WANG Report Progl;am
Language (RPL)
® User Manual

- Report Program
Language (RPL)
User Manual

© Wang Laboratories, Inc., 1977
Release 2, October 1977

LABORATORIES, INC.

(i U AN q) ONE INDUSTRIAL AVENUE, LOWELL, MASSACKUSETTS 01861, TEL. (617) 851-4111, TWX 710 343-6769, TELEX 94-7421

Disclaimer of Warranties and Limitation of
Liabilities

The staff of Wang Laboratories, Inc., has taken due care in .
preparing this manual; however, nothing contained herein modifies or
alters in any way the standard terms and conditions of the Wang
purchase, lease, or license agreement by which this software package
was acquired, nor increases in any way Wang’s liability to the customer.
In no event shail Wang Laboratories, Inc., or its subsidiaries be liable-
for incidental or consequential damages in connection with or arising
from the use of the software package, the accompanying manual,
or any related materials.

NOTICE:

All Wang Program Products are licensed to customers in ac-
cordance with the terms and conditions of the Wang Laboratories, Inc. X
Standard Program Products License; no ownership of Wang Software
is transferred and any use beyond the terms of the aforesaid License,
without the written authorization of Wang Laboratories, Inc., is
prohibited.

LABORATORIES, INC.
U “ AN G ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSEYTTS 01851, TEL. (617) 861-41M1, TWX 710 343.8769, TELEX 94-7421

HOW TO USE THIS MANUAL

This manual provides both an introduction to the Report Program Language
(RPL) and detailed instructions for programming in RPL. Although this manual
assumes a knowledge of Wang 2200 Systems and BASIC, and a passing acquaintance
with Keyed File Access Method 3 (KFAM-3), it is written for the user who has
relatively little programming experience. It is recommended that this entire
manual be read through once before attempting to write or run an RPL program.
After becoming familiar with the contents of the manual, the reader will find
it useful as a reference manual when running and debugging RPL programs.

In this manual, the terms "RPL system" and "system" refer to the
collection of programs supplied by Wang Laboratories on the RPL system disk,
while the terms "RPL"™ and "RPL language" refer to the language itself.
Chapter 1 elaborates on this distinction and lays the groundwork for the more
system-specific information in the rest of the manual. Chapter 2 should be
read by everyone, as it defines the syntax specification conventions which are
used throughout the manual. Chapters 3, 4, and 6 contain basic RPL system
information, while Chapter 5 describes the syntax and structure of the
language itself.

NOTE:

The RPL system is supplied on one diskette (package
number 195-0019-3 for the 2270 diskette or package number
195-0019-2 for the 2240 diskette). It must be run on a
Wang 2200C-2 with Option 5 (Sort ROM), a 2200T (including
the WCS/20, WCS/30, and PCS systems), or a 2200VP. The
2200 configuration must include at least 8K of main
(user) memory, a dual disk or diskette unit, and a line
printer. If the RPL system is to be run from a hard
disk, it must first be transferred from the system
diskette to the hard disk.

While it is possible, for demonstration or testing
purposes, to run the RPL system using only the one system
diskette, for practical applications this is not
feasible. For a more detailed discussion of this point,
refer to Chapter 3.

TABLE OF CONTENTS

PART 1: THE RPL LANGUAGE AND SYSTEM
CHAPTER 1: OVERVIEW ¢ . . ¢+
1 Ll 1 why RPL? * . L] . L] * . L] L] L] L] L] L] .
1.2 RPL System Specifications.
1.3 The Functional Components of RPL . .
CHAPTER 2: SYNTAX SPECIFICATION CONVENTIONS . .
CHAPTER 3: INITIAL INSTALLATION

3

3.1 Storage Space Allocation
3 02 SORT-3 PPOgI‘am @ & o o o o o e e+ o o
3.3 RPL System Adaptations
y

CHAPTER 4: DATA FILE FORMATS.

CHAPTER 5: PROGRAMMING INRPL

1 Introduction .
.2 Statement Types and Program Syntax
5.2.1 Statement Types.
5.2.2 Program Syntax
5.3 System Definition Statements . . .
5.4 Data Definition Statements
5.4.1

Naming Conventions

5.4.2 Data File Definition Statements.
5.4.3 Data Selection and Sort Statements

5.5 Comment Statement.
5.6 Report Statements.
5.6.1 LINES Statement.
5.6.2 Print Statements
5.7 Substatements.
5.7.1 Calculation Substatements.
5.7.2 Program Flow Substatements

CHAPTER 6: RPL SYSTEM OPERATING INSTRUCTIONS.

6.7 The RPL Editor « «
6 L] 2 Run Time L] L] (] L] L] [] - L] . . [] . L] L]

ii

Page

- -0 o b | Ul w w

-— —-— -— b
e R

EEZTWWWWMNNNDNON D -
CWW EEEZWOONMNON WV II

U
w

(S8
(S VL)

PART 2: APPENDICES. ¢ e s e et e e e . .

