEC).

Enter the number of the
reference file entry that is to
be modified. Go to the next
step.

If the reference file is now
correct, enter zero and go to

step 15.

The reference file entry is
displayed. For the displayed
entry choose from the available
options.

Enter 0 to accept the displayed
reference file entry. Go to
step 11, .

Enter 1 to modify the displayed
reference file entry. Go to
step 13.

Enter 2 to delete the displayed
reference file entry. Go to

step 11.

Enter the name of the file to
be copied.

If the input file name entered
is not cataloged, or active,
the file name entered and NOT
AN ACTIVE FILE appear.

Reenter a valid file name.

If the input file name entered
is identical to one previously
entered, DUPLICATE INPUT FILE
NAME and KEY RETURN(EXEC) TO
RESUME appear. To accept the
duplicate input file name,

key X (EXEC). To reenter the
input file name, key (EXEC).

‘s

14. INPUT FILE NAME = FILE NAME 14, Enter the name to be given to

ENTER OUTPUT FILE NAME. the copied file, or key (EXEC)
(EXEC = SAME AS INPUT) to use the input name as the
Tommae—aa ‘ cutput name.

Go to Step 11.

If the output file name entered
is identical to. one previously
entered, the file name entered
and IS A DUPLICATE FILE appear.
Key (EXEC) and enter a
different ocutput file name.

15. DO YOU WANT TO PRINT THE 15. To obtain a listing of the
REFERENCE FILE? (Y/N) reference file, enter Y and
7= go to the next step. The

listing is output to the ISS
printer address. Otherwise,
enter N and go to step 17.

16. PRINTING REFERENCE FILE 16. Temporary display. If the
file is not being printed,
then the printer is not ready.
Ready the printer. 8 1/2" by
11" paper is required.

17. REMOUNT ISS PLATTER IF REMOVED 17. If the ISS disk was removed,

remount it at the ISS loading
address.

7.3 EXECUTION ERROR MESSAGES

Create Reference File error messages are discussed under the program
which later uses the Created Reference File. Other error messages are

giscusseg above in the Operating Instructions. (See Copy/Verify or Program
ompare.

45

CHAPTER 8
SORT DISK CATALOG UTILITY PROGRAM

8.1 INTRODUCTION

The SORT DISK CATALOG utility program prints a sorted 1list of the
contents of a disk catalog index. The list may be sorted by file entry
sequence in the index (index sector sequence), alphabetically by file name, or
numerically by starting sector address; it may be ocutput to the display or to
the printer. Active files, scratched files, or both, may be included in the
1ist. The size of the sort array limits a single 1list to 340 files. To
process more than 340 files, refer to Section 8.3. During processing, if the
array is filled before exhausting the selected index items, a partial 1list is
produced.

The printed attput report resembles the LIST DC statement.
Operationally, the option to 1list (1) only active files, (2) only scratched
files, and (3) both active and scratched files is provided, and the printed
report reflects this choice. The printout includes, for the chosen disk, the
number of data and program files in each of the file categories: active,
scratched, and total. In addition, the number of sectors USED by files, the
number of FREE sectors within files, and the number of sectors allocated to
files, for the chosen file category (active, scratched, or both) are printed.

46

‘¢

8.2

OPERATING INSTRUCTIONS:
DISPLAY

ENTER THE NUMBER OF THE DESIRED
FUNCTION
-/

(Functions 1-5 appear with
default values for 1-4)

47

2.

SORT DISK CATALOG

INSTRUCTIONS

From the ISS Utilities menu,
load the SORT DISK CATALOG
utility by touching the
specified Special Function Key.

NOTE:

If the default INPUT ADDRESS
is not a valid ISS disk
address, the prompt shown

in step 5 first appears
instead of the prompt shown
in step 2, and REENTER
appears below the prompt.
After completing step 5,

go to step 2.

To change one parameter,
enter its respective number,
and go to the step listed
below.

GO TO
TO CHANGE ENTER STEP
SORT OPTION 1 3
FILE TYPE 2 y
INPUT ADDRESS 3 5
OUTPUT DEVICE y 6

Enter 5 when all parameters
are correct. Go to step 7.

3.

5.

ENTER THE SORTING OPTION.
2=~/

OPTIONS AVAILABLE
1 - SORT BY NAME

2 - SORT BY STARTING SECTOR
3 - SORT BY INDEX SEQUENCE

ENTER TYPE OF FILE TO LIST.
?-/

FILE TYPE

0 - ALL

1 - ACTIVE

2 - SCRATCHED

ENTER THE INPUT ADDRESS
-y

AVATLABLE ADDRESSES = XYY

ENTER THE OUTPUT DEVICE.
(0-CRT, 1-PRINTER)
?-/

DO YOU WISH TO SAVE THESE
VALUES AS DEFAULTS. (Y/N)
?-

ENTER TITLE FOR LIST
?

48

To sort the catalog index into
ascending order of the file
names, enter 1.

To sort the (catalog) index
into ascending order of each
file's starting sector
addresses, enter 2. To sort
the index into ascending order
based on index sector sequence
(same as LIST DC statement),
enter 3. Go to step 2 unless
CHANGE ALL parameters was
chosen.

Enter 0 (zero) to include all
cataloged files in the ocutput
list. Enter 1 to include only
active files in the output
list. Enter 2 to include only
scratched files in the output
report.

Go to step 2 unless CHANGE

ALL parameters was chosen.

Enter the device address at
which the input disk will be
mounted. Valid ISS disk
addresses are displayed.

Go to step 2 unless CHANGE ALL

parameters was chosen.

Enter 0 (zero) to view the
sorted index on the CRT screen.
Enter 1 to 1list the sorted
index on a printer.

To save the currently
displayed parameters as the
default values for the SORT
DISK CATALOG utility, enter
Y. Otherwise, enter N.

Enter a title for the sorted
index. The title entered
will appear on each cutput
page if a printer is used.

10.

11.

12.

13.

8.3

MOUNT DISK TO BE LISTED - 9.
UNIT XYY
KEY RETURN(EXEC) TO RESUME?

SCANNING DISK INDEX ’ 10.
11.

KEY THE NUMBER OF THE 12.

DESIRED OPTION.

2=/

OPTIONS AVAILABLE

1 - REPRINT LIST ON CRT

2 - REPRINT LIST ON PRINTER
3 - RETURN TO MENU

REMOUNT ISS PLATTER 13.
KEY RETURN(EXEC) TO RESUME?

SORT DISK CATALOG MODIFICATIONS

A programmer may increase the maximum number of files (from 340) that

Mount the input disk to be
listed at the displayed XYY
address. When ready, key
(EXEC).

Temporary display appears
while index is being
scanned and sorted.

The sorted catalog index is
displayed or printed. If
displayed on the CRT screen,
about eight files appear at a
time; key (EXEC) to view the
next eight files. After all
files have been displayed,
key (EXEC) to continue. A
summary of disk use appears.
Key (EXEC) again.

To view the same sorted index
on the screen, key 1 (EXEC).
To 1list the same sorted index
on a printer, key 2 (EXEC).
To bring the Utilities Menu
to the screen, key 3 (EXEC).

If removed, this prompt
appears requesting that the
ISS disk be mounted at the

ISS loading address. When
ready, key (EXEC). The
Utilities menu will appear.

can be sorted per operation by the SORT DISK CATALOG utility.

To change the maximum number of files which can be sorted, the following

procedures are required.

1. Enter: SELECT DISK xyy (xyy indicates the ISS loading address.)

CLEAR
LOAD DC T "ISSA030B"

2. On line 70, change the two array element subseripts in the dimension
statements in the following arrays to the subsceripts CO and C2

below: N$(), L$(), L1$().

49

3. On 1line 130, set the values of scalar variables CO and R to the
subscripts listed below.

For example, with a 16K partition, edit line 70 so that the array
element subscripts for N$(), L$(), and L1$() are N$(2,218)12,
L$(2,218)2, L1$(2,218)2, and edit line 130 to CO=2:C2=218.

4, Enter: SCRATCH T "ISSA030B"
SAVE DC T () "ISSAO30B"

Memory co c2 Number of Files
16K 2 218 436
32K 6 224 1464
48K 10 248 2480
6UK 14 250 3500

50

fe

CHAPTER 9
DISK DUMP UTILITY PROGRAM

9.1 INTRODUCTION

The DISK DUMP utility program prints the contents of an entire disk
file, or part of a file as defined by physical record number (relative sector)
limits. Three kinds of listings can be obtained: Vertical Dump, Horizontal
Dump, and Data File Structure Dump.

The Vertical and Horizontal Dumps print the hexadecimal and alphanumeric
character equivalents of the file's contents. They differ only in output
format. In the Horizontal Dump, the alphanumeric values are given on the same
line as the hexadecimal values. In the Vertical Dump, the alphanumeric
characters are on one line, with the hexadecimal values given on the two lines
immediately below them. Hexadecimal (hex) values below 20 cause "." to be
printed in place of an alphanumeric character; hex values above FE print "@".

The third kind of dump is the Data File Structure Dump, which is
applicable only to data files not written in BA mode. It prints the contents
of a data file, field by field, giving the type of field (numeric or
alphanumeric), the length, and the value represented relative to the type of
field.

The Vertical Dump requires 8 1/2 by 11 inch printer paper; the other
dumps require 11 by 14 inch paper. The ISS date, page number, and file name
appear at the top of each printed page. Sector locations and byte numbers are
indicated for each record.

9.2 OPERATING INSTRUCTIONS: DISK DUMP

DISPLAY INSTRUCTIONS

1. 1. From the ISS Utilities menu,
load the DISK DUMP utility
by touching the specified
Special Function Key.

51

gNTER THE DISK ADDRESS. 2.

ADDRESSES AVAILABLE = XYY

MOUNT INPUT PLATTER 3.
KEY RETURN(EXEC) TO RESUME?

ENTER THE NAME OF THE FILE i,
TO BE DUMPED.

52

Enter the device address
where the input disk will

be mounted. If REENTER
appears before any entry

is made, the default value
is not an ISS disk address
and must be corrected. '
Valid ISS disk addresses are
displayed.

Mount the disk containing
the file to be dumped at the
disk address entered in

step 2. When ready, key
(EXEC).

Enter the name of the

disk file whose contents

will be dumped. If the file
name entered could not be
located in that disk's catalog
index, ERROR - FILENAME - FILE
IS NOT AN ACTIVE FILE appears.
Reenter the file name
correctly.

NOTE:

If a multistation file with
Password protection is being
dumped, a prompt requesting
Password entry will appear
after step 4. If so, enter
this file's Password exactly
as previously assigned.
"ERROR RETURN CODE = P"
appears if it is incorrectly
entered. Reenter the
Password correctly (or key S.F.

Key 31).

s

‘-

5. PHYSICAL RECORDS WITHIN FILE TO
BE DUMPED. (FFFFF-LLLLL OR ALL)

6. ENTER TYPE OF DUMP, SEE
TABLE BELOW.

?-/

-- DUMPS AVAILABLE -~
1 - HORIZONTAL
2 - VERTICAL
3 - DATA FILE STRUCTURE

8. ENTER THE NUMBER OF THE
DESIRED OPTION.
?-/

== INTERRUPT OPTIONS =--
1. CONTINUE
2. MODIFY
3. RESTART PROGRAM
4. RETURN TO MENU

53

To dump the entire file,

enter ALL. To dump a portion
of the file, enter the
beginning and ending physical
record (relative sector)
numbers, relative to

00000; include a hyphen

between the two entries. To
dump physical records 102 to
105 for example, enter 101-10M4.
Record number limits are
included in the dump. Physical
record numbers are based on

DC or DA Load/Save access
commands. BA access files must
be dumped using DISK DUMP 3
ALL option; that is, physical
record numbers entered

for BA access files will cause
unpredictable results.

Enter 1 to choose a Horizontal
dump. Enter 2 to choose a
Vertical dump. For data files
only, enter 3 to choose a

Data File Structure dump.
(Displayed for data files
only.)

Only DC or DA Load/Save files
are valid; BA files must not
be used by a Data File
Structure dump.
The report is printed. Key H
to interrupt printing.

The step 8 prompt appears if
(1) printing terminates
normally, or (2) if a printer
problem or H key caused an
interrupt. Enter 1 to continue
interrupted printing; the step
8 prompt will reappear.

Enter 2 to dump a portion or
all of the same file; go to
step 5.

Enter 3 to restart DISK DUMP
and dump a file on the same or
different disk; go to step 2.
Enter 4 to obtain the Utilities
menu. Remount the ISS platter
and key (EXEC) if REMOUNT ISS
PLATTER KEY RETURN(EXEC) TO
RESUME is displayed.

CHAPTER 10
DECOMPRESS UTILITY PROGRAM

10.1 INTRODUCTION

The DECOMPRESS utility program breaks up all multistatement lines in a
program so that each statement appears on a numbered line by itself. As input
it accepts any cataloged program file, selected program files, all files on
the input disk, or all files within specified alphabetical limits. It outputs

the d)ecompressed version on the output disk as a cataloged program file (or
files).

Decompress breaks up multistatement lines by assigning to each BASIC
statement, after the first in a line, a line number one greater than that of
the previous statement in the line.

If there are not encugh line numbers available between two lines in the
input program, the utility decompresses until it runs out of line numbers. A
multistatement line is left at the highest numbered line in such a group.
When encountered, this condition is brought to the operator's attention.

In producing the output file, the utility creates a uniform system of
indentation:

a) All REM statements are indented one space from the line number.

b) All other statements, except those within a FOR...NEXT loop, are
indented 5 spaces.

c) Non-REM statements that are within a FOR...NEXT loop are indented 2
spaces in addition to any indentation they would have otherwise
received.

If selected files are processed, the maximum number of files is U40. Any
number of files may be processed under the ALL or RANGE option.

54

10.2 OPERATING INSTRUCTIONS: DECOMPRESS

DISPLAY

2. ENTER THE NUMBER OF THE 2.
DESIRED FUNCTION
2=/

(Functions 1-6 appear with
default values for 1-4)

3. ENTER THE DESIRED MODE 3.
(1-ALL, 2-PART or 3-RANGE)
2=/

55

INSTRUCTIONS

From the ISS Utilities menu,
load DECOMPRESS by

touching the indicated
Special Function Key.

NOTE:

If the default INPUT ADDRESS

or default OUTPUT ADDRESS is
not a valid ISS disk address,
the prompts shown respectively
in step 5 or step 6 will appear
instead of the prompt in step
2; also, REENTER appears below
the prompt. After completing
step 5, step 6, or both, go to
step 2.

To change a parameter, enter
its respective number and go
to the step listed below. To
exchange the input and ocutput
addresses, enter 5.

GO TO
TO CHANGE ENTER STEP
MODE 1 3
EXTRA SECTORS 2 y
INPUT ADDRESS 3 5
OUTPUT ADDRESS 4 6

Enter 6 when all parameters
are correct. Go to step 7.

Enter 1 to decompress all
files on the input disk.
Enter 2 to decompress files
on the input disk whose file
names will be entered later.
Enter 3 to decompress files
on the input disk whose file
names fall within alphabetic
limits specified later.

Go to step 2.

ENTER THE NUMBER OF EXTRA SECTORS

(MUST BE =2)
==/

ENTER THE INPUT ADDRESS
-

ADDRESSES AVAILABLE = XYY
ENTER THE OUTPUT ADDRESS
.

ADDRESSES AVAILABLE = XYY

DO YOU WISH TO SAVE THESE
VALUES AS DEFAULTS. (I/N)
7=

MOUNT INPUT PLATTER
KEY RETURN(EXEC) TO RESUME?

56

Enter the number of sectors
to be included in each file,
in addition to those required
to save the file. Must be
greater than or equal to 02,
up to 99.

Enter the device address at
which the input disk will be
mounted. Valid ISS disk
addresses are displayed. Go
to step 2.

Enter the device address at
which the output disk will be
mounted. Valid ISS addresses
are displayed. The ocutput disk
address mist not be the same

as the input disk address.

To save the currently
displayed parameters as the
default values for the
DECOMPRESS Utility, enter Y.
Otherwise, enter N.

If MODE is:

ALL go to step 12

PART go to step 8

RANGE go to step 10

Mount the input disk at the
displayed input address.
(The ISS disk may be removed
if necessary.) When ready,
key (EXEC).

10.

1.

12.

13.

ENTER THE NAME OF FILE #N. 9.
(0 = END)
S
ENTER LOWER LIMIT OF FILE NAMES 10.
S,

ENTER THE UPPER LIMIT OF FILE NAMES 11.

REMOUNT ISS PLATTER 12.
KEY RETURN(EXEC) TO RESUME?

MOUNT PLATTERS AT THE INDICATED 13.
ADDRESSES. KEY RETURN(EXEC)
TO RESUME?

57

Enter the name of the Nth
input file to be decompressed.
Repeat step 9 until all files
have been entered, then enter
0 (zero) to end entry and go
to step 12.

The file name entered and

NOT AN ACTIVE PROGRAM FILE
appears if the flle name
entered is not cataloged, not
active, or not a program file.
Reenter a valid program file
name.

The file name entered and

IS A DUPLICATE FILE NAME
appears if the flle name
entered is identical to a
file name previcusly entered.
Reenter a different file name.

Enter the lower alphabetic
limit of the file names to be
decompressed. The lower
limit and upper limit entries
need not be file names, but
the lower limit must be
alphabetically less than the
upper limit, else INVALID
RANGE and REENTER appears

(in step 11).

File names entered as limits
are included in decompression.

Enter the upper alphabetic
limit of the file names to be
decompressed.

If removed, this prompt
appears requesting that the
ISS disk be mounted at the
ISS loading address.

When ready, key (EXEC).

Mount the input and output
disks at the displayed
addresses. (The ISS disk
may be removed if necessary.)
When both disks are ready,
key (EXEC). :

14, DECOMPRESSING FILE NUMBER = NNN
FILE NAME = FILENAME

10.3 EXECUTION ERROR MESSAGES

This processing display shows
the file currently being
decompressed. After all files
have been decompressed, the
Utilities menu will appear
unless the ISS disk was removed
in step 13. If removed, "MOUNT
ISS PLATTER, KEY RETURN(EXEC)
TO RESUME?" appears. Remount
the ISS disk at the ISS loading
address. When ready, key
(EXEC). The Utilities menu
will appear.

During execution of the Decompress Utility, error conditions are
printed. The next file operation begins without interruption.

MESSAGE

FILE - FILENAME - CANNOT
BE DECOMPRESSED

DECOMPRESSION WAS INCOMPLETE
FOR FILE - FILENAME.

58

DESCRIPTION

This file, whose filename is
shown, cannot be Decompressed
because either (1) insufficient
disk space exists for the
decompressed output file,

or (2) the file cannot be
accessed because it is
protected.

This message results if there
were insufficient line numbers
between two lines in a program
to assign a unique line number
to each statement. (If
desired, the program can be
renumbered, saved, and
decompressed again to complete
the decompression.)

fe

CHAPTER: 11
LIST/CROSS-REFERENCE UTILITY PROGRAM

11.1 INTRODUCTION

The LIST/CROSS-REFERENCE utility program consists of two components
which may be executed independently or sequentially under program control.

The LIST component breaks up all the multistatement lines of a program,
printing each BASIC-2 statement on a separate line.

For example, the statement line

410Cc0M F$1,T$1,N$(64)8,F,F1,C,0:COM Wh$1,Q6$64,D$1,D$(2)3:COM L,
E,E1:DIM N$8,B$(16),L$1,H$2,W1$8:GOTO 660

is listed as:

410 coM F$1,T$1,N$(64)8,F,F1,C,0
:COM Wl$1,Q6$64,D$1,D$(2)3
:COM L,E,E1
:DIM N$8,B$(16),L$1,H$2,W1$8
:GOTO 660

The CROSS-REFERENCE component assembles and prints four cross-reference
tables: a line number cross-reference, a variable cross-reference, location
of marked subroutines, and a marked subroutines cross-reference.

In the line number cross-reference table, each line number referenced in
the program is printed, together with the numbers of the lines that contain
the references. The variable cross-reference lists each variable that appears
in the program and identifies the lines in which it appears.

Note that BASIC-2 Language statements and global variables applicable

only to the 2200MVP Central Processor, e.g., $OPEN, $RELEASE TERMINAL, SELECT
€PART, are not recognized as statements by LIST/CROSS-REFERENCE.

59

NOTE:

In the variable cross-reference there are certain BASIC-2
statement forms which cause a nonvariable to be referenced
as a variable; there are others which cause array
variables to be referenced as scalar variables. The
BASIC-2 statements in which a nonvariable can appear that
is referenced as a variable are ADD, ADD C, AND, XOR,
BOOL, INIT, $TRAN, $GIO, PLOT, DATASAVE BT, and DATALOAD
BT. Array variables in the matrix statements are

referenced as scalar variables, For a complete
specification of the conditions for these occurrences, see
Appendix C.

The location of all marked routines is the 1location of the DEFFN'
statements. The marked subroutine cross-reference table lists all the GOSUB!
references to DEFFN' marked subroutines.

The date, file name, and page number appear atop each page of ocutput.

During the program inspection stage of the CROSS-REFERENCE utility, an
internal table is built up as variables, subroutines, and line references are
encountered. Should this internal table be filled before the entire program
has been inspected, the utility prints the four cross-reference tables, clears
the internal table, and resumes program inspection from the point at which it
left off. The final result is two sets of partial cross-reference tables with
each set complete for the program section inspected.

Input programs for the LIST/CROSS-REFERENCE utility are assumed to be
free of syntax errors.

All the program files on the input disk or all program files within
alphabetic limits may be processed. Up to 40 selected files may be processed.

Available with the LIST option (not LIST/CROSS-REFERENCE), use of the
statement REM § must obey the following conventions:

1. To supply two blank lines following the REM % statement and then
print an expanded size title, the following format is necessary:

REM ¥ TITLE

ONE BLANK
BETWEEN § AND
FIRST CHARACTER
OF THE TITLE.

60

next page (forms
at the ¢top of

2. To advance the carriage return to the top of the
- feed), and then print the expanded size title
that page, the following format is necessary:

REM ${TITLE

f

NO BLANKS
BETWEEN {
(UPWARD ARROW)
AND FIRST
CHARACTER IN
THE TITLE.

In both cases, the first character of the title must be provided and be in the

positions indicated above.

11.2 OPERATING INSTRUCTIONS:

LIST/CROSS-REFERENCE

DISPLAY

INSTRUCTIONS

From the ISS Utilities menu,
load LIST/CROSS-REFERENCE by
touching the indicated
Special Function Key.

2. ENTER THE NUMBER OF THE 2. To change a parameter, enter
DESIRED FUNCTION. its selection number and go
7~/ to the step listed below.

(FUNCTIONS 1-7 ARE DISPLAYED GO TO

WITH DEFAULT VALUES FOR 1-6) TO CHANGE STEP
FUNCTION 3
INPUT ADDRESS 4
MODE 5
MARGIN 6
LINE LENGTH 7
LINES/PAGE 8
When all displayed parameters
are correct, enter 7 and go to
step 9.

3. ENTER THE NUMBER OF THE 3. If only a listing is required,

OPERATION DESIRED.
?-/

FUNCTIONS AVAILABLE
1 - LIST
2 - CROSS-REFERENCE
3 - LIST/CROSS-REFERENCE

61

enter 1. If only a cross-
reference is required, enter
2. If both a listing and a
cross-reference is required,
enter 3. Go to step 2.

10.

ENTER THE INPUT ADDRESS
y —

ADDRESSES AVAILABLE = XYY

ENTER THE DESIRED MODE
(1-ALL, 2-PART OR 3-RANGE)

ENTER THE NUMBER OF SPACES
FOR THE MARGIN. (1-10)
==/

ENTER THE LINE LENGTH,
INCLUDING MARGIN (70-128)
y oy

ENTER THE NUMBER OF LINES
PER PAGE. (10-55)
==/

DO YOU WISH TO SAVE THESE
VALUES AS DEFAULTS. (Y/N)
?-

MOUNT INPUT PLATTER
KEY RETURN(EXEC) TO RESUME?

62

10.

Enter the device address at
which the disk will be mounted.
Valid ISS disk addresses are
displayed. Go to step 2.

To list/cross-reference all
files on the disk, enter 1.

To list/cross-reference some
files on the disk whose names
will be entered, enter 2. To
list/cross-reference those
files whose names fall between
alphabetic limits specified
later, enter 3. Go to step 2.

Enter the number of spaces
indented from the left margin
from 01 to 10. Go to step 2.

Including the number of spaces
entered in reply to step 6,
enter the total line length
from 070 to 128. Go to step 2.

Enter the total number of lines
per printed page from 10 to 55.
This value determines when a
top of form occurs during
printing. Go to step 2.

To save the displayed values as
default parameters for LIST/
CROSS-REFERENCE, enter Y.
Otherwise, enter N.

If the MODE is:

ALL go to step 14.

PART go to step 10.

RANGE go to step 12.

Mount the input disk at the
displayed INPUT ADDRESS. When
ready, key (EXEC).

1.

12.

13.

14.

15.

ENTER THE NAME OF FILE #N
(0 = END)

ENTER LOWER LIMIT OF FILE NAMES

ENTER UPPER LIMIT OF FILE NAMES

INITIALIZING TABLES FOR
NEXT MODULE

MOUNT INPUT PLATTER
KEY RETURN(EXEC) TO RESUME?

63

1.

12.

13.

1,

15.

Enter the name of the Nth
file to be listed/cross-
referenced. The file name
must be that of an active
cataloged program file, or
else FILE - FILENAME - NOT

AN ACTIVE PROGRAM FILE appears.
Reenter the file name.

Repeat step 11 until all file
names have been entered, then
enter 0 (zero) to end entry
and go to step 14,

Enter the lower alphabetic
limit of the file names to be
listed/cross-referenced. The
lower limit and upper limit
entries need not be file names,
but the lower limit must be
alphabetically less than the
upper limit, else INVALID
RANGE and REENTER appear

(in step 13). File names
entered as limits are included
in list/cross-reference.

Enter the upper alphabetic
limit of file names to be
listed/cross-referenced.

This temporary display requires
no operator action.

If removed, a prompt appears
requesting that the ISS disk
be remounted at the ISS
loading address. When ready,
key (EXEC).

Mount the input disk at the

displayed input address.
When ready, key (EXEC).

16. PROCESSING FILE N
NAME = XXXXXXXX

11.3 EXECUTION ERROR MESSAGES

160

This display remains throughout
processing. If H is keyed,
processing stops at the end of
the current file. If P is
keyed, processing stops at

the end of the current page of
output.

With processing stopped, keying
RETURN causes processing to
resume.

If a cross-reference file was
selected for output, the
additional message "S.F. 1-
REPRINT CROSS-REFERENCE FILE"
appears. If Special Function
key 1 is depressed with
processing halted, the cross-
reference tables for the
current file are printed a
second time.

During execution of the List/Cross-Reference Utility, error conditions
are printed. The next file operation begins without interruption.

MESSAGE

FILE - filename - PROTECTED

64

DESCRIPTION

Protected file encountered and
skipped.

[/]

CHAPTER 12
COMPRESS UTILITY PROGRAM

12.1 INTRODUCTION

The COMPRESS utility program reduces the amount of memory occupied by an
application program. In addition to permitting the execution of more powerful
programs, COMPRESS increases the speed of program execution, and reduces

storage requirements.
The COMPRESS utility does three things to an input program file:

a) It eliminates all REM statements, except those in the first
statement line.

b) It eliminates all space characters not enclosed by quotation marks.
c) It eliminates as many unnecessary line numbers as possible by

assigning to each 1line number the maximum number of BASIC-2
statements consistent with program operation.

CAUTION:

A program to be compressed cannot contain branches to
statement lines beginning with a REM statement, since all
such lines (except the first 1line in the program) are
deleted. Also, program text should be compressed only
once, unless it has been decompressed since it was last
compressed.

The compress utility works in two stages. In the first stage the input
program is examined, and a table is built of all line numbers referred to by
statements in the program. This table is called the "protect table", since,

if the program is to execute properly, these referenced line numbers mst be
preserved.

65

A convention is observed that allows the programmer to explicitly exempt
any statement line from being compressed into another 1line. A blank REM
statement appearing within an input program causes the next non-REM line to be
protected. That is, blank REM statements are not attached to preceeding or
following lines. Blank REM statements which immediately surround a single
line therefore have the effect of exempting that 1line from compression. (A
blank REM statement is REM followed immediately by RETURN(EXEC).) If a
compressed program is compressed a second time, lines previously protected by
blank REM's are no longer protected, since the protecting REM's have been
eliminated.

The first statement line in a program is unaltered, regardless of its
content.

During the utility's second stage, called "compression", the compressed
version of the program is produced and written to the output disk.
The cutput disk:

a) Must have a catalog established on it.

b) Must not have a file with the same name as the input program file.

e¢) Must have sufficient space to store the input program file in its
precompressed state.

The utility compresses selected files, all files within alphabetical
limits, or all files from the input disk. However, the maximum number of
selected files for a single execution is 40. The input disk files must be
cataloged and active.

66

73

12.2 OPERATING INSTRUCTIONS: COMPRESS

DISPLAY

2. ENTER THE NUMBER OF THE 2.
DESIRED FUNCTION.
=/

(Functions 1-6 appear with
default values for 1-4)

3. ENTER THE DESIRED MODE 3.
(1-ALL, 2-PART OR 3-RANGE)
Veme/

67

INSTRUCTIONS

From the ISS Utilities menu,
load COMPRESS by touching

the indicated Special Function
Key.

NOTE:

If the default INPUT ADDRESS

or default OUTPUT ADDRESS is
not a valid ISS disk address,
the prompts shown respectively
in step 5 or step 6 will appear
instead of the prompt in step
2; also, REENTER appears below
the prompt. After completing
step 5, step 6, or both, go

to step 2.

To change a parameter, enter
its respective number and go
to the step listed below.
To exchange the input and
output addresses, enter 5.

GO TO
TO CHANGE ENTER STEP
MODE 1 3
OPTION 2 y
INPUT ADDRESS 3 5
OUTPUT ADDRESS 4 6

Enter 6 when all parameters
are correct. Go to step 7.

Enter 1 to compress all files
on the input disk.

Enter 2 to compress files

on the input disk whose file
names will be entered later.
Enter 3 to compress files on
the input disk whose file
names fall within alphabetic
limits specified later.

Go to step 2.

7.

ENTER THE DESIRED COMPRESSION
OPTION. (1-180 OR 2-256)
2=/

ENTER THE INPUT ADDRESS
Peme/

ADDRESSES AVAILABLE = XYY
ENTER THE OUTPUT ADDRESS
v I

ADDRESSES AVAILABLE = XYY
DO YOU WISH TO SAVE THESE

VALUES AS DEFAULTS. (Y/N)
-/

MOUNT INPUT PLATTER
KEY RETURN(EXEC) TO RESUME?

ENTER THE NAME OF FILE #N.
(0 = END)

68

7.

Enter 1 to implement a
compression option of 180
bytes per line. Enter 2 to
implement a compression option
of 256 bytes per line. Go to
step 2.

Enter the device address at
which the input disk will be
mounted. Valid ISS disk
addresses are displayed.

Go to step 2.

Enter the device address at
which the ocutput disk will be
mounted. Go to step 2.

To save the currently
displayed parameters as the
default values for the
COMPRESS Utility, enter Y.
Otherwise, enter N.

If MODE is:

ALL go to step 13

PART go to step 8

RANGE go to step 10

Mount the input disk at the
displayed input address.
(The ISS disk may be removed
if necessary.) When ready,
key (EXEC).

Enter the name of the Nth input

file to be compressed. Repeat
step 9 until all file names
have been entered, then enter
0 (zero) to end entry and go
to step 12.

The file name entered and

NOT AN ACTIVE PROGRAM FILE
appears if the file name
entered is not cataloged,

not active, or not a program
file. Reenter a valid program
file name.

[73

10'

11.

12.

13-

14,

ENTER LOWER LIMIT OF FILE NAMES.

10.

ENTER THE UPPER LIMIT OF FILE NAMES 11,

REMOUNT ISS PLATTER
KEY RETURN(EXEC) TO RESUME?

MOUNT PLATTERS AT THE INDICATED
ADDRESSES. KEY RETURN(EXEC) TO
RESUME?

BUILD PROTECT TABLE FOR FILE N
TOTAL BLOCKS = NNNN

FILE NAME = XXXXXXXX

BLOCKS READ = NNNN

12.

13.

14,

69

The file name entered and

IS A DUPLICATE FILE NAME
appear if the file name
entered is identical to a
file name previocusly entered.
Reenter a different file
name.

Enter the lower alphabetic
limit of the file names to

be compressed. The lower
1limit and upper limit entries
need not be file names, but
the lower limit must be
alphabetically less than the
upper limit, else INVALID
RANGE and REENTER appear

(in step 11). File names
entered as limits are included
in compression.

Enter the upper alphabetic
limit of the file names
to be compressed.

If removed, this prompt appears
requesting that the ISS disk be
mounted at the ISS loading
address. When ready,
key(EXEC).

Mount the input and output
disks at the displayed
addresses. (The ISS disk may
be removed if necessary.)
When both disks are ready,
key (EXEC).

Temporary display appears
during processing.

15. COMPRESSING FILE NUMBER = NNN 15. This processing display shows
FILE NAME = FILENAME the file currently being

compressed. After all files
have been compressed, the
Utilities menu will appear
unleas the ISS disk was removed
in step 13. If removed,
"MOUNT ISS PLATTER, KEY
RETURN(EXEC) TO RESUME?"
appears. Remount the ISS
disk at the ISS loading
address. When ready, key
(EXEC). The Utilities menu
will appear.

12.3 EXECUTION ERROR MESSAGES

During execution of the Compression Utility, error conditions are
printed. The next file operation begins without interruption.

MESSAGE DESCRIPTION

FILE - FILENAME - CANNOT BE COMPRESSED One of the following

conditions cause this

message to ococur:

a. Output file already exists.

b. Insufficient space on disk
for file.

c. Input file is protected
(e.g., SAVEDCFP"__"or

SAVE DC F1 "__ ™).

70

(7]

CHAPTER 13
RECONSTRUCT INDEX UTILITY PROGRAM

13.1 INTRODUCTION

The RECONSTRUCT INDEX utility program is an aid to the recovery of disk files
in the event of accidental destruction of the disk catalog index. The utility
searches the disk, looking for file control sectors established during catalog
operations. Based on the control sectors found, it attempts to reconstruct a
catalog index for the files on the disk, which takes considerable time,
especially if a disk has not been reformatted and many files have been
scratched.

CAUTION:

Before executing this utility a backup copy of the disk
must be made, because this utility writes on the disk
being used. The use of this program is a last resort in
recovery procedures. Its success 1s dependent entirely
on the nature of the disk, and thus is not guaranteed to
reconstruct the disk index.

The utility constructs names for all data files and for duplicate
program file names. The constructed names have the following form:

/ #XXXX#/

where: XXXX is a four-digit number. Numbers are assigned consecutively to
files that require constructed names, the same as Copy Tape To Disk.

71

13.2

5.

10.

e e ————— e e

OPERATING INSTRUCTIONS: RECONSTRUCT INDEX

DISPLAY

ENTER THE INPUT ADDRESS
Te==

ADDRESSES AVAILABLE = XYY

ENTER. THE HIGHEST SECTOR
ADDRESS OF THE DISK.

ENTER THE NUMBER OF
INDEX SECTORS
(0=UNKNOWN)

MOUNT INPUT DISK
KEY RETURN(EXEC) TO RESUME?

RECONSTRUCTING DISK INDEX
REMOUNT ISS PLATTER.
KEY RETURN(EXEC) TO RESUME

MOUNT INPUT DISK
KEY RETURN(EXEC) TO RESUME?

FILE # FILE NAME START
N XXXXXXXX NN

END USED
NN NN

REMOUNT ISS PLATTER
KEY RETURN(EXEC) TO RESUME

10.

72

INSTRUCTIONS

From the ISS Utilities menu,
load the RECONSTRUCT INDEX
utility by touching the
indicated Special Function Key.

Enter the device address of the
disk whose catalog index is

to be reconstructed. Valid ISS
disk addresses are displayed.

Enter the highest sector
address at which files are
known to exist. If this
information is not available,
enter the highest sector ad-
dress of the disk.

Enter the number of sectors in
the original index and go
to step 8. Enter zero if

this is unknown, and go to
the next step.

Mount the disk whose index
is to be reconstructed.

If number of index sectors is
unknown, go to the next step.
Otherwise go to step 9.

Temporary display; no action
required.

Remount the ISS disk if it
has been removed.

Mount the disk whose index
is to be reconstructed.

Processing display (remains on
screen while the entire disk's
contents are being recon-
structed).

Execution is complete. Remount
the ISS disk at the ISS

loading address. Key (EXEC)

to return to ISS Utilities

menu.

4

W

CHAPTER 14
FILE STATUS REPORT UTILITY PROGRAM

14.1 INTRODUCTION

The FILE STATUS REPORT utility program provides several functions
tailored to multistation disk environments. The program's structure enables
some or all functions to be performed without the need for program reload.
FILE STATUS REPORT accesses the end catalog trailer record maintained by the
Multistation Open/End/Close subroutines used by ISS utility programs and
user-written programs (access table). See Chapter 32 for further explanation.
Functions performed by FILE STATUS REPORT are summarized below:

1.

Close all files open to a particular station. This function closes
all open files on a disk which might be left open by operator
accidents, during initial program testing, or due to a power
failure. Also recommended for end-of-day processing shutdown of
that station. In the event of a power failure, the function should
be executed for each station.

Close a file open to a particular station. Similar to above but
allows a specific file to be closed without affecting other files.

List the status of all files. This function lists, for each file on
a disk, whether the file is currently open or closed. If open, the
station numbers currently accessing that file are provided, as well
as the access mode for each station. Station access mode status
numbers are: 1-Inquiry, 2-Read Only, 3-Shared, and Y4-Exclusive.

List the status of one file. Similar to above but applies to only
one file.

List all files currently open to a particular station. Provides a
listing of files open to a particular station, which can be useful
during initial program test and debugging.

73

14.2

CAUTION:

The File Status Report Utility, functions 1 and 2 above,
should be used with extreme caution by programmers
knowledgeable of multistation file operation. The option
to close one or all files open to a station must be
performed when processing for all stations has been
terminated, as this will clear all entries in the access
table for all stations. For example, if one station were
updating records with Exclusive access, and the access
table were blanked, another station doing similar updates
also with Exclusive access would be granted access to the
file, thus two stations would have the file open asumming

erroneous.

Exclusive access. The file's updated contents would be

NOTE:

KFAMWORK, a work file.

With KFAM files, do not run the FILE STATUS REPORT to
close files by clearing the access table, except for
Instead use the KFAM Utility,
RESET ACCESS TABLE, which clears both the access table and
KDR of the KFAM File left open accidentally.

OPERATING PROCEDURES: FILE STATUS REPORT

DISPLAY

ENTER THE ADDRESS OF THE 2.
DATA DISK
Pme/

ADDRESSES AVAILABLE = XYY

MOUNT INPUT DISK UNIT - XYY 3.
KEY RETURN(EXEC) TO RESUME?

ENTER THE NUMBER OF THE h,
DESIRED FUNCTION.

2=/

OPTIONS AVAILABLE

T4

INSTRUCTIONS

Load the FILE STATUS REPORT
utility by touching the
indicated Special Function
Key on the ISS Utilities menu.

Enter the device address where
the disk to be examined will
be mounted. Valid ISS disk
addresses are displayed.

Mount the disk to be examined
at the disk address displayed.

Enter 1 to close all files
currently open to a station on
this disk. Go to step 5.
Enter 2 to close one file
currently open to a station on
this disk.

L7

CLOSE ALL FILES OPEN BY A STATION Enter 3 to list the status of

CLOSE FILE OPEN BY A STATION all files on this disk.

LIST STATUS OF ALL FILES Enter 4 to list the status of

LIST STATUS OF A FILE one file on this disk.

LIST ALL FILES OPEN BY A STATION Enter 5 to list all files

- CHANGE DISK ADDRESS) currently open to a station, on
(CURRENT ADDRESS = XYY) this disk.

7 - RETURN TO MENU Enter 6 to change the disk

address.

Enter 7 to obtain the

Utilities menu. The ISS disk

may have to be remcunted.

Asterisks appear to the left

of the option chosen.

1
2
3
i
5
6

If the LIST option is chosen
(key 3, 4, or 5) and the
printer is not ON and
SELECTed, the message:
PRINTER REQUIRED FOR SPECIFIED
OPTION, KEY RETURN (EXEC)

TO RESUME?" appears. The
operator may either (1) make
the printer ready or (2)
enter X, (EXEC) which
returns the prompt in step

4 to the screen.

ENTRY GO TO STEP

AN EWMN a
LSRN e X RE |

ENTER THE STATION NUMBER 5. Enter station number. If the
Pe=/ reply to step 4 was:

1, go to step 7.
2, go to step 6.
5, g0 to step 7.

ENTER THE NAME OF THE FILE 6. Enter the name of the file

y SR to be closed or whose status
will be listed. If that file
is not an active cataloged
file, REENTER appears. Enter
a valid file name.

SCANNING INDEX FOR FILE NAME T. Temporary display appears

while searching for file(s).
Go to step 4 upon completion.

75

CHAPTER 15
PROGRAM COMPARE UTILITY PROGRAM

15.1 INTRODUCTION

The PROGRAM COMPARE utility program allows a detailed comparison to be
made between two programs. The two programs to be compared must be disk files
residing on different disks. Statements with the same number from each
program file are examined one at a time. PROGRAM COMPARE ignores all remarks
and blanks not part of an image statement (%) or literal data string.

For example, PROGRAM COMPARE considers the following statements identical:

10 REM THIS IS A REMARK: A=B: REM ANOTHER REMARK
10A = B

As statements of like numbers are compared, the following messages are printed
if the conditions described below occur:

MESSAGE PRINTED CONDITION

{##{## DO NOT MATCH Statement number #{###
occurs in both programs,
but their content is not

the same.
#{##4DOES NOT EXIST Statement #### in the file
IN FILENAME (XYY) FILENAME at disk address

XXY does not exist,
whereas ##i{{ exists in the
other program file.

#{#34FILE FILENAME (XYY) ENDS, The file FILENAME at disk

BUT FILE NAMEFILE (YXX) CONTINUES address XYY ends at state-
ment ¢{#{##, whereas the
file NAMEFILE at disk
address YXX continues
after statement #{###..

76

e

¢##¢##B0TH FILES END

PROGRAMS COMPARE - ARE SAME

The two files being compared
end at statement ####.

The two files being compared
are identical. They are
in fact the same program.

Up to 100 pairs of selected program files may be compared directly, or
999 indirectly, using a reference file created by the Create Reference File
Utility. Any number may be compared if ALL or RANGE is specified as the input

mode.

15.2 OPERATING INSTRUCTIONS: PROGRAM COMPARE

DISPLAY

77

INSTRUCTIONS

From the ISS Utilities menu,
load the PROGRAM COMPARE
utility by touching the
indicated Special Function
Key.

NOTE:

If default values for the
INPUT ADDRESS 1 and INPUT
ADDRESS 2 are not valid
ISS disk addresses, the
prompts shown in step 3 or
step 5 will appear instead
of the step 2 prompt; also,
REENTER will appear below
the prompt. After completing
step 3, step 5, or both,

go to step 2.

2.

ENTER THE NUMBER OF THE 2.
DESIRED FUNCTION,
2=/

(FUNCTIONS 1-5 ARE DISPLAYED
WITH DEFAULTS FOR 1-3)

ENTER - THE FIRST INPUT ADDRESS 3.
-

ADDRESSES AVAILABLE = XYY

ENTER THE NUMBER OF THE b,
DESIRED INPUT MODE.
?2-/

INPUT MODES AVAILABLE

1 - ALL 3 - RANGE
2 - PART 4 - INDIRECT

ENTER THE SECOND INPUT ADDRESS 5.
Y -

ADDRESSES AVAILABLE = XYY

DO YOU WISH TO SAVE THESE 6.
VALUES AS DEFAULTS? (Y/N)
2=

78

To change a parameter, enter

its respective number and go

to the step listed below. To
exchange the input addresses,
enter U.

GO TO
TO CHANGE ENTER STEP
INPUT ADR 1 1 3
MODE 2 4
INPUT ADR 2 3 5

Enter 5 when all parameters
are correct. Go to step 6.

Enter the device address at
which the first input disk
will be mounted. Valid ISS
disk addresses are displayed.
Go to step 2.

To compare all files on the
first input disk to any files
with the same name on the
second input disk, enter 1.
To compare only files whose
file names will be entered
later, enter 2.

To compare only files whose
file names fall within
alphabetic limits specified
later, enter 3.

To compare files specified
indirectly by a reference
file, which must reside on the
first input disk, enter 4.

Go to step 2.

Enter the device address at
which the second input disk
will be mounted. Valid ISS
disk addresses are displayed.
Go to step 2.

To save the currently displayed
parameters as the default
values for PROGRAM COMPARE,
enter Y, Otherwise enter N.

If input mode is RANGE, go to
step 10; otherwise go to the
next step.

‘e

(r

T.

10.

MOUNT INPUT PLATTERS 7.
KEY RETURN(EXEC) TO RESUME?

ENTER THE NAME OF THE FIRST 8.
INPUT FILE OF PAIR #N (0 = END)

ENTER THE NAME OF THE SECOND 9.
INPUT FILE OF PAIR #N (EXEC =
SAME AS FIRST).

ENTER THE LOWER LIMIT 10.
OF FILE NAMES

79

Mount the input disks at the
displayed input address.

(The ISS disk may be removed
if necessary.)

If MODE is:

ALL, go to step 15, unless
the ISS disk was removed, (go
to step 13).

PART, go to step 8.
INDIRECT, go to step 12.

Enter the first file name of
the Nth pair of program files
to be compared. (First file
of a pair resides on first
input disk.) Go to step 9.
Enter 0 to terminate file name
entry and go to step 13 if the
ISS disk was removed.

Enter the second file name of
the Nth pair of program files
to be compared. (Second file
of a pair resides on second
input disk.) The corresponding
first file name is displayed.
Go to step 8.

If the file name entered is not
an active file, the file name
entered, DOES NOT EXIST, and
KEY RETURN(EXEC) TO RESUME?
appear. Key (EXEC) and
reenter the second file name.

Enter the lower alphabetic
limit of the file names on
the first input disk to be
compared with files of the
same name on the second input
disk. The lower limit and
upper limit entries need not
be file names, but the lower
limit must be alphabetically
less than the upper limit, or
else INVALID RANGE and REENTER
appear (in step 11). File
names entered as limits are
included in comparison.

1.

12.

13.

14.

15.

16'

ENTER THE UPPER LIMIT
OF FILE NAMES

ENTER THE NAME OF THE
REFERENCE FILE

REMOUNT ISS PLATTER
KEY RETURN(EXEC) TO RESUME?

REMOUNT INPUT PLATTER AT
DEVICE XYY.

COMPARING FILE PAIR #N
FIRST FILE NAME = FILENAME
SECOND FILE NAME = FILENAME

MOUNT ISS PLATTER , KEY
RETURN(EXEC) TO RESUME?

80

1.

12.

13.

1,

15.

16.

Enter the upper alphabetic
limit of the file names to
be compared. Go to step 13
if the ISS disk was removed;
otherwise go to step 15.

Enter the file name of the
reference file providing the
file names to be compared.

NOTE:

The reference file must
presently reside on the
first input disk. If

the file does not exist,
FILE-filename-DOES NOT
EXIST ON DEVICE XYY appears.
Reenter the reference

file name.

If removed, this prompt
appears requesting that the
ISS disk be remounted at
the ISS loading address.
When ready, key (EXEC).

If removed, this prompt
appears requesting that the
input disk be remounted at
the displayed address.- When
ready, key (EXEC).

The processing display
indicates the two program

files currently being compared.

With the ALL or RANGE mode,
SCANNING INDEX FOR FILE NAME
first appears. After all
pairs of files have been
compared, the Utilities menu
will appear unless the ISS
disk was removed.

Mount the ISS disk at the ISS
loading address if removed.
When ready, key (EXEC) to
obtain the Utilities menu.

e

1"

15.3 EXECUTION ERROR MESSAGES

During the operation of the Program Compare Utility, error conditions
are printed without interrupting multiple file processing. Other messages

concerning Program Compare reports are shown above and are not error
conditions.

MESSAGE DESCRIPTION
ERROR: FILENAME (XYY) This message indicates that
IS A DATA FILE. one of the files to be compared

is a data file. That compare
operation is aborted. Check
the displayed file name and
disk address after processing
ends to determine if

the wrong file name was
entered, or if the program to
be compared was assigned a
different file name.

81

CHAPTER 16
FORMAT 2260C DISK UTILITY PROGRAM

16.1 INTRODUCTION

The FORMAT 2260C DISK utility program formats the specified Model 2260C
Disk Drive platter. Each disk platter must be formatted before it can be used
to record data. Once formatted, a disk usually need never be reformatted.

The fixed and removable platters must be formatted individually.
Whenever a new removable disk platter (disk cartridge) is obtained, the new
disk cartridge must be formatted.

It is important to note that formatting destroys any data previously
recorded on the disk formatted.

NOTE:

FORMAT 2260C DISK will only format a Model 2260C disk
platter. Any disk address specified during Format 2260C
disk operation must be a Model 2260C disk address;
otherwise, spurious results and error conditions will occur.

16.2 OPERATING INSTRUCTIONS

DISPLAY OPERATING INSTRUCTIONS

1. 1. From the ISS Utilities menu, load
FORMAT 2260C DISK by touching the
indicated Special Function Key.

