=

KFAM 3/KFAM 4
USER MANUAL

P aeen . DRI, 1L
12 COVURRIE I §3393300000833839 S

KFAM 3/KFAM 4
USER MANUAL

© Wang Laboratories, Inc., 1976

Disclaimer of Warranties and Limitation of
Liabilities

The staff of Wang Laboratories, Inc., has taken due care in
preparing this manual; however, nothing contained herein
modifies or alters in any way the standard terms and conditions of
the Wang purchase, lease, or license agreement by which this
software package was acquired, nor increases in any way Wang's
liability to the customer. In no event shall Wang Laboratories, Inc.,
or its subsidiaries be liable for incidental or consequential dam-

ages in

connection with or arising from the use of the software

package, the accompanying manual, or any related materials.

NOTICE:

All Wang Program Products are licensed to customers in accordance
with the terms and conditions of the Wang Laboratories, Inc. Standard
Program Products License; no ownership of Wang Software is transferred
and any use beyond the terms of the aforesaid License, without the
written authorization of Wang Laboratories, Inc., is prohibited.

(WANG)

LABORATORIES, INC.

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 851-4111, TWX 710 343-6769, TELEX 94-7421

f%m\ HOW TO USE THIS MANUAL

This manual is a guide to the use of the disk file access systems KFAM-3

KFAM-3 and KFAMN-4 are part of ¥Wang's Integrated Support System (ISS)
package. They occupy Application Support Diskettes 2 and 3, respectively, of
that system. As a convenience to Customers, Wang Laboratories makes these tvo
ISS diskettes available independently. The diskettes are identical to the
diskettes that are part of the ISS System, and the text of this document is °
identical to the KFAM portionm of the IS5 Users Manual.

The user who obtains the software on diskette should consult Appendix B
for instructions on how to load the menu module.

The user who obtains the software on tape cassette should consult
Appendix A for instructions on how to copy the cassette contents to disk.
{The cassette contains its own copy program which must be used to copy it to
disk.) He should then read Appendix B for instructioas on how to load the menu
module from disk.

KFAM-3 requires at a minimum a 2200C processor equipped with Option 5 or

a 2200s with Option 24, 12K of memory, and a dual disk handling capability.

KPAM-4 requires a 2200C processor equipped with Options 2 and 5 or a 2200S

(*"ith Option 24, 16K of memory and a dual disk handling capability. Both

‘@#Ersions use a printer, but instructions on how to eliminate the printer are
provided (Chapter 12).

The package numbers are as follows:

Systen Medium Package No.
KFAM-3 Flexible Disk 195-0015-2
KFAM-3 Diskette 195-0015-3
KFAM-3 Cassette 195-0015-7
KFAM-U4 Flexible Disk 195-0025-2
KFAM-4 Diskette 195-0025-3

KFAM-U4 Cassette 195-0025-7

iii

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPT ER

1

1.1
1.2
1.3
l.4

FeFEEEEEEEEES
e & 8 © 8 Tt o s ¢ b ¢ ¢
HHRODJ0 O E W H

(SN -

TABLE OF CONTENTS

What 1S KFAM? @ o o o o o = = =

The Functional Components of KFA{-3

How to Get Started with KFAN. .
OYerVieU Of KFAM'“. e e ® ®w u e

User File o o« o« o « =
K€Y o o = o » = =-= =
Key Filee o o « = « =
Device Addresses. « «

e & ¢ &
8 .
¢ ¢ ¢ 8

THE KFAM SET-UP UTILITIES. . - «

Overview of Initialize KFAM File (KFAM-3 and

KFAM-L‘) - - - o = - - [) - L] - -

Initialize KFAM File Operating Instructioas

(KFAM-’3 and KFAM-u) e © ®o o a e

KFAM REQUIREMENTS AND CONVENTIONS.

¢ 8 8

-

OVERVIEW OF THE KFAM SYSTEMS « o o « = =

and

The Key File Creation Utility (KFAM-3

THE KFAM—3 SUBROUTINES o o « o« =

Overview of KFAM-3 Subroutines.

Build Subroutine Module (KFAM-3).

Calling the Subroutines . - o «
OPENa o =« « o«
DELETEe « <
FINDOLD - <. =
FINDNEW . « o
FINDNEW (HERE)
FINDFIRST . .
FINDLAST.
FINDNEXT.
CLOSE - «

€ o o o & o & ¢
s 8 & 3 8 o 0 a2
e 0 & & 0 8 0
s 8 8 o & 3 8
e 8 8 ¢ o s o 8
e & & 8 € o ¢ &
e 4 8 & & & o
& ¢ ¢ ¢ o 8 & & ¢
o 8 & 8 o o 0 o

5 THE KFAM-4 SUBROUTINES + o « «

G NS, NN NGNS NC T, N
Co~NoOTVEWN M

o & ¢ & Tt 2 8 Cc &t ¢ o o

and

Programming with the KFAM-4 Subroutines
Build Subroutine Module (KFAM-4).

Calling the KFAM-4 Subroutines.
OPENe o o o = «
DELETEe « « « o
FINDOLD « - <« @
FINDNEW o o« o o
FINDNEW(HERE)
FINDFIRST o« o o«

s o 8 ¢ o
e 8 0 o b8 0
¢ & & o o
¢ o o8 o ¢
e o & a8 &
¢ 8 0 8 0
s 8 0 o 0
s ¢ ¢ 8 ¢ o

iv

¢ o 8 & 0 0

¢ ¢ 0 3 o 0 0

L c 6 & & 80 8 o 6 o o

KFAM-4)

" 0 ¢ 0 s o o 0,

e & 8 8 5 & 0 4

o O o 8 ¢ & o 4 o 4 9 s

NwWwkH =

11

13
13
14

15

15

22
28

34

34
37

44
45
46
47
48
49

50

51

52

52
57
62
65
66
67
68
69
71

N

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPT ER

CHAPTER

5.10 FINDLAST.
511 FINDNEXT.
5.12 RELEASE .
5.13 CLOSE . .

¢ ¢ s o
e & o O
e & ¢ @
e o o o
e 8 8 o
s 8 o 8
e 8 o8 ¢
8 & 8
e 8 4
e 8 & @

e 8 ¢ ¢
¢ & o 0

e 8 & 0

6 THE KFAM REORGANIZE UTILITIES (KFAN-3 AND KFAM-4) .

6.1 The Reorganize Sub-systen (KFAM-3 and KFAM-4)

OVervieve v © o « o o o o

Writing the Set-up Module . .
Utility Operation and Error Hessages.
6.2 The Reorganize KFAM PileUtility (KFAM-3

KFAH-“) © @ ©®© ® ®© e ©¢© v e e e
OVervieWe v © o o v « o o
Operating Instructioans. .

7 THE ADJUST KFAM PILES UTILITIES. .

and

L J

7.1 Reallocate KFAM File Space (KFAM-3 and KFAM-U4).

OvVerview. v o« o « e o o «
Operating Instructions. .

7.2 Disk Copy and Reorganize (KFAM-3 and KFPA

OVervVieWe v o o« o o « o o
Operating Instructions. .

8 THE PRINT KEY PILE UTILITIES .

8.1 Print Key Pile KFAH-3 ® © e e
8.2 Print Key File KPAM-4 . . .

9 THE RECOVERY UTILITIES o o o«

L J

9.1 The Key File Recovery Utility (KFAM-3

OVerviewe o o « o o © o o
Operating Instructions. .

H-4).

and KFAM-4)

9.2 The Reset Access Table Utility (KFAM-4)

10 THE KFAM CONVERSION UTILITIES.

10.1 The KFAM-3 Conversion Utilities

OVeLvVieWe o o ¢ o o = o <
Conversion Procedure. . .
10.2 The KFAM-4 Conversion Otility

1l GENERAL TECHNICAL INFORMATION.
11l.1 Key File Record Layouts . . .

11.2 Key File Structure. . . - o .
11.3 Key File Recovery Information

1l.4 FINDNEW with Blocked Files under KFAM-

L J -

[

4

[] e © o ¢

[] s 0 o 8

e 8 o o [} & o 0 o

71

72
73

74
74

75
80

85
85
86

94

924
94
96
102
102
103

109
109

-« 111

114

114
114
115
119

123

123
123
124
128

- 132

132
136
143
144

11.5 Ccmpatibility between KFAM-1 and KFAM-3 . . -
CHAPTER 12 KFAM ADVANCED PROGRAMMING TECHNIQUES <« ¢ « o«

12.1 Eliminating the Printer in KFAM-3 and KFAM-4.
12.2 Files too Large for One Platter in KFAM-3 and

KFAM~le o 2 o a0 = o o o =« ©« ®© =« © = = =
12.3 Reusing Deleted Space with FINDNEW (HERE)
12.4 Multiple Key Files per User File. . . .
12.5 Status of the KDR in KFAM=-3 & 2 o « =« =«
12.6 Status of the KDR in KFAM-4 <« « « & « «
12.7 File Names for the KFAM Utilities o - «

APPENDIX A COPYING THE SYSTEM FILES FROM CASSETTE TO DISK
APPENDIX B LOADING THE MENU MODULEe « =« = o o © = o o o o

vi

145
146
146

149
151
153
153
156
157

158

- 160

CHAPTER 1
OVERVIEW OF THE KFAM SYSTEMS

l.1 WHAT IS KFAM?

The 2200 BASIC language includes a group of statements used for disk
operations that are known as the Catalog Mode statements. They are given this
name because they create and maintain on a disk, a catalog, or index, of the
files which are stored on the disk. This catalog includes, among other

~things, the name given to the file and the file's starting and ending sector

(ddresses. The catalog system allows a file to be found by simply - supplying

@ﬂts name (a service performed for data files by the statement DATA LOAD DC
OPEN) .

Though the catalog systen keeps track of where each file is located on a
disk, and thereby allows files to be easily found, it does not keep track of
the individual records within a file. For example, a given disk may have an
employee file called "PAY", an accounts receivable file called "A/R", and an
inventory file called "INVT". The d4isk catalog system keeps track of where
each of these files is located. However, the "pAY"™ file may consist of 250
employee records, the "A/R" file of 400 customer records, and the "INVT® file
of 5000 product records. KFAHM is a system for keeping track of and locating
these individual records withinm a file.

For each file of records, KFAM creates and maintains an index of the
individual records and their locations in the file. For the purpose of this
index, each record is identified by some key field that can serve to mark it
off from all other records. For example, for a payroll file, the employee
name or number might be designated as the key field; for an inventory file a
product number might be the key field. A record's key field is called its
"key". The index constructed and maintained by KFAM can be thought of as a
list of all the keys for a given file. Associated with each key in the index
is the location of the record that the key identifies.

Yol

cataloged file onm a disk. It is called the Key File to distinguish it fro.
the file of records that it indexes. The latter is called the User File.

When a file is indexed by KFAM, you can say in a program, "Find me the
record for product AB-4975-1." KFAM subroutines, incorporated into the
program, then search the Key File index and put the sector address of record
AB-4975-1 into the User File's Current Sector address parameter in the Device
Table. The program can then sipply execute a DATA LOAD DC statement to read
the desired record.

KFAM subroutines, incorporated into the user's programs, do all the work
of searching and wupdating the Key File. There are KFAM subroutines to find
records in a random sequence and in ascending key sequence; there
are subroutines to delete records, and to find a location for a new record and
add the new key to the Key File. Thus, the programmer who uses KFAM need
never know how the Key File is comstructed. KFAM subroutines carry out
all the necessary operations on the Key File.

The Key File that KFAM constructs 1is a sophisticated tree structure,
designed so that keys can be found guickly in a random sequence, and even more
guickly in ascending key sequence. It allows keys to be added and deleted
easily, without disturbing the organization of the Key File.

Whenever a KFAM subroutine is to find a record, or add a new key to the
key file and find a 1location for the record in the User File, the KFAM
subroutine puts the User File record location ‘into the Current Sector addres
parameter of the Device Table, opposite the file number (#0-#6) being used for
the User File. Thus, on return from the subroutine, an ordinary Catalog Mode
DATA LOAD DC or DATA SAVE DC can be executed, and will take place at the
desired sector location.

There are two versions of KFAM included in this manual. KFAM-3 1is the
general purpose KFAM system for use when a file is to be accessed by only one
CPU at a time. KFAM-4 1is a modification of the KFAM-3 system desigmned
for a multiplexed disk envircnment, in which more than one CPU may wish to
access a file simultaneously. The key file structures built by KFAM-3 and
KFAM-4 are 1identical, and operations performed by the utilities and
subroutines are very similar. The chief difference is that KFAM-4 includes
special protective procedures to prevent destructive conflict by
different CPU's. Though the main functions performed by KFAM-4 software are
very similar to those of KFAM-3, once a file 1is organized uander one
version, only the software associated with that version may be used on it.
A conversion program is fprovided to convert a KFAM-3 Key File to a
KFAM-4 Key File. KFAM-3 offers better performance than KFAM-4, and should be
used whenever it is certain that a file is used by only one CPU at a time.

There are two versions of KFAM not included in this manual. These
are the original KFAM (referred to as KFAM-1 in this document) and KFaM-2.
Unlike £ these versions of KFAM, KFAM-3 and KFAM-4 use the BASIC statements

described in SORT STATEMENTS (Publication #700-35594). This permits_

\

The index that KFAM constructs and maintains 1is itself kept as ﬁm§:

R

il mprovements in execution speed, memory requirements, program simplicity,
- «nd system flexibility which could not otherwise be achieved. Utility
Programs are provided to convert to KFAM-3 from KFAM-1 and KFAN-2,

1.2 THE FUNCTIONAL COMPONENTS OF KFAM-3 AND KFAM-4

KFAN-3 and KFAN-4 can each be broken down into the following functiomal
types of softvare.

1.4 Set¥up Utilities: Stand-alone programs used to initialize a new
Key File, and to create a Key File for an already existent User
File.

2. KFAM Subroutines: DEPPFN' subroutines which are incorporated into a

User program. These are used to locate records im the user file
and to add and delete keys from the Key File. These are the
operational heart of KFAM.

3. Supplementary Maintenance Utilities: Stand-alone programs which
pecform a variety of tasks related to the maintenance of a Key Pile
and User File.

1.3 HOW TO GET STARTED WITH KFAM

.(?“‘ KFAM provides a means for accessing records that are saved in a disk
file. However, it does not process these records in any way. After it has
found a record, the processing of the record (loading it, updating it, saving
it, etcetera) is 1left to the user—-written program. Thus, to use KFAM, one
must have a working knowledge of elementary BASIC and of the
fundamentals of Catalog Mode disk operatioms.

It is strongly recommended that the first-time user of KFAM Dbegin by
setting up a dummy KFAM-3 file, and experiment with the subroutines and
utilities on this file before attempting to operate on valuable files.

The following is a step-~by-step outline of how to begin setting up KFaAM
files.

l. Decide whether to use KFAM-3 or KPAM-4. If your system includes
just one CPU then you should use KFPAM-3. TIf your system includes
more than one CPU attached to a multiplexed disk drive, and the
file to be accessed may be accessed by several CPO's
simultaneously, then you must use KFAM-4. If you are a first time
user and wish to learn to use KFAM-4, it may be advisable for you
to begin by experimenting with a dummy KFAM-3 file and then
graduate to KFAM-4 as you gain confidence.

‘e

2.

4.

Read Chapter 2, KFAM Reyuirements and Conventions. This chaptewﬁg
describes the four types of User File records which are acceptable

to KFAM, limitations on the size and characteristics of the key
field, and certain KFAM conventions which must be adhered to.

A Key File is stored as a cataloged file on a disk. It may reside
on the same disk as the User File, or on another disk (which mnmust
be mounted whenever the User File is accessed). A set-up utility
called INITIALIZE KFAM FILE must be run whenever a new KFAM file
{Key File and User File) is to be established.

INITIALIZE KFAM FILE calculates the required size of the Key File,
given an estimate of the maximum number of records to be saved in
the User File, and will catalog a Key File with the required number
of sectors. It saves in the Key FPile some vital information about
the User File, based on information supplied by the operator.
Optionally it will also catalog a User File with the proper number
of sectors, if the User File does not already exist.

A guide to the infcrmaticn required by INITIALIZE KFAM FILE and
detailed operating instructions are provided in Chapter 3.

If your User File already exists, a second set-up utility program
can be run after INITIALIZE KFAM FILE. It reads your User File and
creates an entry in the Key Pile for each record in the User File.

7\
This utility is called KEY FILE CREATION. Operating instructionf@§/
are provided in Chapter 3. ‘

If your User File does not already exist, then after running
INITIALIZE KFAM FILE, you will use the KFAM subroutines in a
program you write to build your User File and Key File
simultaneouslye.

The KFAM subroutines are DEFFN!' subroutines which are 1incorporated
into an application program {written by the KFAM user) to perforn
standard tasks for files indexed by KFAM. Before writing a
progranm, or program module, you should determine the KFAM
subroutines that will be needed. You should then run the Utility
BUOILD SUBROUTINE MODULE. This allows you to choose what
subroutines and optional subroutine features you wish to have. It
builds a program file on disk which contains the selected
subroutines. (BULLD SUBRQUTINE MODULE for KFAM-3 is described 1in
Chapter 4. The KFAM-4 version appears in Chapter 5.)

TYPE AND NAME
General Purpose

OPEN
CLOSE
Random Access

FINDGLD

Key Sequence Access

FINDFIRST

FINDNEXT

FINDLAST

Add and Delete

FINDNEW

FINDNEW (HERE)

DELETE

@ﬂﬁ Subroutines are available to perform the following tasks:

FUNCTION

Opens specified User Pile and com
panion Key File.

Closes User File and companion Key
File.

Locates specified key in the Key File;
sets User File Current Sector Address
to record in User File with that key.

Locates record with lowest key in
User File; sets User File Current
Sector address to that sector.

Locates next record in User File in
logical key sequence; sets User File
Current Sector Address to that sector.

Locates record with highest key in
User File; sets the User File Current
Sector Address to that sector.

Adds specified key to Key File; al-
locates space for a nev record in the
User File, and sets the User File
Current Sector Address to that sector.

Adds spec1f1ed key to Key File;
sets the User File Current Sector
Address to the sector where the
nevw record is to be written.

Removes specified key from Key Pile:
sets the User File Current Sector
Address to the record that has the
deleted key.

~
Special Purpose (KFAM-4 ONLY) m%’

RELEASE Allows a User File record, previously
protected by one CPU, to be
accessed by any CPU.

Since the KFAM subroutines allow records to be added and deleted,
as well as accessed, all routine file maintenance takes place in
applicaticn programs which use KFAM subroutines. As a general rule
all operations on the Key File are accomplished by the KFANM
subroutines, while all operations on the User File are accomplished
by user written statements in the application progran.

Detailed descriptions of the GOSUB' statements needed to call each
of the KFAM subroutines are given in Chapter 4 for KFAM-3 and 5
for KFAM-U4.

Though the KFAM subroutines are the heart of the KFAM system, and
perform mcst of the file maintenance, a group of Supplementary
Maintenance Utilities are included to carry out certain maintenance
tasks that will occasionally be required.

a) The REORGANIZE Utilities: When a record 1is "deleted™ by
using the DELETE subroutine, its key and location are simply
removed from the Key File. It then cannot be accessed by
KFAM. The record itself in the user file is not removed. It
is possible to reuse the spaces occupied by deleted reco:d!“%’
in the User File, but if this 1is not done, the User
File gradually becomes bloated with DELETED records.
The reorganize utilities reorganize the User File putting
its records into key sequence and eliminating DELETED
records. They then automatically . construct a newv Key
File for accessing the reorganized User File. KFAM-3 and
KFAM-U4 each have two versions of REORGANIZE utilities.

THE REORGANIZE SUB-SYSTEM: Is a three-module utility
program which reorganizes a file by outputting a new
reorganized User File and Key File. The o0l1ld Key File
and User File are left intact. It is called by a user
written set—-up module which provides parameters for the
reorganizatiocn.

REORGANIZE KFAM FILE: Is a utility program vwhich
reorganizes the User File and Key File in place. It
should be used only for a file so large that adequate

output files could not be mounted at the same time as
the file to be reorganized. '

Detailed instructions for KFAM-3 and KFPAM-U4 Reorganize
utilities are given in Chapter 6.

‘ggm b) The Adjust FPiles Utilities include two utilities which can be
S used together to copy a KFAM file and increase or decrease
the amount of disk Space allocated to the file. These
utilities are called REALLOCATE KFAM FILE SPACE and DISK COPY
AND REORGANIZE. The latter can be used alone to copy any
cataloged file to another disk.

c) PRINT KEY FILE: This utility prints the complete contents of
the Key File with appropriate labeling of data. It can be
useful as a diagnostic tool, and helpful to advanced
programmers who may wish to examine the Key File structure.

-d) Recovery Utilities: A KEY PILE RECOVERY utility is provided
to reconstruct a Key File in the event of its accidental
destruction. The User File must be intact for this progranm
to operate successfully.

For KFAM-U4 only, there is a second kind of recovery utility
called RESET ACCESS TABLE. KFAM-4 Baintains in the Key File
information about which CPU's are operating on the file.
This information is kept ia a part of the Key File called the
"access table". This access table will contain erroneous
information if a CPU fails to CLOSE a file it has opened, due
to pover failure or program error. The RESET ACCESS TABLE
utility is provided to clear this erroneous information from

Q?“ the access table.

) e) The KFAM Conversion Utilities. Utility programs are provided
with KFAM-3 to ccnvert from KFAM-1 to KFAM-3, and from KFAM=2
to KFAM-3. A utility program is provided with EKPAM-U4 to
convert from KFAM-3 to KFPAM-4.

l.4 OVERVIEW OF KFAM-4

KFAM-U4 is a modification of the RFAM-3 system, designed for a disk
nultiplexed envircnment. It allows up to four CPU's to access a KFAM disk
file, and includes protective procedures designed to prevent destructive
intrusions of one CPU into the file operation of another CPU. These
procedures are designed to offer the minimal protection consistent vith the
type of operation being performed, so that other CPU's can have the safe
maximum availability of the disk and the file.

To use KFAM-4 in a multiplex eavironment one must have some understanding
of the types of problenms presented by this environment. To illustrate these
problems, assume that several CPU's attempt to use KFAM-3 to access a User
file, via a single Key File. Serious problems can occur at several different
levels:

-

1. The key file can be accidentally destroyed simply by two CPU's \
executing KFAM subroutines contemporaneously. Recall that the disk
multiplexer (Model 2224 or 2230MXA/B) allows a CPU to execute a
single disk instruction, and then polls the other CPU's to see if
they are waiting to execute a disk instruction. Since a single
KFAM-3 subroutine (FINDNEW, FINDOLD, DELETE, etc.) may execute many
disk instructions, its disk instructions could be interspersed with
those of another CPU. Several of the KPAM-3 subroutines can alter
the Key File structure, and require that that structure be stable
from the time the key £file ‘is read until it is successfully
restructured. Two such subroutines operating on the key file
contemporaneously could result in an illegitimate Key File
structure, which would destroy its effectiveness as an index to the
User File.

2. If one CPU is attempting to access records sequentially using
FINDNEXT, and, during record processing, another CPU accesses the
file, then a subsequent execution of FINDNEXT by the first CPU will
not access the next sequential record.

3. If one CPU is attempting to perform an operation on an entire User
File (Print Closing Balances, etc.) and another is wupdating
records in the file, then the overall file status reported may, in
fact, have never existed at any one point in time.

[If two or more CPU's contemporaneously access the same User Record

for updating, so that, from the point of view of the disk, the -
accessing sequence looks like this:

DATALOAD DC X (CPU #1)
DATALOAD DC X (CPU #2)
DATASAVE DC X+4 (CPU #1)
DATASAVE DC X+7 (CPU #2)

The record is now erroneous. It should contain X+11 but instead
contains X+7.

There are, of course, other problems which can occur, but these problems
may be taken as characteristic of the types of problems involved. KFAM-U
offers solutions to these types of problems by several different means:

1. KFAM-4 subroutines hog the disk during their execution. Before
passing contrcl back to the User program, the KFAM subroutine
returns the disk to normal, non-hog, mode. This solves the problem

of key file destruction caused by simultaneous execution of KFAM
subroutines.

2.

3.

Information which pertains to the program accessing the file rather
than to the Key File itself is maintained in the CPU's by KFAM-4,
rather than in the Key File (KDR) as in KFAM-3. This information
includes last key accessed, limb path, file numbers, etcetera. By
keeping the information for a CPU, in the respective CPU, one CPU

can be accessing the file sequentially with PINDNEXT while another
is accessing it, and the FINDNEXT from the first CPU always
accesses the next sequential record.

In KFAN-U4 an additional GOSUB! parameter is required to call the
OPEN subroutine. With this additional parameter a CPU initiating
operaticns on a KFAM-4 file can request exclusive access to the
entire file for the duration of its operation. When exclusive
access is requested, the OPEN subroutine checks to see if any other
CPU currently has the file open; if not, it grants exclusive
accesse. Once exclusive access is granted, no other CPU can open
the file until the CPU with exclusive access has executed the CLOSE
subroutine. This permits operations on an entire file to be
completed with the file protected from outside alteration. Piles
may also be opened in a non-exclusive mode which permits other
CPU's to open the file.

The information as to hov many of the four possible CPU's have
opened the file, and whether it is open in exclusive or
non-exclusive mode is saved in an access table. The access table
is part of the KDR record in the Key File. In order that this
information be accurate, it is essential that each CPU execute the
CLOSE subroutine when its program is finished with the file. If
the file is not CLOSED, the entry will remain in the KDB. Four
non-exclusive entries fill the access table and bar any CPU fronm
opening it; one exclusive entry, left in file, has the same effect.

KFAM-4 includes a utility called RESET ACCESS TABLE. The purpose
of this wutility is to clear the access table in the event of a
pover failure or other disaster. "This utility clears the entire
access table, and therefore should be run only when no CPU has the
file open.

In KFAN-4 an additional GOSUB' parameter is required to call each
record-access subroutine. With this parameter the CPU accessing a
record can set a protect flag for the accessed record. If a CPU
has set a protect flag for a record, then that record may be
accessed only by that CPU, until the protect flag is turned off.
If records are blocked, setting a protect flag for one record in
the block prevents other CPU's from accessing any of the records in
the block.

When a CPU performs an update of a record, it must set a protect
flag for that record. This ensures that it can complete its update
operation before another CPU can access the record, and thereby

eliminates the problem of simultaneous updates described as problenm

4 above.

The protect flag on a record {or block of records) is automatically
turned off when the CPU that set the protect flag executes any
other KFAM subroutine on the same file. Thus, for example, if a

series of updates

are being performed by a CPU, each access of a

record turns off the protect flag for the record previously
accessed by that CPU, and, optionally, sets the protect flag for

the nevw record.

KFAM-4 includes a

particular CPU,

previously set by

there may be a
- call.

subroutine called RELEASE. When executed by a
this subroutine simply turns off a protect flag
that CPU. This subroutine should be used if
substantial delay before the next KFAM subroutine

It is not possible for a single CPU to have open a KFAM-4 file and a

KFAM-3 file at the same time.

10

CHAPTER 2
KFAM REQUIREMENTS AND CONVENTIONS (KFAM-3 AND KFAM-4)

2.1 USER FILE

The User File must be a cataloged disk file. It must be vholly contained
on one disk platter. (See KFPAM Advanced Programming Techniques for files too
large to fit on one platter.) All records must be of a fixed length. Pour

record types are surported. All records in a file Bust be the same type. The
.record types are:

Type "N"™ - No Blocking
Each record occupies exactly one sector.

The key must be located in the same position within each record.

Records may be written in the "DC" mode, with control bytes, or in the
"BA" mode, without control bytes. :

(This corresponds to record type "F" in KFAM-1l.)

Type "A™ - Array Type Blocked Records
Records must be written in array fornms:

DIM AS(4)3, B(4), CS(4)20
DATASAVE DC n, AS(), B(), C${)

indicating 4 records per block, each containing an A$, B, and CS. The
block of records must be writtem with comtrol bytes; DATASAVE BA may not
be used.

11

All records must have the same format. _ 'ﬁ§
The key must be located ia the same position within each record. Tge key
may be a part of a field, i.e., STR(C$, 11, 10), but may not span fields,
may not include control bytes, and may not be a numeric field or any part
of a numeric field.

The block of records may not exceed one sector im length.

There may not be more than 38 fields per record.

Type "C".- Contiguous Blocked Records

All records must be the same iéngth.

All the fields of a given record are stored contiguously on the disk, for
example: '

DIM Al$3, C1$20, A2$3, C2520, A3$3, C3$20, A4$3, Cu$20
DATASAVE DC#n, AlS, Bl, Cl$, A2$, B2, C2$, A3$, B3, C3$,
A4S, B4, CUS

indicating 4 records per block, each containing an 1aj$, Bj, and Cjs.
.(This corresronds to record type "FB" in KFAM-1l.)

The key must be located in the same position within each record. ﬁ%Q
The block cf records'may not exceed one sector in leangth.
Records may be written in the "DC" mode, with control bytes, or in the

"BAW mode without «control bytes. However, 1if the file must be

reorganized in place using the REORGANIZE KFAM FILE utility, it must be
written with ccntrol bytes. ‘

Type "M" - Multiple Sector Records
Each record occupies more than one sector.
Each record occupies the same number of sectors.

The key must -be located in the same position within each record. The key
may be located in any sector of the record, but may not span sectors.

Records may be written in the "DC" mode, with control bytes, or in the
"BA" mode, without control bytes.

Records may be up to 255 sectors in 1length. However, the following
restrictions apply in REORGANIZE KFAM FILE:

12

'gﬁx de Records may not exceed 40 sectors in length.

b. Reorganization caanot be executed in 12K of memory if the
record length exceeds 8 sectors.

(This correspcnds to record type "FM" ip KFAM~-1.)
User File Name

The User file name, as recorded in the disk catalog, must conform to the
following conventions:

The 5th character must be the letter wpn,
The 6th character must be a digit 0-9.
2.2 KEY

The record key as it appears in the User File may be from 1 to 30 bytes
of alphanumeric data (including hexadecimal data or packed numbers). The key
may not be a numeric field.

The first byte of an active key may not contain the value HEX (FP) « The
value HEX{FF) in the first byte of a key in the User file indicates that the
.record has been deleted from the Key File.

The key may not contain a value of all bytes HEX (00). (This corresponds
to the packed number 0, or the binary number 0, as a key value.) This lowest
possible value is reserved for the systen.

Duplicate keys are not allowed.

2.3 KEY FILE

The Key File name is constructed by INITIALIZE KFAM FILE from the User
Pile name, as fcllows:

The 5th character in the User File Name is changed from “F" to ngw_

The 6th character is assigned the Key File number. This is alwvays 1
unless multiple Key Files are maintained for the one User File, in which case
it may be any digit 1-9.

Size of the Key File

The first sector of the Key File contaias the Key Descriptor Record
(KDR) . The KDR contains control information necessary for KFAMN.

%kﬂh

13

The remaining sectors of the Key File are available for Key Index RecordSﬁﬁN
(KIR's) . Each KIR occupies one sector and contains Key Index Entries (KIE's).
The KIE is a field containing a key and a 3-byte pointer. The key is the sanme
as one of the keys in the User File. The pointer points to a User record on
the disk, either directly or indirectly. The maximum nunber of KIE's per KIR
is given by:

N = INT (240/(K+3))
where: K = Key length

3 = pointer leangth

N = maximum KIE's per KIR

The average number, A, of KIE's per KIR is calculated {conservatively) as
follows:

A = INT(N*.6)

The number of sectors required for the Key File, for a given naumber of
records, R, is as follows:

S = INT(R/ (A-1))+5
2.4 DEVICE ADDRESSES
. ‘Device addresses, 310, 320, 330, 350, B20, B30 and Bl0, are recognized by

KFAM as valid disk device addresses. KFAM-4 also uses the hog mode versionsMQY
of these addressese.