APPENDIX A:

APPENDIX B:

APPENDIX C:

APPENDIX D:
APPENDIX E:

APPENDIX F:

RPL PROGRAM SYNTAX SUMMARY

SAMPLE RPL PROGRAM

VARIABLE NAMING AND DEVICE ADDRESS CONVENTIONS . .

Variable Naming Conventions.
Device Address Conventions

CONTENTS OF THE RPL SYSTEM DISK. . . .

REPORT STATEMENTS FLOWCHART.

ERROR MESSAGES ¢ ¢ ¢ ¢ v ¢t ¢ v o o v o o & o« .o

Prior to Entering the RPL Editor
RPL Editor ¢ o . .« .

RPL Compiler « & ¢ v ¢ o ¢« o « &

Run Time e e e e e e e e s .

iii

Page

57

59
61

73

73
73

T4
75
76
76
77

78
84

PART 1: THE RPL LANGUAGE AND SYSTEM

d CHAPTER 1: Overview
CHAPTER 2: Syntax Specification Conventions
CHAPTER 3: Initial Installation
CHAPTER 4: Data File Formats
CHAPTER 5: Programming in RPL

CHAPTER 6: RPL System Operating Instructions

CHAPTER 1: OVERVIEW

1.1 WHY RPL?

The invention of computers has simplified 1life by automating many
kinds of routine office work. As technology develops and computers become
more sophisticated, an increasingly wider variety of computers becomes
available for an increasingly wider variety of applications. When selecting a
computer for a particular application, the individual is always faced with the
critical question: Which computer is best suited for my application? Related
considerations include how easily and effectively the work can be automated:
how long it will take to automate it, how much of it can be automated, and how
much time and money will have to be invested to maintain the hardware and
software once the transition phase is complete.

Although computer hardware can be tailored specifically for a given
application, usually it is better to build general-purpose hardware and add on
software as the need arises. This is not only more practical in terms of
manufacturing costs, but also enables consumers to use the same computer for
more than one application. The Wang System 2200 is among these so-called
"general-purpose" computers. As such, it can be adapted to a wide variety of
applications by utilizing different software packages.

The System 2200 only accepts and executes programs coded in the 2200
version of BASIC. Although BASIC is a general-purpose language, useful for a
variety of data processing tasks, coding sophisticated BASIC programs to
perform these tasks requires a certain commitment to software development.
One such common task is the generation of reports from data files. This is an
especially time-consuming job if the reports to be generated are somewhat
complex, or if a certain flexibility in the report format is desired.

The Report Program Language (RPL) has been developed to simplify report
generation on the 2200. The RPL system consists of a number of program
modules, all of which are coded in BASIC. When used as instructed in this
manual, these modules accept code written in the Report Program Language and
then transform that RPL code into BASIC code. This transformation is called
"compiling". The BASIC code compiled by the RPL system can be run on the 2200
in conjunction with a specified data file or files to produce formatted
reports.

In effect, then, the RPL software system allows the user to tailor-make
reports to his/her needs easily and quickly. Since the user has to write RPL
code (and not BASIC code), once the user has learned RPL, a wide variety of
reports can be generated with relatively little expense of time and effort.

This manual provides both a description of the RPL 1language and
operating instructions for setting up the RPL system. The entire manual
should be read through once before attempting to write or run an RPL program.
Section 1.2 contains basic information about the system: how it is supplied
and on what 2200 hardware it can be run. Section 1.3 goes into an explanation
of what some of the RPL program modules are and what they do. Chapter 2
defines the syntax specification conventions which are used throughout this
manual. Chapter 3 provides instructions for the initial set-up of the
system. Chapter 4 delineates precisely which kinds of data files can be used
as input to an RPL program. Chapter 5 describes the syntax and structure of
the language itself. Finally, Chapter 6 provides RPL system operating
instructions: how to input the RPL program, compile it, and run it.

1.2 RPL SYSTEM SPECIFICATIONS

The RPL system is supplied on one diskette (package number 195-0019-3
for the 2270 diskette or package number 195-0019-2 for the 2240 diskette).
The catalog index occupies the first 24 sectors (sectors 0 to 23), while the
system occupies sectors 24 to 567, inclusive. As the system takes up roughly
half of one diskette, it is not possible to run RPL on any sizable data base
without using another diskette or a hard disk.

The RPL system must be run on a Wang 2200C-2 with Option 5 (Sort ROM), a
2200T (including the WCS/20 and the WCS/30), or a 2200VP. The 2200
configuration must include at least 8K of main (user) memory, a dual disk or
diskette unit, and a line printer. If the RPL system is to be run from a hard
disk, it must first be transferred from the system diskette to the hard disk.