2. ENTER DISK ADDRESS 2. Enter the disk device address of the

TO FORMAT?_ disk to be formatted, in the form
xyy (e.g., 320, B20).

82

\

LT

te

DO YOU WANT TO FORMAT
THIS PLATTER (Y/N)?_

FORMAT PLATTER xyy

FORMAT PLATTER /xyy
FORMATTING. . .

KEY RETURN(EXEC) TO
RESUME?_

FORMAT PLATTER /xyy
FORMATTING COMPLETE

DO YOU WANT TO TRY
AGAIN (I/N)?

FORMAT PLATTER /xyy

FORMAT ERROR, RETURN
CODE = nnnnnn

83

The ISS disk(ette) may be removed at
this time, if necessary, but should
be remounted before touching RETURN
in reply to step 6.

The disk device address entered in
step 2 is displayed (xyy). The
prompt asks whether the user wants

to format the platter at the disk
address shown. Enter Y to begin
formatting and skip to step 6. Enter
N to enter a different disk address
(return to step 2).

No operator action is necessary.

This message appears while formatting
the disk, which takes about two
minutes.

Upon successful completion of
formatting, this prompt appears.
Touch the RETURN key to obtain the
ISS Utilities menu. If a different
disk is present, a prompt appears
requesting that the ISS disk be
remounted.

If a format error was encountered,
this prompt appears. The RETURN
CODE shown is described in the Disk
Reference Manual. It is recommended
that the operation be reattempted.
To format this or a different
platter, enter Y and return to step
2. To return to the ISS Utilities
menu, enter N. If N is entered and
the ISS disk has been replaced by a
different diskette, a prompt
requests that the ISS disk be
remoun ted.

PART III
THE KEY FILE ACCESS METHOD

" RELEASE T

84

>
-

=

'y

CHAPTER 17

GENERAL INFORMATION

17.1 INTRODUCTION TO DISK ACCESS METHODS

A disk access method provides a means of transferring data between
memory and a direct access storage device such as disk or diskette. It
enables records within a disk file to be rapidly 1located by certain
conventions associated with the particular access method used.

Direct access (nonsequential) storage devices typically provide rapid
access to randomly dispersed data on a disk(ette) platter by using a moveable
read/write head for each platter. To fully utilize this desirable hardware
feature, an access method is usually applied to certain data files (especially
large data files) where rapid access to random records is required. The Key
File Access Method (usually referred to as "KFAM") provides several means of
rapid access to records within a file.

KFAM, although it is wunique, resembles access methods usually
categorized as "indexed sequential" or "indexed" access methods. A KFAM file
consists of two files: (1) the file containing the data records, called a
"Jser File" and (2) a file which contains an "index" for quickly 1locating
specific User File records, called a "Key File". Within each data record in
the User File is a "key", such as a social security number. Each key's value
is unique within the same KFAM-7 file. The Key File contains system
information used internally by KFAM, as well as the key and corresponding
address of each record in the User (data) File which enables retrieval of
records based on their keys. Key File information is automatically maintained
by KFAM.

KFAM Release 7 (KFAM-7) provides the following features not always
associated with "indexed sequential"™ access methods:

a. An entry in the Key File is maintained for each record in the User
File, which allows records to be added in random order of their keys
to the KFAM file and, thereafter, accessed by key or by key
sequence. Record deletions by key are also provided.

85

b. Records entered in random order of their keys may be reordered by
" supplied KFAM-7 utility software which reorganizes User File records
and corresponding Key File entries into ascending order of their
keys. This provides efficient record access by ascending or
descending key sequence.

¢. Using supplied KFAM-T utility prégrams, data files meeting KFAM-7
input record requirements may be converted to KFAM-7 User File
format and a Key File created for the User File.

d. The Key File may be located on a different disk platter than the
User File it indexes, thus minimizing disk hardware access times.

e. When the appropriate KFAM-7 marked subroutine is called which
successfully opens (or closes) the requested User File, KFAM-T
automatically opens (or closes) the companion Key File.

f. KFAM-T7 supports four file access modes, which collectively provide a
controlled file access system for KFAM-T7 disk files. Individual
"gtations” (user partitions) are granted or denied file access based
on the requested access mode and access modes previously granted to
other stations (user partitions) still accessing the file. Other
multistation Security features are provided.

17.2 WHAT IS KFAM?

The 2200 BASIC-2 Language includes a group of statements used for disk
operations known as the Automatic File Cataloging statements. Automatic File
Cataloging statements create and maintain on a disk a catalog, or index, of
the files stored on the disk. This catalog includes, among other things, the
name given to each file and each file's starting and ending sector addresses.

Though the catalog system keeps track of where each file is located on a
disk, and thereby allows files to be easily found, it does not keep track of
the individual records within a file. For example, a given disk may have an
employee file called "PAY", an accounts receivable file called "A/R", and an
inventory file called "INVT". The disk catalog system keeps track of where
each of these files is located. However, the "PAY" file may consist of 250
employee records, the "A/R" file of Y400 customer records, and the "INVT" file

of 5000 product records. KFAM is a system for keeping track of and locating
these individual records within a file.

The Index of Data Records

For each file of records, KFAM creates and maintains an index within the
Key File of the individual records and their locations within the User File.
For the purpose of this index, each record is uniquely identified by some key
field that marks it off from all other records. For example, for a payroll
file, the employee name or social security number might be designated as the
key field; for an inventory file a product number might be the key field. A
record's key field is called its "key". The index constructed and maintained
by KFAM can be thought of as a 1list of all the keys for a given file.
Associated with each key in the index is the location of the record that the
key identifies.

86

e

s

[}

When a file is indexed by KFAM, one can say in a program, "Find me the
record for product AB-4975-1." KFAM subroutines, accessed by the program,
then search the Key File index and put the sector address of record AB-4975-1
into the User File's Current Sector Address parameter in the Device Table.
(Refer to the Disk Reference Manual for information about Device Table
characteristics.) The program simply executes a DATALOAD DC statement to read
the desired record.

RFAM subroutines do all the work of searching and updating the Key
File. There are KFAM subroutines to find records in a random key sequence and
in ascending key sequence; there are subroutines to delete records, as well as
find a location for a new record and add the new key to the Key File. Thus,
the programmer who uses KFAM need never know how the Key File is constructed.
KFAM subroutines carry out all the necessary operations on the Key File.

The Key File that KFAM constructs 1s a sophisticated tree structure,
designed so that keys can be found quickly in a random key sequence, and even
more quickly in ascending or descending key sequence. It allows keys to be
added and deleted easily, without disturbing the organization of the Key File.

Whenever a KFAM subroutine is to find a record, or add a new key to the
Key File and find a location for the new record in the User File, the KFAM
subroutine puts the User File record location into the Current Sector Address
parameter of the Device Table, opposite the file number being used for the
User File. Thus, on return from the subroutine, an ordinary Catalog Mode
DATALOAD DC or DATASAVE DC can be executed, and it will take place at the
desired sector 1location. DA and BA access modes are also applicable to
certain KFAM files.

The Evolution of KFAM-7

Prior to the current version of KFAM, known as KFAM-7, there were
KFAM-5, KFAM-4, KFAM-3, KFAM-2, and the original version of the Key File
Access Method, KFAM-1. Previous versions of KFAM were designed to operate on
single-user, single-station 2200 Central Processors. Utility programs are
provided to convert KFAM-3 files to KFAM-7 files and KFAM-4 files to KFAM-7
files. KFAM-5 files are media compatible with KFAM=7 and do not require
conversion.

KFAM-7 1is especially designed for the 2200MVP Central Processor. KFAM-7
subroutines--which can be accessed by all stations--are located in a global
partition. Within this centralized global partition, KFAM-7 also maintains
file access information by which it controls multistation access to shared
KFAM-7 files. A maximum of 30 KFAM-7 files may be open on a multistation
2200MVP system without software modification; a maximum of eight KFAM-7 files
may be open per station (see Section 20.3). KFAM-T is only operable with a
2200MVP Central Processor.

The global partition, if it contains the entire set of KFAM-7
subroutines, occupies one 9K partition. The size of each user partition 1is
determined during partition generation according to the memory requirements of
the programs to be run in that partition. KFAM-7 utility programs require a
user partition size of 9K.

87

If a user-written application program will be running in a user
partition (station), between 1K and 2K is required for KFAM-7 variables within
the user partition, depending upon the maximum number of KFAM-7 files to be
open to that user partition (station).

Figure 17-1 shows a functional diagram of a typical KFAM-7 partition

configuration. The shaded areas indicate memory required for KFAM-7
software; the unshaded areas indicate memory available for wuser-written
application programs.

USER PARTITION
STATION #2

[7777777 o 1 0 2 cxamaoon

USER PARTITION ‘ USER PARTITION
STATION #1 STATION #3
1 TOo 2K 1 TO 2K
(KFAM0007) (KFAMO007)

GLOBAL PARTITION /JAe— 9K (KFAMO0107)
"KFAH"

[11111111]

DISK STORAGE
v

Figure 17-1. Functional Diagram of a Typical KFAM-T
Partition Configuration

88

14

"

17.3 KFAM FILE STRUCTURES

KFAM creates and maintains for each KFAM file certain information stored
in its two components: the User File and the Key File. The User File
contains mostly the data records which are maintained by the user. Other
portions in the User File, however, contain specific information maintained by
KFAM. In contrast, the entire contents of the Key File are maintained by KFAM
in conjunction with the KFAM subroutines executed on the KFAM file. User
Files must be data files (not program files).

User File Structure

The User File contains data records beginning with the first sector
allocated to the User File. Data records are stored by the user within the
User File via KFAM-7 subroutines and DATASAVE statements.

The end of live data is indicted by an "END" record which follows the
last sector containing live data. The position of the "END"™ record 1is
automatically controlled by KFAM-7 in conjunction with the KFAM-7 subroutines
called by the user's program. In the next to last sector in the User File,
KFAM maintains a "dummy" END record which, at the programmer's option, also
contains recovery information necessary to recreate the Key File if it is
accidentally destroyed. In the last sector allocated is the catalog trailer
record. Contained within the catalog traller record is that file's access
table and password.

Access to the Key File is determined by access to the User File. The
User File access table is examined before the User File 1is opened and
determines whether User File access 1is granted or refused, based on the access
mode requested and the access modes already granted to other stations. Once
the User File is opened, the Key File is opened along with it, and some of the
control information in the Key File (Key Directory Record) is loaded into
global memory. The global memory control information handles all multiple
station record access functions for any KFAM file open. Record access
functions include completion codes, protected sectors, and other control
information.

When a KFAM file is closed and when a FINDNEW, FINDNEW(HERE), or a
DELETE subroutine is executed, the Key Directory Record 1is rewritten into the
Key File.

Note that the END records and trailer record are indicated by the first
two bytes of their respective sectors which contain specific HEX values.
Figure 17-2 illustrates the User File structure layout.

The "END"™ record and the "dummy" END record's recovery information are
rewritten only under certain conditions upon closing the file. The END record
1s rewritten when the file is closed, only if records have been added to the
User File. Recovery information 1is written when the file is closed if record
additions or deletions have occurred.

The presence of the END record following live data allows the file to be
read sequentially, provided the user observes the following conventions:

89

1. All deleted records must be flagged with HEX(FF) in the first byte
- of the key. ' ‘

2. If records are blocked (types A and C) every time a new sector is
allocated (FINDNEW returns Q=1), all records in the block must be
initialized with a HEX(FF) in the first byte of the key.

The END record following 1live data also allows the User File to be
copied by the ISS Copy/Verify Utility, as discussed later in this manual. The
position of the END record, of course, reflects the number of USED sectors and
EXTRA (i.e., free) sectors in the file.

HEX VALUE
IDENTIFIES
THIS SECTOR
AS END RECORD

/

THIS 1S A

"DUMMY" END

RECORD. IT CONTAINS
RECOVERY INFORMATION.

HEX VALUE
IDENTIFIES

~F [THIS SECTOR

AS CATALOG

F—DATA Rsconos—-r UNUSED
(USED)
FIRST FOLLOWS
SECTOR LAST SECTOR
OF DATA

L—— TRAILER RECORD.
NEXT LAST IT ALSO- CONTAINS
TO SECTOR CPU ACCESS TABLES.

LAST
SECTOR

Figure 17-2. User File Structure

90

v

Key File Structure

The Key File is the means by which indexed record access ocecurs to
randomly-dispersed records within the User File. The first sector of the Key
File contains the Key Directory Record (KDR), and the remaining sectors
contain Key Index Records (KIR's). The Key File also contains an END record
to mark the end-of-live-data which is automatically rewritten as sectors are
added to the Key File. The KDR is loaded into global memory following an Open
and dynamically maintains information about each station's Current Sector
Address, any sectors protected by a station, information about the KFAM file,
and system (KFAM internal) information. The KDR is rewritten under certain
conditions to reflect changes to its contents, for example, when records have
been added or deleted. Recovery information, stored in the User File's dummy
END record, consists of nearly all of the KDR.

The remaining sectors of the Key File contain Key Index Records (KIR's),
which consist of Key Index Entries (KIE's). Key Index Entries are internal
tables consisting of key values and corresponding record locations, by which
KFAM provides indexed access to each User File record.

17.4 THE FUNCTIONAL COMPONENTS OF KFAM

KFAM-7 software components fall into the following categories:

1. Set-up Utilities: Standalone utility programs used to initialize a
new KFAM File and to create a Key File for an already-existent User
File (data file).

2. KFAM Subroutines: DEFFN' statement subroutines, contained within
the global partition "KFAM", are used to open and close KFAM files,
locate records in the User File, and add and delete keys from the
Key File. KFAM subroutines are the operational heart of KFAM.

3. Supplementary Maintenance Utility Programs: Standalone routines,
which perform a variety of tasks related to the maintenance of a Key
File and User File, print the contents of a Key File and recover
from certain operational accidents.

KFAM-7 is one of the software components available within the Integrated
Support System, Release 3.7. Following ISS-3.7 start-up procedures, KFAM-7
utility programs may be chosen in reply to the KFAM-7 menu. 1ISS-3.7 start-up
procedures maintain certain information in each station's file saved on
disk(ette), including valid disk device addresses and the device address of a
printer. This information is available to all ISS-3.7 utility programs and
application programs through the use of common variables which, for instance,
are used by KFAM-7 utilities to ensure that a disk address entered in reply to
an operator-prompting message (prompt) is indeed a valid disk address.

91

17.5 HOW TO GET STARTED WITH KFAM

KFAM provides a means for accessing data records saved in a disk file.
However, it does not process these User File records in any way. After it has
found a record, the processing of the record, (loading it, updating it, saving
it, etcetera) is left to the user-written program. Thus, to use KFAM one must
have a working knowledge of elementary BASIC-2 and of the fundamentals of
Catalog Mode disk operations.

It is strongly recommended that the first-time user of KFAM begin by
setting up a dummy KFAM-7 file, and experiment with the subroutines and
utilities on this file before attempting to operate on valuable files.

The following is a step-by-step outline of how to begin setting up KFAM
files.

1. Read Chapter 18 which describes the five types of User File records
which are acceptable to KFAM, 1limitations on the size and
characteristics of the key field, and certain KFAM conventions which
must be adhered to.

2. A Key File is stored as a cataloged file on a disk. It may reside
on the same disk as the User File, or on another disk, (which must
be mounted whenever the User File is accessed). A set-up utility
program called INITIALIZE KFAM FILE must be run whenever a new KFAM
file (Key File and User File) is to be established.

INITIALIZE KFAM FILE calculates the required size of the Key File,
given an estimate of the maximum number of records to be saved in
the User File, and will catalog a Key File with the required number
of sectors. It saves in the Key File some vital information about
the User File, based on information supplied by the operator. It
will also catalog a User File with the proper number of sectors if
the User File does not already exist.

3. If a previously cataloged User File contains data, a second set-up
utility program can be run after INITIALIZE KFAM FILE, called KEY
FILE CREATION. The KEY FILE CREATION utility program reads a User
File and creates an entry in the Key File for each record in the
User File. Upon completion, KFAM subroutines may be used to provide
access to records in the User File.

4. If the User File does not contain data, then after running
INITIALIZE KFAM FILE use the KFAM subroutines in a user-written
program to place data records in the User File and add the
corresponding entries into the Key File simultaneously.

5. The KFAM subroutines are DEFFN' statement subroutines which perform
standard tasks for files indexed by KFAM. In most cases, the KFAM-7
global module KFAMO107--which contains all KFAM-7 subroutines--is
loaded and run in a 9K partition. Alternatively, the .user may
select the subroutines needed for the applications to be performed
using the BUILD SUBROUTINE MODULE utility program, which creates a
global

92

L]

ty

module containing the selected subroutines on the specified
" disk(ette). The module created by BUILD SUBROUTINE MODULE may be
loaded into a partition instead of KFAMO107 if certain
considerations are observed.
Subroutines are available to perform the following tasks.
TYPE AND NAME " FUNCTION

General Purpose Subroutines

OPEN Open specified User File and companion Key
File.

CLOSE Close User File and companion Key File.

RE-OPEN Changes the access mode of a

currently open KFAM File.

WRITE RECOVERY

INFORMATION Writes current file END record at end of
active data in User file, and writes
recovery information in the next-to-last
sector (both of which would otherwise only

occur when a file is closed) without
closing the file.

Random Access Subroutine

FINDOLD Locate specified key in the Key File; set

User File Current Sector Address to record
in User File with that key.

Key Sequence Access Subroutines

FINDFIRST Locate record with lowest key in User

File; set User File Current Sector Address
to that sector.

FINDPREVIOUS Locate previous record in User File in
logical key sequence; set User File
Current Sector Address to that sector.

May be executed in any situation where
FINDNEXT is allowed.

FINDNEXT Locate next record in User File in logical
key sequence; set User File Current Sector
Address to that sector.

FINDLAST Locate record with highest key in User

File; set the User File Current Sector
Address to that sector.

93

'Add and Delete Subroutines

FINDNEW Add specified key to Key File; allocate
space for a new record in the User File,
and set the User File Current Sector
Address to that sector. Adds one to
record count.

FINDNEW (HERE) Add specified key to Key File; set the
User File Current Sector Address to the
sector where the new record is to be
written. It is normally used to change
the key of a deleted record; therefore,

it is normally preceded by a DELETE.
Adds one to the record count.

DELETE Remove specified key from Key File; set
the User File Current Sector Address to
the record that has the deleted key.
Subtracts one from the record count.

Special Purpose Subroutine

RELEASE Allow a User File record, previously
protected by one station, to be accessed by
any station.

Since the KFAM subroutines allow records to be added and deleted, as
well as changed, all regular file maintenance takes place in
application programs which use KFAM subroutines. As a general rule
all operations on the Key File are accomplished by the KFAM
subroutines, while all operations on the User File are accomplished
by user written statements in the application program.

Though the KFAM subroutines are the heart of the KFAM system, and
perform most of the file maintenance, a group of Supplementary
Maintenance Utilities are included to carry out certain maintenance
tasks that will occasionally be required.

a) The REORGANIZE Utilities: When a record 1is ndeleted™” by using
the DELETE subroutine, its key and location are simply removed
from the Key File. It then cannot be accessed by KFAM.
However, the record itself in the User File is not removed. It
is possible to reuse the spaces occupied by deleted records in
the User File, but if this is not done the User File gradually
becomes bloated with DELETED records. The REORGANIZE Utilities
reorganize the User File by putting its records into ascending
key sequence, eliminate DELETED records, and then automatically
construct a new Key File for accessing the reorganized User File.

94

fv

b)

c)

d)

e)

THE REORGANIZE SUBSYSTEM: is a standalone routine which
reorganizes a file by outputting a new reorganized User File and
Key File. The old Key File and User File are left intact. It
is called by a short user-written set-up module which provides
parameters for the reorganization. Also, it can be used to copy
KFAM file. '

REORGANIZE IN PLACE: 1is a utility program which reorganizes the
User File and Key File in place. It should be used only for a
file so large that adequate output files could not be mounted at
the same time as the file to be reorganized.

The ISS COPY/VERIFY utility (if available) and the REALLOCATE
KFAM FILE SPACE utility can be used together to copy a KFAM file
and increase or decrease the amount of disk space allocated to
the file. Use of REALLOCATE KFAM FILE SPACE is required after
any KFAM file (User File and Key File) is copied by
COPY/VERIFY. The REORGANIZE SUBSYSTEM may also be used to copy,
change file space allocation, change the file name, as well as
reorganize a KFAM File--all at the same time.

PRINT KEY FILE: This utility prints the complete contents of
the access table and the current contents of the Key File with
appropriate labeling of data. It can be useful as a diagnostic

tool and helpful to advanced programmers who may wish to examine
the Key File structure.

Recovery Utilities: A KEY FILE RECOVERY utility is provided to
reconstruct a Key File in the event of 1its accidental
destruction. The User File must be intact for this program to
operate successfully.

Also available is a recovery utility called RESET ACCESS TABLE.
KFAM-T maintains certain information in various access tables
about which stations are operating on the file. This access
table information will contain erroneous information if a
station fails to CLOSE a file it has opened, due to power
failure or program error. The RESET ACCESS TABLE utility is

provided to clear this erroneous information from the access
tables.

The KFAM Conversion Utilities. Utility programs are provided to

convert files from KFAM-3 to KFAM-7 and from KFAM-4 to KFAM-7.
KFAM-5 files do not require conversion to KFAM-7 format.

95

17.6 KFAM-7 ACCESS MODES AND SECURITY FEATURES

KFAM-7, a modification of previous KFAM systems, is specifically
designed for a 2200MVP multistation environment. It allows up to 16 stations
to access a KFAM disk data file and includes protective procedures designed to
prevent destructive intrusions of "“one station into the file operation of
another station. These procedures are designed to offer protection consistent
with the type of operation being performed, so that other stations can have
safe maximum availability of the disk and the file.

There are four access modes available with KFAM-7. Certain conventions
are to be followed for each access mode, as discussed below. The four access
modes concern access to the User File; however, when the User File is opened
for a station, the Key File is automatically opened along with it. The User
File can be assigned a password. Reading and writing applies to both the User
File and Key File in the descriptions below.

1. "Inquiry"™ is an access mode in which the station, once granted
access (open), may only read, but other stations may read or write.

2. "Read Only" is an access mode in which the station, once granted
access, may only read, and other stations may likewise only read.

3. "Shared" is an access mode in which a station, once granted access,
may read or write, and other stations may likewise read or write.

4y, m"Exclusive" is a access mode whereby a station, once granted access,
is the only station accessing that KFAM file until it is closed by
that station.

In addition to the protective features provided by the various access
modes, a sector protection option is provided for use in the Inquiry or Shared
access modes, because (1) more than one station may be accessing a sector,
and (2) this or another station may be writing (for instance, updating) that
sector.

The protected sector, depending on the file type, protects (1) the
entire block of records in the sector if blocked records are used, (2) the
record itself if it is the only record in the sector, or (3) the entire
record if the record is contained in more than one sector.

The record (sector) protection option is available to the programmer by
an argument in the call to KFAM record access subroutines. Only that station
can access a record, once protected, until that station executes another KFAM
subroutine. Thus, for example, if a series of updates are being performed by
a station, each access of a record turns off the protect flag set in global
memory for the previous record accessed and optionally sets the protect flag
for the next record.

96

A subroutine named RELEASE allows sector protection to be switched off,

in case a substantial delay occurs before the next KFAM subroutine call by
that station.

This discussion of record protection does not apply to the Read Only or
Exclusive access modes, wherein the record protect argument is ignored by KFAM
because either (1) only one station accesses the file at one time, or (2)
the access mode does not allow writing, thus the contents of the KFAM file
cannot be altered.

The user has control over disk hog mode use but rarely has any need for
disk hog mode because of the available access modes and KFAM's built-in Key
File integrity features. KFAM-T's Exclusive access mode is normally
sufficient for updating records. However, for extremely critical updates
involving multiple KFAM files, the user may activate and reactivate hog mode
by means of a $OPEN statement. Disk hog mode is released for the User File,
Key File, or both by KFAM-7 upon executing a subroutine or if the program
execution is hogged by KFAM-T#, therefore the user program need not use the
$CLOSE statement to release disk hog mode.

& KFAM-7 briefly hogs program execution during the following subroutines:
OPEN, CLOSE, RE-OPEN, WRITE RECOVERY INFO., FINDNEW, FINDNEW(HERE), all
multistation non-KFAM subroutines (OPEN, END, CLOSE), and during any
subroutine occasionally when operating in the Shared or Exclusive access
mode.

97

CHAPTER 18

KFAM REQUIREMENTS AND CONVENTIONS

18.1 THE USER FILE

An existing User File must be a cataloged disk data file, with or
without an END record. It must be wholly contained on one disk platter. Five
record types are supported. All records in a file must be the same type and
of fixed length. The record types are:

Type "N" - No Blocking

Each record occupies one sector:

DIM A$25, B, B$NO, C, C$40, D$40
DATASAVE DC #n, A$, B, B$, C, C$, D$

indicating one record per sector, with each record containing an A%, B,
B$’ C’ C$’ D$'

The key must be located in the same position within each record.

Records may be written in the "DC" mode, with control bytes, or in the
"BA" mode, without control bytes.

Type "A" - Array Type Blocked Records

Records must be written in non-contiguous array form:

DIM A$(4)3, B(4), c$(4)20
DATASAVE DC #n, A$(), B(), C$()

indicating 4 records per block, each containing an A$, B, and C$. The
block of records must be written using DATASAVE DC, that is, with
control bytes; DATASAVE BA may not be used.

All records must have the same format. Control bytes must be included
when calculating the record length.

98

fe

‘e

(v

The key must be located in the same position within each record. The
key may be a part of a field, i.e., STR(C$, 11, 10), but may not span
fields, may not include control bytes, and may not be a numeric field or
any part of a numeric field.

The block of records may not exceed one sector in length.

There may not be more than 38 fields per record.

Type "C" - Contiguous Blocked Records

All records must be the same length.

All the fields of a given record are stored contiguously on the disk,
for example:

DIM A1$3, C1$20, A2$3, C2$20, A3$3, C3$20, AH$3, cu$20
DATASAVE DC#n, A1$, B1, C1$, A2$, B2, c2$, A3$, B3, C33$,
Alg, BY, cus

indicating 4 records per block, each containing an Aj$, BJ, and Cj$.
The key must be located in the same position within each record.
The block of records may not exceed one sector in length.

Records may be written in the "DC" mode, with control bytes, or in the
"BA" mode without control bytes. However, if the file must be
reorganized in place using the REORGANIZE IN PLACE utility, it must be
written with control bytes. If written DC mode, control bytes must be
included when calculating the record length.

Please note that type "C" records may not be acceptable to Wang disk
sort software including SORT-4. KFAM-7 type "A" records are normally
used instead.

Type "B" - BA Mode Blocked Records

Type "B" records resemble type "C" records in that both are contiguous
blocked records, however, type "B"™ applies to records written in "BA"
which, as you know, contain no control bytes. Type "B" records share
the following characteristics with type "C" records:

a. The contiguous block of records must not exceed one sector in
length.

b. All records must be the same length.

¢. The key must be located in the same position in each record.
Because the type "B" records were written in the BA mode, they must be
accessed in BA mode instead of DC mode, which is the way records are

usuvally accessed after KFAM has located the requested record. Type "B"
records must not be accessed by DATALOAD DC. 1Instead, the DATALOAD BA

command is used and requires an absolute sector address.

99

Because absolute sector addressing is used, the starting address of the
file must be obtained by a LIMITS statement inserted after the OPEN
subroutine has been successfully executed, such as:

LIMITS T#U, N$, B, E, X

where: U = File Number, User File
N$= User File Name
B, E, X = variables set to receive User File starting

sector, ending sector, and number of sectors used.

Upon return, the value B should be saved. When B is added to the
record's relative sector address returned by KFAM, T6, this provides the
absolute sector address necessary for the x value of the DATALOAD BA
command shown in the example below:

DATALOAD BA T#U, (x,y) A$()

File Number User File
T6+B (absolute sector address, numeric form)

where: U
X

If KFAM returns an error condition (Q$ not blank), relative sector
addresses T6 and TU$ are not defined. TU$ is simply the value of T6 in
hexform; however, the value of B must be converted to hex form before
adding T4$ and B, to produce a HEX value of x.

KFAM subroutines return a pointer, Q, which contains the number of the
record within the block. To locate the starting byte within the
256-byte sector block, the following formula applies: '

P = (Q-1)*L+1

where: P = starting byte within the block
L = record length
Q = pointer returned by KFAM

When the file is initially defined, using INITIALIZE KFAM FILE, the
record specified must usually include one control byte per field within
the record; however, with BA records ("B" type) there are no control
bytes, thus the record length specified is the exact length of the
records, with nothing added for control bytes.

100

Type "M" _ Multiple Sector Records

Each record occupies more than one sector.
For example, the following is a two-sector record:

DIM D$(6)64
DATASAVE DC #n, D$()

Each record occupies the same number of sectors.

The key must be located in the same position within each record. The
key may be located in any sector of the record, but may not span sectors.

Records may be written in the "DC" mode, with control bytes, or in the
"BA" mode, without control bytes.

Records may be up to 255 sectors in length. However, the following
restrictions apply in REORGANIZE IN PLACE:

a. Records may not exceed Y40 sectors in length.

b. Reorganization cannot be executed in 9K of memory if the record
length exceeds 8 sectors.

User File Name

The User File name, as recorded in the disk catalog, must conform to the
following conventions:

The 5th character must be the letter "F".

The 6th character must be a digit 0-9.

18.2 THE KEY

Each record's key in the User File may be from 2 to 30 bytes of
alphanumeric data (including hexadecimal data or packed numbers). The key
must not be a numeric field.

The first byte of an active key may not contain the value HEX(FF). The

value HEX(FF) in the first byte of a key in the User File indicates that the
record has been deleted from the Key File.

The key may not contain a value of all bytes HEX(00). (This corresponds
to the packed number 0, or the binary number 0, as a key value.) This lowest
possible value is reserved for the system.

Duplicate keys are not allowed. User File records need not be arranged

in ascending order of their keys within the file. KFAM automatically creates
the (indexing) Key File in whatever order the keys are within the User File.

101

18.3 THE KEY FILE

The Key File name 1is constructed by INITIALIZE KFAM FILE from the User
File name, as follows:

The 5th character in the User File name is changed from "F" to "K".

The 6th character is assigned the Key File number. This is always 1
unless multiple Key Files are maintained for the one User File, in which case
it may be any digit 1-9.

Size of the Key File

The first sector of the Key File contains the Key Descriptor Record
(KDR). The KDR contains control information necessary for KFAM.

The remaining sectors of the Key File are available for Key Index
Records (KIR's). Each KIR occupies one sector and contains Key Index Entries
(KIE's). The KIE is a field containing a key and a 3-byte pointer. The key is
the same as one of the keys in the User File. The pointer points to a User
record on the disk, either directly or indirectly. The maximum number of
KIE's per KIR is given by:

N = INT (240/(K+3))
where: K = Key length

3 = pointer length

N = maximum KIE's per KIR

The average number, A, of KIE's per KIR is calculated (conservatively)
as follows:

A = INT(N®.6)

The number of sectors, required for the Key File, for a given number of
records, R, 1s as follows:

S = INT(R/(A-1))+5

18.4 DEVICE ADDRESSES

Valid ISS disk device addresses and the ISS printer address are
specified during ISS start-up operation. ' Valid disk addresses include the
address specified as the ISS loading address (system disk).

When copying or creating a KFAM file it is recommended that the Key File
and User File be stored contiguously if on the same disk, or that the Key File
be stored on a different disk than the User File. This will wminimize disk
read/write head access times (track-to-track access), thus improving
throughput characteristics. Procedures for using non-KFAM subroutines to
catalog multiple files on a disk are described in Section 28.4.

102

18.5 COPYING KFAM FILES

Back-up copies of disks containing KFAM files should be made regularly
using the COPY statement. Use of the MOVE statement destroys the file's
access table. For file copy operations, however, where file space allocations
can be changed, the procedures below must be carefully followed.

During INITIALIZE KFAM FILE operation, the END sector is originally
written for the User File and Key File, and is automatically rewritten
thereafter by KFAM when the file is closed to reflect changes.

However, when copying a KFAM User File and Key File, the ISS Utility
COPY/VERIFY is required for both files. One of the parameters requested by
COPY/VERIFY is a value of EXTRA SECTORS for the file(s), which is directly
related to the END sector's position and USED sectors.

For example, suppose a KFAM User File has an allocation of 1000
sectors. If the file i1s copied and has 253 sectors USED, then the EXTRA
SECTORS value for COPY/VERIFY must be 747 sectors to maintain the allocated
space of 1000 sectors. Similarly, if records are then added so that 264
sectors are used, then 736 EXTRA SECTORS must be entered. The same procedure
for User File EXTRA SECTORS also applies to the Key File, whose USED sectors
value increases automatically under the control of KFAM as new keys (User File
records) are added to a file. KFAM does not, however, change allocated file
space as required.

It is extremely important to note that with KFAM files the internal

system information maintained in the KDR is not updated by COPY/VERIFY to
reflect changed file allocations.

Thus after any KFAM User File or Key File is copied by COPY/VERIFY, the
REALLOCATE KFAM FILE SPACE Utility Program must be run to update this critical
system information, for each file copied.

In summary, to copy a KFAM File, the following procedures are required
for both the User File and Key File.

1. Use a LIST DC statement or equivalent to obtain the values of
sectors USED, and sectors ALLOCATED for each file.

2. For each file, calculate the EXTRA SECTORS by subtracting
sectors USED from sectors ALLOCATED.

3. For each User File and Key File, run the COPY/VERIFY Utility in
the PART mode (PART allows different EXTRA SECTOR values for a
series of files), and specify (1) input file name, (2) output
file name, and (3) extra sectors assigned to the output file,

for each file.

4. Upon completion of COPY/VERIFY operations, run REALLOCATE KFAM
FILE SPACE for each file copied to the COPY/VERIFY output device
address.

5. The copied files are now ready for access by other software.

103

CHAPTER 19

THE KFAM SET-UP UTILITY PROGRAMS

19.1 OVERVIEW OF INITIALIZE KFAM FILE

INITIALIZE KFAM FILE must be run as the first step in setting up any
KFAM file, whether the file is, or is not, cataloged. If the file already
contains data records, INITIALIZE KFAM FILE should be followed by KEY FILE
CREATION (see Figure 19-1).

INITIALIZE KFAM FILE optionally catalogs an area on disk for the User
File, the Key File, or both, or it operates with an existing User File, Key
File, or both. It sets up the Key Directory Record (KDR), the first record of
the Key File, containing vital information about the User File and the Key
File, based on information supplied by the operator. It then creates a "null"
(empty) Key File. The KDR occupies the first sector, and is followed by a Key
Index Record (KIR), in the "null" Key File's second sector. An "END" record
is written following the first two sectors.

RUN INITIALIZE KFAM FILE

|

RUN
XEY FILE CREATION

PERFORM PROCESSING
USING KFAM
SUBROUTINES

Figure 19-1. KFAM Set-up Utilities

104

In the User File, the position of the END record depends on whether the
User File was previously cataloged or not. With a previously uncataloged file
Just created, the END record is written in the first sector. With a
previously cataloged file, the position of the END record, if any, remains
unchanged. In both cases, recovery information (KDR) is stored in the
next-to-last sector (dummy END record) of the User File, and the access table
and password is stored in the last sector (hardware trailer) of the User
File. The access table is cleared upon being written.

Information Required by INITIALIZE KFAM FILE

INITIALIZE KFAM FILE requires that the following information be supplied
by the operator:

User File Name

Device Address for User File: any valid ISS disk device address
Password (if any)

Is User File Cataloged?: Y OR N

Key File Number: 1-9

Device Address for Key File: any valid ISS device address
Is Key File Cataloged?: Y OR N

Record Type: A, B, C, M, or N

Logical Record Length (Type A, B, or C): nnn

Blocking Factor (Type A, B, or C): nn

Sectors per Record (Type M): nnn

Key Length: 2-30

Starting Position of Key: nnnnn

Estimated Number of Records: nnnnn

Are File Specifications OK?: Y OR N

Hard Copy Printout?: Y OR N

This is a formidable set of questions for an operator. It is suggested
that this utility be run by an application programmer, or that a programmer
write a set of specific answers for a specific KFAM file, as a supplement to
the general operating instructions below.

Some of the answers to the above questions are not obvious and require
some discussion:

User File Name

The User File Name must conform to the KFAM naming convention. The 5th
byte must be "F". The 6th byte must be a digit 0-9. The remaining bytes may
be any alphanumeric characters. The User File may be an active or scratched
cataloged file; if the User File is not a cataloged file, INITIALIZE KFAM FILE
will create the User File.

105

Password

Entry of a Password, which allows access to the User File, is required
only if the User File is already cataloged and active, and had a Password
previously assigned to it. When creating a new User File, the entry of the
Password assigns that Password to the User File, thus requiring entry of that
Password whenever any station seeks to access that file. If no characters
are entered (i.e., key RETURN), a Password of blanks is assigned to the new
User File. With an already cataloged User File, a reply of RETURN indicates a
Password of blanks was previously assigned to this file and thus entry of a
Password is not required.

Key File Number

Normally, 1 should be entered. However, if multiple Key Files are to be
used to index the same User File, they must be uniquely identified by the Key
File Number, which can be any digit from 1 to 9. Multiple Key Files per User
File are not supported by Wang Laboratories, Inc.

The Key File name is derived from the User File name, by replacing the
"F" in position 5 with "K", and the digit in position 6 with the Key File
Number. The Key File may be active, scratched, or not cataloged.

Record Type
KFAM supports five different record types:
Type A: Array type blocked records.

More than one data record is contained in a sector. The block of
records is written as an array (non-contiguously) within a sector, e.g.,

DIM A$(4)12, B(4), C$(U4)36
DATASAVE DC #n, A$(), B() C$()

indicating U4 records per sector, each record containing an A$, B, and C$.
Type C: Contiguous blocked records.

More than one data record is contained in a sector. Each record
occupies a contiguous amount of space on the disk. For example, there

are three records per sector, each containing a key (K$) and data (D$):

DIM K1$12, D1$64, K2$12, D2$64, K3$12, D3$64
DATASAVE DC #n, K1$, D1$, K2$, D3$, K3$, D3$

Type N: No blocking

Each data record occupies one sector.

106

Type M: Multiple Sectors per record.

Each data record occupies two or more sectors.

Type B: BA Mode Blocked Records

More than one data record is contained within a sector. The blocked
records occupy a contiguous amount of space. These records resemble

Type C records, except that Type B records are written and accessed in
BA Mode instead of DC Mode, and thus contain no control bytes.

Logical Record Length

The logical record length for record types A, B, and C is calculated as
follows:

a. Add up the 1lengths of the fields contained in a single record
(numeric fields are 8 bytes long).

b. For record types A and C (DC mode) only, add 1 per field of the
record, for control bytes. Control bytes must be included when
calculating the record length, with the exception of type C records
written in BA mode.

For example, in the above example for type A records, the record length
is 59. 1In the above example for type C records, the record length is 78.

All records of the file must have the same length. For type A, all
records must also have the same format, for example, a 12-byte alpha field,
followed by a numeric field, followed by a 36-byte alpha field, each field
contained in an array of 4 elements.

Blocking Factor

The blocking factor is the number of records per sector (Type A, B, and
c).

Starting Position of Key

This is the absolute starting position of the key within the sector or
sectors, except for type A records, where it is the position within the record
plus two for sector control bytes. This requires some explanation.

When a record is written on disk, in the normal mode (DATASAVE DC or
DATASAVE DA), two control bytes are written at the start of the sector.
Following these two control bytes, the Start-of-Value (SOV) control byte for
the first data value is written, followed by the data itself. Then the SOV
control byte for the second value and the second value itself are written, and
so on. An end-of-block (EOB) control byte is written following the last data
value written.

107

The.layout of the sector on disk looks like this:

Field Not

Used

Field Field Field Field

HOW-IX00
COMH2ZO00
< OO0
-
<O W
n
<O W
w
<O W
&=
<O W
%]
WOm

o
-

23

For the purposes of determining the starting position of the key, the
bytes of the sector are numbered from 0 to 255. The starting control bytes
are bytes 0 and 1. The SOV control byte for the first field is byte 2. The
first byte of data is byte 3. The second field starts in byte 3 + L1 + 1,
where L1 is the length of the first field, and so on.

The starting position of the key is the number of the first byte of the
key. For blocked records, the blocking is ignored when calculating the
starting position of the key. It is calculated as if there were only one
record per block. The KFAM utilities make the necessary adjustments to
calculate the position of the key in subsequent records within the sector.

In particular, with type A records, the blocking should be ignored when
calculating the starting position of the key. Given the record in the example:

DIM A$(4)12, B(U), C$(4)36
DATASAVE DC #n, A$(), B(), C$()

the actual layout of the sector is as follows:

Bytes Contents
0,1 Control bytes
2 Sov

3-14 A$(1)

15 Sov
16=27 A$(2)

28 Sov
29-40 A$(3)

41 Sov
y2-53 A$(l)

54 Sov
55-62 B(1)

63 Sov
64-71 B(2)

72 Sov
73-80 B(3)

108

Bytes Contents

81 Sov
82-89 B(Y4)
90 sov
91-126 c$(1)
127 SOV
128-163 c$(2)
164 SOV
165-200 c$(3)
201 Sov
202-237 c$(l)
238 EOB

The fact that there are four records per sector should be ignored in

determining the starting position of the key. The sector should be seen as if
it contained only one record, as follows:

Bytes Contents

0,1 Control bytes
2 sov

3-14 A$(1)

15 Sov

16-23 B(1)

24 sgv

25-60 c$(1)

61 EOB

If the key starts in the first byte of C$(), the starting key position
is 25, and not 91, as would be indicated by the actual blocking.

For record types C, M and N, it is possible to have records written in

the DATASAVE BA mode. In that case, no control bytes are inserted, and the
starting position of the key is exactly where it is located in the array
defining the record (starting byte 0).

For record type B, it is necessary to write records in BA mode, and the
starting position of the key is exactly as described in the preceding
paragraph.

For record type M, it is possible to have the key begin in the second,
or higher, sector of the record. In that case, add 256 for each sector
preceding the one containing the key, and then add the starting position of
the key within the sector (first byte of the sector = 0).

When writing multiple sectors in the normal mode (DATASAVE DC or
DATASAVE DA), it is necessary to determine which field will begin the second
sector, etc. The 2200 System does not write partial fields in a sector.
Where there is not room to write the next field in the current sector, the
2200 System writes an EOB control byte, leaves the rest of the space unused,
and starts another sector. For example, if the record is defined:

109

DIM D$(6)6U
DATASAVE DC #n, D$()

the record occupies 2 sectors, as follows:

Bytes Contents
First sector:

0,1 Control bytes

2 Sov

3-66 D$(1)

67 SOV

68-131 D$(2)

132 Sov

133-196 D$(3)

197 EOB

198-255 Not used (58 bytes, not room to write next

complete field)

Second sector:

0,1 Control bytes

2 Sov

3-66 D$ (L)

67 Sov

68-131 D$(5)

132 SOV

133-196 D$(6)

197 EOB

198-255 Not used (end of data)

Once the actual record layout is determined, then the starting position
of the key can be calculated. If the key occupies, for example, the first 8
bytes of D$(l4), then the starting position of the key is 259, and not 198 as
might be calculated by ignoring the actual way that the system writes records.

Estimated Number of Records

This is the maximum number of records that the User File will contain.
If the User File is not yet cataloged, the program will catalog enough sectors
to hold this many records. If the User File is already cataloged, the program
checks that enough space is cataloged to contain this many records.

The program also calculates the size of the Key File, based on the
estimated number of records. If the Key File is not yet cataloged, the
program catalogs the required number of sectors. If the Key File is already
cataloged, the program checks to see that enough space is cataloged. If there
is not enough space cataloged, the program issues a warning message.

110

W

The estimated number of records should be calculated in advance, as the

maximum number of records which the User File will contain, plus an estimate
of the number of deleted records which will be in the file when it is at its
maximum size.

This estimate is not coritical. It can be revised later, using the ISS
COPY/VERIFY Utility, followed by REALLOCATE KFAM SPACE.

Hard Copy Printout

Output goes to the ISS start-up printer address assigned to this
station. For example, if printer address = 215, output will go to the printer
with a device address of 215. If the printer address = 000, output will
appear on the screen.

19.2 INITIALIZE KFAM FILE OPERATING INSTRUCTIONS

DISPLAY INSTRUCTIONS

1. 1. From the KFAM-7 menu, load the

INITIALIZE KFAM FILE utility
by touching the specified
Special Function Key.

Mount the disk platter(s)
containing, or to contain,
the User File and Key File.

2. ENTER USER FILE NAME 2. Enter the name of the User
(SSSSFJNN) File. (The word "enter®"
includes touching the RETURN
key after visually verifying
the entry made.)

NOTE:

Error messages and recovery
procedures appear in

Appendix A. Also, although

not shown here, dashes appear
with the prompts on the actual
displays to allow easy entry of

parameters.
3. ENTER USER FILE DEVICE 3. Enter the xyy form of the
ADDRESS User File disk device
address.

mnm

l'-

T

8'

ENTER PASSWORD

IS USER FILE CATALOGED?
(Y OR N)

ENTER KEY FILE NUMBER
(NORMAL = 1)

ENTER KEY FILE DEVICE
ADDRESS

IS KEY FILE CATALOGED?
(Y OR N)

112

y,

7.

With an already cataloged and
active User File, an entry to
this prompt is only required if
the cataloged User File has a

- Password assigned other than

blanks to it; if no Password
is assigned, key RETURN
without entering any char-
acters. With a non-cataloged
User File or a scratched User
File, any entry made here will
be assigned to the User File
as a Password, which (later)
will be required in order for
any station to access this KFAM
File. If a Password need not
be assigned to this User File,
key RETURN without entering
any characters to assign

a Password of blanks.

Enter "Y" if the User File
already exists as an active

or scratched data file. Enter
"N" if the User File does not
exist.

Normally enter 1.

If there is more than one
Key File for a single User
File, the Key File number is
used to distinguish the Key
Files. The Key File Number
can be any digit from 1 to 9.

Enter the xyy form of the Key
File device address.

Enter "Y" if space has already
been cataloged for a Key File.
Enter "N" if the Key File has

not been cataloged.

LY

9.

10.

11.

12.

13.

14,

15.

16.

17.

ENTER RECORD TYPE
(A,B,C,N,M)

ENTER LOGICAL RECORD LENGTH

ENTER BLOCKING FACTOR
ENTER NUMBER OF SECTORS
PER RECORD

ENTER KEY LENGTH

ENTER STARTING POSITION

OF KEY

ENTER ESTIMATED NUMBER
OF RECORDS

11.

12.

13.

14,

15.

16.

17.

113

Enter A, B, C, N or M.
A=array type blocking
B=contiguous BA mode blocking
C=contiguous blocking

N=no blocking

M=multiple sector records

If record type A, B, or C,

proceed with Step 10, below.
If record type M, proceed with
Step 12, below.
If record type N, proceed with
Step 13, below.

Enter logical record length.
See above for calculation
of logical record length.

Enter number of records
per sector.

Proceed with Step 13, below.

Enter the number of sectors
per record. Record Type M
only.

Enter key length (2 to 30).
All record types.

Enter starting position of
key field within sector.

See above for calculation
of starting position of key.

Enter estimated maximum
number of records in User
File.

See above for calculation
of number of records.

The system calculates

disk space required for
User File and Key File.

The system displays file
specifications on the screen.

18. ARE FILE SPECIFICATIONS 18. Check file specifications
OK (Y OR N) displayed on the screen.
- Enter Y to continue.
If erroneous file specifi-
cations are displayed, enter N
and return to the KFAM menu.

19. DO YOU WANT A HARD COPY 19, For a hard copy printout,
PRINTOUT OF FILE DESCRIPTION? mount paper on printer
(Y OR N)? and enter Y. Otherwise, enter

N and skip to Step 21.

20, 20. The system prints file
) specifications on the
printer by hogging the
printer, if Y was the reply to
Step 19.

This is an exact duplicate
of the screen display,
Step 17.

21, 21. The system initializes
the User File and Key File.

NOTE:

If WAITING FOR PRINTER appears,
correct the printer, which must
be ON and SELECTED, or wait
until it is available. The
program will continue
automatically.

22. 22. The KFAM menu appears upon
completion.

19.3 KEY FILE CREATION UTILITY

The KEY FILE CREATION utility creates a Key File for the data records in
an existing User File. INITIALIZE KFAM FILE must have been run first, to
initialize both the User File and the Key File.

KEY FILE CREATION ignores any records which have HEX(FF) in the first
byte of the key, under the assumption that they are deleted records. It also
jgnores records which have duplicate keys, but prints the relative sector
number and record number where such duplicate keys are encountered.

114

“»

record in the User File in physical sequence (see step 7 below).
can use this to detect the end-of-file condition.
should be made available to the operator before running this program,

The utility optionally allows the operator to enter the key for the last

the User File has a valid END record.

The program
The value of the last key
unless

The KFAM file is opened in the Exclusive mode.

KEY FILE CREATION Operating Instructions

DISPLAY

ENTER USER FILE NAME (SSSSFJNN)

ENTER USER FILE DEVICE
ADDRESS

ENTER PASSWORD

ENTER KEY FILE NUMBER (NORMAL=1)

115

INSTRUCTIONS

From the KFAM-T menu, load the
KEY FILE CREATION utility

by touching the specified
Special Function Key.

The disks containing the
User File and Key File must
be on-line.