14

CHAPTER 3
THE KFAM SET-UP UTILITIES

3.1 OVERVIEW OF INITIALIZE KFAM FILE (KPAM-3 and KFAM-4)

INITIALIZE KFAM FILE must be run, as the first step in setting up a KPaAM
file.

INITIALIZE KFAM FILE optionally catalogs an area on disk for the User
Pile, or the Key File, or both, or operates with an existing User FPile, or Key
"FPile, or both. It sets up the KDR record (the first record of the Key Pile,
@ ntaining vital information about the User Pile and the Key File), based on
‘«nformation supplied by the operator. It then creates a "null" (empty) Key
File.

The DATASAVE DC END trailer is set to the next to last sector in the User
Pile, regardless of whether or not the User File was cataloged prior to
running the utility.

Information Required by the Utility

The utility requires that the following information be supplied by the
operators:

User File Name _
Device Address for User File: 310, 320, 330, 350, B10, B20, B30
Is OUser File Cataloged?: Y OR N

Key File Number: 1-9

Device Address for Key File: 310, 320, 330, 350, BlO, B20, or B30
Is Key File Cataloged?: Y or N ,

Record Type: A, C, M, or N

Logical Record Length (Type A or C): nnn

Blocking Factor (Type A4 or C): nn

Sectors per Record (Type M): nan

Key Length: 1-30 ’

15

Starting Position of Key: nnnan
Estima ted Number of Records: nannn
Are File Specifications OK?: Y or N
Hard Copy Printout?: Y or N

Do Another File: Y or N

This is a formidable set of questions for an operator. It is suggested
that this utility be run by the application programmer, or that the programmer
write a set of specific answers for a specific KFAM file, as a supplement to
the general operating instructioans below.

Some of the answers to the above questions are not obvious, and require
some discussion:

User File Name

The User File Name must conform to the KFAM naming coanvention. The 5th
byte must be "F". The 6th byte must be a digit 0-9. The remaining bytes may
be any alphanumeric characterse.

An existing User File may be renamed to conform to KFAM's requirements by
executing the following two commands in Immediate Mode:

SCRATCH 4 "old name"
DATASAVE DC OPEN d "cld-name", "new-name"

where 4 = the disk platter, F or R
old-name = the original file name
new-name = new name, conforming to KFAM convention

The data trailer record, or "END" record, 1is 1lost following this
procedure. This should do no harm if the file is to be used strictly as a
KFAM file, because INITIALIZE KFAM FILE always sets the "END" record at the
next-to-last sector of the cataloged space, regardless of where it was before,
and the Key File Creation Utility uses the last key, not the "END" record, to
determi ne end-of-file.

Key File Number

Normally, 1 should be entered. However, if multiple Key Files are to be
used to index the same User File, they must be uniquely identified by the Key
File Number, which can be any digit from 1 to 9.

The Key File name is derived from the User File name, by replacing the
#"pv in position 5 with "K", and the digit in position 6 with the Key File
Number.

Record Type

KFAM supports four different record types:

16

€&« Type A: Array type blocked records.

More than one data record is contained in a sector. The block of records
is written as an array, i.e.:

DIN AS(4)12, B(84), C$(4)36
DATASAVE DC 4n, A4$(), B(), CS$()

indicating 4 records per sector, each record containing an A$, B, and C$.
Type C: Contiguous blocked records.

More than one data record is contained in a sector. Each record occupies
a contiguous amount of space on the disk. For example, there are three
records per sector, each containing a key (K$) and data (D$):

DIM K1%12, D1%6u4, K2312, D2$64, K33$12, D3%64
DATASAVE DC #n, K1$, D1$, K2$%, D2$, K33, D383

This corresponds to record type "FB" in the original KFAM.
Type N: No blocking
Each data record occupies one sector. This corresponds to record type

"P" in the original KPAM, except that in KFAM-3 data may begin at byte 0
and extend to byte 255.

' Type M: Multigple Sectors per record.

Each data record occupies two or nmore sectorse. This corresponds to
record type "PM" in the original KFAM.

Logical Record Length

The logicai record length for record types A and C is calculated as
follows: '

Qe Add up the lengths of the fields contained in a single record
(numeric fields are 8 bhytes long).

be Add 1 per field of the record, for control bytes.

For example, in the above example for type A records, the record leagth
is 59. 1In the above example for type C records, the record length is 78,

All records of the file must have the same length. For type A, all
records must also have the same format, for example, a 12-byte alpha field,

followed by a numeric field, faollowed by a 36-byte alpha field, each field
contained in an array of 4 elements.

17

Blocking Factor
The blocking factor is the number of records per sector (Type A and C).
Starting Position of Key

This is the absolute starting position of the key withinm the sector or
sectors, except for type A reccrds, where it is the position within the record
plus two for sector control bytes. This requires some explanation.

When a record is written on disk, in the normal mode (DATASAVE DC or
DATASAVE DA), twc control bytes are written at the start of the sector.
Following these two control bytes, the Start-of-Value (SOV) control byte for
the first data value is written, followed by the data itself. Then the SOV
control byte for the second value, and the second value itself, are written,
and so on. An end-of-block (EOCB) control byte is written following the last
data value written.

The layout of the sector on disk looks like this:

ci|C

010

N|N|S| Field| s | Field | S | Field |S | Field | S | Field | E | Not
T|IT|O 1 0 2 10 3 0 4 0 5 0 | Used
RIR| V A v v v B

010

L|L

01 23

Por the purposes of determining the starting position of the key, the
bytes of the sector are numbered from 0 to 255. The starting coatrol bytes
are bytes 0 and 1. The S0V ccntrcl byte for the first field is byte 2. The
first byte of data 1is byte 3. The second field starts in byte 3+ L1 + 1,
where L1 is the length of the first field, and so oa.

The starting position of the key is the number of the first byte of the
keye. For blocked records, the blocking is ignored when calculating the
starting position of the key. It is calculated as if there wvere only one
record per blocka Theé KFAM utilities make the necessary adjustments to
calculate the position of the key in subsequent records within the sector.

In particular, with type A records, the blocking should be ignored vhen
calculating the starting position of the key. Given the record in the
example:

DIM A${U4)12, B(4), C$(4) 36
DATASAVE DC #n, A$(), B(), CS$()

18

N\

fgﬁghe actual layout of the sector is as follows:

Bytes Contents
0,1 Control bytes
2 SOy
3-14 A$(1)
15 sov
16-27 A% (2)
28 Sov
29-140 A3 (3)
41 sov
42-53 A% (4)
S4 SQoV
55-62 B{1)
63 SQY
64-71 B(2)
72 SOV
73-80 B (3)
81 Sov
82-89 B (4)
90 sov
91-126 C$ (1)
127 sov
) 128-163 C${2)
R 164 SOV
QQ“ 165-200 Cc3 (3)
) 201 sov
202-237 C$(4)
238 EOB

The fact that there are fcur records per sector should be ignored in
determining the starting position of the key. The sector should be seen as if
it contained only one record, as follows:

Byte Contents
0,1 Control bytes
2 Sov

3-14 . A$(1)

15 - sov

16-23 B(1)

24 Sov

25-60 C$(1)

61 EOB

If the key starts in the first byte of C$(), the starting key positionm is
25, and not 91, as would be indicated by the actual blocking.

19

For record types C, M and N, it is possible to have records written inﬂﬂg'
the DATASAVE BA mode. 1In that case, no control bytes are inserted, and the .
starting position cf the key is exactly where it is located in the array
defining the record (starting byte 0).

For record type M, it is possible to have the key begin in the secoand, or
higher, sector of the record. 1In that case, add 256 for each sector preceding
the one containing the key, and them add the starting position of the Xkey
within the sector (first byte of the sector = 0).

When writing multiple sectors in the normal mode {DATASAVE DC or DATASAVE
DA), it is necessary to determine which field will begin the second sector,
etc. The 2200 System does not write partial fields in a sector. Where there
is not roaom to write the next field in the current sector, the 2200 Systenm
vrites an EOB control byte, leaves the rest of the space unused, and starts
another sector. For example, if the record is defined:

DIM D${6) 64
DATASAVE DC #n, D$()

the record occupies 2 sectors, as follows:

Bytes Contents
Pirst sector: -
.)
0,1 Cantrol bytes : . 'AE’
2 SOV '
3-66 D$ (1)
67 SOV
68-131 D$(2)
132 Sov
133-196 D$(3)
197 EOB

198-255 Not used (58 bytes, not room to write next
complete field)

Second sector:

0,1 Control bytes
2 SQV

3-66 D3 (4)

67 sov

68-131 D3$(5)

132 SOV

133-1¢6 D3 (6)

197 EOB

198-255 Not used (end of data)

20

’%@m Once the actual record layout is determined, then the starting position
. £

the key can be calculated. If the key occupies, for example, the first 8
bytes of D$(4), then the starting position of the key is 259, and not 198 as
might be calculated by ignoring the actual way that the system writes records.

Estimated Number of Records

This is the maximum number of records that the User File will contain.
If the User File is not yet cataloged, the program will catalog enough sectors
to hold this many records. If the User File is already cataloged, the program
checks that enocugh space is cataloged to contain this many records.

The program also calculates the size of the Key Pile, based on the
estimated number of records. If the Key File is not yet cataloged, the
program catalogs the required number of sectors. If the Key File is already
cataloged, the program checks to see that enough space is cataloged. If there
is not enough space cataloged, the program issues a warning message.

The estimated number of records should be calculated in advance, as the
maximum number of records which the User File will contain, plus an estimate
of the number of deleted records which will be in the file when it is at its
maximum size.

This estimate is not critical. It can be revised later, using the
REALLOCATE KFAM SPACE and DISK COPY/REORGANIZE utilities.

5 Hard Copy Printout

If the configuration of the available 2200 system does not include a
printer, the answer to this question should alvays be "N®,

NOTE:
In the KFAM-U4 versicn of this wutility, hog mode is
selected for the disks containing the Key File and User
File. To operate the KFAM-4 utility in non-hog mode or to
execute it at a non-nmultiplexed disk drive, key
M$ = "x" (EXEC)

at KFAM=U4 utilities menu, prior to loading the utility.

21

3.2

1.

2.

3.

6a

INITIALIZE KFAM FILE OPERATING INSTRUCTIONS (KFAM-3 and KFAM-4)

DISPLAY

ENTER USER FILE NAME
(SSSSFJNN)

ENTER THE NUMBER FOR THE

DATA FILE DEVICE ADDRESS
1. 310 5. B1l0O

2. 320 6. B20

3. 330 7. B30

4. 350

IS DATA FILE CATALOGED?
(Y OR N)

ENTER KEY FILE NUMBER

22

1.

2.

3.

5.

be

INSTRUCTIONS

From KFAM-3 or KFAM-4 menu,
access the INITIALIZE KFAM
FILE utility via the specified
Special Function Key.

Mount the disk platter({s)
containing, or to contain,
the User File and Key File.

Enter the name of the User
File.

MESSAGE: 2,4,5

NOTE:

Error messages and recovery
procedures follow the
operating instructions.

Enter the selection number AQQ.
for the user file disk device
address.

MESSAGE: 2, 6, 7

Enter "Y" if the User File
already exists. Enter "N" if
the User Pile does not exist.

MESSAGE: 2, 9, 10

Normally enter 1.

If there is more than one

Key File for a single user file,
the Key File Number is used to
distinguish the Key Files.

The Key File Number can be any
digit from 1 to 9.

MESSAGE: 2, 3, 11

=~

Be

9.

10.

1l.

12,

ENTER NUMBER OF THE KEY FILE
DEVICE ADDRESS :

1. 310 5. B10
2. 320 6. B20
3. 330 7. B30
4., 350

IS KEY FILE CATALOGED?
(Y OR N)

ENTER RECORD TYPE
(A,C,N,H)

ENTER LOGICAL RECORD LENGTH

ENTER BLOCKING FACTOR

ENTER NUMBER OF SECTORS
PER RECORD

23

8.

9.

10.

ll.

12,

Enter the selection number for
the key file device address.

MESSAGE: 2, 6, 7

Enter "Y" if space has already
been cataloged for a Key File.
Enter "N" if the Key File has
not been cataloged.

Enter A, C, N or M.
A=array type blocking
C=contiguous blocking
N=no blocking

M=multiple sector records

If record type A or C, proceed
with Step 10, below.
If record type M, proceed with

Step 12, below.
If record type N, proceed vith
Step 13, below.

MESSAGE: 2, 14

Enter logical record length.
See above for calculation
of logical record length.
MESSAGE: 2, 3

Enter number of records
per sector.

Proceed with Step 13, below.
MESSAGE: 2, 3, 15

Enter the number of Sectors
per record. Record Type M-

only.

MESSAGE: 2, 3, 16

13.

14,

15.

1e6.

17.

18.

19.

ENTER KEY LENGTH

ENTER STARTING PCOSITION
OF KEY

ENTER ESTIMATED NUMBER
OF RECORDS

ARE FILE SPECIFICATIONS
OK (Y OR N)

DO YOU WANT A HARD COPY
PRINTOUT OF FILE DESCRIPTION?
(Y OR N)?

24

13.

la.

15.

l6.

17.

18.

19.

Enter key length (1 to 30). Mﬂ3
All record types. v
MESSAGE: 2, 3, 17

Enter starting position of
key field within sector.

See above for calculation

of starting position of key.
MESSAGE: 2, 3, 7, 8
18, 19

Enter estimated maximunm
number of records in User
File. :

See above for calculation
of number of records.

MESSAGE: 2, 3, 20

The system calculates
disk space required for)
User File and Key File. A§Q

MESSAGE: 21, 22

The system displays file
specifications on the screen.

MESSAGE: 23

Check file specifications

"displayed on the screen.

Enter Y to continue.
Enter N to start again at
Step 3.

MESSAGE: 2

For a hard copy printout,
mount paper oa printer
and enter Y.

For no hardcopy, enter N.

MESSAGE: 2, 24

-

21.

22. DO YOU WISH TO DO ANQTHER
FILE (Y OR N)

23.

{ “rror Messages

ERROR MESSAGE

2. RE-ENTER

3. ERR29

4. FILE NAME MUST HAVE F
IN POSITION S

Lo J 4

20. The system prints file
specifications on the
printer.

This is an exact duplicate
of the screen display,
Step 17.

21. The system initializes
the User File and Key Pile.

MESSAGE: 7, 8

22. Enter Y to do another file.
Enter N to stope.

If Y is entered, the program
repeats from Step 3, above.

MESSAGE: 2

23. The system returans to the
KFAM menu.

EXPLANATION/RECOVERY
Too many characters were entered.

RECOVERY: Repeat the step,
entering not more than the
number of characters indicated
on the screen.

Not "Y" or "N", in response to a
Wyes" or "no" question.

RECOVERY: Repeat the step, entering
my" or "“N".

A non-numeric quantity was entered
when a numeric quantity vas
requested.

RECOVERY: Reenter numeric quantity.

User File name must have an "F" ip
the 5th position.

8.

9.

10.

11.

12,

13.

14,

FILE NAME MUST HAVE NUMBER
IN POSITION 6

INVALID DEVICE ADDRESS

ERR72

ERR85

FILE NOT FQUND

FILE ALREADY CATALOGED

.

ZERO INVALID
FILE NOT FOUND

FILE ALREADY CATALOGGED

INVALID RECORD TYPE

RECOVERY: Repeat Step 3 witkmgi
correct User File nanme. /

User File name must have a digit,
0-9, in the 6th position.

RECOVERY: Repeat step 3 with cor-
rect user file name.

Number entered not an integer 1-7.

RECOVERY: Repeat the step, entering
a valid selection nunmber.

Disk read error.

RECOVERY: Rerun the progranm. If
the error persists, recreate the
platter from a backup copy (#1 = Key
File, #2 = User File).

Disk write error.

RECOVERY: Rerun the progran. If
the error persists, the platter has
a_bad sector and must be replaced. _~

~)

The User File is not catalbged on
the specified device.

RECOVERY: Repeat from Step 3.

The User File, specified as not
cataloged, 1is cataloged on the
specified device.

RECOVERY: Repeat from Step 3.

The Key File Number may not be 0.

RECOVERY: Repeat Step 6, entering a
Key File Number from 1 to 9.

The Key File is not cataloged on the
specified device.

RECOVERY: Repeat from Step 6.

The Key File, specified as not
cataloged, is cataloged on the
specified device. 'ﬁm
RECOVERY: Repeat from Step 6. ’
Record type must be A, C, M, or N.

RECOVERY: Repeat Step 9.

,- 15.

lé6.

17.

18.

19.

20.

BLOCKING PACTOR OR RECORD
LENGTH INCORRECT

INVALID-MUST BE 2 TO 255

INVALID-KEY MUST BE 1 TO 30

KEY OVERLAPS END OF RECORD

KEY MAY NOT SPAN SECTORS

USER FILE TOO SMALL

27

Record Length times blocking factor,
for record type A, may not be
greater than 253; for type C may not
be greater than 256.

RECOVERY: Repeat from Step 10.
Recalculate record length ot
blocking factor if the product

is too large.

Type H: Number of sectors per
record must be 2-255.

RECOVERY: Repeat Step 12 ¥ith
correct value.

The key length must be 1-30.

RECOVERY: Repeat Step 13 vith
correct value.

The key goes beyond the boundaries
of the record, as determined by the
record type and record leangth.

RECOVERY: Recalculate starting
position of key and reenter (Step
14).

Type M: The key goes over a
boundary between sectors.

RECOVERY: Recalculate starting
position of key and reenter (Step
14).

The User File, which 1is already
cataloged, does not have room for
the estimated number of records.

RECOVERY: Repeat Step 15 with a
smaller estimate. If necessary,
reallocate KFAM space and DISK/COPY
REORGANIZE can be run 1later to

increase the size of the User Fil
and Key File.

2l. STOP NO ROOM FOR KEY FILE The User File is already cataloged.
. There is not sufficient space on the
designated platter to catalog the

Key File.

RECOVERY: The Key File must be
cataloged on another platter, or the
User File must be shortened.

22. See error display There is not enough available space
SECTORS AVAILABLE on the designated platter(s) to
SECTORS REQUESTED catalog User File and/or Key File.

RECOVERY: Repeat Step 15 with a
smaller estimate. If necessary,
rerun the program, using disk
platters with more available space,
or split the User File into 2 parts
(see "KFAM Programming Techniques").

23. WARNING--KEY FILE TOO SMALL An existing Key File is too small to
: accommodate the estimated number of

records. The program continues Hitb“j

a warning message. B

RECOVERY: Run REALLOCATE KFAM SPACE
and DISK/COPY REORGANIZE to iancrease
the size of the Key File.

24. System hangs up - no message. Printer not turned on, or no device
215.

RECOVERY: Turn on printer.

3.3 THE FILE CREATION UTILITY (KFAM-3 AND KFAM-4)
Program Description

The KEY FILE CREATION utility creates a Key File for the records in an
existing User Pile. INITTALIZE KFAM FILE must have been run first, to
initialize both the User File and the Key File.

KEY FILE CREATIGN ignores any records which have HEX(FF) in the first
byte of the key, under the assumption that they are deleted records. It also
ignores records which have duplicate keys, but 1lists the relative sector
number and record number where such duplicate keys are encountered.

-,

28

;-

1.

2.

3.

4.

N The utility requires the operator to enter the key for.the last record in
¢ ae User Pile in physical sequence. The program uses this to detect the
and-of-file condition. The value of the last key should be made available to

the operator before running this frogran.

For KFAM-U4 only, the file is opened in the exclusive mode.

KEY PILE CREATION Operating Instructions
DISPLAY

1.

ENTER USER FILE NAME (SSSSFJNN) 2.

ENTER THE NUMBER OF THE USER. FILE 3.
DEVICE ADDRESS

i. 310 5. Bl0

2. 320 6. B20

3. 330 7. B30

4. 350 .

ENTER KEY FILE NUMBER (NORMAL=1) 4.

29

INSTRUCTIORS

From KFAM-3 or KFAM-4 menu,
access KEY FILE CREATION
utility via the specified
Special Function Key.

Enter the name of the User File.

MESSAGE: 2,4

NOTE:

Error messages and recovery
procedures follow the operating
instructions.

Enter the selection number
for the user file disk device
address.

MESSAGE: 2, 3, 5

Enter the Key File Number.
The Key File Number should
always be 1, unless there are
nultiple key files for a
single User File, in which
case the Key File Number may
be any digit from 1 to 9. 1In
any case it must have been
initialized.

MESSAGE: 2, 3, 6

5. ENTER THE NUMBER OF THE KEY
PILE DEVICE ADDRESS

1. 310 5. B1lO
2. 320 6. B20
3. 330 7. B30
4. 350

6. ENTER LAST KEY

7e TURN ON PRINTER
KEY RETURN (EXEC) TO RESUME

8. Record locations and keys are
displayed on the screen so
that the operator can check
the progress of the progran.

9.

Error Messages
ERROR MESSAGE

2. RE-ENTER

30

™

5. Enter the selection number ;
for the Key File Device addre. %

MESSAGE: 2, 3, 5

6. Enter the key of the last
record in the User File.

MESSAGE: 2

7. Mount paper on printer;
key RETURN (EXEC) to resume.
Duplicate keys, if any exist,
are printed.

If the system configquration
does not include a printer,
ignore this instruction; key
RETURN (EXEC) .

MESSAGE: 2
8 The system opens the files, f§9

sets up the sScreen display,
and creates the Key File.

MESSAGE: 7, 8, 9, 10
11, 12, 13, 14
15, 16, 17, 18

9. The system returns to KFAM
subsidiary menu.

EXPLANATION/RECOVERY
Too many characters were entered.
RECOVERY: Repeat the step, entering

not more than the number of char-
acters indicated on the screen.

iy

4o

Se

6.

7o -

8.

9.

ERR29

NOT KFAM FILE NAME

INVALID DEVICE ADDRESS

INVALID

ERRS8O

STOP ERROR OPENING FILES

KEY FILE NOT INITIALIZED
(STOP)

31

A non-numeric guantity was entered
when a numeric quantity vas
requested.

RECOVERY: Reenter numeric quantity.

The User FPile name must have an “F"
in position S5 and a digit 0-9 in
position 6.

RECOVERY: Repeat Step 2. Enter
correct User File nane.

The device address is invalid.

RECOVERY: Repeat the step. Enter
correct device address selection
number.

The Key File Number may not be 0.

RECOVERY: Repeat step 4. Enter a
Key File Number 1-9.

File not found. Either the User
File or the Key Pile specified is
not on the device specified.

RECOVERY: Rerun the program, making
sure the platters containing the
User File and Key File are mounted,
and that User PFile name, Key File
number, and device addresses are
specified correctly.

File could not be opened. Possible
cause: The program was stopped and
restarted after processing had
begun.

RECOVERY: Rerun INITIALIZE KFANM
FILE. Rerun this utility. If the
error persists, notify Wang
Laboratories, Inc.

Either INITIALIZE KFAM FILE was not
run, or an attempt was made to rerun
this utility without rerunning
INITIALIZE KFAM FILE.

RECOVERY: Run INITIALIZE KFAM FIL _f
for this User File and Key File. !/
Rerun this utility.

10. INVALID RECORD FORMAT Record type A, array-type blocking:
(STOP) more than one sector per block, more
than 38 fields per record, or not

written with correct control bytes.

RECOVERY: See "KFAM Specifications.™
Recreate User File according to spe-
cifications for A-type records.

ll. NOT BLOCKED AS SPECIPIED Record type A, array-type blockings
records per block specified.
incorrectly, or records not written
in array format.

RECOVERY: See "KFAM Specifi-
cations." Recreate User File
according to specifications or
correct blocking factor in
INITIALIZE KFA M FILE. Rerun
INITIALIZE KFAM FILE. Rerun this
utility. “')
12. RECORD LENGTH NOT SPECIFIED Record type A, array-type blocking:
CORRECTLY (STOP) record length specified ia

INITIALIZE KFAM FILE does not equal
record length of sample record.

RECOVERY: See instructions for
INITIALIZE KFAM FILE. Recalculate
record 1length. Rerun INITIALIZE
KFAM FILE. Rerun this utility.

13. KEY FIELD OUT OF BOUNDS (STOP) Record type A, array-type blockings
the key must be wholly contained
within one field of the record.

RECOVERY: See instructions for
INITIALIZE KFAM FILE. Recalculate

starting position of key. Rerun
INITIALIZE KXFAM FILE. Rerun this
utility.

l4. NUMERIC KEY INVALID (STOP) Record type A, array-type blocking:
the key falls within a numeric
field.

15. PROGRAM ERBOR

16 NO SPACE

17. SYSTEH HANGS

18. LAST KEY KEOT FOUND

33

RECOVERY: See WKPAM Specifi-
cations." See instructions for
INITIALIZE KFAM PILE. Recalculate
starting position of key so that it
falls within an alphanumeric field.
Rerun INITIALIZE KFAM file. Rerun
this utility.

Should not occur.

RECOVERY: Notify Wang Laboratories,
Inc.

Not sufficient spaée'for Key File.
Possibly last key vas entered
incorrectly.

RECOVERY: Run DISK/COPY/REORGANIZE
to increase Key File space.
INITIALIZE KFAM FILE. Rerun this
utility.

Printer not turned on or not
selected manually, or no device 215
in systen.

RECOVERY:. Turn printer om and press
"SELECT". If no device 215, this
program will not run without
modification. (See "KFAM Progranm
ming Techniques"- Eliminating the
Printer.)

The program has reached the physical
end of the User File without finding
the "last key." Last key was entered
incorrectlye.

RECOVERY: Rerun INITIALIZE KFAM
FILE. Rerun this utility with
correct "last key" entered.

CHAPTER 4
KFAM-3 SUBROUTINES

4.1 OVERVIEW OF KFAM-~3 SUBROUTINES

The KFAM-3 subroutines are designed to sinplify the file access and
maintenance operations most frequently performed on files organized by KFAM-3.
Included are GOSUB' subroutines to add new records to a file, delete old
records, and locate existing records. -

A single KFAM-3 file consists of two cataloged disk files, a User File
and 1its Key File. KFAM subroutines never alter the data in the User File’
They operate upon the data in the Key File, locate a record, update the Key
File whenever a record is to be added or deleted. Their function in relation
to the User File is only to set the User Pile's Current Sector address to the
location of the desired record in the User File, and, for blocked records, to
pass back to the application program the record location within the sector.
This process 1is initiated when the application program passes a key to the
KFAM subroutine in cne of the GOSUB' arguments. Upon completion of the KFAM

subroutine, the application program must perform the proper operation on the
User File.

Just as KFAM-3 does not operate upon the User File, so the application
program should never operate directly upon the Key File. All operatioas
involving the Key File, including OPEN and CLOSE, should be accomplished via
the KFAM-3 subroutines.

The functions performed by the KFAM-3 subroutines are:
Name Function

OPEN Open specified User Pile and con-
panion Key File.

)

34

. DELETE Remove specified key from Key File;
€”\ set User File Current Sector address
to record in User File whose key has
been deleted from the Key Pile.

FINDOLD Locate specified Key in the Key
File; set Current Sector address to
record in User Pile with that keye.

FINDNEW Add specified key to Key File; al-
locate space for a newv record in the
User File, and set User File Current

Sector address to the location fbr
the new record.

FINDNEW (HERE) Add specified key to Key File; set
Current Sector address to User File
sector vhere the new record is to be
written.

FINDFIRST Locate record with 1lowest key in
User PFile; set User File Current
Sector address to that sector.

‘ FINDLAST : Locate record with highest key in
¢ ’ User File; set User File Current
Sector address to that sector.

FINDNEXT Locate next record ian User PFile 1in
logical key sequence; set User File
Current Sector address to that
sector.

CLOSE Close User File and companion Key
‘ File.

Programming Procedure

The first step for the programmer is to decide what subroutines will be
required for a given program or program module. The utility program BUILD
SUBROUTINE MODULE is used to build a cataloged program file containing the
desired subroutines.

The subroutines occupy statement lines 200-3075. It is recommended that
the user-written application program follows them, beginning at a line number

greater than 3075. If necessary, KFAM-3 subroutines can be renumbered taking
care that the rules of BASIC be observed for COM and DIM statement location.

e

35

KFAM-3 subroutines use Q, T, and Vv variables and arrays (alpha an‘\\
numeric) for storage of critical internal pointers. The user-written progra
should, therefgre, strictly avoid the use of a Q, T, or V variable.

Identification of KFAM Piles

A User File and Key File can be thought of collectively as a KPAM file.
To use a KFAM file, the User Pile and the Key Pile must be open
simultaneously. Thus, each KFAM file requires two "slots" or M"rows" in the
processor's Device Table. The 2200 system offers a total of seven Device
Table slots, each identified by a "file number" symbol #0-#6. Since each KFAM
file uses two file numbers, and there are seven file numbers available, a
total of three KFAM files can be open concurrently.

The OPEN subroutine must be used to open a Key File and User File, before
any K¥AM file access operations can take place. The user-written application
program must pass to the OPEN subroutine the file numbers (#0-#6) to be used
for the Key File and User File. The application program also passes to OPEN a
digit, 1-3, which will be used to identify this KFAM file (User File/Key File)

for all other KFAM subroutines. This digit, 1-3, is called the U"KFAM ID
number." When passed to OPEN, OPEN establishes this number as the single
identifier for the fair cf cataloged files being opened. In subsequeant
operations, while these files are open, they are identified collectively
simply by passing the KFAM I.D. Number to the desired KFAM subroutine. ~
The file number for the User File is employed only when a record is to bﬂmy

written to or read from a User File. Then, the file number of the User PFile
(#0 - #6) must be specified in the DATASAVE DC or DATALOAD DC statement. The
KFAM I.D. Number is not used. 1In general, the file number of the Key File is
never used, since any reference to the Key File should be via a KFAM
subroutine. Note that accidental use of the Key File's file number in place
of the User File's file number in a DATASAVE DC statement causes the user data
to be written over data in the Key File. This destroys the Key File.

The same User File may be oren concurrently with more than one Key File,
but each such pair (User File/Key File) must have a different KFAM I.D.
Number, and the User File must be referenced by a different file number in
each case.

Key File Recovery Information

The KFAM maintenance utilities include a program called KEY PILE
RECOVERY. The purprose of this pragram is to reconstruct a Key File from an
existing User PFile, in the event that the Key File is accidentally destroyed.
Unlike the program KEY FILE CREATION, it does not require that the key of the
last physical record in the User File be known. However, it does require that

all wuser-written application programs operating on the file adhere to two
conventions:

36

@@& 1. All DELETE'ed records in the User File must have hex FF as the
first byte of the key. This means that after a program calls the
DELETE subroutine, it must then save hex FF into the first byte of

the record's key.

2. If FINDNEW is to be executed on a file, the RECOVERY option must be
included in the OPEN, FINDNEW, and CLOSE subroutines, and the file
must be closed with the CLOSE subroutine at the conclusion of
operations on the file. {The RECOVERY OPTION is offered in BUILD
SUBROUTINE MODULE as one of several optional additional
capabilities for the selected subroutine.) ;

4.2 BUILD SUBROUTINE MODULE

BUILD SUBROUTINE MODULE builds a module of selected KFAM subroutines for
use in an application F[program. It allows the programmer to include in an
application program module only those subroutines and subroutine capabilities
which actually are used in the application program module, and, thereby, keeps
to a minimum the amount of memory occupied by KFAM subroutines.

Fach KFAM subroutine may be included or excluded independently of the
others. After selecting the desired subroutines, the capability to operate on
multiple files (two or three KFAHM files open at the same time) may be included

¢ ‘excluded for the chosen subroutines. If ohly one KFAM file is to be open
: any one time, then excluding the pultiple file capability further reduces
memory requirements.