1.3 THE FUNCTIONAL COMPONENTS OF RPL

As section 1.1 implies, there are three distinct phases in the creation
of an RPL program: writing and keying in the program, compiling the progran,
and then running the compiled version on the 2200. Accordingly, the RPL
system can be viewed as a collection of three types of program modules: those
used to create and maintain RPL programs, those used to compile RPL programs,
and those used when running the compiled versions. It is not important to
know exactly which RPL program modules perform each of these functions, but it
is essential to understand that these three functions must be performed
serially for any given RPL program. For example, an RPL program can never be
compiled until it is written and keyed in, nor can it be run until after it is
compiled.

There must, then, be at least two versions of an RPL program: the
user-written RPL program (referred to as the "source program" or "source
code") and the compiled BASIC version of the program (referred to as the
"ob ject program" or "object code"). In fact, there are 4 or 5 separate disk
files generated by the RPL system which, taken together, comprise one whole
RPL program. These are:

1. <named> F1: The text of the RPL source program. It is stored on
disk as a KFAM-3 user file.

2. <(name) K1: The KFAM-3 key file associated with #1 (above). RPL
statements are keyed by line number.

3. <name) : The start-up module of the RPL object program.

4, (name) R: The object module which actually prints the report
specified by the source program.

5. (namé) C: A special input procedure for SORT-3. This ob ject
module is generated only if COND and SORT statements are
both included in the source program.

Example:

If a sample RPL program named TEST were created, and if it contained
both a COND and a SORT statement, these files would be 1listed in the disk
catalog after compiling:

TESTF1
TESTK1
TEST
TESTR
TESTC

Although at first blush this plethora of files appears formidable, it is not
as complex as it may seem. #1 and #2 together comprise the RPL source
program; #3, #4, and #5 (if included) comprise the BASIC object program which
is generated. The object program may utilize some specialized RPL program
modules (referred to as "system subroutines") which reside on the system
disk. #3 is referred to as the "start-up" module because it does not contain
all the object code itself, but rather utilizes or "calls" these system
subroutines as the need arises. It also calls #4 (and #5) as appropriate.

Since Chapter 6 provides operating instructions for keying in RPL
programs, compiling them, and running the object code, a thorough
understanding of these five RPL program files is not mandatory. The purpose
of this section is simply to delineate the roles of these three phases (keying
in, compiling, and running) and to introduce the five files associated with
each RPL program.

CHAPTER 2: SYNTAX SPECIFICATION CONVENTIONS

. Below is a table of the syntax specification symbols used throughout
this manual. These symbols are used most frequently in Chapter 5. If there
is any confusion about the statement syntax presentations in Chapter 5,
reading the examples underneath the individual syntax presentations should
clarify the usage of these symbols.

Symbol Name of Symbol Meaning
angle brackets or The enclosed is not to be
O metalinguistic taken literally; rather, an
brackets appropriate term is to be
substituted.

. curly brackets Two or more choices are pre-
sented vertically. Choose
only one.

[]) square brackets The enclosed is optional,
but may depend upon the
circumstances. In certain

cases, the enclosed may be
mandatory. If there are
such cases, they are dis-
cussed following the indi-

2 vidual statement syntax pre-
sentations.
cee ellipsis The immediately preceding

term or clause may option-
ally be repeated until the
program line is full. If
repeated, the entire term or
clause must be repeated.

Symbol Name of Symbol Meaning

© infinity Mathematical infinity.
- 00 negative infinity Mathematical negative infin-
ity.

e

CHAPTER 3: INITIAL INSTALLATION

3.1 STORAGE SPACE ALLOCATION

As mentioned in Chapter 1, there are three distinct phases involved in
establishing an RPL program: creating (and updating) the program, compiling
it, and running the corresponding object code. For any given RPL program,
these three phases must be performed serially. An RPL program may be updated
at any time after it is created; however, after updating it, it must be
recompiled and then rerun to produce the desired report.

In accordance with these three phases, the RPL system can be viewed as a
collection of three types of program modules: those used to create and update
RPL source programs, those used to compile RPL programs, and those used to run
the compiled versions. Further, the file requirements for each phase are
slightly different. Although all the RPL system files usually reside on a
mounted disk or diskette during all three phases, the input data file need
only be mounted during the run phase. Similarly, while both the RPL source
and object code files must be available during creation and compiling, the
source code need not be available during the run phase. To summarize:

creating, updating, compiling running

RPL system RPL system (if SORT or KFAM-3 data file)
RPL source program RPL ob ject program
RPL object program data file

The RPL system itself occupies somewhat over half of one diskette; therefore,
to run RPL programs on any sizable data base, at least one more diskette is
necessary. Furthermore, due to the difficulties involved in transferring RPL
program files (particularly from a diskette to a hard disk or vice versa), it
is advisable to devote some thought to storage mediums and space allocation
before creating RPL programs. The only I/0 peripherals the system supports
are the CRT, line printer, minidiskette(s), diskette(s), and hard disk(s).