Enter the name of the User
File.

NOTE:

Error messages and recovery
procedures appear in Appendix
A. Although not shown here,
prompting dashes accompany
the actual prompts.

Enter the xyy form of the User
File disk device address.

An entry to this prompt is only
required if the User File has a
Password assigned to it, in
which case the Password must be
entered exactly as previously
to this User File. If a
Password was not assigned, key
RETURN without entering any
characters.

Enter the Key File Number.
The Key File Number should
always be 1, unless there are
multiple Key Files for a
single User File, in which
case the Key File Number may
be any digit from 1 to 9. 1In
any case it must have been
initialized.

6.

7.

ENTER KEY FILE DEVICE
ADDRESS

ENTER LAST KEY

(Record locations and keys are
displayed on the screen so
that the operator can check
the progress of the program.)

116

Enter the xyy form of the
Key File Device address.

The last key need not be
entered if the User File has
an END record following live
data, and all records to be
deleted, including inactive
blocked records in the last
used sector, have been flagged
by a HEX (FF) in the first
byte of the key. In this case,
key RETURN without entering
any characters; otherwise,
enter the key of the last
record in the User File.

The system opens the files,
sets up the screen display,
and creates the Key File.

Execution messages are printed
or displayed on lines 7-10
respectively, if the ISS
start-up printer device
address indicates a printer
(e.g., 215) or is 000. With
displayed output, key CONTINUE,
then RETURN to continue if an
error message is encountered
(see Appendix A).

The KFAM-7 menu appears upon
completion.

28

CHAPTER 20

KFAM-7 SUBROUTINES AND BUILD SUBROUTINE MODULE

20.1 OVERVIEW OF KFAM-7 SUBROUTINES

The KFAM-7 subroutines are designed to simplify the file access and
maintenance operations most frequently performed on files organized by
KFAM-7. Included are DEFFN' statement subroutines to add new records to a
file, delete existing records, locate existing records, and access a file's
records in ascending or descending key sequence.

A single KFAM-7 file consists of two cataloged disk files, a User File
and its Key File. KFAM subroutines never alter the data in the User File.
They operate upon the data in the Key File, locate a record, and update the
Key File whenever a record is to be added or deleted. Their function in
relation to the User File is only to set the User File's Current Sector
Address to the 1location of the desired record in the User File and, for
blocked records, to pass back to the application program the record location
within the sector. This process is initiated when the application program
passes a key to the KFAM subroutine in one of the GOSUB! statement arguments.
Upon completion of the KFAM subroutine, the application program must perform
the proper operation on the User File.

An internal mechanism in global memory called a "queue" ensures for all
stations operating in the Inquiry and Shared access modes attempting to access
the same file that subroutine execution is performed on a first-come-first-
served basis for the respective file. Similarly, KFAM-7 takes the precaution
of "hogging" program execution during certain subroutines to protect the
integrity of the control information contained within global memory.

Just as KFAM-7 does not operate upon the User File, so the application
program should never operate directly upon the Key File. All operations
involving the Key File, including OPEN and CLOSE, should be accomplished via
the KFAM-7 subroutines. The functions performed by the KFAM-T subroutines are:

117

Name

OPEN

DELETE

FINDOLD

FINDNEW

FPINDNEW (HERE)

FINDFIRST

FINDLAST

FINDNEXT

118

Function

Open specified User File and
companion Key File, which previously
were created by the INITILIZE KFAM
FILE utility program.

Remove specified key from Key File;
set this station's Current Sector
Address to the record in the User
File whose key has been deleted from
the Key File. Subtracts one from
record count.

Locate specified key in the Key
File; set this station's Current
Sector Address to the record in the
User File with that key.

Add specified key to Key File;
allocate space for a new record in
the User File, and set this
station's Current Sector Address to
the location for the new User File
record. Adds one to record count.

Add specified key to Key File; set
this station's Current Sector
Address to User File sector where
the new record is to be written.
Adds one to record count; normally
follows a DELETE (changes deleted
record's key).

Locate record with lowest key in
User File; set this station's
Current Sector Address to that User
File sector.

Locate record with highest key in
User File; set this station's
Current Sector Address to that User
File sector.

Locate next record in User File in
logical key sequence; set this
station's Current Sector Address to
that User File sector.

FINDPREVIOQUS Locate previous record in User File
: in logical key sequence; set this
station's Current Sector Address to
that User File sector. May be
executed in any situation where
FINDNEXT is allowed.

RELEASE Allows a User File sector,
previously protected by a station,
to be accessed by other stations.

RE-OPEN Changes the access mode of a
currently open User File.

WRITE RECOVERY INFORMATION Writes current file END record at
end of active data in User File, and
writes recovery information in the
next-to-last sector--which would

otherwise only occur when a file is
closed--without closing the file.

CLOSE Close User File and companion Key
File.

Reserved Variables

KFAM-7 subroutines use Q, R, T, and V variables and arrays (alpha and
numeric) for storage of critical internal pointers. The user-written program
should, therefore, strictly avoid the use of any Q, R, T, or V variables.
Also, note that €Q, 6T, and @V global variables are reserved for KFAM-7 use.

Reserved DEFFN' Statement Subroutines

With the presence of a global partition containing the KFAM-T DEFFN'
statement subroutines, the need to reserve the DEFFN' statements provided by
KFAM-7 for exclusive KFAM-7 use 1is extremely important. When a GOSUB!
statement is encountered, the calling user partition is searched for the
corresponding DEFFN' statement before the currently selected global memory
partition is searched for the corresponding DEFFN' statement. The global
program text contained in module WKFAMO107" includes DEFFN'212 through '219
and DEFFN'230 through '239 (inclusive). The user's application should avoid
use of these reserved DEFFN' statements. Similarly, any other global
partition should not be named "KFAM" (e.g., DEFFN' @PART "KFAM").

Identification of KFAM Files

A User File and Key File can be thought of collectively as a KFAM file.

To use a KFAM file, the User File and the Key File must be open
simultaneously. Thus, each KFAM file requires two nglots™ or "rows" in the
station's Device Table. With 2200MVP systems, there are sixteen Device Table
"slots" per station numbered #0 to #15, which allow up to eight KFAM files to

119

be open. Before opening any KFAM-7 file, the file numbers associated with the
User File and Key File must be identified to their disk addresses using a
SELECT statement, e.g., SELECT #3/B10, #4/310.

The OPEN subroutine must be used to open a Key File and User File,
before any KFAM file access operations can take place. The user-written
application program must pass to the OPEN subroutine the file numbers to be
used for the Key File and User File. The application program also passes to
OPEN a digit, which will be used to identify this KFAM file (User File/Key
File) for all other KFAM subroutines. This digit, 1-8, is called the "KFAM ID
number." When passed to the OPEN subroutine, OPEN establishes this number as
the single identifier for the pair of cataloged files being opened. In
subsequent operations, while these files are open, they are identified

collectively simply by passing the KFAM I.D. Number to the desired KFAM
subroutine.

The file number for the User File is employed only when a record is to
be written to or read from a User File. Then, the file number of the User
File (#0 - #15) must be specified in the DATASAVE DC or DATALOAD DC
statement. The KFAM I.D. Number is not used. In general, the file number of
the Key File is never used, since any reference to the Key File should be via
a KFAM subroutine. Note that accidental use of the Key File's file number in
place of the User File's file number in a DATASAVE DC statement causes the
user data to be written over data in the Key File. This destroys the Key File.

It is possible to have the same User File open concurrently with more
than one Key File, but each such pair (User File/Key File) must have a
different KFAM I.D. Number, and the User File must be referenced by a
different file number in each case. Multiple Key Files per User File is
allowed but is not supported.

Key File Recovery Information

The KFAM maintenance utilities include a program called KEY FILE
RECOVERY. The purpose of this program is to reconstruct a Key File from an
existing User File, in the event that the Key File is accidentally destroyed.
Unlike the program KEY FILE CREATION, it does not require that the key of the
last physical record in the User File be known. However, it does require that

all user-written application programs operating on the file adhere to two
conventions:

1. All DELETED records in the User File must have hex (FF) as the first
byte of the key. This means that after a program calls the DELETE
subroutine, it must then save hex (FF) into the first byte of the
record's key. Also, when blocked records are added to a KFAM file,
if the new sector is only partially filled with added records and
"{nactive” records exist within that sector, the inactive records
must contain hex FF in the first byte of the key.

2. With KFAM-7, CLOSE is a system requirement. If BUILD SUBROUTINE
MODULE was used and the CLOSE WITH RECOVERY INFO option was not
selected, the user must include the WRITE RECOVERY INFO subroutine
and must execute the WRITE RECOVERY INFO subroutine before closing a
KFAM file whenever FINDNEW has been used.

120

[

20.2 KFAM ACCESS MODES

There are four KFAM file access modes designed for efficient
multistation, shared file operation. The chosen access mode can be changed
once file access is gained by calling the RE-OPEN subroutine. Each access
mode is listed in Table 20-1 with a description of record access conventions
to be followed, as well as which file access modes are allowed and are not
allowed by other stations attempting to access the file. Under the column
RECORD ACCESS DESCRIPTION in Table 20-1, "read" and "write"™ applies to both
the User File and Key File. It is the user's responsibility not to update a
file opened in the Inquiry or Read-Only access modes.

Table 20-1.

KFAM Multistation Access Modes

ACCESS MODE

RECORD ACCESS
DESCRIPTION

DOES ALLOW

(OPEN SUCCESSFUL)

DOES NOT ALLOW
(ACCESS CONFLICT)

Inquiry (1)

Indicates this station

will read only, but
other stations may

read or write.

User File sector
protection avail-
able. No updating
allowed.

Inquiry,
Read Only
Shared

Exclusive

Read Only
(2)

read only. User

Indicates this station

will read only, and
other stations may

File sector protect-
ion does not apply.
No updating allowed.

Inquiry,
Read Only

Shared,
Exclusive

Shared (3)

Indicates this station
may read or write,

and other stations
may read or write.
User File sector
protection available.

Inquiry,
Shared

Read Only,
Exclusive

Exclusive

(4)

Indicates that only
this station has the
file open. Other

stations cannot access
this file. User

File sector protec-
tion does not apply.

None

Inquiry,
Read Only,

Shared,
Exclusive

121

Inquiry and Shared Access Modes

Inquiry and Shared access modes assume that another station may be
updating records and/or changing the Key File structure. Record protection is
available for use. Record protection is indicated by a protect flag argument
and is available for the following record access subroutines: FINDOLD,
DELETE, FINDNEW, FINDNEW(HERE), FINDFIRST, FINDLAST, FINDNEXT, FINDPREVIOUS.

NOTE:

The following subroutines require files they access to be
Opened in Shared or Exclusive mode: DELETE, FINDNEW,
FINDNEW(HERE).

Other Access Modes

In the Read Only and Exclusive access modes, the Key File cannot be
changed by another station because (1) in the Read Only mode only reading is
allowed and (2) in the Exclusive mode only one station can access the KFAM
file. Record protection of the User File is ignored. This saves processing
time over the Inquiry or Shared modes and is made possible by the protection
of the KFAM file built into these access modes.

KFAM Utility Access Modes

Should it be necessary to run an application program simultaneously with
other application programs or with KFAM utility programs, some planning of
multistation file use may prove helpful. The following KFAM utility programs
access KFAM files in the Exclusive mode:

KEY FILE CREATION Utility Program
REALLOCATE KFAM FILE SPACE Utility Program
REORGANIZE IN PLACE Utility Program
REORGANIZE SUBSYSTEM Standalone Routine
CONVERT KFAM-3 TO KFAM-7 Utility Program
CONVERT KFAM-4 TO KFAM-7 Utility Program
RESET ACCESS TABLE Utility Program

KEY FILE RECOVERY Utility Program

PRINT KEY FILE uses the Read-Only access mode. BUILD SUBROUTINE MODULE
hogs the disk during its execution.

122

20.3 PROCEDURES FOR PROGRAMMING WITH KFAM-7

In addition to the calling sequences, access mode selection, and the
previously mentioned conventions necessary for Key File recovery and
identification of KFAM files, the following list of considerations should be
incorporated into KFAM-7 application programs.

1. Each application program must contain the KFAM-7 variables from the
module "KFAMOOO7". The array elements of the arrays on line 225 may
be changed to any value from 1 through 8 to allow more than 3 KFAM
files to be open at any one time (preset to 3). These KFAM-T7
variables require about 1,000 bytes plus 87 bytes for each KFAM file
to be open. Also, if the user needs more than 30 files open per
2200MVP System, see Section 26.2, "Internal Storage: Global Memory".

It 1is recommended that the user 1load KFAMOOO7 from the KFAM-7
diskette and edit line 225 as required before entering the program
text. The statement lines originating from KFAMOOO7 should be saved
along with the user's program text and thus are incorporated into
the user's application program. The programmer should observe the
BASIC-2 Language conventions applicable to COM and DIM statements
and may renumber the KFAMOOO7 statement lines if required.

2. Before opening any KFAM-T7 file, the variable S2 must be equated to
the station number (partition number) currently in use. Station
numbers may range from 1 through 16 and may be equated either by the
program or by an operator entry during ISS start-up.

3. Before calling any KFAM-T7 subroutine, the application program must
execute the following program statement within the program and any
associated overlays.

SELECT @PART "“KFAM"

This program statement selects the global partition "KFAM" for this
user partition. If any other SELECT 6PART statement is executed
afterwards within the user's application program, the SELECT 6PART
"KFAM" statement must be re-executed to reselect the global
partition "KFAM" before any KFAM-7 subroutines are called {(only one
global partition may be selected by each partition).

4, The $OPEN and $CLOSE statements are available to respectively
activate and deactivate hogging of a particular peripheral such as a
disk drive or a printer connected to the CPU. For example, because
a printer connected to the CPU may be accessible to multiple
partitions, the printout from one partition may be interspersed with
another partition's printout. To avoid this situation, a partition
should hog the printer ($OPEN) until printing has been completed,
and then release the printer hog ($CLOSE). Similarly, an
application program may take advantage of the 2200MVP's programmable

123

50

interrupt feature to determine when an currently hogged printer (or

any other peripheral) is available and take advantage of its
availability.

The application program should provide an error recovery procedure
that will close all KFAM-7 files open or provide the operator with a
means of closing files. The ERROR or SELECT ERROR statements may be
used in conjunction with the ERR function to provide access to error
recovery routines which might be self-correcting and thus avoid the
need to close KFAM-7 files (especially for "background" user
partitions).

In the Inquiry or Shared access modes, the record protect option
should be implemented on a record if a DATASAVE will be executed on
the record following return from that subroutine. Updating records,
adding new records, and flagging deleted records all require that a
DATASAVE be executed; therefore, the protect flag should be set for
all these operations. Also, if a DATALOAD is first executed to read
a record to be updated, a DBACKSPACE statement is needed before
executing the DATASAVE because a DATALOAD statement automatically
increments the Current Sector Address. Operations which only
execute DATALOAD on the record should not set record protection.

The use of DATASAVE DC END to write the END record (following the
last sector of live data records) must not be performed. KFAM
maintains the END record automatically in the Key File's KDR and
updates the END record in the User File when the file is closed. A
DATASAVE DC END would destroy the file, as would any MOVE statement.

The application program, when accessing User File records, must
check for a return code of Q$ = "B", indicating that the record
sought is protected. On a Q$ = "B" condition, the application
program should execute the $BREAK statement before reexecuting the
subroutine. For example,

4230 GO TO U250
4240 $BREAK 5 :REM WAIT FIVE "TURNS"

4250 GOSUB' 237 (2,1):REM FINDNEXT
4260 IF Q$ = "B" THEN 4240: REM IF BUSY, WAIT AND RETRY

In general, a file should not be opened in Exclusive mode, except in
the following circumstances:

a) A time-related operation must take place with the file
status fixed as of the beginning of the operation. For
example, printing a report at the end of an accounting
period.

b) If maximum file access speed is needed. When a file is open
in Exclusive mode, the KFAM-7 subroutines can search the Key
File without concern for protected records.

e¢) As an alternative to disk hog mode use.

124

10.

11.

12.

13.

Application programs must never write trailer records of any kind
into the User File. In general, application programs must never
make any assumptions about the status of User File sectors other
than those specifically returned by a subroutine. For example,
under KFAM-7 it is possible for the next sequential record location,
after that returned by a FINDNEW, to be already occupied by a live
record written by another station.

If the previous subroutine call set the protect flag and there may
be a long delay before the next KFAM-7 subroutine call on that file,
application programs should execute the RELEASE subroutine.

One might consider any keyboard entry operation as a long delay and
execute RELEASE prior to the keyboard entry. Alternatively, a
Special Function Key subroutine (i.e., use the RETURN
statement after the DEFFN' statement) that executes RELEASE may be
made available during all keyboard entry operations. The operator
would then be instructed to touch the specified Special Function Key
if there is any delay prior to responding.

The CLOSE subroutine must be executed at the conclusion of
operations on any KFAM-7 file. The operator should always have
available a procedure for CLOSING the file in the event of program
malfunctions or other disaster. (If the CPU's power is turned off
without CLOSING the file, the access table retains a notation for a
"phantom" station; the RESET ACCESS TABLE utility must be run.) A
Special Function Key subroutine might be made available to CLOSE a
file at any time.

Perhaps the most frequently encountered programming error is the one
that is most often taken for granted, that is, to check the return
code contained in alpha-variable Q$ after each KFAM subroutine
call. As shown in Figure 20-1, after calling any KFAM subroutine,
the value of Q$ must be checked upon return. If Q$ does not return
a blank, the appropriate error routine should be accessed. Again, a
Q$="B" on a record access subroutine indicates a protected (busy)
sector, and a delayed retry is recommended. For other values of Q$,
line numbers or other means of isolating the probable cause might be
displayed.

Also, the value of numeric variable Q indicates the record number in
the sector if blocked records are used, or Q equals one if unblocked
records are used. The value of Q need only be checked with blocked
records.

125

CALL KFAM
SUBROUTINE

VALUE
OF Q$=BLANK
?

ERROR HANDLING
ROUTINES

YES

CONTINUE

Figure 20-1. KFAM Subroutine Return Code Logic

20.4 BUILD SUBROUTINE MODULE UTILITY PROGRAM

BUILD SUBROUTINE MODULE creates a module at the specified disk address
containing the KFAM subroutines chosen by the programmer. It allows the
programmer to include in the module to be loaded into global memory only those
subroutines and subroutine capabilities actually needed and thereby minimizes
the amount of global memory required for KFAM-7 subroutines. This 1is an
alternative to using the KFAM-T module KFAMO107 which contains all KFAM=-T
subroutines. With KFAMO107, the CLOSE WITH RECOVERY INFO is executed when the
CLOSE subroutine is called. When a module is created by BUILD SUBROUTINE
MODULE, one of the BUILD SUBROUTINE MODULE options determines whether the
CLOSE is to be executed with or without RECOVERY INFO.

NOTE:
KFAM-7 utilities require the following subroutines to be
contained within the global partition "KFAM": OPEN,
FINDOLD, FINDNEW (HERE), FIRSTFIND, FINDNEXT, and CLOSE
WITH RECOVERY INFORMATION. Also, there must be only one
global partition "KFAM" per 2200MVP system at any one time.

126

BUILD SUBROUTINE MODULE Options

The following subroutine options appear in step 4 of the Operating
Instructions below; their deseriptions appear below in Table 20-2. Note that
S.F. Keys 29, 30, and 31 are discussed in the Operating Instructions following
Table 20-2.

Table 20-2. BUILD SUBROUTINE MODULE Options

S.F. KEY/SUBROUTINE DESCRIPTION
Selections 01 to 10 KFAM subroutines
11/239 CLOSE KFAM Close subroutine which does

not write recovery information
necessary for KEY FILE RECOVERY.
Usually only chosen if records
will not be added or deleted.

12/CLOSE WITH RECOVERY KFAM Close subroutine which writes
INFO recovery information (KDR) in User
File necessary for KEY FILE
RECOVERY.
Selections 13 and 14 KFAM subroutines
157217 MUX OPEN For non-KFAM files (sequential

files), this subroutine opens a
file if it is cataloged.

16/ MUX OPEN NEW For non-KFAM files (sequential
files), this subroutine opens
and catalogs (creates) the file.

17/218 MUX END For non-KFAM files, this sub-
routine writes an END record.

18/219 MUX CLOSE For non-KFAM files, this sub-
routine closes the file.

127

Operating Instructions - BUILD SUBROUTINE MODULE

DISPLAY

2. ENTER THE NAME OF PROGRAM 2.
TO BE GENERATED?

3. ENTER OUTPUT PROGRAM 3.
DEVICE ADDRESS

4, KEY THE DESIRED FUNCTIONS y,
(A1l options are displayed.
The file name and number
of files entered in steps
2 and 4 are also displayed.)

128

INSTRUCTIONS

From the KFAM-T7 menu, load
BUILD SUBROUTINE MODULE by
touching the specified Special
Function Key.

Enter the name of the program
file which is to contain the
selected subroutines, maximum
of 8 characters.

If a file of the same name is
not already cataloged, the
utility allocates just enough
space for the selected
subroutines.

If a file of the same name is
already cataloged, that file is

used for the output program and
is overwritten. If the file is
a data file, it is changed to

a program file.

If extra space is desired in
the output file, it should be
cataloged in advance as a data

file.

NOTE:

Error messages appear in
Appendix A. Although not
shown here, prompting dashes
accompany the displayed
prompts.

Enter the disk device address
at which this subroutine
module (program file) will be
stored on.

Refer to Table 20-2 above for
the subroutines required

for this module. Touch the
appropriate Special Function
Key for the option required;
an asterisk will appear to the
left of each selection.

To cancel the options selected,
touch S.F. Key 29 and return
to step 4 above.

To process those options
indicated by asterisks (verify
these first), touch S.F.
Key 30 and go to step 6.

To abort this operation
and obtain the KFAM menu,

touch S.F. Key 31.

5. PHASE 2 - BUILDING MODULE 5. The output module is
generated.
(file name entered in Step 2. The KFAM menu appears.
appears)

20.5 CALLING THE KFAM-7 SUBROUTINES

The DEFFN' statement which marks each KFAM subroutine in global memory
requires certain parameter values to be passed from the GOSUB' statement which
calls it. Parameter values passed are assigned to certain variables within
the subroutine. The parameters (arguments) required are denoted in this
manual as '"symbolic variables" (i.e., "dummy variables") following the
appropriate GOSUB' statement. Symbolic variables are not the actual variables
required in an argument list. Instead, symbolic variables indicate whether a
numeric or an alphanumeric expression is required in place of the symbolic
variable.

If a symbolic variable's name is numeric, a numeric expression such as a
number or a user-defined numeric variable or array is required in its place.
If a symbolic variable's name is alphanumeric, an alphanumeric expression such
as an alphanumeric literal (in quotes) or a user-defined alphanumeric variable
or array 1is required in its place. This convention attempts to ensure that an
alphanumeric expression (argument) is not assigned to a numeric variable in a
subroutine, and vice versa.

Generally, the name chosen for a symbolic variable is the first letter
of the associated parameter's name. In the actual program, the programmer may
use any value or expression valid for use in a GOSUB' statement. Zeros in the
general statement represent parameters which are not used by KFAM; they
should be included as zeros in the GOSUB' statement.

For example, the general statement:

GOSUB' 233 (I,P,A$,0)

129

may be written as:

GOSUB'233(I,P,K$,0)

GOSUB'233 (2,1,"A48-3029",0)
GOSUB'233(F1+1,0,STR(P1$,7,8),0)
ete.

The symbolic variable names for KFAM-7 and their meanings are described
in Table 20-3.

Table 20-3. KFAM Subroutine Argument Symbolic Variables

Symbolic Variable Meaning
I KFAM I.D. Number (1-8)
K File number assigned to the Key
File
i} File number assigned to the User
File
F Key File number (1-9), specified

as the 6th character in the Key
File name, as assigned in INITIALIZE

KFAM FILE.
A$ The record key (alphanumeric).
N$ User File name.
A Access Mode as described in Table
5-1:
1 - Inquiry
2 - Read Only
3 - Shared
4 - Exclusive
P$ File Password (if any) assigned
this file during INITIALIZE KFAM
FILE.
P Protect flag. If P=0 or P=2 do not

protect this record. If P=1 or P=3
protect this record.

XXX Device address, Key File

yyvy Device address, User File

130

Return Codes Q and Q$

Upon returning to the main 1line program from the subroutines, the
variables Q and Q$ contain the following information:

Q returns the record position indicator for blocked files (i.e., files
with more than one record per sector). The record position indicator is a
numeric value which specifies the position of a desired record within a block.
For example, if Q=2, the key passed to the subroutine specifies the second
record in the block. For unblocked records, Q is returned as 1 and may be
ignored.

Q is not defined following the OPEN, WRITE RECOVERY INFORMATION,
RELEASE, RE-OPEN, or CLOSE subroutines.

Q$ contains the completion return code. It indicates the result of the

particular operation. The possible values of Q$§ and their meanings are
described in Table 20-4.

131

Table 20-4. KFAM Subroutine Q$ Return Codes

Q$ Value

Meaningﬁ

blank

The subroutine execution was
successful.

Duplicate key (attempting to add a
duplicate key to the file). The
Key File is unchanged. For OPEN
User File not found, OPEN issued
to open file, or other file
disposition conflict.

End of file (FINDNEXT, FINDPREVIOUS
only).

Key not found. Also "null" File.

No more space, either for the User
File or the Key File, or 8 levels
of index have been exhausted
attempting to add a record to the
file. The Key File is unchanged.
(FINDNEW and FINDNEW(HERE) only.)

For an OPEN, this indicates too
many files open to accommodate
opening this file (global memory
tables are full).

Busy Signal. The User File record
or block of records being accessed
has been "protected™ by another
station.

Access Mode conflict (OPEN only).
See Table 20-1.

Invalid Password.

Improper call to a KFAM subroutine,
(argument values erroneous, ete.).

If Q$ is anything other than blank, the User File Current Sector Address

parameter is undefined, and the value of Q is undefined.

Immediately upon return from any of the subroutines, the user's
application program should check Q$ for possible error indications.

instance, if Q$<>" " indicates an error.

132

For

o

"

The system assumes there are no programming errors in the user's
program. The KFAM subroutines can perform improperly and destroy a file if
the parameters supplied by the application program are erroneous. Therefore,
during the testing stage, it is recommended that the user keep a backup file
so that test data can be recovered if it is destroyed.

The subroutines check data errors and the kinds of errors likely to
occur during normal operation such as duplicate key, key not found, or no more
space. Errors resulting in Q$ = "X", ERR P37, or other ERR codes may occur if
the global subroutine module, as generated in BUILD SUBROUTINE MODULE, does
not contain all subroutines referenced by the user program. The following
errors, which are programming errors, may or may not be caught by the
subroutines:

Q$ Value

Error or ERR Code
KFAM I.D. Number not an integer X
between 1 and 8. ERR P34
KFAM I.D. Number is the same X
as I.D. Number for a file
already open.
File to be opened is already X
open.
Individual file numbers not ERR P57
integers between 0 and 15. ERR P34
Individual file number is X
duplicate of another file
number.
File name not in proper format, ERR D82
with Sth byte="F" and 6th ERR D84
byte a 0 (zero).
Key File number not an integer ERR X72
from 1 to 9.
File to be accessed has not X
been opened.
File names are not correct ERR D82
or do not exist on the disk ERR D84

platters specified.

133

20.6 OPEN (DEFFN'230)

The OPEN subroutine is used to open a User File and its companion Key
File which were previously created (initialized) by INITIALIZE KFAM FILE.
OPEN must be executed prior to execution of any other KFAM subroutine. In the
OPEN subroutine, a pair of modified multistation non-KFAM OPEN subroutines are
executed to open the named User File and its companion Key File. A SELECT
statement must be provided to associate each file number with its
corresponding disk device address. OPEN assigns a specified KFAM I.D. Number
to the pair of files. To call the OPEN subroutine, the following statements
are necessary within the user's program (note the presence of symbolic
variables):

S2 = station number (1-16)
SELECT #K/xxx, #U/yyy
GOSUB* 230 (I,K,U,F,N$,A,P$, nyxx", "yyy")

For The SELECT Statement

S2 is the station number (partition number). #K is the Key File number,

and xxx is the Key File disk address. #U is the User File number, and yyy is
the User File disk address (not used).

njy" is the file number to be associated with the User File. "#U" must
be used in all subsequent DATASAVE or DATALOAD statements to reference the
User File.

For The GOSUB' Statement

nIn js the KFAM I.D. Number which is to be associated with the newly
opened file, and must be used to reference the file in subsequent KFAM
subroutines. "I" can be a number from 1 to 8.

"g" ig the file number to be assigned to the Key File (see #K above).

"g" is the file number to be assigned to the User File (see {#U above).

nFn is the Key File number (the sixth character in the Key File name, it
may be an integer from 1 to 9, but normally it is 1).

"N$" is the name of the User File to be opened. The Key File name need
not be specified; it is built from the User File name and the Key File number
by KFAM itself.

"pAn i3 the Access Mode as described in Table 20=-1:

Inquiry
Read Only
Shared
Exclusive

EW N =
t !

134

"p$" is the File Password assigned this file during INITIALIZE KFAM FILE.

"xxx" is the device address, Key File.

"yyy" is the device address, User File (although not used by KFAM-7, an
argument value must be provided in the GOSUB' 230 statement).

Return Codes for OPEN

Q4 = " " (space) if the subroutine execution was successful.

Q$=X Station number, S2, not 1-16

File already opened

Duplicate file #

Access mode invalid

Key file not found

Named User File is program file or scratched or not found
Invalid password

Access mode conflict (see Table 20-~1)

Internal global partition of open files is full. See Chapter
26, global array 8T$(), for additional information.

ERR P34 KFAM I.D. out of bounds

ERR P57 File # not 0-15

ERR X71 Key File Number not 0-9 (0 is invalid but not checked)

> 0O > >

Changing Access Modes

To change a KFAM-7 file's access mode, the station may either call the
RE-OPEN subroutine or CLOSE the file and OPEN it with a different access mode.

20.7 DELETE (DEFFN' 231)

The DELETE subroutine deletes from the Key File a specified key and its
associated record location pointer. The Current Sector Address for the User
File is set to the location of the record whose key has been deleted, and for
blocked records the variable Q indicates the record within the sector. The
record itself in the User File is not altered or removed. Thus, although the
record is not physically removed from the User File, its key entry is removed
from the Key File, and the record can no longer be accessed through KFAM.
Shared or Exclusive access is required. This subroutine's execution subtracts
one record from the record count.

The calling sequence for DELETE is:
GOSUB' 231 (I, P, A$)
ni" is the KFAM I.D. Number assigned to the file in an OPEN subroutine.

"pr is the record protect option. P equal to 1 or 3 indicates record
protection; P equal to 0 or 2 indicates no record protection.

"A$" is the key of the record that is to be deleted from the file.

135

DELETE Return Codes

Q$ = "B" Busy Signal. The record sought is protected by another station.

Q$ = "N" if the key passed cannot be found in the Key File.

Q$ = "X" for file not open, invalid key containing HEX(FF), or access
mode not Shared or Exclusive.

Q$ = " " ("space") if the subroutine executed properly.

After calling a DELETE subroutine and checking for its successful
completion, the application program should flag the DELETED record in the User
File by changing the first byte of the deleted record's key to hex (FF). Note
the use of the DBACKSPACE statement in statement line 4100; this statement is
necessary to access the record Jjust deleted because the DATALOAD DC
statement's execution causes the Current Sector Address to be automatically
incremented by one sector. For unblocked files this can be done as follows:

Suppose:

DIM A$15, H(4,4), J(6)
and
DATA SAVE DC #1, A$, H(), J()

define a type "N" record where A$ is the key field.
The DELETE and flag operation might look like this:

4060 GOSUB' 231 (1, 1, A$): REM DELETE

4065 IF Q$ = "B" THEN 4060:REM BUSY TRY AGAIN

4070 IF Q$<O" " THEN 6000:REM UNSUCCESSFUL

4080 DATA LOAD DC #1, A$, H(), J()

4090 STR(A$,1,1)=HEX(FF):REM HEX(FF) IN 1ST BYTE OF KEY
4100 DBACKSPACE #1,1S:REM RECORDS ARE 1 SECTOR LONG
4110 DATA SAVE DC #1,A%$,H(),J()

6000 STOP "DELETE UNSUCCESSFUL"™

The space occupied by DELETED records in the User File can be
immediately reused; this normally requires special techniques together with
the use of FINDNEW(HERE). For information on these techniques, see Section
27.2.

20.8 FINDOLD (DEFFN' 232)

The FINDOLD subroutine is used to locate a desired record in the User
File. Following subroutine execution, the Current Sector Address for the User
File is set to the sector address of the record whose key was passed. For
blocked records, variable Q indicates the record within the sector. The
record can then be read with a DATALOAD statement. The calling sequence is:

136

GOSUB' 232 (I, P, A$)
"I" is the KFAM I.D. Number assigned to the file in the OPEN subroutine.

"P" is the record protect option. P equal to 1 or 3 indicates record
protection; P equal to 0 or 2 indicates no record protection.

"A$" is the key of the record being sought.

FINDOLD Return Codes

Q$ = "B" Busy Signal. The record sought is protected by another station.
Q$ = "N" if the specified key is not located in the Key File.

Q$ = "X" for file not open.

Q$ = " " ("space") if the key was located successfully.

20.9 FINDNEW (DEFFN' 233)

The FINDNEW subroutine is used to enter a new key in the Key File and to
find a location for the new record in the User File. FINDNEW enters the key
(argument) into the Key File and then sets the Current Sector Address for the
User File to an available User File location for writing a new record. For
blocked records, variable Q indicates the record within the sector. After
calling FINDNEW, the normal procedure is to test Q$, test Q if records are
blocked, and execute a DATASAVE statement. Shared or Exclusive access is
required. This subroutine adds one record to the record count.

GosuB' 233 (1,P,A$,0)
"I" is the KFAM I.D. Number assigned to the file in an OPEN subroutine.

"P" .is the record protect option. P equal to 1 or 3 indicates record
protection; P equal to O or 2 indicates no record protection.

"A$" is the new key to be entered in the Key File.

FINDNEW Return Codes

Q$ = "B" Busy Signal. The record (or block) sought is protected by
another station.

Q$ = "D" if the key specified is a duplicate of one already in the Key
File.

Q$ = "S" if there is no space in the User File for another record, or in
the Key File for another key entry, or 8 index levels have been
exhausted.

Q$ = "X" if file not open, invalid key of HEX(FF) or zeros, or if access
mode is not Shared or Exclusive.

Q$ = " v (m"space") if the key was entered without difficulty.

137

NOTE:

The User File location returned by FINDNEW is unoccupied by
live data, but is not necessarily at the end of all live
data in the User File.

Key File sectors are normally split 50/50 or a "bias" of .5. KFAM sets
the bias at .5 when a file is opened. An experienced programmer may set the
bias following the Open, for subsequent FINDNEW or FINDNEW (HERE) operations.
The array V8 (I) may be set to any value between .2 and .8 (I = KFAM file
I.D.). Records entered in sequential order are packed best at .2, in random
order at .5, and in backwards sequence at .8. Also see Section 26.2.

The following example illustrates the procedure for adding a record to
type A blocked files following FINDNEW. Note the test on Q before the
DATASAVE, and that the protect flag is set by FINDNEW.

4100 INPUT "KEY FIELD", A$:REM OPERATOR ENTERS KEY
4120 GOSUB '233 (1,1,A$,0) :REM FINDNEW

4130 REM TEST COMPLETION CODE

4135 IF Q$ = "B" THEN 4120 :REM BUSY TRY AGAIN
4140 IF Q3 = "D" THEN 5010 :REM DUPLICATE KEY?
4150 IF Q$ = "S" THEN 5050 :REM FILE FULL?

4160 IF Q¢ {>" " THEN 5060 :REM ERROR?

4170 REM NEW BLOCK OR OLD?

4180 IF Q = 1 THEN 4220 :REM FIRST RECORD IN NEW BLOCK?
4185 REM READ EXISTING RECORDS IN BLOCK

4190 DATA LOAD DC #2, A$(), B$(), c(), D()

4200 DBACKSPACE #2, 1S: REM BACKSPACE AFTER DATA LOAD
4210 REM ASSIGN RECORD VALUES TO PROPER ARRAY ELEMENTS
4220 A$(Q) = A3

4230 INPUT "SECOND FIELD", B$(Q)

4240 INPUT "THIRD FIELD", C(Q)

4250 INPUT “FOURTH FIELD", D(Q)

4260 REM SAVE BLOCK IN USER FILE

4270 DATA SAVE DC #2, A$(),B$(),c(),D()

5000 REM ERROR ROUTINES

5010 STOP "KEY ALREADY IN KEY FILE™

5050 STOP "KEY FILE OR USER FILE IS FULL"

5060 STOP "FINDNEW ERROR"

20.10 FINDNEW(HERE) (DEFFN*® 234)

The FINDNEW(HERE) subroutine is a special purpose subroutine which can
be implemented to reuse the User File space occupied by DELETED records or to
change the value of the key of an existing record. It adds a new key to the
Key File. Unlike FINDNEW, however, the User File location, which it
associates with that key, is the User File location returned by the last KFAM
subroutine call which must be DELETE. To use FINDNEW(HERE) to reuse the User

138

File space occupied by DELETED records, see Section 27.2. An illustration of
the use of FINDNEW(HERE) to change the value of the key of an existing record
is shown below. Shared or Exclusive access is required. This subroutine adds
one to the record count.
The calling sequence is:
GOSUB' 234 (I,P,A$,0)

The FINDNEW(HERE) argument 1list is identical to the argument 1list for
FINDNEW (see FINDNEW).

FINDNEW (HERE) Return Codes

Q$ = "B" Busy Signal. The record or block sought is protected by
another station.

Q$ = "X" if file not open, invalid key HEX(FF), if pointer (T4$) is out
of bounds, or file not opened with Shared or Exclusive access.

Q$ = "D" if the key specified is a duplicate of a key already in the Key
File.

Q$ = "S" if there is no space in the Key File for another entry or if 8
index levels have been exhausted.

Q$ = " v (space) if the subroutine executed properly.

The following example illustrates the use of FINDNEW (HERE) following
DELETE:

5000 GOSUB '231 (1,0,"ABCD") :REM DELETE "ABCD" FROM KEY FILE

5005 IF Q$ = "B" THEN 5000:REM BUSY

5010 IF Q$ = "X" THEN 5130

5040 IF Q$ = "N" THEN 5150

5050 GOSUB ‘234 (1,1,"EFGH",0) :REM SET "PROTECT", INSERT "EFGH" IN KEY
FILE

5060 IF Q$ = "X" THEN 5140

5070 IF Q¢ = "D" THEN 5160

5075 IF Q$="S" THEN 5170

5080 DATALOAD DC #2,A$,B$,C$,N

5090 A$ = "EFGH" :REM CHANGE KEY TO "EFGH"
5100 DBACKSPACE #2, 1S

5110 DATASAVE DC #2,A$,B$,C$,N

5115 GOSUB'239(1) :REM CLOSE FILES

5120 END

5130 STOP "ERROR IN 'DELETE' CALLING SEQUENCE"
5140 STOP "ERROR IN 'FINDNEW(HERE)' CALLING SEQUENCE"
5150 STOP "KEY NOT FOUND"

5160 STOP “DUPLICATE KEY"

5170 STOP "NO SPACE"

139

Key file sectors are normally split 50/50. The array v8() is retained
so that bias may be set by the experienced system programmer. v8(1),
where I is the KFAM file I.D. number, is set to .5 when the file is
opened. Following the Open, an experienced programmer may set it to any
value in the range .2 to .8. Records entered in sequential order are
packed best at .2, in random order at .5, and in backwards sequence at
.8. Also see Section 26.2.

20.11 FINDFIRST (DEFFN' 235)

The FINDFIRST subroutine sets the Current Sector Address for the User
File to the first record in 1logical key sequence. For blocked records,
variable Q indicates the record within the sector. ‘A DATALOAD statement can
be used after FINDFIRST to read the record. In order to access a KFAM file in
ascending key sequence, FINDFIRST is called followed by FINDNEXT calls until
the end of file is reached (FINDNEXT return code Q$ = "E"). The calling
sequence is:

GOSUB' 235 (I,P)
nIw ig the KFAM I.D. Number assigned to the file in an OPEN subroutine.

"pn is the record protect option. P equal to 1 or 3 indicates record
protection; P equal to 0 or 2 indicates no record protection.

FINDFIRST Return Codes

Q$ = "B" Busy Signal. The record sought is protected by another station.
Q$ = "N" if the User File contains no records.

Q$ = "X" if file not open.

Q$ = " " (space) if the subroutine executed properly.

20.12 FINDLAST (DEFFN' 236)

The FINDLAST subroutine sets the Current Sector Address for the User
File to the last record in logical key sequence. For blocked records, the
variable Q is set to the record position within the sector. A DATALOAD
statement can be executed following FINDLAST to read the record. In order to
access a KFAM file in descending key sequence, FINDLAST is called followed by
FINDPREVIOUS calls until the beginning of the file is reached (FINDPREVIOUS
return code Q3 = "E"). The calling sequence is:

GOSUB! 236 (I,P)
nI® jg the KFAM I.D. Number assigned to the file in an OPEN subroutine.

"pn is the record protect option. P equal to 1 or 3 indicates record
protection; P equal to O or 2 indicates no record protection.

140

FINDLAST Return Codes

Q$ = "B" Busy Signal. The record sought is protected by another station.
Q$ = "N" for a null file.

Q$ = "X" if file not open.

Q¥ = " " (space) if the subroutine executes normally.

20.13 FINDNEXT (DEFFN' 237)

The FINDNEXT subroutine sets the Current Sector Address for the User
File to the record immediately following (in logical key sequence) the last
record accessed by KFAM. For blocked records, the variable Q indicates the
record within the sector. A DATALOAD statement is executed following FINDNEXT
to read the record. FINDNEXT is useful for processing files in ascending key
sequence. The calling statement is:

GOSUB* 237 (I,P)
WI" is the KFAM I.D. Number assigned to the file in an OPEN subroutine.

"P" is the record protect option. P equal to 1 or 3 indicates record
protection; P equal to 0 or 2 indicates no record protection.

FINDNEXT Return Codes

Q$ = "B" busy signal. The record sought is protected by another
station. A retry is recommended following a $BREAK statement.
FINDNEXT goes back to the original key, so that the same record
that caused the busy signal is accessed on a retry.

Q$ = "X" if file not open or if next record not defined because previous
operation returned an error condition (Q$ not blank). Exception:
FINDOLD returning Q$ = "N" may be followed by FINDNEXT.

Q$ = "E" if the previous reference was to the last record in logical key
sequence (end of file).

Otherwise, Q$ = " " (space).

131

NOTE:

FINDNEXT cannot be executed as the first subroutine
following an OPEN subroutine call (use FINDFIRST). Also,
FINDNEXT cannot normally be executed immediately following
any subroutine which returned Q$ = "X" or "E". Otherwise,
FINDNEXT will locate the next sequential key, following any
subroutine.

If FINDNEXT is executed after a FINDNEXT which returned Q¢
= "B" (the Busy Signal), it will attempt to access the same
record that it previously found to be protected.

If FINDNEXT is executed following a FINDOLD that returned
Q4 = "N" (not found), FINDNEXT locates the record whose
key logically follows the key passed to FINDOLD.

20.14 FINDPREVIOUS (DEFFN' 212)

FINDPREVIOUS is the same as FINDNEXT except that it finds the previous
record in the file, in key sequence.

FINDPREVIOUS may be executed in any situation where FINDNEXT is
allowed. This includes following a FINDOLD where Q% = "N" is returned (key
not found), in which case a subsequent FINDPREVIOUS will find the next lowest
key.

The calling sequence is:

GosuB'212 (I,P)
nIw is the KFAM I.D. Number assigned in an OPEN subroutine.

wpn is the record protect option. P equal to 1 or 3 indicates record
protection; P equal to 0 or 2 indicates no record protection.

FINDPREVIOUS Return Codes
Q$
Q$
Qs

n¥" file not opened or a current key is not defined because of no
previous access or a prior error condition.

WE" end of file. In this case the dummy key marking the beginning
of the file has been reached.

"Bt busy signal. The User File sector found has been protected by
another station. In the case of a busy signal, FINDPREVIOUS goes
back to the original key, so that a subsequent FINDPREVIOUS will
find the same record again that caused the busy signal. A $BREAK
statement and a retry are recommended.

"plank" indicates successful completion.

Q$

142

LY

20.15 RELEASE (DEFFN' 238)

The RELEASE subroutine turns off the record protect flag previously set
by the calling station.

Any call to a KFAM-7 subroutine for a particular file turns off any
protect flag for that file. RELEASE should be used only if there may be a
long delay before the next KFAM-7 subroutine is called.

The calling sequence is:

GOSUB'238 (I)
"I" is the KFAM I.D. Number assigned tc the file in an OPEN subroutine.

RELEASE Return Codes

Q$
Q$

"xm if file not open.
n n (gspace) after successful execution.

20.16 RE-OPEN (DEFFN' 213)

RE-OPEN changes the access mode of a currently open file.
The calling sequence is:
GOSUB'213 (I,A,P$)

"I" is the KFAM I.D. Number.
"A" i3 the new access mode (1, 2, 3, or 4).
up$" is the file password.

RE-OPEN Return Codes

Q$ = "A" if the file could not be opened in the new access mode because
of an access mode conflict. It remains open in the previous access
mode.

Q$ = "P" if the password (P$) was invalid.

Q$ = "X if file not open or if the access mode is invalid.

20.17 WRITE RECOVERY INFORMATION (DEFFN' 214)

WRITE RECOVERY INFORMATION writes recovery information (most of the KDR)
to the next-to-last sector of the User File. Whenever FINDNEW is used,
RECOVERY INFO should be rewritten either automatically when the CLOSE
subroutine is called or via WRITE RECOVERY INFQ before closing a KFAM file.
This operation is normally done when the file is closed if using the KFAMO107
module or if the CLOSE WITH RECOVERY INFORMATION option was chosen during
BUILD SUBROUTINE MODULE. The file remains open upon completion.

143

The'calling sequence is:
GOSUB'214 (I)
nIn is the KFAM I.D. Number.

WRITE RECOVERY INFORMATION Return Codes

Q$
Q$

wX* if file not open.
"blank" if executed successfully.

20.18 CLOSE (DEFFN' 239)

The CLOSE subroutine is used to close a currently open User File and its
companion Key File. The KFAM I.D. Number assigned to a closed file can then
be reassigned to another file in an OPEN routine. Also, the file numbers
assigned to a User File and Key File can be reassigned. CLOSE alters the
access table information to indicate that the station no longer has the file
open. The CLOSE subroutine also saves certain critical information when
operating in the Shared or Exclusive access modes for the KEY FILE RECOVERY
utility, unless CLOSE WITH RECOVERY INFORMATION was not included when (and if)
BUILD SUBROUTINE MODULE was used. The calling sequence is:

GOSUB' 239 (I)
nIn 43 the KFAM I.D. Number assigned to the file in an OPEN routine.
Following execution of the CLOSE routine, this number can no longer be used to

access the User File and its associated Key File.

CLOSE Return Codes

Q$ = "X" if file not open.
Otherwise, Q¢ = " " (space).

NOTE:

CLOSE must be executed promptly at the conclusion of file
access operations.

20.19 NON-KFAM FILE SUBROUTINES

Please note that the following subroutines are described in Chapter 28
of this manual. These subroutines are available for non-KFAM data files and
provide similar access mode capabilities. These subroutines include the
following:

DEFFN'217 OPEN a new or existing file.

DEFFN'218 Write an END record in a file.
DEFFN'219 CLOSE an open fille.

144

CHAPTER 21

THE KFAM REORGANIZE UTILITIES

21.1 INTRODUCTION

There are two KFAM reorganize utilities: REORGANIZE SUBSYSTEM and
REORGANIZE IN PLACE. The functions performed by each are nearly identical,
that is, all records are reordered within the output file according to their
ascending key values, and space previously occupied by deleted records is
available following reorganization.

REORGANIZE SUBSYSTEM is a program-controlled standalone routine that is
called by a short user-written set-up program. The set-up program provides
reorganization parameters (e.g., file names and disk addresses) and optionally
loads a program following reorganization. The contents of the input User File
and Key File are copied during reorganization to a "reorganized" output User
File and Key File. REORGANIZE SUBSYSTEM does not appear on the KFAM utilities
menu.

REORGANIZE IN PLACE is an operator-controlled utility program chosen
from the KFAM-7 utilities menu. The operator enters the reorganization
parameters in reply to prompts. Because the contents of the User File and Key
File are copied "in place" within the same User File and Key File, backup
copies of both the User File and Key File must be made prior to running this
program. Any errors encountered usually destroy the KFAM file.

REORGANIZE SUBSYSTEM is about four to five times faster than REORGANIZE
IN PLACE and does not require backup copies. With the exception of 1large
files where there is insufficient disk(ette) space available for copying the
output User and Key File, REORGANIZE SUBSYSTEM is generally preferred.

21.2 REORGANIZE SUBSYSTEM STANDALONE ROUTINE

The REORGANIZE SUBSYSTEM is a standalone routine that performs the
following KFAM file maintenance operations:

145

3.

Based on an input KFAM file (Key File and User File) it constructs a
new output User File which contains active records written into the
output User File in ascending order of their key values. Both User
Files are opened with Exclusive access.

Creates a Key File based on the new output file. Optionally, the

new Key File may occupy the same physical space as the input Key
File, overwriting the input Key File.