Pinally, the RECOVERY OPTION is offered. Whenever FINDNEW is executed,
the RECOVERY OPTION must be included in the OPEN, FINDNEW, and CLOSE
subroutines, if the ability to execute KEY FILE RECOVERY is desired. If the
ability to use KEY FILE RECOVERY is not desired, the RECOVERY OPTION need not
be included.

The OPEN subroutine, when chosen for a module, includes all the common
variables needed for subroutine operation, except those for FINDNEW and
PINDNEW (HERE). The utility separately asks whether the variables for FINDNEW
and FINDNEW{HERE) are to be included in the OPEN subroutine. These variables
must be included in the OPEN subroutine, if it is to be used to OPEN a file on
which, subsequently, FINDNEW or FINDNEW (HERE) is executed.

NOTE:

A1l subroutine modules operating on a given open KFAM file
must include the same cptions. (Options are OPEN FOR
FINDNEW, MULTIPLE FILES, RECOVERY.) For example, 1if
RECOVERY is chosen, it must be chosen for the module that
contains OPEN, any processing modules, and the module that
contains CLOSE.

37

. To illustrate how BUILD SUBROUTINE MODULE might be used to mnaximizeg
available memory, suppose that a file is to be Ypurged" in key sequencefﬁ§
deleting all obsolete records. The subroutines which are needed are:

OPEN
FINDFIRST
FINDNEXT
DELETE

These subroutines require 3370 bytes, approximately, if loaded at the sanme
tinme. Suppose, further, that there is not enough memory available to
accomplish the processing and include all of these subroutines. Two separate
nodules could be built, the first to contain OPEN and FINDFIRST, the second to
contain the rest. The first two of these subroutine modules would then beconme
part of a start-up module in the application program which would open the KFAHN
file, perform other preliminary processing, and then FINDFIRST. This start-up
module would then overlay the processing module, clearing the OPEN and
FINDFIRST subroutines as it does so. The processing module would contain

FINDNEXT and DELETE. Memory overhead at any one time, due to subroutines, is
thereby reduced from 3370 bytes to:

OPEN 2975 bytes
FINDFIRST

FINDNEXT 2380 bytes
DELETE .

NOTE: 'ﬁ%“

There are two modules of KFAM-3 subroutines included with
the KFAM-3 system. If desired, the programmer may simply
use one of these modules rather +than building a custon

module with the BUILD SUBROUTINE MODULE utility. The
modules are as follows:

MODULE NAME INCLUDES

KFANOOO3 All subroutines and
subroutine options.

KFAMO0103 All subroutines and
options except: DELETE,
FINDNEW, FINDNEW (HERE),
RECOVERY, OPEN FOR FINDNEW.

38

ro
'g@a Operating Instructions - BUILD SUBROUTINE MODULE

DISPLAY INSTRUCTIONS

l. 1. From KFAM subsidiary menu ac-
cess its "BUILD SUBROUTINE
MODULE" utility via the speci-
fied Special Function key.

2. ENTER THE NAME OF PROGRAHN 2. Enter the name of the progranm
TO BE GENERATED? file which is to contain the
selected subroutines, maximunm
of 8 characters.

If a file of the same name is
not already cataloged, the
utility allocates just enough
space for the selected
subroutines.

If a file of the same name is
already cataloged, that file is
used for the output program and
overwritten., If the file is

a data file, it is changed to

a program file.
o

CAUTION:

Before entering a name, ensure
that the name entered is not
the name of a valuable data
file or program file. If a
file already exists with the
same name, its contents are
destroyed by this utility.

If extra space is desired in
the output file, it should be
cataloged in advance as a data
file. PFor example,

DATASAVE DC OPEN T/B1l0O, 50,
”FILE"

39

ENTER THE NO. OF THE
OUTPUT PROGRAM DEVICE?

lQ
2.
3.
4,

230

310 5. B10
320 6. B20
330 - 7. B30
350

OPEN (Y OR N)?

OPEN FOR FINDNEW (Y OR N)?

231
232
233
234
235
236
237
239

DELETE (Y OR N) ?

FINDOLD (Y OR N)?
FINDNEW (Y OR N)?
FINDNEW (HERE) (Y OR N)?
FINDFIRST (Y OR N)?
FINDLAST (Y OR N)?
FINDNEXT (Y OR N)?
CLOSE (Y OR N)?

MULTIPLE FILES (Y OR N)?
RECOVERY OPTION (Y OR N)?

OK TO PROCEED?

PHASE 2 - BUILDING PROGRAM
NAME

Error Messages

ERROR MESSAGE

1.

2.

RE-ENTER 1.

"INVALID DEVICE ADDRESS 2.

40

3. Enter the selection number
for the device address at vﬁ%
vhich the subroutines are to
be saved.

ERROR MESSAGE: 1,2,3

4, Each of the listed proampts is
displayed sequentially. For
each subroutine or subroutine
capability enter Y to include
it in the output module;
to exclude it, enter \N.

ERROR MESSAGE: 1

5e Enter Y to accept selected
subroutines, or N to return to
step 4. :

ERROR MESSAGE: 1 o
6a The output module is qenerate:ﬁ%
ERROR MESSAGE: 4, 5, 6, 7

7. The system returns to the
KFAM-3 subsidiary menu.

EXPLANATION /RECOVERY

Too many characters were entered, or
an invalid character was entered in
response to a "yes" (Y) or "no" (N)
question.

RECOVERY: Repeat the step. Re-enter
the data.

The numbers 1-7 may be used to

‘specify a device address, according

to the table of device addresses
displayed.

Y

4o

ERR29 3.

INVALID DELIMITER (STOP) 4.

OUTPUT PROGRAM SPACE EXCEEDED
(STOP)

SYSTEM ERROR (STOP)

NO ROOM CN DISK FOR OUTPUT 7.
PROGRAM (STOP)

4.3 CALLING THE SUBROUTINES

dumny

Dummy Variable Names

In defining the argument lists for

variable names are used.

For example, the general statement:

GOsuUB'232 (1, 0, AY)

41

RECOVERY: Re-enwver

the data.

Repeat the step.
A non-numeric quantity vas entered
wvhen a numeric quantity wvas requested.

RECOVERY:
number.

Repeat the step. Enter a

Errors 4,5, and 6 are hardwvare or
softvare errors. They should not
occur.

RECOVERY: Rerun the program. If
the error persists, notify Wang
Laboratories.

There is not room enough on the disk
for the output program to be
cataloged.

RECOVERY: Rerun the program, with
an output disk with more free space
(25 sectors maximum requirement).

the subroutines, certain standard

These dummy names are used only to describe
the general forms of the respective GOSUB' statements.
the programmer may use any value or expression
statement.
used by KFAM-3.

In the actual progran,
valid for wuse in a GOSUB?

Zeros in the general statement represent parameters which are not
They should be included, as zeros in the GOSUB' statement.

P

'y be written as:

GOSUB'232(1,0,K$)
GOsSUB'232(2,0,"A48-3029")
GOSUB'232 (F1+1,0,STR(P1%,7,8))
etc.

The dummy variable names for KFAM-3, and their meanings, are as followvs:

Dummy Variable Meaning
I KFAM I.D. Number (1, 2, of J).
K File number assigned to the Key

File (#0-#6).

U File number assigned to the User
File (#0-#6).

F Key File number (1-9), specified
as the 6th character in the Key
File name, as assigned im INITIALIZE

KFAM FILE.
_ A% The record key (alphanumeric).
Qw' ' N$ User File nanme. A*Q

Re turn Codes

Upon returning to the main 1line program from the subroutines, the
variables Q and Q$ contain the following information:

¢ returns the record position indicator for blocked files (i.e., files
with more than one Tecord per sector). The record position indicator is a
numeric value which specifies the position of a desired record within a block.
For example, if Q=2, the key fpassed to the subroutine specifies the second
record in the block. For unblocked records Q is returned as 1, and may be
ignored.

Q is not defined following the OPEN or CLOSE subroutines.

Q3 contains the completion return code. It indicates the result of the

particular operation. The possible values of Q$, and their meanings, are as
follows:

42

}gﬁ\ 0% Value Meaning
blank The subroutine execution was OK.
D Duplicate key (attempting to add a

duplicate key to the file). The
Key Pile is unchanged.

E End of file (FINDNEXT only).
N Key not found.
S No more space, either for the User

File or the Key File, or 8 levels
of index have been exhausted

attempting to add a record to the
file. The Key File is unchanged.
{FINDNEW and FINDNEW (HERE) only.)

X Inproper call to a KFPAM subroutine
{argument values erroneous, etc.).

If Q% is anything other than blank, the User File Current Sector address
parameter is undefined, and the value of Q is undefined.

(‘ Inmediately upon return from any of the subroutines, the main lif)'
' @hbogram should check Q$ for possible error indicationms. :

The system assumes there are no programming errors in the main line
program. The KFAM Subroutines can perform improperly, amd can destroy a file,
if the rparameters supplied by the main line program are erroneous. Therefore,
during the testing stage, it is recommended that the user keep a backup file
so that test data can be recovered in the event that it is destroyed.

The subroutines check data errors, and the kind of errors likely to occur
during normal operation, such as duplicate key, key not found, or no more
space. The following errors, which are programming errors, may or may not be
caught by the subroutines:

. Q% value,
Error or ERR code
KFAM I.D. Number not an integer X
between 1 and 3. ERR 18
KFAM I.D. Number is the sanme X

as I.D. Number for a file
already open.

43

2 File to be opened is already X ,ﬁ%x

open.
Individual file numbers not ERR 18
integers between 0 and 6. ERR 41
Individual file number is X
duplicate of another file

nunber.

File name not in proger format, ERR 78
¥ith S5th byte="F" and 6th ERR 80

byte a 0 (zero).

Key FPile number not an integer ERR 56
from 1 to 9.

File to be accessed has not X
been opened.

SELECT statements and file none
nunbers do not actually
corresponde.

File names are not correct, ERR 78
(‘y or do not exist on the disk)
-~ platters specified. : ' : ﬁ%'

4.4 OPEN

The OPEN subroutine is used to open a User File and its companion Key
File. OPEN must be executed prior to execution of any other KPAN-3
subroutine. In the OPEN subroutine, a pair of DATALOAD DC OPEN statements are
executed to open the named User File and its companion Key File. Specified
file numbers are assigned to each file. OPEN also assigns a specified KFAM
I.D. Number to the pair of files. To call the OPEN subroutine you must write
tvo statements of the following general form:

SELECT #U XXX, #K YYY
GosuB' 230 (1,K,U,F,N$)

For the SELECT Statement

"#U" is the file number to be associated with the User File; "U" can be a
number from 1 to 6. "#U" must be used in all subsegquent DATASAVE DC or
DATALOAD DC statements to reference the User File.

"XXX" is the device address of the platter on which the User File is
stored. .

‘i‘« !\5)' 4

44

£ :
f wgkm is the file number to be associated with the Key File; "K" can be
‘wumber from 1 to 6.

wyYY" is the device address of the platter on which the Key File is
stored. .

For the GOSUB' Statement

urm is the KFAM I.D. Number to be associated with the newly opened pair
of files and must be used to reference the KFAM file in subsequent KFAH
subroutines. "I"™ can be a number from 1 to 3. ‘

ngm is the file number to be assigned to the Key File (see "#K" above).
wg® is the file number to be assigned to the User File (see "#U" above).

npn js the Key File number (the sixth character in the Key File name). It
may be an integer from 1 to 9, but normally is l.

uN$" is the name of the User File to be opened. The Key File name need
not be specified; it is built from the User File name and the Key File number
by KFAM itself.

Return Codes for OPEN

(%”h Q$ = " w (space) if the subroutine executiom was O.K. 3
0$ = "X for an improper call (i.e., one of the arguments in the
GOSUB' 230 argument list was incorrect, or the file is already
open) Note, if a file is already open, or the KFAM I.D. number
is already in use, OPEN returns Q$ = %X".

4.5 DELETE .

The DELETE subroutine deletes from the Key File a specified key and 1its
associated record 1lccation pointer. The Current Sector address for the User
File is set to the location of the record whose key has been deleted, and for
blocked records the variable Q is set to the record position within the
sector. The record itself, in the User File, 1s not altered or removed.
Thus, although the record is not physically removed from the User File, its
key entry is removed from the Key File, and the record can no longer be
accessed through KFAM.

The calling sequence for DELETE is:
GOSUB* 231 (I, 0, AS)
wI" is the KFAM I.D. Number, assigned to the file in an OPEN subroutine.

jg@K wpA$" is the key of the record that is to be deleted from the file.
£

45

DELETE Return Codes

~

Q% = "N" if the key pPassed cannot be found in the Key File.
Q% = "X" for an improper call.
Qf = m » ("space") if the subroutine executed properly.

After calling a DELETE subroutine and checking for its successful
completion, the application program should flag the DELETED record in the User
File by changing the first character of the deleted record's key to hex FF.
For unblocked files this can be done as follows:

Suppose:

DIM AS$15, H(4,4), J(6)
and
DATA SAVE DC 41, AS, H{), J()

define a type "N" record where A3 is the key field.
The DELETE-and-flag operation might look like this:

4060 GOSUB' 231 (1, 0, A$): REM DELETE

4070 IF Q$<> ™ ™ THEN 6000:REM ERROR?

4080 DATA LOAD DC #1, A$, H(), J()

4090 STR(AS$,1,1)=HEX (FF) :REM HEX (FF) IN 1ST BYTE OF KEY \
C 4100 DBACKSPACE #1,1S:EEM RECORDS ARE 1 SECTOR LONG)
4110 DATA SAVE DC #1,AS,H(),d{() ,)

6000 STOP "DELETE UNSUCCESSFUL"

Instead of flagging deleted records, the space in the User File can bhe
reused; however, this ncrmally requires special techniques together with the
use of FINDNEW(HERE). For infermation on these techniques see Chapter 12.

4.6 FINDOLD

The FINDOLD subroutine is used to locate a desired record in the User
File. TFollowing subroutine execution, the Current Sector address for the User
File is set to the address of the record whose key was passed to the
subroutire. Por blocked records, variable Q is set to the record position
within the sector. The record can then be read with a DATALOAD DC statement.
The calling sequence is:

GOSUB' 232 (I, 0, AS%)
"I" is the KFAM I.D. Number assigned to the file in the OPEN subroutine.

"A$" is the key of the record being sought.

46

g‘v FINDOLD Return Codes

0% = "N if the specified key is not located in the Key File.
0$ = "x" for an improper call.
0$ = " " (wspace") if the key was located without difficulty.

4.7 FINDNEW

The PINDNEW subroutine is used to enter a new key in the Key File and to
find a locationifor the new record in the User File. FINDNEW enters the key
passed to it in the Key File, then sets the Current Sector address for the
User File to -the next sequential sector available for writing a new record.
For blocked records, variable @ is set to the record position within the
sector. The calling sequence is:

GosuB* 233 (1,0,A$,0)
wI® is the KFAM I.D. Number, assigned to the file in an OPEN subroutine.
mp$" is the new key to be entered in the Key File.
FINDNEW Return Codes
} Q$ = "D" if the key specified is a duplicate of one already in the Key
g?“ 0% s;ie;f there is no space in the User File for andther record, or inm

the Key File for another key entry, or 8 index 1levels have been
exhausted.

Qs

(0}

nYw for an improper call.
n n (ngpace”) if the kXey was entered without difficulty.

The following example illustrates the procedure for adding a record to a
type A blocked file fcllowing FINDNEW. Note the test on Q before the DATA
SAVE. ‘

4100 INPUT "KEY FIELD", AS :REM OPERATOR ENTERS KEY

4120 GOSUB '233 (1,0,A$,0) :REM FINDNEW

4130 REM TEST COMPLETION CODE

4140 IF Q% = "D" THEN 5010 :REN DUPLICATE KEY?
4150 IF Q$ = "S™ THEN 5050 :REM FILE FULL?

4160 IF Q$<> ™ " THEN 5060 :REM ERROR?

4170 REM NEW BLOCK OR OLD?

4180 IF Q = 1 THEN 4220 :REM PIRST RECORD IN NEW BLOCK?

4185 REM READ EXISTING RECORDS IN BLOCK

4190 DATA LOAD DC #2, A$(),BS(),C(),D{)

4200 DBACKSPACE #2, 1 S :REM BACKSPACE AFTER DATALOAD

47

s

10 REM ASSIGN RECORD VALUES TO PROPER ARRAY ELEMENTS -
4220 A$ (Q) = AS j%
4230 INPUT "SECOND FIELD", B$(Q))
4240 INPUT "THIRD FIELD", C(Q)

4250 INPUT "FOURTH FIELD", D(Q)
4260 REM SAVE BLOCK IN. USER FILF
4270 DATA SAVE DC #2, AS$(),BS$(),C{),D()

5000 REM ERROR MESSAGES

5010 STOP "KEY ALREADY EXISTS"
5050 STOP "KEY FILE OR USER FILE IS FULL"
5060 STOP "FINDNEW ERROR"™

4.8 FINDNEW (HERE)

The PINDNEW(HERE) subroutine is a specialized routine whose primary use
is in changing the keys of existing keyed records. It can only be used
following the DELETE subroutine. (To get around this rule, see Chapter 12.)
Once DEFELETE has removed the old key from the Key File, FINDNEW (HERE) enters
the new key, along with the lccation of the deleted record, in the Key File.
The Current Sector address.is unchanged. Por blocked records, the variable Q
is set to the record position within the block. '

{& The difference between FINDNEW and FINDNEW(HERE) is that FINDNEW make™

~

)

available the next available free space for the new record, whereas FINDNEw»

(HERE) enables the user to use the space occupied by a DELETED record.
The calling sequence is:
GOSUB' 234 (1,0,A%,0)

The FINDNEW{(HERE) argument list is identical to the argument 1list for
FINDNEW (see FINDNEW)a

FINDNEW(HERE) Return Codes

Q% = "¥" for an improper call.
Q% = "D" if the keéy specified is a duplicate of a key already in the Key
File.
Qf = "s" if there is no space in the Key File for another entry, or if 8
index levels have been exhausted.
Q% = " n (space) if the subroutine executed properly.
A\ ﬁ%/

48

\ _ELETE:

€wﬁle to the first reccrd in logical key sequence. For blocked records,

The following example illustrates the use of FINDNEW (HERE) followiuy

5000 GosuB *231 (1,0,"ABCD"™) :REM DELETE %“ABCD" FROM KEY FILE
5010 IF Q$ = "X" THEN 5130

5S040 IF Q% = "N" THEN 5150

5050 GosuB *'234 (1,0,"EFGH",0) :RENM INSERT "EFGH" IN KEY FILE
5060 IF Q$ = "X¥ THEN 5140

5070 IF Q3 = #p%w THEN 5160

5075 IF Q$="sS" THEN 5170

5080 DATALOAD DC #2,1%,B$,CS$,N

5090 A$ = "EFGH" :REM CHANGE KEY TO "EPGH"

5100 DBACKSPACE #2, 1S :

5110 DATASAVE DC #2,A3,B5,C3,N

5115 GOSUB*239(1) :=:REM CLOSE PILES

5120 END

5130 STOP "ERROR IN 'DELETE' CALLING SEQUENCE"

5140 STOP "ERROR IN 'FINDNEW (HERE)' CALLING SEQUENCE"

5150 STOP "KEY NOT FOUND"

5160 STOP "DUPLICATE KEY™

5170 STOP "NO SPACE"

4.9 FINDFIRST
The FINDFIRST subroutine sets the Current Sector address for the Us-:)

variable Q is set to the record position within the sector. A DATALOAD DC
statement can be used after FINDFIRST to read the record. The calling
sequence is:

GOSUB' 235 {I) '

"I® js the KFAM I.D. Number, assigned to the file in am OPEN subroutine.

FINDFIRST Return Codes

Q% = "N"™ if the User File contains no records.
Q% = wxX" for an improper call.
Q$ = " n (space) if the subroutine executed properly.

4410 FINDLAST

The FINDLAST subroutine sets the Curremat Sector address for the User File
to the last record in logical key sequence. For blocked records, the variable
Q is set to the record position within the sector. A DATALOAD DC statement

can be executed following PINDLAST to read the record. The calling sequence

is:

\ w’ i 4/},

49

¥y

GOSUB' 236 (I) ‘@%*

~

“I" is the KFAM I.D. Number assigned to the file in an OPEN subroutine.

FINDLAST Return Codes

Q% = "N" for a null file.
Q% = "x" for an improper call.
Q% = " n (space) if the subroutine executes normallye.

4.11 FINDNEXT

The FINDNEXT subroutine sets the Current Sector address for the User File
to the record immediately follcwing (in logical key sequence) the last record
accessed by KFAM. For blocked records, the variable Q is set to the position
of the record within the sector. A DATALOAD DC statement can be executed
following FINDNEXT to read the record. FINDNEXT is useful for processing
files in key sequence. The calling statement is:

GOSUB' 237 (I)
"I" is the KFAM I.D. Number assigned to the file in an OPEN subroutine.
FINDNEXT Return Codes

\;'. Q$
Qs

"X" for an improper call. R
"E" if the previcus reference was to the last record in logical key
sequence.

Othervise, Q% = " " (space).

NOTE:

FINDNEXT cannot be executed as the Ffirst subroutine
following an OPEN routime. Also, FINDNEXT cannot normally
be executed immediately following any subroutine which
returned an error code (Q$ other than blank). Otherwise
FINDNEXT will lccate the next sequential key, following
any subroutine.

If FINDNEXT is executed following a FINDOLD that returned
Qf = ™"N" (not found), then FINDNEXT finds the next
sequential record which would follow the record sought in
the FINDOLD, were that record actually in the file.

50

CHAPTERS ,
KFAM-4 SUBROUTINES

51 PROGRAMMING WITH THE KFAM-4 SUBROUTINES
5.l.1 Differences between KFAM-4 Subroutines and KFAM-3 Subroutines

The KFAM-4 subroutines perform the same functions as those of KFAM-3.
3efore wusing KFAM-4, the rroqrammer should become familiar with the use of
KFAM~3. Except as noted in this chapter, the elementary KFAM subroutine _
(ogramming conventions and procedures described in Section 4.1, apply to
lgww-u as well as KFAM-3.

The subroutine RELEASE is added in KFAM-4 to turn off a protect flag on a
record. The principal differences between the other KFAM-3 and KFAM-I
subroutines fall into four categories:

1. Two additional arguments to be supplied in the GOSUB' statements
which call the subrcutines.

2. Two additional return codes which 1indicate that the subroutine

operation could not be carried out, due to a protective procedure
invoked by another CPU.

3. A completely different procedure for SELECTing the Key File device
address. ‘

4. The CLOSE subroutine must be executed at the <conclusion of file
operations.

Additional Arguments

In the OPEN subroutine a class—-of-access argument is required.
Symbolized by the dummy variable C$%, an argument value of "A" means that any
other CPU's may open the file while this CPU has the file open. An argument

52

4.12 CLOSE ﬂ@%

The CLOSE subroutine is used to close a currently open User File and its
companion Key Pile. The KFAM I.D. Number assigned to a closed file can then
be reassigned to another file in an OPEN routine. Similarly, the file numbers
assigned to a User File and Key File can be reassigned in an OPEN routine once
the files have been closed. The CLOSE subroutine also saves certain critical
information for the KEY FILE RECOVERY utility, provided that the RECOVERY

OPTION was included during BUILD SUBROUTINE MODULE execution. The calliag
- sequence is:

GOSUB' 239 (I)

t

"I"™ is the KFAM I.D. Number assigned to the file in an OPEN routine.
Following execution of the CLOSE routine, this number can no longer be used to
access the User File and its associated Key File.

CLOSE Return Codes

Q% = nX" for an improper call.
Othervise, Q% = % " (space).

51

ienalue of "X" means that this CPU seeks exclusive access to the file.

-~

{Vflag. All other records in the file may, however, be accessed. If >

In general, exclusive access should not be sought, except- for those
operations which must be carried out on an entire file with the entire file
protected from alteration by another CPU. For exanmple, printing an end of
period status report might be an appropriate use of exclusive access, wvhen it
is important that the report reflect the file status at one particular tinge.
However, in addition to this use, exclusive access may be sought whenever
paximum access speed is required.

A protect-flag argument is required for the following subroutines:

DELETE : .
FINDOLD

FINDNEW

FINDNEW (HERE)

FINDFIRST

FINDLAST

FINDNEXT

The dummy variable P is used to represent this argument. If an argument value
of 1 is passed to the subroutine, then the protect flag is turmed on for the
record or block or records accessed by this subroutine call. As long as the
protect flag is on for a record or block of records, that record or block
cannot be accessed by any CPU other than the CPU which turned on the protect

™ cgument value of 0 is passed to the subroutine, then the protect flag is nouc
.urned on.

Once turned on, a protect flag is automatically turned off as soon as the
CPU that turned on the flag executes another KFAM-4 subroutine on the same
file. The subroutine RELEASE can be used if there may be a long delay before
another subroutine is executed. RELEASE simply turns off the protect flag.

Additional Return Codes

As a result of the OPEN subroutine, Q0§ may be returned with the value
ncn, This indicates access-class conflicta. Either this CPU is seeking
exclusive access when another CPU has the file open, or this CPU seeks access
vhen another CPU has exclusive access.

After executing any of the subroutines, except OPEN, CLOSE, and RELEASE,
Q$ may be returned with the value "B". This is the busy signal. It means
that the User Pile record which was sought has had its protect flag turned on
by another CPU. The User File's Current Sector address is unchanged.

SELECT Procedure

In KFAM-3 the user program executes a SELECT statement for the key file
device address as well as the user file device address, immediately prior to

.. calling the OPEN subroutine. The KFAM-3 subroutines themselves never have ¢+~

53

¢ T a device address. However, this situation is changed for KFAM-4. Am%
KFAM-4 subroutine must SELECT a hog mode address for the key file, hog the
disk during its execution, and then SELECT the non-hog mode address and leave
hog mode before returning coantrol to the user programe.

The KFAM-4 subroutines select hog mode and non-hog mode by calling short
subroutines that reside in the user program. These subroutines must be
written by the application programmer, and iancluded in every module which
accesses a KFAM-4 subroutine.)

For example, suppose that a Frogram accesses just one KPAM file, that the
Key File is at device address 320, and that file number #2 is used for the Key
File. The following two subroutines must be included somewhere in the user
progranm. : o

4000 REM SELECT HGG MODE

4010 DEFFN' 210 (T6)

4020 SELECT #2 3a0

4030 RETURN)
4040 REM SELECT NON-HOG MODE

4050 DEFFN' 211 (T6)

4060 SELECT #2 320

4070 RETURN

Shortly after it is called, the KPAM-4 subroutine calls DEFFN'210 to
‘3(ngt hog mode for its operations on the Key File. When the KFAM-4

. Tout ine is nearly complete, it calls DEFFN'211 to select non-hog mode.ﬂqyf

After selecting non~hog mode, the subroutine executes a disk statement so that
the hog mode is actually released before control is passed back to the user
program.

Thus, the SELECT subroutines are the reverse of the normal KFAM
subroutines. 1In general, the user program calls a KFAM subroutine; however,
these particular subroutines are written by the user, and called by the KFAM-4
subroutines. '

Notice in the SELECT subroutines shown above, that the variable T6 is
assigned a value by the GOSUB' statement which calls the subroutine. This
variable must alsays appear in the DEFFN' statements of the SELECT
subroutines; however, the value of this variable becomes significant only if
several KFAM files are to be accessed by the user program. The variable T6 is
assigned the KFAM I.D. Number when the SELECT subroutines are called by a
KFAM subroutine. It is used as follows.

Suppose that there are three KFAM files (Key File/User File) to be
accessed by the user program. The pertinent information is

54

- KFAM Key File Key File

B I.D. NO. File Number Device Address
1 #2 B20
2 #4 B20
3 #6 320

The SELECT subroutines should be written as follows:

4000 REM SELECT HOG MODE

4010 DEFFN'210 (T6)

4020 ON T6 GOTO 4030, 4040, 4050
4030 SELECT #2 BAO: RETURN

4040 SELECT #4 BAO: RETURN

4050 SELECT #6 3A0: RETURN

4060 REM SELECT NON-HOG MODE
4070 DEFFN'211 (T6)

4080 ON T6 GOTO 4090, 4100, 4110
4090 SELECT #2 B20: RETURN

4100 SELECT #4 B20: RETURN

4110 SELECT #6 320: RETURN

[%“ Notice that T6, which is the KFAM I.D. number, is used to coatrol wvhich

of the Key FPiles is SELECTed for hog (or non-hog) mode.

The KFAM-4 subroutines cannot operate successfully without the SELECT
subroutines included in the application program.

The CLOSE Subroutine

When the KPAM-4 OPEN subroutine is executed, the CPU opening the file is
assigned to a slot in the Access Table of the Key File's KDR record. It
moccupies" this slot until it executes the CLOSE subroutine. If a CPU openms a
file and fails to execute the CLOSE subroutine at the conclusion of its file
operations, the Access Table retains the open file notation for that slot.
This false notation in the Access Table prevents the file from being opened in
the exclusive mode. Four such false notations, or one false ™"exclusive
access" notation, prevent the file from being opened at all, by any CPU. It
is therefore imperative that the CLOSE subroutine be executed at the
conclusion of oferations on a KFAM-4 file.

5.1.2 Procedural Notes for Programming with KFAM-4 Subroutines
In general the programming procedures used with KFAM-4 subroutines are

not unlike those used with KFAM-3. In addition to the differences in calling
sequences, return codes, and SELECT procedures, the following difference

-~ should be noted.

55

The protect flag should be set for a record if a DATA SAVE is to be
executed on the reccrd. (The protect flag is set by specifying a im%
for the dummy variable "P" in the GOSUB' argument 1lists of the
KFAM-4 subroutines.) Updating records, adding new records, and
flagging deleted records all require that a DATA SAVE DC be
executed; therefore, the protect flag should be set for all these
operations. Operations which only execute DATA LOAD DC on the
record should not set the protect flag.

\t

Application progranms éhould not attempt to hog the disk
continuously. The user file address should be a normal disk
address, not a hog mode address.

The application program must check for a return code of Q% = mBn»,
indicating that the record ({or block of records) sought 1is
protected. On a Q% = "B" condition the application program can
simply reexecute the subroutine. For example,

4250 GOSUB' 237 {2,1):REM FINDNEXT
4260 IF Q% = "B" THEN 4250: REM KEEP TRYING

In general a file should not be opened in exclusive mode, except ia
either of the following circumstances:

a) The operation on the file must take place with the file
status fixed as of the beginning of the operation. For ~3
"example, printing a report as of the end of an accountin¢ﬁ%.
period. ‘ :

b) Maximum file access speed is needed. (When a file is
open in exclusive mode, the KFAM-4 subroutines can search
the key file without first reading and writing the KDR
record. This allows subroutine execution speed to
approximate that of KFAM-3.)

Application programs must never write trailer records of any kind
into the user file. The RECOVERY OPTION should be used to provide
recovery capability for the possibility of accidental Key File
destruction. In general, application programs must never make any
assumptions about the status of user file sectors other than those
specifically ' returned by a subroutine. For example under KFAM-4,
it is possible for the next sequential record location, after that
returned by a FINDNEW, to be already occupied by a live record,
written by another CPU.

Application programs should execute the RELEASE subroutine if the
previous call set the protect flag, and there may be a long delay
before the next KFAM-4 subroutine call on that file.

You may wish to consider any keyboard entry operation as involving
a 1long delay, and execute RELEASE prior to the keyboard entry.

ﬂﬁ%

56

@m\ Alternatively, a Special Punction Key subroutine that executes
- RELEASE may be made available during all keyboard entry operations.
The operator would then be instructed to depress the specified
Special Function Key if there is any delay prior to responding.