The first decision to be made regarding secondary memory space
allocation is where to put the RPL system. Immediately after receiving the
RPL system diskette, the user should write protect it and copy it to either
another diskette or a hard disk. Note that the system (even without its work
file) cannot be put on minidiskette since it would not fit. The system copy,
which is the version actually used, must not be write protected. The system
must always reside in its entirety on one disk or diskette; the program
modules of the RPL system should not be split up and put on two or more disks
with different device addresses. If the system is copied to another diskette,
the MOVE instruction may be used. However, if the system is to be transferred
to a hard disk, each program must be individually loaded into main memory and
then stored on the hard disk. For a complete list of exactly which files are
included on the system diskette, refer to Appendix D. The only system data
file is WORKFILE; as it contains no permanent data, an empty file of at 1least
120 sectors with the name WORKFILE should be created. The work file need not
reside on the same disk as the rest of the RPL system.

NOTE:

A clean copy of the RPL system diskette should be kept at
all times.

The next question which arises with regard to space allocation is where
to store the RPL program(s). Just before keying in the text of an RPL
program, the user is prompted to enter an estimated number of source program
statements. It is wise to make the estimate a generous one to allow for later
insertions and modifications to the program. The current version of RPL does
not provide any file manipulation utilities, so0 to expand the size of a
program after it is created is an onerous task. In deciding where to store
RPL programs, bear in mind that the source and object programs need not be
stored together on the same disk (or diskette). '

As the RPL system does not support tape cassette, the main requirement
for the data file is that it reside on disk, diskette, or minidiskette. For a
list of allowable device addresses, refer to Appendix C; for a discussion of
allowable data file formats, refer to Chapter 4.

10

NOTE:

When deciding where to store the RPL system, an RPL
program, and its corresponding input data file, bear in
mind:

1. The source and object programs must be mounted
simultaneously with the system during creation,
updating, and compiling.

2. The object program and data file must be mounted
simultaneously during the run phase. The system must
also be mounted if the source program requested a SORT
or if the input data file is a KFAM-3 data file.

3.2 SORT-3 PROGRAM

After allocating secondary memory space and transferring the RPL systea
from the supplied diskette to a viable location, it 1is usually necessary to
modify the SORT3 module contained in the RPL system (unless RPL is accessed
through the Integrated Support System (ISS)). If the main (user) memory on a
. particular system exceeds 8K, the SORT3 module should be modified to reflect
this so that the sorting procedure will utilize all the available memory space
and will thereby run faster. Also, it is not possible to sort a KFAM-3 data
file unless there is at least 12K of main memory available. Any attempt to
sort a KFAM-3 data file without modifying the SORT3 module will result in the
error message NO ROOM TO SORT. This message will appear on the CRT screen
when the object program is run. If a KFAM-3 data file (Format 2) is to be
sorted in only 8K of main memory, it must be defined in the RPL program as a
Format 0 data file (refer to Chapter U). '

To set the main memory size in the SORT3 module, change statement 3150
of the SORT3 program using the BASIC editing facilities. The variable "M"
should equal the size of the main memory available; e.g., for a 16K
system, M=16. After editing this one statement, scratch the SORT3 module on
disk and save the newly modified version as SORT3.

3.3 RPL SYSTEM ADAPTATIONS

Section 3.1 discussed what considerations to take into account when
allocating secondary memory space. Once disk space allocation is decided,
this information must be made available to the RPL system. The chart on the
next page indicates which 1lines of module RPL to change to reflect the
particular software configuration.

11

e/

Line #

100
110
115

120

125
135
140

145

Line #

105
130

Statement
Tas supplied

on system
diskette)

SELECT DISK 310
SELECT #2 310

SELECT #4 310

SELECT #5 310

SELECT #6 310

Pos = “310"

Gl§ = "310"

Gos - "310"

Statement
Tas supplied

on system
diskette)

D7§ = "WORKFILE"

F$ = “WORKFILE"

.What resides at

SOFTWARE CONFIGURATION

{module RPL)

Device Addresses

When the device

Comments

the device address address 18 used
RPL system compile time
RPL system work file compile time
RPL source program compile time
(KFAM-3 user file)

. RPL source program conpile time
(RFAM-3 key file)
RPL object program compile time
(all modules)
SORT-3 work file run time
RPL system run time
RPL object program run time
(all modules)