Optionally, the new output User File may be copied back to the disk
area occupied by the input User File, overwriting the input file.

The modules which comprise REORGANIZE SUBSYSTEM are as follows:

ISS.REFB ISS Reference File

KFAM3507 Start up, open files

KFAM3607 Generate Code

KFAM3707 Reorganize Parts 1 and 2
KFAM3907 Reorganize Part 3, close files

REORGANIZE SUBSYSTEM modules may be copied to the desired disk(ette)
using the supplied ISS reference file ISS.REFB during Copy/Verify (utility)

operation.

Specify INPUT MODE = INDIRECT to use a reference file during

Copy/Verify operation.

Writing The Set-up Module

The user-written set-up program which provides reorganization parameters
can be broken down into two parts.

1.

Lines 1-3499 contain statements executed before the REORGANIZE
SUBSYSTEM is loaded. These lines must clear the CRT screen, select
disk file devices, and load KFAM3507. These lines must be cleared
by the LOAD DC statement. They can include additional
preprocessing, if desired.

Lines 4200-4799 contain statements which assign reorganization
parameters to specific variables. They remain as an overlay to the
first reorganization module. They are executed after the first
reorganization module defines its common variables and sets default
values.

The master set-up program is shown below. A line may be omitted if the
default value shown is the desired value. Read all comments before writing a
set-up module.

146

(Y

Line

10
20
50

60
70
8o
90
100
110

4210
4220
4230
4240
4250
4260
4270

4280

4290

4300
4310
4320

Default

REM program identification
PRINT HEX(03)

SELECT DISK (disk address for
REORGANIZE SUBSYSTEM disk)

SELECT #1 input User File device address
SELECT #2 input Key File device address
SELECT #3 output User File device address
SELECT #U4 output Key File device address
SELECT #5 user program device address
LOAD DC T#0, "KFAM3507" 10,4199

N1$ = input User File name

P1$ = input User File device address as "xyy"
N2 = input Key File number

P2$ = input Key File device address as "xyy"
N3$ = output User File name

P3$ = output User File device address as "xyy"
03$ = "C" catalog output User File if

uncataloged
"Y" output User File already cataloged,
do not catalog it.

= "N" output User File is not already

cataloged, catalog it.

03 = number of sectors to allocate to output
User File. This statement not needed
if 03$ = "Y" (above).
#If the utility catalogs the file, the
default value for 03 is the number of
sectors in the input User File.
fC" to copy back output User File over
input User file when reorganization
completed.
blank to leave input User File intact.

063

N4
PU$
ol$

output Key File number

output Key File device address as "xyy"
"C" catalog output Key File, if
uncataloged.

"Y" output Key File cataloged, do not
catalog it.

= "N" output Key File not cataloged,
catalog it.

147

‘Contents Value

Ql

blank

See
Comment

N &Ew

~N

10

11

12

4330 04 = number of sectors to allocate to the bd 12
’ output Key File. Omit this if
o4$ = nyn, ﬂ
81f the utility catalogs the file, '
the default value is calculated in
proportion to the input Key File
size times the increase or decrease
in User File size.

4340 N5% = name of program to be loaded blank 13
following reorganization .
= blank - no program to be loaded
4350 P5% = device address of user program as
"xyy" -
4360 P$ = input User File password blank 14
4370 P9% = output User File password blank 14
4380 S2 = Station (partition) number b

#1SS start-up common variable for this
station is the default value.

4390 For type "C" files previously
written in BA mode, set M6=1

148

Comments

The CRT screen should be cleared prior to calling the REORGANIZE
SUBSYSTEM. Lines 0-3 are used by the routine for messages. Lines 4-15
may be used for a user-written display. For example, line 20 might be:

20 PRINT HEX(030A0AOAOA); "REORGANIZE INVENTORY FILE."

The output User File device address may be the same as the input User
File device address if the two files have different names.

If the output Key File device address is the same as the input Key File
device address and the output Key File name is the same as the input Key
File name, then the output Key File replaces the input Key File. See
comment 10.

If the REORGANIZE SUBSYSTEM is to call another program when it completes

execution, the device address of this program file must be selected for
file number #5.

The last statement to be executed in the range 1-3499 must be a LOAD DC
that loads module 1 of the utility and clears lines 1-3499 as it does
so. The module name is "KFAM3507",

Example:
4220 P1$ = »B1O"

This number is assigned during INITIALIZE KFAM FILE and appears as the
6th character in the input Key File name (normally, it is 1).

The output User File name need not conform to the KFAM file naming
conventions. This relaxation of normal KFAM requirements may be useful
if the "copy back" option 1s chosen (line 4290) since, in this case, it
may be desirable to use an established work file that may have any name.

If "C" is assigned to variable 03$, the output User File is cataloged by
this utility if the output file does not already exist. "C" is the
default value of variable 03$ (line 4270).

If "N" is assigned to variable 03$, the system ensures that the named

output User File does not already exist on the disk and catalogs the
output User File.

If the utility catalogs the output User File, it allocates to it the
same number of sectors that are in the input User File unless a

different number is specified by assigning the desired number of sectors
to variable 03.

If "Y" is assigned to variable 03$, the system checks that the named
output file already exists. Variable 03 need not be assigned a value.

The output User File must contain at least 10 sectors.

149

10.

1.

12.

13.

1.

If variable 06$ is assigned the value "C" (line 4290), then the utility
constructs the output Key File name from the input Key File name and
copies the output User File back into the input User File area,
overwriting the input User File. If variable 06$ is assigned a blank,

then the output Key File name is constructed from the output User File
name and the output file is not copied back.

This number is used in the construction of the output Key File name, in
which it becomes the 6th character. If the constructed name is the same
as the input Key File name and the same address is specified for both

input and output Key Files, then the output Key File replaces the input
Key File.

The effect of these responses for variables O4$ and O is analogous to
variables 03$ and 03 discussed in comment 9. However, if the utility
catalogs the Key File, its size is proportional to the input Key File
size times the increase or decrease in User File size.

If N5$ is assigned a program name, the program is loaded upon completion
of the utility. The program must reside at the address SELECTed for
file number #5 (line 100).

The input User File Password, and the output User File Password if the
output User File is already cataloged, is checked against variables P$
and P9% respectively. These values must be 1identical or an error
message appears. If the output User File is not cataloged and if P9$ is
blank, then a Password of blanks is assigned to the User File. With an
uncataloged output User File, the Password assigned is later required
when the file is opened. For example, if P9$ contains anything other
than blanks, then that Password assigned must be provided for any
station to Open that file.

Shown below is an example set-up program.

10 REM EXAMPLE OF A REORGANIZATION SET-UP PROGRAM FOR KFAM-7

20 PRINT HEX(030A0AOAOA); "REORGANIZE INVENTORY FILE"
50 SELECT DISK 310 :REM REORG. SUBSYSTEM

60 SELECT #1/320 :REM INPUT USER FILE

70 SELECT #2/B20 :REM INPUT KEY FILE

80 SELECT #3/320 :REM OUTPUT USER FILE

90 SELECT #4/B20 :REM OUTPUT KEY FILE

100 SELECT #5/310 :REM USER PROGRAM
110 LOAD DC T#0, "KFAM3507" 10,4199

4210 N1$ = "INVTFO4O"

4220 P1$ = n320"

4240 P2$ = "B20"

4250 N3$ = "WORK"

4260 P3$ = m320"

4290 06$ = "C" :REM COPY BACK OUTPUT USER FILE
4310 P4$ = "B20"

4340 N5$ = "START"

4350 P5$ = "310%

150

@ﬁ“

”»

REORGANIZE SUBSYSTEM Operation

The operation of REORGANIZE SUBSYSTEM may be divided into "three parts:

1) The User File is read sequentially, using FINDFIRST/FINDNEXT, and
copied to the output file so that the records are physically in
sequential order, and DELETED records are eliminated.

2) A new Key File is built, based on the keys in the output User File,

using a special procedure. The new Key File, optionally, may occupy
the same physical space as the old Key File.

3) If indicated by the set-up program, the output User File is copied
back to the input User File, overwriting the original.

The original Key File and User File are not altered until the output
User File has been written, complete with the necessary information to restore
the Key File. Therefore, it is not essential to have backup copies of the
User File and Key File. If the system fails during Part 1 of the
reorganization, the original Key File and User File are intact. If the system
fails during Part 2, both the input User File and the output User File are
intact, and a Key File may be built for either one, using the KEY FILE
RECOVERY utility. During Part 3, the output User File remains intact, as well
as the Key File. Although backup disks are not necessary for this operation,
it 1s good practice to make backup copies regularly, especially of the User
File.

There are no operating instructions for this program because normally no
operator intervention is required. However, there are recovery procedures for
certain error conditions. These are described in Appendix A.

21.3 REORGANIZE IN PLACE UTILITY PROGRAM

REORGANIZE IN PLACE reorganizes a KFAM File in place. The record which
belongs first, in ascending key sequence, is switched with the record that is
physically first. This process is repeated for the second record, and so
forth, until the entire User File has been placed in sequential order. In the
process, all DELETED records are removed. Then, the Key File is reinitialized
and a new Key File is created in the space formerly occupied by the old Key
File. No additional disk space is required for the User File or the Key File;
a 15-sector work file, KFAMWORK, is required. This program is 4 to 5 times
slower than the REORGANIZE SUBSYSTEM utility and, therefore, should be used
only 1f the file is too large to permit simultaneous mounting of an output
file as required by the REORGANIZE SUBSYSTEM.

Because this program destroys both the User File and the Key File as
they formerly existed, there is no possible recovery in the event of hardware
or software error. For that reason, backup copies of the User File and the
Key File must be made before running this program.

151

This program reorganizes any KFAM file, with the exception of type M
records with more than Y40 sectors per record. However, it should be noted
that multiple-sector records require extra storage space in memory, and that

thi: program cannot operate in a 9K system if the record length exceeds 8
sectors. ‘

Operating Instructions

DISPLAY

INSTRUCTIONS

Make backup copies of both
the User File and the Key
File.

If anything goes wrong during
the execution of the utility,

both files are destroyed.

2. 2. Mount the disk platter(s)
containing the User File and
the Key File.

3. 3. To load the REORGANIZE
IN PLACE utility, touch the
specified Special Function key
in reply to the KFAM-7 menu.

4§, ARE THERE BACKUP COPIES OF y, Enter Y if backup copies

USER FILE AND KEY FILE? exist. Proceed with Step 6.
(Y OR N) below.
Enter N for "no" or "don't
know". Proceed with Step 5.
5. The system displays: 5. Make backup copies of both the
ANY ERROR DURING THE RUNNING OF User File and the Key File.
KFAM3207 WILL DESTROY BOTH Key CONTINUE and RETURN.
FILES. MAKE COPIES OF THE DISK Go to step 4.
PLATTER(S) CONTAINING THE USER
FILE AND THE KEY FILE BEFORE
RUNNING THIS PROGRAM. STOP
6. ENTER USER FILE NAME (SSSSFJNN) 6. Enter the name of the User

152

File.

NOTE:

Error messages and recovery
procedures are located in

Appendix A.

7. ENTER USER FILE DEVICE 7.

ADDRESS
8. ENTER PASSWORD 8.
9. ENTER KEY FILE NUMBER g.
(NORMAL=1)
10. ENTER KEY FILE DEVICE ADDRESS 10.
11. 1.
12. 12.

153

Enter the disk device
address of the User File
(xyy form).

Enter the Password assigned
to the User File. If no
Password assigned, key RETURN
without entering any
characters.

Enter the Key File Number.

The Key File Number should
always be 1, unless there
are multiple key files for

a single User File, in

which case, the Key File
Number can be any digit from
1 to 9.

Enter the disk device address
of the Key File (xyy form).

The system opens the Key File
and User File and begins
processing. The file is
reorganized.

No operator intervention is
required from this point on.

The KFAM menu appears upon
completion.

CHAPTER 22

REALLOCATE KFAM FILE SPACE UTILITY PROGRAM

22.1 OVERVIEW

REALLOCATE KFAM FILE SPACE and the ISS utility COPY/VERIFY can be used
in conjunction with one another to lengthen or shorten KFAM Key Filles and User
Files. After a KFAM file or a number of KFAM files have been copled using
COPY/VERIFY, REALLOCATE KFAM FILE SPACE must be run. See Section 18.5 for
KFAM file copy procedures.

An alternative to copying a file with COPY/VERIFY and then using
REALLOCATE KFAM FILE SPACE is to run REORGANIZE SUBSYSTEM, which allows its
user to reorganize, copy, change file space allocation, and change the file
name--all at the same time.

22.2 OPERATING INSTRUCTIONS

DISPLAY INSTRUCTIONS

1. 1. Mount the disks containing the
User File and Key File. From
the KFAM menu, load
REALLOCATE KFAM FILE SPACE
by touching the indicated

Special Function Key.

2. ENTER USER FILE NAME (SSSSFJNN) 2. Enter the name of the file.

NOTE:

Error messages and recovery
procedures appear in Appendix
A. Although not shown here,
prompting dashes accompany
the actual prompts.

154

ENTER USER FILE DEVICE ADDRESS

ENTER PASSWORD

ENTER KEY FILE NUMBER
(NORMAL=1)

ENTER KEY FILE DEVICE ADDRESS

155

Enter the xyy form of the
User File device address.

An entry to this prompt is
only required if the User File
has a Password assigned to it,
in which case the Password must
be entered exactly as
previously assigned to this
User File. If a Password was
not assigned, key RETURN
without entering any
characters.

Normally, enter 1.

If there is more than one Key
File associated with this

User File, enter the number of
the Key File to be accessed.

Enter the xyy form of the Key
File disk device address.

The system reads the KDR and
associated entries and then
makes the internal adjustments
necessary for the User File
and Key File.

The KFAM menu appears upon
completion.

CHAPTER 23

PRINT KEY FILE UTILITY PROGRAM

23.1 OVERVIEW

The PRINT KEY FILE utility program prints the contents of the selected
KFAM Key File to the ISS printer address. The User File access table for each
station (1-16) is also printed. The Key File contains one Key Descriptor
Record (KDR) and the Key Index Records (KIR's) for this KFAM file. The User
File, which contains the access table, is accessed in the Read-Only access
mode, thus the User File disk address and its Password (if any) must be
entered. The Key File also must be on-line and is accessed in the Read-Only
mode.

Information printed indicates the access mode number (ACCESS TYPE=1, 2,
3, or 4) and related Key File information. The station running PRINT KEY
FILE, which operates in the Read-Only access mode, should have an ACCESS
TYPE=2 next to its station number. This information 1is extremely useful in
determining the cause of long delays in accessing files. PRINT KEY FILE may
be followed by RESET ACCESS TABLE if necessary or the RELEASE and/or CLOSE
subroutines executed from the appropriate station number(s) to close a KFAM
file accidentally left open. -

Completion codes and protected sectors are always indicated as "Z" and
"FFFF" respectively, irrespective of the corresponding values in global memory.

23.2 OPERATING INSTRUCTIONS

DISPLAY INSTRUCTIONS

1. 1. From the KFAM-7 menu, load the
PRINT KEY FILE utility by
touching the indicated
Special Function Key.

2. ENTER USER FILE NAME (SSSSFJNN) 2. Enter the name of the User

File with which the Key File
is associated.

156

5.

ENTER USER FILE DEVICE ADDRESS

ENTER PASSWORD

ENTER KEY FILE NUMBER
(NORMAL=1)

ENTER KEY FILE DEVICE ADDRESS

157

8.

NOTE:

Error messages and recovery
procedures appear in
Appendix A. Also, although
not shown here, dashes
accompany most prompts

for easy parameter entry.

Enter the xyy form of the User
File disk device address.

An entry to this prompt is
only required if the User
File has a Password assigned
to it, in which case the
Password must be entered
exactly as previously assigned
to this User File. If a
Password was not assigned,

key RETURN without entering
any characters.

Normally, enter 1.

If there is more than one

Key File associated with this
User File, enter the number

of the Key File to be accessed.

Enter the xyy form of the Key
File disk device address.

The access table and then the
Key File's contents are
printed.

The KFAM-7 menu appears.

CHAPTER 24

KEY FILE RECOVERY AND RESET ACCESS TABLE UTILITY PROGRAMS

24.1 KEY FILE RECOVERY

If a Key File is destroyed, the Key File Recovery utility permits it to

be fully reconstructed from the data in the User File, provided application
programs that operate on the file adhere to the following conventions:

1) All DELETED records and any blocked records in the last active
sector that are inactive must be flagged in the User File with
HEX(FF) in the first byte of the key.

2) With KFAM-7, CLOSE is a system requirement. If BUILD SUBROUTINE
MODULE was used and the CLOSE WITH RECOVERY INFO option was not
selected, the user must include the WRITE RECOVERY INFO subroutine
and must execute the WRITE RECOVERY INFO subroutine before closing a
KFAM file whenever FINDNEW has been used.

If the Key File already exists on the designated disk, this utility
reuses that file; otherwise, it catalogs a new file with sufficient space to
jndex the maximum number of records in the User File. The User File is opened
in the Exclusive mode and the recovery information (most of the KDR) in the
next-to-last sector is accessed.

If more than one Key File exists for this one User File, it may be
impossible to use this utility.

The utility uses the ISS start-up printer address to list duplicate keys.
The output report of the Key File indicates the access mode (ACCESS

TYPE) for each station accessing the file and any records.protected by any
station.

158

Operating Instructions:

KEY FILE RECOVERY

DISPLAY

ENTER USER FILE NAME (SSSSFJNN)

ENTER USER FILE DEVICE ADDRESS

ENTER PASSWORD

ENTER KEY FILE NUMBER
(NORMAL=1)

ENTER KEY FILE DEVICE ADDRESS

159

INSTRUCTIONS

Mount the disk containing the

User File and the disk to
contain the reconstructed Key
File.

From the KFAM-7 menu, load
KEY FILE RECOVERY by

touching the indicated
Special Function Key.

Enter the name of the User

File for which the Key File
is to be reconstructed.

NOTE:

Error messages and recovery
procedures follow in

‘Appendix A.

Enter the xyy form of the User
File disk device address.

An entry to this prompt is only
required if the User File has

a Password assigned to it, in
which case the Password must be
entered exactly as previously
assigned to this User File.

If a Password was not assigned
(Password = blanks), key RETURN
without entering any charac-
ters.

The Key File Number should
always be 1, unless there
are multiple Key Files for a
single User File, in which
case the Key File Number
may be any digit from 1-9,

Enter the xyy form of the
Key File disk device address.

8. IS KEY FILE CATALOGED 8. If the Key File is cataloged
(Y OR N) at the address given in
the previous step, enter Y;
otherwise, enter N.

Execution error messages are
printed or displayed on lines
7-10 respectively, if the ISS
printer address indicates a
printer (e.g., 215) or is 000.

With displayed output, if an
error message is encountered,
key CONTINUE and RETURN to
continue.

9. 9. The system, which has now
recreated the Key File,

returns the KFAM menu to the
screen.

24.2 RESET ACCESS TABLE

For KFAM-7 there is an access table located in the User File and access
tables in the KDR and in global memory consisting of Key File control
information. For each possible station, an entry is maintained in the User
File's access table for that station's current access mode for this file. If
a station is accessing the file, either 1,2,3, or Y4 appears, depending on the
access mode; otherwise, a blank appears 1if the station is not currently
accessing the file. The User File and KDR access tables may be printed by the
PRINT KEY FILE utility.

For each station (1-16) the ACCESS TYPE listed by PRINT KEY FILE shows
the access mode for each station accessing the file. The numbers are as
follows:

1 - Inquiry does not allow Exclusive file access.

2 - Read Only does not allow Shared or Exclusive file access.

3 - Shared does not allow Read Only or Exclusive file access.
4 - Exclusive does not allow any other file access.

NONE - This file is not currently open by any station.

With this information provided by PRINT KEY FILE, one can determine
which station has the file open in the access mode that conflicts with the
access mode desired. If that station is not accessing the file, the entry in
the access table may be caused by the file not being closed by that station,
thus creating the "phantom" entry in the access table, which must be corrected
by running RESET ACCESS TABLE.

This utility is provided to reset all of the access table information to
blanks in the event of a program failure or system failure that has left the
access table with erroneous non-blank characters. The utility also turns off
any "record protect flags" that may be left on.

160

CAUTION:

This utility should not be run if any other station is
currently accessing the file. The utility has no way of
knowing whether entries in the access table are "live" or
"dead", and resets all access table bytes to blanks
indiscriminately. Before running this program, the user
absolutely must check to make sure that no other station is
currently accessing the file. Otherwise, there could be an
unpredictable scrambling of results.

Operating Instructions: RESET ACCESS TABLE

DISPLAY INSTRUCTION

1. 1. From the KFAM-7 menu, load
RESET ACCESS TABLE by
touching the indicated
Special Function Key.

2. ENTER USER FILE NAME 2. Enter the User File Name.
(SSSSFJNN) Error messages appear in
Appendix A.
3. ENTER USER FILE DEVICE 3. Enter the xyy form of the
ADDRESS User File disk device address.
4, ENTER PASSWORD y, An entry to this prompt is

required only if the User File
has a Password assigned to it,
in which case the Password
must be entered exactly as
previously assigned.

If a Password was not assigned,
key RETURN without entering
any characters.

5. ENTER KEY FILE NUMBER 5. Normally, enter 1. However,
(NORMAL=1) if there exists multiple Key
Files for this single User
File, enter a single digit

from 2-9.
6. ENTER KEY FILE DEVICE 6. Enter the xyy form of the Key
ADDRESS File disk device address.
7. 7. The system resets this KFAM

file's access table.

8. 8. The KFAM menu appears.

161

CHAPTER 25

THE KFAM CONVERSION UTILITY PROGRAMS

25.1 OQVERVIEW

KFAM-7 includes two KFAM conversion utilities. These are CONVERT KFAM-3
to KFAM-7 and CONVERT KFAM-4 to KFAM-7. They are provided to convert a file
created under one of the earlier KFAM's to the format of KFAM-7. The
procedures and operating instructions for these programs are the same
regardless of which one is being used.

The structure and format of the Key File is not the same for KFAM-7 as
for KFAM-3 or KFAM-U. Therefore, the conversion process consists of dropping
the old Key File and creating a new Key File in the KFAM-T format. The
Exclusive access mode is used.

To convert a file to KFAM-7, the procedure is as follows:

1. Backup copies should be made of the User File and the old Key File.
2. Mount the User File and the old Key File.

3. Execute the appropriate "CONVERT" program.

The User File and Key File are now converted and can be accessed via

KFAM-T.

25.2 OPERATING INSTRUCTIONS

1. 1. From the KFAM-T7 menu, load
the appropriate CONVERSION
utility by touching
the specified Special
Function Key.

2. ENTER USER FILE 2. Enter the name of the User
NAME (SSSSFJNN) File to be converted.

162

ts

3.

.,

ENTER USER FILE DEVICE

ADDRESS

ENTER PASSWORD

ENTER KEY FILE NUMBER
(NORMAL=1)

ENTER KEY FILE DEVICE
ADDRESS

163

NOTE:

Error messages and recovery
procedures appear in Appendix
A. Also, although not shown
here, dashes accompany most
prompts for easy parameter
entry.

Enter the xyy form of the User
File disk device address.

To require that any station
wishing to access this file
must first provide a Password,
enter the Password to be
assigned to the KFAM-7 file
being created. If a Password
need not be assigned to this
file, key RETURN without
entering any characters
(Password = blanks).

Normally, enter 1. However,

if there are multiple Key Files
for a single User File, enter
a digit from 2-9.

Enter the xyy form of the Key
File disk device address.

The utility converts the
specified KFAM file to
KFAM-T7 format.

The KFAM menu appears.

CHAPTER 26

GENERAL TECHNICAL INFORMATION

26.1 KEY FILE RECORD LAYOUT AND STORAGE IN MEMORY

The first sector of the Key File contains the Key Desecriptor Record
(KDR). The KDR is rewritten to the Key File when a FINDNEW, FINDNEW(HERE),
DELETE, or CLOSE subroutine is executed. The remaining sectors contain Key
Index Records (KIR's), as many as are necessary to index the User File up to
eight index levels. An END record follows the last KIR sector. A hardware
catalog trailer occupies the last sector for the file.

Key Descriptor Record (KDR)

KDR contents occupy the first sector of the Key File, as well as the
next-to-last sector of the User File (bytes 3-146, T$2()) except for variable
V, which is always zero (0) in the KDR on disk.

The value of variable V stored in memory indicates the subroutine being
executed, except for its use as a working variable during OPEN, as follows:

busy, FINDNEXT

busy, FINDPREVIOUS

default, FINDOLD, FINDFIRST, FINDLAST, RELEASE
RE-OPEN, WRITE RECOVERY INFO, CLOSE

busy, FINDNEW(HERE)

busy, FINDNEW

O3 =N =

T$(3) 48 contains KDR information and is packed as follows:

164

$UNPACK

START LENGTH VARIABLE IMAGE CODE
1 16 - - -
17 32 - - -
49 1 TO 5001 X,P
50 2 T2$2 4002 X,P
52 2 Q242 4002 N,P
54 2 V232 4002 N,P
56 y T8 5004 N,P
60 1 V631 4001 N
61 2 v3$2 4002 N
63 2 Q3$2 4002 N
65 1 v8$1 4001 N
66 6 - - -

165

Indicates completion codes per
station (1-16) except:
Initialized to "2" by some
utilities (KFAM1007, KFAM700T7).
Following FINDOLD, not found, =
nan, Following FINDNEW,
FINDNEW(HERE), or DELETE, all
values of "9" or less are set
to "3", Following a successful
Open, set to letter ngn,
Following successful CLOSE, set
to "2", If Q$=B, set to "9m,

Protected sectors per station.
HEX(FFFF) if no protected
sector.

Number of index levels.

Relative sector address,
highest level index sector.

User File sectors used, minus 1.
Key File sectors used, minus 1.

Count of active records in the
file.

Sectors per logical record.

Key File, last available
relative sector.

User File, starting relative
sector of last available record
position.

Records per block. No comma
follows this.

Per byte:

1 = record type is A,B,C,M, or
record length.

= starting position of key.
key length.

number of entries in KIR.

-
unn =u

97 * T3$3 - S User File, current relative
sector for FINDNEW, per
station, in first two bytes;
also, current record within
block for FINDNEW, per
workstation, in last byte (was
QU$ and V5$).

All numbers are hex except TO and T8 in the preceding table of the KDR.
CODES in the preceding table are indicated as follows: X=unpack always,

N=unpack for FINDNEW and DELETE, P=pack for FINDNEW and DELETE, S=unpack and
pack, FINDNEW, for this station only.

L T3$ is stored per station. The location is STR(T$(3), 3%S2-2, 3) where
S2=station number, in the preceding table.

Key Index Record (KIR)

Variable Bytes
Name On Disk Contents

T9%$2 3 Sector address (hex), this sector, relative to
first sector of Key File = 0.

TO$(4)60 24y A 240-byte array containing KIE's. Number of KIE's
per KIR can vary from 7 to 48. Unused KIE's are
filled with all bytes HEX(FF). Active KIE's are
packed as follows:

K bytes: key
3 bytes: pointer

Pointer points to next lower index level KIR or
User File record if lowest 1level. The first two
bytes of the pointer contain the sector address
(hex) relative to the start of the file. The last
byte contains the record number (hex) within the
sector if the pointer is to a data record, and is
not defined if the pointer is to a lower level KIR.

TOTAL 247 bytes

Internal Storage: User Partition

Certain information also stored in the KDR is stored internally in user -
partition memory for the last file accessed.

Variables for KFAM files which are open but not the last file accessed
are stored in two arrays, T5$() and V0$(). The array element is the KFAM I.D.
Number. Variables are packed in field format.

V0$(3)21 = variables set at OPEN, remain unchanged. (NOTE: array
element may be set to the number of files to be opened.)
€Q8320 = hex image for unpacking.

166

Variable Start Image Description

V032 1 A002 Absolute starting sector of Key File.

V6 3 5002 Internal File I.D.

vis$y 5 A004 Hex image for unpacking entry from KIR,

HEX(AOXXA003), where XX = key length.

Vo g9 5001 Access Mode (1,2,3, or U).

T1 10 5002 File #, Key File.

T2 12 5002 File #, User File.

T4 14 5002 Key length.

T5 16 5002 KIE length = T4 + 3.

V7 18 5002 KIR bytes used = INT (240/T5)#*T5.

V1 20 5002 Last key location = V7 - TS5 + 1,
75$(3)58 = variables which change with each access, saved every time

files are switched (NOTE: array element may be set to the number of

files to be opened. T5$(3)58 indicates 3 KFAM files maximum open to
this station.)

875410 = hex image for unpacking.
Variable Start Image Description

T4$3 1 A003 Pointer to record accessed, bytes:

1 - 2 = relative sector address within
user file.

3 = record within block.

T7$30 y AO1E Last key accessed.

T8$1 34 A001 Internal completion code.

T$8 35 A008 Path to last record accessed, pointers to
entry within KIR.

T2$(8)2 43 A002 Path to 1last record accessed, KIR
relative.

Internal Storage: Global Memory

KFAM-7 controls access to the disk internally through tables in the
global partition rather than by reading and writing the KDR, as is done in
KFAM-5. This saves disk access time and also saves time by not hogging the
disk except on OPEN, RE-OPEN, CLOSE, and WRITE RECOVERY INFO. All KFAM
accesses go through the same global partition "KFAM". It is important that
the KFAM-7 subroutines should not reside in more than one global partition

because this module (KFAMO107) not only provides subroutines but also
coordinates record access to KFAM files.

In the global area 1s a table of open files, 6T$(30)14. The number of
table entries can be increased or decreased from 30, depending on the maximum
number of KFAM files that can be open at any one time, by all stations on a

given system. (Global memory must be increased if more than 30 KFAM files are
to be open.) The contents of this table, per entry, are as follows:

167

START LENGTH CONTENTS

-
n

KDR sector (V0$) = starting sector of Key File.
3 1 Device address of Key File, compressed. Bytes
2 and 3 of device address are packed, then
OR'ed with 80 if byte 1 = "B",

y 1 Number of index 1levels, TO, in IBM packed
format.

5 2 Relative sector address of highest level index
sector, T2%.

7 8 Per station 1 - 16, one half byte for internal

completion code.

Note that the first 3 bytes above form a unique identifier for the
particular Key File being accessed.

Also note that the internal completion code is used for two purposes:
(1) to determine whether a particular file is open or closed to a particular
station and (2) to determine whether internal variables TO (number of index
levels), T2$ (sector address of highest level index), T2$() (path through
index to current record, in terms of KIR sectors read), and T$ (path to
current record, in terms of KIE starting location within KIR) are all
currently valid.

Bit settings within the current completion code are as follows:

0] normal completion, above variables valid.

1 path not defined (T2$() and T$), KDR OK.

2 path not defined (T2$() and T$), reread KDR (changed by
another station).

y index level added, get new values of TO, T2$ from table
€T$(), above.

8 error condition, next and previous records not defined.

E file open.

F file closed.

The bit settings above are wunpacked into T8%. In access modes 1
(Inquiry) and 3 (Shared), internal completion codes are packed into table
@T$(). In access modes 2 (Read Only) and 4 (Exclusive), the only values
appearing in table @T$() are "E" for open or "F" for closed.

168

1L]

An internal file ID, V6, is maintained by KFAM-7 to indicate the number
of the entry for a given file within @T$(). @T$(V6) is the table entry for
the particular file. The internal file ID should not be confused with the
KFAM ID, the Key File Number, or the file numbers of the Key File and User
File in the Device Table (the latter are specified by the user and OPEN
parameters). The internal file ID is another number which is assigned by
KFAM-7 for its own internal use when the file is opened.

In the non-interactive modes (2=Read Only, U4=Exclusive), KFAM-7 simply
makes an entry in table @T$() to indicate that the file has been opened. It
also stores TO and T2$ in the table @T$ (V6) to save reading the KDR when
files are switched. It then operates very much as KFAM-3, where no
interaction is possible, because in Exclusive mode no other station can access
the file, and in Read Only mode no other station can change the Key File.

The interactive modes are defined as 1 = Inquiry and 3 = Shared. KFAM-7
maintains a qQueue to regulate access to files in the interactive modes. The
queue contains two entries, the station number (S2), in hex in one byte of
€Q$, and the internal file ID (V6), in hex in the corresponding byte of €Q9%.
Upon entry to a KFAM-7 subroutine in an interactive mode, the station number
and the internal file ID are placed at the end of the queue. The queue (6Q9%)
is then searched for the internal file ID, and the station number in the
corresponding position of @Q$ has access to the file. All other stations
requesting the file must wait. When the station accessing the file is
finished, its entry is dropped from the queue, and the next station in the
queue requesting that file is allowed to access it.

The queue allows access to the file on a first-in-first-out (FIF0)
basis, i.e., first-come-first-served. Under KFAM-7, access 1s allowed from
the various stations in the order requested. The KFAM-7 queue is not to be
confused with the delegation of program execution time between different
partitions under the control of the 2200MVP itself. The queue is provided by
KFAM-7 and is used only for KFAM-7 files.

There is only one queue for all stations requesting all files. This
does not inhibit different stations from accessing different files at the same
time. For example, if the queue looks like this:

€Q$(station) 1 3 5 U4 2
€Q9%(frile) 4 2 1 2 3
Station 1 can access file 4, station 3 can access file 2, station 5 can

access file 1, and station 4 must wait to access file 2 until station 3 is
finished.

169

KFAM-7 maintains a table of protected sectors, protecting a sector of
the User File from access by another station if the protect flag is set
(argument symbolic variable, P = 1 or 3). The table of protected sectors is
stored in a global variable, @V4$(30)4. This global table contains all
protected sectors for all stations accessing all files. The array dimension
can be changed upwards or downwards from 30 if necessary. If the table is
full, the station requesting sector protection simply waits until there is a
vacant slot in the table. Sector protection is only effective in the
interactive modes (1 and 3).

The contents of @VU$(), per entry, are as follows:

START LENGTH CONTENTS
1 1 Station number, S2, hex
2 1 Internal file ID, V6, hex
3 2 Protected sector - STR(T#4$,,2)
NOTE:

If a User File is being accessed by two or more Key Files,
a protected sector as accessed through one Key File will
not be recognized by a subroutine accessing the file
through another Key File. KFAM does not support multiple
Key Files per User File, but it is possible to design a
protection scheme external to KFAM.

Through the use of these internal tables, reading and writing the KDR
and hogging the disk are kept at a minimum. Instead of the KDR being the
communications link between different stations accessing the same file, this
communication information is held internally, thus eliminating disk access
time and making throughput more efficient.

Global variables are also used as program constants and working
variables, in order to cut down on the space required for KFAM variables in
the user partitions. In order to update global variables, the program is
hogged at certain critical times. This means that there are certain points in
global memory which can only be executed by the one station which has gained
access, as opposed to the normal case where the code may be executed at the
same time (logically) by several different stations. At these critical
points, all stations other than the one which has gained access must wait.

Points at which program execution is hogged are as follows:

Non-KFAM OPEN (217)

Non-KFAM END (218)

Non-KFAM CLOSE (219)

OPEN (230): Setting up table 8T$(), executing non-KFAM OPEN (217)

170

(2]

(4]

s

9

CLOSE (239): Setting table @T$(), executing non-KFAM END (218) and
non-KFAM CLOSE (219)
RE-OPEN (213): Executing non-KFAM OPEN (217)
WRITE RECOVERY INFO (214): Executing non-KFAM END (218)
FINDNEW (233) and FINDNEW (HERE) (234):
Whenever a KIR sector is split, or about one time in eight
depending on key length and other factors.
Any subroutine: Adding or deleting a queue entry, updating internal
completion codes.

The times when the program is hogged are either infrequent or brief, and
therefore should not slow down performance very much.

26.2 KEY FILE STRUCTURE

The structure of the Key File is similar to the structure called a
B-tree, which is discussed on pages U473-479 of THE ART OF COMPUTER
PROGRAMMING: Volume 3/Sorting and Searching, by Donald E. Knuth.

A Key File must permit rapid access to any particular User File record
and may also be updated at any time without a major reorganization of the
file. The B-tree structure, as modified, satisfies this double requirement.

The structure of the Key File is best described by showing how the file
is constructed. The first step in INITIALIZE KFAM FILE is to create one KIR
record, which contains one dummy KIE with a key value of binary zero (all
bytes HEX(00)). This dummy KIE serves to "prime" the system so that the same
program logic can be applied to a null or empty file as is applied to a file
containing active records. Being the lowest possible key, it also serves to
mark the lower 1limit of the Key File. For example, FINDFIRST is done by
searching for the binary zero key and then doing FINDNEXT. This dummy key can
be thought of as the Oth entry in the Key File and represents nothing, except
as the marker of the lower boundary.

In the examples below, this dummy key is designated as "000". Please
note that the actual value is binary zero, HEX(000000), and not the characters
"000" or HEX(303030). The characters "000" may be used as an active key and
will not conflict with the dummy key.

The unused KIE's in any KIR always have all bytes set to HEX(FF). Thus
the original KIR record has the first key set to all HEX(00) and the remaining
keys set to all HEX(FF).

In the examples below, these unused keys are designated as "FFF".
Please note that the actual value is HEX(FFFFFF...) and not the characters
"FFF" or HEX(46L4646).

171

Two items in the KDR record are essential to searching the Key File.
One is the number of index levels, TO. To start with, TO = 1, because there
is only one level of index. The other item is the relative sector address of
the highest level index, T2$. At the starting point, there is only the one
index sector, the KIR record described above, and its sector address is always
HEX(0001). (The KDR record always occupies sector HEX(0000) or the first

sector of the Key File, and the initial KIR follows it in the second sector at
relative address HEX(0001).)

The Key File is now set up to begin entering active KIE's. As new keys
are added to the file, the respective KIE's are inserted in the KIR in their

proper sequential order. Higher keys are moved up one position, and one
HEX(FF) key is dropped off the end.

For example, if the first three keys to be inserted are 276, 913, and
198, the KIE's would be arranged as follows:

Start: 000, FFF, FFF, etc.

First Key: 000, 276, FFF, etc.

Second Key: 000, 276, 913, FFF, etc.
Third Key: 000, 198, 276, 913, FFF, etc.

Keys are inserted in the first KIR in this manner until it is filled.
The number of keys per KIR depends upon the size of the key. Let us assume
for this example that the first KIR has been completely filled by one dummy
key plus 14 active keys:

000, 009, 147, 198, 276, 292, 589, 591, 671, 710, 730,
809, 851, 903, 913

At this point the key 796 is to be added. Since there is no room in the
one KIR to add another key, the KIR is split in two. A new KIR is created,
and the KIE's are divided between the old KIR and the new KIR:

0l1d KIR: 000, 009, 147, 198, 276, 292, 589, 591, FFF, etec.
New KIR: 671, 710, 730, 796, 809, 851, 903, 913, FFF, etc.

The new KIR occupies relative sector HEX(0002). Note that the key

added, 796, is inserted in its proper sequential order and falls in the new
KIR.

With more than one KIR now in the file, the concept of "level" enters
in. Both KIR's so far created are on level 1, the lowest level. The lowest
level is defined as the level which contains the pointers to the data records
in the User File. Whenever a KIR is split, the new KIR is on the same level
as the old KIR.

172

Rather than search the KIR's sequentially for a given key, the system
searches via a tree structure. There is one and only one KIR at the highest
level. Its sector address is recorded in the KDR. The search is started by
reading this sector. Up to this point, the search has been completed by
locating the position of the key within the one sector. But at this point,
there are two KIR's on level 1, and a higher level index must be created to
reference them.

Therefore a third KIR is created. It is a level-2 index and contains
two keys, 000 and 671, which are the first keys of each of the two level-1
KIR's. The pointers associated with these two keys are the relative sector
addresses of the two 1level-1 KIR's, which happen to be HEX(0001) and
HEX(0002). This 2nd-level KIR is stored in relative sector HEX(0003) of the
Key File, and its contents are:

Keys: 000, 671, FFF, etc.
Pointers: 1, 2, FFF, etc.

The KDR is now updated. TO = 2, to show that the index now has 2
levels. T2$ = HEX(0003), to show that the highest level index is located at
relative sector HEX(0003).

Assuming that the next key to be added is 562, the search now proceeds
as follows. 562 is compared to the entries in the level-2 index to see where
it falls. It is greater than or equal to 000, but less than 671. Therefore
it falls in the range 000 to 670. The pointer associated with 000 in the
level-2 index is HEX(0001), and therefore the level-1 index stored in relative
sector HEX(0001) is read. Then 572 is inserted in its proper place in the
level-1 index, as before. The system knows when it has reached level 1
because it is counting down from TO to 1 as each level is read and searched.

When the key 562 has been added, the Key File structure looks like this:

Sector Level Keys

1 1 000, 009, 147, 198, 276, 292, 562, 589,
591, FFF, etc.

2 1 671, 710, 730, 796, 809, 851, 903, 913,
FFF, etc.

3 2 000, 671, FFF, etc.

As further keys are added, the KIR's on level 1 will again become full,
and again the KIR must be split to provide room for all the keys. Let us
assume that keys 401, 402, 403, 404, Y405, U406, and 407 are added. The first
six keys will cause sector 1 to be full, and the addition of 407 will make a
split necessary. Relative sector HEX(0004) will be assigned to the new KIR,
and the resulting structure will look like this:

173

Sector Level Keys

1 1 000, 009, 147, 198, 276, 292, 401, 402,
FFF, etec.

2 1 671, 710, 730, 796, 809, 851, 903,
913 FFF, etec. -

3 2 000, 403, 671, FFF, etc.

y 1 403, 404, 405, 406, 407, 562, 589, 591,
FFF, etc.

Note that no new level has been added this time. In this example, there
is room in the level-2 index to reference up to 15 level-1 KIE's. Therefore
at least 15 x 8, or 120 records (and probably more, up to 225) can be accessed
by a two-level index search.

Once the 2nd-level index is full, it is split in the same way the
original KIR was split, and a third 1level is created, pointing to two
2nd-level KIR's, which in turn point to the first-level KIR's. The
first-level KIR's always contain the pointers to the actual data records. As
new levels are added, more superstructure is added, but the bulk of the Key
File remains the same.

If for a given Key File there is an average of 10 KIE's per KIR, the
number of records which can be accessed by a given number of levels of index
is as follows:

INDEX LEVELS NUMBER OF RECORDS
9
99
999
9,999
99,999
999,999
9,999,999
99,999,999

O oMW =

For the largest possible key (30 bytes), each KIR holds a maximum of 7
KIE's and a guaranteed average minimum of 4 KIE's. For such a file the
maximum 8 levels of index access at least 65,535 records.

Perhaps the best illustration of the Key File structure for a large file
could be obtained by running PRINT KEY FILE with an actual KFAM file. The
structure can then be traced from the highest-level index sector (T2$, in KDR)
down to the level 1 pointers to the actual data record.

The general procedure for locating a key in KFAM is as follows:

1) The number of index levels (TO) and the relative sector address of
the highest-level index (T2$) are taken from the KDR.

2) The index sector (KIR) is read from disk.

174

3)

)

5)

6)

A search of the KIR is made to locate the key. The search returns a
pointer (T) to the key in the KIR which is equal to, or lower than,
the key being searched.

The relative sector address of the KIR and the pointer to the KIE
found (T) are stored in tables, T2$(T3) and VAL(STR(T$,T3)),
defining the path taken to locate the particular key, where T3 is
the current index level.

If the current index level is greater than 1, the sector address for
the next lower level index is taken from the KIE found (T), and the
process is repeated from Step 2 above for the next lower level.

If the current index level is 1, then the search is finished. T
points to a KIE on level 1, and V indicates whether the key found is
equal to or lower than the key being searched. Control is returned
to the particular subroutine (FINDOLD, FINDNEW, DELETE, etec.).

The general procedure for inserting a key is as follows:

1)

2)

3)

)

5)

The proper position for the key 1is determined by the search
procedure, above.

If the KIR is not full, the key and its associated record pointer

are inserted at location T+1 in the KIR. All KIE's from location
T+1 and up are moved up one position.

If the KIR is full, a new KIR is ereated on the same level as the
old KIR. The KIE's are divided between the o0ld KIR and the new
KIR. The new key and its associated record pointer are inserted in
proper sequential order in either the old KIR or the new KIR,
depending on where the new key happens to fall. The next available
sector address in the Key File is assigned to the new KIR.

If the split is not at the highest index level, the first key and
the sector address of the new KIR are inserted in proper key
sequence in the next highest level KIR (as determined by tables

T2$() and T$). 1If the next highest level KIR is full, Step 3 is
repeated at that level.

If the split is at the highest index level, a new level is created.
A new KIR is created, with two KIE's. The first KIE contains the
binary zero key and the relative sector address of the old KIR
(formerly the highest level KIR). The second KIE contains the first
key and sector address of the new KIR (created by the split). The
next available sector in the Key File is assigned to this new

highest level index. The KDR is updated (TO and T2$) to reflect the
new level.

175

Whep the KIR is split, it is not always divided equally unless an
experienced programmer sets the moving bias. There is a reason for this.
Consider keys which are being added sequentially. Again assume the first
index sector is filled by 14 active KIE's and one dummy KIE.

oo0o, oo1, o002, 003, 004, 005, 006, 007, 008, 009, 010
011, 012, 013, 014

The next key added, 015, causes a split:

0ld KIR: 000, 001, 002, 003, OO4, 005, 006, 007, FFF, etc.
New KIR: 008, 009, 010, 011, 012, 013, 014, 015, FFF, etc.
Level 2: 000, 008, FFF, etc.

The next keys added, 016, 017, ete., are all added to the new KIR,
eventually causing it to be split:

Sector Level Keys

1 000, 001, 002, 003, 004, 005, 006, 007, FFF, etc.
1 008, 009, 010, 011, 012, 013, 014, 015 FFF, etc.
2 000, 008, 016, FFF, ete.

1 016, 017, 018, 019, 020, 021, 022, 023, FFF, etc.

EWN =

The process continues, always adding to the latest KIR and splitting it,
leaving behind a residue of KIR's which are only half full. It should be
clear in this case that if the split were 12/4 instead of 8/8, the process of
indexing a sequential file would 1leave behind a residue of KIR's each
containing 12 KIE's or 80% full. This would result in better utilization of
Key File space and also tend to reduce the number of index levels required to
access a given file.

But a 12/4 split would be disastrous if the keys were being added at
random. There would be a greater probability of new keys being added to the
KIR's already containing 12 entries because of the greater range of values
represented. So the Key File could actually fall below 8 keys per sector, and
a very inefficient skew distribution would be the result.

Therefore there is no particular split that is best in all cases.
Because of this, a bias has been included in the system. The bias is a
percentage of the maximum number of KIE's which, for a particular key size,
can be contained in a KIR. When a KIR must be split, the current bias
percentage is multiplied by the maximum number of KIE's per KIR to give the
split, i.e., the number of KIE's which go into the new KIR. The bias may
range from .2 to .8 and is set at .5 following the Open. An experienced
programmer may set the bias after the file is opened.

On the basis of past experience, the bias should approach .2 as keys are
added sequentially, should stay at .5 if keys are added in random order, and
should be at .8 if records are added in backward key sequence. The bias
affects disk space use and thus influences access times. .

176

In REORGANIZE IN PLACE where it is known that keys will be added
sequentially, the bias is set to .2 at the beginning. It is reset to .5
following the reorganization.

In KEY FILE CREATION the bias is set to .5 initially and reset to .5
when the program is finished because the order of keys added when initially
creating the Key File could very well be different than the order of keys
added at some later time (for example, sequential vs. random). The random
hypothesis is always the "safest" to start with, unless experience proves
differently.

Between the creation of the Key File and the reorganization (if any),
the bias is allowed to fluctuate on the basis of how keys are added. It is
stored in the KDR and preserved as a permanent record, i.e., not reset every
time the program is reloaded.

In summary, for KFAM, there are two minor departures from the B-tree
structure as described in Knuth: first, keys are duplicated in higher level
indexes and second, a bias is available for the splitting of KIR's.

26.3 KEY FILE RECOVERY INFORMATION

KEY FILE RECOVERY allows reconstruction of a Key File in the event of
its accidental destruction. 1In reconstructing the Key File, information saved
by the CLOSE (WITH RECOVERY INFORMATION) or the WRITE RECOVERY INFORMATION
subroutines in the next-to-last sector of the User File enables reconstruction
of the Key File.

At the end of a User File are two sectors of "overhead". The last
sector is a control sector written by the OPEN statement. In the next-to-last
sector is a "trailer" record written during the INITIALIZE KFAM FILE utility.
Two control bytes in this trailer record mark it as a trailer record for the
2200 system; however, the remaining bytes are ignored by the 2200 system
logic. Some of these remaining bytes are used by KFAM to store recovery
information. The information is stored each time the CLOSE subroutine is
executed in the Shared or Exclusive access mode if the KFAMO107 module is in

use or if a BUILD SUBROUTINE MODULE program was used and the CLOSE WITH
RECOVERY INFO option was chosen.

The data saved by CLOSE in the next-to-last sector of the User File is
the Key File's KDR record and is as follows:

Bytes Contents
1-2 HEX(AOFD)
3-146 T$(3)48 as listed in Section 26.1 for the KDR.

177

26.4 FINDNEW WITH BLOCKED FILES UNDER KFAM-7

FINDNEW always sets the Current Sector Address for the User File to the
next available sector at the end of the live data in the User File. If
records are blocked (type A, B, or C), it passes back the next record location.