7. The CLCSE subroutine must be executed at the conclusion of
operaticns on a KFAM-4 file. The operator should always have
available a procedure for CLOSING the file in the event of progranm
malfunctions, or other disaster. (If the CPU power is turned off
without CLOSING the file, the Access Table retains a notation for a
“phantom™ CPU; the RESET ACCESS TABLE utility must be run.) A
Special Function key subroutine such as DEFFN' 31 might be nmade
available to CLOSE a file at any time.

5.2 BUILD SUBROUTINE MODULE (KFAM-4)

BUILD SUBROUTINE MODULE builds a module of selected KFAM subroutines for
use 1in an application progranm. It allows the programmer to include in an
application program module only those subroutines and subroutine capabilities
which actually are used in the apglication program module, and, thereby, keeps
to a minimum the amount of memory occupied by KFAM-4 subroutines.

Each KFAM subroutine may be included or excluded indepeandently of the
others. After selecting the desired subroutines, the capability to operate on
multlple files (two or three KFPAM-4 files open at the same time) may be

cluded or excluded for the chosen subroutines. If only one KFAM-4 file is
to be open at any one time, then excluding the multiple file capability
further reduces memory requirements. Finally, the RECOVERY OPTION is offered.
It must be included in order for the KEY FILE RECOVERY program to execute
successfully in the event of accidental Key File destruction. If the ability
to use KEY FILE RECOVERY is not desired, the RECOVERY OPTION need not be
included. :

The OPEN subroutine, when chosen for a module, includes all the conmmon
variables needed for subroutine operation except those for PINDNE# and
FINDNEW (HERE). The utility separately asks whether the variables for FINDNEW
and FINDNEW(HERE) are to be included in the OPEN subroutine. These variables
nust be included in the OPEN subroutine, if it is to be used to OPEN a file on
which, subsequently, FINDNEW or FINDNEW{HERE) is executed.

NOTE:z

All subrcutine modules operating on a given open KFAM file
must include the same options. (Options are OPEN FOR
FPINDNEW, BULTIPLE FILES, RECOVERY.) For exanmple, if
RECOVERY is chosen, it must be chosen for the module that
contains OPEN, any processing modules, and the module that
contains CLOSE.

57

To illustrate how BUILD SUBROUTINE MODULE might be used, to maximif“%
‘available nmenmory, suppose that a file is to be "purged" in key sequence,-
deleting all obsolete records. The subroutines which are needed are:

OPEN
FINDFIRST
FINDNEXT
DELETE
CLCSE

These subroutines require 4406 bytes, approximately, if 1loaded at the sane
time. Suppose, further, that there is not enough nmemory available to
accomplish the processing, and include all of these subroutines. Two separate
modules could be built, the first to contain OPEN and FINDFIRST only, the
second to contain the rest. The first of these subroutine modules would then
become part of a start-up module in the application program which would open
the KFAM file and perform other Freliminary processing. This start-up module
would then overlay the processing module, clearing the OPEN and FINDFIRST

subroutines as it does so. The processing module would contain the second
group of subroutines: FINDNEXT, DELETE and CLOSE. Memory overhead at any one
time, due to subroutines, is thereby reduced from 4406 bytes to

OPEN 3830 bytes
FINDFIRST ‘
, -~)
FINDNEXT , ﬁ%’
DELETE 3255 bytes
CLOSE
Note 1:

There are two modules of KFAM-4 subroutianes included with
the KFAM-4 system. If desired, the programmer may simply
use cne of these modules rather than build a custom module
with the BUILD SUBROUTINE MODULE utility. The modules are
as follous:

MODULE NAME INCLUDES

KFAMO0004 All subroutines and
subroutine options.

KFAMO104 All subroutines and options
except: DELETE, FINDNEW,
FINDNEW (HERE), RECOVERY,
OPEN FOR PINDNEW.

! NOTE 2:
-

M3 = "X" (EXEC)

BUILD SUBROUTINE MODULE selects hog mode for the output
disk device. To execute it in non-hog mode, or to execute
it at a non-multiplexed disk drive, key:

at KFAM-4 utilities menu, prior to accessing the utility.

Operating Instructions - BUILD SUBROUTINE HODULE KFAM-4

DISPLAY

l. l.

2. ENTER THE NAME OF PROGRAHNM 20
TO BE GENERATED?

SRS

59

INSTRUCTIONS

Prom KFAM-4 subsidiary menu ac-
cess its "BUILD SUBROUTINE
MODULE" utility via the speci-
fied Special Function key.

Enter the name of the program
file which is to contain the
selected subroutines, maxigum
of 8 characters.

If a file of the same name is
not already cataloged, the
utility allocates just enough
space for the selected
subroutines.

If a file of the same name is
already cataloged, that file is
used for the output program aand
overwritten. If the file is

a data file, it is changed to

a program file.

CAUTION:

Before entering a name, ensure
that the name entered is not
the name of a valuable data
file or program file. If a
file already exists with the
same name, its contents are
destroyed by this utility.

5

ENTER THE NO. OF THE
OUTPUT PROGRAM DEVICE?

1. 310 5. BlO
2. 320 6. B20
3. 330 7. B30
‘4 350

230 OPEN (Y OR N)?

OPEN FOR FINDNEW (Y OR N)?
231 DELETE (Y OR N)?

232 FINDOLD (Y OR N)?

233 FINDNEW (Y OR N)?

234 FINDNEW (HERE) (Y OR N)?
235 FINDFIRST (Y OR N)?

236 FINDLAST (Y OR N)?

239 CLOSE (Y GR N)?

237 FINDNEXT (Y OR N)?
238 RELEASE (Y OR N)?
MULTIPLE FILES (Y OR N)?
RECOVERY OPTION (Y OR N)?

CK TO PROCEED? (Y OR N)

PHASE 2 - BUILDING PROGRAM
NAME

60

3.

4.

5«

If extra space is desired in ﬂﬂ%
the output file, it should be _
cataloged in advance as a data
file. For exanmple,

DATASAVE DC OPEN T/B1l0, 50,
WPILE"

Enter the selection number
for the device address at
which the selected subroutines
are to be saved.

NOTE:

The utility operates in hog
mode on the output disk drive
unless M3 is set to "x".

ERROR MESSAGE: 1,2,3

Each of the listed prompts is
displayed sequentially. For
each subroutine or subroutine
capability enter Y to include

it in the output module; .)
otherwise, enter N. A%%

ERROR MESSAGE: 1

Enter Y to accept selected
subroutines, or N to return to
step 4.

ERROR MESSAGE: 1
The output module is generated.
ERROR MESSAGE: 4, 5, 6, 7

The system returns to the
KFAM subsidiary menu.

© _Error Messages

" ERROR MESSAGE

lo'

2.

3.

6.

7.

RE-ENTER

INVALID DEVICE ADDRESS

ERR29

INVALID DELIHITBB (STOP)

OUTPUT PROGRAM SPACE EXCEEDED
(STOP)

SYSTEM ERROR (STOP)

NO ROOM ON DISK FOR QUTPUT
PROGRAM (STOP)

1.

2.

3.

4.

61

EXPLANATION/RECOVERY

Too many characters were entered, or
an invalid character was entered in
respoase to a "yes™ {Y) or "no" (N)
question.

RECOVERY: Repeat the step. Re-enter
the data.

The numbers 1-7 may be used to
specify a device address, according
to the table of device addresses
displayed.

RECOVERY: Repeat the step. Re-eanter
the data.

A non-numeric gquantity was eatered
vhen a numeric quantity was regquested.

RECOVERY: Repeat the step. Enter a
number.

Errors 4,5, and 6 are hardware or
software errors. They should not.
occur.

RECOVERY: Rerun the program. If
the error persists, notify Wang
Laboratories.

There is not room enough on the disk
for the output program to be
cataloged.

RECOVERY: Rerun the program, with
an output disk with more free space
(25 sectors maximum requirement).

5.3 CALLING THE KFAM-4 SUBROUTINES ,ﬁgv

Dummy Variable Names

In defining the argument lists for the subroutines below, certain
standard dummy variable names are used. These dummy names are used only to
describe the general forms of the respective GOSUB' statements. TIn the actual
program, the programmer may use any value or expression valid for use in a
GOSUB' statement. Zeros in the general statement Cepresent parameters which

are not used by KFAM-4. They should be included, as zeros in the GOSUB?
statement.

For example, the general statement:
GOsuB' 233 (1,P,AS$,0)
may be written as:
GOSUB'233 (I,P,K$,0)
GOSUB'233 (2,1,"A48-3029",0)

GOSUB'233(Fl+l,0,STB(Pl$,7,8),0)
etce.

The dummy variable names for KFAM-4, and their meanings, are as follows:

Dummy Variable © Meaning A%)
I KFAM I.D. Number (1, 2, or J). '
K File number assigned to the Key

File (#0-#6).

0 File number assigned to the User

F Key File number (1-9), specified
as the 6th character in the Key
File name, as assigned in INITIALIZE

KFAM FILE.
A% ¥ The record key {alphanumeric).
N§ User File name.
P Protect flag. If P=0, then other

CPU's may access this record or
block of records. If pP=1,

then only this CPU may access this
record or block of records.

62

1€§\ c$ Class of access desired in opening
the file. "A" means any CPU may

access the file. "X" means this CPU

seeks exclusive access to the file.

Return Codes

Upon returning to the main line program from the subroutines, the
variables Q and Q% contain the following information:

Q0 returns the record position indicator for blocked files (i.e., files
with more than one record per sector). The record position indicator is a
numeric value which specifies the position of a desired record within a block.
For example, if Q0=2, the key fpassed to the subroutine specifies the second
record in the Dblock. For unblocked records Q is returned as 1, and may be
ignored.

0 is not defined following the OPEN or CLOSE subroutines.
0% contains the completion return code. It indicates the result of the

parficular operation. The possible values of Q$, and their meanings, are as
follows:

Q% Vvalue Meaning
™ blank ° ' . The subroutine execution was
¢ successful.
D Duplicate key (attempting to add a

duplicate key to the file). The
Key PFile is unchanged.

E End of file (FINDNEXT only).
N Key not found.

S No more space, either for the User
: File or the Key File, or 8 levels
of index have been exhausted
attempting to add a record to the
file. The Key File is unchanged.
(FINDNEW and FINDNEW (HERE) omnly.)

B Busy Signal. The user file record
or block of records being accessed
has been "protected" by another CPU.

(o Access Class conflict (OPEN only)e.
Either this CPU is asking for

63

exclusive access when another CPU

has the file open, or this CPU is ﬁﬁ

asking for access when another CPU
has exclusive accesse.

X Improper call to a KPAM subroutine
{argument values erromeous, etcC.) -

If 0% is anything other than blank, the User File Current Sector address
parameter is undefined, and the value of Q is undefined.

Inmediately upon return from .any of the subroutines, the main 1line
program should check Q3 for pcssible error indications.

The system assumes there are no programming errors in the main line
fFrogram. The KFAM Subroutines can perfornm improperly, and can destroy a file,
if the parameters supplied by the main line program are erroneous. Therefore,
during the testing stage, it is recommended that the user keep a backup file
so that test data can be recovered in the event that it is destroyed.

The subroutines check data errors, and the kind of errors likely to occur
during normal operation, such as duplicate key, key not found, or no more
space. The following errors, which are programming errors, may or may not be
caught by the subroutines:

. : Q0% value, ‘ >
Error or ERR code M@
KFAM I.D. Number not an integer X
between 1 and 3. ERR 18
KFAM I.D. Number is the sanme X
as T.D. Number for a file
already open.
File to be opened is already X
open.
Individual file numbers nat ERR 18
integers between 0 and 6. ERR 41
Individual file number is X
duplicate of another file
number.
File name not in proper format, ERR 78
with 5th byte="P" and 6th ERR 80
byte a 0 (zero).
Key File number not an integer ERR 56

from 1 to 9.

64

\

File to be accessed has not X

@”h been opened.

SELECT statements and file none
numbers do not actually

correspond.

Pile names are not correct, ERR 78
or do not exist on the disk ERR 80

platters specified.

5.4 OPEN

The OPEN subroutine is used to open a User File and its companion Key
File. OPEN must be executed grior to execution of any other KFAM subroutine.
In the OPEN subroutine, a pair of DATALOAD DC OPEN statements are executed to
open the named User File and its companion Key File. Specified file numbers
are assigned to each file. OPEN also assigns a specified KFAM I.D. Number to
the pair of files. To call the OPEN subroutine you must write two statements
of the following general form:

SELECT #U XXX
Gosus*' 230 (I,K,0,F,N3,C3)

(%_ For the SELECT Statement

wgym ijs the file number to be associated with the User Pile; "U"™ can be a
number from 1 to 6. "#U" must be used in all subsequent DATASAVE DC or
DATALOAD DC statements to reference the User File.

%XXX" is the device address of the platter on which the User PFile is
stored.

For the GOSUB' Statement

uf® js the KFAM I.D. Number which is to be associated with the newly
opened file, and must be used to reference the file in subsegquent KFPAM
subroutines. "I" can be a number from 1 to 3.

wg" is the file number to be assigned to the Key File (see NOTE below).

wg" js the file number tc be assigned to the User File (see "#U"™ above).

wF® js the Key File number (the sixth character in the Key Pile name, it
may be an integer from 1 to 9, but normally it is 1).

"N$" is the name of the User File to be opened. The Key File name need
not be specified; it is built from the User File name and the Key File number
by KFAM itself.

65

"C3" is the class of access desired. If C$ = "A" then any CPU may Qpe%%\
the file. If C$ = "X", then only this cpU may access the file.

Return Codes for OPEN

Q% = " " (space) if the subroutine execution was O.K.
Q% = "C" if there is an access class conflict. Either this CPU
seeks exclusive access {C$§ = ™"X") when another CPU has the

file open, or another CPU has exclusive access.

0% "X" for an improper call {i.e., one of the arquments in the
GOSUB' 230 argument 1list is incorrect, or the file is already
open) « Note, if a file is already open or the KPAM I.D. number

is already in use, OPEN returns Q$ = nxn,

» NOTE:

The application progranm nust include the SELECT
subroutines DEFFN'210 and DEFFN'211 to select hog mode and
non-hog mode for the Key File device address. A1l KFAM-4
subroutines regquire that these subroutines be included in
the application program. See Section 5.1 for information
about how to write these subroutines.

~)
5¢5 DELETE

The DELETE subroutine deletes from the Key File a specified key and its
associated record 1location pcinter. The Current Sector address for the User
File is set to the location of the record whose key has been deleted, and for
blocked records the variable Q is set to the record position within the
sector. The record itself, in the User File, is not altered or removed.

Thus, although the record is not physically removed from the User File, its

key entry is removed from the Key File, and the record can no longer be
accessed through KFAM.

The calling sequence for DELETE is:
GOSUB' 231 (I, P, AS)
"I" is the KFAM I.D. Number, assigned to the file in an OPEN subroutine.

"P" is the protect flag option. If P=0, other CPU's may access

this record or block of records. If P=1, only this CPU may access this
record or block of records.

"A%" is the key of the record that is to be deleted from the file.

66

DELETE Return Codes

Q$ = "B" Busy Signal. The record sought is protected by another CPU.
Q% = "N" if the key Fassed cannot be found in the Key File.

Q$ = "X" for an improper call.

Q8 = " " ("space") if the subroutine executed properly.

After calling a DELETE subroutine and checking for its successful
completion, the applicaticn program should flag the DELETED record in the User
File by changing the first character of the deleted record's key to hex FF.
For unblocked files this can be done as follows: :

Suppose:

DIM A$15, H(4,4), J(6)
and
DATA SAVE DC #1, AS, H(), J()

define a type "N" record where A$ is the key field.
The DELETE and flag operation might look like this:

4060 GOSUB' 231 (1, 1, AS$): REM DELETE
4065 IF Q$ = ®"B" THEN 4060:REM BUSY TRY AGAIN
4070 IF Qg$<>" " THEN 6000:REM UNSUCCESSFUL

a 4080 DATA LOAD DC #1, A%, H(), J()

{6@\ 4090 STR{A$,1,1)=HEX(FF) :REM HEX(FF) IN 1ST BYTE OF KEY
4100 DBACKSPACE #1,1S:REM RECORDS ARE 1 SECTOR LONG
4110 DATA SAVE DC #1,A$,H(),J()

6000 STOP "DELETE UNSUCCESSFUL"

The space occupied by DELETED records in the User File cam be reused;
this normally requires special techniques together with the use of
FINDNEW (HERE). For informaticn on these techniques see Chapter 12.

5.6 FINDOLD

The FINDOLD subroutine is used to locate a desired record 1in the User
File. Following subroutine execution, the Current Sector address for the User
File 1is set to the sector address of the record whose key was passed. For
blocked records, variable Q is set to the record position within the sector.
The record can then be read with a DATALOAD DC statement. The calling
sequence is:

67

GOSUB' 232 (I, P, A$) | -

"I" is the KFAM I.D. Number assigned to the file in the OPEN subroutine.

"P" is the protect flag option. If P=0, then other CPU's wmay access
this record or block of records. If P=1, only this CPU may access this
record or block of records. -

"A$" is the key of the record being sought.

FINDOLD Return Codes

Q% ="B" Busy Signal. The record sought is protected by another CPU.
0% = "N" if the specified key is not located in the Key Pile.

QF = "x" for an improper call.

Q$ = " m (wWspace") if the key was located without difficulty.

5.7 FINDNEW

The FINDNEW subroutine is used to enter a new key in the Key File and to
find a location for the new record in the User File. FINDNEW enters the key
passed to it in the Key File, then sets the Current Sector address for the
User File to an available User File location for writing a new record. For
blocked records, variable Q is set to the record position within the sector.

GOsuB' 233 (I1,P,A$,0) m{)
"I" is the KFAM I.D. Number, assigned to the file in an OPEN subroutine.
"P" is the protect flag option. If P=0, other CPU's may access this

record or block of records. If P=1, only this CPU may access this record or
block of records.

"AS" is the new key to be entered in the Key File.

FINDNEW Return Codes

Q%3 = "B" Busy Signal. The record (or block) sought is protected by
ancther CPU.

Q% = wp" if the key specified is a duplicate of one already in the Key
File. . -

0% = "s"™ if there is no space in the User File for another record, or in
the Key File for ancther key entry, or 8 index levels have been
exhausted.

Q% = m"x" for an improper call.

Qf = " v (mwgpace") if the key was entered without difficulty.

68

-E#M - NOTE:
) The User File lccation returned by FINDNEW is unoccupied

by 1live data, but is not necessarily at the end of all
live data in the User File.

The following example illustrates the procedure for adding a record to
type A Dblocked files follcwing FINDNEW. Note the test on Q before the
:DATASAVE, and that the protect flag is set by FINDNEW.

4100 INPUT “KEY FIELD", AS$:REM OPERATOR ENTERS KEY
4120 GOSUB '233 (1,1,A$,0) :REN FINDNEW
4130 REM TEST COMPLETICN CODE
4135 IF Q% = "B" THEN 4120 :REM BUSY TRY AGAIN
4140 IF Q% = "D" THEN 5010 :REM DUPLICATE KEY?
4150 IF Q$ = nsm™ THEN 5050 :REM FILE FPULL?
4160 IF Q$<> ®» w THEN 5060 :REM ERROR?
4170 REM NEW BLOCK OR OLD?
4180 IF Q = 1 THEN 4220 :REM FIRST RECORD IN NEW BLOCK?
4185 REM REFAD EXISTING RECORDS IN BLOCK
4190 DATA LOAD DC #2, A3(), B${), C(), DY)
4200 DBACKSPACE #2, 1 S :REM BACKSPACE AFTER DATALOAD
‘4210 REM ASSIGN RECORD VALUES TO PROPER ARRAY ELEMENTS
(“ 4220 AS(Q) = aAS
@ﬁ& 4230 INPUT "SECOND FIELD"™, BS$ (Q)
4240 ° INPUT “THIRD FIELD", C(Q)
4250 JNPUT "FOURTH FIELD", D (Q)
4260 REM SAVE BLOCK IN USER PILE
4270 DATA SAVE DC #2, AS(),B${),C().D()
5000 REM ERROR ROUTINES
5010 STOP "KEY ALREADY IN KEY FILE"
5050 STOP "KEY FILE OR USER FILE IS FULL"™
5060 STOP "FINDNEW ERROR™

A similar procedure nust be used for type C files, for which Q represents
a record location rather than a subscript.

5.8 PINDNEW (HERE)

The FINDNEW(HERE) subroutine is a special purpose subroutine which can be
used to reuse the User File space occupied by DELETE'd records or to change
the value of the key of an existing record. It adds a new key to the Key
File, but, unlike FINDNEW, the User File location, which it associates vwith
that key, is the User FPile location returned by the last KFAM subroutine call,
To use PINDNEW(HERE) to reuse the User File space occupied by DELETE'd

 €@&

69

records, see Chapter 12. An illustration of the use of FINDNEW (HERE) , toﬁﬁH
change the value of the key of an existing record, is shown below. '

The calling sequence is:

GOSU

B* 234 (1,P,A3,0)

The FINDNEW(HERE) argument list is identical to the argument 1list for
FINDNEW (see FINDNEW).

FINDNEW (HERE) Return Codes

03

0$
0%

0%
Q% =

IIB”
anot
llx"
IID"
File
"S "

inde
" n

Busy Signal. The record or block sought is protected by
her CPU.

for an improper call.
if the key specified is a duplicate of a key already in the Key

if there is no space in the Key File for another entry, or if 8
X levels have been exhausted.
(space) if the subroutine executed properly.

The following example illustrates the use of FINDNEW (HERE) following

DELETE:

5000
5005
5010
5040
5050
5060
5070
5075
5080
5090
5100
5110
5115
5120
5130
5140
5150
5160
5170

GOSUB
IF ¢$
IF Q%
IF Q3
GOsSUB
IF Q$
I? Q%

231 (1,0,"ABCD") :REM DELETE "ABCD" FROM KEY FILE

WEW THEN 5000:REM BUSY %
"X" THEN 5130 : : ' Y
"N® THEN 5150 |
*234 (1,1,"EFGH",0) :REM SET "PROTECT®, INSERT "EFGH"™ IN KEY FILE
= uX" THEN 5140
= “D" THEN 5160

[T 1]

IF Q$="S" THEN 5170

DATAL
$.-
DBACK
DATAS
GOSUB
END
STOP
STOE
STOP
STOP
STOP

OAD DC #2,A%,B3,C3,N

"EFGH" :zREM CHANGE KEY TO "EFGH“
SPACE #2, 1S

AVE DC #2,A3,B$,CS$,N

*239(1) :REM CLOSE FILES

"ERROR IN 'DELETE' CALLING SEQUENCE"™

"ERROR IN 'FINDNEW (HERE)' CALLING SEQUENCE"
"KEY NOT FQUND™

"DUPLICATE KEI"

"NO SPACE"

70

{€§3 FINDFIRBRST

The FINDFIRST subroutine sets the Current Sector address for the User
File to the first record in logical key sequence. For blocked records,
variable Q is set to the record position within the sector. A DATALOAD DC
statement can be used after FINDFIRST to read the record. The calliag
sequence is:

GOSUB' 235 (I1,P)

wIn js the KFAM I.D. Number, assigned to the file in an OPEN subroutine.

npr js the protect flag option. If P=0, other CPU's may access
this record or blcck of records. If pP=1, only this CPU may access this

record or block of records.

FINDFIRST Return Codes

Q$ = "B" Busy Signal. The record sought is protected by another CPU.
08 = "N if the User File contains no records.

Q$ = "X" for an improper call.

08 = " n (space) if the subroutine executed properly.

5.10 FINDLAST

{é“\ The FINDLAST subroutine sets the Current Sector address for the User File
Luv the last record in lcgical key sequence. For blocked records, the variable
Q is set to the record position within the sector. A DATALOAD DC statement
can be executed following FINDLAST to read the record. The calling sequence
iss . v

GOSUB' 236 (I,P)

"I" is the KFAM I.D. Number assigned to the file in an OPEN subroutine.

wpn js the protect flag option. If P=0, other CPU's mnay access
this record or block of records. If P=1, only this CPU may access this

record or block of records.

FINDLAST Return Codes

Q$ = "B" Busy Signal. The record sought is protected by another CPU.
0$ = "N" for a null file.

0$ = "X% for an improper call.

Q$ = " n (space) if the subroutine executes normally.

71

5.11 FINDNEXT
-
The FINDNEXT subroutine sets the Current Sector address for the User File
to the record immediately following (in logical key sequence) the last record
accessed by KFAM. For blocked records, the variable Q is set to the position
of the record within the sector. A DATALOAD DC statement can be executed
following FINDNEXT to read the record. FINDNEXT is useful for processing
files in key sequence. The calling statement is:

GOSUB' 237 ({I,F)

"I" is the KFAM I.D. Number assigned to the file in an OPEN subroutine.

"P" is the protect flag option. If P=0, other CPU's may access
this record or block of records. If P=1, only this CPU may access this

record or block of records.

FINDNEXT Return Codes

Q% = ™B" Busy Signal. The record sdught is protected by another CPU.

Q% = X" for an improper call.

Q% = mE" if the previous reference was to the last record in logical key
sequence.

Othervise, Q% = ® n (space).

ﬁﬁ%/

NOTE:

FINDNEXT cannot be executed as the first subroutine
following an OFEN routine. Also, FINDNEXT cannot normally
be executed immediately following any subroutine which
returned Q% = "X" or "E". Otherwise FINDNEXT will locate
the next sequential key, following any subroutine.

If FINDNEXT is executed after a FINDNEXT which returned Q%
= "B" {the Busy Signal), it will attempt to access the
same record that it previously found to be protected.

If FINDNEXT is executed following a FINDOLD that returned
Q% = "N" (not found), FINDNEXT locates the record whose
key logically follows the key passed to FINDOLD.

512 RELEASE

The RELEASE subroutine turns off the protect flag previously set by the
calling CPU.

Any call to a KFAM-4 subroutine for a particular file turns off any
Frotect flag for that file. RELEASE should be used only if there may be a
long delay before the next KFAM-4 subroutine is called. .

72

€§\ The calling sequence is:
GOSUB'238 (I)
nin js the KFAM I.D. Number assigned to the file in an OPEN subroutine.

RELEASE Return Codes

0$ = wx" for an improper call.
Q8 = ® " (space) after successful execution.
5.13. CLOSE

The CLOSE subroutine is used to close a currently open User File and its
companion Key File. The KFAM I.D. Number assigned to a closed file can then
be reassigned to another file in an OPEN routine. Also, the file numbers
assigned to a User File and Key File can be reassigned. CLOSE alters the
Access Table in the Key File's KDR record to indicate that the CPU no longer
has the file opena The CLOSE subroutine also saves certain critical
information for the KEY FILE RECOVERY utility, provided that the RECOVERY
OPTION was included during BUILD SUBROUTINE MODULE execution. The «calling
sequence is:

GOSUB' 239 (I)
g@% win ijs the KPAM I.D. Number assigned to the file in an OPEN routine.
- .0llowing execution of the CLOSE routine, this number cam no longer be used to
access the User File and its associated Key PFile.

CLOSE Return Codes

Q% = wx» for an improper call.
Otherwise, Q% = " " (space).

NOTE:

CLOSE must be executed at the conclusion of operations
on a file.

73

CHAPTER 6 ~
THE KFAM REORGANIZE UTILITIES (KFAM-3 AND KFAM-4)

6.1 THE REOBRGANIZE SUB-SYSTEM

6.le1 Overview

The REORGANIZE SUB-SYSTEM performs the folloving KPAM file maintenance
operations: .
1. Based on an input KFAM file (Key File and User File) it constructs.

a new output User File which contains active records only, 'tittéﬁ%
in ascending key sequence...

2. Creates a Key File based on the new output file. Optionally the -
new Key File may occupy the same physical space as the input Key
File, overwriting the input Key File.

3. Optionally, the new output User File may be copied back to the disk
area occupied by the input User FPile, overwriting the input file.

Unlike other KFAM maintenance utilities, the REORGANIZE SUB-SYSTEM is
loaded by means of a user-written set-up program that specifies all the
parameters for the reorganization. The REORGANIZE SUB-SYSTEN can, optionally,
call another user program module after completing execution. Since it nust be
loaded via a user-written set-up module, the REORGANIZE SUB-SYSTEM does not
appear on the KFAM-3 or KFAM-4 menus. However, the three modules of the
utility are included on Application Support Diskette #2 for KFAM-3, and
Application Support Diskette #3 for KFAM-U4. Also included on each diskette is
a module of KFAM subroutines used by the utility. PFinally, on each diskette a
COPY/VERIFY reference file is included to facilitate copying the complete
utility. The names of the reference files and modules are as follows:

74

(.

§@“ SUB-SYSTEM is 1loaded. These lines must clear the CRT screeam,

‘6@\ KFAM-3 VERSION

K-3RFO010

COPY/VERIFY Reference File Name =

REORGANIZE SUB-SYSTEM modules = KFAM3503
= KFAM3603
= KPAM3703

Module of Subroutines = KFAM0103

KFAM-4 VERSION

COPY/VERIFY Reference File Name = K=-4RFO010

REORGANIZE SUB-SYSTEM Modules = KFAM3504
= KFAM3604
= KFAM3704%

Module of Subroutines = KFAMO0104

6.1.2 9Writing the Set-up Nodule

To use the REORGANIZATION SUB-SYSTEMN you must write a brief set-up
program which provides the operating parameters and loads the first module.
The set-up program can be brokem down into two parts, with a third part used
only for KFAM-4.

l. Lines 1-3499 contain statements executed before the REORGANIZATION

select disk file devices, and 1load KFAM3503 ({or KFPAM3504 for
KFAM-4) . These 1lines nust be cleared by the LOAD DC statement.
They can include additional preprocessing, if desired.

2. Lines 4200-4799 contain statements which assign reorganization
parameters to specific variables. They remain as an overlay to the
first reorganization module. They are executed after the first
reorganization module defines its common variables and sets default
values.

3. (KFAM-4 ONLY) Lines 3500-3699 nmust contain the subroutines
DEFFN'210 (T6) to select hog mode and DEFFN'211l (T6) to select
non~hog mode. These lines are not cleared; they remain as an
overlay to the first module.

A skeleton of the set—-up program is shown below. A line may be omitted

if the default value shown is the desired value. BRead all comments before
writing a set-up module.

75

Line

10
20

60
70
80
90
100
110

4210
4220
4230
4240
4250
4260
4270

4280

4290

4300
4310
4320

Conten

REM pr
PRINT

- SELECT

REORGA

SELECT
SELECT
SELECT
SELECT
SELECT
LOAD D

N13
P1l$
N2

P23
N3$
P3$%
03%

S3 =

06% =

N4
P43
ous

Wonn

Default See

ts Value

ogram identification

HEX {03)

DISK (disk address for
NIZATION SUB-SYSTEN disk)

#1 input User File device address
#2 input Key File device address
#3 output User File device address
¥4 output Key File device address
#5 user program device address

C T#0, "KFAM3503" 11,3499

input User File name.
input User File device address as "xyy"e.
input Key File number.
input Key File device address as "xyy".
output User File nanme.

output User File device address as "xyy".

"C" catalog output User File if
uncataloged.

"Y" output User File already cataloged;

do not catalog it

"N" output User File is not already
cataloged; catalog it.

number. of sectors to allocate to output
User File. This statement not needed
if 03% = my" (above).

*If the utility catalogs the file, the
default value for S3 is the number of
sectors in the input User File.

"C" to copy back Output User File over
Input User file when reorganization
completed.

blank to leave input User File intact.

output Key File number.

output Key File device address as "xyy".
"C" catalog output Key File, if
uncataloged.

"Y" output Key File cataloged; do not
catalog it.

"N" output Key File not cataloged;
catalog it.

76

|
N&EWN

[
~N Y

blank 10

Comment

‘ f@?"

4340

4350

Line
3510
3520
3530

3540
550

@ﬁﬁo

l.

2.

3.

4.