File Names

What is named When it is used

may not be overridden
may not be overridden

default device address - may be
overridden prior to entering the
RPL editor; must be the same device
address as specified for source
program key file

default device address - may be
overridden prior to entering the
RPL editor; must be the same device
address as specified for source
program ugser file

default device address - may be
overridden prior to entering the
RPL editor

default device address - may be
overridden by a device address in
the RPL SORT statement

default device address - may be
overridden by the RPL SYSTEM
statement

default device address - may be
overridden by the RPL RUN statement

Comments

RPL system work file compile time

SORT-3 work file run time

may not be overridden

default file name - may be
overridden by a file name in the
RPL SORT statement

S —

Note that there is no way to override the system variables. used during
compilation (system and work file device addresses and work file name). The
exact reverse is true of all other variables: Their values may all be
overridden. If the default values of all these variables contained in module
RPL are used, this is termed "Standard Disk Usage" (SDU). Each individual RPL
program is flagged as either using SDU or not using SDU. Before creating a
new RPL program or editing an established one, the user 1is asked whether or
not SDU is to be applied. If an RPL program does not use SDU, all necessary
compile time variable values must be entered on the spot, and all necessary
run time variable values must be supplied by appropriate statements in the RPL
source program. So if SDU is not used, both a SYSTEM and a RUN statement must
be included in the RPL program, along with any necessary parameters for
sorting.

NOTE:

The three system variables used during compiling must be
modified in module RPL to reflect the particular software
configuration. All other variables in module RPL listed on
the preceding chart need not be set to the correct values
as long as Standard Disk Usage does not apply to the RPL
program being run.

13

CHAPTER 4: DATA FILE FORMATS

There are four basic types of data files which can be used as input to
an RPL program. These are delineated in the table which begins on the next
page. The data file format must be defined in the RPL source program by
specifying the appropriate format number in the FILE statement.

It is essential to know the exact layout of the input data file, as this
layout must be defined in the RPL source program (refer to subsection 5.4.2).
Each record must have the same format, with the exception of Format 1 and
Format 3 header and trailer records. It is necessary to know:

1. The exact order of all the fields in the (each) record.

2. The type of variable in each field (character or numeric) and the
length of each character field in bytes.

3. Whether the input data file is blocked or unblocked. If blocked,
the records must be blocked as arrays (refer to subsection 5.4.2,
BLOCK statement).

It should also be pointed out that if the records in the data file are
blocked, each record may contain up to 38 fields; if the records are
unblocked, the maximum number of fields allowed is 55.

14

Allowable Data File Formats

Format # Description of Format
(as specified in the
FILE statement)

0 ' No header, end-of-file (trailer) record
(the last record in the file must have
been written with a DATASAVE END
statement). The entire file must have
been written in DC or DA mode, as BA mode
is not supported.

1 Basic Accounting System 1 (BAS-1) format
with standard BAS-1 header and trailer
records. Multivolume files are supported
if no SORT is specified in the RPL
program; otherwise, only one volume 1is
processed at a time (end-of-volume is
treated as end-of-file).

2 : Keyed File Access Method 3 (KFAM-3) file
with a record type of A, N, or M. KFAM-3

record type C files cannot be used with
RPL. :

3 Integrated Support System (ISS) format:
a) The file must be a cataloged file.

b) The file name in the disk catalog
must be the same as the file name
in the header record.

c¢) The first data sector of the file

must be a software header record.

The complete format of this header

record is defined by the ISS OPEN

routine. For RPL, the first field

of the record must be a character

string containing the value "HDR".

. The second field of the record must
be a character string containing
the file name. The remainder of
the header record is ignored by RPL.

d) Data records themselves may be
either unblocked or blocked. They
must all have identical formats.
If they are blocked, they must be

written in array form. BA mode is
not supported.

15

Format #
(as specified in the
FILE statement)

3 (continued)

e)

f)

g)

16

Description of Format

The end of data is recognized by
the following conventions: If the
first field in each data record is
a character field, a value of
HEX(FF) in the first byte of the
field marks the end of data. If
the first field in each data record
is numerie, a value of 9E99
(exactly) marks the end of data.

The sector after the record or
block of records containing the end
of data marker must contain a
software trailer record. The
format of this record is defined in
the ISS CLOSE routine. RPL reads
only the first field of this
record, which must be a character
field. A value of "EQF" signals an
end-of-file condition. Any other
value signals an end-of-volume
situation, and a prompt to mount
the next volume appears.

Multivolume files can only be
sorted one at a time.

CHAPTER 5: PROGRAMMING IN RPL

5.1 INTRODUCTION

To take full advantage of the many convenient and versatile features of
RPL, it is essential to have a thorough grasp of both the semantics and the
syntax of the language. Put more simply, to profit from RPL, you need to know
both what RPL can do and how to go about doing it. To a certain extent these
two topics are intertwined; a discussion of RPL syntax rules will inevitably
involve some functional considerations. Nevertheless, in this chapter the
emphasis will be on syntax: both the syntax rules for composing individual
statements and the rules for combining groups of statements into cohesive
programs.