Under KFAM=-7, up to sixteen stations can have a KFAM file open
simultaneously. When a station executes OPEN for a file, it is assigned a
slot from one to sixteen in the KDR's access table. Associated with each slot
- in the access table is a relative sector location and, for blocked files, a
record number within that sector. This sector location and record number
always point to the last location in the User File assigned when a station,
occupying that access table slot, executed a FINDNEW. If, after OPENing a
blocked file, a station executes FINDNEW, the location passed to it (sector
and record location within the sector) will be the next available loecation
after the last location given to a station occupying the same access table
slot. This new location will be the sector following the last sector of live
data in the file only if a new block must be started.

In summary, when using blocked files with KFAM-7, whenever a new block
must be used, FINDNEW assigns an entire block to a particular access table
slot. That block then becomes the exclusive property of that slot in the
access table for the purpose of FINDNEW. It can only be filled by FINDNEW's
executed by a station occupying that slot. The result is that all record
locations up to the end of live data in the User File may not be filled at any
one time.

For blocked files under KFAM-7, the User File might look like this, for

example,
ﬂK

4%

%

record location record location record end of live data
to be filled by to be filled by 1location in entire User File,
station 3 station 4 to be and record location

filled by to be filled by
station 1 station 2

record
unoccupied record locations

where: R
7

26.5 COMPATIBILITY BETWEEN KFAM-4 AND KFAM-T

KFAM-Y4 is upwards-compatible with KFAM-T7, with the following exceptions:

a. Minimum key size is 2 bytes.

b. OPEN subroutine requires more parameters and has different error
return codes.

178

c. Hog mode is now controlled by a $OPEN statement in the user's
' pragram.

d. Memory requirements for the full set of subroutines are greater,
requiring about 2,000 extra bytes for the full set, or about 9K.
This fact, however, is insignificant in view of the amount of memory
saved by the global partitioning scheme.

e. A valid station number is required in variable S2.
f. A number of "R" variables are used in additon to Q, T, and V

formerly reserved for system use.

26.6 COMPATIBILITY BETWEEN KFAM-5 AND KFAM-7

Data files created under KFAM-5 are valid as KFAM-T7 data files, that is,
KFAM-5 files are '"media compatible"™ with KFAM-7. No conversion utility is
needed.

The programming procedure, however, is slightly different. OPEN returns
a Q% value of S, unlike KFAM-5. Hog mode of the Key File's disk device has
been dropped as an option. All disk hogging must be done by the user
(although it is released either before or upon completion of a subroutine)
with a $OPEN statement. The SET-UP subroutine (required for BUILD SUBROUTINE
MODULE) has been dropped and is no longer required. On a return code of
Q$="B", a $BREAK statement is recommended before attempting a retry. The
memory usage inherent to the 2200MVP is different than the single user, single
station 2200 CPU's, and special program statements are available for 2200MVP
use (refer to the BASIC-2 Language Reference Manual for 2200VP/2200MVP
systems). Variable V in the KDR is now always zero (0). Internal storage
variable V0$(3)24 is now V0$(3)21 and has been changed internally.

179

CHAPTER 27

KFAM ADVANCED PROGRAMMING TECHNIQUES

27.1 FILES TOO LARGE FOR ONE DISK

A cataloged disk file must be wholly contained on one disk. If the User
File is too large for one disk, it must be broken into two separate files.
(Both files may have the same name, since they are on different disks.)
Separate Key Files must be created, one for each User File. (If both Key
Files are on the same disk, they may not have the same name.)

Perhaps the simplest scheme for splitting the User File is to determine
a "cutoff" point. A key value is picked, somewhere in the middle, which will
be the highest key in User File #1. Records with lower keys are stored in
User File #1, and records with higher keys are stored in User File #2.

If each User File and its companion Key File are stored on the same

disk, both User Files may have the same name, as may both Key Files. 1In that
case, the same routines can be used to access both files by simply changing
the disk address designation.

27.2 REUSING DELETED SPACE WITH FINDNEW(HERE)

Immediately following a DELETE, FINDNEW(HERE) may be used to insert a
new record in the space just vacated by the deleted record. This function is
useful for changing a key, but is not generally useful to reuse the deleted
space because a new record is not generally available immediately following a
DELETE.

180

The user may, however, store the pointer to the deleted record in a
geparate file for later use. The procedures are given below.

KFAM-7 does not check that FINDNEW(HERE) follows DELETE.

Under KFAM-7, the pointer to a deleted record may be saved as follows:
1. DELETE a record.

2. Test to make sure that Q$ = blank.

3. Save the contents of TiU$ in some file or list external to KFAM.
(See Section 26.1, "Internal Storage: User Partition".)

To re-use the space at some later time:

1. Move the saved record pointer to TU$. (See Note below.)

2. Use FINDNEW(HERE) with the new record key.

3. FINDNEW(HERE) will return with the Current Sector Address set to
read the correct sector and Q = the record number within the sector.

NOTE:

If the file to be accessed is not the same as the file last
accessed by a KFAM subroutine, move the saved record
pointer to STR(T5$(i),1,3), where i = this file's KFAM I.D.
Number. If not sure which file was last accessed, test T9
= KFAM I.D. Number last accessed.

27.3 MULTIPLE KEY FILES PER USER FILE

KFAM does not support multiple Key Files for a single User File. Though
the Key File number provides a means of identifying different Key Files for a
single User File, the subroutines and utility programs are designed for
operations in which there is only one Key File per User File. The Programming
Department of Wang Laboratories, Inc. does not support KFAM based file access
systems that attempt to maintain multiple Key Files for a single User File. A
protection scheme may be designed and implemented to allow such features as
record protection using multiple Key Files, external to KFAM-7.

27.4 STATUS OF THE KEY DESCRIPTOR RECORD (KDR)

The fields which are of most interest to the user, T4$ (current pointer)
and T7$ (current key), are stored internally. (See Section 26.1.)

181

There are legitimate reasons why a user may wish to change information
in the KDR. One problem which is 1likely to occur is that the starting
position of the key or the record length is wrong, causing a reorganization
program to fail. These fields, which are critical in reorganizing, cannot
really be checked prior to reorganizing. At the point of reorganizing, it is
not generally feasible to re-create the Key File from the beginning. If such
problems or similar problems occur, the contents of the KDR can be changed by
the user via a very simple procedure:

S2 = (Station #)

SELECT (User File #, Key File #)

OPEN the file, Exclusive mode

Modify the appropriate KDR variable, e.g., T$()
CLOSE the file

This will read in the KDR, change it, and write it back on the disk. The KDR

is always read by the OPEN subroutine and always written by the CLOSE
subroutine in the Exclusive access mode.

182

27.5 FILE NAMES FOR THE KFAM UTILITIES

File (module) names for the KFAM-T utilities are provided in Table 27-~1.

Table 27-1. KFAM-T Modules

UTILITY MODULE NAME
Work File used to generate code KFAMWORK
and store error messages to be
printed by KFAM2107. This is a
data file of 15 sectors; all other
files are program files.
KFAM-7 variables to be included in KFAM0007
user program residing in user
partition.
KFAM-7 subroutines to be loaded KFAMO107
into global partition.
Start-up module for KFAM-7 START
Utility Programs.
ISS start-up operation. ISS.001M
Menu and initial dialog KFAM-T7
INITIALIZE KFAM FILE KFAM1007
KEY FILE CREATION UTILITY KFAM2007
(also KEY FILE RECOVERY)
Print duplicate keys, etc., KFAM2107
using KFAMWORK.
REORGANIZE IN PLACE:
Start-up KFAM3007
Generate Code KFAM3107
Reorganize KFAM3207
REALLOCATE KFAM FILE SPACE KFAMY4007
CONVERT from KFAM-3 to KFAM=-T7
or KFAM-4 to KFAM-T KFAM5007
PRINT KEY FILE KFAM6007
RESET ACCESS TABLE KFAM7007
BUILD SUBROUTINE MODULE:
Processing module KFAMB007
Input file KFAMO107
KEY FILE RECOVERY:
Start-up (calls KFAM2007) KFAM9007
Close files (called by
all KFAM=-7 utility programs) KFAM9907
REORGANIZE SUBSYSTEM (standalone)
ISS Reference File ISS.REFB
Start-up, open files KFAM3507
Generate code KFaAM3607
Reorganize, parts 1
and 2 KFAM3707
Part 3, close files KFAM3907

183

CHAPTER 28

NON-KFAM FILE OPEN/END/CLOSE SUBROUTINES

28.1 OVERVIEW

Non-KFAM file Open/End/Close subroutines are designed for 2200MVP
multistation disk environments and are included in the KFAMO107 global
subroutine module.

Multistation disk files provide additional security features not
available with regular disk files. The security features are accomplished by
using only the multistation Open/End/Close subroutines on multistation files,
instead of regular BASIC-2 Language DATASAVE DC OPEN, END, and CLOSE
statements. Special information, namely an access table and Password, is
maintained in a previously unused portion of the catalog trailer record by the
multistation subroutines. Implementing a unique Password for a multistation
file will allow only those who know the Password to access that file. 1In
addition, the access table allows a station upon opening the file to have
Exclusive (private) access to a file in the Exclusive mode or file access in
one of three non-exclusive (public) modes including the Inquiry, Read Only,
and Shared modes. The selected access mode is established each time the file
is opened and is discontinued when the file is closed. Closing a file
terminates file access, whereas opening begins file access for each station
independent of other stations.

184

[

28.2 PASSWORD USE

When a file is first created by the Open subroutine, this is called an
"open new" operation. Whether or not a Password will be required by all
stations attempting access to that multistation file (later) is determined by
the content of the argument (symbolic variable) P$ when the Open subroutine is
called for the "open new" operation. If P$ contains blanks, a Password of
blanks is required for any station to open that file. If P$ contains anything
other than blanks, that value of P$ must be provided on any call of the Open
subroutine for any user to access that file. When the "open new" operation
has been successfully completed, the Password security feature is operable.
Once set by the "open new", the Password cannot be changed. A Password may be
implemented on a subsequent "open new" command to create a new file if not
implemented when the file was previously created on an "open new".

28.3 CONVERTING TO MULTISTATION FILES

The conversion from a regular disk data file to a multistation disk data
file occurs when that file is opened using the Open subroutine. Thus, by
accessing the file, it is converted to a multistation file automatically;
however, for the file to remain a multistation file, the Open/End/Close
subroutines always must be used instead of the DATASAVE DC statements.

CAUTION:

The following BASIC-2 instructions destroy the access table
(and Password) necessary for multistation files: DATASAVE
DC END, MOVE TO, and MOVE. Instead, use the END subroutine

and Copy/Verify ISS Utility or CoPY statement
respectively.

28.4 OPEN SUBROUTINE (DEFFN' 217)

The Open subroutine, by virtue of its arguments, allows a multistation
file to be opened, the access mode defined, and a password (if any) used.
When creating a new file, this is called an "open new." When accessing an
existing (old) file, this is called "open old." 1In addition, when accessing
an existing file the access mode may be changed; this is called a "re-open
old." The Open subroutine replaces the BASIC-2 Language statement DATASAVE DC

OPEN and similarly allocates and reserves file sectors on an "open new"
operation.

185

Access Modes

The four access modes include Inquiry, Read Only, Shared, and
Exclusive. In the Exclusive mode, only the station with Exclusive access may
open the file (private access). However, in order for that user to have
Exclusive access, no other station can have that file open. The Exclusive
access mode is required for an "open new".

A file may be opened in the Inquiry mode if that file is not currently
open in the Exclusive mode to another station. Conversely, a file open in the
Inquiry mode keeps stations requesting the Exclusive mode from opening that
file.

A file may be opened in the Read Only mode if that file is not currently
open in the Shared or Exclusive mode to another station. Conversely, a file
open in the Read Only mode keeps stations requesting the Exclusive or Shared
Modes from opening that file.

With the Shared mode requested, that file will be opened successfully if
that file is not open in the Read Only or Exclusive modes. Conversely, a file
open in the Shared mode keeps stations from opening that file requesting the
Read Only and Exclusive modes.

A file may be opened in the Exclusive mode if no other stations are
accessing that file. Once a file is opened in the Exclusive mode, no other
stations can access that file until it is closed.

Disk Hog Mode

With the availability of Exclusive file access, the need for disk Hog
mode is significantly reduced. Only in cases where more than one file must be
opened with Exclusive access on one disk is the use of Hog mode usually
necessary. One advantage of Hog mode over Exclusive access is that with Hog
mode, there is no wait for other stations to close files for which Exclusive
access is needed, which is an important consideration if more than one file
must be opened with Exclusive access. (Exclusive access requires that no
other stations have that file open in order for the Open subroutine to be
successful.) Hog mode is controlled by the BASIC-2 statements $¢OPEN and
$CLOSE. Hog mode is released upon executing a subroutine or if the program is
hogged, therefore only the $OPEN statement applies.

GOSUB' 217 Argument Format

NOTE:

The file number (F) must be assigned to its disk address
prior to calling the Open subroutine (use a SELECT
statement). The station number, S2, must coincide with
(argument) symbolic variable C. :

186

»

Transfer to the Open subroutine occurs via the statement:
GOSUB* 217(F$,F,C,S,A,P$,A1$,0)

where the symbolic (dummy) variables denoting each argument are as
follows:

F$ indicates the file name, which on an "open new" command must be
unique to that disk. On any "open old", it must be identical to the
previously assigned file name.

F contains the file (device) number, from 0 to 15.

C contains the station (partition) number, from 1-48, e.g., common
variable S2.

S determines the type of open command. If S is greater than zero, this
indicates an "open new" command; also, S equals the number of sectors to
be allocated for this file. If S=0, this indicates an "open o0l14d"
command. If S=-1, this indicates a "re-open 0ld" command during which
the access mode is changed.

A determines the access mode for this file. A=1 indicates Inquiry
mode. A=2 indicates Read Only mode. A=3 indicates Shared mode. A=l
indicates Exclusive mode. For an "open new", A must equal 4.

P$ contains a password, if one is required. Password content is
determined solely by that file's "open new".

A1$ contains the disk address in the xyy form (not used).

0 (zero) is a required argument.

GOSUB' 217 Return Codes

Q$ contains the return code as summarized below in Table 28-1.

187

Table 28-1. Non-KFAM File

OPEN Return Codes

VALUE INDICATES CAUSE AND RECOVERY
blank successful open Continue
A access mode confliect . Retry, or wait and retry.

If abnormal delay, check
if value of argument A is
correct. Check if correct
file was accessed (values
F$,F,C). Check if that
file was accidentally
left open (use File Status
Report utility).

D file not found or the Check if value of argument
open command conflicts S is correct. Check if
with file disposition, correct file was accessed
e.g., "open new" issued (values F$,F,C). On
to existing file, "open "open o0ld", check if that
old" issued to a file file was accidentally
already open, or "re-open| left open (use ISS File
0ld" issued to closed Status Report utility).
file.

S insufficient disk Retry after reducing value
space to complete of S if acceptable, or
"open new" allocation. use different disk by

changing F. Otherwise,
use Free Unused Sectors
Disk subroutine to create
more disk space and retry
"open new" with S as is.

P password conflict Check value of P$.

Retry with correct file
password.

28.5 END SUBROUTINE (DEFFN' 218)

The End subroutine performs the function of the BASIC-2 statement DATA
SAVE DC END for multistation files. As with the DATA SAVE DC END, upon
calling the End subroutine, the Current Sector Address must be at the location
required for the end-of-file trailer record. Use of the DATASAVE DC END on a
multistation file results in destruction of the access table necessary for
multistation files.

188

‘»

Transfer to the End subroutine is via the statement:
GOSUB* 218 (F$,F,A1$,0)
where the symbolic variables denoting the arguments are as follows:

F$ is the file name.

F is file (device) number, from 0 to 15.

A1$ is the disk address in the xyy form (not used).
0 (zero) is required.

There are no return codes.

28.6 CLOSE SUBROUTINE (DEFFN'219)

Closing a file promptly with multistation operation is usually important
because of possible access mode conflicts. Once access to a file is no longer
needed, that file should be immediately closed, especially if opened with
Exclusive access.

To retain a file for later processing, the file may be left open if
needed. There is no limit as to how many files can be open for one station
because station/file status is maintained in the file's catalog trailer
record, and not by each partition. Because the access table resides on
non-volatile storage of disk, memory may be cleared or power switched OFF, and
the file will remain open to that station. This type of action, of course, is
not recommended. Files should not accidentally be left open.

Transfer to the Close subroutine occurs via the following statement:
GOSUB' 219 (F$,F,C,A1$,0)

where the symbolic variables denoting the arguments are as follows:

F$ is the file name.

F is the file (device) number.

C is the station (partition) number, from 1 to u8.

Al$ is the disk address in the xyy form (not used).

0 (zero) is required.

There are no return codes.

189

_ PART IV

THE ISS SCREEN/DISK SUBROUTINES

190

CHAPTER 29 - OVERVIEW OF THE SCREEN/DISK SUBROUTINES

29.1 INTRODUCTION

The ISS Screen/Disk Subroutines comprise a library of marked subroutines
designed to eliminate the repetitious, detailed programming tasks otherwise
required of an application programmer. These marked subroutines -~ known as
the ISS Screen/Disk subroutines -- provide a simple interface between
application programs and a wide range of potentially complex disk-related and
operator-related tasks.

There are three groups of Screen/Disk subroutines: the DISK
subroutines, the SCREEN subroutines, and the TRANSLATION TABLES subroutines.
The SCREEN subroutines perform various tasks related to the interaction
between operator and station, whereas the DISK subroutines perform .tasks
related to station and disk interaction. The TRANSLATION TABLES subroutines
initialize 256-byte arrays with the proper hex codes for four standard
character code translations; these arrays are designed for use with the
BASIC-2 statement $TRAN.

The subroutines selected may be specified either as "global" or
"non-global™ (local). In either case, the subroutines chosen are loaded into
memory (the partition in use) and saved to disk.

If n"global® is specified, ¢two program files are output to a
user-specified disk address with user-specified file names. One program file
contains Dimension (DIM) statements for certain variables which must be
incorporated into the user's application program; the other program file
contains program text consisting of the selected subroutines to which the user
adds a DEFFN @PART statement in order for the subroutines to be referenced
(later) by multiple stations as a global partition.

If "non-global" (local) is specified, only one program file is output,
and it contains both Dimension statements and subroutines which are both

incorporated into the user's application program. A disk address and file
name are specified by the user.

191

Symbolic Variables and Arguments

The DEFFN' statement which marks each Screen/Disk subroutine may require
certain parameter values to be passed from the GOSUB' statement which calls
it. Parameter values passed are assigned to certain variables within the
subroutine. If parameters (arguments) are required, "symbolic variables"
(i.e., "dummy variables") listed in this manual denote each argument required
following the appropriate GOSUB' statement. Symbolic variables are not the
actual variables required in an argument list. Instead, symbolic variables
indicate whether a numeric expression or alphanumeric expression is required
in place of the symbolic variable.

If a symbolic (dummy) variable's name is numeric, a numeric expression
such as a number or a user-defined numeric variable is required in its place.
If a symbolic variable's name is alphanumeric, an alphanumeric expression such
as an alphanumeric 1literal (within quotation marks) or user-defined
alphanumeric variable is required in its place. This convention attempts to
ensure that an alphanumeric expression (argument) is not assigned to a numeric
variable in a subroutine, and vice versa.

Generally, the letter chosen for a symbolic variable's name is the first
letter of the associated parameter's name, e.g., L represents Length.

Reserved ISS Variables and DEFFN' Numbers

All variables (scalar and array, alpha and numeric) in the range Q
through W are reserved for use by ISS. Such variables should be handled as
"read only" variables by the user's program, unless the desoription of a
specific subroutine states otherwise (e.g., default values for Data Entry, a
Screen subroutine). Similarly, all DEFFN' statements in the range 200-255 are
reserved solely for ISS subroutines. While individual items within these
ranges may not be used on a given release of ISS, in supporting ISS it 1is
assumed that no variables or DEFFN' subroutines in these ranges are used for
purposes unrelated to the subroutines.

All subroutines are compatible with one another in regard to variable
usage. However, all Translation Table subroutines load the same array

variable. Also, when ocalling the same subroutine more than once, before

calling the subroutine the second (or next) time, any information returned
from the previous call should be either processed or equated to a user-defined
variable.

If a subroutine argument specifies a disk file number, a disk address

must be selected for that file number prior to calling the subroutine. File
numbers are selected by executing a SELECT statement such as 50 SELECT #3/310.

192

“s

29.2 CHOOSING AND SAVING SCREEN/DISK SUBROUTINES

All Screen/Disk subroutines may be loaded simultaneously. Because none
of the subroutines destructively overlaps another, all subroutines may be used
in a single program, if desired. Statements are numbered within the range
71-90 and 6000-9899, where DIM (Dimension) statements are located on statement
lines 71-90 and DEFFN' subroutine program text is located on lines 6000-9899.
Program lines associated with the menus are located outside these ranges.

Following ISS start-up operation (see Chapter 3), the SCREEN ROUTINES

menu appears. Each group of subroutines has its own menu; the menu's name
appears within parentheses below:

1. Screen subroutines (SCREEN ROUTINES)
2. Disk subroutines (DISK ROUTINES)
3. Translation Table subroutines (TRANSLATION TABLES)

Choosing the Desired Subroutines

In reply to the menu currently displayed, the wuser chooses the
subroutines to be output by touching the corresponding S.F. Keys. As each
subroutine is chosen, an asterisk (%) appears to the left of the subroutine
chosen and also to the left of any subroutines automatically included with the
chosen subroutine.

In addition to the S.F. Keys available to choose the desired
subroutines, the following S.F. Keys are available:

1. To obtain the next menu of subroutines, touch S.F. Key '16. After
touching S.F. Key '16, if the Screen subroutines menu was displayed,
the Disk subroutines menu appears; if the Disk subroutines menu was
displayed, the Translation Table subroutines menu appears; if the
Translation Table subroutines menu was displayed, the Screen
subroutines menu reappears. In this manner, the user can obtain the
next menu and choose the subroutines desired from that menu, obtain
the next menu and choose the subroutines desired from that menu, etec.

After choosing the subroutines desired, S.F. Key '16 should be
touched to allow the user to visually verify the subroutines chosen
from the three subroutine menus.

2. To erase all subroutines chosen (indicated by asterisks) from all
menus, touch S.F. Key '18. Because S.F. Key '18 erases all
asterisks, the user should again choose all the subroutines desired
from the three menus.

Saving the Subroutines Chosen to Disk

After visually verifying that the correct subroutines have been chosen,
the user has two options:

1. To save the chosen subroutines for subsequent non-global (local)

use, touch S.F. Key '26. The chosen subroutines are loaded and the
following prompts appear:

193

ENTER OUTPUT ADDRESS - requests entry of the disk device address

‘(xyy form) where the chosen subroutines are to be saved. Valid ISS

disk addresses are displayed.

MOUNT OUTPUT DISK, KEY RETURN(EXEC) TO CONTINUE?-requests mounting
of the disk(ette) where the chosen subroutines are to be saved (the
disk address just entered). Touch RETURN when ready.

ENTER FILE NAME - requests entry of the file name to be assigned to
the program file to contain the selected subroutines.

"SAVING ROUTINES"™ and "STOP ROUTINES SAVED" appear. To obtain the
ISS start-up prompt P"ENTER DESIRED FUNCTION", from which the
Applications menu may be obtained, touch S.F. Key '31.

To save the chosen subroutines for subsequent global use, touch S.F.
Key '28. The chosen subroutines are loaded and the following
prompts appear:

ENTER OUTPUT ADDRESS - requests entry of the disk device address

(xyy form) where the chosen subroutines and Dimension statements are
to be individually saved as program files. Valid ISS disk addresses
are displayed.

MOUNT OUTPUT DISK, KEY RETURN(EXEC) TO CONTINUE?- requests mounting
of the disk(ette) where the chosen subroutines are to be saved (the
disk address just entered). Touch RETURN when ready.

ENTER FILE NAME FOR 'VARIABLES' - requests entry of the file name to
be assigned to the program file to contain the Dimension statements
for certain variables. This program file's contents are
incorporated into the user's application program.

ENTER FILE NAME FOR 'TEXT' - requests entry of the file name to be
assigned to the program file to contain the chosen subroutines
(program text). This program file's contents (later) should be
loaded, a DEFFN @PART statement added to it, and it should then be
resaved for subsequent use as a global program file. (For the
automatic bootstrap feature to be used, the global program file
should be resaved to the 2200MVP Operating System Diskette.)

"SAVING ROUTINES" and "STOP ROUTINES SAVED" appear. To obtain the

ISS start-up prompt "ENTER DESIRED FUNCTION", from which the
Applications menu may be obtained, touch S.F. Key '31.

194

Estimating Partition Memory Size Requirements

In order to load a program file containing all 1ISS Screen/Disk
subroutines, a 6.75K partition is necessary; however, in order to load and run
a program file containing all ISS Screen/Disk subrotines, a 8.25K partition is
necessary. These partition requirements are the same for both global and
non-global subroutines. The variables required in the global output require
.5k to load and a 2.0K partition to load and run if all Screen/Disk
subroutines are chosen. Because it is not 1likely that all Secreen/Disk
subroutines will be chosen, use of the END statement or PRINTSPACE (SPACE
function) allows the user to determine amount of unused (free) memory, and the
amount of memory actually necessary.

195

CHAPTER 30 -~ SCREEN SUBROUTINES

30.1 INTRODUCTION

Screen subroutines, in general, control CRT screen messages and
subsequent keyboard entry when incorporated into an application program. Each
subroutine has a standard set of functions associated with it, such as cursor
positioning, numeric or alphanumeric entry, checking of keyed input, entry of

the date in Gregorian or Julian form, and similar operator-interactive
functions.

Consistent implementation of Screen subroutines within a program (or set
of related programs) results in operation that also is consistent. Simple and
consistent operator/machine interaction is certainly a worthy goal, because it
directly affects operator productivity and accuracy.

30.2 DATA ENTRY (DEFFN' 200)

The Data Entry subroutine accepts a keyboard entry and determines if it
is acceptable for either numeric or alphanumeric input. Using the LINPUT
statement, entries can be checked for (1) values either within a specified
numeric range or alphanumeric limits, (2) the length of an alphanumeric entry,
and (3) the length to the left of, and to the right of, the decimal place for
a numeric entry. With numeric entry, all digits (0-9), minus sign, a decimal
point, and Exponential characters including the uppercase letter E are valid
entries.

A prompt can be displayed on 1line 1 and operator modifiable or
unmodifiable defaults can be implemented to reduce the required number of
operator keystrokes. With operator modifiable defaults, Edit mode 1is
activated allowing nondestructive editing of the displayed default.

During the call to the Data Entry subroutine, any Special Function
(S.F.) Key is a valid operator response if (1) the user's application program
provides the corresponding DEFFN' statement followed by either a RETURN or a
RETURN CLEAR statement and (2) Edit mode is not active.

Checking Features

After keying RETURN, checks are performed on the entire response
including the following:

1. With a numeric entry, does the response conform to the minimum and
maximum (range check) values specified, if any? (See arguments L$
and H$ below.) '

196

v

2. If numeric entry, is the number of digits to the left, and to the
right, of the decimal point within the maximum length 1limit
specified for each? (See arguments L1 and R1 below.)

3. If alphanumeric entry, is the length within the maximum 1limit
specified? (See argument L1 below.)

4y, If alphanumeric entry, does the response conform to the alphanumeric
limits specified? (See arguments L$ and H$ below.)

If the tests find the entry acceptable, a valid response is returned in
scalar variable Q9 for numeric entry, or alpha-variable Q6% for alphanumeric
entry. If defaults are to be used, the default value must be equated to the
appropriate variable prior to each call of the Data Entry subroutine.

With alphanumeric input, if an entry is rejected based on the arguments
specified, "RE-ENTER" is displayed on line 3, the audio alarm sounds, and the
subroutine is readied to accept data. With numeric input where the entry
falls outside of the specified range or decimal point/digit length, "RE-ENTER
L$D=ENTRY)=H$ (ddd.dd)" is displayed to indicate the entry failed the numeric
range or length check, where the (ddd.dd) indicates the entry mask according
to arguments L1 and R1.

GOSUB' 200 Argument Format

Transfer to the Data Entry subroutine occurs via the statement:
GOSUB' 200 (L$, H$, L1, R1, P$, T)

Numeric Input Arguments

Numeric input (symbolic variable) arguments are described below:

Range Check - L$ contains the lowest acceptable numeric entry for the
field. Since L$ is itself alphanumeric, it must always be
expressed as an alphanumeric string, e.g., L$ = "-99.99".

H$ contains the highest acceptable numeric entry for the
field and must be expressed as an alphanumeric string, e.g.,

H$= "+99 99",
If L$} and H$ both contain blanks, no range check is
performed.

Length Check - L1 equals the maximum number of characters to the left of

the decimal place.

R1 equals the maximum number of characters to the right of
the decimal place. L1 plus R1 cannot exceed 19.

If L1 and R1 both equal zero, no mask is displayed and a
length test is not performed, but keystrokes are accepted.

197

Prompt - P$ is the alphanumeric prompt (to be displayed on line 1 of

the CRT).

Type of - T determines if a default value 1is used, as follows.

Entry
If T = -1, numeric input with an operator modifiable default
value ocours. The default value contained in alpha-variable
Q6$ is displayed and may be modified if desired by the
operator. Edit mode is activated.
If T=1 numeric input occurs without default.
If T=0 numeric input with default occurs without display.
The default value contained in scalar variable Q9 is used
only if the operator accepts the default value by keying
RETURN before entering any other characters.

Return - A valid operator reply is contained in scalar variable Q9.

Alphanumeric Input Arguments

Alphanumeric input arguments are described beluw:

Limit Check - L$ contains the lowest acceptable alphanumeric string value
of the entry.
H$ contains the highest acceptable alphanumeric string value
of the entry. 1If L$ and H$§ are blank, no 1limits check
oceurs.

Length Check - L1 equals the maximum number of characters for the field, up
to 61 characters.
R1 equals zero (0).

Type Of T must either equal 2, to indicate alphanumeric input

Entry without default, or equal 3, to indicate alphanumeric input
with a default. If T = 3, the default characters contained
in alpha-variable Q6$ are displayed and may be modified if
desired by the operator. Edit mode is activated if T = 3.

Prompt - P$ is the alphanumeric prompt.

Return - A valid operator reply is contained in alpha-variable Q63.

30.3 DATE ROUTINES (DEFFN' 220,221,222,223,224,225)

The "DATE ROUTINES" oonsist of a group of independently accessible
subroutines which facilitate the entry and use of dates. Dates may assume
two forms. These are known as the "Gregorian" and "Julian" forms,
respectively. Gregorian form is alphanumeric MM/DD/YY

Where: YY is the 2 low order digits of the year.
MM is the number of the month such that 1 > MM > 12.
DD is the day of the month 1 = DD > 31.

198

Julian form is numeric YYDDD.
Where: YY is the 2 low order digits of the year.
DDD is number days since the beginning of YY counting
January 1 as 1.
A Julian date is in proper form if

YY >0 and
1 > DDD > 365 whenever YY specifies a non-leap year,

or 1 > DDD > 366 whenever YY specifies a leap year.

A Julian date must be in proper form to be correctly converted to
Gregorian form by any of the subroutines.

All the routines are designed to automatically account for leap years.

Enter Date - Gregorian Form

This subroutine provides for keyboard entry of a Gregorian date. It
returns the entered date in Gregorian and Julian' form. A prompt must be

specified. The entered date is displayed in Gregorian and Julian form for
operator verification before the subroutine is exited.

The subroutine is entered via
GOSUB' 220 (P$)
Where: P$ is the prompt, 64 characters maximum.

The prompt is displayed on line 1, and the cursor appears on line 2.

The slashes (/) in the date must be entered along with the appropriate
digits (MM/DD/YY form), although leading zerces need not be entered. If MM or
DD assume values outside their.valid ranges, entry is requested again.

Otherwise, the message IS DATE OK (Y/N) appears on line 2 with the
entered date in its Gregorian and Julian forms. If N is entered, entry is
requested again. If Y is entered, the Gregorian date is returned in

alpha-variable U9$ and the Julian in scalar variable U9; the subroutine is
exited.

Convert Date - Gregorian to Julian

This subroutine converts a date from Gregorian to Julian format. It is
entered via

GOSUB' 221 (G$)

Where: G$ is the Gregorilan date to be converted.

199

The routine returns alpha-variable U9$ with the Gregorian date and
scalar variable U9 with the Julian equivalent of G$. If G$ could not be
converted because the values of MM or DD were outside the valid range,
alpha-variable Q6$ is returned as “E".

Enter Date - Julian Form

This subroutine provides for keyboard entry of a Julian date (YYDDD
form). A prompt must be specified. The entered date is converted to its
proper form (via GOSUB'224). The date is displayed in Gregorian and Julian
form for operator verification.

The subroutine 1s entered via
GOSUB!' 222 (P$)
Where: P$ is the prompt, 64 characters maximum.

The prompt is displayed on line 1, and the cursor appears on line 2.
No check is performed to ensure the proper form of the entered Julian date.

The message IS DATE OK (Y/N) appears on line 2. with the entered date in
its Gregorian and Julian forms. If a Julian date was entered which was not in
proper form, the Gregorian date is incorrect. If N 1is entered, entry is
requested again. If Y is entered, the Gregorian date is returned in
alpha-variable U9$ and the Julian in scalar variable U9; the subroutine is
exited.

Convert Date - Julian to Gregorian

This subroutine converts a date from Julian to Gregorian form. The date
specified as an argument is converted to its proper form (via GOSUBf22Y4). It
is entered via

GOSUB®' 223 (J)
Where: J is the Julian date to be converted.
The routine returns alpha-variable U9$ with the Gregorian equivalent of
J and scalar variable U9 with the entered Julian date. No check is performed
on J. A Julian date not in proper form will produce a Gregorian date with MM
or DD outside the valid range.

Convert Julian Date to Proper Form

This subroutine converts any 5-digit Julian date to a Julian date in
proper form, i.e., the number of days specified must be valid for the
specified year and is converted if invalid (see examples below). It 1is
entered via

GOSUB' 224 (J)
Where: J is a Julian date.

The subroutine returns the entered date in Q9 in proper form.

200

“

For example:

72367 is returned as 73001
71733 is returned as 73002

Calculate Days Between Two Dates

This subroutine calculates the number of days between two Julian dates.
It is entered via

GOSUB' 225 (J1, J2)

Where:

J1 is the earlier date.

J2 is the later date.

U3 is returned equal to the number of days between J1 and J2.
For example:

If J1 = 75004 and J2 = 75009,

then U3 is returned as 5.

If J1 = 71360 and J2 = 72060, then U3 is returned as 65.

30.4 POSITION CURSOR (DEFFN' 248)

The Position Cursor subroutine moves the cursor to any location on a
16 x 64 or 24 x 80 display screen. Also, it can optionally erase the
characters to the right of the new cursor position on the same line as well as
entire lines below it. Position Cursor automatically determines the type of
CRT used. Unlike the PRINT AT function which erases the specified number of
characters, the Position Cursor subroutine erases the specified numher of
lines. The PRINT AT function, if desired, may be used instead of Position
Cursor. Usually a PRINT or LINPUT statement, or screen subroutine equivalent,
follows the Positon Cursor call.

Transfer to the Position Cursor subroutine occurs via the statement:

GOSUB*' 248 (R,C,E)

where:
R = row (i.e., line number minus one), relative to zero
C = column, relative to zero
E = number of lines to erase

201

The cursor is moved to the position specified by the R,C argument
relative to zero (0), e.g., R=0 and C=2 move the cursor to the top-most line,
position 3. The absolute value of E determines if lines are erased and 1is
identical for the two types of available display screens.

If E=0 (zero), no characters are erased. If E=~1 or E=1, only
characters in the same line (row) to the right of the cursor's new position
are erased. If E is less than minus one (-1) or greater than one, characters
to the right of the cursor's new position (on that line) are erased, as are
all lines below, to the value of E-1 lines for E values greater than one, or
the absolute value of E minus one for E values less than minus one. Also, 1if
E=-9E99 or E=9E99, the entire screen is cleared.

30.5 OPERATOR WAIT (DEFFN' 254)

This subroutine displays the message "KEY RETURN(EXEC) TO RESUME?" on
line 2. Execution is halted on an INPUT instruction until RETURN is touched.
Up to 64 entered characters are returned in alpha-variable Q6$.

Transfer to the subroutine is via the statement:

GOSUB' 254

30.6 RE-ENTER (DEFFN' 255)

If the Data Entry subroutine is selected, the RE-ENTER subroutine may be
used.

The RE-ENTER subroutine displays the word "RE-ENTER" on line 3 of the
screen when called. It is used to signal the operator of an entry error.

Transfer to the RE-ENTER subroutine is via the statement:

GOSUB' 255

30.7 PRINT ROUTINE (DEFFN' 242)

The Print Routine subroutine allows a specified character to be printed
a specified numher of times.

Transfer to the Print Routine subroutine is via the statement:
GOSUB' 242 (N, C$)

the number of times to print the character.
the character to be printed.

where: N

c$

202

LI

CHAPTER 31 - DISK SUBROUTINES

31.1 INTRODUCTION

The Disk subroutines are DEFFN' subroutines that, in general, provide
specialized disk file maintenance functions. Each subroutine has a unique set
of standard functions associated with it, but are not to be confused with KFAM
subroutines. The Disk subroutines described in this chapter perform such
functions as return the names of files on a disk in index sector sequence,
return the status of a disk file, allocate the maximum possible amount of disk
space for a new file and create it, de-allocate unused sectors in an existing
file, as well as opening special data files to be used for output or input
purposes and subsequently closing them.

Multistation Open/End/Close subroutines (i.e., Multiplex subroutines)

are discussed separately in the next chapter, although they are selectable
from the Disk subroutine menu.

31.2 SEARCH INDEX (DEFFN' 229)

The Search Index subroutine searches a disk catalog index for a
specified file name. It returns the status of the file as active, scratched
or nonexistent, as well as indicating whether the file is a data or program
file. It is recommended that the BASIC-2 statement LIMITS be used instead of
Search Index for efficiency, however, please note that Search Index returns
the information in alpha-variable R2$ which is not returned by the LIMITS
statement.

The subroutine is called by:

SELECT #F/xyy
GOSUB* 229 (F, N$)

where: xyy is the disk device address.

F is the File Number.
N$ is the file name.

203

The scalar variable R is used as a return code to indicate one of the
following:

active data file
active program file
file does not exist
scratched program file
scratched data file

N =t O
1

In addition, alpha-variable R2$ returns the file status code.
R2¢ = HEX(10) the file is active.

R2$ = HEX(11) the file is scratched.
R2$ = HEX(00) the named file does not exist.

31.3 ALLOCATE DATA FILE SPACE (DEFFN' 228)

This subroutine opens a data file on any selected disk and allocates to
it the available sectors between the current end of cataloged files and the
end of the cataloged area. It checks the catalog index to ensure the
uniqueness of the file name; it allows a minimum acceptable file size to be
specified.

This subroutine is designed to be a counterpart to Free Unused Sectors.
The subroutine is called by

SELECT #F/xyy
GOSUB' 228 (F,N$,S)

where: xyy is the disk device address.
F is the File Number.
N$ is the name of the new file.
S is the minimum acceptable number of sectors for the file; if

S is less than 0, the absolute value of S is allocated.

There are three conditions sufficient to prevent the file from being
opened. In the sequence of their evaluation they, and their return codes, are:

a. If the file name is the same as an indexed scratched file, the
.return code R2$ is set to 3.

b. If the file name is the same as an indexed active file, the return
code R2$ is set to 2.

¢. If there are insufficient sectors in the catalog area, beyond the
current end, to open the specified minimum file, the return code R2$
is set to 1.

If none of these conditions occurs, the file is opened and the return
code R2$ is set to O.

204

LY

31.4 FREE UNUSED SECTORS (DEFFN' 227)

This subroutine examines a selected file in a disk catalog area. It
de-allocates those sectors between the end of the file and the DATASAVE DC END
trailer. It repositions the end of file control sector. The de-allocation
may be restricted by specifying that a minimum number of extra sectors be
maintained in the file (reserved for file additions).

The file must have been ended with a DATASAVE DC END statement. If this
subroutine is executed on a file which lacks a DATASAVE DC END trailer, the
file is destroyed.

This subroutine is designed as a counterpart to Allocate Data File Space.
The subroutine is called by

SELECT #F/xyy
GOSUB' 227 (F, N$, S1)

where: xyy is the disk device address.
F is the File Number.
N$ is the name of the file to be examined.
S1 is the number of extra sectors to be maintained in the
file.

There are two independent conditions under which the file will not be
altered. In the sequence of their evaluation, they, and their return codes,
are:

a. If the file does not exist, the return code R2$ is set to 3.

b. If the number of extra sectors found in the file is less than or
equal to the number of extra sectors to be maintained in the file,
the subroutine returns 1 in R2$.

If none of the above conditions occurs, the file is altered and the
subroutine returns O in R2$.

Note that if the file is the last file in the catalog area, Free Unused
Sectors updates the end of catalog, as well as the end of file.

31.5 LIMITS NEXT (DEFFN' 226)

The Limits Next subroutine returns the names of files on a disk in index
sector sequence, the same order provided by the LIST DC statement. Also
returned for each file is its file status and whether it is a data or program
file. For each call the next file name in sequence and its corresponding
status is returned.

205

Transfer to the Limits Next subroutine occurs via the statement:
GOSUB' 226 (F,N$)
where: F = The disk device number in the XYY form.

N$

The file name the sequence will begin at. If
N$=HEX(0000000000000000), the scan will begin
with the first file in sequence.

After return, this routine contains the following values:
R9$ = The name of the next file in sequence
If R9$ equals HEX (0000000000000000),

the end of file sequence has been encountered.

R = The file status of the file name returned
in R9$, where:

2 - indicates active data file.
1 - indicates active program file.
0 - indicates file does not exist (occurs at end of
index).
-1 - indicates scratched program file.
-2 - indicates scratched data file.

The initial call provides F and N$; thereafter on return the program
should test for R=0. If R does not equal 0, of course, the program loop
continues calling GOSUB' 226.

31.6 OPEN/CLOSE OUTPUT (DEFFN' 240, 241)

These subroutines open for output, and subsequently close, disk data
files which utilize special header and trailer information. In addition to
satisfying the file open and close requirements for disk catalog operation,
they produce single sector software header and trailer records with the

following fields:

206

FIELD DISK
FIELD TYPE LENGTH LENGTH CONTENTS

1 Alphanumeric 3 y HDR-indicates header
EOF-indicates end of file
EOR-indicates end of volume

2 Alphanumeric 8 9 file name

3 numeric 8 9 creation date (Julian
format)

Yy numeric 8 9 number of days to
retain file (the "retention
period")

5 numeric 8 9 volume number

Based on the data in the header and trailer records, these subroutines
enforce certain system standards. For example, when a file is opened for
output, a life span in days is specified for it. The file, then, cannot be
opened for output again until this life span has expired.

Open Output

The subroutine is called by

SELECT #F/xyy
GosuB* 240 (F,N$,D,V)

where: xyy 1s the disk device address.
F is the file number.
N$ is the name of the file to be opened.
D is the number of days the file is to be preserved (the "retention
cycle™)
V is the volume number of the file.

The subroutine displays the message MOUNT DISK TO CONTAIN VOL. XX OF
FILE (FILE NAME) UNIT X. After the specified disk is mounted, the catalog
index is searched for the file name.

If the file is not 1listed in the disk index, it is opened using the
technique of the Allocate Data File Space subroutine. Up to three files may
be open.

If the file is indexed but scratched, the scratched file is reopened as
an active file.

If the file is indexed and active and the retention period has expired,
the file is reopened.

207

Regardless of which one of the above conditions is found, the subroutine
writes the software header record in the first available file sector. The
Julian date is obtained from Ql. Control returns to the application program
with the read/write head at the first available file sector after the software
header.

If the file name is in the index, active, but the retention period has
not expired, the message RETENTION CYCLE NOT EXPIRED appears together with the
mount message. If there is insufficient space to open a file, the message
INSUFFICIENT SPACE appears together with the mount message.

NOTE:

Keying X and RETURN in response to the mount
message causes any file with the same name to be
reopened.

Close Output

The subroutine is called by

SELECT #F/xyy
GOSUB' 241 (F, T$)

where: xyy is the disk device address.
F is the file number.
T$ is the software trailer indicator
WEQF" for end of file, or
"EOR" for end of volume.

The subroutine writes the software trailer followed by the hardware
(DATASAVE DC END) trailer.

If the file is the last file in the catalog area, the techniques of the
Free Unused Sectors subroutine are employed to return the unused sectors to
the available disk catalog area.

The file is closed and a message requests removal of the disk.
If T$ is set to "EOF", control is returned to the application program.

If T$ is set to "EOR", the volume counter is incremented for the next software
header, and the Open Output subroutine is called again.

208

"

31.7 OPEN/CLOSE INPUT (DEFFN' 250,251)

These subroutines open for input and subsequently close disk data files
which utilize special header and trailer information. They are designed to
work in conjunction with the Open/Close Output subroutines and depend upon
properly structured software headers and trailers.

Open Input
The subroutine is called by

SELECT #F/xyy
GOSUB' 250 (F, N$, V)

where: xyy is the disk device address.
F is the file number.
N$ is the file name.
V is the volume number.

The subroutine displays the prompt MOUNT VOL. XX OF
FILE _ _ _ _ _ __ _ - UNIT X. After the proper disk is mounted, the catalog
index is searched for the file name. If the file name is found, the software
header is read to determine if the volume number is correct. A correct volume
number causes the subroutine to return control to the application program with

the file open.

If the file is scratched, or cannot be found, or the volume number of
the file is not the specified volume number, an error message is displayed
together with the mount prompt.

Close Input

The subroutine is called by
GOSUB' 251(F)
where: F is the file number.

The subroutine reads the software trailer and checks whether it
specifies an end of file or end of volume. An end of file traller causes the
subroutine to close the file and return control to the application program.
An end of volume trailer causes the subroutine to increment the volume counter

by one, and initiate the Open Input subroutine with the same file name and the
new volume number specified.

209

CHAPTER 32 DISK SUBROUTINES - MULTISTATION FILE OPEN/END/CLOSE

32.1 OVERVIEW

Multistation File Open/End/Close subroutines, selectable from the Disk
Subroutines Menu, are designed for multistation use and multiplexed disk
environments. (In previous releases of ISS, Multistation subroutines were
called "Multiplexed subroutines".)

Multistation disk files provide additional Security features not
available with regular disk files. The Security features are accomplished by
using only the Multistation Open/End/Close subroutines on multistation files,
instead of regular BASIC-2 Language DATASAVE DC OPEN, END, and CLOSE
statements. Special information, namely an access table and password, is
maintained in a previously unused portion of the catalog trailer record by the
Multistation subroutines. Implementing a unique password for a multistation
file will allow only those who know the password to access that file. In
addition, the access table allows a station upon opening the file, to have
Exclusive (private) access to a multistation file in the Exclusive mode, or
file access in one of three nonexclusive (public) modes including the Inquiry,
Read Only, and Shared modes. The selected access mode is established each
time the file is opened and is discontinued when the file is closed. Closing
a file terminates file access, whereas opening begins file access, for each
station independent of other stations.

A Set/Release Hog mode (disk drive hog) subroutine is also described in
this chapter. All ISS Utilities and subroutines are compatible with
multistation files.

210

te

32.2 PASSWORD USE

When a file is first created by the Open subroutine, this is called an
"open new" operation. Whether or not a password will be required by all
stations attempting access to that multistation file (later) is determined by
the content of the argument P$ when the Open subroutine is called for the
"open new" operation. If P$ contains blanks, a password of blanks is required
for all stations to open that file. If P$ contains anything other than
blanks, that value of P$ must be provided on any call of the Open subroutine
for any user to access that file.

When the "open new" operation has been successfully completed, the
password Security feature is operable. Once set by the "open new", the
password cannot be changed. A password may be implemented on a subsequent
open new command to create a new file if not implemented when the file was
previously created on an open new.

32.3 CONVERTING TO MULTISTATION FILES

The conversion from a regular disk data file to a multistation disk data
file occurs when that file is opened using the Open subroutine. Thus by
accessing the file it is converted to a multistation file automatically;
however, for the file to remain a multistation file, the Open, End, Close
subroutines always must be used instead of the DATASAVE DC statements.

CAUTION:

The BASIC-2 statements DATASAVE DC END and MOVE destroy the
the access table necessary for multistation files.
Instead, use the Multistation End subroutine and
Copy/Verify ISS Utility or Copy statement respectively. In
general, only use Multistation Open/End/Close subroutines
when accessing multistation files.

32.4 OPEN SUBROUTINE FOR MULTISTATION FILES (DEFFN' 217)

The Open subroutine, by virtue of its arguments, allows a multistation
file to be opened, the access mode defined, and a password (if any) used.
When creating a new file, this is called an "open new." When accessing an
existing (old) file, this is called "open old." In addition, when accessing
an existing file the access mode may be changed; this is called a "reopen
old." The Open subroutine replaces the BASIC-2 Language statement DATASAVE DC
OPEN and similarly allocates and reserves file sectors on an open new
operation.

211

Access Modes

The four access modes include Inquiry, Read Only, Shared, and
Exclusive. In the Exclusive mode, only the station with Exclusive access may
open the file (private access). However, in order for that user to have
Exclusive access, no other station can have that file open. The Exclusive
access mode is required for an open new.

A file may be opened in the Inquiry mode if that file is not currently
open in the Exclusive mode to another station. Conversely, a file open in the
Inquiry mode keeps stations requesting the Exclusive mode from opening that
file.