S4 = number of sectors to allocate to the * 12
output Key File. Omit this if
oug = nyn,
*If the utility catalogs the file,
the default value is calculated in
proportion to the input Key File
size times the increase or decrease
in User File size.

N53 = name of program to be loaded blank 13
following reorganization. :
= blank - no program to be loaded.

device address 6f user progranm as
ﬂxyy lC.

Additional Lines for KPAM-4 Only

P53

Default See
Contents Value Comment
DEFFPN'210 (T6) - 14
SELECT #2 input Key File hog mode address
RETURN
DEFFN'211 (T$6) 14
SELECT #2 input Key File non-hog mode address
RETURN
Comments
The CRT screen should be cleared prior to calling the REORGANIZATION

SUB-SYSTEM. Lines 0-3 are used by the utility for messages. Lines 4-15
may be used for a user written display. For example, line 20 might be:

20 PRINT HEX (030A0A0A0A); "REORGANIZE INVENTORY FILE."®

The output User File device address may be the same as the input User
File device address, if the two files have different names. (For KFAN-4
see comment 15.)

If the output Key File device address is the same as the input Key File
device address, and the output Key File name is the same as the input Key

File name, then the cutput Key Pile replaces the input Key Pile. See
compent 10.

If the REORGANIZATION SUB-SYSTEM is to call another program when it
completes execution, the device address of this program file must be
selected for file number #5.

77

6.

10.

1l.

12.

The last statement to be executed in the range 1-3499 must be a LOAD DC

that loads module 1 of the utility and clears lines 1-3499 as it does so.ﬁ§

If the KFAM-4 utility is being used, the module name is "KFAM3504".
Examplg:
4220 P1$ = nBlon

This number is assigned during INITIALIZE KFAM FILE and appears as the
6th character in the input Key File name (normally it is 1).

The output user file name need not conform to the KFAM file naming
conventions. This relaxation of normal KFAM requirements may be useful
if the "copy back" ortion is chosen (line 4290), since in this case it
may be desirable to use an established work file that may have any name.

If "C" is assigned to 03$, the output User File is «cataloged by this
utility, if the output file does not already exist. "C" is the default
value of 03%. :

If "N" is assigned to 033, the system ensures that the named output User

File does not already exist on the disk, and catalogs the output User
File.

If the utility catalogs the output User File, it allocates to it the sanme
number of sectors that are in the input User File, unless a _~different.

number is specified by assigning the desired number of sectors to S3. - ﬂﬁ%

If "Y" is assigned tc 033, the system checks that the named output filev

already exists. S3 need not be assigned a value.
The output User file must contain at least 10 sectors.

If 06% is assigned the value "C", then the utility constructs the output
Key File name from the input Key File name, and copies the output User
File back into the input User File area, overwriting the input User File.
If 068 is assigned a blank, then the output Key File name is constructed

from the output User File name, and the output file is not copied back.

This number is used in the construction of the output Key File name, in
wvhich it beccmes the 6th character. If the constructed name is the sanme
as the input Key File name, and the same address is specified for both
input and output Key Files, then the output Key File replaces the input
Key File.

The effect of these responses for 043 and S4 is analogous to 033 and S3
discussed in comment 9. However, if the utility catalogs the Key File,
its size is proportional to the input Key Pile size times the increase or
decrease in User File size.

)

~

78

f@@'

14.

15.

If N5% is assigned a program name, the program is loaded upon completion

of the utility. The program must reside at the address SELECTed for file
numpber #5 (line 100).

(KFAM—-4 ONLY) Lines 3500-3699 must contain the KPAN-U SELECT
subroutines. These subroutines are discussed in detail in Chapter
S5e These lines must not be cleared by the LOAD DC
statement at 1line 110 If the programmer wvants the entire utility to
execute in hog mode, or non-hog mode, 1lines 3520 and 3550 may be
omitted, 1leaving the subroutines to consist merely of a RETURN
statement. However, the subroutines themselves must be present.
(See Commeant 15.)

ADDITIONAL PROGRAMMING NOTES FOR KFAM—4 - The REORGANIZATION SUB-SYSTEHM
restricts access to the input files (Key File and User File) by opening
the input file in exclusive mode. However, access to the output files
cannot be controlled in this manner. If the usert's own conventions
cannot assure the integrity of the output files during the
reorganization, then hog mode addresses should be specified for file
numbers #0-#4 (lines 50-90) and the subroutines (lines 3510-3560) should
omit the SELECT statements at lines 3520 and 3550. When the
reorganization is complete, hog mode can be deselected by loading a user
program that turns off hog mode, or RESET can be keyed.

Shown below are two set-up programs, one for KFAM-3 and andther for

Example 6-1 A Set-Up Program to Call KFAM3503

10 BEM EXAMPLE OF A REORGANIZATION SET-UP PROGRAM FOR KFAM-3

20 PRINT HEX (030A0A0A0A); "REORGANIZE INVENTORY FILE"™
50 SELECT DISK 310 :REM REORG. SUB-SYSTEM
60 SELECT #1 B10 :REM INPUT USER FILE
70 SELECT #2 B10 :REM INPUT KEY FILE

80 SELECT #3 B1O ¢sREM OUTPUT USER FILE
90 SELECT #4 B1lO SREM OUTPUT KEY FILE
110 LOAD DC T#0, "KFAN3503™ 1, 3499

4210 N1$ = "INVTFO1lO™

4220 P1$ = "E1lO"

4240 P2$ = "B1lO"

4250 N3$ = WINVTPOLll™

4260 P3$ = "BlO"

4310 P43$ = "BlO"

79

Example 6~2 A Set-Up Program to Call KFAM3504 M%i

10 REM EXAMPLE OF A REORGANIZATION SET-UP PROGRAM FOR KFAM-4

20 PRINT HEX (030A0AQAQA); "REORGANIZE INVENTORY FILE"
50 SELECT DISK 310 :REM REORG. SUB-SYSTEM

60 SELECT #1 320 :REM INPUT USER FILE

70 SELECT #2 B20 :REM INPUT KEY FILE

80 SELECT #3 320 :REM OUTPUT USER FILE

90 SELECT &4 B20 :REM OUTPUT KEY FILE

100 SELECT #S 310 :REM USER PROGRAM

110 LOAD DC T#0, "KFAM3504"™ 1, 3499
3510 DEFFN' 210 (T6)

3520 SELECT #2 BAO

3530 RETURN

3540 DEFFN' 211 (T$)

3550 SELECT #2 B20

3560 RETURN

4210 N1$ = MINVTFO40"

4220 El$ = n320n

4240 P2$ = mwp2Qn

4250 N3$ = "WORK"

4260 P3$ = n320n

4290 06% = "C" :REM COPY BACK OUTPUT USER FILE
4310 P4s = mE2Qm

4340 N58% = "STARTM

4350 P5% = n310n

6.1.3 Utility Operation and Error Messages
The operation of the utility may be divided into three parts:

1) The User File is read seguentially, using FINDFIRST/FINDNEXT, and
copied to the output file so that the records are physically in
sequential order, and DELETED records are eliminated.

2) A new Key File is built, based on the keys in the output User File,
using a special prccedure. The new Key File, optionally, may
occupy the same physical space as the old Key File.

3) - If indicated 'by the set-up program, the output user file is copied
back to the input user file, overwriting the original.

The original Key File and User File are not altered until the output User
File has been written, complete with the necessary information to restore the
Key File. Therefore, it is not essential to have backup copies of the User
File and Key File. If the system fails during Part 1 of the reorganization,
the original Key File and User File are intact. If the system fails during
Part 2, both the infput User File and the output User File are dintact, and a
Key PFile may be built for either one, using the Key File Recovery Utility.
During Part 3, the output User File remains intact, as well as the Key File.

-

80

™ though backup disks are not necessary for this operation, it is good
wcactice to make backup copies regularly, especially of the User File.

There are no operating instructions for this prograsm, because normally no
operator intervention is required. However, there are recovery procedures,
for certain error conditions. These are described below:

EBRROR MESSAGE : EXPLANATION/RECOVERY

1. ERR 72 Disk read error.
' Part 1: Input User File or Key
File has an unreadable sector.
Part 2: Output User File or Key
File has an unreadable sector.
Part 3: Output User File has an
unreadable sector.

RECOVERY: Part l: Run Key Pile
Recovery UOtility. Rerun
Part 2: Run Key File Recovery
Utility on input User Pile, if
input Key File is being overwritten.
Rerun.
Part 3: Run Key File Recovery"
: Utility on output User FPile. Set
g?“ up Reorganize Subroutine to
¢ reorganize output User File, giving
input User File.

2. ERR 85 Disk write error.
Part 1l: Output User File contains
a bad physical sector.
Part 2: Output Key File contains a
bad physical sector.
Part 3: Input User Pile contains a
bad physical sector.

RECOVERY: Part 1l: Replace the
output disk, or recreate file to
bypass the bad sector. Rerun.

Part 2: Replace the disk containing
the output Key File, or recreate the
file to bypass the bad sector. If

input and output Key File are the
same, run Key Pile Recovery. Rerua.
Part 3: Replace input disk or
recreate input User File to bypass
the bad sector. See recovery
procedure for ERR 72, Part 3.

81

3.

ERR 80
FILE ####4#48 NOT FOUND ON

DEVICE ###

INPUT AND OUTPUT USER FILE MAY
NOT BE THE SAME FILE

$###8¢4%4% NOT KFAM FILE NAME

INVALID KEY FILE NUMBER #

INSOFFICIENT SPACE FOR FPILE
¥4 434% %% ON DEVICE ##44

FILE #######% ALREADY CATALOGED
ON DEVICE ###

82

Program not on disk. The four
modules listed in 6.1.1 must 'ﬁ%
reside on the device specified by
“"SELECT DISK". Correct and rerun.

Required KFAM file (User File or
Key File) is not on designated
disk.

RECOVERY: Mount disk containing the
designated file. Rerun.

Both input and output User Files
are designated by the same file
name, on the same device.

RECOVERY: Correct the file desig-
nations. Rerun.

File name must have "F" ip position
5, and a digit 0-9 in position 6.

RECOVERY: Correct the file name.
File name may be changed on disk
using SCRATCH and DATASAVE DC OPEN.

.Rerun. : N

/%/,}

Key File number not 1-9, or not an
integer.

RECOVERY: Correct the Key File
number. Rerun.

There is not enough space on the
designated disk device to catalog the
file.

RECOVERY: Mount an output disk with
enough free space to accommodate the
output User File and/or Key File.
Rerun.

A file designated as "not cataloged"
is already cataloged, or another
file exists of the same nane.

RECOVERY: Mount a scratch disk or

other disk which does not already

have this file name cataloged.
Rerun.

‘ If this is a rerun, change the
gh\ values of 03% and 043 (user set—-up
module) to "C", and run.

10. ERROR OPENING FILES KFAM "OPEN" subroutine returas an
error indication.

RECOVERY: If this is a rerun, set
Vv9=0 and rerune.

11, INVALID RECORD FORMAT Type A records: Imvalid control
byte or more than 38 fields per
recorde.

RECOVERY: The program will not
reorganize this file.

12. NOT BLOCKED AS SPECIFIED Type A records: Blocking of record
not the same as blocking specified
in the KDR.

RECOVERY: ©Write a program to open
the file, change V8% in the KDR,
and close the file. Rum it. Then
rerun the reorganizatioa.

(?*?. RECORD LENGTH NOT SPECIFIED Type A records: Record length not
CORRECTLY the same as specified in the KDR.

RECOVERY: Change STR{V1$,2,1) in
the KDR (see 12, above). Rerun.

14. KEY FIELD OUT OF BOUNDS Type A records: The starting
position of the key amnd/or key length
are such that the key is not wholly
included within a field of the
record.

BRECOVERY: Change the starting
position of the key, STR(V1$,4,1),
or the key length, STR(V1$,5,1), in
the KDR (see 12, above). Rerun.

15. NOUMERIC KEY INVALID Type A records: The key field is
indicated as lying vithin a numeric
variable.

RECOVERY: See 14, above, to change
key field position. The key may not
be a numeric variable. Rerun.

83

l6.

17.

18.

19.

20.

21.

22.

23.

NULL FILE

FINDFIRST ERROR

FINDNEXT ERROR

OUTPUT USER FILE SPACE EXCEEDED

OUTPUT KEY FILE SPACE EXCEEDED

8 LEVELS OF INDEX EXCEEDED

SEQUENCE ERROR, HEX KEY = (key
value))

INVALID KEY, HEX VALUE =
(key value) KEY RETURN (EXEC)
TO SKIP RECORD

There are no active records in thismW\
file.)

RECOVERY: Run "INITIALIZE KFAM FILE"
to reorganize this file.

Hardware or software error.

RECOVERY: Rerun. Notify Wang
Laboratories if the problen persists.

Hardware or software error.

RECOVERY: Rerun. Notify Wang
Laboratories if the problen
persists.

Output User File is too small to
contain all the active records from
the iaput User File.

RECOVERY: Allocate more space for
the output User File, and rerun.

Output Key File is too small.

RECOVERY: If the output Key File ’ﬁ%)
is the same as the input Key File,

run KEY FILE RECOVERY on the input
User File. Allocate more space for
the output Key File, and rerun.

More than 390,625 30-byte keys,
or more than 429,981,696 12-byte
keys, etc. This error should not
OCCur. ~
RECOVERY: Notify Wang Laboratories.
The key contained im the input

User File is not the same as the
key in the input Key File.

RECOVERY: Check for errors in
application programs that may cause
this condition. Run KEY FILE
RECOVERY on input User File. Rerun.

The record is included as active
in the input Key File, but flagged
as deleted in the input User File.

84

@m ' RECOVERY: See 22, above.

The option is also provided to skip
the record and continue.

24. MOUNT DISK CONTAINING PBOGRAM The reorganization is finished

#44#842% ON DEVICE ### KEY and ready to load the next progranm,
RETURN (EXEC) TO RESUME which is not found on the

designated device.

RECOVERY: Mount the disk containing
the next program on the designated
device. KEY RETURN (EXEC).

25. ACCESS NOT EXCLUSIVE The input KFAM Pile is currently
open by another CPU.

RECOVERY: Other CPU's must close the
file.

6.2 REORGANIZE KFAM FILE
6.2.1 Overview

This program reorganizes a KFAM File in place. The record which belongs
™-.st, in ascending key seguence, 1is sWwitched with the record that is
pnysically first. This process is repeated for the second record, and so
forth, until the entire User File has been placed in sequential order. In the
process, all DELETED records are repoved. Then, the Key Pile is reinitialized
and a new Key Pile is created in the space formerly occupied by the old Key
File. No additional disk ‘space is required for the User File or the Rey Pile;
a 15 sector work file is required. This program is 4 to 'S times slover than
the REORGANIZATION SUB-SYSTEM utility, and therefore should be used only if
the file is too large to permit simultaneous mounting of an output file as
required by the REORGANIZATION SUB-SYSTEM.

Because this program destroys both the User File and the Key Pile, as
they formerly existed, there is no possible recovery in the event of hardwvare
or software error. Fcr that reason, backup copies of the User File and the
Key File must be made before running this program.

This program reorganizes any KFAM file, with the exception of type M
cecords with more than 40 sectors per record. However, it should be noted
that multiple-sector records require extra storage space in memory, and that
this program canaot operate in a 12K system if the record length exceeds 8
sectors. - :

N .

85

NOTE: /w

For KFAM-4 only, hog mode is automatically selected for
the disk drives containing the User File, Key File, and
Work File. To operate the utility at a non-nultiplexed
disk drive key:

M$ = mX"(EXEC)

at KFAM-4 utilities menu, prior to loading the utility.

6.2.2 Operating Instructions

DISPLAY INSTRUCTIONS
1. 1. Make backup copies of both
the User File and the Key
File.

If anything goes wrong during
the execution of the utility,
both files are destroyed.

2. 2. RMount disk platter(s) con- R
| taining the User File and theﬁﬁﬁ'
Key File.

3. 3. To access the REORGANIZE
: KFAM FILE utility, depress
the specified Special Function
key from KFAM-3 or KFAM-§
subsidiary menu.

4. ARE THERE BACKUP COPIES OF 4, Enter Y if backup copies

USER FILE AND KEY FILE? exist. Proceed with Step 6.
(Y OR N) below.

Enter ¥ for "no" or "don't
know". Proceed with Step 5.

5. The system disrlays: S5e Make backup copies of both the
ANY ERROR DURING THE RUNNING OF User File and the Key File.
PROGRAM FILE WILL DESTROY BOTH Key CONTINUE RETURN (EXEC) and
FILFS. MAKE COPIES OF THE DISK go to step 4.

PLATTER (S) CONTAINING THE USER
FILE AND THE KEY FILE BEFORE
RUNNING THIS PROGRAM. STCP

86

’€§3 ENTER USER FILE NAME (SSSSFJNN) 6. Enter the name of the User
5 File.

MESSAGE: 2, 4

7. ENTER THE NO. OF THE USER FILE e Enter the selection number
DEVICE ADDRESS for the device address of the
v User Pile.
1. 310 5. BlO
2. 320 6. B20 NOTE:
3. 330 7. B30 -
4, 350 Error messages and recovery
' procedures follow the operator
instructions.
MESSAGE: 2, 5
8e The system displays: 8. Enter the Key File Number.

ENTER KEY FILE NUMBER (NCENAL=1)

The Key File Number should
always be 1, unless there
are nmultiple key files for
a single User Pile, in
which case, the Key File
Nuaber can be any digit from
1 to 9. .

MESSAGE: 2, 3, 6

9. The system displays: 9. Enter the selection number
ENTER THE NUMBER OF THE KEY FILE for the device address of
DEVICE ADDRESS the Key File.

1. 310 S5« B10
2. 320 6. B20
3. 330 7« B30 MESSAGE: 2, 5
4. 350
10. ENTER WORK FILE NAME 10. 15 sectors are required for

a work file. This work file
may be a cataloged file,
either a scratch file that
already exists or a new file
created by this program, or it
may reside in the temporary
work file area (if any)

beyond the cataloged area

of one of the disk platters.

87

If the work file is a file -~
already cataloged, or if it

is to be cataloged, enter

the name of the work file,

If the work file is to reside
in the uncataloged area of one
of the disk platters, key

only RETURN (EXEC).

ll. ENTER THE NUMBER OF THE WORK FILE 11. Enter the selection number

DEVICE ALDRESS for the work file device

_ address.
1. 310 5. B1l0
2« 320 6. B20 If no name was entered for
3. 330 7. B30 the wvork file, the program
4. 350 Proceeds to Step 13, below.

MESSAGE: 2, 5, 7

12. IS WORK FILE CATALOGED? (Y OR N) 12. Enter Y if the work file has
been pPreviously cataloged.

Enter N if the work file has
not been previously cataloged. }

MESSAGE:. 2, 8, 9, 10 ~/
13. ' ' 13. The system opens the Key File
and User File and begins
pProcessing.

No operator intervention is
required from this point onm.

MESSAGE: 8, 11, 12, 13, 14
15, 16, 17, 18, 19

l4. REORGANIZE KFAM FILE 14, This file is being reorganized.
Any error from this point on
effectively destroys both the
User File and the Key File.
Both files should be re-
Created from backup copies
before attempting to rerun.

MESSAGE: 1, 12, 13, 20,
21, 22

88

15.

s

Error Messa ges
ERROR MESSAGE

2. RE-ENTER.

3. ERR29

4. NOT KFAM FILE NAME

5e INVALID DEVICE
ADDRESS

b INVALID

7e ERR64

89

15. The number of records in the
User File is displayed and
the system returns to KFAM
subsidiary menu.

EXPLANATION/RECOVERY

Too many characters were entered, or
not "Y" or "“N® in response to a
"yes"™ or "no" question.

RECOVERY: Repeat the step, entering
the correct value.

A non-numeric quantity was entered
when a nuperic quantity was
requested.

RECOVERY: Reenter numeric quantity.

The User Pile name must have an ®pn
in position 5 and a digit (0-9) in
position 6.

RECOVERY: Repeat Step 6 Enter
correct User File name.

The device address for User File,
Key Pile, or work file was invalid.

RECOVERY: Repeat the step. Enter
correct device address selection
number.

The Key Pile number may not be 0.

Repeat Step 8. Enter Key Pile
number 1-9.

Sector not on disk. The temporary
work file area omn the specified
platter is not large enough to hold
the work file (15 sectors).

RECOVERY: Rerun the program from
Step 4. Specify a different platter
or a cataloged file for the work
file.

10.

11.

12.

ERR8BO

ERR79

WORK FILE TOO SMALL

STOP ERROR OPENING FILES

ERR72

90

File not found (User File, Key,
File, or work file). ﬂﬁ

RECOVERY: LISTDCF and/or LISTDCR.
Check which file is not there.
Correct and rerun the progranm.

File already cataloged. The work
file is already cataloged.

RECOVERY: Reruan the program .fron
Step 4. Pick another name for the
work file, cr answer "Y" to "IS WORK
FILE CATALOGED?"

The cataloged file named as a work
file contains less than 15 sectors.

RECOVERY: Repeat from step 10.
Enter a nevw name for the work file.

File could not be opened. Possible
causes: The program was stopped and
restarted after processing had
begun.

RECOVERY: Recreate User File an@ﬂg
Key Pile from backup copies. Rerurn
this programe. 1f the error
persists, notify Wang Laboratories,
Inc.

Disk read error. See accompanying
program statement for file being
reads:

#1 = Key File

#2 = User File

#3 = Program File
#4 = Work File

#T1= Key File
#T1(T9) =Key File

If "REORGANIZE KFAM FILE (KFAM3203)"
is displayed on the screen, the User
File and Key File must be recreated
from backup copies. Rerun the
program. If the error persists, the
file Dbeing read is permanently
damaged, or there 1is a hardware
malfunction.

J

mﬁ}

£

14. STOP MORE THAN 40 SECTORS
PER RECORD

15 INVALID RECORD FORMAT (STOP)

16. NOT BLOCKED AS SPECIFIED (STOP)

17. RECORD LENGTH NOT SPECIFIED
CORRECTLY ({(STOP)

91

Disk write error. See accompanying
program statement for file being
vritten:

#1=Key File

#2=User File

#4=VWork File

#Tl=Key File

RECOVERY: If "REORGANIZE KPAM FILE"
is displayed on the screen, the User
File and Key File must be recreated

from backup copies. Rerun the
program.. If the error persists,
either the disk platter is

permanently damaged, or there is a
hardware ralfunction. '

This program will not reorganize a
file with a record length of more
than 40 sectors.

RECOVERY: This progran Ray be
modified by the user for the
particular application, by dropping
ISS module KFAM3103 (or KFAM3104 for
KFAM-4) and coding the necessary
statements in KFAM3203 {or KFAAM3204

- for KFAM-U4) (see KFAM "Prograaming

Techniques" - Generated Code).

Record type A, array-type blocking:
more than one sector per block, more
than 38 fields per record, or not
written with correct control bytes.

RECOVERY: The program will not
reorganize this file.

Record type A, array-type blocking:
records per block specified in-
correctly in INITIALIZE KFAM FILE
or records not written in array
format.

RECOVERY: The program will not
reorganize this file.

Record type A, array—-type blocking:
record length specified in
INITIALIZE KFAM FILE does not equal
record length of sample record.

18.

19.

20.
21.
22.

23.

KEY FIELD OUT OF BOUNDS (STOP)

NUMERIC KEY INVALID {STOP)

‘The following errors are

preceded by the general
message:

RESTORE BOTH USER FILE AND
KEY FILE FROM BACKUP COPIES
BEFORE ATTEMPTING TO RE-RUN
THIS PROGRAN

PROGRAM ERRCR
or
SEQUENCE ERROR
or
LAST KEY NOT FCUND

STOP ACCESS NOT EXCLUSIVE

92

RECOVERY: The program will not
reorganize this file. ’@%

Record type A, array-type blocking:
the key must be wholly contained
within one field of the record.

RECOVERY: The program will not
reorganize this file.

Record type A, array-type blocking:
the key falls within a numeric
field.

RECOVERY: The program will not
reorganize this file.

The status of the User File and Key
File, being partially reorganized,
is not defined at this point. Both
files are effectively destroyed.

RECOVERY: Recreate User File and
Key File from backup copies.

~.

)
a) The keys in the Key File do notfﬂ%
match the keys in the corresponding
User File records.
b) Machine error.

RECOVERY:

a) The applications programmer
should write a small program to
determine which keys do not match.
Following FINDFIRST or FINDNEXT, T7%
contains the key value from the Key
File. This can be compared to the
corresponding key value in the User
File. The non-matching keys should
be <corrected or deleted before the

reorganization program is run.
b) Rerun the progran.

KFAM-4 ONLY. The User Pile is in

use by another CPU, or a "phanton”
entry exists in the ACCESS TABLE.

-~

{ RECOVERY: Wait until other CPU's
(@ close the file, or if an erroneous
‘ entry is in the ACCESS TABLE rua

RESET ACCESS TABLE utilitye.

93

CHAPTER 7
THE ADJUST KFAM FILES UTILITIES

7.1 REALLOCATE KFAM FILE SPACE (KFAM-3 AND KFAM-4)

7.1.1 Overview

The utility programs REALLOCATE KFAM FILE SPACE and DISK COPY AND
JEORGANIZE can be used in conjunction with one another to lengthen or shorten

KFAM Key Files and User Files. The latter program can be used alone to copy
any disk file. ‘ ‘ ‘ *“Q

Non-KFAM data files, maintained with the Catalog Mode statements, keep
track of the end of live data with a special trailer record written by the
statement DATA SAVE DC END. When saved, this record updates the USED
parameter in the disk catalog. The value of this parameter appears in the
USED column of a catalog listing. The absolute end of the file area is marked
by a fixed control sector whose address appears as "END" in a catalog listing.

KFAM does not use this System for keeping track of the end of 1live data
in the User File, but it dces operate within the framework of Catalog Mode
files. KFAM automatically puts the DATA SAVE DC END trailer in the next to
last sector of the file {the sector impediately preceding the end-of-file
control sector). This 1is done during INITIALIZE KFAM FILE for both the Key

File and the User File. During ncrmal operations KFAM leaves the end-of-data
trailer in this location.

KFAM keeps its own file bcundary information in the Key Pile's first
record, the KDR. It keeps two items of information for each file: the total
number of available Sectors, and the total number of sectors presently
cccupied by data. The first item, the total number of available sectors, can
have an absolute maximum value which is two less than the total number of
sectors allocated to the cataloged file. This is because the DATA SAVE END
trailer and the control sector at the end of the file are always present, and
can never be used for file reccrds.

/‘% ;

94

Thus, for each file, Key FPile and User File, there exist foaur values:
~Lvwo Catalog systen values:

T = total space allocated for the file. This is the total number
of sectors occupied by the file, from the Starting sector
through the ending sector, as recorded in the disk catalog.

= P"END" - nSTART® + 1. 7T is established by DaTA save DC
OPEN, and can only be changed by copying the file.

U = Sectors used by the file. This is the number recorded in the
disk catalog for the number of sectors used. With KFAM, this
value does not reflect the number of sectors occupied by live
data. It is established by the location of the DaATA SAVE DC
END TRAILER. This is adutomatically put into the sector
immediately Preceding the control Sector, at the end of the
file, by INITIALIZE KFAM PILE.

Two KFPAM-maintained values (kept in the KDR record):

K = total number of Sectors available for file records. K=0-=2,
since the valuye of U includes the tvo sectors of "overhead®
(the coatrol sector, and the DATA SAVE DC END trailer
sector).

T L number of sectors occupied by live data (index records for

gga . the Key File) in a Kkrap File. This value is regularly
\ updated by the FINDNEW subroutine. The difference, K-L, is
Sectors which Presently coatain no data, but have beep set
aside for future expansion by KFAM, based on the user's
specification of the Raximum number of records the file may
contain.

REALLOCATE KFAM FILE Space changes the valye of K, and revrites the
DATASAVE DC END trailer to adjust U, so that the relationship U-2=g is
Preserved. K may not be made less than L nor greater than T-2. Thus, the
purpose of this program is to change the size of a file from the point of view
of KFAM's internal control of file space. Of itself, this does not change the
cataloged disk Srace, T, allccated to the file. It 1is one phase of a
two-phase operation to change the actual size of a KFAM file. The other phase
is performed by DISK COPY anD REOBGANIZE which, by copying a file, can change

REALLOCATE KPAM FILE SPACE can change the value of K and U for both a Key
File and User File in a single execution of the utility. Generally, if oqe
file size is changed, the other should be changed, proportionally. The files
Bay be on the same disk or different disks. The progran displays the
"LENGTH", K, "LOW LIMIT", L, and "HIGH LIMIT®, T-2, for both the user file and
the key file. It then provides the option to change the length, K, of either
or both.

95

To Shorten a KFAM File: /ﬁ%\

-

1. Run REALLOCATE KFAM FILE SPACE decreasing the values of K as
desired.
2. Run DISK COPY AND REORGANIZE to copy the files into new files that

have fewer total sectors, T.

NOTE:

To preserve RECOVERY capability when copying the User

File, .copy the exact aumber of sectors specified as
"SECTORS USEDY.

To Lengthen a‘KFAM File:

1. Run DISK COPY AND REORGANIZE to copy the files into new files that
have more sectcrs, T.
2. Run REALLOCATE KFAM FILE SPACE to increase K for each of the copied
files.
NOTE: m@?

To preserve RECOVERY capability, set the User File size to
the exact number of sectors specified as "HIGH LIMIT."

For KFAM—4 only, hog mode is selected for the disks containing the User
File and the Key File. To execute the utility at a non-nmultiplexed disk drive
key

M$ = X" (EXEC)
at KFAM-U4 utilities menu, prior to loading the utility.
7.1.2 Operating Instructions REALLOCATE KFAM FILE SPACE
DISPLAY INSTRUCTIONS

l. 1. Mount the disks containing the
user file and key file. From
KFAM subsidiary menu, access
REALLOCATE KFAM FILE SPACE

via the indicated Special
Function keye

96

£

7€§k

3.

4.

7.

;@

ENTER USER FILE NAME {SSSSFJNN)

ENTER THE NO. OF THE USER FILE
DEVICE ADDRESS

1. 310 5« B1l0
2. 320 6. B20
3. 330 7. B30
4. 350

ENTER THE NO. OF THE KEY FILE
DEVICE ADDRESS.

l. 310 5. B1l0O
2. 320 6. B20
3. 330 7. B30
4. 350

ENTER NUMBER OF KEY FILE

DO YOU WISH TO REALLOCATE UF
SPACE? (Y OR N)

97

3.

5¢

6.

Enter the name of the file.

MESSAGE: 2, 4, 5

NOTE:
Error messages and recovery
Procedures follow the operator
instructions.

Enter the selection number for
the user file device address.

MESSAGE: 2, 6

Enter the selection number for
the device address of the key
file.

MESSAGE: 2, 6

Normally, enter 1.

If there is more than one key
file associated with the user
file, enter the number of the
key file to be accessed.
HESSAGE: 2, 3, 7

The system reads the KDR
record of the specified index
and displays the current sSpace
allocation. It also displays
the low and high limits to
which it may be changed, for
both the user file and the

key file.
MESSAGE: 8, 9, 10

To change the user file space

allocation,
enter Y or nothing.

allocation unchanged, ,mEK
enter N.

if N is entered, the
program proceeds to Step 10
belowv.

8. INPUT NEW UF SECTOR ALLOCATION 8 Enter the number of sectors
to be allocated to the user
file for the use of KFAMNM.

NOTE:

To preserve RECOVERY capa-
bility when lengthening the
file, enter the number of sec-—
tors specified as "HIGH LIMNIT".

To increase the physical size
of a disk file, run the "Disk
Copy and Reorganize" progran

first; then run this progranm to
make the increased number of ;77
sectors available to KFAH.