Although the material covered in this chapter is fundamental to writing
RPL programs, a word of caution is in order: writing a program and running
the object code are two related but separate operations. To achieve the
desired effect with an RPL program, the programmer must understand not only
how to write the program, but also exactly what will happen when the
corresponding object code is run. A discussion of keying in RPL programs,
compiling them, and running them is left to Chapter 6. For a comprehensive
view of an entire RPL program and the report it generated, refer to Appendix B.

5.2 STATEMENT TYPES AND PROGRAM SYNTAX

5.2.1 Statement Types

~ There are 16 fundamental RPL statements: SYSTEM, RUN, FILE, INDEX,
RECORD, BLOCK, WORK, COND, SORT, KEYS, LINES, START, HEADER, DETAIL, TOTAL,
and Comment. For ease of reference, these have been grouped into U4 basic
statement types according to the function(s) they perform in the context of an
RPL program. They are:

17

Statement Types

System Definition Data Definition Comment Report
SYSTEM FILE % (Comment) LINES
RUN INDEX START
RECORD HEADER
BLOCK DETAIL
WORK TOTAL

COND

SORT

KEYS

The Data Definition statements are further subdivided:

Data Definition Statements

Data File Definition Data Selection and Sort
FILE COND
INDEX SORT
RECORD KEYS
BLOCK
WORK

The Report statements are further subdivided:

Report Statements

Lines Print
LINES START
. HEADER
DETAIL
TOTAL

In addition, there is a group of substatements which are used in conjunction
with the Report statements:

Substatements
Calculation Program Flow
= (Equation) GOTO
CONVERT GOSUB
UNPACK RETURN
ROUND EXIT

18

All of the statement and substatement names taken together (SYSTEM, ROUN,
FILE,...EXIT) are referred to as the "command keywords". Each of the four
basic statement types is dealt with individually in sections 5.3 to 5.6;
section 5.7 contains a discussion of the substatements.

5.2.2 Program Syntax

Each program line consists of two elements: a line number followed by a
statement. Line numbers specify the order in which the statements are to be
executed; they must be integers and may range from 1 to 2000, inclusive. As
the RPL system does not provide a RENUMBER command, the line numbers assigned
when the program is initially written should be incremented by tens to allow
for possible insertions later. Each program line may be up to 62 keystrokes
in length. (As RPL was not designed for an 80 character CRT screen, the
editing features are slightly more inconvenient on this wider screen. When
using this screen, it is generally good to keep program lines to 61 keystrokes
or less.) The coding is free form; blanks may be inserted anywhere between
operands in a program line for readability, and will be ignored by the system
unless they are enclosed in quotation marks.

An RPL program must contain a minimum of 3 statements: one FILE
statement, at least one RECORD statement, and at least one Print statement.
Other statements, such as the System Definition statements, INDEX statement,
and BLOCK statement may also be necessary. The primary rule for combining
statements into programs is that all fundamental statements be grouped
together when the program is displayed in 1line number order. All RECORD
statements must appear together, all COND statements together, etc. The only
exception to this rule is the Comment statement, which is used only for
internal documentation of the program. Since Comment statements are ignored
by the RPL compiler, they may appear anywhere in the source code. .

For the sake of program readability, it is recommended that variables
not be referenced before they are defined. For example, do not SORT a file
before the file is defined by the appropriate Data Definition statements. In
order to facilitate comprehensibleness and so insure flexibility of RPL
programs, it is advised that RPL programmers adopt the convention of ordering
statement groups in the sequence they appear in this chapter, from SYSTEM,
RUN, FILE, INDEX, etc. up to TOTAL. Appendix A contains a summary of this
recommended order, which is illustrated in the sample program in Appendix B.

Lastly, it should be noted that a specific ordering scheme is sometimes
mandatory within one group. For example, RECORD statements must define fields
in the exact order that they appear on the data file records. These
statement-specific rules are discussed following the individual statement
syntax presentations in the upcoming sections.

19

Examgle:

Grouping fundamental statements:

RIGHT WRONG
10 FILE O 10 FILE O
20 RECORD AGE = # 20 HEADER 1: DATE
30 HEADER 1: DATE 30 RECORD AGE = #
40 HEADER 1: PAGE 40 HEADER 1: PAGE
NOTE:

In the examples presented in the rest of this chapter,
line numbers are omitted wherever possible for the sake
of clarity. It is assumed that if the example statements
were incorporated into actual programs, appropriate 1line

numbers would be assigned to them. The example
statements do not represent parts of any one complete
program. '

20

5.3 SYSTEM DEFINITION STATEMENTS

SYSTEM {device address)

This statement defines the device address of the RPL system disk (refer
to Appendix C for a list of allowable device addresses).