A file may be opened in the Read Only mode if that file is not currently
open in the Shared or Exclusive mode to another station. Conversely, a file
open in the Read Only mode keeps stations requesting the Exclusive or Shared
Modes from opening that file.

With the Shared mode requested, that file will be opened successfully if
that file is not open in the Read Only or Exclusive modes. Conversely, a file
open in the Shared mode keeps stations from opening that file in the Read Only
and Exclusive modes.

A file may be opened in the Exclusive mode if no other stations are
accessing that file. Once a file is opened in the Exclusive Mode, no other
stations can access that file until it is closed.

Disk Hog Mode

With the availability of Exclusive file access, disk Hog mode is usually
not necessary. Only in cases where more than one file must be opened with
Exclusive access on one disk is the use of disk Hog mode usually necessary.
(Exclusive access requires that no other stations have that file open in order
for the Open subroutine to be successful.)

NOTE:

Any use of disk Hog mode by the Multistation Open/End/Close
subroutines, or disk Hog mode subroutine DEFFN'215, use the
$OPEN and $CLOSE statements, and require device (file) slot
#15 in the station's device table. Therefore, device slot
#15 is reserved exclusively for Multistation Open/End/Close
subroutine use.

212

Opening Two or More New Files

If two or more multistation files will be opened as new files (open
new), after checking that enough disk space exists for all files (use ISS Sort
Disk Index Utility), the following procedures are recommended:

1. Set disk Hog mode ON (use a $OPEN statement or GOSUB' 215.)

2. Call Open subroutine with file parameters set for the first new

file. Hold disk Hog mode. Exclusive access mode is required for
any open new.

3. If successful, call Open subroutine with file parameters set for
second new file. Hold disk Hog mode.

4, Repeat step 3 for each new file. However, release disk Hog mode (or
use $CLOSE) upon opening the last new file.

5. For each file, perform the following steps:
a) Perform required processing.
b) Move current sector address to appropriate file location
¢) Call End subroutine.
d) Call Close subroutine.

GOSUB!' 217 Argument Format

Transfer to the Multistation Open subroutine occurs via the statement:
GOsSuB' 217(F$,F,C,S,A,P$,A1$,H)
where:

F$ indicates the file name, which on an open new command must be unique
to that disk. On any open old, it must be identical to the previously
assigned file name.

F contains the file (device) number, from 0 to 14.
C contains the station number, from 1-48.

S determines the type of open command. If S is greater than zero, this
indicates an "open new" command; also, S equals the number of sectors to
be allocated for this file. If S=0 this indicates an "open old"
command. If S=-~1 this indicates a "reopen 0ld" command during which the
access mode is changed.

A determines the access mode for this file. A=1 indicates Inquiry
mode. A=2 indicates Read Only mode. A=3 indicates Shared mode. A=Y

indicates Exclusive mode. During an open new, A is automatically set
equal to U.

213

P$ contains a password, if one is required. Password content 1is
detérmined solely by that file's open new.

A1$ contains the disk address in the XYY form.

H indicates, if H=1, that disk Hog mode will be held following this call.
If H=0, Hog mode is released (cancelled) following this call. The Hog
mode also may be released using GOSUB' 215, as described on a following

page.

NOTE:

Literal address A1} must coincide with the address
currently selected for the file number.

GOSUB! 217 Return Codes

Q$ contains the return code as summarized below in Table 32-1.

214

Table 32-1. Multistation Open Return Codes
__
VALUE Q$ INDICATES CAUSE AND RECOVERY
blank successful open Continue

A access mode conflict Retry, or wait and .retry.
If abnormal delay, check
if value of argument A is
correct. Check if correct
file was accessed (values
F$,F,C,A1$). Check if
that file was accidentally
§58.2PgR fyeg)fHte Status

D open command conflicts Check if value of Argument
with file disposition, S is correct. Check if
e.g., open.new issued correct file was accessed
to existing file, (values F$,F,C,A1$). On
open old issued to open old, check if that
file already open to file was accidentally
this station, reopen left open (use File Status
old issued to close Report Utility).
file, or file not found.

S insufficient disk Retry after reducing value
space to complete of S if acceptable, or
open new allocation. use different disk by

changing A1$ and F. Otherwise
use Free Unused Sectors
Disk subroutine to create
more disk space and retry
open new with S as is.

P password conflict Check value of P$.

Retry with correct file
password.

215

32.5 END SUBROUTINE FOR MULTISTATION FILES (DEFFN' 218)

The End subroutine performs the function of the BASIC-2 statement
DATASAVE DC END for multistation files. As with the DATASAVE DC END, upon
calling the End subroutine, the current sector address must be at the location
required for the end-of-file trailer record. As previously mentioned, use of
the DATASAVE DC END on a multistation file results in destruction of the
access table necessary for multistation files.

Transfer to the End subroutine is via the statement:
GosuB' 218 (F$,F,A1$,H)
where:

F$ is the file name.

F is file (device) number, from O to 14.

Al$ is the disk address in the XYY form.

H indicates, if H=1, that disk Hog mode will
be held or obtained following this call.

If H=0, Hog mode is released (cancelled)
following this call.

There are no return codes.

216

.32.6 CLOSE SUBROUTINE FOR MULTISTATION FILES (DEFFN'219)

Closing a file promptly with multistation operation is usually important
because of possible access mode conflicts. Once access to a file is no longer
needed, that file should be immediately closed, especially if opened with
Exclusive access.

To retain a file for later processing the file may be left open if
needed. There is no 1limit as to how many files can be open for one station
because station file status is maintained in the file's catalog trailer record
and not by each station. Because the access table resides on nonvolatile
storage of disk, the station may be cleared or its power switched OFF, and the
file will remain open to that station. This type of action, of course, is not
recommended. Files should not accidentally be left open for long periods of
time.

Transfer to the Close subroutine occurs via the following statement:
GOSUB' 219 (F$,F,C,A1$,H)
where:

F$ is the file name.

F is the file (device) number, from 0 to 14.
C is the station number, from 1 to 48.

Al$ is the disk address in the XYY form.

H indicates disk Hog mode release or hold.
If H=1 Hog mode is held following

this call. If H=0 Hog mode is released
(cancelled) following this call.

There are no return codes.

32.7 SET/RELEASE HOG MODE SUBROUTINE (DEFFN' 215)

If a Open/End/Close subroutine is chosen, the Set/Release Hog mode
subroutine may be used to switch Hog mode without calling an Open/End/Close
subroutine. The $OPEN and $CLOSE statements are used to hog the disk drive
specified and may be implemented by the user instead of using DEFFN'215.

Transfer to the disk Hog mode subroutine is via the statement:

GOSUB' 215 (A1$,M)
where:

A1$ is the disk address in the XYY form.

M is the disk Hog mode indicator. If M=1 Hog
mode is set immediately.

If M=0 Hog mode is released

(cancelled) following this call.

There are no return codes.

217

CHAPTER 33 - TRANSLATION TABLE SUBROUTINES

The translation table subroutines assign specific sets of hex codes to
an array so that it may be used as a translation table with the BASIC-2
statement $TRAN. The subroutines do not actually accomplish the translation;
they merely initialize the array. The array is Q9%(). It may be initialized
for any of the following translations by means of the indicated GOSUB'
subroutine call.

TABLE SUBROUTINE
EBCDIC TO ASCII GOSUB'201
ASCII TO EBCDIC GOSUB* 202
2200 TO 1200 GOSUB'203
1200 TO 2200 GOSUB' 204

The subroutines load without overlap; they may all be loaded at once.

All the subroutines initialize the same array variable, dimensioned as
Q94$(8)32. If more than one table is to be used in an application, either the
array variable must be changed by modifying the subroutines, or the
application program must execute the appropriate subroutine each time a
different translation is to be effected.

When translating 1200 to 2200, all nontranslatable codes are translated
into hexadecimal FF.

Assuming that D$ contains data to be translated from ASCII to EBCDIC and
the program contains the ASCII to EBCDIC translation table subroutine, the
following statement sequence could be used to translate D$:

20 DIM Q9$(8)32

110 GOSUB*® 202 :REM INITIALIZE TABLE
120 $TRAN (D$,Q9$()):REM TRANSLATE

130 STOP "D$ TRANSLATED"

9748 DEFFN'202
. (translation table subroutine ASCII to EBCDIC)

9780 +« « tRETURN

218

“

-~
>

PART V

THE SORT-3 SUBSYSTEM

219

CHAPTER 34 - SORT-4

34.1 INTRODUCTION

SORT-4 is a subsystem for sorting the records in a disk data file and is
loaded from disk by a user-written set-up program. The set-up program
provides the parameters for the sort and thereby eliminates the lengthy
operator/screen dialog otherwise required for entry of the sort parameters.
When sorting is complete, SORT-4 can load a specified application program
module. SORT-4, therefore, can be used. as a subsystem to an application
program.

Although SORT-4 requires little operator attention, it must be run in a
partition currently attached to a terminal (a "foreground" partition), because
screen displays are included. SORT-4 does not access a global partition and
requires at least between 9K to 12K to run, depending on the input file type
(see Table 3-1).

SORT-4 offers the following features.

1. The user may specify whether a key sort or a full-record sort is to
be performed, or permit SORT-4 to decide. Both the key sort and
full-record sort provide sorted output records in exactly the same
format as their input record counterparts. In addition, a tag sort
may be specified, in which case only pointers to each input record's
position on the disk are written into the output (or work) file, and
not the actual records themselves.

2. SORT-4 will operate in a multistation or disk multiplexed
environment, under ISS conventions.

3. Six input file formats are accepted:

a) an ordinary cataloged data file,
b) a BAS-1 data file,

e¢) a data file opened and closed with ISS OPEN/CLOSE subroutines,
d) a KFAM-3 file,

e) a KFAM-Y4 file, and

f) a KFAM-5 or KFAM-7 file.

220

(]

The sort key can contain up to 10 fields. They may be alphanumeric
or numeric, but their total length must not exceed 64 bytes, not
counting control bytes. Sort order may be specified as ascending or
descending for each field, and sort keys may be partial fields, that
is, a STR() function of an alphanumeric variable.

The following input record formats are supported:

a) packed arrays, where the array-type blocking is packed for
writing on disk, in either DC or BA mode.

b) Contiguous packed records, where each individual record is

packed into a contiguous space within an alphanumeric array,
which is written on disk in either DC or BA mode.

c¢) Variable length records, packed into an alphanumeric array
with either a one-byte length indicator (block size up to
256) or a two-byte length indicator (block size greater than
256). The block may be written in either DC or BA mode. TC
(Telecommunication) files are supported by a separate
variable length record format.

d) Individual alphanumeric fields in records written in
unpacked format, blocked or unblocked, may contain packed
subfields.

In the above record formats, the field form of $PACK is supported.
The internal and delimiter forms of $PACK are not supported. A
record may contain either one packed array, or any number of packed
fields, but not both. 1In addition to the formats defined for the
field form of $PACK, Wang packed decimal format, signed and
unsigned, is supported; exponential as defined in the PACK statement
is not supported.

Any combination of record format and file format is generally
permitted, with exceptions noted in Table 34-2 and the text

" following Table 34-2.

With output files written to a disk drive specified in the set-up
program as being accessible only to this station (not a multistation
disk drive), if a full-record sort is specified, the mounting of the
output platter may be deferred until the last pass, at which time
the input platter may be removed. With a tag sort, deferred
mounting is also allowed if the output file is not written to a
multistation disk drive and is not the work file. Deferred mounting
permits sorting a full disk platter in a duvual platter system.

The programmer may write a special input procedure, to be overlaid

in Pass 1, to process or screen individual records before input to
the sort.

221

8. SORT-4 treats arrays in input records as arrays. An input record
may contain up to 255 fields, each array element counting as one
field, provided that the record can be described in not more than 60
table entries (see below).

9. SORT-4 allows a full-record sort on records up to 256 bytes,
packed. It also allows a full-record sort with partial fields as
sort keys. In most cases, a full-record sort will be faster than a
key sort.

10. For KFAM files, a starting and ending key is specified, instead of a
starting record number and number of records to be sorted. The
input KFAM file is accessed according to key sequence
(FINDFIRST/FINDNEXT) instead of sequentially (physical records
irrespective of their key values).

In addition to the cataloged input file, SORT-4 requires a cataloged
work file. A procedure for calculating the number of sectors required for the
work file is described in Section 34.5.8.

SORT-4 may be loaded directly from the appropriate ISS platter at the
time of execution. In this case, the ISS platter containing SORT-4 software
must remain mounted throughout the sorting procedure. However, it is not
recommended that the unused sectors of that ISS platter be used for the work
file. Therefore, to maximize available disk space, it is recommended that
SORT-4 be copied from the ISS diskette platter it is issued on prior to use.
A Copy/Verify reference file has been included to facilitate copying SORT-4
using the ISS Utility Program COPY/VERIFY (indirect input mode). The name of
the reference file is ISS.REFS.

Before attempting to sort a file, the programmer should know exactly how
that file's records were written to disk. If this information is not
available, the ISS Utility Program DISK DUMP should be used to print a portion
of the file. The printed output may provide enough clues about the file's
contents to enable the programmer to successullly define sort parameters.
With records written in DC or DA mode, the DISK DUMP option "Data File
Structure” is especially helpful.

222

"

SORT-4 Modules

The SORT-Y4 program modules and functions are as follows:

SORTY: SORT~-4 set-up phase, start.

SORTYQ0B: Overlay SORTY4 if KFAM input.

SORT400C: Required for multistation files.

SORT401A: Set-up, continued. Process record format and sort key
specifications.

SORTH402A: Set-up, continued. Calculate 1length of generated code,
available memory, sort blocking and array sizes, and work file
size.

SORT402B: Open output file.

SORTY03A: Start generating code for modules SORT420A and SORT425A.

SORTH4OUA: Full~-record sort or tag sort, finish generating code for module
SORT425A. :

SORT4054A: Key sort only, generate code for modules SORT420A and SORTA430A.

SORTUO06A: Generate code for Pass 1, module SORTU410A.

SORT40T7A: Generate code for Pass 1, module SORTH10A.

SORTL10A: Pass 1, internal sort.

SORTY411A: Overlay SORT410A if KFAM input.

SORTL20A: Pass 2, merge, key sort only.

SORTYH25A: Pass 2, merge, full-record sort or tag sort.

SORT430A: Pass 3, read input file via pointers and write output, key sort
only.

SORTY90A: Ending (all paths lead to here), close files, stop or load user

program to follow.
ISS.REFS5: ISS Copy/Verify Reference File

Minimum System Configuration

Station requirements (minimum) include 9K memory for sorting a
sequential (non-KFAM) file and between 11K to 12K for KFAM files, depending on

the size of the set-up program. A disk, flexible disk, minidiskette, or
diskette is also required. SORT-4 programs require about 270 sectors, and
thus will not run reasonably on a minidiskette.

223

34.2 WRITING THE SET-UP MODULE

In order to call the SORTY program file (module) and provide the
necessary sort parameters, the user must write a set-up program as described
below. In general, lines 10-179 of the set-up program are executed before
SORTY4 is loaded, and must be cleared when SORTY4 is loaded. Lines 3400-3699
are used to set up the variables for SORTY, and remain after loading SORTY.

The SORT-Y4 "master" set-up program appears in Table 34-1 and includes
each possible statement line required by SORT-Y4. Some statement lines have
default values. If a statement line's default value is acceptable for a
particular sort operation, that statement line need not be included in the
set-up program. However, if a statement line does not have a default value or
if the statement line's default value is not acceptable for a particular sort
operation, that statement line must be included in the user's set-up program.
Those statement lines whose CONTENTS indicate "KFAM only" need to be included
only when the input file format is a KFAM file.

For each statement line in Table 34-1, the entry under the c¢olumn
"DEFAULT VALUE" indicates whether or not a statement line has a default value,
by the following conventions:

a. If a statement line has no default value, "none" appears under the
WDEFAULT VALUE"™ column.

b. If a statement line has a default value, either (1) the default
value appears under "DEFAULT VALUE" or (2) a hyphen (-) appears
under "DEFAULT VALUE" and the default value appears under the
WCONTENTS" column.

Be sure to read all sections in the remainder of this chapter before
writing the first SORT-4 set-up module.

NOTE:

Any disk device address referred to as "multistation™ below
jindicates a disk drive accessible to any other station
besides the station in which SORT-4 is run. If the disk
drive is multiplexed, it is a "multistation" disk drive.

224

L]

LINE

10
20

179

3400

3405

3410

3415

3420
3425

3430

3435
340

3445

Table 34-1. SORT-4 Master Set-up Program

CONTENTS

REM program identification

DIM K(10),B(10),N(10),N$(4)8,P$(L)16,
F$(6)3,A$(U4)62,M0$(1)21

(This line is necessary to define any
arrays referred to below. It may be
cleared when "SORTY4" is loaded
because "SORTU" defines all necessary
arrays.)

LOAD DC (device) "SORT4" 10, 179

Machine configuration, see Section 34.5.1
below:

M = memory size, K bytes. For a 2200MVP
specify M = SPACEK + 2. For a 2200VP,
specify M = SPACEK.
default = 16, 2200VP; or

S if under ISS

MO$(1) = "table of device addresses"
default = "310320330350B10B20B30"

SELECT DISK (first device address),

#1 (second device address), ete.

default = SELECT DISK 310, #1 320, #2 330,
#3 350, #4 B10, #5 B20, #6 B30

Sort specifications:
F = input file format

0 - unlabeled sequential

1 - BAS-1 labeled sequential

2 - ISS labeled sequential

3 - KFAM-3

4 - KFAM-4

5 - KFAM-5 or KFAM-7
N$(1) = input file name
F$(1) = input device address

(hog mode address if multistation)

P$(1) = input file password, if any

J = key file numbher (KFAM only)
F$(2) = key file device address (KFAM

only)
(hog mode address if multistation)
B = records per block

225

DEFAULT
VALUE

none
none

none

none

none
none

blank

blank

SEE
SECTION

34.5.1

34.5.1

34.5.1

34.3

34.5.2
34.5.3
34.5.2

34.4

LINE

10
20

179

3400

3405

3410

3415

3420
3425

3430

3435
3440

3445

Table 34-1. SORT-Y4 Master Set-up Program

CONTENTS

REM program identification

DIM K(10),B(10),N(10),N$(4)8,P$(4)16,
F$(6)3,A$(4)62,M0$(1)21

(This line is necessary to define any
arrays referred to below. It may be
cleared when "SORTU" is loaded
because "SORT4" defines all necessary
arrays.)

LOAD DC (device) "SORT4"™ 10, 179

Machine configuration, see Section 34.5.1
below:

M = memory size, K bytes. For a 2200MVP
specify M = SPACEK + 2. For a, 2200VP,
specify M = SPACEK.
default = 16, 2200VP; or

S if under ISS

MO$(1) = "table of device addresses"
default = "310320330350B10B20B30"

SELECT DISK (first device address),

#1 (second device address), etc.

default = SELECT DISK 310, #1 320, #2 330,
#3 350, #4 B10, #5 B20, #6 B30

Sort specifications:
F = input file format

unlabeled sequential
BAS-1 labeled sequential
ISS labeled sequential
KFAM-3

KFAM-4

KFAM-5 or KFAM-7

NEWN-=20
]

N$(1)
F$(1)

P$(1)

input file name

input device address

(hog mode address if multistation)
input file password, if any

key file number (KFAM only)

key file device address (KFAM
only)

(hog mode address if multistation)
B = records per block

[
noun

F$(2)

226

DEFAULT
VALUE

none
none

none

none

none
none

blank

blank

SEE

SECTION

34.5.1

3’"-501

3“0501

34.3

3)" 05 02
34.5.3
34.5.2

34.4

LINE

3565

3570
3575

3580
3585
3590

3595
3600
3605

3610

3615

Table 34-1. SORT-4 Master Set-up Program (Cont'd)

CONTENTS

C$ =

P7
P8$ =

S2

F$(5)

G$
Ml

M$

59

F$(6)

wY" output file cataloged

"N" output file not cataloged

"W" use work file for output

(tag sort only)

number of sectors in output

file

ng" to force key sort

"R" to force full-record sort

blank: lets program decide

between K and R, or

"T" tag sort

D" deferred mounting of output
disk (full-record sort only)

station number (required if any

disk device is multistation)

device address, SORT-4 program

modules (hog mode address if

multistation)

name of special input

procedure" (blank if none)

number of bytes occupied by

special input procedure

"name of program to load

following the sort" (if blank,

STOP)

0, stop if error, no record

count in S8, or

1, stop if error, pass record

count in S8, or

2, pass error code in S9 and

record count in S8

device address for user

programs G$ and M$ (hog mode

address if multistation)

%¥Default value described in the
specified section.

227

DEFAULT
VALUE

Y

blank

blank

none

blank

blank

blank

SEE

SECTION

34.5.9

34.5.9
34.5.6

34.5.9
34.5.1
34.5.2

34.5.10
34.5.10
34.5.11

34.5.11

34.5.2

34.3 INPUT FILE FORMAT REQUIREMENTS

One of the parameters in the set-up program (F) indicates the input file
format to be sorted. There are six input file formats referred to as file
formats 0, 1, 2, 3, 4 and 5. Sorted output is always written in file format O.

The terms defined below apply to the following discussion of SORT-U file
formats.

block - Two or more records written to disk as a group to save disk
access time. See "blocked" below.

blocked A file whose records are written in blocks. Contrast with

"unblocked."

KFAM - Abbreviation of Key File Access Method. A KFAM file consists
of a data file and a "Key File" which indexes records in the
data file. KFAM files allow rapid access to records located
anywhere in the data file, wunlike "sequential files" where
record access usually occurs record-by-record from the
beginning of the file until the desired record is found.

labeled Any file containing header information in the first sector,

called a "label." Contrast with "unlabeled."

In this chapter, any non-KFAM file is called a "sequential
file."

sequential

unblocked

A file whose records are not written in blocks. Typically, one
record occupies one sector or more than one sector.

unlabeled

Any file that is not a labeled file.

File Format 0O

A cataloged disk file with a hardware END trailer record (DATASAVE DC
END) at the end of the 1live data. File format 0 files are unlabeled,
sequential files. 1If records are blocked, unused spaces in the last block
must contain padding records with high or low values in the sort key fields.
Records are read sequentially and are included in the sort.

File Format 1

BAS-1 files are labeled sequential files and are known as file format 1
in SORT-4. The file name in the disk catalog is "SCRATCH." The first sector
of the file contains a header label. The first field of this label is alpha
and contains "HDR", and the second field is alpha and contains the file name,
which should match the input file name defined in N$(1). SORT-4 only reads
the first two fields of the header label. Remaining fields in the header
label may be defined in any way, not necessarily in BAS-1 format.

228

Data records with file format 1 begin in the second sector of the file.
Data must be written in array SORT-4 record format or packed array SORT-4
record format (see Section 34.4). The first field in each record must be a
2-byte alphanumeric field, the "Record ID". The second byte of the Record ID
is always "1" for an active data record. An end-of-file condition is
recognized when the second byte of the Record ID is greater than "1", (The
second byte of the Record ID contains "2" for end-of-file and "3" for
end-of-volume. SORT-4 only sorts one volume of a multivolume file and
therefore interprets any value greater than "1" as an end-of-file condition.)

The sector following the end of active data contains a special software
trailer label. This record is ignored by SORT-4.

Following the software trailer is a hardware END trailer (DATASAVE DC
END) which must have been written, because it is used by SORT-4 to determine
the file size.

File Format 2

Referred to as "ISS format"™ because of the label conventions used in the
ISS-2 and ISS-3 OPEN and CLOSE Output/Input subroutines (see Sections 31.6 and
31.7), file format 2 is a more general labeled file convention than format 1.

File format 2 is a labeled sequenfial file, with the first sector a
header label, followed by data records, followed by a special software trailer
label occupying one sector, followed by a hardware END trailer (DATASAVE DC
END).

The header label contains at least two alpha fields. The first field
contains "HDR", and the second field contains the file name which must match
to the file name in the disk catalog and the input file name defined in
N$(1). Remaining fields in the header record are not read by SORT-4, and may
contain anything.

The only restriction on the data records is that they must conform to
one of the conventions defined in Section 34.4 below.

End-of-file is recognized as follows:

1) 1If the first field of the record is alphanumeric, a value of HEX(FF)

in the first byte of the field signals that the end of the file has
been reached.

2) If the first field of the record is numeric, a value of exactly 9E99
in that field signals that the end of the file has been reached.

In the case of packed records, these conventions are interpreted as
follows. For contiguous packed records (record formats P, T, and V) HEX(FF)
in the first byte of the record, as packed, signals end-of-file. For packed
array records (record format A), the record is first unpacked, and then the
value of the first field is tested. If the first field is numeric, the
packing format must be large enough to accommodate the number 9E99.

229

The software trailer record is not read by SORT-4. The trailer record
is used to indicate end-of-file ("EOF" in the first field) or end-of-volume
(some other value in the first field). SORT-4 will only sort one volume at a
time, and therefore end-of-file and end-of-volume are both treated as
end-of-file.

The hardware trailer (DATASAVE DC END) following the software trailer is
required, so that SORT-4 can determine the file size from the "sectors used"
entry in the disk catalog.

File Formats 3, 4, 5

KFAM files are denoted by SORT-Y4 file formats 3, 4, and 5. KFAM-3 files
and KFAM-4 files are denoted by SORT-4 file formats 3 and U4 respectively.
KFAM-5 and KFAM-7 files are both denoted by SORT-4 file format 5. The KFAM
file is read using a special version of FINDFIRST and FINDNEXT.

KFAM-4, KFAM-5, and KFAM-7 files are accessed in the "read only" mode.
"Read only" is not defined for KFAM-4, and acts as "exclusive" mode, except
where two stations are sorting the same file using SORT-4.

Deleted records are not included in the sort,. regardless of whether they
are flagged in the User File as deleted.

34.4 INPUT RECORD FORMAT REQUIREMENTS

SORT-4 will sort a variety of packed record formats that previous sort
utilities would not handle. Information applicable to combinations of SORT-4
file formats and SORT-4 input record formats appears in Table 34-2.

The following sort parameters combine to determine the exact record
format:

B = records per block

B$ = normal (DC) mode or BA mode

F$ = record format

N6 = maximum length of variable portion of record (if applicable)
A$() = description of fields in record

Records Per Block

Records per block (B) must be defined for all record formats except
variable length records (F$ = "V" or F$ = "T"). The default value = 1. The
maximum value = 255.

DC or BA Mode

Read/write mode (B$) is set to blank for records written in normal DC
(or DA) mode, with control bytes separating read fields. Otherwise, set B$ =
"B" to indicate records written in BA mode. The defauit value is blank.
Either value of B$ is permitted with any record format F$.

230

If B$ = blank, SORT-4 reads a sample record or block of records from the
file to be sorted and determines the format as written on disk by analyzing
the control bytes. The sample record (or block of records) is the first
record or block of a sequential file, or the first record or block to be
sorted in a KFAM file. The format determined here must be consistent with the
parameters supplied by the user.

If B} = "B", the array to be read in BA mode is always AO0$(Y4)64.
Parameters supplied by the user must be consistent with this read field
format, e.g., record length not greater than 256 bytes.

Record Format

SORT-U4 assumes that all records in the file are written in exactly the
same format. Note that packed records of different formats can be written so
that they all appear, to the sort, to be written in the same format.

SORT-U4 will sort packed records using the field form of $PACK in any of
the formats listed below. It can convert any of the numeric $PACK formats,
field form, into sort format for sorting. SORT-4 can also convert a signed
numeric created by PACK (fixed point only) into sort format for sorting.

SORT-U4 record formats are indicated by the value of F$. If F$ = blank
(array format), the record is not packed as an array, however, individual
fields within the record may be packed. If packing c¢rosses element
boundaries, however, F$ must be set not equal to blank. If F$ is not equal to
blank ("An, wpw, uTn_ op ®wy") the entire record must be packed into a single
array, and individual fields may not be packed. The single array must be
composed of at least two elements.

In order to discuss the various record formats, it is necessary to
differentiate between "read fields" and "packed fields." "Read fields" are
the fields as they are written and read from the disk. "Packed fields" are
those fields which are obtained by unpacking a read field or array as read
from the disk.

A read field which is unpacked into packed fields is defined as a "read

only field," which means that once it has been unpacked, it doesn't enter into
any further processing. (It may be thought of as a kind of buffer area.)

It should be noted that $UNPACK successfully converts numeric data into
a variety of forms, whereas $PACK converts an internal numeric variable into
one fixed format only. This means that if numeric data is created by some
other means than $PACK, its precise value can change if it is converted via
$UNPACK and then $PACK again. Therefore, SORT-4 guarantees to reproduce the
identical packed field only if it was originally created with a $PACK
statement. Otherwise it will output a field of the same numeric value, if
enough space is allowed, but not necessarily the identical format.

Caution is advised in using ASCII free format. In particular, $UNPACK

will convert a four-byte field "9E99" to the correct numeric value, but $PACK
requires 15 bytes to convert 9E99 back to "9.0000000000E+99".

231

Caution 1is also advised in using fields created with the PACK
instruction (Wang signed pack format). The PACK instruction works with half
bytes, not full bytes. If the PACK image calls for an odd number of half
bytes, the last half byte is not used and retains its previous value. If that
half byte happens to be set to a hex value A-F, it will cause SORT-4 to stop
with ERR X75. The reason for this is that for the sake of consistency in
defining fields, the packed field is defined in terms of full bytes, not half
bytes, in SORT-4. This field length is converted to an image which will
UNPACK the full number of bytes. If the last half byte happens to be HEX A-F,
the program will fail. To prevent this from occurring:

a. Create Wang signed packed fields always with an odd number of #'s
following the sign.

b. Or clear the alpha field to blanks, to create a trailing zero,
before using PACK.

F$ = Blank, Array Format (default value)

"Array format" means that records are written noncontiguously (array
blocking) in the normal 2200 mode as required by previous sort utilities, for
example:

DATASAVE DC#1, A$, B, C$, D
indicating four fields per record: alpha, numeriec, alpha, numeric.
Blocked records must be written in array form, for example,

DIM A$(4)16, B(4), C$(4)30
DATASAVE DC #1, A$(), B(), C$()

indicating 4 records per block, each record containing an A$, B, and C$.

The record may also be written in BA mode if the record or block can be
expressed as AO0$(4)64. This would be either one record per block or four
records per block, of 64 bytes each. Warning: 2 records per block in this
format would be interpreted by SORT-U4 as A0$(1) and A0$(3) in one record, and
A0$(2) and A0$(4) in the second record. For contiguous blocking, see record
format "P",

Individual alphanumeric read fields in this record format may also
contain packed fields. In this case, the complete record must be described in
A$() (see below).

If a record in array format contains only read fields, the record
description in A$() may be omitted. Partial fields to be used as sort keys
may be defined in N() and B().

232

F$ = "A" Packed Array Format

Records are processed internally in noncontiguous array format, i.e.,
DIM A$(4)16, B(L4), C$(4)30

indicating 4 records per block, with each record containing an A$, B,
and C$. But they are packed using the field form of the $PACK statement into
one alphanumeric array when written on the disk:

$PACK(F=F$) P$() FROM A$(), B(), C$()
DATASAVE DC#1, P$()

The record format must be described in A$() (see below) to identify the
packed fields in the record.

This format assumes that records are blocked (B = 2 or more). If
records are not blocked, use format "P" below.

F$ = "P", Contiguous Packed Records, Fixed Length

A record or block of records is packed into one alphanumeric array. If

records are blocked, each record occupies a contiguous space in the array, for
example:

Record: DIM A$16, B, C$30

Packing format: HEX (A0105205A01E)
Record length, packed: 51
Blocking: B = 5

Packed Array: DIM P$(4)6lU

The first record in the block is packed into bytes 1-51 of the array
P$(), the second record is packed into bytes 51-102, ete. The Nth record in
the block is unpacked as follows:

$UNPACK(F=F$) P$() { (N-1)%51+1, 51> TO A$,B,C3

The record format must be described in A$() (see below) to identify the
packed fields in the record.

F$§ = "V", Variable Length Packed Records

Variable length records can be sorted if they are written according to
the following conventions:

Variable length records must be written in a fixed length block which is

read or written as one array. The block may be written in BA mode, in which
case the block length is 256.

Depending on the block length, either 1 or 2 bytes are used to indicate
the record length and the total bytes written in the block. TIf the block does
not exceed 256 bytes, one byte is used for the length. If the block exceeds
256 bytes, two bytes are used. A separate record format is provided for TC
(Telecommunications) variable length records, F$="T" (see below).

233

The block of records starts with a block length indicator of one or two
bytes, indicating the total length of all information written in the block.
Each record starts with a record length indicator of one or two bytes (depends
on block length), indicating the record length. The record 1length value
includes the length (1 or 2) of the record length indicator. The block length
includes the sum of all record lengths plus thé length (1 or 2) of the block
length indicator, except where the block is written in BA mode (256 bytes), in
which case the length of the block length indicator is not counted (maximum
255).

For example, the layout of a block of variable length records would look
like this:

Starting
Byte Length Contents
1 1 ‘ Block length indicator (hex),
value = 4+R1+R2+R3%*
2 1 Record length indicator (hex),
value = R1+1 .
3 R1 First variable length record
3+R1 1 Record length indicator (hex),
value = R2+1
44+R1 R2 : Second variable length record
44+R1+R2 1 Record length indicator (hex),
value = R3+1
5+R1+R2 R3 Third variable length record
5+R1+R2+R3 - Unused space

#If BA mode, block length = 3+R1+R2+R3

234

4,

Variable length records must contain a fixed portion followed by a
variable portion. The fixed portion is fixed 1length and fixed format
throughout the file and must be described in A$() (see below). The sort key
must be contained in the fixed portion of the record. The variable portion
always follows the fixed portion and may range from O to N6 bytes long, where
N6 is the maximum length of the variable portion of the..record. N6 must be
set for variable length records because its default value is 0. N6 may be set
to 0, indicating fixed length records in the variable length record format.

F$ = "T", Telecommunications (TC) Variable Length Packed Format

Although Telecommunications (TC) format may be called a "file -format™ in
general terms, SORT-4 instead treats TC format as a record format, F$ = "Tn,
SORT-4, with some exceptions, allows any combination of record format and file
format, but the file format wusually specified for TC format is sequential
unlabeled files, or F=0. Sequential labeled file format, F=2, is also
supported for TC record format, although this combination of record format and
file format is rare.

The TC format consists of variable length records contained within a 248
byte block including several control bytes. It is the user's responsibility
to ensure that one or several entire variable length records are contained
within this block. Individual fields written to disk as variable length
records are not sortable as is, and may be reformatted by a user's application
program for subsequent SORT-4 input as F$="T" or F$="V" variable length record
formats.

The SORT-4 TC record format (F$="T") requires hardware trailer END
record (DATASAVE DC END) following the last data sector.

TC format records can be sorted if written according to the conventions
adhered to by Wang software for the TC format, which include the following:

TC record format resembles the variable length packed record format,
F$=nyn, Variable 1length records in TC format are packed into a one
dimensional alphanumeric array of four array elements, whose lengths are each
62 bytes, e.g., DIM A$(4)62. The array is saved into a single sector using
either DATASAVE DC or DATASAVE DA, and read using DATALOAD DC or DATALOAD DA
disk statements.

235

In packing the records into the array, array element boundaries are
ignored; the array is treated as if it were simply 248 contiguous bytes of

storage. Within the 248 bytes, three control bytes are used, shown as x, Y,
and z in the following illustration.

248 bytes v
u :

N
N

N
~

xlylz record z| record |z vecord z | record unused

7L

X a one-byte hexadecimal code indicating whether this sector is the
last sector, x=HEX(FO), or is not the last sector, x=HEX(00).

Yy a one-byte hexadecimal value indicating: "the number of used bytes
plus one" in the array. In the above illustration where U is the
total block length written, y is the hexadecimal equivalent of U +
1. The maximum decimal value of.y is 249.

Z a one-byte hexadecimal value preceding each record, indicating the
record length in bytes.

These variable length records must contain a fixed portion followed by a
variable portion, in order to sort. The fixed portion is a fixed length and
fixed format throughout the file and must be described in A$() (see below).
The sort key must be contained within the fixed portion of the record. The
variable portion must always follow the fixed portion and may range from 0
(zero) to N6 bytes long.

N6 is the maximum length of the variable portion of the record, and must

be set for variable length records. The default value is O (zero). N6 may be
set to 0, indicating fixed length records in the variable length record format.

236

For example, the following table represents the layout of TC record
format file with three records:

Starting
Byte Length Contents

1 1 Indicates if this sector is
the 1last sector (hex),
HEX(00) = not 1last sector,
HEX(FO) = last sector.

2 1 Block length indicator
(hex), value = 6+R1+R2+R3.

3 1 Record length indicator
(hex), value = R1 + 1.

y R1 First variable length record.

44R1 | Record length indicator
(hex), value = R2+1.

5+R1 R2 Second variable length
record.

5+R1+R2 1 | Record length indicator
(hex), value = R3+1.

6+R1+R2 R3 Third variable length . record.

6+R1+R2+R3 Unused space.

Combinations of SORT-4 File Formats and Record Formats

Most combinations of input file formats and input record formats are

supported. Table 3U4-2 (below) provides a cross reference of record/file
formats supported by SORT-4.

237

Table 34-2.

SORT-4 Input Record/File Format Combinations

length contig-
uous packed
format)

INPUT INPUT FILE FORMATS (F)
RECORD -
FORMATS F=0 F=1 F=2 F=3,4,5
(F$) (general) (BAS-1) (1ISS) (KFAM)
[F$="blank" Supported Supported Supported Corresponds to
(Noncontiguous KFAM record
unpacked type "A",
array format) May correspond
to KFAM record
types "M" or
"N" (see below).
F$=mav Supported Supported Supported Supported
(Noncontiguous (rare).
packed
array format)
F$=tpn Supported Not Supported Corresponds to
(econtiguous supported KFAM-5 and -7 record]
packed type "B". May
format) correspond to
KFAM record
types "C", "M"
or "N" (see
below).
F$=nTn Supported Not Supported Not
(TC variable supported (rare) supported.
length contig-
uous packed
format)
Fg=nyn Supported Not Supported Supported
(Variable supported (rare) (rare). See

below.

238

re

Comments on Table 3U4-2

Input record formats and file formats are described in Section 34.3 and
Section 34.4. The following notes apply to the combinations of KFAM file
formats and SORT-U4 input record formats described in Table 34-2.

a.

With KFAM files (file format 3, 4, or 5), determination of the
record format is related to the "KFAM record type" chosen during
INITIALIZE KFAM FILE (a KFAM utility program). Certain KFAM record
types apply to certain SORT-4 record formats (F$) as noted in Table
34-2 and below.

1) KFAM record type "A" always corresponds to F$="blank".

2) KFAM-5 and KFAM-7 record type "B" always corresponds to F$="P";
B$ must equal "B" in the set-up program.

3) KFAM record type "C" corresponds to F$="P" if the records
contain only alphanumeric fields dimensioned equal in length.
KFAM type "C" records which contain any numeric fields or
contain all alphanumeric fields that are unequal in length are
not sortable.

4) KFAM record type "M", DC mode, corresponds to F$="blank" if
records are unpacked, or F$="P" if records are packed.

5) KFAM record type "M", BA mode, is not sortable because KFAM type
"M jimplies more than one sector per record (multiple sector
record).

6) KFAM record type "N" depends on the record's contents. F$ may
equal "blank"; or, F$ may equal "P" with B$ equal to either
"blank" or "B" in the set-up program.

Under certain conditions, KFAM files are sortaple as variable length
records (although KFAM itself does not support variable length
records). That is, F$ may equal "V" if the following conditions are
met:

1) The record 1length is less than one sector, and records (if
blocked) are blocked in a fixed block of exactly one sector.

2) With blocked records, the third byte of the KFAM pointer (in the
Key File) must point to the starting byte of the record in the

block. This is the variable Q in KFAM (starting position or
"length byte").

239

Description of Fields in a Record, A$()

The array A$() is provided to describe the record format in detail.
Array A$() must be used when F$§ = "wAn, uwpn, nTn op Wyn, and also if F$ =
blank and it is necessary to define packed fields within a read field. Array
A$() is dimensioned as A$(H4)62.

Syntax rules for A$() follow:

1.

2.

The entire record must be described in A$(), if it is used.

Colons or semicolons are used to separate read fields. Commas are
used to separate packed fields. (With formats "A®", "P", "W, and
"yt commas are used exclusively).

Fields must be described in the order in which they appear in the
record.

The record description may not cross element boundaries in A$(). If
the description is to be continued from one element of A$() to the

- next, the first element must end with the correct punctuation mark

(colon, semicolon, or comma).
Blanks are ignored in A$().

Fields are defined as follows:

" nnn Alpha read field
Numeric read field
Annn Alpha packed field
Fnnn ASCII free format
Innn.dd ASCIT integer format
Dnnn.dd IBM display format
Unnn.dd IBM USASCII-8 format
Pnnn.dd IBM packed decimal format
Snnn.dd Wang signed packed field, fixed point
format only
Wnnn.dd Wang unsigned packed field, fixed point

format only
field length, bytes, in packed form
decimal positions (ignored by SORT-4)

nnn
.dd

240

10.

1.

Following any field definition:
(sss) = array of dimension sss

Packed fields can be defined as alpha if they are not used in the
sort key, or if their sort sequence would be the same packed or
unpacked. Wang unsigned packed fields are always treated as alpha
by SORT-4. The fewer packed fields that are defined, the faster
SORT-4 will run.

. Blocking of records is not defined in A$(). Only the individual

record should be defined. SORT-4 will construct the necessary
arrays based on the description in A$() and the blocking factor, B.

. For variable length records, only the fixed portion should be

defined in A$(). The variable portion is treated by SORT-4 as an
alpha field of maximum length N6 (length of N6 is limited only by
the size of the block).

The maximum number of fields in a record, whether defined by A$() or
not, is 255. Each array element counts as one field. The
description of contiguous packed records (F$ = "P", "I" 6 or "V") may
be abbreviated by combining fields which are not used in the sort.
For array-type records (F$ = blank or "A"), 255 fields per record is
an absolute limit.

The maximum number of entries in A$(), plus one implied read field
entry for each group of packed fields defined, is 60. Arrays count
as one entry.

The maximum lengths of fields of the various formats and the field

lengths when converted to sort format, are provided in Table 34-3
below.

Table 34-3. Maximum Field Lengths and SORT-U4 Field Lengths

Max Sort
Code | Type Name Length Length
00 - Alpha read 124 L
01 # Numeric read 8 L
02 A Alpha packed 124 1
03 F ASCII free 16 8
o4 I ASCII integer 14 INT (1.5+L/2)
05 D IBM display 13 INT (2+L/2)
06 U IBM USASCII-8 13 INT (2+L/2)
07 P IBM packed 7 1+L
08 S Wang signed packed 7 1+L
09 W Wang unsigned packed| 7 L*
- - Variable length no limit not allowed
L = Field length in the above table.
* Wang unsigned packed treated as -alpha.

2

Examples of A$() Syntax

1.

Assume array-type blocking, with 4 records per block, where the records
are written as followus:

DIM A$(4) 16, B(4), c$(4)30
DATASAVE DC#1, A$(), B(), C$()

SORT-4 set-up program parameters would be:

B=2Uy
F$ = blank
A$(1) = M6;#;30" (not necessary in this case)

Note that the default value for B$ (DC mode) is automatically used
because it is not specified in the set-up program. The value of N6
should not be set, or should be set equal to 0 (zero).

Same record as above, but C$(X) is constructed as follows:

Start Length Contents

1 i Alpha 4

5 10 Numeric, IBM display, image HEX(320A)

15 5 Numeric, IBM packed decimal, image HEX(5205)
20 5 Numeric, Wang signed packed, PACK(+#####, ##tH)
25 6 Numeric array, 3 elements, 2 bytes each, IBM

packed decimal, image HEX(5002)

SORT-4 set-up program parameters would bé:

B=24
F$ = blank
A$(1) = "16;#;Au,D10,2’P502’85-u’P2(3)"

Because it is not necessary to indicate the decimal positions, A$(1) can
be expressed as:

A$(1) = "16;#;A4,D10,P5,85,P2(3)"
Assume a record is defined as follows:

DIM X$(10)16,Y(10),Z(10)

where X$(X),Y(X), and Z(X) comprise one record, 10 records per block.
The block of records is packed into one array to save space on disk.

Y() and Z() are converted to IBM packed decimal, lengths 6 and 3,
respectively. The block is written in BA modé:

DIM P$(4)6U4, F$6

F$ = HEX(A01050065003)

$PACK(F=F$) P$() FROM X$(),Y(),Z2()
DATASAVE Ba T#1,(L,L) P$()

242

Record definition for SORT-U would be:

B =10

B$ = WBp®

F$ = "A" (packed array)
A$(1) = "A16, P6, P3"

Records are the same as above, except they are packed individually from
scalar fields:

FOR X = 1 TO 10
Calculate X$, Y, and 2
$PACK (F=F$) P$() { (X-1)%25+1> FROM X$, Y, Z

NEXT X
DATASAVE BA T#1, (L,L) P$()

These would be contiguous packed records and would be defined for SORT-4
as follows:

B =10

B$ = mupgn

F$ = npn
A$(1) = "A16, P6, P3"

Assume variable length records which each contain an account number of 8
bytes, followed by a transaction code of 2 bytes, followed by
variable-length information from 1 to 48 bytes in length depending upon
the transaction:

F$ = nyn
A$(1) = nA8,A2v
N6 = 48

The record may be sorted on only the first two fields, account number
and transaction code.

Fixed-length, 80-byte card images are transmitted to the 2200 and stored

in the TC format. To sort these records, define the record format as
follows:

F$ = nTn
A$(1) = malo(2)n
(N6 = 0,default)

34.5 COMMENTS ON WRITING THE SET-UP MODULE

The following explanations of SORT-4 requirements and conventions are

referred to in Table 34-1 within the "master" set-up program by section

number. File formats and record formats were previously discussed in Sections
34.3 and 34.4.

243

34.5.1 Machine Configuration

SORT-4 is written to use the memory” size contained in the variable S
(for ISS) or if S = 0, to use 16K. SORT-4 runs faster if it knows that more
memory is available to it. It is set to support devices 310, 320, 330, 350,
B10, B20, and B30, but will support any disk device address with the necessary
changes.

There are two ways to change the machine configuration. Either change
it permanently in the "SORTY" module itself or change it, for any given sort,
in the set-up program. If running in a multistation environment, where memory
size and available devices change from one station to another, it may be best
to define the machine configuration at run time, depending on the station
number. If running in a nonmultistation environment, or if all stations are
the same size and access not more than a total of 7 disk devices, it is
probably better to change the machine configuration in the "SORTYU" module.

Memory size is usually indicated using the SPACEK form of the SPACE
function. With a 2200MVP partition, specify M = SPACEK + 2; with a 2200VP,
specify M = SPACEK. This convention ensures correct memory size use. (SORT-4
automatically accounts for the memory overhead.requirements of a 2200VP.)
With a 2200VP, memory size is a number from 16 to 64 which represents the
memory size of the station in multiples of 1024 bytes.

The table of device addresses, M0$(1)21, allows up to 7 device addresses
to be entered into this table. The table must be accompanied by a SELECT
statement, selecting the first device in the table as #0 (SELECT DISK), the
second as #1, and so forth. File numbers in the device table are linked to
devices, rather than files. Hog mode addresses should not be used in the
table of device addresses or the SELECT statements.

To set the machine configuration permanently in module “"SORTA4":

CLEAR

LOAD DC (device) "SORTU"

3150 M = memory size, K bytes

3280 MO$(1) = "valid device addresses, maximum 7"

3285 SELECT DISK (first address in table), #1 (second
address in table), etc.

SCRATCH (device) "SORTU"

SAVE DC (device) ("SORT4M") “SORTA4"

To set the machine configuration for an individual sort, code the set-up
module as shown in lines 3400-3410, in Section 34.2.

If running under ISS with an unknown configuration of disk devices,
SORT-Y4 can be set up from ISS start-up common variable$:

Station number (from 1 to 4)

S2 =

S = memory size (With a 2200MVP, use of M = SPACEK + 2 is
recommended instead.)

S$ = system disk (ISS loading address), #0

S$(2) thru S$(9) = other disk devices.

24y

by

Memory size is already set.
Disk devices can be copied to the table as follows:

3405 M0$(1) = S$:
MAT COPY S$() < 4, 18 > To Mo$() < 4, 18>

Note that ISS allows for 9 disk devices, whereas SORT-4 only allows 7.

The SELECT statements must be generated and loaded as a program overlay,
as follows:

3410 REM INCLUDE DIM D$(4)64, LINE 20, SO THAT THIS
PROGRAM CAN BE LOADED. THIS PROCEDURE USES SORT-4
WORKING VARIABLES. FIRST STEP ~ BUILD SELECT
STATEMENT TO LOAD AT LINE 3<10.