This program does not increase
the space allocated to the file
on the disk. It only adjusts
internal pointers so that

KFAM is able to use more, OC
less, of that space.

MESSAGE: 2, 3, 12

9. 9. The system displays the new
sector allocation.
10. DO YOU WISH TO REALLOCATE 10. To change the key file space
SPACE FOR KF? (Y OR N). = -~ allocation, enter Y

or nothinge.
To leave the key file space

allocation unchanged,
enter N.

98

1ll.

12.

13.

1l4.

15.

ENTER NEW KF SECTOR
ALLOCATION

DO YOU WISH TO DO ANOTHER FILE?
(Y OR N)

99

11.

12.

13.

14.

15.

If N is entered, the
program proceeds to Step 14
below.

MESSAGE: 2, 11

Enter the number of sectors
to be allocated to the key
file for the use of KFAM.

This program only adjusts
internal pointers in the

KFAM file. To increase the
physical size of a disk file,
run "Disk Copy and Reorganize”
first.

MESSAGE: 2, 3, 12

The system displays the
new sector allocation.

The progranm makes the
internal adjustments to the
user file and the key file.

MESSAGE: 9, 13

To do another file, if both
user file and key file are
already mounted,

enter Y or nothing.

To stop, or to do another
file which is not already
mounted, enter N.

If "Y" is entered, Or
RETURN (EXEC) alone is keyed,
the program proceeds to
Step 2 above.

If "N" is entered, the
program continues vith Step 15
belov.

MESSAGE: 2, 11

The system returas to KFA M
subsidiary menu.

4.

Error Messages
ERROR MESSAGE

RE-ENTER

ERR29

FILE NAME MUST HAVE F IN
POSITION 5

FILE NAME MUST HAVE NUMBER

IN POSITION 6

INVALID DEVICE ADDRESS

INVALID

ERR8O

100

EXPLANATION /RECOVERY

Too many characters were entered.

RECOVERY: Repeat the step,
entering no more than the nunber
of characters indicated on the

screen.

A pon-numeric quantity

was entered

when a numeric quantity was requested.

RECOVERY: Reenter numeric guantity.

The file name entered does not

conform to KFAM naming

RECOVERY: Repeat Step

convention.

2, entering

the name of a KFaM file.

The file name entered does not

conform to KFAM naming

RECOVERY: Repeat Step

convention.

2 entering

the name of a KFAM file.

An invalid selection number was

entered.

RECOVERY: Repeat the ste

a valid selection number.

The number 0 is not valid for

a key file number.

RECOVERY: Repeat Step

5, entering

a number from 1 through 9.

Either the user file or
file was not found on t
designated platter.

the key
he

P, entering

RECOVERY: PRINT UlS$ for the name of

the user file. PRINT K
name of the key file.
DC to determine what fi
on the disk platters.
Erogram.

1$ for the
Execute LIST

les are present

Rerun the

Y

S

10.

1ll.

12,

/@5"”»

13.

ERR72

STOP RUN KFAM2003 FIRST

ANSWER Y OR N

INVALID-OUT OF BOUNDS

ERR8S

Disk read error, either a machine
error or bad data on disk.

RECOVERY: Recreate the KFPAN file
from a backup volume, and rerun
the progran.

Internal pointers indicate the
KEY FILE CREATION UTILITY has

not been run to build the key

file. :

RECQOVERY: Run the KEY FILE
CREATION UTILITY; then rerun
this prograsa.

The answer to a "yes"™ or "no"
question must be Y or N, or
RETURN (EXEC) alone, indicating
ﬂyes".

RECOVERY: Repeat the step with
the correct response.

The new length specified for the
file is greater than the high
limit or less than the lowvw limit.

RECOVERY: BRepeat the step, enteriag
a number which is within the limits
displayed on the screen for the °
file (key file or user file).

Disk write error. The key file
and/or user file are destroyed.

RECOVERY: Recreate the KFAM
files from a backup volume, and
rerun this prograne.

NOTE: éﬁl

FOR KFAM-U4 ONLY

If a file (User File or Key File) 1is not found, the
message FILE NOT FOUND is generated, and not ERR80, as
with KFAM-3.

If the file is flagged as being in use, the error message
"FILE BUSY" is generated.

"HARDWARE™ error messages of the type "ERR XX" are
intercepted by the program and the message "ERR XX LINE
XXXX" is generated.

Any of the above errors cause the program to stop. To
return to the menu following such a stop, key CONTINUE,
(EXEC).

7.2 DISK COPY AND REGRGANIZE {KFAM-3 AND KFAM-4)
7.2.1 Overview

This program copies a file from one disk to another. It can be used ip ~
conjunction with REALLOCATE KFAM FILE SPACE to copy a KFAM file and change itA§
length. It can be used alone to copy any cataloged file to another disk, ana
in this way can be used to rearrange disk files.

The input disk contains the files to be copied. Files are copied one at
a time with intervening operator rarameter entries. Any cataloged file may be
copied including progranm files. The utility provides for operator
specification of the number of sectors in the output file. However, if the
input file is a program file, or a data file with a DATASAVE DC END trailer,
the output sectors may not be less than the number of used sectors in the
input file. A data file without a DATASAVE DC END trailer may be copied
without this restriction.

The output disk receives the copied files. It must have been initialized
hefore running this program, using the SCRATCH DISK statement. It may contain
other files written on it in Catalog Mode prior to execution of this progranm.

The program uses the cataloging mechanism provided by the system. Copied
files begin at the next free sector. File names are entered in the index of
the output disk. '

This program is an addition to, but not a replacement of, existing
hardware functions such as MOVE, COPY, and VERIFY.

! 102

g”“opied.
this program permits

However,

rearranging these files into the most

comabinatioas.

To copy complete KFAM files, the key file and the user file must both be
since Key File and User File can reside on separate disks,
advantageous

NOTE:
For KFAM—-4 only, hog mode is selected for the input disk
and output disk. To execute the utility at a
non—nultiplexed disk drive key
Mg = nyw
at KFAM-4 utilities menu, prior to loading the utility.
7.2.2 Operating Instructions
DISPLAY INSTRUCTIONS
1. 1. Mount the input and output
disks.
2. 2. From KFAM-3 or KFAM-4 menu
access DISK COPY/REORGANIZE
i via the specified Special
%@m Function key.
3. ENTER THE NO. OF THE INPOT 3. Enter the selection nuamber
PLATTER DEVICE ADDRESS of the input disk device
address.
1. 310 S B10O
2. 320 6. B20
3. 330 7. B30
4. 350
4. ENTER THE NO. OF THE OUTPUT 4, Enter the selection number

PLATTER DEVICE ADDRESS

1. 310 5. B10
2. 320 6. B20

3. 330 7. B30
4. 350

103

of the output disk device
address. '

MESSAGE: 2, 4, 5

NOTE:

Error messages and recovery
procedures follow the operating
instructioas.

5e ENTER FILE NAME 5e Enter the name of the file @§
to be copied.

To end the program, key
RETURN {EXEC) and go
to step 1l.

NOTE:

A new input or output platter
may be mounted at this point.

MESSAGE: 2, 6, 7, 14

6. 6a The system displays the input
platter designation, the
output platter designation,
and the number of sectors
available on the output platter.

Te : 7. The system displays the nanme
of the file to be copied, the
number of sectors it occupies
on the input platter, and the
number of sectors used for
program or data storage.

8e ENTER NUMBER OF SECTORS TO BE 8. Enter the number of sectors
COPIED to be allocated to the file
on the output platter.

MESSAGE: 2, 3, 8, 9, 10

NOTE:

To preserve KEY FILE RECOVERY
capability when decreasing the
size of User FPiles, specify the
exact number of sectors shown
as "SECTORS USED™,

9. 9. The program copies the file
from the input platter to
the output platter.

MESSAGE: 11, 12, 13

104

g@ﬂ. 10. The program displays the num-
\ ber of sectors now available
on the output platter.

Go to step S.

11. MOUNT SYSTEM DISK KEY RETURN (EXEC) 1l. Mount the KFAM ISS disk.
TO RESUNME Key (EXEC).

12, 12. The system returns to the KFAM
menu.

Brror Messages
ERROR MESSAGE EXPLANATION/RECOVERY

2. RE-ENTER ' ' Too many characters were entered.
RECOVERY: Repeat the step,
entering not more than the number
of characters indicated on the
screen.

3. ERR29 A non-numeric quantity was

entered when a numeric quantity
vas regquested.

(6“‘ RECOVERY: BReenter numeric
quantitye.
4. INVALID Platter address designation
invalid.

RECOVERY: Repeat the step
entering a valid selection

number.
5. INPUT AND OUTPUT PLATTERS The same platter designation
MUST BE DIFFERENT vas entered for both input and
© output.

RECOVERY: Repeat from Step 3

entering different platter

designations for input and output.
6. FILE NQT FOUND Input file not found.

RECOVERY: Repeat from Step 5.
Enter correct input file nanme.

105

7. STOP NO ROOM TO COPY The number of sectors used by Jﬂﬁ'
the input file is greater :
than the number of cataloged
sectors available on the output
platter. Therefore there is not
enough room on the output
platter to copy the file. (For
KFAM-4 only, key (EXEC) to
return to the KFAM-4 menu.)

RECOVERY:

1. Replace the output platter
with another platter, with
more space available.

20 0r, use MOVE END to increase
the cataloged area on the
output platter. :

3. LIST DC may be used at this
point to determine the
contents of the output
platter.

4, SCRATCH may be used to remove
unwanted files from the
output platter. This will N
not free any space, however. ‘ﬂ%
To free the space occupied by
scratched files, remove the
input platter and replace it
‘with a scratch disk, use MOVE
to copy the output disk to
the scratch disk, and use
COPY to copy the new contents
of the scratch disk back to
the output diske.

To resume, begin at step 1l.

8. LESS THAN SECTORS USED This program will not copy less
than the number of sectors used.

RECOVERY: Repeat Step 13. Enter
a number at least as large as
sectors used.

To shorten sectors used in a KFAM
file, see REALLOCATE KFAM FILE SPACE.

106

GREATER THAN AVAILABLE SPACE

2€ﬁ.

10. ERR79

11l. ERR72

12. ERRS8S

107

The number of sectors to be copied
is greater than the number of
sectors available on the output
platter.

RECOVERY: Repeat Step 8. Enter a
number not greater than available
space, as shown in the screen
displaye.

To increase the size of the
output cataloged area, see Error
Message 7, above.

A file of the same name is already
cataloged on the output platter.
Two £files of the same name may not
be cataloged on the same platter.

RECOVERY: To replace the existing
file on the output platter with a
new file of the same name,

enter: SCRATCH T#2, N3

key: RETURN{EXEC)

enter: DATASAVE DC OPEN
T$#2,N$, "dunmy name"

key: RETURN (EXEC)

repeat from Step 1 reentering
the name and length of the new
file to be copied.

To leave the existing file on
the output platter and proceed
on to the next file, repeat from
Step 1.

Disk read error.

RECOVERY: For either ERR 72 or
ERR85, the procedure is as follows:
To retry the disk read or write
operation, enter RUN XXXX, wvhere
XXXX is the line number shown with
the error message.

13.

14.

~STOP DISASTER

PROTECTED PROGRAM

108

If the error persists, 'ﬂ%:
either: '

a. There is a hardware
malfunction,

b. If ERR 72, the input sector
is recorded in error, or

Ce If ERR 85, the output sector

is physically no good.

The presence of a bad sector on
either the input or output platter
can be detected by using the
VERIFY command.

Program error. The copy of the
file is not completed.

RECOVERY: Rerun from Step 1.

Recopy the same file again. If
ERR79 occurs, follow the Scratch and
Rename Recovery procedure.

An attempt is being made to copy a
protected program.

RECOVERY: This program will aot ﬂ%@
copy a protected program.

CHAPTER 8
PRINT KEY FILE UTILITIES

8.1 PRINT KEY FILE KFAM-3

. This program prints the current contents of the Key Descriptor Record
(KDR) and the Key Index Records (KIR) for any KFAM-3 Key PFile.

Operating Instructioas
€ DISPLAY INSTRUCTIORS

le 1. Mount the disk platter contain-
ing the KFAM-3 Key File to be
printed; mount paper on the
printer.

24 2. Access PRINT KEY FILE via the
‘ appropriate Special Function ke
from the KFAM-3 menu.

3. ENTER FILE NAME 3. Enter the name of the User File
with which this Key File is
associated, or the name of the
Key File itself.

4. ENTER KEY FILE # 4. Enter the number of the Key Pil:
to be printed.

The Key File Number is normally
1, but may be any digit from 1
to 9 if there are multiple Key
Files for one User File.

MESSAGE: 3

109

5.

7

ENTER THE NO.
DEVICE ADDRESS

FOR THE KEY FILE

l. 310 "5 BI1O
2. 320 6. B20
3. 330 7. B30
4. 350

Error Messages

be

ERROR MESSAGE

RE-ENTER

ERR 29

INVALID DEVICE ADDRESS

ERRS80

110

NOTE:

Error messages and recovery
procedures follow the operating

instructions.

S5e Enter the selection number for
the device address of the Key
File.
MESSAGE: 2, 3, &

6o The program prints the contents

of the Key File.

MESSAGE: 5, 6, 7
7Te The system returns to KFAM-3
menu.

~

EXPLANATION/RECOVERY
Too many characters were entered.

RECOVERY: Repeat the step entering
the correct information.

A non-numeric quantity was entered
when a numeric quantity was requested.

RECOVERY: Reenter numeric quantity.

Device address entered was invalid.

RECOVERY: Repeat the step. Enter
correct device address selection
number.

File not found. The specified file
does not exist on the specified
platter.

RECOVERY: Make sure the correct
platter is mounted. Rerun from Step
2, entering the correct information.

“3

8.2

M%{Si

l.

2.

3.

ERR72 ' Disk read error.
RECOVERY: Rerun from Step 2.
ERR43 Wrong file format read.
RECOVERY: This program will only
print a Key File created under
KFAM-3.
PRINT KEY FILE KFAM-4

This program prints the current contents of any KFAM-4 Key File.

NOTE:
Hog mode is selected for the device containing the Key
File. To execute the utility at a non-multiplexed disk
drive key,
H$ = mx" (EXEC)

at KFAM-U utilities menu, prior to loading the utility.

DISPLAY ' INSTROCTIONS

1. From KFAM-4 menu access the
PRINT KEY FILE utility via the
indicated Special Function
key.

ENTER USER FILE NAME (SSSFJNN) 2. Enter the name of the User
File with which the Key File
is associated.

MESSAGE: 4,5

ENTER THE KEY FILE NUNBER 3. Enter the Key File Number of
(NORMAL=1) the Key File to be printed.

MESSAGE: 4,6,7

111

4. ENTER THE NO. OF THE KEY FILE 4, Mount the disk containing theﬁ@§

DEVICE ADDRESS. Key File. Enter the selectio.
, number (1-7) to choose the
1. 310 5. B1l0 device address of the Key File.
2. 320 6. B20
3. 330 7. B30 MESSAGE: 4,6,8
4. 350
Se 5. The program prints the contents
of the Key File.
MESSAGE: 1,2,3
6 6. The systenm returns:to-KPhnoa

menu.
MESSAGE: 2

Error Messages

MESSAGE EXPLANATION/RECOVERY
l. ERR80 File not found.

RECOVERY: Mount disk containing
Key File. Rerun. Q)

~

2e ERR72 ' Disk read error.

RECOVERY: Rerun the program. If
error persists, program or Key File
will have to be recreated fronm
backup.

3. ERR85) Disk vwrite error.

RECOVERY: Rerun the program. If
error persists, the disk containing
the Key Pile is bad.

4. RE-ENTER ' Too many characters vwere entered,
or an invalid character was entered
in response to a "yes" (Y) or "no"
{N) gquestion.

RECOVERY: Repeat the step.
Re—-enter the data.

Se NOT KFAM FILE NAME The S5th character of the file name

must be "P", and the 6th character
must be a zero.

112

af

6e

7.

8e

ERR29

INVALID

INVALID DEVICE ADDRESS

113

RECOVERY: Repeat the step. Enter
a valid KFAM file nanme.

Non-numeric data was entered when
a numeric quantity was requested.

RECOVERY: Repeat the step. Enter
a number.

Key Pile number may not be zero.

RECOVERY: Repeat the step. Enter
a number 1-9,

The numbers 1-7 may be used to
specify a device address, according
to the table displayed.

RECOVERY: Repeat the step. Enter
a number 1-7.

CHAPTER 9
THE RECOVERY UTILITIES

9.1 KEY FPILE RECOVERY (KFAM-3 AND KFAM-4)

9.1.1 Overview

If a Key File is destroyed, the Key File Recovery utility permits it to
be reconstructed from the data in the User File, provided that application
programs that operate on the file adhere to the following conventions:

1) ALl DELETED records are flagged in tlie User File with HEX(FF) i:ﬁ§'
the first byte of the key.

2) Programs that execute PINDNEW on the file include the RECOVERY
OPTION in all subroutines, and subsequently close the file with the
CLOSE subroutine. (Note that wunder KFAM-4, CLOSE is a systen
requirement, apart from the RECOVERY requirements.)

The information required to operate the utility is:

1) User File name

2) User File device address

3) Key File number (normally = 1)

4) Key File device address

5) Is the Key File already cataloged?

If the Key File already exists on the designated disk, this utility
reuses that file; otherwise, it catalogs a new file with sufficient space to
index the maximum number of records in the User File.

If more than one Key File exists for this one User File, it may be
impossible to use this utilitye.

m%

114

The utility uses a printer (address 215) to list duplicate keys. If no
~ rinter is available, or a different printer device address is desired, see
Chapter 12.

For KFAM-4 only, the utility selects hog mode for the disk containing the
Key File, initializes the Key File, then deselects and leaves hog node. (To
execute the utility at a non-nmultiplexed disk drive, key

M$ = nX® (EXEC)

at KFAM-4 utilities meau, prior to loading the utility.) The file is then
opened in exclusive mode and the disk is not hogged.

9.1.2 Operating Instructions
DISPLAY INSTROCTIONS

1. 1. Mount the disk containing the
User File, and the disk to
contain the reconstructed Key
File.

2. | 2. From KFAM-3 or KFAM-4 menu
load KEY FILE RECOVERY via
the indicated Special Punction

('] Key.

\ e ENTER USER FILE NAME (SSSSPJNﬁ) 3. Enter the name of the User

File for which the Key Pile
is to be reconstructed.

MESSAGE: 2,4

NOTE:

Error Messages and recovery
procedures follow the
operator instructions.

4. ENTER THE NO. OF THE USER FILE 4, Enter the selection number

DEVICE ALDRESS (1-7) to choose the device
address of the User File.

1. 310 S. B10 ' MESSAGE: 2,5

2. 320 6. B20

3. 330 7. B30

4. 350

115

5. ENTER THE KEY FILE NUMBER

6. ENTER THE NO. OF THE KEY FILE

DEVICE ADDRESS.

1. 310 5. B10
2. 320 6. B20
3. 330 7. B30
4. 350

7. IS KEY FILE CATALOGED (Y CR N)

8e TURN ON PRINTER
KEY RETURN (EXEC) TO RESUME

10.

Error Messages
"ERROR MESSAGE

1. ERROR ## LINE ###3%

56 The Key File Number should
alvays be 1, unless there are
multiple key files for a
single User File, in which
case the Key File Number may
be any digit from 1 to 9.

MESSAGE: 2,6

6u Enter the selection number
‘(1-7) to choose the device
address of the Key File.

MESSAGE: 2,3,5

T If the Key File is cataloged
at the address selected in
step 6, enter Y; otherwvise
enter N.

MESSAGE: 1,2,7,8,9

8. Ready the printer. The m@@
printer is used to list '
duplicate keys or unreadable
sectors, if any. (If no
printer is available, this
program must be slightly
modified; see Chapter 12.)
MESSAGE: 2

9. The system recreates the Key
File.

MESSAGE: 1,10,11,12,13,14,
15,16,17,18

10. The system returns to the
KFAM menu.

EXPLANATION/RECOVERY

This is the same as ERR ## in BASIC.

~

3.

4.

5.

6e

7.

8.

9.

RE-ENTER

ERROR 80 LINE 6190

NOT KFAN FILE RAME

INVALID DEVICE ADDRESS

INVALID

FILE ALREADY CATALOGED

FILE NOT FOUND

NO SPACE ON DISK FOR KEY FILE
(STOP)

117

RECOVERY: Appropriate to error
type.

Too many characters vere entered, or
the entry was invalid.

RECOVERY: Repeat the step, cor-
recting the entry.

The User File is not mounted on the
device specified.

RECOVERY: Mount the disk contain-
ing the User File and rerun the
program.

The User File name must have an "FY
in position 5 and a 0 in position 6.

RECOVERY: Repeat step 3. Enter
correct User File nanme. ’

The device address for a KFPAM file
must be 310, B1l0, 320, B20, 330,
B30, or 350.

RECOVERY: Repeat the step. Enter
correct device address. .

The Key File Number may not be 0.

RECOVERY: Repeat step S. Enter a
Key File Number 1-9.

Key File already exists.

RECOVERY: Repeat from step 1.
Mount new disk if necessary.

Key file does not exist on the
specified device.

RECOVERY: Repeat from step 1.
Mount new disk if necessary.

There is not sufficient space on
disk to catalog the Key Pile.

RECOVERY: Mount new disk and rerun.

10. STOP ERROR OPENING FILES Return code "X" from "OPEN" sub°1'
routine, Possible cause: Thfﬁ%
program was stopped and restarted
after processing had begun.

RECOVERY: Load and rerun from menu.
If the error persists, notify Wang
Laboratories.

1l. INVALID RECORD FORMAT {SToP) Record type A, array-type blocking:
more than one sector per block, more
than 38 fields per record, or not
written with correct control bytes.

RECOVERY: None. "END® record
invalid.

12. NOT BLOCKED AS SEECIFIED Recovery type a, array-type
blocking: records per block

specified incorrectly, or records
not written in array format.

RECOVERY: None. WEND™ record
invalid.
13. RECORD LENGTH NOT SPECIFIED Record type A, array-type blocking:'7
{STOP)- record length specified ir”

INITIALIZE KFAM FILE does not equal
record length of sample record.

RECOVERY: None. WEND® record
invalid.
14. KEY FIELD OUT OF BOUNDS (STOP) Record type A, array-type blocking:

the key must be wholly contained
within one field of the record.

RECOVERY: None. WENDY record
invalid.

15. NUMERIC KEY INVALID (STOP) Record type A, array-type blocking:
the key falls within a numeric
field.

RECOVERY: None. "ENDY record
invalid.

l6. NO SPACE (STOP) Return code "S" fron FINDNEW (HERE) «

Not sufficient space for Key File.

118

. RECOVERY: Allocate more space for
@”5 the Key File. Rerun.

17. TINVALID POINTER (STOP) Sector accessed is not in the User
File. Probably the MEND" record
does not contain the necessary
information to rebuild the Key File.

RECOVERY: Rerun the progran. If
the error persists, no recovery is

possible.

18. SYSTEM HANGS ' Printer not turned omn, not se-
lected manually, or no device 215 in
systen.

RECOVERY: Turn printer om and press
WSELECT". If no device 215, this
program will not run without modi-
fication. {See “Eliminating the
Printer", Chapter 12.)

9.2 RESET ACCESS TABLE (KFAM-4 ONLY)

'{“‘ For KFAM-4 only there is an Access Table included in the Key File (in the

gﬁﬁ). This table is 4 bytes long, one byte for each possible CPU accessing
..e file. If no CPU is accessing the file, all 4 bytes should be blank. If
one or more CPU's are accessing the file, then one byte is set in the Access
Table for each CPU currently accessing the file. It is set to "A" or "x®
depending on whether the access is shared or exclusive.

When the file is closed, by a particular CPU, the corresponding byte in
the Access Table is set back to blank. If, for any reason, such as systen
failure or power failure, the program is terminated without closing the file,
there will remain, in the Access Table, bytes which are not set to blank. If
this happens, the file cannot subsegquently be opened in the exclusive mode.
If a byte happens to remain set to "™X" in the Access Table, the file cannot
subsequently be opened in either exclusive or shared mode. Also the number of
files which can be opened in the shared mode is cut down by the number of
bytes in the Access Table which remain set to "A®. (The programs assume that
these slots represent CPU's which are currently accessing the file.)

This utility is provided to reset the Access Table to blanks, in the
event of a program failure or system failure that has left the Access Table
with erroneous non-blank characters. The utility also turns off any "protect

flags" that may be 1left on. PRINT KEY FILE (KFAM-4) shows the curreant
settings of the Access Table.

119

This utility should not be run if any other CPU is currently accessinc®

the file. The wutility has no way of knowing whether entries in the Access
?ab@e are "live" or "dead", and resets all Access Table bytes to blanks
indiscriminately. Before running this program, the user should check to make

sure that no other CPU is currently accessing the file. Otherwise there could
be an unpredictable scrambling of results.

Hog mode is selected for the disk containing the Key File, while it is

being read and re-written. To execute the utility at a non-multiplexed disk
key

M$ = "X" (EXEC)
at KFAM-4 utilities menu, prior to loading the utility.

The User File is not accessed by this program. oOnly the Access Table in
the KLCR is altered.

Operating Instructions
DISPLAY INSTROUCTION

1. 1. From KFAM-4 subsidiary menu
access RESET ACCESS TABLE
via the indicated specified
Special Punction Key. ”mﬁ)

ERROR MESSAGE: 2

2 ENTER USER FILE 2. Enter the User File nanme.
NAME (SSSFJNN)
RESET ACCESS TABLE ERROR MESSAGE: 4,5

3. ENTER KEY FILE 3. Enter the Key File number.
NUMBER (NORMAL=1) Normally this is 1, unless

there are multiple Key Files
indexing the same User File.

ERROR MESSAGE: 4,6,7

4. ENTER THE NUMBER OF THE 4. Enter the selection number
KEY FILE DEVICE ADDRESS. for the address at which the
Key File is mounted.
1. 310 5S. B1l0
2. 320 6. B20
3. 330 7. B30 ERROR MESSAGE: 4,6,8
4, 350
Se S5e The Access Table is reset.

ERROR MESSAGE: 1,2,3

120

DO YOU WISH TO DO ANOTHER FILE?
(Y OR N)

i?ﬁ’

Error Messages
ERROR MESSAGE

1. ERR 80

2. ERR 72

ERR 85

(2

4. RE-ENTER

5« NOT KFAM FILE NAME

6. ERR 29

1.

2.

3.

4.

5.

121

If the Access Table of another
Key File must be reset, enter
Y and go to step 2. Other-
wise, enter N to return to
KFPAM-U4 subsidiary menu.

ERROR MESSAGE: 2

EXPLANATION/RECOVERY
File not found.

RECOVERY: Mouant disk containing Key
File. Rerun.

Disk read error.

RECOVERY: Rerun the program. If
error persists, program or Key File
vill have to be recreated from
backup.

Disk write error.

RECOVERY: Rerun the program. If
error persists, the disk coataining
the Key File is bad.

Too many characters vere entered,
or an invalid character was entered
in response to a "yes™ (Y) or "no"
(N) gquestion.

RECOVERY:
the data.

Repeat the step. Re-enter

The 5th character of the file nane
must be "F®, and the 6th character
must be a number 0-9.

RECOVERY: Repeat the step.
a valid KFAM file nanme.

Enter

Non-numeric data was entered when
a numeric quantity was requested.

RECOVERY:
a number.

Repeat the step. Enter

7.

8e

INVALID

INVALID DEVICE ADDRESS

122

Key File number may not be zero. /ﬁ%

RECOVERY: Repeat the step. Enter
a number 1-9.

The numbers 1-7 may be used to
specify a device address, according
to the table displayed.

RECOVERY: Repeat the step. Enter
a number 1l-7.

CHAPTER 10
THE KFAM CONVERSION UTILITIES

10.1 The KFAM—3 CONVERSION UTILITIES
10.1.1 Overview

KPAM-3 includes two KFAM conversion utilities. These are CONVERT KFAM-1
to KPAM-3 and CONVERT KFAM-2 to KFAM-3. They are provided to convert a file
created under one of the earlier KFAM's to the format of KFAM-3. The

(ocedures and operating instructions for these programs -are the same
@ﬁjardless of which one is being used.
The structure and format of the Key Pile is not the same for KFAM-3 as
for XFAM-1 or KFAM-2. Therefore, the conversion process comsists of droppiag
the old Key File and creating a new Key File in the KFAN-3 format.

Certain information must be preserved before the old Key File is dropped.
Deleted records must be identified, so that they will not be included in the
new Key Pile. The location of the last physical record in the User Pile must
be determined, and the value of the last key must be displayed, to defime the
end of the file. The utility performs these two functions. It does this by
using the KPAM subroutines of the KFAM version originally used to organize the
file. It extracts the key from each record in the User File. It then
executes "FINDOLD" for that key. If the key is not found, or if the pointer
in the Key Pile points to a different location in the User File, it assunmes
that record 1is deleted. It flags each deleted record with HEX (FP) in the
first byte of the key. In a printed report, it lists the location and key of
each deleted record.

If the record is not deleted, the utility checks the key to see whether
it violates the restrictions of KFAM-3 (first byte HEX(FF) or the eatire key

binary zero). It lists on the printed report, as ™invalid", any key which
violates these restrictions, together with the record location. It also lists

N

123

on the report the last valid key, so that it may be used to set up. the new Ke™
File. |

Once the User File has been conditiomed in this manner by the conversion
utility, TINITIALIZE KFAM FILE (KFAN-3 version) and KEY FILE CREATION (KFAM-3
version) utilities are run tao create the new Key File. Any key that is
flagged HEX(FF) in the first byte is ignored by KEY FILE CREATION, thereby
creating the new Key File only from the active records in the User File.
10.1.2 Conversion Procedure

To convert a file to KFAM-3, three programs must be run, the appropriate

"CONVERT"™ program, INITIALIZE KFAM FILE, and KEY FILE CREATION. The overall
procedure is as fecllows:

1. Backup copies should be made of the User File and the old Key File.
2. Mount the User File and the old Key Pile.
Execute ghe appropriate "CONVERT"™ programe.
3. Initialize the new (KFAM-3) Key File.
Load and execute INITIALIZE KFAM FILE. B
4. Build the new Key File. , | ﬁ@ﬁ
Load and execute KEY FILE CREATION UTILITY.

The User File and Key File are now converted and can be accessed via
KFAM- 3.

If converting from KFAM-1, modifications may be required to user programs
to run under KFAM-3. The return codes from the KFAM-1 subroutines have been
changed as follows:

KFAM~-1 KFAM-3
Subroutines Subroutines
Subroutine Condition Return Return
231 DFLETE Key not found L, H, or N N
232 FINDOLD Key not found L, H, or N N
235 FINDFIRST Ncrmal L blank
236 FINDLAST Normal . H blank

All other return codes are the same as before.

KFAM-2 and KFAM-3 have identical subroutine return codes.

124

r . .
'ésgperating Instructions

1.

2e

':'3.

4o

5

be

e
4

DISPLAY

ENTER USER FPILE NAME (SSSSFJNN)

ENTER THE NO. OF THE USER FILE
DEVICE ADDRESS

1. 310 5. B10
2. 320 6. B20
3. 330 7. B30
4. 350

ENTER KEY FILE NUMBER

(NORMAL=1)

1.

20

3.

4.

Se

6o

125

INSTRUCTIONS

Make backup copies of the
User Pile and Key File to be
converted.

Mount the disk platters con-
taining the User File and Key
File to be coaverted.

From KFAM-3 menu, depress
the appropriate Special

Function key to access CONVERT
KFAM-1 to KFAM—-3 or CONVERT
KFAM—=2 to KFAM-3.

Enter the User Pile nane.

MESSAGE: 2, 4

NOTE:

Error messages and recovery
procedures follow the operating
instructions. ~

Enter the selection number for
the user file device address.