The SYSTEM statement is not used if Standard Disk Usage was specified
the last time the source program was edited (refer to Chapter 3 for an
explanation of Standard Disk Usage). If SDU was not specified, a SYSTEM
statement must be included, but the device address specified will be ignored
unless the RPL program contains a SORT statement or the input data file 1is a
KFAM-3 file. If SDU was specified and a SYSTEM statement is included, an
error message will be printed when the program is compiled.

Example:
SYSTEM 310

RUN {device address)

This statement defines the device address of the disk which will contain

the object program (refer to Appendix C for a 1list of allowable device
addresses).

The RUN statement is not used if Standard Disk Usage was specified when

the source program was last edited. If SDU was specified and a RUN statement
is included, an error message will be printed when the program is compiled.

Example:
RUN B10

21

5.4 DATA DEFINITION STATEMENTS

5.4.1 Naming Conventions

When assigning field names with the RECORD and WORK statements, certain
naming conventions must be observed. If an invalid name is assigned, one of
two outcomes will result: either the compiler will generate an error message
when it compiles the program, or it will compile the objeect program
incorrectly. Since no error message will be generated in this latter case,
when the object program does not run as expected, the source of the trouble
may be difficult to locate. Therefore, it is recommended that care be taken
to adhere strictly to the naming conventions.

The most important rule to follow when selecting field names concerns
reserved names, also known as ‘“reserved keywords". The RPL system has
"reserved" certain words for its own use. Since the system cannot
differentiate between two identical names, the RPL programmer cannot use a
reserved keyword as a field name. These reserved keywords fall into two
categories: command keywords and "special® keywords. The command keywords
are the words which define the RPL statements and substatements, such as
SYSTEM, FILE, START, CONVERT, and GOTO. The special keywords are DATE, PAGE,
LINE, EXPAND, and KEY. These keywords are used in conjunction with the Print
statements and are discussed in section 5.6. A complete 1list of reserved
keywords can be found in Appendix C.

In addition to this restriction, field names assigned by the programmer
must be from 1 to 6 characters in length and must consist only of upper case
letters (A to Z). Within one RPL program, each field name must be a wunique
combination of letters.

5.4.2 Data File Definition Statements

FILE {format) [; [] {file name)d ["]: {device addres$>]

This statement defines the format of the file from which data is to be
extracted (refer to Chapter U4 for a discussion of allowable data file
formats). One and only one FILE statement must be included in every RPL
program.

The file name and device address may be omitted, in which case the
system will prompt for this information before running the object program. If
either the file name or the device address is omitted, both must be omitted.
‘The file name, if included, must be the same as the data file name listed in
the disk catalog (unless the file is a Basic Accounting System 1 (BAS-1) file,
in which case the file name specified must be the file name contained in the
header record). .The file name must be enclosed in quotation marks if it
contains embedded special characters (e.g., blanks); otherwise, the quotation
marks are optional. For a 1list of allowable device addresses, refer to

Appendix C.

22

Examgles:
FILE O

FILE O: ATEST: B10
FILE O: "ATEST": B10

FILE 0: "A TEST": B10

INDEX (KFAM-3 key file number) [: {device address)]

If the data file is defined in the FILE statement as a KFAM-3 user file,
an INDEX statement must be included to indicate which KFAM-3 key file to use
when extracting data. Records will be read in ascending sequence using this
key file (FINDFIRST/FINDNEXT sequence). Unless a SORT statement is used,
records will also be printed in this order.

The device address may be omitted, in which case the system will prompt

for it before running the object program. For a 1list of allowable device
addresses, refer to Appendix C.

Examgles :
INDEX 1

INDEX 1: B10

#
field length)
field name 2), {start), {bytes)

RECORD {field name 1)

: {field name 3)

#
2fie1d 1engt.h§
field name 4), {start), <{bytes>

This statement defines the record layout of the file from which data is

to be extracted. At least one RECORD statement must be included in every RPL
program.

23

Every record of the data file must have the same format, with the
exception of Format 1 and Format 3 header and trailer records (refer to
Chapter 4 for a discussion of allowable data file formats). Every field in
the data file must be defined; the fields must be defined in the exact order
that they appear in the records. If the records are blocked into 2 or more
records per sector, the maximum number of fields that can be defined with the
RECORD statement is 38. If the records are not blocked (or the blocking
factor is 1) the maximum number is 55. The total number of field names
defined in all RECORD and WORK statements cannot exceed 100.

More than one field can be defined in one RECORD statement by separating
the definitions with colons. A single definition may not be split between
consecutive RECORD statements. It is recommended that the field definition
precede)all references to it in any other RPL statements (e.g., DETAIL, COND,
or KEYS).