3412 D$(1) = HEX(20FF3410A58E) :REM SELECT DISK

3414 STR(D$(1),7) = S$:REM SYSTEM DISK (ISS LOADING ADDR)

3416 REM ,#NDDD FOR REMAINING DEVICES

3418 Y =1

3420 Y=Y+1

3422 IF Y > 7 THEN 3438

3424 IF S$(Y) = " » THEN 3438 ,

3426 STR(D$(1),6%Y-2) = HEX(2CDT) :REM, #

3428 CONVERT Y-1 TO STR(D$(1),6%Y), (#)

3430 STR(D$(1),6%Y+1) = S$(Y)

3432 GOTO 3420

3434 REM END SELECT STATEMENTS, WRITE GENERATED CODE

3438 STR(D$(1),6%#Y-2) = HEX(ODOOOOFE)

3440 Z$ = "ISSGOX0A" :REM WHERE X=station number

3442 CONVERT S2 TO STR(Z$,6,1), (#)

U4y LIMITS T#0, 2%, X, Y, Z

3446 DATASAVE BA T$#0, (X+1, Y) D$()

3448 REM LOAD SELECT STATEMENTS, CLEARING THIS PROCEDURE

3450 LOAD DCT Z$ 3410, 3450

34,.5.2 Disk Device Addresses and Multistation Operation

To indicate multistation operation or use of a multiplexed disk device,
the device address should be written as a hog mode address by adding 8 in
hexadecimal arithmetic to the middle digit ("310" becomes "390", "320" becomes
"3A0", etec.). Hog mode addresses identify the device addresses for particular
files and are only used in array F$(), not in the table of device addresses,
MO$(), described in Section 34.5.1.

If two or more files are on the same device, then the device addresses
must be consistent, either multistation (hog mode) or not multistation (not
hog mode), as the case may be.

Files on a multistation disk (multistation files) are opened and closed

using the ISS multistation disk subroutines (described in Chapter 32), as
follows:

245

The input file is opened in the "read only" mode. If the input file is
a KFAM-4 file, it is also opened in the "read only" mode under KFAM-U4
conventions ("R" placed in the access table in the KDR record). The input
file is generally closed when SORT-4 ends, with the exception of a tag sort,
where the input file is left open in "read only" mode. The program processing
the output of the tag sort should close the input file when it is finished.
The KFAM-4 close is always done at the end of SORT-4, whether the input file
is left open or is closed.

The input Key File is neither opened nor closed via the ISS subroutines,

consistent with the KFAM-5 and KFAM-7 convention of letting the status of the
User File also determine the status of the Key File.

The sort work file is opened in "exclusive" mode and is generally closed
when SORT-4 ends, with the exception of a tag sort which uses the sort work
file as an output file, whereby the sort work file is reopened in "read only"
mode when SORT-4 is finished. The program processing the output of the tag
sort should close the sort work file when processing is finished.

The output file is opened in "exclusive" mode and closed when SORT-4 is
finished.

If SORT-U4 ends with an error condition or is terminated by the operator
(Special Function Key 31), all multistation files are closed.

If SORT-4 stops with a "hardware" error message, i.e. ERR 196 or
ERR I99, the program should be terminated by depressing Special Function Key
31 to insure that all multistation files are closed.

34.5.3 Password Use

Passwords are required to access the input file and the sort work file,
if those files have been created with passwords, and are designated as
multistation. Otherwise, this parameter can be omitted.

If the output file was previously cataloged (C$ = "Y") and is a
multistation file created with a password, then a password for the output file
is required. If the output file was not previously cataloged, then any
pasiword supplied here becomes the password assigned to the file (see Section
32.4).

Passwords are ignored on files not designated as multistation.

34.5.4 Sort Key Fields

Up to 10 fields may be included in the sort key. The sort key field(s)
control sorting and determine output record order. Individual sort key fields
may be alpha, numeric, or any of the packed numeric formats listed in Section
34.4, The sort may be ascending or descending on any individual sort key
field. The maximum length of the entire sort key, as packed for sorting, is
64 bytes.

Partial fields, which are equivalent to the STR function of an alpha
field, may also be defined as sort key fields.

26

Key field 1 is the highest-order sort key, key field 2 is the next
highest, and so on. The key fields are defined as follows: K(1), B(1), N(1),
and STR(X9$, 1, 1) define key field 1; K(2), B(2), N(2), and STR(X9%, 2, 1)
define key field 2, etc.

The sequence number of the key field is the position of the field in the
record containing the key. If A$() is left blank, the sequence number is
determined by the position of the record as written on disk. For example,
assume records are written as follows, blocked 3:

DIM A$(3)6, C$(3)21, S$(3)48, 2$(3)5
DATASAVE DC A$(), C$(), S$(), 2$()

Each record contains the following fields, in order:

A$(X) = account
C$(X) = customer name
S$(X) = address
2$(X) = zip code

To sort by zip code (Z$) and customer name (C$),

K
K(1)
K(2)

2
y

2

This defines the high-order key as the fourth field in the record and
the next highest key as the second field in the record.

To use a partial field for a sort key, assume that bytes 47 and 48 of
the address (S$) are the state. To sort by state and customer name,

K=2
K(1) = 3
B(1) = 47
N(1) = 2
K(2) = 2

It is not necessary to define N(1) in this case. The default value is
the total number of bytes in the field, starting at B(1). Since the default
for B(1) is 1, it is not necessary to specify B(1) = 1 if the partial field
starts in the first byte of the field. If neither B(1) nor N(1) has a value
assigned to it, then all the bytes in the field starting at 1 (the entire
field) are included in the sort key.

If the record is described in A$(), the fields specified in A$()
determine the sequence number of the sort key. For example, the
same record might be described:

A$(1) = "6;21;A46,A2;A5"

247

In this case, the address field (S$) is divided into two subfields. The
total number of fields defined is 5. To sort by zip code (last field), K(1) =
5, not 4. To sort by state (last 2 bytes of address field), K(1) = 4, not 3.
In this case, not a partial field, but a whole field is used and B(1) and N(1)
should not be specified.

If arrays are included in the record, each element of the array is
counted as one field to determine the sequence number of a key field.

For example:

DIM A$8, N(20), C$12
DATASAVE DC A$, N(), C$

To sort by C$, K(1) = 22. To sort by the first two numeric fields, K(1)
= 2 and K(2) = 3.

The same rules apply to packed records defined in A$(). For example, if
the record above is packed into a contiguous 80-byte record:

F$ = HEX(A0085003A00C) :
$PACK(F = F$) AO$() FROM A$, N(), C$

The record to be sorted could be described in any one of the following

ways:
1) A$(1) = "A8, P3(20), A12¢
2) A$(1) = "A8, P3(2), A54, A12"
3) A$(1) = a8, P3, P3, AS4, A12"

In any case, to sort on the first two numeric fields, set K(1) = 2 and
K(2) = 3. However, to sort on the last field defined in example 1), set K(1)
= 22, whereas to sort on the last field defined in examples 2) or 3), set
K(1) = 5.

The fewer fields it is necessary to define, the more efficient the sort
will be. - Also, the sort is more efficient if sort key fields are defined as
scalars instead of array elements. Example 3) above produces a more efficient
sort, if sorting on the first two numeric fields, but all three examples will
work.

The maximum value for the sequence number of a key field, K(1), is 255
which is also the maximum number of fields allowed in a record.

34.5.5 Sorting Partial Files

With particularly large files, it may be necessary to split the file in
half in order to sort it. For example, if a sequential file occupies 9000
sectors, one record per sector, the first half of the file would be sorted by
specifying D = 1 and L$ = "4500". The second half would be sorted by
specifying D = 4501 and L$ = "MALL", The user must then write a merge program
to merge the two halves. ‘

248

%

“

mALL" (L$) means that all records in the sequential file from the
specified starting point (D) to the end of the file .are sorted.

The parameters D and L$ apply to sequential files only (file formats O,
1, and 2). These parameters specify blocks of records rather than individual
records to accommodate variable length records. The starting point of a
particular block of variable length records is easy to find, but the location
of a particular record is not known without a search of the file. If records
are blocked, D = 2 means that the sort starts with the second block of
records, not the second record. Similarly, L$ = "5" means that 5 blocks of
records, not 5 records, are sorted.

The default values D = 1 and L$ = "ALL" cause the entire file to be
sorted.

For KFAM files (file formats 3, 4, and 5), D and L$ are ignored and need
not be specified. 1Input records are specified by a beginning KFAM key (A$)
and an ending KFAM key (E$). A partial KFAM file may be sorted by specifying
the starting and ending key values. For example, to split a file into two
halves, first sort all records with KFAM keys A - M and then all records with
KFAM keys N - Z. The first sort would specify A$ = "A" and E$ = "N". The
second sort would specify A$ = "N" and E$ = HEX(FF). Note that the ending key
is a limiting value; a record with this key is not included in the sort. The

limiting key value of the first group is the same as the starting key value of
the next group.

Specifying the beginning and ending keys can also be used to take
advantage of the KFAM key to sort a segment of a KFAM file without reading
every record in the file.

The default values, A$ = HEX zeros and E$} = HEX F's, cause the entire
KFAM file to be sorted.

249

. 34.5.6 Type of Sort

Three types of sorts are available in SORT-U:i a key sort, a full-record
sort, and a tag sort.

The key sort extracts the sort key from the input record, packs it in
sort format, and appends to it a Y-byte pointer to the original input record
(2-byte sector address and 2-byte pointer to record or starting byte within
the block). The "sort record" (record processed by the sort) contains only
the sort key and pointer. When all sort records have been sorted, there is a
final pass (PASS 3 - OUTPUT) which reads the sort records in sorted sequence,
uses the pointer to locate the original input record, reads the input record,
and copies it to an output file in sorted sequence.

The key sort is very fast and efficient through the input, sort, and
merge phases, but slows down considerably in the last pass, because it must
read the entire input file again in random record sequence.

The full-record sort packs the entire input record into a maximum of
five "buckets" of 64 bytes each, where the first bucket is the sort key.
Certain fields, such as numeric sort key fields, partial sort key fields, and
sort key fields which are extracted from an array, are duplicated in the sort
record which is then sorted and merged. On the last pass of the merge, sort
records are converted back into the original input format and are written in
sequential order into the output file.

The full-record sort is generally slower than the key sort during code
generation, reformatting input, sorting, and merging, because there are more
fields to be defined and moved around. However, the full-record sort
compensates for this because it does not read the input file in random
sequence in the last pass.

A key sort can be executed for any file, but a full-record sort can only
be executed under the following conditions:

1) The input record occupies one sector or less.
2) There is sufficient space in the sort work file.

3) An array in a blocked record, array-type blocking or packed array
type, may not exceed 20 elements or require more than 210 bytes for
$PACK or $UNPACK.

If no sort type is specified (P8$ = blank), SORT-Y4 will decide whether
to do a key sort or a full-record sort, taking into account the above factors,
the proportion of key size to record size, input blocking, and whether
deferred mounting of the output file has been specified. This decision does
not always determine the fastest way of sorting a particular file. It is
worth experimenting to see which type of sort is faster, especially if very

large files are to be sorted.

Set P8 = "K" to specify a key sort, or P8¢ = "R" to specify a
full-record sort.

250

f

1Y

The third type of sort, a tag sort (P8% = nfu), operates like a key sort
except that the output of a tag sort is only the pointers to the original
input records and not the full records themselves. A user program can then
access the input records in sorted order without having to move the input
records to a separate output file. This feature eliminates the output pass
required in a key sort and reduces the size of the output file considerably.
Tag sort output can be used, for example, as a secondary index to a file, by
using BA mode access in conjunction with the SORT-4 output pointers to print
sorted input file records.

The exact output of the tag sort follows:

1)

2)

3)

)

5)

The file is sequential, with an "END" record following the last
block of pointers.

Pointers are written in DC mode, 50 per block:

DIM A0$(50)4
DATASAVE DC A0$()

The format of each pointer follows:

Bytes 1,2: Absolute sector address (hex) of corresponding input
record.

Bytes 3,4: For array type or packed array type (F$ = blank or "A"),
pointer to record within block (hex) in byte 4. For
packed records (F$ = "P", "I", or "V"), pointer to
starting byte of record within block in bytes 3, U
(hex). In the case of variable length records, this
points to the starting byte of the length indicator.

Unused pointers in the last block are padded with HEX(FFFFFFFF).

The record count, S8, can be saved to determine the exact number of
pointers to be processed (see Section 34.5.11).

Note that if a tag sort is specified, and the input file is
multistation, it will remain open in the "read only" mode. The sort
work file may be used for the output of a tag sort, eliminating the
need for a separate output file (see Section 34.5.9). If the sort
work file is multistation, and is used for the output of the tag

sort, it will be reopened in "read only" mode, and held open, at the
end of the sort.

251

Figure 34-1 illustrates the basic content and arrangement of three
sample input records during each pass of the sort, and for the three types of
sorts. Assume the three unblocked input records are located at (absolute)
sectors 91, 92, and 93 respectively and are sorted into ascending order of
their sort keys. Notice that during passes 1 and 2, the tag sort and key sort
are identical. After pass 3, the key sort uses the pass 2 pointers to read
the input file records and copy the records in sorted sequence to the output
file. The full-record sort, however, carries the entire record for the
duration of the sort (in buckets), whereas the key sort carries only pointers
(and sort key) through passes 1 and 2. Note that the output of the key sort
and full-record sort are identical, and differ greatly from the output of the
tag sort.

SORT KEY INPUT FILE ABSOLUTE SECTOR ADDRESS
e OIEETA
INPUT
FILE 08 121 $2.35 92

\ 20103 52\ @&

pASS] TAG SORT KEY SORT FULL-RECORD SORT

4-BYTE POINTER

m \11 + recoro v BUCKETS \

9200 08 \ o8 + recoRo 1w BucKeTs |
\oioo 21\| \osoo 21\ | \2 + recoro 1n suckers \

2 f\o200 22 \ |\9200 08 \ [\08 + RECORD IN BUCKETS |
g00 11 \ | \9100 11 \ \n + recor BUCKETS |
| \s300 a1 \| \saoo "zs '\ | \2i + recoro m suckers\

3 foz00 \os 121 s2.35\ J\oa 121 $2.35 |
\ 9100\ \11 135 s2.85\ |\ 11135 s2.85\
\ 9300 \ \21 193 s5.02\| \ 21 193 $5.12\

Figure 3U4-1. SORT-U4 Sample Operation on Input Records

252

"

34.5.7 Construction of Sort Records

In the construction of sort records, there are major differences between
SORT-3 and SORT-U4 internally. In SORT-3 there may be one or two buckets of up
to 64 bytes each, limiting the sort record to 128 bytes. In SORT-Y4 there may
be up to five buckets, allowing up to 256 bytes plus the sort key. In SORT-3,
bucket lengths determine how the record is written on disk, and thus affect
blocking efficiency in the sort work file. In SORT-Y4, buckets are packed into
array 0$() before writing on disk, so that bucket sizes have no effect on
sort/merge blocking.

SORT-U4 packs the sort record into as few buckets as are required for the
particular sort. Therefore it is not necessary to discuss, as in SORT-3, ways
of defining dummy sort keys so as to make sorting more efficient. It is all
done in the sort program.

The key that is actually used for sorting, by MAT SORT and MAT MERGE, is
the entire first bucket. The first bucket starts with the actual sort key,
which is followed by nonsort information if it would save a bucket to pack it
that way. If it is a key sort or tag sort, the nonsort information is the
pointer to the original input record. If the sort key is 60 bytes or less,
this pointer is included in the first bucket and acts as a low-order sort
key. If a sequential file is being sorted (formats 0, 1, or 2), the pointer
keeps records in the original order if duplicate sort keys are encountered.

With a full-record sort, certain fields included in the sort key are
duplicated in the nonsort portion of the record:

1) Numeric sort keys.
2) Partial alphanumeric sort keys.
3) Alphanumeric sort keys which are array elements.

This duplication of fields should be taken into account if it is

necessary to calculate the length of the sort record. Some of the duplication
can be eliminated as follows:

1) Packed numeric sort keys which are always in fixed-point form and
always known to be positive can be defined in A$() as alpha.

2) Partial alphanumeric fields used as sort keys should be defined as

fields in A$(). rather than using the partial field indicators B()
and N().

3) Arrays which contain sort keys should be split up in A$() so that
the sort key fields are scalars. For example, to sort on the first
and fifth elements of K$(20)8, define the record as:

A$(1) = "8, A8(3), A8, A8(15)"

This is done automatically by SORT-4 in the case of array-type
blocking where A$() is left blank.

253

34.5.8 The Sort Work File

The sort work file must be cataloged as a disk file prior to running the
SORT-Y4 set-up program. The user may calculate the number of work file sectors
required for a particular sort, in order to efficiently allocate disk space
for the sort work file. To catalog a disk file, the following can be executed
in the immediate mode:

DATASAVE DC OPEN platter, sectors, "name"

To calculate the sort work file size (sectors) necessary for a
particular sort, the sort record length must first be known.

With a key sort, the length of the sort record is:
S=K+ 14

where S
K

sort record length.
key length (see Table 34-3 for length of numeric keys).

With a full-record sort, the calculation of the sort record length is
more difficult. All fields from the input record are packed into the sort
record. Numeric sort key fields are repeated in the nonsort portion of the
record. Also, alphanumeric sort key fields which are partial fields or
elements of an array are repeated in the nonsort portion of the record. The
only sort key fields not repeated are alpha scalars where the entire field is
included in the sort key.

Packed numeric fields are copied to the nonsort portion of the record in
their original alphanumeric form. Internal numeric fields are packed, using
the internal form of $PACK.

Variable length records are converted into fixed length records for a
full-record sort. Therefore, the length of the sort record includes the
maximum length of the variable portion of the record.

The length of the sort record (in bytes) for a full-record sort is:

S=K+I+V-2A+N+ 3%GN(N)

where S = sort record length.
K = key length (see Table 34-3 for length of numeric keys).
I = length of input record, or fixed length portion of a variable
lengt? record, excluding control bytes. (Numeric field length
is 8.
V = maximum length of variable portion of record.
A = total 1length of alpha scalar full-field sort keys (not

duplicated).
N = number of internal numeric fields in input record.

In the unusual case where there are more than 21 internal numeric fields

in a blocked record, 3 additional bytes must be added for every 21 internal
numeric fields.

254

"

The blocking of sort records varies with the record length and memory
space available for arrays, but SORT-4 juggles array sizes to ensure that the
blocking is at least 75% efficient. For example, if 248 bytes per sector are
available for data, at least 186 bytes will actually be used. Therefore, the
space required to store the sort records is:

F = R*S/186

where F space required for sort records.

R = number of records sorted.
S = sort record length (see above).

Additionally, there is a fixed overhead of 25 sectors for generated code
and a variable overhead of one extra block of sort records (up to 16 sectors,
in proportion to memory size) plus a String Index which occupies one sector
per 36 sorted strings. A total of 50 sectors should accommodate all the
overhead, hence the formula:

Sort work file size (sectors) = 50 + F

where F = space required for sort records (see above).

If a tag sort is using the sort work file as an output file, the tag
sort output overlays part of the overhead portion of the work file, therefore
the sort work file size is the greater of the two:

1) W = 50 + R#S/186
2) W = R/50 + 20 + R#*S/186 (tag sort only)
where W = sort work file size, sectors

R = number of records sorted

S = sort record length

If the sort work file is on a multistation disk, it is opened in
Yexclusive" mode. If it is also used as the output file for a tag sort, it is
reopened in "read only"™ mode at the end of the sort and is not closed.

SORT-4 calculates the work file size required, based upon either the
number of records in the input file or the maximum number of records that
could be in the input file in the case of variable length records.

SORT-4 will stop if the actual sort work file is not large enough. 1In

certain cases, the actual numher of records to be sorted will be much less
than the maximum number of records in the file, namely:

1) When a partial file is being sorted using a starting and/or ending
KFAM key.

2) When certain records are selected for sorting via a special input
procedure (see Section 34.5.10).

3) With variable length records, where the average number of records

in a block is less than the number of minimum 1length
records (variable portion zero) that will fit in a block.

255

The variable P8 is provided to indicate approximately the maximum number
of records to be sorted, if that number (P8) is significantly less than the
maximum number of records in the file. If P8=0 (default value), SORT-4 uses
the maximum number of records in the file to calculate the required sort work
file size. If P8 is greater than zero, SORT-4 calculates sort work file size
on the basis of P8 records.

In addition to checking the work file size in the set-up phase, SORT-4
also checks each time a block of sort records is written in Pass 1 to make
sure that the sort work file space is not exceeded. Therefore if P8 is too
small, no damage is done.

34.5.9 The Output File and Deferred Mounting

The output of SORT-4 is always an unlabeled sequential file (file format
0). Output records are written in the same format as input records, and the
blocking is the same, with the exception of a tag sort (see Section 34.5.6 for
the output format of a tag sort).

The output file may either be previously cataloged by the user (C$="Y")
or cataloged by SORT-4 (C$="N"). 1If a tag sort is specified, the sort work
file may be used for output (C$="W").

If the output is on a multistation disk, it is opened in "Exclusive"
mode. In a tag sort, if the output file is also the sort work file, it is
reopened in "read only" mode and kept open at the end of the sort. Otherwise
the output file is closed when SORT-4 is finished.

In a full-record sort or a key sort, the default length of the output
file in SORT-4 is equal to the length of the input file.

In a tag sort, the length of the output file is calculated as INT(P8/50)
+3, where P8 = the maximum number of records to be sorted (see Section 34.5.8).

The variable P7 is used for the length of the output file, in sectors.
If P7=0, the default calculations above are used. If P7 is set to some number
greater than zero, then that number is used.

If the output file was not previously cataloged, then exactly P7 sectors
are cataloged. If the output file is already cataloged, then it must contain
at least P7 sectors.

Under certain conditions, the disk containing the file may be dismounted
at the end of Pass 1 and replaced by the disk containing, or to contain, the
output file. This permits a file occupying a full disk platter to be sorted
using two disk platters. This procedure, referred to as "deferred mounting",
is indicated by D$="D" in the set-up module.

Deferred mounting is allowed under the following conditions™

1) The disk containing the output file is not multistation.

256

(]

2) A full-record sort or a tag sort (not a key sort) is being performed.
3) If it is a tag sort, the output file is not the sort work file.

Normally the input file, output file, sort work file, and the SORT-H
program modules must remain mounted throughout the sort. With deferred
mounting, the SORT-4 modules and the sort work file can occupy the fixed disk,
while the removable disk is switched from input to output. '

If output records are blocked, SORT-U4 generates padding records to fill
the unused record positions in the last block. SORT-3 generates high values
for ascending keys and low values for descending keys, whereas SORT-4 only
generates high values.

The padding procedure for the various record formats are as follows:

F$ = blank (array-type blocking) - The first read field and all read
fields containing sort keys are filled with HEX(FF) in all bytes if the field
is alpha or exactly 9E99 if the field is numeriec.

F$ = "A" (packed array) - The first field and all fields containing sort
keys are filled with high values before the record is packed. Alpha field=
are filled with HEX(FF) in all bytes. Numeric fields are filled with the
highest value that can be packed. For ASCII free format, with a field length
of 15 or more, the value is 9E99. Other $PACK formats are padded with the
number of 9's indicated below, where L = packed field length.

Field Format Number of 9's
ASCII free L-1
ASCII integer L-1
IBM display L
IBM USASCII-8 L
IBM packed 2%L,-1

Wang packed formats are padded as follows:

Signed: - HEX(099999...) per field length
Unsigned: HEX(999999...) per field length

F$ = "pP", fixed length packed. records: The entire record, in packed
form, is filled with HEX F's.

F$ = "V", variable length packed records or F$ = "T" TC record format:
No padding is necessary.

34.5.10 Special Input Procedure

The user may specify a special input procedure to be overlaid in Pass 1
of the sort (module SORT410A). This procedure can be used to sort records
selectively or for any other input processing that does not interfere with the
functioning of the sort. No other files may be opened during the input

processing phase wherein input records are selected for sorting based on
certain user-defined logical relationships between fields.

257

Coding of the input procedure must conform to the following rules:

The first line of the special input procedure must be 1000. Lines
1000-1999 may be used for REM statements, DIM statements, an initialization
procedure, or any other processing to take place before any input records have
been read.

Lines 2500-3499 are used for normal input processing. At this point,
the input record has been read, but has not yet been included in the sort. To
include the record in the sort, GOTO 3500 (or drop through). To exclude the
record from the sort, GOTO 2400. Input record selection is graphically shown
in Figure 34-2.

[————, CONTINUE

SORT-4 READS A
HEXT INPUT-
RECORD

: !

USER TESTS
CURRENT RECORD. GO TO 2400,
IS RECORD NO~—o1 EXCLUDE [»
ACCEPTABLE RECORD
?

YES
GO 7O 3500,

INCLUDE

RECORD
SORT-4 WRITES
RECORD IN THE >
OUTPUT (WORK)

FILE

Figure 34-2. Input Record Selection Flowchart

258

n

To reference the input record, the variable names assigned by SORT=-4
must be known. Perhaps the easiest way to do this is to set up the particular
sort with a special input procedure:

1000 REM
2500 STOP

When the program stops,

SELECT LIST 215
LIST 10, 3550

Depress Special Function Key 31 to end program, if multistation.
The input record is defined on the following line$3:

500 DIM statements

2440 Read input record, $UNPACK if F$="A"
2460 MAT COPY variable length record to fixed work area, 0$()
3510 $UNPACK if F$=blank, "P","T", or "U"

If records are blocked, the variable Q points to: (1) the record within
the block if F$=blank or "A", (2) the starting byte of the record if F$="P",
or (3) the length byte(s) preceding the record if F$ = "T" or F$ = "V»,

Only packed array records (F$="A") are unpacked prior to the special

input procedure. Other formats are unpacked later, so that records not in the
proper packed format ~an be dropped in the special input procedure. Records
are available, in the special input procedure, in the following forms:

F$ = blank: Read fields available, Q points to record within block.
F$ = mAn: Packed fields available, Q points to record within block.
F$ = npv; Record is available in packed form in array A0$(), starting
byte Q.
F$ = wyw; Record is available in packed form in array AO$(). Q points
or to the 1length byte(s). If full-record sort, the record,
F$ = nTv starting with length byte(s), has been moved to array 0$(),

starting byte 1.

Variable names G0-G9, HO-H9, ... LO-L9 may be used as working

variables in the special input procedure. (These are.reserved for the
output record definition and are not used in Pass 1.)

SORT-4 assigns variable names A0-A9, B0-B9, ... FO0-F9, to the input
record, based upon a table constructed in the set-up phase. If the record has
been described in A$(), this table is simply one entry per A$() entry, plus an
implied read only field inserted in front of each group of packed fields.
Variable names are calculated directly from the table subscript. The name AO
is always assigned to the first entry in the table, A9 to the tenth, BO to the
eleventh, ete. For example, if the set-up program defines

A$(1) = "#; A5, P3(5), A4; #(16)"

259

the table entries and variable names are:

Table Field Field Array Variable
Entry Type Length Dimension Name

1 numeric read 8 1 AOD

2 read only 24 1 A1$24

3 alpha packed 5 1 A2%5

y IBM packed 3 5 A3(5)

5 alpha packed j 1 A4$Y

6 numeric read 8 16 A5(16)

The read fields AQ, A1$, and A5() are available during the special input
procedure. The packed fields may not even be defined by SORT-4, in the case
of a key sort or tag sort.

If a numeric read field is designated as a sort key, it is always
defined as an array by SORT-4. In the example above, if the first field is a
sort key, it is defined as A0(1), not AO. If the field is already defined as
an array (array, or blocked, or blocked array), then its definition is the
same, whether it 1s a sort key or not.

In packed array format (F$="A"), packed numeric fields designated as
sort keys are always defined as arrays. What would otherwise be a scalar is
defined as an array of dimension 1.

If records are blocked as arrays (F$=blank or "A"), SORT-4 adds another
dimension for blocking to the variables to which the blocking applies. With
array-type blocking, the extra dimension is added to read fields. With packed
array format, the extra dimension is added to packed fields. In the example
above, where records were written 5 per block, the variable names would become
A0(5), A1$(5)24, A2$5, A3(5), AU$4, A5(16,5). The read fields for the current
record being processed would be A0(Q), A1$(Q), and A5(X,Q), where X=1 to 16.

For packed records, formats "A", "P", ®T" and "V", the read field is
always A0$(). The fields defined in A$() are then assigned variable names A1
and up.

In the case of a packed array, all fields are always unpacked and

available in the special input procedure. Blocking applies to packed fields.
For example:

F$ = man
B=5

A$(1) = "a12, P3(5), S4, A1(3), Fi15"
B$ = "B"

260

L}

f

Table Field Field Array Variable

Entry Type Length Dimension Name
1 read field 64 y AO$(4)6U
2 alpha packed 12 1 A1$(5)12
3 IBM packed 3 5 A2(5,5)
y Wang packed 4 1 A3$(5)4
5 alpha packed 1 3 A4$(3,5)1
6 ASCII free 15 1 A5(5)

The fields of the input record available in the special input procedure
are A1$(Q), A2(X,Q), A3$(Q), AU$(Y,Q), and A5(Q), where X=1 to 5 and ¥=1 to 3.

Note that the Wang packed decimal field (signed or unsigned) is unpacked
as an alpha field at this point.

If a record description is not provided in A$() (array-type only),
SORT-U4 constructs a table based on the format of the record as written on
disk. Consecutive fields of the same length and type are combined into
arrays, except that fields containing sort keys are always defined as
scalars. For example, if the record as originally written was:

DIM A$(2)8, B$(2)8, c$(2)8, D$(2)8, E$(2)12
DATASAVE DC A$(), B$(), C$(), D$(), E$()

and there are 2 records per block, and the first field is the sort key, SORT-4
will define the record as follows:

DIM A0$(2)8, A1$(3,2)8, A2$(2)12
DATALOAD DC AO0$(), A1$(), A2$()

Individual records may be referenced in the special input procedure as
A0$(Q), A1$(X,Q), and A2$(Q), where X=1 to 3.

The variable M4 should contain a conservative estimate of the number of
bytes occupied by the special input procedure and any common variables which
may be carried through the sort.

Appendix B shows the variables used by SORT-A4. The special input
procedure should avoid using any of these variables except the ones reserved
for output. If common variables are to be carried through the sort, they
should be variables not used by SORT-U4.

34.5.11 Exit From SORT-4

If M$=blank (default), SORT-4 will stop when finished, displaying a
count of the number of records sorted and "END OF SORT", or the appropriate
error message.

Or M$ may contain the name of the program to be loaded following the
sort. This program must be present on the device specified in F$(6).

261

If a program is to be loaded following the sort, the following options
are available:

S9 = 0 (default), stop if SORT-Y4 ended in an error condition.
Otherwise clear all common variables starting at S8 and load
user program M$.

S9 = 1, stop if SORT-4 ended in an error condition. Otherwise store
record count in S8 (COM), clear all common variables starting at
S9, and load user program M$.

S9 = 2, store error code (see Section 34.7 below) in S9, store count of

records sorted in S8, clear common variables starting at M$, and
load user program M$.

Common variables are defined in SORT-4 starting with S8, S9, M$8, etc.
The value of S9 in the set-up module indicates how many of these common
variables will be saved (0, 1, or 2), with the appropriate information, when
loading user program M$.

34.6 NORMAL OPERATING PROCEDURE

Except for deferred mounting of the output file, there is no operator
dialogue in SORT-4. The input file, sort work file, all SORT-4 modules, and
any necessary user modules (set-up program, special input procedure, and
program to be loaded fdllowing the sort) must be present and cataloged on
disks which are mounted prior to the running of SORT-4. The output file may
or may not be cataloged, as specified in the set-up module, and the disk which
will contain the output may or may not be mounted at the start of SORT-4.

If deferred mounting of the output is specified, the following dialog takes
prace at the end of Pass 1l:

1. REMOVE INPUT VOLUME AND MOUNT OUTPUT VOLUME
-ENTER 'GO' TO RESUME

RepYace the input volume with the output volume. Enter the letters
"GO" and touch the RETURN Key when ready.

If the response is not correct, the prompt reappears, requesting
reentry. If the response is correct, the program will display "PASS
2 -- MERGE", and continue with the sort.

During the running of SORT-4, the fd&llowing information willl be
displayed on the screen, starting at display screen line 4:

(Phase of the sort: Start, Pass 1, Pass 2, or Pass 3)

INPUT FILE (name) DEVICE (address) FORMAT (number)

RECORDS PER BLOCK (number)

STARTING BLOCK # TO BE SORTED (number) or STARTING KEY TO BE SORTED
(key), if KFAM

262

®

fe

NUMBER OF BLOCKS TO BE SORTED (number or “ALL") or ENDING KEY (NOT
SORTED) (key), if KFAM

WORK FILE (name) DEVICE (address)

NUMBER OF KEY FIELDS (number)

KEY FIELDS (field number, D if descending, repeated)

OUTPUT FILE (name) DEVICE (address) CATALOGED (code)

(Type of sort: KEY SORT, TAG SORT, or FULL-RECORD SORT)

If it is necessary at any time to terminate the sort before it is
finished, key HALT/STEP and then depress Special Function Key 31 to make sure
that 411 files are closed properly. The program will stop, normally, with the
message "OPERATOR INTERVENTION". If error messages are passed to a user
program féllowing the sort, it should stop with an appropriate message in that
program. SORT-U error messages appear in Section 34.7, below.

If error messages are not passed to the user program, any error message
encountered will be displayed, as 1listed in Table 34-4. Otherwise, upon
successful completion, the following is displayed:

RECORD COUNT NNNNN
STOP END OF SORT

34.7 ERROR MESSAGES AND RECOVERY PROCEDURES

There are two types of error conditions that could be encountered during
the operation of SORT-4. Hardware (ERR 1lnn) errors, if encountered, are
described below under “Hardware Errors'.

SORT-4 supplies software-generated error messages which enable the
error's cause to be quickly isolated and corrected by the programmer.
Software error messages, which appear as several words indicating the nature
of the error, are described under "SORT-4 Software Errors™ bélow.

Hardware Errors

\

Certain "hardware" error messages will cause SORT-U4 to stop. If any of

these occur, depress Special Function Key 31 to end the sort and close any
files that may be open in a multistation environment.

ERR I96 Disk read error
ERR 199 Disk read-after-write error

If either of the above occur, depress Special Function Key 31 to end the
program. Try rerunning the sort. ERR I96 means that the information written
on the disk is bad. ERR I99 means that the disk platter itself is bad. If
the error recurs, try running from a backup copy of the disk. These errors
should occur very rarely if the hardware is within its temperature and
humidity environment limits.

263

ERR D83 The output file to be cataloged is already cataloged. Depress
Special Function Key 31 to end the program. Make sure that the
correct disks are mounted. This may require a programming
change in the set-up module (C$ = "Y").

ERR D82 Indicates "file not found." A data file or program module does
not exist on the specified device. Depress Special Function Key
31 to end the program. Make sure that the correct disks are
mounted. This may require a programming change in the set-up
moduile.)

Other "hardware" errors: This could be caused by hardware or software
failure, invalid data, or a number of reasons. Make a note of the line number
of the program that caused the error, and the error number. Enter LIST S and
make a note of the module name displayed on the first.”line. Depress Special
Function Key 31 to end the program and close all files.

SORT-4 Software Errors

SORT-4 checks for many error conditions and comes to an orderly halt, closing
all files, if SORT-4 detects an error. These error conditions are listed
below. The number is the error number passed (S9) to a user program, if that
option is specified; otherwise the accompanying message is displayed on the
screen and SORT-4 stops. (Also see Section 34.5.11.)

Alphabetic Software Error Message List

Error messages displayed by SORT-4 are listed according to alphabetic order

below in Table 3u4-4, with a cross-reference to the number associated with each
error message. Error messages and recovery procedures are listed in numeric

order In Table 34-5.

264

]

fe

Table 34-4. Alphabetic List of SORT-4 Error Messages

ERROR MESSAGE NUMBER BELOW
BLOCK SIZE TOO SMALL see #25
DEFERRED MOUNTING INVALID see #20
DEVICE CONFLICT see #9
ERROR CLOSING FILES see #35
ERROR OPENING OUTPUT FILE see #17
ERROR OPENING WORK FILE see #15
FULL RECORD SORT NOT POSSIBLE see {32
INPUT BLOCKING INVALID see #8
INPUT FILE BUSY see #39
INPUT FILE OPEN ERROR see #3
INVALID DEVICE ADDRESS see #10
INVALID END OF FILE see #1
INVALID FORMAT see {2
INVALID NUMBER OF BLOCKS see {6
INVALID NUMBER OF KEY FIELDS see #26
INVALID OUTPUT TYPE see #30
INVALID RECORD DEFINITION see {23
INVALID RECORD FORMAT see #13
INVALID RECORD TYPE see #24
INVALID RECORDS PER BLOCK see 4
INVALID SORT KEY SPECIFICATIONS see #21
INVALID SORT TYPE see #31
INVALID STARTING BLOCK see #5
MEMORY SPACE TOO SMALL see #33
NO CPU NUMBER see #29
NO RECORDS TO SORT see #11
OPERATOR INTERRUPT see #28
OUTPUT FILE TOO SMALL see #19
PACKED ARRAY MUST BE BLOCKED see #37
PACKED RECORD MUST BE ARRAY see #38
PROGRAM ERROR see #34
RECORD COUNT INPUT = XXXXX, OUTPUT = XXXXX, ERROR see #36
RECORD COUNT = XXXXX; STOP END OF SORT see #99
RECORD DEFINITION INCONSISTENT see {#22
SEQUENCE ERROR see #18
SORT KEY TOO LONG see #27
STARTING BLOCK TOO HIGH see i#7
TOO MANY FIELDS see #14
WORK FILE BUSY see #40
WORK FILE TOO SMALL see #16
WRONG INPUT FILE see #12

265

Table 34-5. Numeric List of SORT-4 Error Messages
and Recovery Procedures

INVALID END OF FILE

Input file formats 0, 1, or 2 must be ended with a hardware END trailer
(DATASAVE DC END). The numher of sectors used is invalid.

Recovery: Correct the input data file.

INVALID FORMAT

Format (F) not 0 - 5 (file format).

Recovery: Correct the format code (F) in the set-up program.
INPUT FILE OPEN ERROR

Multistation OPEN error (file not found, invalid password, etc.) or KFAM
key file not found.

Recovery: Correct the input data file and/or set-up program (file name,
password).

INVALID RECORDS PER BLOCK

Blocking (B) is not an integer from 1 to 255, or doesn't match actual
Blocking in sample record, or doesn't match blocking (V8$) in KFAM KDR
record.

Recovery: Correct set-up program.

INVALID STARTING BLOCK

Starting block # to be sorted (D) is less than 1 or not an .integer.
Recovery: Correct set-up program.

INVALID NUMBER OF BLOCKS

Number of blocks to be sorted (L$) is not "ALL" and not numeric, or not an
integer greater than 0.

Recovery: Correct set-up program.
STARTING BLOCK TGO HIGH

Starting block # to be sorted (D) is greater than the number of blocks of
records in the input file.

Recovery: Either there are no records to sort, or the set-up program
should be corrected.

266

v

fa

w

10.

1.

12.

13.

Table 34~5. Numeric List of SORT-4 Error Messages and
Recovery Procedures (Cont'd)
INPUT BLOCKING INVALID

The block length, in sectors, does not divide evenly into the length of
the data portion of the input file.

Recovery: Correct the input data. Blbcks of records must be fixed-length
and must be written on disk in the same identical format.

DEVICE CONFLICT

A device address is specified as multistation for one file and not
multistation for another file. The device address must be consistent
(multistation or not multistation) for all files on that device.

Recovery: Correct the set-up program.

INVALID DEVICE ADDRESS

A device address is specified which is either blank or not in the table of
device addresses, M0$().

Recovery: Correct the set-up program.

NO RECORDS TO SORT

Either KFAM returns an end-of-file condition trying to find the first
record to sort, or the count of records being sorted, at the end of Pass
1, is zero.

Recovery: None.

WRONG INPUT FILE

The file name in the header label, formats 1 and 2, does not match the
input file name specified in the set-up program.

Recovery: Mount correct disk and rerun, or correct the set-up program.

INVALID RECORD FORMAT

The sample record being used to determine the input record format does not
have correct contrél bytes.

Recovery: Correct the input data file.

267

14,

15.

16.

17.

18.

Table 34-5. Numeric List of SORT-U4 Error Messages and
Recovery Procedures (Cont'd)

TCO MANY FIELDS

More than 255 fields are defined in the input record, or more than 60
table entries are required to describe it, or more than 256 bytes are
required for a DATALOAD or DATASAVE statement to read the input or write
the output.

Recovery: Change the set-up module to describe the input record as fewer
fields, combining scalars into arrays wherever possible. If this is not
possible, SORT-4 wilI'not sort this file.

ERROR OPENING WORK FILE

The multistation OPEN subroutine detects an error condition (file not
found, invalid password, etc.) trying to open the sort work file.

Recovery: Check that the correct disk is mounted, or correct the set-up
program (file name, password, device).

WORK FILE TCO SMALL

The work file contains less than 25 sectors, or is too small to sort the

maximum number of records specified (P8), or is too smdll to be used as
both a work file and output file for a tag sort, or the dynamic check in
Pass 1 shows that the work file is full.

Recovery: Adjust the maximum number of records (P8) in the set-up module,
or create a larger sort work file, or switch from a full-record sort to a
key sort (if P8$ = "R").

ERROR CPENING OUTPUT FILE

Multistation OPEN error (file not found, invalid password, output file
presently in use, etec.) trying to open the output file.

Recovery: Check that the correct disk is mounted and the output file is
not being accessed by another station. Correct the set-up program (file
name, password) if necessary.

SEQUENCE ERROR

The sorted keys are not in proper sequence. This is a check against
possible hardware or software malfunction.

Recovery: Rerun the program. Notify Wang Laboratories if the error
persists.

268

£}

19.

20.

21.

22.

23.

Table 34-5. Numeric List of SORT-4 Error Messages and
Recovery Procedures (Cont'd)

OUTPUT FILE TOO SMALL

The output file is smaller than the number of sectors specified in P7
(default = input file size), or the dynamic check in pass 2 or 3 shows
that the output file is full.

Recovery: Adjust the output file size (P7) in the set-up module, or
create a larger output file.

DEFERRED MOUNTING INVALID

Deferred mounting of the output file (D$ = "D") may not be specified if a
key sort is being performed, or if the work file is also used for the
output of a tag sort, or, for all sort types, if the output file is
multistation.

Recovery: Correct the set-up program.
INVALID SORT KEY SPECIFICATIONS

The description of sort key fields in K(), B(), N(), and X9$% is invalid,
or the description of a partial sort key field is inconsistent with the
field length, or a partial sort key field has been specified for a numeric
field.

Recovery: Correct the set-up program.
RECORD DEFINITION INCONSISTENT

The record definition supplied in A$() is inconsistent with other record
definition information. With packed records (F$ = ®An, "pn, nTn op wyn),
A$() is blank, or the sample record shows more than one read field array,
or the array is numeric. Also possibly caused by the definition in A$()
not fitting the sample record: Too many or too few fields are defined,
field lengths of packed fields don't add up to field 1lengths of read

fields, or field lengths, types, and array dimensions don't match the
sample record.

Recovery: Correct the set-up program.
INVALID RECORD DEFINITION

The record definition supplied in A$() is invalid within itself. The
field type is invalid, 1length or array dimensions out of bounds,
punctuation marks are invalid, or there is an invalid sequence of read
fields and packed fields. Or, for variable length records, the. length of
the variable portion (N6) is not an integer or is less than zero.

Recovery: Correct the set-up program.

269

24,

25.

26.

27.

28.

29.

30.

Tabhle 34-5. Numeric List of SORT-4 Error Messages and
Recovery Procedures (Cont'd)

INVALID RECORD TYPE (F$)

The record format (F$) is not bIank, "Aw, "P®, wT# opr "V©,

Recovery: Correct the set-up program.

BLOCK SIZE TOO SMALL

For fixed-length packed records (F$ = "P"), the product of blocking times
record length is greater than the block 1length. For variable 1length
records (F$ = "T" or "V"), the block is too small to hold the largest
possible record.

Recovery: Correct the set-up program.

INVALID NUMBER OF KEY FIELDS

The number of sort key fields (K) is not an integer from 1 to 10,

Recovery: Correct the set-up program.

SORT KEY TOO LONG

The total length of the sort key exceeds 6l bytes.

Recovery: Change the set-up program to shorten the sort key, if possible.
OPERATOR INTERRUPT

SORT-4 was terminated by depressing Special Function Key 31.

Recovery: Rerun the program.

NO CPﬁ NUMBER

No CPU (station) number (S2) or an invalid station number was specified
with multistation files.

Recovery: Specify the station number (S2) in the set-up program.
INVALID OQUTPUT TYPE

The work file may not be used as the output file (C$ = "y") except with a
tag sort (P8% = "T").

Recovery: Correct the set-up program.

270

]

e

31.

32.

33.

34,

35.

Table 34-5. Numeric List of SORT-4 Error Messages and
Recovery Procedures (Cont'd)

INVALID SORT TYPE

The type of sort specified (P8%) is not blank, "K", "R", or "T".

Recovery: Correct the set-up program.

FULL RECORD SORT NOT POSSIBLE

A full-record sort has been specified (P8¢ = "R" or D$ = "D" forcing
full-record sort), but it is not possible to perform a full-record sort
for one of the following reasons:

a. The nonsort portion of the record exceeds 256 bytes.

b. A 2-dimensional array, created by an array in a blocked record, is
too large to be packed in one $PACK statement.

Recovery: Change the set-up program to perform a key sort or tag sort.
MEMORY SPACE TOO SMALL

The memory size specified (M or S) is less than 7K, or the memory size is
too small for the following minimum requirements for the sort/merge filé:

a. Sort blocking must be at least 5 records per block and occupy at
least 2 sectors.

b. Sort blocking must be at least 75% efficient (at least 186 bytes of
data per sector in the sort work file).

Recovery: Change the set-up program to perform a key sort or tag sort, or
correct the memory size specified. It may not be possible to sort
unusually large records or blocks of records in an 8K machine.

PROGRAM ERROR

Hardware or software error. Generated $PACK statement does not match
generated hex images.

Recovery: Notify Wang Laboratories.

ERROR CLOSING FILES

An error is detected by one of the multistation subroutines when writing
an END record on the output file or reopening the work file used for

output, or closing a file.

Recovery: This should not occur. Rerun the program. Notify Wang
Laboratories if this error recurs.

271

36.

370

38.

39.

ho.

Table 34~5. Numeric List of SORT-4 Error Messages and
Recovery Procedures (Cont'd)

RECORD COUNT INPUT = XXXXX, OUTPUT = XXXXX, ERROR

The number of input records entered into the sort does not match the
number of output records from the sort. Hardware or software error.

Recovery: Rerun the program. Notify Wang Laboratories if this error
recurs.

PACKED ARRAY MUST BE BLOCKED

If the input record format is specified as packed array (F$ = “"A"), then
the blocking factor (B) must be greater than 1.

Recovery: Change the set-up program. If packed records are not blocked,
specify F$ = "P",

PACKED RECORD MUST BE ARRAY

For the packed record formats (F$ = "A", "P", 6 wPW, or "V"), the record or
block written on disk must be an array containing 2 or more elements.

Recovery: Change F$ to blank in the set-up program, or change the format
of the input record on disk so that at. least 2 elements of an array are
written per block of packed records.

INPUT FILE BUSY

Multistation input file cannot be opened in "read only" mode because of an
access conflict, or KFAM-4 access conflict or access table full.

Recovery: Rerun the program when the access conflict is resolved. It may
be necessary to clear spurious information out of the access table. If no
other station 1is accessing the file, see the ISS Utility FILE STATUS
REPORT if a nonKFAM file was used as input, or see the KFAM Utility RESET
ACCESS TABLE (either KFAM-3, 4, 5, or T version), if a KFAM input file was
specified. ‘

WORK FILE BUSY

Multistation work file cannot be opened in "exclusive" mode because of an
access conflict.

Recovery: Rerun the program when the access conflict is resalved. It may
be necessary to clear spurious information out of the access table. If no
other station is accessing the file, see the ISS Utility FILE STATUS
REPORT to clear the access table.

272

e

[/

Table 34~5. Numeric List of SORT-Y4 Error Messages and
Recovery Procedures (Cont'd)

98. ERROR MESSAGE NOT DEFINED
Following any error message, the program displays:
STOP ERROR ENDING

99. RECORD COUNT XXXXX
STOP END OF SORT

This is the normal ending. If error messages are passed to the next
program, the value S9 = 99 indicates that the sort was executed with no errors.

34.8 SORT-4 TIMINGS

In general, SORT-U4 takes longer for the set-up phase (1 to 2 minutes) than
SORT-3 (about 30 seconds), because SORT-4 has more options to choose from.
But the actual sorting time is less in SORT-4 than SORT-3. If the file is
large enough to make up for the increased set-up time, SORT-4 will run faster
than SORT-3. . :

The table below gives some comparisons of running time between SORT-4 and
SORT-3. The SORT-3 times were taken from actual timings of the 2200
Commercial Matrix Disk Sort, which was revised slightly to become the ISS Disk
Sort Utility, which was revised again to become SORT-3. As representative
("ballpart") timings of SORT-3, they are probably accurate to within 15
seconds. The SORT-4 times are actual timings of SORT-4, and are thus
representative of SORT-U4 capabilities only under the prescribed conditions.

In the table below:

File 24724 consists of 24-byte records with a 24-byte sort key. The
record is all one field. There are 10 records per block.

File 120/8 consists of 120-byte records with an 8-byte (numeric) sort
key. The record contains 6 fields. There are 2 records per block.

File 120/64 is the same file as above, except that 4 fields (1 numeric and
3 alpha) or a total of 64 bytes, are included in the sort key.

Sort type "R" is a full record sort, and Y“K" is a key sort, and "T" is a
tag sort.

Input records are in random order. A 5-megabyte hard disk is used in all

cases. All sort times are in minutes, and will vary depending on the number
of fields in a record, the amount of memory available and other factors.