MESSAGE: 2, 3, 6

Eater the Key File Number.

The key file number should
always be 1, unless there are
multiple key files for a single
User File, in which case, the
Key File Number may be any digi
from 1 to 9.

MESSAGE: 2, 3, S

10.

11.

l2a.

ENTER THE NO. OF THE KEY PILE
DEVICE ADDRESS

1. 310 5« B10
2. 320 6. B20
3. 330 7. B30
4. 350

"KFAM FILE CONVERSION (KFAM5000) »
etc.

TURN ON PRINTER
KEY RETURN (EXEC) TO RESUME

DO YOU WISH TO DO ANOTHER FILE?
(Y OR W)

Error Messages

ERROR MESSAGE

RE-ENTER

ERR29

NOT KFAM FILE NAME

126

7. Enter the selection number of >
the key file device address. ﬁq%

MESSAGE: 2, 3, 6

8o The files are opened.
MESSAGE: 7, 8, 9, 10, 15

9. Mount paper in the printer:
Key RETURN (EXEC) to resume.

MESSAGE: 2

10. The system proceeds with the
coaversion.

MESSAGE: 12, 13
11, To convert another file, enter

Y and go to step 4. Otherwise,
enter N and go to the next step.

\
MESSAGE: 2 ~y/

12, The system returns to the
KFAM-3 menu.

EXPLANATION/RECOVERY

Too many characters were entered,
or an invalid character was entered
in response to a "yes" {(Y) or "no"
(N) gquestion.

RECOVERY: Repeat the step, entering
the correct value.

A non-numeric quantity was entered
when a numeric quantity was requested.

RECOVERY: Reenter numeric quantity.

The User File name must have an "FM
in position 5 and a zero in position

ba
Y

S5

6.

7.

8.

9.

10.

11.

INVALID

INVALID DEVICE ADDRESS

STOP ERROR OPENING FILES

NOT EVEN MULTIPLE

ERRS80

ERR72

ERR8S

127

RECOVERY: Repeat Step 4. Enter
correct User File nane.

The Key File number may not be 0.

RECOVERY: Repeat Step 6. Enter
Key File number 1-9.

The device address is invalid.

RECOVERY: Reenter correct selection
number. '

This should not occur. Either the
program is being rerun without closing
the file, or there is an error in the
Key File.

RECOVERY: Recreate the Key File from
a backup. BRerun the program from Steg
1.

This should not occur. The total
sectors occupied by the User File

is not an even multiple of the number
" of sectors per record.

RECOVERY: Becreate the Key File from
a backup copy. Rerun the progranm
from Step l.

Piles not found. EBither the User File
or the Key File does not exist omn
the specified platter.

RECOVERY: Rerum the program from
Step 4. Enter correct information.

Disk read error. If the error per-
sists, either the User File ({#1) or
the Key File (#2) is permanently
damaged.

RECOVERY: Rerun the program from
Step 1l. :

Disk write error. If the error per-
sists, the platter is physically
damaged.

RECOVERY: Recreate both the User Pidm
and the Key File from backup copies.
Rerun the program from Step 1.

12. sSystem hangs Either the printer is not turned on,
or there is no device 215 in the
systen.

RECOVERY: Press both "ON/OFF" and
"SELECT" to turn on the printer.

Both should be illuminated. If no
printer, the program must be modified
in order to run (see Chapter 12,
"Eliminating the Printer").

13. ERROR X This should not occur. The FINDOLD
subroutine reports an improper call.

RECOVERY: Rerun from Step 1. If
the error persists, notify Wang
Laboratories, Inc.

14. ERR 43 Wrong record format read. The Key
File is not in the original KFAM
format.

-)
RECOVERY: Check the system which 'ﬁ%“
created the Key File. Rerua from

Step 3.
15. INVALID RECORD FORMAT Record type A array type blocking:
or record format or key position is
NOT BLOCKED AS SPECIFIED invalid.
or A
RECORD LENGTH NOT SPECIFIED RECOVERY: File cannot be converted.
CORRECTLY
or
KEY FIELD QUT CF BOUNDS
or

NUMERIC KEY (STOP)

10.2 THE KFAM-4 CONVERSICN UTILITY

The KFAM-4 system includes a utility program to convert from KPAN-3 to
KFAM-4, The structure cf the Key File's key index entries is identical from
KFAM-3 to KFAM-4. Only the FKRey File's special header record, the KDR,
differs, and, therefore, only this needs to be altered to convert a KFAM-3
file to a KFAM-4 file. The utility CONVERT KPAN-3 TO KFPAM-4 performs the
necessary alteration of the KDR.

128

f@g\ To convert a file from KFAM-1 or KFAN-2 to KFAM-4, it must first be

. ,averted to KFAM-3 using the KFAM-3 conversion utilities.

Application programs written for KFAM-3 will require mnmodification to
operate on KFAM-U4 files. See Chapters 1, 5 and 12 for KFAN-U4 programming
procedures.

NOTE:
The wutility selects’ hog mode for the disk device
containing the key file to be converted. To execute the
utility at a non-npultiplexed disk drive key,
M$ = "X" (EXEC)

at KFAM-4 utility menu, prior to loading the utility.

Operating Instructioas

1. 1. From the KFAM-U4 menu access
CONVERT KFAM-3 TO KPAM-U
via the specified Special
Function Key.

ﬁg*. ENTER USER FILE 2. Enter the name of the User
NAME (SSSSPJNN) File to be converted.

MESSAGE: 4,5
3. ENTER KEY FILE 3. Enter the Key File Number.
NUMBER (NORMAL=1) Normally this is 1, except if
there is more than one Key
File for the User File.

MESSAGE: 4,6,7

4. ENTER THE NO. OF THE 4. Enter the selection number
KEY FILE DEVICE ADDRESS (1-7) to choose the Key File
device address.
1. 310 5« B10 MESSAGE: 4,6,8
2. 320 6. B20
3. 330 7. B30
4., 350
5. Se The utility converts the Key
File from KFAM-3 to KFAM=4
format.

I 129

6.

DO YOU WISH TO DO ANOTHER
FILE ? (Y OR N)

Error Messages

ERROR MESSAGE

1.

2.

ERR 80

ERR72

ERR8S

RE-ENTER

NOT KFAM FILE NAME

ERR29

130

MESSAGE: 1,2,3 ,ﬁ%

fa Enter Y to repeat program for
another file; go to step 2.
Enter N to return to KFAM-4
menu.

MESSAGE: U4

EXPLANATION/RECOVERY
File not found.

RECOVERY: Mount disk containing
Key File. Rerun.

Disk read error.

RECOVERY: Rerun the program. If
error persists, program or Key
Pile will have to be recreated.

Disk write error.

RECOVERY: Rerun the program. If
error persists, the disk containing
the Rey File is bad.

Too many characters were entered,
or an invalid character was entered
in response to a "yes™ (Y) or "no"
{N) question.

RECOVERY: Repeat the step.
Re-enter the data.

The Sth character of the file name
nust be "F", and the 6th character
must be a number 0-9.

RECOVERY: Repeat the step. Enter
a valid KFAM file name.

Non-numeric data was entered when
a numeric gquantity was regquested.

RECOVERY: Repeat the step.
Enter a number.

g7

Be

INVALID

INVALID DEVICE ADDRESS

131

Key File number may not be zero.

RECOVERY: Repeat the step.
Enter a number 1-9.

The numbers 1-7 may be used to
specify a device address, according
to the table displayed.

RECOVERY: Repeat the step. Enter
a number 1-7.

‘CHAPTER 11
GENERAL TECHNICAL INFORMATION

11.1 KEY FILE RECORD LAYOUTS

The first sector of the key file contains the Key Descriptor Record
(KDR) « The remairing sectors contain Key Index Records (KIR's), as many as
are necessary to index the User File. The layouts of the KDR's of KFAM-3 and

KFAM-4 are different; both are given below. The layouts of the KIR's are
identical for KFAM-3 and KFAM-4. :

\

Key Descriptor Record (KDR)--KFAM-3 : ,@§/

Variable Bytes

Name on Disk Contents

22%2 3 Last data sector ({last sector used for data in User
File, relative to starting sector = 0, hex number).

Q332 3 .Data sector linmit (last sector available for data
in User File, relative to starting sector = 0, hex
number) .

V581 2 Record number within sector, 1last slot used for
data in User File, hex number. (Pirst record
within sector = 1.)

V8s$1l -2 Records per block, hex number. (Set to 1 for type

. . M or N records.)

Vo$2 3 Key File, absolute address (hex) of starting
sector.

V1s$8 9 Byte 1: Record type, A, C, M, or N.

Byte 2: Record length (hex) if type A or C.

Bytes 3, 4: Starting positicn of key (hex)
relative to first byte of first sector of record =
0.

ﬁf§

132

V2$2
v3$2
V631
T2$2
TO
Tl
T2

V8
Tus$3

™S $30

T7$30 -
T2$(8)2

T (8)

7881

W N W W

O 0

31

31
24

72

Byte 5: Key length {hex).
Byte 6: The number of KIE's per KIR (hex).
Bytes 7, 8: Not used.

Key File, last sector used (hex), relative to
starting sector = 0.

Key Pile, last sector available (hex), relative to
starting sector = 0.

Sectors per logical record (hex). ({Set to 1 for
type A or C records.)

Sector address of highest level index sector (hex),
relative to starting sector of Key File = 0.

'Number of index levels.

Current Key File # (file number assigmed in SELECT
statenment).

Current User File # {file number assigned in SELECT
statement).

Bias for splitting KIR expressed as a percentage of
the number of KIE's which can be contained im the
KIR, range .2 to .8.

Last record accessed, poiater: Bytes 1, 23
Relative sector within User File. .
Byte 3: Record number (hex) within sector.

Last keg added to file.

Last key accessed.

Path to last record accessed:
Sector address, of KIR's,

from level TO down to level 1l.
Path to last record accessed.

Number of KIE's within KIR, fronm
level TO down to level 1.
Internal completion code:

Same as Q$, except:

Following DELETE, 0.K., T8%=71%,
Following FINDOLD, not found,
T8$ = w2n,

Following FINDNEW or FINDNEW (HERE),
Oo K-' T8$ = “3“.

Following OPEN, 0.K., T8%=letter
non, .

FPollowing CLOSE, O.K. T83% not
defined.

133

TOTAL 233 bytes : «@§

Key Descriptor Record (KDR) (KFAM-4)

Variable Bytes

Name on Disk - Contents

Q232 3 Last live data sector (last sector used for data in
User File, relative to starting sector = 0, hex
number).

Q03s%2 3 Data sector limit (last sector available for data in
User File, relative to starting sector = 0, hex
number).

V58 (u)1l 8 Per CPU, record number within sector, last slot used

for data in User File, hex number (first record
within sector = 1) initialized to V8$.

v8sl 2 Records per block, hex number. (Set to 1 for type M
or N records.)

V1s8 9 Byte 1l: Record type, A, C, M, or N.
Byte 2: Record length (hex) if type A or C.
Bytes 3, 4: Starting position of key (hex) relative
to first byte of first sector of record = 0.
Byte 5: FKey length (hex).
Byte 6: Number of KIE's per KIR.

Bytes 7-8: Not used. ').

V2$2 3 Key File, 1last sector used (hex), relative t(ﬁ§
starting sector = 0.

V3352 3 Key File, last sector available (hex), relative to
starting sector=0.

V631l 2 Sectors per logical record (hex). (Set to 1 for type
A or C records.)

T232 3 Sector address of highest level index sector (hex),
relative to starting sector of Key File = 0.

TO 9 Number of index levels.

83 (4)1 8 Per CPU, internal completion code: Same as Q83,
excert:
Initialized to "Z" by KFAM1004, KFAM100S5, or KFAM7004.
Following FINDOLD, =not found, = Ww2w, Following

. FINDNEW, FINDNEW (HERE), or DELETE, all slots with a

" value of "9" or less are set to "3w, Following OPEN,
successful, set to 1letter Mon, Following CLOSE,
successful, set to "z", If Q$="B", set to "9".

Q034 5 Access table: one byte slot per CPU.

Byte is blank if this slct not used.
"A" if access is shared.
"X" if access is exclusive.

134

e The slot assigned to a particular CPU varies. It is
@h\ determined by the first blank character of Q0% at the
time the particular CPU opens the particular file.
This slot number also becomes the subscript for
V55(), T8%(), V43$(), and V2% ().

Vus (uy2 12 Per CPU, protected sector.
Hex (FFFF) if no protected sector.
V23 (4)2 12 Per CPU, data sector for FINDNEW.

V5%() defines the record within the sector. The
combination of V2$() and V5$() defines the last
'physical location assigned to a new record by this
CPU via FINDNEW. The value of V2$(), per CPU, is
taken from Q2$, which is the last sector address used
by any CPU.

Total 82 bytes
Key Index Record (KIR) (KFAM-3 AND KFAM-4)

Variable Bytes
Name on Disk Contents

T9$2 3 Sector address (hex), this sector, relative to
first sector of Key File = 0.

T T0$(4)60 2u4 ‘ A 240 byte array containing KIE's. Number of KIE's
Gl ’ per KIR can vary from 7 to 60. Unused KIE's are

filled with all bytes HEX(FP). Active KIE's are
packed as follovs:

K bytes: key

3 bytes: pointer

Pointer points to next lower index 1level KIR or
User File record if lowest level. The first two
bytes of the pointer contain the sector address
(hex) relative to the start of the file. The last
byte contains the record number (hex) within the
sector 1if the pointer is to a data record, and is
not defined if the pointer is to a lower level KIR.

TOTAL 247 bytes
Internal Storage under KFAM-4

Certain information that is stored in the KDR under KFAM-3 is stored
internally in CPU memory under KFAM-4. It is stored in 3-element arrays for
vhich the KFAM ID number serves as a subscript (T9=KFAM ID Number), and in

some cases 1is stored in scalar variables for the most recently active file.
The internal storage fields are as follows:

e

135

Most Recently Per KFAM A\}
Active File I.D. Number Contents f“%

Vo vo (3) CPU number assigned when the file was opened
{see KDR, Q09%).

vV0s$2 vV0$ (3)2 Absolute starting sector (hex) of the Key
File, or HEX(FFFF) if file not open.

Tl T1(3) Key File # (file number assigned in SELECT
statement).

T2 T2 (3) User File # (file number assigned in SELECT
statenment)e.

T43$3 T4$(3)3 Last record accessed, pointer: Bytes 1,2:
Relative sector within User File. Byte 3:
Record number (hex).

T7%$30 T7%(3) 30 Last record accessed, key.

T2%5(8) 2 T6$(3) 16 Path to 1last record accessed: Sector
addresses. of KIR's from highest level down
to level 1.

Subscript of T2$() corresponds to index
level. Subscript of T63{) is file I.D. ﬁ§§

T8 T$(3)8 Path to last record accessed: Starting byte
of KIE within KIR, from highest 1level down
to level 1 (hex) . Byte within T$
corresponds to index level.

- vV33(3)1 Access mode, "A"™ = shared, "X" = exclusive.

- V8 {3) Bias for splitting KIR. Reset to .5 when

the file is opened.

- T5%(3) 30 Last key added to file.

11.2 KEY FILE STRUCTURE

The structure of the Key File in KFAM-3 and KFAM-4 is the sanme. It is
similar to the structure called a B-tree, which is discussed on pages 473-479
of THE ART OF COMPUTER PROGRAMMING: Volume 3/Sorting and Searching, by Donald
E. Knuth.

The problem is to create a Key File that permits rapid access to any
particular User File record, and may also be updated at any time without a
major reorganizaticn of the file. The B-tree structure, as modified,
satisfies this two-fcld regquirenment.) -~

136

‘.gﬁx The structure of the Key File is best described by showing how the file
-5 constructed. The first step, in INITIALIZE KFAM FILE, is to create one KIR
record, which contains one dummy KIE with a key value of binary zero (all
bytes HEX (00)). This dummy KIE serves to "prime" the system so that the sanme
program logic can be applied to a null, or empty, file as is applied to a file
containing active records. Being the lowest possible key, it also serves to
mark the lower limit of the Key File. For example, FINDFIRST (see KFAN
subroutines in Programming Aids Section) is done by searching for the binary
zero key and then doing FINDNEXT. This dummy key can be thought of as the 0Oth
entry in the Key File. Of itself, it represents nothing, except as the marker
of the lower boundary. : i

In the examples below, this dummy key is designated as m00O0%. Please
note that the actual value is binary zero, HEX (000000), and not the characters
"000", or HEX(303030). The characters "000" may be used as an active key, and
will not conflict with the dunmay key.

The unused KIE's in any KIR always have all bytes set to HEX (PF) < Thus
the original KIR record has the first key set to all HEX (00) and the remaining
keys set to all HEX (FF).

In the examples below, these unused keys are designated as “FFF." DPlease
note that the actual value is HEX (FFFFFF...) and not the characters WPPF," or
HEX (464646) .

(Two items in-the KDR record are essential to searching the Key Pile. One

€w¥ the number of index levels, TO. To start.with, TO = 1, because there is
only one level of index. The other item is the relative sector address of the
highest 1level index, T2%. At the starting point, there is only the one index
sector, the KIR record described above, and its sector address is alwvays
EEX (0001). {The KDB record always occupies sector HEX(0000), or the first
sector of the Key File, and the initial KIR follows it, in the second sector,
at relative address HEX (0001).) :

The Key File is now set up tc begin entering active KIE®s. As new keys
are added to the file, the respective KIE's are inserted in the KIR in their
proper sequential order. Higher keys are moved up one position, and one
HEX (FP) key is dropped off the end.

For example, if the first three keys to be inserted are 276, 913, and
198, the KIE's would be arranged as follows:

Start: 000, FFF, FFF, etc.

Pirst Key: 000, 276, FFP, etc.

Second Key: 000, 276, 913, FFF, etc. .
Third Key: 000, 198, 276, 913, FFF, etc.

137

Keys are inserted in the first KIR in this manner wuntil it 1is filledﬁmg
The number of keys per KIR depends upon the size of the key. Let us assume.

for this example that the first KIR has been completely filled by one dummy
key rlus 14 active keys:

000, 009, 147, 198, 278, 292, 589, 591, 671, 710, 730,
809, 851, 903, 913

At this point the key 796 is to be added. Since there is no room in the
one KIR to add another key, the KIR is split in two. A new KIR is created,
and the KIE's are divided between the old KIR and the new KIR: . :

014 KIR: 000, 009, 147, 198, 276, 292, 589, 591, FFF, etc.
New KIR: 671, 710, 730, 796, 809, 851, 903, 913, FFF, etc.

The new KIR occupies relative sector HEX(0002). Note that the key added,
796, is inserted in its proper sequential order, which in this case Jjust
happens to fall in the new KIR.

With more than one KIR now in the file, the concept of "level" enters in.
Both KIR's so far created are on level 1, the lowest level. The lowest level
is defined as the level which contains the pointers to the data records in the
User File. Whenever a KIR is split, the new KIR is on the same level as the
old KIR.

Rather than search the KIR's sequentially for a given key, the systenm

searches via a tree structure. There is one and only one KIR at the highes(ﬁx

level. 1Its sector address is recorded in the KDR. The search is started by
reading this sector. Up to this point, the search has been complete by
locating the position of the key within the one sector. But at this point,
there are two KIR's on level 1, and a higher level index must be created to
reference thenm.

Therefore a third KIR is created. It is a level 2 index. It contains
two keys, 000 and 671, which are the first keys of each of the two level 1
KIR's. The pointers associated with these two keys are the relative sector
addresses of the two level 1 KIR's, which happen to be, by coincidence,
HEX (0001) and HEX(Q002). This 2nd—level KIR 1is stored in relative sector
HEX (0003) of the Key File, and its conteats are:

Keys: 000, 671, FPFF, etc.
Pointers: 1, 2, FFP, etc.

The KDR is now updated. TO = 2, to show that the index now has 2 levels.

Y,

T2% = HEX(0003), to show that the highest level index is located at relative

sector HEX(0003).

Assuming that the next key tc be added is 562, the search now proceeds as
follows., 562 is ccmpared to the entries in the level 2 index, to see where it
falls. It is greater than or equal to 000, but less than 671. Therefore it
falls in the range 000 to 670. The pointer associated with 000 in the level 2

138

ral
“¢(™andex is HEX(0001), and therefore the level 1 index stored in relative sector
* «wEX(0001) is read. Then 572 is inserted in its proper place in the level 1

G~

index, as before. The system knows when it has reached level 1, because it is
counting down from TO to 1 as each level is read and searched.

When the key 562 has been added, the key file structure looks like this:

Sector Level Keys

1 1 000, 009, 147, 198, 27s, 292, 562, 589,
591, FFF, etc.

2 1 671, 710, 730, 796, 809, 851, 903, 913,
FFF, etc.

3 2 000, 671, PFF, etc.

As further keys are added, the KIR's on level 1 will again become full,
and again the KIR nmust be split to provide room for all the keys. Let us
assume that keys 401, 402, 403, 404, 405, 406, and 407 are added. The first
six keys will cause sector 1 to be full, and the addition of 407 will make a
split necessary. Relative sector HEX (0004) will be assigned to the new KIR,
and the resulting structure will look like this:

Sector Level Keys

1 1 000, 009, 147, 198, 276, 292, 401, 402,
FFP, etc.
2 1 671, 710, 730, 796, 809, 851, 903,
913 FFF, etc.
3 2 000, 403, 671, FFF, etc.
4 1 403, 404, 405, 406, 407, 562, 589, 591,
FFF, etc.
Note that no new level has been added this time. In this example, there
is room in the level 2 index to reference up to 15 level-1 KIE's. Therefore
at least 15 x 8, or 120 records (and probably more, up to 225) can be accessed
by a two-level index search.

Once the second level index is full, it is split, the same way the
original KIR was split, and a third level is created, pointing to two
2nd-level KIR's, which in turn point to the first-level KIR's. The first
level KIR's always .contain the pointers to the actual data records. As new
levels are added, more superstructure is added, but the bulk of the Key File
remains the sane.

If for a given key file there is an average of 10 KIE's per KIR, the
number of records which can be accessed by a given number of levels of index
is as follows: '

139

INDEX LEVELS NUMBER OF RECORDS @

14

150

1500

15,000
150,000
1,500,000
15,000,000
150,000,000

NN E WN M

For the largest possible key (30 bytes), each KIR holds a maximum of 7
KIE's and a gquaranteed average ninimum of 4 KIE's. For such a file the
maximum 8 levels of index access at least 114,687 records.

Perhaps the best illustration of the Key File structure for a large file
could be obtained by rTunning PRINT KEY FILE with an actual KFAM file. The
structure can then be traced from the highest level index sector {T2$, in KDR)
down to the level 1 pointers to the actual data record.

The general procedure for locating a key in KFAM is as follows:

1) The number of index levels (TO) and the relative sector address of
the highest level index (T2$) are taken from the KDR.

2) The index sector (KIR) is read from disk. ,m§

Y

3) A search of the KIR is made to locate the key. ‘The search returns
a pointer (T) to the key in the KIR which is equal to, or next
lower than, the key being searched.

4) The relative sector address of the KIR and the pointer to the KIE

path taken to locate the particular key, where T3 1is the current
index level.

5) If the current index level is greater than 1, the sector address
for the next lower level index is taken from the KIE found (T), and
the process is repeated from Step 2, above, for the next lower

level.

6) If the current index level is 1, then the search 1is finished. T
points to a KIE cn level 1, and V indicates whether the key found
is equal to or lower tham the key being searched. Control is
returned to the particular subroutine (FINDOLD, FINDNEW, DELETE,
etcs)e.

The general procedure for inserting a key is as follows:

1) The proper position for the key is determined by the search
procedure, above.

140

),

3)

4)

3)

‘reason

000,
011,

If the KIR is not full, the key and its associated record pointer
are inserted at location T+l in the KIR. All KIE's from location
T+l and up are moved ufp one position.

If the KIR is full, a new KIR is created, on the same level as the
old KIR. The KIE's are divided between the old KIR and the new
KIR. The new key and its associated record pointer are inserted in
proper sequential order in either the o0ld KIR or the new KIR,
depending on where the nev key happens to fall. The next available
sector address in the Key File is assigned to the new KIR.

If the split is not at the highest index level, the first key and
the sector address of the new KIR aré inserted in proper key
sequence in the next highest level KIR (as determined by tables
T2$() and T()). If the next highest level KIR is full, Step 3 is
repeated at that level.

If the split is at the highest index level, a new level is created.
A nevw KIR is created with two KIE's. The first KIE contains the
binary zero key and the relative sector address of the old KIR
{formerly the highest level KIR). The second KIE contains the
first key and sector address of the new KIR (created by the split).
The next available sector in the Key File is assigned to this new
highest level index. The KDR is updated (TO and T28%) to reflect
the newv level. .

When the KIR ié split, it is not alvays divided equally. There is a

for this. Consider keys which are being added sequentially. Again
assume the first index sector is filled by 14 active KIE's and one dummy KIE.

oo1, 002, 003, 0Q4, 005, 006, 007, 008, 009, 010
012, 013, 014

The next key added, 015, causes a split:

0l4 xIr: 00O, 001, 002, 003, 004, 005, 006, 007, PPP, etc.
New KIR: 008, 009, 010, 011, 012, 013, 0l4, 015, FFF, etc.
Level 2: 000, 008, FPF, etc.

The next keys added, 016, 017, etc. are all added to the new KIR
eventually causing it to be split:

Sector Level Keys

1
2

& W

1l 000, 001, 002, 003, 004, 005, 006, 007,
FFF, etce.

1 oos, 009, 010, 011, 012, 013, Oi4, 015
FFF, etc.

2 00C, 008, 016, FFFP, etc.

1 016, 017, 018, 019, 020, 021, 022, 023,
FFF, etca

141

The process continues, always adding to the latest KIR and splitting it“%\
leaving behind a residue of KIR's which are only half full. It should b\
clear in this case that if the split were 12/4 instead of 8/8, the process of

indexing a sequential file would leave behind a residue of KIR's each
containing 12 KIE's or 80% full. This would result in better wutilization of

Key File space and also tend to reduce the number of index levels reguired to
access a given file.

But a 12/4 split would be disastrous if the keys were being added at
random. There would be a greater probability of new keys being added to the
KIR's already containing 12 entries, because of the greater range of values
represented. So the Key File could actually fall below 8 keys per sector, and
a very inefficient skew distribution would be the result,.

‘Theréfore there is no particular split that is best in all cases.
Because of this, a moving bias has been included in the system. As each new
key is added, the program checks whether it is higher or 1lower than the
previous key added. 1If it is higher, the bias is adjusted downward. If it is
lower, the bias is adjusted upward. The bias is a percentage of the maximum
number of KIE's which, for a particular key size, can be contained in a KIR.
When a KIR must be split, the current bias percentage is multiplied by the
maximum number of KIE's per KIR to give the split, i.e., the number of KIE's
which go into the new KIR. The range of the bias is .2 to .8.

On the basis of past experience, the system determines the best poSsiblgﬁQ
split, based on the order in which keys are added sequentially, mostl 7
sequentially, random or backwards. The bias tends to approach .2 as keys are
added sequentially, and tends to stay at .5 if keys are added in random order.

The bias, V8, is initially set to .S. It 1is adjusted upwards or
downwards by 2% of the distance to .8 or .2 as each new key is added,
depending on whether the key is lower or higher than the previous key added.

In REORGANIZE KFAM FILE where it is known that keys will be added

sequentially, the bias is set to .2 at the begining. It is reset to .5
following the reorganization.

In KEY FILE CREATION the bias is set to .5 initially, and reset to .5
when the program is finished, because the order of keys added when initially
creating the Key File could very well be different than the order of keys
added at some later time {fcr example, sequential vs. random). The random

hypothesis is always the "safest" to start with, unless experience proves
differentlya.

Between the creation of the Key File and the reorganization, if any, the

bias is allowed to fluctuate on the basis of how keys are added. It is stored

in the KDR, and preserved as a permanent record, i.e., not reset every tinme
the program is relocaded.

142

.
gn\ In summary, for KFAM, there are two minor departures from the B-tree
~~structure as dJescribed in Knuth: First, keys are duplicated in higher level

indexes, and second, a bias is introduced for the splitting of KIR's.

1l.3 KEY FILE RECOVERY INFORMATION

KEY FILE RECOVERY utilities are provided for KFAM-3 and KPAM-4 to
reconstruct a Key Pile in the event of its accidental destruction. In

reconstructing the Key File these utilities use information saved by the CLOSE
subroutine in the next-to-last sector of the User File.

At the end of a User File are two sectors of "overhead”. The last sector
is a control sector written by the DATA SAVE DC OPEN statement. In the
next-to-last sector is a "trailer” record written by DATA SAVE END during the
INITIALIZE KFAM FILE utility. Two control bytes in this trailer record mark
it as a trailer record for the 2200 system; however the remaining bytes are
ignored by the 2200 system logic. Some of these remaining bytes are used by
KFAN to store recovery information. The information is stored each time the
CLOSE subroutine is executed (provided that the RECOVERY OPTION has been
chosen during BUILD SUBROUTINE MODULE).

The data saved by CLGSE in the next-to-last sector of the User Pile is
. taken from the Key File's KDR record, and is as follows:

- 2AM-3
Bytes Contents
1-2 HEX (AOFD)
3-4 Q2%2 = last sector used, User Pile.
5 V581 = last record within last sector.
6 V8$1 = records per block.
7-14 V1$8 = record type, record length, starting position of key,
key length, number of KIE eantries per sector.
15 V631 = sectors per record.

143

KFAM-4 ”%3

Bytes Contents

1-2 HEX (AOFD)
3-4 Qz$2 = last sector used, User File.
5-8 V58(4)1 = per CPU, last record used in sector assigned for
FINDNEW.
9 V8$1 = records per block.
10-17 V1$8 = record type, record length, starting position of
key, key length, number of KIE entries per sector.
18 Vé$l = sectors per record.
19-26 V2% {4)2 = per CPU, sectors assigned for FINDNEW.

This data saved by CLOSE is written in the next-to-last sector of the
User File. This should always be the DATA SAVE DC END trailer. However, if
the rules for shortening and lengthening files given in Chapter 7 are not
carefully adhered to, the ™"trailer"™ may end up in some other sector. This
could cause the RECOVERY utility to fail in some cases.

1l.4 FINDNEW WITH BLOCKED FILES UNDER KFAM-U4

Under KFAM-3 FINDNEW always sets the Current Sector address for the User
File to the next available sector at the end of the live data in the User)
File. If records are blocked (type A or C), it passes back the next recor&m@

location as well. With blocked files under KFAM-4, the operation of PINDNEW
is more complex. : ‘

Under KFAM-U4 up to four CPU's can have a KFAM file open simultaneously.
When a CPU executes OPEN for a file, it is assigned one of the four slots in
the KDR's Access Table. Associated with each slot in the Access Table is a
relative sectcr location, and, for blocked files, a record number within that
sector. This sector location and record number always point to the last
location in the User File assigned when a CPU, occupying that Access Table
slot, executed a FINDNEW. If, after OPENing a blocked file, a CPU executes
FINDNEW, the 1location passed to it (sector and record location within the
sector) will be the next available location after the last location given to a
CPU occupying the same Access Table slot. This new 1location will be the
sector following the last sector of live data in the file only if a new block
must be started.

In summary, when using blccked files with KFAM-4, whenever a new block
must be wused, FINDNEW assigns an entire block to a particular Access Table
slot. That block then becomes the exclusive property of that slot in the
Access Table for the purpose of PINDNEW. It can only be filled by FINDNEW's
executed by a CPU «cccupying that slot. The result 1is that all record
locations up to the end of live data in the User File may not be filled at any

one tinme.