273

MEMORY SORT SORT-3 SORT-4

SIZE FILE RECORDS TYPE TIME TIME
8K 2 /2y 2000 R 8.22 7.75
8K 24/2y 20000 R 92.0 81.7
8K 120/8 1000 K 7.65 7.9
8K 120/64 1000 K 12.25 12.05

32K 2u/24 2000 R 7.0 6.4
32K 24/2y 8000 R 27.3 23.6
32K 120/8 1000 K 7.3 7.7
32K 120/8 4000 K 28.8 27.3
32K 120/64 1000 R 9.22 8.9

SORT-U4 TIMINGS, 2200VP

MEMORY SORT SORT-4 TIME
SIZE FILE RECORDS TYPE 2200VP
16K 2l /24 2000 R 1.0
16K 24724 20000 R 9.1
16K 120/8 4000 K 9.2
16K 120/8 4000 R 9.55 .
16K 120/8 4000 T 2.5
16K 120/64 1000 K 3.0
16K 120/64 1000 R 2.3
64K 24/2y 20000 R 6.8
64K 120/8 4000 K 9.0
6UK 120/8 - 4000 R 6.9
64K 120/8 4ooo T 2.5
64K 120/64 1000 R 1.8
64K 120/64 4000 R 7.0

274

‘a

”

APPENDIX A - KFAM UTILITY ERROR MESSAGES AND RECOVERY PROCEDURES

KFAM Utility Programs provide many error messages which indicate
different conditions. 1In general, these error messages fall into one of three
error categories, as listed under DISPLAY CONDITION below in Table A-1.

Display Condition A indicates that a prompt and its associated entry
field accompany the recoverable error message, allowing continuation of the
program in progress. Display Condition B indicates an non-recoverable error
message, is rarely encountered, and requires the operator to touch Special
Function (S.F.) Key 31 to close all system and KFAM files. Display Condition
C indicates an non-recoverable error and a STOP condition. If "STOP" is
displayed, the files are closed. Display Conditions B and C usually require
program reload, as well as other procedures.

Table A-2, which follows Table A-1, provides specific recovery
procedures for each possible error message.

Special 2200MVP Considerations

The 2200MVP partition configuration executed may specify that one
terminal number is assigned to multiple partitions. If an error occurs, the
corresponding error message appears immediately on the assigned terminal's
screen anly if the terminal is currently attached to the partition which
encountered the error. Otherwise, the error message is displayed when the
terminal becomes attached to the partition encountering the error, e.g., by
means of a $RELEASE TERMINAL statement.

NOTE:

KFAM-T hogs program execution of portions of global text
at critical times for a particular station number. Should
a program's execution be aborted during this "program
hog", the "program hog" flag, global variable €T, is left
equal to the station number which causes all other program
execution to "hang". To correct this "hanging" condition,
complete the following steps from one of the "hanging"
stations: (1) touch the HALT key, (2) enter PRINT €T
(immediate mode) to determine the station number causing
the hanging condition, (3) check with the user at the
station number causing the "hanging" condition, (4) enter
@T=0 to clear the program hog flag, and (5) touch the
CONTINUE key and the RETURN key to automatically cause
normal operation to resume.

275

Table A-1.

Error Message Categories and Recovery Options

DISPLAY CONDITION RECOVERY OPTIONS

A. Error messsage appears A-1 The operator usually re-enters

with prompt. the requested information and
then continues with the next
step according to the program
being run.

A-2. To escape from (abort) this
program, touch S.F. Key 31 once
to close all files and obtain
the KFAM-T menu.

B. Error message appears B. Touch S.F. Key 31 once to
without any prompt, and close all files. Refer to
"STOP" is not displayed RECOVERY OPTIONS below for
(this is rare). Condition C.

C. "STOP" appears on screen, C-1. If this program was loaded
or Recovery Option A-2 or from the KFAM menu, the
B just completed. ("STOP" operator may load a KFAM
is usually accompanied by utility by touching S.F. Key
an error message and indicates 31 to bring the KFAM menu to
that all files are closed.) the screen.

C-2. Otherwise, the operator may
touch CLEAR and RETURN and
then LOAD a program.

NOTE:

If the error recovery procedures require S.F. Key 31 to be
touched, Edit mode (blinking cursor) must be switched off
(steady cursor) before S.F. Key 31 is touched.
is manuvally switchable by means of the EDIT key.

Edit mode

276

i

2]

%

Table A-2.

KFAM Utility Error Messages

A1l KFAM Utility error messages are listed below in alphabetical order.
For general recovery procedures, refer to Table A-1 before attempting recovery

from any error message.

ERROR MESSAGE

ACCESS ERROR

RESTORE BOTH USER FILE
AND KEY FILE FROM BACKUP
COPIES BEFORE ATTEMPTING
TO RE-RUN THIS PROGRAM
(STOP).

ANY ERROR DURING THE
RUNNING OF KFAM3207 WILL
DESTROY BOTH FILES.

MAKE COPIES OF THE DISK
PLATTERS CONTAINING THE
USER FILE AND KEY FILE
BEFORE RUNNING THIS
PROGRAM.

BLOCKING FACTOR OR
RECORD LENGTH INCORRECT

DUPLICATE KEY IGNORED
(printed)

DESCRIPTION

Could be due to
no records in the
User File.

Also, could be a
machine error or
Key File problem.
The partially copied
User File and Key
File are partially
reorganized and are
thus destroyed.

Running this program
requires that back-
up copies were
previously made.

Record length times
blocking factor, plus
all control bytes

(DC, DA access only),
must not exceed 256.
See Section 19.1 for
further explanation;
applies to record types
A, B, C.

Duplicate keys, when
encountered, are
excluded from the KFAM
File. Their (hex)
relative sector
location is also
printed as it exists
in User File, but
the key isn't
entered in the

Key File. Record
number also appears

with pointer.

277

RECOVERY

See Table A-1.

Copy the backup User
File and Key File, as
partially reorganized
files are destroyed.
After copying, run
KEY FILE RECOVERY.
Rerun this utility.

See Table A-1. Make
backup copies of the
User File and Key
File. Then rerun
this utility.

Recalculate record
length, blocking
factor, if required.
Re-enter LOGICAL
RECORD LENGTH and
continue.

Execution error, no
operator action is
required unless ISS
printer address
blank; if blank, key
CONTINUE and RETURN
to resume. Erroneous
key and its record
should be corrected
and later added to
file.

END NOT DEFINED

ERROR OPENING FILES
(STOP)

ERR lnn

An END record does
not exist for this
User File.

An error condition
other than access
mode conflict was
encountered while
attempting to open
KFAM files.

Indicates an error

as described below

for certain conditions.
Note that if a statement
line beginning with an
"at sign" (@) appears,
the error was encountered
during global program
text execution and may be
caused by an application
program error or an
erroneous Key Directory
Record (KDR) in the Key
File.

278

Enter a reply to
ENTER LAST KEY and
continue. If RETURN
was Jjust entered,
this error indicates
that no END record
found, or all
deleted records not
flagged with hex FF
in first byte of key,
thus the last key's
value must be
entered.

See Table A-1.
Rerun this progran.
If this error
message persists,
contact Wang
Laboratories, Inc.

See Table A-1 and
the errors listed
below for certain
conditions; refer
to the Disk
Reference Manual
or the BASIC-2
Language Reference
Manual for other
errors.

18

[£]

ERR 196

ERR I99

Disk read error
(sector cannot be
read). In program
statement, #1
displayed indicates
sector contained in
Key File. {#2 displayed
indicates User File
sector, (except for
REORGANIZE SUBSYSTEM
where #1 indicates
User File and #2
indicates Key File).
For all utilities,
#0 indicates sector
on KFAM system disk,
#T1 or T1(T9)
indicates sector in
Key File. This
indicates which disk
may be defective.
Also, could be a
hardware error,
especially if
operating
environment limits
are exceeded
(temperature and
humidity).

Disk write error

(sector cannot be
written). Most

likely caused by a bad
physical sector.

In program statement,

#1 displayed indicates
Key File sector. #2
displayed indicates

User File sector (except
for REORGANIZE SUBSYSTEM
where #1 indicates

User File and #2
indicates Key File).

279

Note the fils
numher, then touch
S.F.Key 31 to close
file. See Table A-1.
In general, restore
same disk or create
new disk from backup
copy. Rerun the
utility.

With REORGANIZE
SUBSYSTEM, run KEY
FILE RECOVERY on
input User File. If
Part 3, reorganize
output User File,
assigning its name
as the input User
File name, and then
rerun REORGANIZE
SUBSYSTEM. If error
persists, file is
permanently damaged,
or hardware malfunc-
tion has occurred.

Record the file
number, and depress
S.F. Key 31 to touch
files. See Table A-1.
Restore backup copy
to new disk; the old
disk is not useable
for this file and
should be discarded
(after all files are
copied from it if not
on backup). Rerun
this program.

With REORGANIZE

ERR XTU

ERROR#XX LINE XXXX
(also ERR XX)

For all utilities,
#0 indicates sector
on KFAM system disk;
#T1 or #T1(T9)
indicates Key File
sector. This
indicates which disk
may be defective.

A KFAM file which is
not a KFAM-7 file
was accessed, e.g.,
KFAM-3, KFAM-U file.

The error code

and line number

are displayed.

Refer to typical

ERR 1lnn codes listed
above.

280

SUBSYSTEM,

Part 1: Output User
File contains a bad
physical sector.
Part 2: Output Key
File contains a bad
physical sector.
Part 3: Input User
File contains a bad
physical sector.
RECOVERY: Part 1:
Replace the output
disk or recreate
file to bypass the
bad sector. If input
and output Key File
are the same, run
Key File Recovery.
Rerun. Part 3:
Replace input disk
or recreate input
User File to bypass
the bad sector. See
recovery procedure
for ERR I96, Part 3.

Touch S.F. Key 31

to close files, then
see Table A-~1.
Either use a CONVERT
KFAM FILE utility to
convert this to
KFAM-7 format and
then rerun this
program or if wrong
file name, disk
address, or disk
on-line, rerun this
program taking care
correct file is
accessed.

See Table A-1. Rerun
this program. If
this error persists,
notify Wang
Laboratories, Inc.

"

7]

FILE ALREADY CATALOGED

FILE XXXXXXXX ALREADY
CATALCGED ON DEVICE XYY

FILE NOT AVAILABLE

The User File or

the Key File, whose
file name was created
from the User File
name and Key File
number, already exists
at the specified

disk address. Prompt
indicates which file
was already cataloged.

A file designated as
"not cataloged" is
already cataloged,
or a file with the
same name exists at
the specified disk
address. (File

name and address are
displayed.)

The KFAM file is
currently being
accessed by another
station whose access mode
conflicts with that
required by this

KFAM utility. For all
utilities but PRINT

KEY FILE, exclusive
access is required.

For PRINT KEY FILE,
Read Only is required.
Exclusive access
requires that no other
stations are accessing
the file. Read Only
requires no stations in
Shared or Exclusive
access modes.

281

Re-enter USER FILE:
NAME, or re-enter
KEY FILE NUMBER,
depending on which
file is already
cataloged.

See Table A-1.

Mount a scratch disk
or a disk that does
not have this file
cataloged and rerun
this program. If
this error recurs,
change the values of
03$ and O4$ (user
set-up module) to
“"C" and rerun.

See Table A-1. Rerun
this program. If
unsuccessful after
several reentries,
run PRINT KEY FILE to
determine if RESET
ACCESS TABLE is
required. Run RESET
ACCESS TABLE if file
accidentally left
open. Rerun this
program.

FILE NOT FOUND

FILE XXXXXXXX NOT FOUND
ON DEVICE XYY

FINDFIRST ERROR

FINDNEXT ERROR

INPUT AND OUTPUT USER FILE
MAY NOT BE THE SAME FILE

INPUT FILE NOT AVAILABLE

The specified User
File or Key File
could not be located
at the specified disk
address. The file
that could not be
located is indicated
by the prompt accom-
panying this error
message.

A file designated as
"eataloged" is not
cataloged at the
specified disk address.
(File name and disk
address are displayed.)

Hardware or software
error.

Hardware or software
error.

Both input and out-
put User Files are
designated by the
same file name

at the same disk
address.

The requested input
file is currently
being accessed by
another station (files
are opened in
Exclusive access
mode).

282

If User File not
found, re-enter USER
FILE NAME and
continue. If Key
File not found,
re-enter KEY FILE
NUMBER and continue.
If this error
persists, check if
correct disk is at
the specified disk
address.

See Table A-1. Mount
the correct disk at
appropriate address
and rerun this
program. Enter
correct file name

if incorrect.

See Table A-1. Rerun
this program. If
this error persists,
contact Wang
Laboratories, Inc.

See Table A-1.
Rerun this progranm.
If this error
persists, contact
Wang Laboratories,
Inc.

See Table A-1. .
Correct the file name
designations within
program (user set-up
module). Rerun this
program.

See Table A-1.
Rerun, or wait and
rerun. If this error
persists, use PRINT
KEY FILE to list
access table. If
the file was
accidentally left
open, run RESET
ACCESS TABLE, then
rerun this program.

[\

4

INSUFFICIENT SPACE FOR
FILE XXXXXXXX ON DEVICE
XYy

INVALID

INVALID DELIMITER

INVALID DEVICE ADDRESS

INVALID KEY FILE
NUMBER

INVALID KEY

RESTORE BOTH USER FILE
AND KEY FILE FROM BACKUP
COPIES BEFORE ATTEMPTING
TO RUN THIS PROGRAM

There is not enough
disk space on the
designated disk
device to catalog
the file.

The Key File numher
entered is not a
digit from 1-9.

Hardware or software
error.

The xyy form of the
disk device address
is not a valid

disk address.

The Key File number
was not a number
from 1-9 or not

an integer.

Keys within the Key
File do not match
keys within User File
records, or active
key in Key File is
flagged as deleted

in User File, or
record length
(blocked records)
specified wrong,

or starting position
of key specified
wrong. Could be
caused by an applica-
tion program error.

283

See Table A-1. Mount
an output disk with
enough space to
accomodate the output
User File and/or Key
File. Rerun this
program.

Re~enter KEY FILE
NUMBER and continue.

See Table A-1.
Rerun this program.
If this error
persists, contact
Wang Laboratories,
Inc.

Re-enter the DEVICE
ADDRESS for the User
File or Key File
(indicated in the
prompt) and continue.

See Table A-1.
Correct Key File
number in the user
set-up module
(program). Rerun
this program.

See Table A-1.
Attempt to determine
the problem (one

of the items listed
under DESCRIPTION) by
completing the
recovery procedures
described for
SEQUENCE ERROR
(REORGANIZE IN
PLACE) below (e.g.,
write a program to
compare keys, or to
correct record
length, key position
in KDR).

INVALID KEY, HEX VALUE=
XXXXXXX. ..

KEY RETURN (EXEC) TO
SKIP RECORD

INVALID--KEY MUST BE
2 T0 30

INVALID - MUST BE 2
TO 255

INVALID PASSWORD
(appears with prompt)

INVALID PASSWORD
(STOP)

INVALID PASSWORD, INPUT

The hex value of

the invalid key is
displayed, which
differs from the
value of the key

in the Key File. The
record is active in
the Key File, but
flagged as deleted

in the User File.

The entered value for
key length must be
between 2 and 30
(inclusive).

The value for the
number of sectors
per record must be
between 2 and 255
(inclusive) for
type M records.

The Password entered
for this User File

is not identical to

the Password previously
assigned to this file.
May be caused by
entering a Password
where blanks are
required.

The Password entered

for this User

File is incorrect.

The Password entered
must be identical to
the one assigned to
this file upon creation.

The Password specified
for the input User File
is incorrect (does not
match Password
previously assigned to
this User File).

284

To skip this record,
key RETURN.
Otherwise, touch S.F.
Key 31 to abort this.
program. Check for
errors in application
programs that may
have caused this con-
dition. Run KEY FILE
RECOVERY on input
User File. Rerun
this program. If
unsuccessful, see
INVALID KEY above.
Rerun this program.

Re-enter the KEY
LENGTH with a correct
value and continue.

Re-enter NUMBER OF
SECTORS PER RECORD
and continue.

Re-enter the
PASSWORD, if one is
required, and
continue.

See Table A-1. Rerun
this program, taking
special care in
entering the
Password. Repeated
attempts met with
failure may indicate
wrong User File name
being entered or
wrong disk on-line.

See Table A-1. Check
value of P$; if
wrong, correct value
of P$. Rerun this
program.

L2

g“‘

INVALID PASSWORD, OUTPUT

INVALID POINTER

INVALID RECORD TYPE

INVALID RECORD FORMAT

The Password specified
for the previously
cataloged output

User File is incorrect
(does not match
Password previously
assigned this User
File).

Sector accessed is
outside of User
File boundaries.
Probably the "END"
record does not
contain the infor-
mation necessary to
build/rebuild the
Key File.

The entry made for
record type was
invalid. Valid entries
include A,B,C,M, and

N.

Applies to Type A
records; either more
than one record per
sector, more than

38 fields per record,
or record written
without the correct
control bytes. End
record may be
invalid.

285

See Table A-1.

Check value of P9%;
if wrong, correct
value of P9$. Rerun
this program.

See Table A-1
Rerun this program.
If this error
persists, contact
Wang Laboratories,
Inc. (recovery may
not be possible).

Re~enter the RECORD
TYPE and continue.

See Table A-1. With
KEY FILE CREATION or
REORGANIZE IN PLACE,
this utility cannot
be run until User
File records are
rewritten (file

is re-created). With
KEY FILE RECOVERY,
run INITIALIZE KFAM
FILE and BUILD KEY
FILE, then rerun.
With REORGANIZE
SUBSYSTEM, the
applications
programmer should
re-create the file if
the User File is
wrong or re-create
file parameters in
the KDR (see Section
27.5). Then rerun.

INVALID STATION
NUMBER

KEY FIELD OUT OF BOUNDS

KEY FILE SPACE EXCEEDED

RESTORE BOTH USER FILE
AND KEY FILE FROM
BACK-UP COPIES BEFORE
ATTEMPTING TO RE-RUN
THIS PROGRAM (STOP)

KEY MAY NOT SPAN SECTORS

KEY OVERLAPS END RECORD

The station number
designated is
invalid.

Applies to record
type A: the key
must be wholly con-
tained within one
field. End record
may be invalid.

Allocated space in
the Key File is
exhausted, and both
User Flle and Key
File are partially
reorganized, and
thus destroyed.

The key location, as
specified by the
starting location,

will span two sectors

and is thus invalid.
Applies only to M
type records.

The key goes beyond
the boundaries of
the record, as
determined by the
record type and
record length.

286

See Table A-1.
Change the station
number (S2) to a
value 1-16 in

the set-up module
(program). Rerun.

See Table A-1. Check
key length, starting
position using PRINT
KEY FILE. Then refer

to recovery

procedures described

for INVALID RECORD
FORMAT for the
program in use.

See Table A-1. Copy

User File and Key
File from backup
copies; with Key

File, increase space

allocated by
increasing extra

sectors with
COPY/VERIFY. Run

REALLOCATE KFAM FILE

SPACE. Rerun this
program.

Recalculate the

starting location or

length of the key.

Re-enter the STARTING

POSITION OF KEY
Length and continue.

Recalculate the

starting position of

the key. Re-enter

the STARTING POSITION

OF KEY and continue.

&>

KFAM-Y4 FILE BUSY

LAST KEY NOT FOUND

RESTORE BOTH USER FILE
AND KEY FILE FROM
BACKUP COPIES BEFORE
ATTEMPTING TO RE-RUN
THIS PROGRAM (STOP)

The specified KFAM-1

input file is currently

being accessed by
another station.

REORGANIZE IN PLACE:
the User File and Key
File are partially
reorganized and

thus are undefined.
The last key in

the Key File could
not be located in

the User File, or
vice versa.

287

See Table A-1. Rerun
this program. If
this error persists,
run KFAM-4 version of
PRINT KEY FILE to
determine the

station (or CPU)
accessing the

file using a 2200T or
2200VP Central
Processor to access
the disk(ette)
containing the KFAM-4
files; if the flle
was accidentally left
open, run KFAM-4

version of RESET

ACCESS TABLE. Rerun
this program.

See Table A-1. Copy
the backup Key File
and User File as the
partially unorganized
files are undefined.

The applications
programmer should
write a small program
that will determine
the values of the two
keys that do not
match. Following
FINDFIRST or
FINDNEXT, T7$
contains the key
value from the Key
File. This can be
compared to the
corresponding key
value in the User
File. The
non-matching keys
should be corrected
or deleted. Then
rerun this program.

LAST KEY NOT FOUND

MORE THAN 40 SECTORS
PER RECORD

NO ROOM ON DISK FOR
OUTPUT PROGRAM

NO SPACE

NO SPACE ON DISK FOR
KEY FILE

KEY FILE CREATION:
The value of the key
entered as the last
key does not match
the actual value of
the last key.

Applies to type M
records. This program
will not reorganize a
file whose records
exceed 40 sectors

in length.

There is not enough
room on the disk
for the output
program to be
cataloged.

Not sufficient space
for Key File. Possibly
last key was incorrect-
ly entered.

There is insufficient
space on this disk

to catalog the Key
File.

288

See Table A-1. Run
INITIALIZE KFAM FILE.
Then rerun KEY FILE
CREATION and take
care in entering the
last key, if
required.

Touch S.F. Key 31,
then see Table A-1.
Use REORGANIZE
SUBSYSTEM instead of
REORGANIZE IN PLACE.

See Table A-1. Rerun
this utility, and
mount a disk with
enough space to
accommodate the
output program (52
sectors maximum
requirement).

See Table A-1. With
KEY FILE CREATION,
run INITIALIZE KFAM
FILE, then rerun this
program. With KEY
FILE RECOVERY, run
COPY/VERIFY on Key
File inecreasing extra
sectors value; then
run REALLOCATE KFAM
FILE SPACE. Rerun
this program.

See Table A-1. With
KEY FILE CREATION,
run INITIALIZE KFAM
FILE, then rerun this
program. With KEY
FILE RECOVERY, mount
a disk with enough
free space to
accommodate the Key
File. Rerun this
program.

‘@

NOT BLOCKED AS SPECIFIED

NOT DATA FILE

NOT KFAM FILE NAME

NULL FILE

Record type A:

records per block
specified incorrectly,
or records not
written in array
format.

The User File
specified is a
program file, whereas
only data files are
valid as KFAM User
Files. Either the
User File Name or
the User File device
address 1is invalid,
or the wrong disk

is on-line.

The User File name
entered does not
conform to KFAM

file name conventions,
which require that (1)
an "F" must be in
position 5 and (2)

a digit 0-9 must be in
position 6.

There are no active

records in this KFAM
file.

289

See Table A-1. With
KEY FILE CREATION or
REORGANIZE IN PLACE,
this utility cannot
be run until User
File records are
rewritten (file is
re-created). With
KEY FILE RECOVERY,
run INITIALIZE KFAM
FILE and KEY FILE
CREATION, then rerun.
With REORGANIZE
SUBSYSTEM, the
application
programmer should
re-create the User
File if it is wrong,
or re-create file
parameters in the KDR
(see Section 27.5).
Then rerun.

Re~enter User File
name. If
unsuccessful again,
mount correct disk if
wrong disk is
on-line, check if
disk address

entered is correct,
and.rerun.

Re-enter User File
name according to
KFAM naming
conventions
(SSSSFNSS).

See Table A-1.
Probably wrong KFAM
file name entered; if
so, rerun with
correct file name.

NUMERIC KEY INVALID

OPERATOR INTERRUPT

OUTPUT FILE NOT
AVAILABLE

OUTPUT KEY FILE SPACE
EXCEEDED

OUTPUT PROGRAM SPACE
EXCEEDED

Type A records:
The key field is
indicated as lying
within a numeric
variable. The key
may not be a
numeric variable.

Program was interrupted
by the operator de-
pressing S.F. Key 31.

The specified output
file is currently being
accessed by another
station and is there-~
fore not available at
this time.

Output Key File is
too small.

Output program too
big for allocated
file space (file
cataloged success-
fully).

290

See Table A-1.
Recovery procedures
same as for NOT
BLOCKED AS
SPECIFIED

(see above).

See Table A-1.
Rerun this
program.

See Table A-1.

Rerun this program.
If this error
persists, rerun PRINT
KEY FILE and
determine if the

file was accidentally
left open, run RESET
ACCESS TABLE, and
then rerun this
program.

See Table A-1. If
output Key File is
the same as the input
Key File, then run
KEY FILE RECOVERY on
input User File.
Allocate more
cataloged space for
output Key File.
Rerun this program.

See Table A-1.
Reselect BUILD
SUBROUTINE MODULE
from KFAM menu.
During rerun, either
assign a different
program file name, or
mount a disk that
does not contain this
file name (maximum 52
sectors required).

e

OUTPUT USER FILE SPACE
EXCEEDED

PRINTING ERROR
REPORT

RECORD LENGTH NOT
SPECIFIED CORRECTLY

RE-ENTER

RESTORE BOTH USER FILE
AND KEY FILE FROM
BACK-UP COPIES BEFORE
ATTEMPTING TO RERUN
THIS PROGRAM

SECTORS AVAILABLE,
DEVICE XYY...
SECTORS REQUESTED,
DEVICE XIY...

Space allocated for
output User File

in set-up module is
too small.

Appears while
an error report
is being printed.

Type A records:
record length
specified in
INITIALIZE KFAM
FILE does not

equal record length
of actual record.

Entry made is invalid
because it contained
too many characters,
a "Y" or llNﬂ was

not entered in reply
to a YES/NO question,
numeric/alphanumeric
field conflicts with
entry made, entry
outside of range for
this field, etc.

Refer to other message
displayed with this
error message, which
is .1listed elsewhere

in this table in
alphabetical order.

There is not enough
room on this disk to
catalog Key File
and/or User File.
(Device, sectors
available, sectors
requested are dis-
played.)

291

See Table A-1.
Correct set-up module
program. Either let
REORGANIZE SUBSYSTEM
catalog a new file,
or manually catalog
a new output User
File. Rerun.

No operator action
is necessary. The
error report should
be examined after
printing.

See Table A-1.
Recovery procedures
are the same as for
NOT BLOCKED AS
SPECIFIED (see
above).

Re-enter a reply to
the same prompt
field.

See accompanying
message for specific
recovery procedures.
This indicates KFAM
files are destroyed
and backup copies are
required.

See Table A-1.

Mount a different
disk with enough free
sectors to accommo-
date both files.
Rerun this program.

SEQUENCE ERROR

SEQUENCE ERROR

RESTORE BOTH USER FILE

AND KEY FILE FROM BACKUP
COPIES BEFORE ATTEMPTING TO
RE-RUN THIS PROGRAM.

STOP NO ROOM FOR
KEY FILE

STOP WORK FILE
FULL

REORGANIZE SUBSYSTEM:
indicates the key
contained in the
input User Fille does
not match the key
contained in the
input Key File (KDR).

REORGANIZE IN PLACE:
Andicates the keys in
the User File do not
match the keys in

the Key File (KDR).
Could also be machine
error. Both User
File and Key File

are partially re-
organized and thus
are effectively
destroyed.

The User File is
already cataloged.
There is insufficient
space on this disk

to catalog the Key
File.

The work file KFAMWORK

is full and cannot
contain aditional
error messages to be
printed.

292

See Table A-~1. Run
KEY FILE RECOVERY on
User File. Rerun.

See Table A-1. Copy
backup copies of
User File and Key
File. The
applications
programmer should
write a small program
to determine. which
keys do not match.
Following FINDFIRST
or FINDNEXT, T7$
contains the key
value from the Key
File. This can be
compared to the
corresponding key in
the User File. The
non-matching keys
should be corrected
or deleted; then,
rerun this program.

See Table A-1.
Mount a different
disk with enough
free space to)
accommodate the Key
File. Rerun this
program.

Refer to Table A-1.
Run the ISS utility
Disk Dump to print
the contents of
KFAMWORK on the KFAM
system disk.

SYSTEM ERROR

UNREADABLE SECTOR NNNNN,
NNN RECORDS LOST
(printed)

USER FILE TOO SMALL

WAITING FOR PRINTER

Hardware or software
error.

A sector of the

User File cannot

be read. The sector
number and number

of records lost due
to the unreadable
sector are displayed.
This message replaces
ERR I96 for KEY

FILE RECOVERY only.

The User File, which
is already cataloged,
does not have enough
room for the estimated
number of records.

The printer is not
ON and SELECTED, or
the printer is
currently being
used by another
station.

293

Touch S.F. Key 31

and see Table A-1.
Rerun this program.
Notify Wang
Laboratories, Inc. if
this error persists.

Execution error, no
operator action
required unless
printer address is
blank; if blank, key
CONTINUE and RETURN
to resume.

Re-enter ESTIMATED
NUMBER OF RECORDS
with a smaller
number and continue.
After completion of
this program, use
COPY/VERIFY to
increase the
allocation for this
file; then run
REALLOCATE KFAM FILE
SPACE. After
completion, the file
is available for use
by other software.

Ready the printer
if it is not ON and
SELECTED, or wait
until it becomes
available. When
ready and available,
printing automati-
cally begins and
continues without
operator inter-
vention.

WARNING - KEY FILE IS
TOO SMALL
(also printed)

WORK FILE NOT AVAILABLE

8 LEVELS OF INDEX
EXCEEDED

The already cataloged
Key File is too small
to accommodate the
estimated number of
records. This is
only a warning.

Work file KFAMWORK
is either currently
being accessed by
another station or
does not exist.

More than 390,625
30-byte keys, or
more than 429,981,696
12-byte keys, etec.
This error should not
oceur.,

294

Either let program
continue until Key
File is full, then
REORGANIZE, or the
program may be
stopped by touching
S.F. Key 31, then
run ISS COPY/VERIFY
with enough EXTRA
SECTORS to increase
allocation of Key
File; then run
REALLOCATE KFAM FILE
SPACE. Rerun this
program.

See Table A-1.

Rerun this program.
If this error
persists, check if
other stations are
running KFAM utility
programs. If other
stations are running
KFAM utility
programs, keep trying
or wait until they
are done. If no
other stations are
running KFAM utility
programs, run ISS
FILE STATUS REPORT
Utility to obtain
the file access
status of "KFAMWORK"
and, if the file was
accidentally left
open, either use
FILE STATUS REPORT
to close "KFAMWORK"
or execute a non-KFAM
file Close sub-
routine to c¢lose
"KFAMWORK". Rerun
this program.

See Table A-1. Run
PRINT KEY FILE for
the Key File in use.
Examine the printed
report and notify

Wang Laboratories,
Inc.

APPENDIX B - SORT-U4 VARIABLE CHECK OFF LIST

NA.B"C_OEF(?.ﬂ ‘.‘IFILMEOPORSTUVWXYZ
;KKK R KX NKRKK ..XI)C%X ¥)(' 1 NUMERIC SCALARS
VO IX¥X_iX X FORMAT = MN
3 NI SRR |4) ¥ !
3 ENPRQT__|oYTPUT XX _IX XK |
o R e | XK R KT
s [¥ELe | BFeE XXX XT
? —_ X_NEKX x-%
8 EnesiE it
9 L AR _BANAR
0 [L sxx;xuns,xlxﬁ
NMABCDEFGHlJKLMNOPORSTUVWXYZ
R4 N T X NUMERIC ARRAYS
' R L FORMAT = MN(
2 NN !
Y R ke
5 f«g! -TFfw
v i
; |
8 ! |
9 |
0 i ! '
NMABCDEFGHIJKLHNOPORSTUVWXYZ
= R XXAC XXR XX ALPHA NUMERIC SCALARS
N N A il);éx FORMAT = MN$
2 [' K »
3 [2 rat__éusz_([]
4 ! | i b
: Pz eece {85 X
) | T },._
8 vy
9 ' ! i ' A
0 N ‘ I X _R
w\BCOEFGHIJKLMNOPQRSTUVWXYZ
L x“x—)(1 n;Cl IR T T X IR ALPHA NUMERIC ARRAYS
1 'X—] XRXR 11 g_ FORMAT = MNS(
2 X%'X ?.
3 Jmur am?tlf'))‘(K L1 5
: e '"'_ﬁf ‘:)_gﬁ)'(lx;‘e &
7] -_Ij\ i ﬁ
g ; j ._-_?_!X!X !)‘"‘ ’
9 B R Al , .
: mEN . W

295

APPENDIX C - CONDITIONS GOVERNING SPURIOUS RESULTS FROM THE LIST/CROSS-
REFERENCE UTILITY

Under certain conditions the variable cross-reference table printed by
the LIST/CROSS-REFERENCE utility may be erroneous. Specifically, certain
BASIC-2 statements in the 4input program can cause nonvariables to be
referenced as variables. A second condition causes array variables to be
referenced as scalar variables. A third condition occurs where variables are
not referenced.

Because BASIC-2 is a flexible high-level language, it is not possible to
check each statement!s possible syntax as with Assembler Languages. Instead,
the Cross-Reference checks the current and the previous byte, and looks in a
table for possible variable and nonvariable values as it reads each statement
line.

The BASIC-2 statements and accompanying conditions for these errors are
given below. Also, please note that the ISS-3.7 LIST/CROSS-REFERENCE does not
support statements (e.g., multi-programming statements) or variables (global
variables) applicable only to the 2200MVP.

Non-Variables Referenced as Variables. by List/Cross Reference

STATEMENT CONDITION AND VARIABLE POSITION

PLOT Al11 D, U, C, S, and R pen control
characters.,

DATASAVE BT The "N" of the "N" parameter

specifying block size. The H
parameter specifying the header
block mark. The R which specifies

resave.
DATALOAD BT The "N" of the WNw parameter
specifying block size.
ADD, ADD C, AND, OR, XOR, In these statements, if hexadecimal
BOOL, INIT, $TRAN, POS, digits (X,X,) appear where X,= A, B,
C...F
and

X, = 0, 1, 2...9,

then the hexadecimal digits are
referenced as if they collectively
represent a variable. If
X =0,1,2,...9, then these are not
interpreted as a variable. Examples
include:

AND (A$,XX) and

TRANS(A$,B$) [xi] 1K)

296

”*%

8

S

SAVE, LOAD, MOVE, COPY
(DC followed by platter parameter)

SAVE (8> F "FILE"

$PACK, $UNPACK

DSKIP()S, DBACKSPACE()S

SKIP()F, BACKSPACE() F

Array Variables Referenced as Scalar

The platter parameter (F,R,T) is
interpreted as a variable if
followed by a slash n/n or

parentheses "(". For example, LOAD
DC F/B10, "FILE" and SAVE DC F(),
YFILE" F/B10 cause F to be

referenced as a variable.

In this example of the SAVE (BASIC-2)
statement, S is interpreted as a
variable.

If F or D follows $PACK or $UNPACK,
the F or D 1is interpreted as a
variable.

References S as a variable.

References F as a variable.

Variables

STATEMENT

All the MATH MATRIX Statements

CONDITION AND VARIABLE POSITION

All the array variables which appear
in these statements are referenced
as if they are scalar variables,
unless a variable is followed by
a left parenthesis. For example,
MAT A=B is interpreted as if A
and B both were scalars; whereas
MAT A=B(Y4,64) is interpreted as if
A is a scalar and B is an array.

Variables Not Referenced By List/Cross Reference

STATEMENT

SCRATCH followed by
platter parameter

All statements applicable only to
the 2200MVP.

All global variables.

297

CONDITION AND VARIABLE POSITION

The first variable following the
platter parameter is not interpreted
as a variable. For example, the
statement SCRATCH F, A$, B$, C$ is
interpreted A$ were not a
variable, however, B$ and C$ are
interpreted as variables.

Always.

Always.

r“a‘

‘o

.To help us to provide you with the best manuals possible, please make your comments and suggestions
I concerning this publication on the form below. Then detach, fold, tape closed and mail to us. All comments

'and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to include your
j name and address. Your cooperation is appreciated.

700-4768

TITLE OF MANUAL: |NTEGRATED SUPPORT SYSTEM (ISS) RELEASE 3.7 USER MANUAL

COMMENTS:

Fold

Fotd

{(Ptease 1ape. Pustal requiations prohibit the use of staples.)

WANG)

Fold
FIRST CLASS E
PERMIT NO. 16 .
Tewksbury, Mass.
BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

- POSTAGE WILL BE PAID BY -

WANG LABORATORIES, INC.
ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851

Attention: Technical Writing Department

- GD b ab Eb &0 EBED &5 EB G Gh G =D b D & W & - o s s @ o o 4 = o o ¢

Fold

Printed in U.S.A,

Cut along dotted iine.

I

[
s

e —

North America:

(WANG)

Alabama District of Louisiana New Hampshire Oregon Virginia
Birmingham Columbia Baton Rouge East Derry Beaverton Newport News -
Mobile Washington Metairie Manchester Eugene Richmond
‘ Pennsyivania
Alaska Florida Maryland Naw Jorsey Ay Washington
Anchorage _IMa;t“sionVl“e ?::;\2::0 Mountainside g:.mp HM Spokane
e
Arizona Orlando New Mexico Philadelphia Wisconsin
Phoenix Tampa l;ﬂa?aachuaem Albuquerque Pittsburgh :IW:"“G“
Ti oston sdison ,
ucson Georgia Burlington New York Wayne Milwaukee ‘
. . itth
California Adanta Littleton Albany Rhode lstand
Lowell Buffalo Cranston
Fresno Hawail Towksbury Lake Success
Inglswood Honclulu Worcester New York City South Carolina
Los Angeles . Rochester Charteston
Sacramento Illl'nols Michigen Syracuse Columbia
San Diego Chicago Grand Rapids
San Francisco Morton Okemos North Carolina Tennessee
San Mateo Park Ridge Southfield Charlotte Chattangoga Canada
Sunnyvale Rock Istand Greensboro Knoxvi![e Wang Laboratories
Tustin Minnesota Rataigh ~ Memphis {Canada) Ltd.
Ventura Indiana Eden Prairie Ohlo Nashville Don Mils, Ontario
Indianapolis d . T Calgary, Albena
Colorado South Bend Missouri gr:’mal: Azzﬁ.: Edmonton, Alberta
Denver Kansas Creva Coour Middleburg Heights Dallas innipag, Manitaba
Connecticut a,\;::?;d Park g;gh':'ka Toledo gf"?"‘ . Montreal, Quebec
New Haven Oklahoma an Antonio Bumaby, B.C.
Stamford Kentucky Nevada Oklahoma City Utah
Waethersfeld Louisville Reno Tulsa Salt Lake City
International Subsidiaries:
Australla Great Britain Republic of South Africa | |nternational Representatives:
Wang Computer Pty. Ltd. Wang Electronics Ltd. Wang Compgtera
Sydney, NSW Northwood Hills, Middlesex (South Africal {Pty.) L1d. .
Mefbourne, Vic. Northwood, Middlesex Bordeaux, Transvaal Argentina Kenya
Canberra, A.C.T. Harrogate, Yorkshire Durban Bolivia Korea
Brisbane, Qid. Glasgow, Scotand Capetown Canary Islands Lebanon
Adelaide, S.A. Uxbridge, Middiesex Chie Liberia
Perth, W.A. ’ Swedan =~ Colombia Malaysia
Darwin, N.T. Hong Kong Wang Skandinaviska AB Costa Rica Mexico
Wang Pacific Ltd. Sclna Cyprus Morocco
Austria Hong Kong Gothanburg Denmark Nicaragua
Wang Gesellschaft M.8.H. Artoev Dominican Repubtic Nigeria
Vienna Japan Vastoras EFuadot Norway
Belglum Wang Computer Ltd. Switzarland gu"‘tland Pakistan
Wang Europe, S.A. Tokyo Wang S.A./A.G. s ana Pery
Brussels 2urich reece Philippines
Eme-Mere Netherlands Bem Guatemala Portugal
Pully Iceland Saudi Arabia
Brazil Wang N‘ededand B.V. India Spain
Wang do Brasi ljsselstein Waest Germany Indonesia Sri Lanka
Computadores Ltda. Wang Laboratories GmbH Iran Syria
Rio de Janeiro New Zealand Bertin Ireland Thailand
_‘Sao Paulo Wang Computer Lid. Cologne Israe) Tunisia
- China Grey Lynn, Auckland FDu[;:w:ior' Itaty Turkey
Wang Industrial Co., Lid. panama Frankiun/M. Jamaico United Arab Emirates
Taipei, Taiwan pa Venazuels
Wang de Panama Freiburg/Brsg. - Jordan Yugoslavia
France (CPEC)S.A. Hamburg
Wang France S.A.R.L. Panama Hannover
Bagnotet . Kassa!
Ecully Republic of Singapore Munich
Nantes Wang Computer Pte., Ltd. Nuernberg
Toulouse Singapore Stuttgart
LABORATORIES, INC.

ONE INDUSTRIAL AVENUE. LOWELL, MASSACHUSETTS 01861, TEL. (817) 861-4111, TWX 730 343.8769, TELEX 94.7421

)

_/

-

N

Printed in U.S.A,

700-4768
6-78-56C

Prica: see current list

	Cover
	Table of Contents
	Numeric List of ISS and KFAM Marked (DEFFN') Subroutines
	Part I: Overview of ISS and Start-Up Software Operating Instructions
	Chapter 1: Introduction
	1.1: ISS Software Components
	1.2: Hardware Operating Requirements

	Chapter 2: Overview of ISS Software
	2.1: ISS Start-Up Software
	2.2: ISS Utility Programs
	2.3: Key File Access Method (KFAM-7)
	2.4: ISS Screen/Disk Subroutines
	2.5: SORT-4 Subsystem

	Chapter 3: ISS Start-Up Instructions and Related Information
	3.1: Introduction
	3.2: Partition Generation Considerations
	3.3: ISS Start-Up Procedures
	3.4: Application Program Requirements and ISS Common Variables

	Chapter 4: Copying ISS To/From Disk and Diskette
	4.1: Copying the ISS System to a Fixed/Removable Disk
	4.2: Copying ISS from Hard Disk to Diskette Media

	Part II: The ISS Utility Programs
	Chapter 5: Introduction to the ISS Utilities
	Chapter 6: The COPY/VERIFY Utility Program
	6.1: Introduction
	6.2: Operating Instructions: COPY/VERIFY
	6.3: Execution Error Messages

	Chapter 7: The Create Reference File Utility Program
	7.1: Introduction
	7.2: Operating Instructions: Create Reference File
	7.3: Execution Error Messages

	Chapter 8: Sort Disk Catalog Utility Program
	8.1: Introduction
	8.2: Operating Instructions: Sort Disk Catalog
	8.3: Sort Disk Catalog Modifications

	Chapter 9: Disk Dump Utility Program
	9.1: Introduction
	9.2: Operating Instructions: Disk Dump

	Chapter 10: Decompress Utility Program
	10.1: Introduction
	10.2: Operating Instructions: Decompress
	10.3: Execution Error Messages

	Chapter 11: List/Cross-Reference Utility Program
	11.1: Introduction
	11.2: Operating Instructions: List/Cross-Reference
	11.3: Execution Error Messages

	Chapter 12: Compress Utility Program
	12.1: Introduction
	12.2: Operating Instructions: Compress
	12.3: Execution Error Messages

	Chapter 13: Reconstruct Index Utility Program
	13.1: Introduction
	13.2: Operating Instructions: Reconstruct Index

	Chapter 14: File Status Report Utility Program
	14.1: Introduction
	14.2: Operating Procedures: File Status Report

	Chapter 15: Program Compare Utility Program
	15.1: Introduction
	15.2: Operating Instructions: Program Compare
	15.3: Execution Error Messages

	Chapter 16: Format 2260C Disk Utility Program
	16.1: Introduction
	16.2: Operating Instructions

	Part III: The Key File Access Method (Release 7)
	Chapter 17: General Information
	17.1: Introduction to Disk Access Methods
	17.2: What is KFAM?
	17.3: KFAM File Structures
	17.4: The Functional Components of KFAM
	17.5: How to Get Started with KFAM
	17.6: KFAM-7 Acess Modes and Security Features

	Chapter 18: KFAM Requirements and Conventions
	18.1: The User File
	18.2: The Key
	18.3: The Key File
	18.4: Device Addresses
	18.5: Copying KFAM Files

	Chapter 19: The KFAM Set-Up Utility Programs
	19.1: Overview of Initialize KFAM File
	19.2: Initialize KFAM File Operating Instructions
	19.3: Key File Creation Utility

	Chapter 20: KFAM-7 Subroutines and Build Subroutine Module
	20.1: Overview of KFAM-7 Subroutines
	20.2: KFAM Access Modes
	20.3: Procedures for Programming with KFAM-7
	20.4: Build Subroutine Module Utility Program
	20.5: Calling the KFAM-7 Subroutines
	20.6: OPEN (DEFFN' 230)
	20.7: DELETE (DEFFN' 231)
	20.8: FINDOLD (DEFFN' 232)
	20.9: FINDNEW (DEFFN' 233)
	20.10: FINDNEW(HERE) (DEFFN' 234)
	20.11: FINDFIRST (DEFFN' 235)
	20.12: FINDLAST (DEFFN' 236)
	20.13: FINDNEXT (DEFFN' 237)
	20.14: FINDPREVIOUS (DEFFN' 212)
	20.15: RELEASE (DEFFN' 238)
	20.16: RE-OPEN (DEEFFN' 213)
	20.17: WRITE RECOVERY INFORMATION (DEFFN' 214)
	20.18: CLOSE (DEFFN' 239)
	20.19: Non-KFAM File Subroutines

	Chapter 21: The KFAM REORGANIZE Utilities
	21.1: Introduction
	21.2: REORGANIZE SUBSYSTEM Standalone Routine
	21.3: REORGANIZE IN PLACE Utility Program

	Chapter 22: REALLOCATE KFAM FILE SPACE Utility Program
	22.1: Overview
	22.2: Operating Instructions

	Chapter 23: PRINT KEY FILE Utility Program
	23.1: Overview
	23.2: Operating Instructions

	Chapter 24: KEY FILE RECOVERY and RESET ACCESS TABLE Utility Programs
	24.1: KEY FILE RECOVERY
	24.2: RESET ACCESS TABLE

	Chapter 25: The KFAM Conversion Utility Programs
	25.1: Overview
	25.2: Operating Instructions

	Chapter 26: General Technical Information
	26.1: Key File Record Layout and Storage in Memory
	26.2: Key File Structure
	26.3: Key File Recovery Information
	26.4: FINDNEW with Blocked Files Under KFAM-7
	26.5: Compatibility Between KFAM-4 and KFAM-7
	26.6: Compatibility Between KFAM-5 and KFAM-7

	Chapter 27: KFAM Advanced Programming Techniques
	27.1: Files Too Large for One Disk
	27.2: Reusing Deleted Space with FINDNEW(HERE)
	27.3: Multiple Key Files Per User File
	27.4: Status of the Key Descriptor Record (KDR)
	27.5: File Names for the KFAM Utilities

	Chapter 28: Non-KFAM File OPEN/END/CLOSE Subroutines
	28.1: Overview
	28.2: Password Use
	28.3: Converting Multistation Files
	28.4: Open Subroutine (DEFFN' 217)
	28.5: End Subroutine (DEFFN' 218)
	28.6: Close Subroutine (DEFFN' 219)

	Part IV: The ISS Screen/Disk Subroutines
	Chapter 29: Overview of the Screen/Disk Subroutines
	29.1: Introduction
	29.2: Choosing and Saving Screen/Disk Subroutines

	Chapter 30: Screen Subroutines
	30.1: Introduction
	30.2: Data Entry (DEFFN' 200)
	30.3: Date Routines (DEFFN' 220,221,222,223,224,225)
	30.4: Position Cursor (DEFFN' 248)
	30.5: OPERATOR WAIT (DEFFN' 254)
	30.6: RE-ENTER (DEFFN' 255)
	30.7: PRINT ROUTINE (DEFFN '242)

	Chapter 31: Disk Subroutines
	31.1: Introduction
	31.2: Search Index (DEFFN' 229)
	31.3: Allocate Data File Space (DEFFN' 228)
	31.4: Free Unused Sectors (DEFFN' 227)
	31.5: Limits Next (DEFFN' 226)
	31.6: Open/Close Output (DEFFN' 240, 241)
	31.7: Open/Close Input (DEFFN' 250, 251)

	Chapter 32: Disk Subroutines - Multistation File Open/End/Close
	32.1: Overview
	32.2: Password Use
	32.3: Converting to Multistation Files
	32.4: Open Subroutine for Multistation Files (DEFFN' 217)
	32.5: End Subroutine for Multistation Files (DEFFN' 218)
	32.6: Close Subroutine for Multistation Files (DEFFN' 219)
	32.7: Set/Release Hog Mode Subroutine (DEFFN' 215)

	Chapter 33: Translation Table Subroutines

	Part V: The SORT-4 Subsystem
	Chapter 34: SORT-4
	34.1: Introduction
	34.2: Writing the Set-Up Module
	34.3: Input File Format Requirements
	34.4: Input Record Format Requirements
	34.5: Comments on Writing the Set-Up Module
	34.5.1: Machine Configuration
	34.5.2: Disk Device Addresses and Multistation Operation
	34.5.3: Password Use
	34.5.4: Sort Key Fields
	34.5.5: Sorting Partial Files
	34.5.6: Type of Sort
	34.5.7: Construction of Sort Records
	34.5.8: The Sort Work File
	34.5.9: The Output File and Deferred Mounting
	34.5.10: Special Input Procedure
	34.5.11: Exit from SORT-4

	34.6: Normal Operating Procedure
	34.7: Error Messages and Recovery Procedures
	34.8: SORT-4 Timings

	Appendix A: KFAM Utility Error Messages and Recovery Procedures
	Appendix B: SORT-4 Variable Check Off List
	Appendix C: Conditions Governing Spurious Results from the List/Cross-Reference Utility