144

7

1

o~ For blocked files under KFAM-U, the User File might look like this, for
‘cxample,
A N NN NN
RRRR| |RRRR| | R RRRR| | RRRQ| | RRRR| |RRRR || RR[YY | RRRR RRNIN
NN . N MY NN
s TN .\ A g - N
record location record location record end of live data
to be filled by to be filled by location in entire User File,
CPU occupying CPU occupying to be - and record location
slot 3 slot & filled by to be filled by CPU
CPU occupying slot 2
occupying
slot 1
where: R = record.
= unoccupied record locations.
11.5 COMPATIBILITY BETWEEN KFAM—1 AND KFAM-3
KFAM-3 is upvards - compatible with the original KFAM-1 with the
. following exceptions:

s

2.

3.

The structure of the Key Pile has been completely revised. There 1is a
conversion program to facilitate the conversion of files organized under
KFAM-1 to KFAMN-3.

Restrictions are placed on the key. The first byte of the key may not be
HEX(FF). The entire key may not have a value of binary~zero (the lowest
possible value).

The following alterations have been made to the Return Codes in the
KFAM-3 incorporable subroutines.

Ae KFAM-3 returns Q$=blank in all cases if the subroutine was executed
properly. Formerly, FINDPIRST returned "L" and FINDLAST returned
“H® for normal execution. This will require a program change in
any user program using FINDFIRST or FINDLAST.

ba Error codes "H" and "L" have been dropped in KFAM-3. Code "N©
means "Not Found™ in DELETE and FINDOLD. This will require a
change to any user program testing Q%= "H®" or Q%= "L" following a
DELETE or FINDOLD. .

c.v All other Return Codes remain as before.

145

CHAPTER 12
KFAM ADVANCED PROGRAMMING TECHNIQUES

12.1 ELIMINATING THE PRINTER IN KFAM-3 AND KFAM-U

Certain utilities in KFAM use a printer (device 215). The printer 1is
used only for wmarginal functions, and can be eliminated with some slight
modifications if the particular System does not include a printer.

The printer is used in the following modules, for the following purposes:
INITIALIZE KFAM FILE: Hard copy printout of file description. Aﬁ§/
KEY FILE CREATICN: Print duplicéte keys and record locations.

CONVERT KFAM-1 TO KFAM-3, CONVERT KFAM-2 TO KFAM-3: Prints deleted keys
and invalid keys and their resgtective record locations. Prints last key.
Prints record counts.

KEY PILE RECOVERY: Prints duplicate keys and unreadable sectors.
PRINT KEY FILE: Print the contents of the Key File.

PRINT KEY FILE must be eliminated entirely if there is no printer, since
its sole function is to print the contents of the Key File. This function is

useful when programs are being tested, but is not necessary for the running of
KFAM. :

INITIALIZE KFAM FILE may be run as written, but when the system asks "DO

YOU WANT A HARD COPY PRINTOUT OF FILE DESCRIPTION? (Y OR N)", the operator
must always enter "N" for "no".

The other utilities must be modified, though the changes, as described
below, are minor.

146

 ¢“‘ KEY FILE CREATION

The KEY FILE CREATION uses a printer to 1log duplicate keys, because
duplicate keys are otherwise ignored in the construction of the Key File.
Without some indication that a duplicate key was encountered, and some record
of where it vwas encountered, the data identified by the duplicate key would be
lost. Because duplicate keys are not allowed in KFAM, the recovery procedure
is left to the user. This utility only assumes the responsibility to 1log
them, if they occur.

The suggested modification to it is to display a message on the screen,
and stop, if a duplicate key occurs. The operator then has the option of

keying CONTINUE (EXEC) to continue, once the duplicate key and its location is
manually recorded. The program changes to module KFAN2003 {or KFAM2004 for
KFAM-4) to accomplish this are as follows:

CLEARP 5396, 5400
6194 GOSUB'248(12,0,0)
6960 GOSUB'248(7,0,4)
CLEARP 7100, 7120

7100 STOP

7105 GOTO 5770

é?“ Key File Recovery

The printer is used to list duplicate keys and unreadable sectors. The
pronpt and operator entry for "TURN ON PRINTER"™ can be eliminated by deleting
line 7010. To display on the CRT, and stop, following a duplicate key or
unreadable sector, Bake the following changes to KFAM9003 (or KFAM9004 for
KFAM-4) ¢

8285 GOSUB' 248 (7,0,4)
8345 STOP

This displays the duplicate key in the center of the screen ({lines 7-10)
erasing the fixed information there. Following the STOP, the operator can key
CONTINUE (EXEC) to resume processing.

The KFAM-3 Convert Utilities

The KFAM-3 "CONVERT" utilities use the printer to 1log deleted records,
invalid keys, and the last key, and to priant record counts. It is not really
necessary to log deleted records, nor is it necessary to print record counts.
Since this information fits on the screen, it can be displayed.

Invalid keys are keys which violate the KPAM~3 restrictions. (The first
byte of the key may not be HEX(FF). The entire key may not be binary zero, or
all bytes HEX(00).) If such keys exist under KFAM-1, their values should be
§§ganged before conversion to KFAM-3. 1Invalid keys should not occur, but if

f

147

they do, some provision should be made to log their occurrence, becaus ™
otherwise data could be lcst. The suggested procedure to handle invalid key.
is the same as with duplicate keys in KEY FILE CREATION: an error message is
displayed on the screen, and the frogram stops. The operator should record,
manually, the key value (hex) and the record location. Then, optionally, the
operator may continue by keying CONTINUE (EXEC).

The last key is necessary in order to run KEY FILE CREATION later.
Therefore, the last key must be displayed on the screen and the operator nmust
record its value before clearing the screen.

The suggested changes to the KFAM-3 "CONVERT" utilities to eliminate the
printer are: '

l. No display of deleted records.

2. Display invalid key and record 1location and stop so that the
information can be written down. Optionally coatinue.

3. Display record counts on the screen.

4, Display the last key. The last key should be written down before

the screen is cleared.

Program changes to CONVERT KFAM-1 TO KFAM-3 (KFAM5000) to accomplish the

above are as follows: ﬁﬁg)
CLEARP 7545, 7574

CLEARP 7765, 7775

7765 D=D+1l: GOTC 7795

CLEARP 7815, 7825

7815 G0OSUB'248 (4,0,11)

CLEARP 7935, 7940

CLEARP 7955, 7970

7935 GOSUB'248(4,0,11)

8004 STOP

Program changes to CONVERT KFAM-2 TO KFAM-3 (KFAM5002) to accomplish the
above are as follows:

CLEARP 5510, 55404

CLEARP 6030, 6040

6030 D=D+l: GOTO 6060
CLEARP 6080, 6090

6080 GOSUB' 248 ({(4,0,11)
CLEARP 6200, 6205

CLEARP 6220, 6235

6200 GOSUB' 248 (4, 0, 11)
6314 STOP

148

F

‘6”“ The Model 2201 Output Writer

The Nodel 2201 Output Writer cam perform any of the functions assigned to
a line printer in KFAM. The "SELECT PRINT 215" statements need merely be
changed to M"SELECT PRINT 211". For the listed programs, these statemeants
occur on the following lines. ’

PROGRAM LOCATION

PRINT KEY FILE KFAM-3 240

PRINT KEY FILE KFAM-4 ‘810

KEY FILE CREATION (KFAM-3 and KPAM-4) 6194, 6960
CONVERT KFAM-1 TO KFAM-3 7545
CONVERT KFAM-2 TO KFAN-3 5510
INITIALIZE KFAM FILE KFAM-3 2710
INITIALIZE K¥AM FILE KFPAM-4 2860

KEY FILE RECOVERY {(KFAM-3 AND KFAM-4) 8285

12.2 PILES TOO LARGE FOR ONE PLATTER IN KFAM—3 AND KFAM-4

A cataloged disk file must be wholly contained on one disk. If the User
File is too large for one disk, it must be broken into two separate files.
{Both files may have the same name, since they are on different disks.)

_eparate Key Files must be created, one for each User File. {If both Key
. .les are on the same disk, they may not have the same nanme.)

Perhaps the simplest scheme for splitting the User File is to determine
a "cutoff" point. A key value is picked, somewhere in the middle, which will
be the highest key in User File #l. Records with lower keys are stored in
User File #1, and records with higher keys are stored in User File #2.

If each User File and its companion Key File are stored on the sanme
platter, both User Files may have the same name, as may both Key Piles. 1In
that case, the same routines can be used to access both files, simply by
changing the platter designation. Por example, suppose that the User Files
"PILEF1" are open on the 'F' and 'R' platter, as are the Key Piles 9FILEK1".
Assume that these files are parts of a single inventory file, and that the
part aumber of the last record in UF #1 (on the 'F' platter) is "9006AS-B4",
Under KFAM-3 the following routine could then be used to open both files,
accept an input key, determine which file the record associated with this key
is in, and read the record from the appropriate file for processing.

*

149

4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110

4120
4130
4140
4150
4160

4170

4180

5990
6000
6010
6020
6030
Note

1)

2)

3)

GOTO 4000

SELECT #1 320 :REM KF #1
SELECT #2 B20 :REM KF #2
SELECT #3 320 :REM UF #1
SELECT #4 B20 tREM UF #2

REM OPEN BOTH FILES

GOsSUB*'230(1,1,3,1,"FILEF1")

GOSUB'230 (2,2,4,1,"FILEF1")

REM NOW PROCESS

INPUT "PART NUMBER"™, P$

X=2: REM ASSUME PART # BELONGS IN FILE &2

IF P$<> "9006AS-B4" THEN 4130

X=1: REM IF PART # SMALLER THAN 9006AS-B4 IT GOES
IN FILE #1

REM FINDOLD

GOSUB'232{X,0,P$): REM SEARCH FOR KEY IN APPROPRIATE KF

IF Q$&L> " v THEN 6020

REM GET DATA RECORD

X=X+2: REM COMPUTE UF FILE NO. BY ADDING 2 TO KFAM ID
NUMBER

DATALOAD DC#X, Data Record

Process Data

GOTO 4080: REM LOOP BACK TO INPUT NEXT PART NO.

REM ERROR PROCEDURE
PRINT "“PART # NOT ON FILEY
GOTO 4080

S3

Line numbers less than 4000 should not be used in the program (since
KFAM subroutines end at line 3075), with the exception of Line 1

(GOTO 4000), which makes it possible to execute the program simply
by keying RUN, EXEC.

Line 4130: Alpha variables can be used as valid parameters for

alphanuimeric arguments, and numeric expressions can be used as
numeric arguments.

Line 4170: A numeric variable is valid as a file number in the

DATALOAD DC (or DATASAVE DC) statement. A variable cannot be used
for the file number in a SELECT statement, however.

! 150

'€Ma4 4) For KFAM-4, the SELECT subroutines DEFFN' 210 and DEFFN' 211 nmust be
» included in the program, and the GOSUB' arguments must be changed to
conform to KFAM-4 specifications.

12.3 REUSING DELETED SPACE WITH FINDNEW (HERE)

Immediately following a DELETE, FINDNEW (HERE) may be used to insert a
new record in the space just vacated by the deleted record. This function is
useful for changing a key, but is not generally useful to reuse the deleted
space because a new record is not generally available immediately following a
DELETE.

The user may, however, store the pointer to the deleted record in a
separate file for later use. The procedures, for KFAM-3 and KFAN-4, are given
below.

KFAM-3 Procedure

l. DELETE a record.

2. Test T8$. If T8%="1", then TU$ contains a valid pointer to a
deleted record, and may be saved.

. 3. If T8$="1", save the contents of T4$ in some file or 1list external

Q@R to KFAHN. (T4 1is a 3-byte pointer containing the relative sector

¢ address (2 bytes, hex) and record number (1 byte, hex) of the
deleted record.)

To reuse the space at some later time:
l. Set T8$% = wln,
2. Move the saved record pcinter to T4$.
3. Use FINDNEW (HERE) with the new record key.

4. FINDNEW(HERE) will return with the Current Sector address of the
correct sector and Q = the record number within the sector.

Notes:

l. T8% is an internal return code. T8% = #1" indicates that the 1last
operation was a DELETE, which was successfully executed.
FINDNEW (HERE) will not be executed unless T8§$ = 81w,

2. Tu$ always points to the record being accessed, following normal
execution of any =subroutine except OPEN and CLOSE. T43% is the
source field from which the disk read/write head is positioned and 0
is extracted. The first two bytes of T4$ can be used as an absolute
sector address by adding the starting sector (hex) of the User File.

151

3. T8% and T43 are both contained in the KDR. When more than one files,
is open concurrently, the KDR residing in memory is the KDR of the
last file accessed and not necessarily the next file to be accessed.
Therefore, when more than one file is open, care should be taken in
modifying variables in the KDR. The curreat KDR in memory may
belong to another file.

The I.D. Number of the currently active file is imn T9. If there is
any question, T9 can be tested. To ensure that the proper KDR is in
memory, the following statements should be executed:

T6 = {I.D. Number)
GOSUB 920 .
IF Q% = "X" THEN (file not open) ‘

The subroutine at line 920 checks T6 = T9. If they are not the same, it

_writes the current KDR and reads the KDR belonging to file T6, and then sets

= T6. If they are the same, it does nothing.

Once the proper KDR is in memory, then the values of T8% and T4$ cam be
modified for the correct file.

KFAM-4 Procedure
Unlike KFAM-3, KFAM-4 does not check that FINDNEW(HERE) follows DELETE.

=\
Dnder KFAM-4, the pointer to a deleted record may be saved as follows: '”%¥

1. DELETE a recorde.

2a Test tc make sure that Q% = blank.

3. Save the contents of TU3 in some file or 1list external to KFAH.
(See Section 11.1, "Internal Storage KFAM-4" for definitiom of
T4 $.)

To re—-use the space at scme later time:

1. Move the saved record pointer to T4$. (See Note 1 helow.)

2. Use FINDNEW (HERE) with the new record key.

3. FINDNEW (HERE) will return with the Current Sector address set to
read the <correct sector and Q = the record number within the
sector.

152

@ NOTE:

If the file to be accessed is not the same as the file
last accessed by a KFanm subroutine, move the saved record
pointer to T4$ (i), where i = this file's KFAM I.D.
Number. If not sure which file was last accessed, test T9
= KFAM I.D. Number last accessed.

12.4 MULTIPLE KEY FILES PER USER FILE

KFAM does not support multiple Key Files for a single User File. Though
the Key File number provides a means of identifying different Key Files for a
single User File, the subroutines and utility programs are designed for
operations in which there is only one Key File per User File. The Programming
Department of Wang Laboratories, Inc. does not support KFAM based file access
Systems that attempt to maintain pmultiple Key Files for a single User File.

12.5 STATUS OF THE KEY DESCRIPTOR RECORD (KDR) IN KFAM-3

The Key Descriptor Record (KDR) contains vital information pertaining to

a KFAM file. The contents of the KFAM-3 KDR have been described in Section

11.1, but the dynamics of the KDR, namely when it is read, when it is writtesn,

~and when certain fields are updated, may be of-interest to the applications
%Qﬁrogtauner.

The contents of the KFAM-3 KDR can be split iato the following
categories:

a. Fields which are set up in INITIALIZE KFAM PILE and rempain

unchanged:

Q3s% Ending (relative) sector address, upper bound, User File
(may be changed with REALLOCATE KFAM FILE SPACE) .

vas Records per block, user file.

V1$ File type, Record Length, Starting position on Kkey, Key

length, Number of entries in KIR.

v3s$ Ending (relative) sector address, upper bound, Key File (may
be changed with REALLOCATE KFAM FILE SPACE) -

V6$ Sectors per logical record or block.

b. Fields which are set up by the OPEN subroutine and remain set until
the file is opened again:

153

Ce

vVo$

Tl

T2

Starting (absolute) sector address, Key File. This field isﬁmg
set at OPEN time to allow for moving the Xey File to a
different location on diske.

Curtrent Key File #.

current User File #.

Fields which are initialized in INITIALIZE KFAM FILE and changed (or
subject to change) whenever a record is added to the files

02%

V5$

v2s$

T2$

TO

V8

T5$

last (relative) sector address assigned, User File.

Record number within Sector, last record of User Pile.

When a record is added via the FINDNEW subroutine, V5% is
incremented by 1l. TIf V5% exceeds V8$ (records per block),
Q2% is incremented by V6$ (sectors per block) and V5% is set
to 1l. When a record is added via the FINDNEW {HERE)
subroutine, Q2% and V5% are not changed.

Last (relative) sector address assigned, Key File. This
will be updated only when the KIR is split, requiring a new
sector (or sectors) for the Key File.

Relative sector address of highest level index, Key File. A%g
Number of index levels in Key File. _ ~

T2$ and TO are only updated when a nev level is added to the
key index.

Bias percentage for KIR split.
Last key added to the file.

V8 and T5$ are updated every time a record is added to file.

Fields which are changed every time a record is accessed:

T4S$

T7%

T23% ()

Pcinter to record found in User File. Corresponds to
positioning of disk read/write head and Q value.

Last key accessed. In the case of "key not found", this is
the key value specified by the user. In the case of

FINDFIRST, FINDLAST, or FINDNEXT, it is the key found in the
Key File.

Path to locate key, in terms of sector addresses of KIR's
searched. :

154

r T() Path to locate key, in terms of KIE within KIR per level
€®\ searched.

T2$() and T are not defined following FINDNEW,
FINDNEW (HERE), or DELETE.

T 8% Internal corpletion code.

The KFAM-3 KDR is resident in Bemory once the file is opened. It
remains resident in mnemory, as long as the file is "current®, and is written
back onto disk when the file ceases to be "current".

The"distinction between "open" and “current" is necessary because amore
than one file may be open concurrently. The "current" file is defined as the
last file accessed by a KFPAM-3 subroutine. Following a CLOSE of any file, no
file is "current",

Regardless of how many files are open, there is only one space in memory
for the KDR, that space being defined by the variables Q2%, 038, ..., T8%,
that define the KDR. The KDR of the current file occupies these variables.
When another file is specified by the user, the KDR for the current file is
written onto the disk, the KDBR for the nev file is read iato rRemory, and the
nev file becomes "current®.

Therefore care should be takea, in the nulti-file situation, in
‘modifying any of the variables in the KDR. The KDR residing in menory may
g?kelong to another file. If there is any doubt, the following instructions
' «il1 invoke the subroutine which checks which file is current and switches
KDR's if necessary.

T6 = (I.D. number of file to be accessed)
GOSUB 920
IF Q$ = "X"™ THEN (file not open)

In addition to being written every time the file ceases to be current,
the FKDR is also written every time a record is added to the file, either by
FINDNEW or FINDNEW{HERE). In other words, the KDR is written every time that
critical information is updated. This is a safety factor, so that the file
will not be destroyed in the event of system failure. (However, this is not
an absolute guarantee that the file cannot be destroyed. A system failure
during the critical rewrite operations of FINDNEW, FINDNEW (HERE), or DELETE
can cause the key index itself to beconme invalid. Also a hardware ma lfunction
can make the disk unreadable. It is a good practice to make a back-up copy of
the disk at regular intervals.)

The fields of the KDR which are changed with every record accessed are

. mot critical, and therefore the KDR is not rewvritten every time a record is
accessed. When the contents of the KDR is printed, these fields may or nmay
10t reflect the latest status of the KDR. (In the event of System failure,
they will not generally reflect the latest Status of the KDR.) They are
_printed only because they are there, and they may or may not be meaningful.

155

The PRINT KEY FILE program prints the latest version of the KDR written or
disk, which means the status of the KDR either the last time a record wvas
added or the last time the file ceased to be current.

There are legitimate reasons why a user may wish to change information
in the KDR. One problem which is 1likely to occur is that the starting
position of the key or the record length is wrong, causing the Reorganizatiom

program to fail. These fields, which are critical in reorganizing, caanot
really be checked prior to reorganizing. And at the point of reorganiziang, it
is not generally feasible to recreate the Key File from the beginning. If
such problems, or similar problems, occur, the contents of. the KDR can be
changed by the user, via a very simple procedure:

SELECT (Key File#, User File#)

OPEN the file ‘

Modify the appropriate variable in the KDR
CLOSE the file

This will read in the KDR, change it, and write it back on the disk.

12.6 STATUS OF THE KEY DESCRIPTOR RECORD (KDR) KFAM-4

In KFAM-4, the KDR is not so easy to modify, via user program, as in
KFAM-3, nor is it necessary or recommended to modify the KDR. - ‘ A§9

The fields which are of mecst interest to the user, T4$ (current pointer)
and T7$% (current key), are stored internally. (See the Section 1l.1 on "File
Layouts" and "Internal Storage.")

In KFAM-U4, the KDR serves as the communications 1link between nultiple
CPU's accessing the file. In shared mode ("A"™), it is read at the start of
each KFAM subroutine, updated, and rewritten at the end. In exclusive mode
{("X"), it is read and written the same as in KFAM-3, except that it is vwritten
in the OPEN subroutine to indicate to other CPU's that the file is held
exclusively.

There are legitimate reasons why a user may wish to change information
in the KDR. One problem which 1is 1likely to occur is that the starting
position of the key or the record length is wrong, causing the Reorganization
program to fail. These fields, which are critical in re-organizing, cannot
really be checked prior to re-organizing. At the point of re-organizing, it
is not generally feasible to re-create the Key File from the beginning. If
such problems, or similar problems, occur, the contents of the KDR <can be
changed by the user, via a very simple procedure:

156

£

This will read in the KDR, change it, and write it back on the disk.

SELECT (User File #)

OPEN the file, exclusive mode
Modify the appropriate KDR variable

CLOSE the file

(DEFFN'210, 211 to SELECT Key File #)

12.7 FILE NAMES FOR THE KFAM UTILITIES

File names for the KFAM-3 and KPAM-4 Utilities are as follows:

UTILITY

INITIALIZE KFAM FILE

KEY FILE CREATION

REORG ANIZE KFAM FILE
DIALOG
GENERATE CODE
MAIN PROGRAM

REALLOCATE KFAM FILE SPACE
DISK COEY/REORGANIZE
CONVERT KFAN~1 TO KFAM-3
CONVERT KFAM-2 TO KFAM-3
PRINT KEY FILE
BUILD SUBROUTINE MODULE
REORGANIZE SUB-SYSTEM
MODULE 1
MODULE 2
MODULE 3
KEY FILE RECOVERY
RESET ACCESS TABLE
CONVERT KFAM-3 TO KFAM-4

KPAM-3

KFAM1003
KFAM2003

KFAM3003
KFAM3103
KFAN3203

KFAM4003
KFAM4103
KFAM5000
KFAN5002
KFAM6003
KFAN8003

KFAM3503
KFAM3603
KFAN3703
KFAMN4003

157

KFAN-4

KFAN100U4

KFANM2004
KFAM3004
KFAM 3104
KPAN3204

KFAMU4O004

KPANM4104

KFAM6004
KFAMB8004

KFAM3504
KFAM3604
KFAM3704
KFAM9004
KFAM7004
KFAMS5004

APPENDIX A: COPYING THE SYSTEM FILES FROM CASSETTE TO DISK ﬂ@%

If you receive this software package on tape cassette, you must copy it
to disk before you can use it.

Each KFAM system requires two cassettes which are numbered one and two.
A special 1loader progranm is recorded at the beginning of cassette one. This
loader program must be used to copy the cassettes to disk. In additioa,
should you receive updates to the software package, these updates will coatain
the same 1loader Ffprogram. The loader program has been specially designed to
make cassette to disk copying and updating an easy automatic operation.

For initial copying, scratch disks should be mounted at both disk
locations of a dual disk drive. For updating, a disk containing the files of
the software system to be updated must be mounted at the removable disk
location, and a scratch disk must be mounted at the fixed disk location. The
disk at the removable location should contain only files that are part of the
Wang software system being updated.

Operating Instructions
DISPLAY INSTRUCTIONS
1. 1, If updating a file, make backup
copies of the disk to be update’
Mount cassette number one at

address 10A. Key:

CLEAR (EXEC)

LOAD {(EXEC)
RUN (EXEC)
2. ENTER THE DESIRED DISK ALDRESSES. 2. Enter 0, 1 or 2 to select the
?2 =/ disk drive at which the files are
to be copied (or updated).
0 - 310/B10
1l - 320/B20
2 - 330/B30
3. MOUNT DISK TC BE UPDATED IN 3. For initial creation, mount
REMOVABLE DRIVE. KEY RETURN (EXEQ) scratch disks in both disk loca-
TO RESUME? tions at the selected drive.

For updating, mount the disk to
be updated at the R drive aand
mount a scratch disk at the F
drive.

158

5.

DO YOU HAVE A BACK-UP COPY?
(YES/NO)

(processing disglays)
MOUNT THE NEXT TAPE - UNIT 10A

END PROGRAM

159

4.

Se

7o

Enter Yes if you have already
made a backup copy of the disk
to be updated. Otherwise enter
NO.

The processing displays show the
operation currently being per-
formed.

If this message appears, mount
and key {(EXEC).

The copying or updating is com-
plete. Both mounted disks con-
tain complete copies of the
updated (copied) files.

APPENDIX B: LOADING THE MENU MODULE -~

The KFAM-3 and KFAM-4 systems each have a menu module that displays all
of the available utilities and rrovides Special Function Key-access to thenm.
This menu module is accessed in the following way:

For KFAM-3

Key:
CLEAR (EXEC)
SELECT DISK XYY {EXEC)
LOAD DC T "START050" (EXEC)
RUN (EXEC)

Y

where: XYY is the disk address at which the KFAM-3 system disk is mounted.

For KFAM-4
Key:
CLEAR (EXEC)
SELECT DISK XYY {EXEC)
LOAD DC T "STARTO65" (EXEC)
RUN {EXEC)
where: XYY is the disk address at which the KFAM-U4 system disk is mounted._\

160

:To help us to provide you with the best manuals possible, please make your comments and suggestions
I concerning this publication on the form below. Then detach, fold, tape closed and mail to us. All comments
! and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to include your
§ name and address. Your cooperation is appreciated.

|
I
]
{ 700-4070
] IS
:
! TITLE OF MANUAL: KFAM 3/KFAM 4 USER MANUAL
]
i COMMENTS:
]
[}
I
]
]
i
] Fold
]
]
]
i
!
[}
)
]
!
i
[]
i
]
[}
]
[}
]
'
]
]
!
]
!
]
1
]
]
!
]
'
]
]
]
i
!
H Fold
]
]
]
]
)
]
(]
[}
I
'
[}
[
i
]
]
[}
]
[
]
)
]
]

(Please tape. Postal regulations prohibit the use of staples.)

WANG)

Fold

FIRST CLASS
PERMIT NO. 16
Tewksbury, Mass.

w

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

— POSTAGE WILL BE PAID'BY —

WANG LABORATORIES, INC.

ONE INDUSTRIAL AVENUE

LOWELL, MASSACHUSETTS 01851

Attention: Marketing Department

Fold

Printed in US.A.

Cut along dotted line.

J

e e

WANG LABORATORIES
(CANADA) LTD.

49 Valleybrook Drive

Don Mills, Ontario M3B 2S6
TELEPHONE (416) 449-2175
Telex: 069-66546

WANG EUROPE S.A./N.V.
250, Avenue Louise

1050 Brussels, Belgium
TELEPHONE 02/6400617
Telex: 61186

WANG DO BRASIL
COMPUTADORES LTDA.

Rua Barao de Lucena No. 32
Botafogo ZC-01 20,000

Rio de Janeiro RJ, Brasil
TELEPHONE 226-4326, 266-5364
Telex: 2123296 WANG BR

WANG COMPUTERS

(SO. AFRICA) PTY. LTD.
Corner of Allen Rd. & Garden St.
Bordeaux, Transvaal

" Republic of South Africa
TELEPHONE (011) 48-6123
Telex: 960-86297

WANG INTERNATIONAL
TRADE, INC.

836 North Street

Tewksbury, Massachusetts 01876
TELEPHONE (617) 8514111
TWX 710-343-6769

Telex: 94:7421

WANG SKANDINAVISKA AB
Pyramidvaegen 9A

S-171 36 Sotna, Sweden
TELEPHONE 08/27 27 95
Telex: 11498

WANG COMPUTER LTD.
Shindaiso Building No.
2-10-7 Dogenzaka Shibuya-Ku
Tokyo, Japan

TELEPHONE (03) 464-0644

WANG NEDERLAND B.V.
Damstraat 2

Utrecht, Netherlands

(030) 93-0947

Telex: 47579

WANG PACIFIC LTD.

902-3 Wong House

26-30, Des Voeux Road, West
Hong Kong

TELEPHONE 5-435229
Telex: 74879 WANG HX

WANG INDUSTRIAL CO., LTD.
110-118 Kuang-Fu N. Road

Taipei, China

TELEPHONE 7522068, 7814181-3
Telex: 21713

WANG GESELLSCHAFT M.B.H.
Merlingengasse 7

A-1120 Vienna, Austria
TELEPHONE 85.13.54, 85.13.55
Telex: 74640 Wang a

WANG S.A./A.G.
Markusstrasse 20

CH-8042 Zurich 6, Switzerland
TELEPHONE 41-1-60 50 20
Telex: 59151

WANG COMPUTER PTY. LTD.
55 Herbert Street

St. Leonards, 2065 , Australia
TELEPHONE 439-3511

Telex: 25469

WANG ELECTRONICS LTD.
Argyle House

Joel Street

Northwood Hills

Middlesex, HASINS
TELEPHONE Northwood 28211
Telex: 923498

INC.

WANG FRANCE S.A.R.L.
Tour Gallieni, 1

78/80 Ave. Gallieni

93170 Bagnolet, France
TELEPHONE 33.1.3602211
Telex: 680958F

WANG LABORATORIES GmbH
Moselstrasse 4

6000 Frankfurt AM Main

West Germany

TELEPHONE (0611) 252061
Telex: 04-16246

WANG DE PANAMA (CPEC) S.A.
Apartado 6425

Calle 45E, No. 9N. Bella Vista
Panama 5, Panama

TELEPHONE 69-0855, 69-0857
Telex: 3282243 .

WANG COMPUTER LTD.

302 Great North Road

Grey Lynn, Auckland

New Zealand

TELEPHONE Auckland 762-219
Telex: CAPENG 2826

WANG COMPUTER PTE., LTD.
Suite 1801-1808, 18th Floor
Tunas Building, 114 Anson Road
Singapore 2, Republic of Singapore
TELEPHONE 2218044, 45, 46
Telex: RS 24160 WANGSIN

WANG COMPUTER SERVICES
836 North Street

Tewksbury, Massachusetts 01876
TELEPHONE (617) 8514111
TWX 710-343-6769

Telex: 94-7421

DATA CENTER DIVISION

20 South Avenue

Burlington, Massachusetts 01803
TELEPHONE (617) 272-8550

/

LABORATORIES,
V U AN G ONE INDUSTRIAL AVENUE. LOWELL, MASSACHUSET

m——

TS 01851, TEL. (617) 851-4111, TWX 710 343-6769, TELEX 94.7421

Printed in U.S.A.
700-4070
11-76-2C

Price: see current list
1

	Cover
	How to Use This Manual
	Table of Contents
	Chapter 1: Overview of the KFAM Systems
	Chapter 2: KFAM Requirements and Conventions (KFAM-3 and KFAM-4)
	Chapter 3: The KFAM Set-Up Utilities
	Chapter 4: KFAM-3 Subroutines
	Chapter 5: KFAM-4 Subroutines
	Chapter 6: The KFAM Reorganize Utilities (KFAM-3 and KFAM-4)
	Chapter 7: The Adjust KFAM Files Utilities
	Chapter 8: Print Key File Utilties
	Chapter 9: The Recovery Utilities
	Chapter 10: The KFAM Conversion Utilities
	Chapter 11: General Technical Information
	Chapter 12: KFAM Advanced Programming Techniques
	Appendix A: Copying the System Files from Cassette to Disk
	Appendix B: Loading the Menu Module