All field names assigned in the RECORD statement (field name 1, field
name 3, etc.) must conform to the naming conventions summarized in Appendix
C. If the field is a numeric field, it should be defined with a number sign
(#); if it is a character field, its length in bytes should be specified (one
character occupies one byte). The length in bytes must be a positive integer
less than 65. (If a character field length is not explicitly defined in BASIC
with a DIM statement, its length defaults to 16.) Partial character fields
may be defined by entering a character field name previously defined by a
RECORD statement (field name 2, field name 4, etc.), the numerical position of
the first character of the partial field, and its length in bytes. This 1is
analogous to the STR function in BASIC. The numerical position of the first
character combined with the length must define a valid proper or improper
subset of the original field. Partial fields may not be defined on other
partial fields.

’

Examples:
RECORD SEX = 1
RECORD AGE = #
RECORD SEX = 1: AGE = #: ACCT = #: LETTER = 1

Defining a partial field:

RECORD NAME
RECORD INIT

30
NAME, 1, 1

RECORD NAME = 30: INIT = NAME, 1, 1

RECORD NAME = 30

RECORD INIT = NAME, 1, 1: AGE = #: SEX = 1
" RECORD NAME = 30

RECORD AGE = #

RECORD SEX = 1

RECORD INIT = NAME, 1,

-—

30: AGE = #
NAME, 1, 1: SEX = 1

RECORD NAME
RECORD INIT

In each of the five examples above, the partial field INIT would contain the
first letter of NAME.

BLOCK <{factor)

This statement is used only if the input data file contains more than
one record per disk sector. If a BLOCK statement is not included, no blocking
(record type N or M in KFAM-3) is assumed; i.e., it is assumed that either the
data file contains exactly one record per disk sector or that it contains
records which each occupy some fixed number of sectors.

The BLOCK statement specifies the number of records per sector. This
number, or factor, must be an integer from 1 to 255, inclusive. Numbers from
127 to 255 will not generate RPL compiler error messages; however, these
numbers may not be used as blocking factors with KFAM-3 data files, as KFAM-3
does not allow multiple-sector blocked records. A blocking factor of 1
indicates that there is exactly one record per disk sector (record type N in
KFAM-3); it is never necessary to include a BLOCK statement if the blocking
factor is 1.

The records must be blocked as arrays (record type A in KFAM-3). The
first variable in each record would be contained in the first array, the
second variable in each record would be contained in the second array, etc.
Each block, or sector, must have the same format and must contain exactly the
same number of records.

Examgle:

Suppose there were 12 records in the data file TEST, each containing a
20 character name, a numeric age, and an 8 character questionnaire response.
The variables could be initialized with the BASIC statement:

DIM A$(12)20, B(12), C$(12)8

After entering the data into these arrays, they could be written out to an
existing disk file like this:

DATA SAVE DC CLOSE ALL
DATA LOAD DC OPEN R "TEST"
FOR N = 1 TO 12
DATA SAVE DC A$(N), B(N), C$(N)
NEXT N
DATA SAVE DC END
DATA SAVE DC CLOSE ALL

25

If the records were written with the above statements, they would be
unblocked. The data records alone would occupy 12 sectors, and there would be
one record per sector. They could be defined with these RPL statements:

FILE 0: TEST: B10
RECORD NAME = 20: AGE = #: RESP = 8

Alternatively, the records could have been blocked. Suppose the records
had been blocked into 6 records per sector. Then the BASIC code to initialize
the variables might be:

DIM A1$(6)20, A2$(6)20, B1(6), B2(6), C1$(6), C2$(6)
After entering the data into these arrays, they would be written out to disk:

DATA SAVE DC CLOSE ALL

DATA LOAD DC OPEN R "TEST"
DATA SAVE DC A1$(), B1(), C1$()
DATA SAVE DC A2$(), B2(), C2$()
DATA SAVE DC END

DATA SAVE DC CLOSE ALL

In this blocked form, the data records alone would occupy only 2 sectors, and
there would be 6 records per sector. They could be defined with these RPL
statements:

FILE 0: TEST: B10
RECORD NAME = 20: AGE = #: RESP = 8
BLOCK 6

#
WORK {field name 1) [({elements))] ={ <field length>
<field name 2>, {start), {bytes)

i
: {field name 3) [((elements))] = ! €field length>
<field name 4>, (start), {(bytes) -

This statement. defines the work fields, if any, to be used by the RPL
program. Work fields are reserved variables to be used later on for
computational purposes. Work fields are not fields in the input data file;
fields in the data file are defined by the RECORD statement.

26

The only other difference between the WORK statement and the RECORD
statement is that work fields may be defined as arrays, while data file fields
may not. To define an array work field, include the number of elements in
parentheses after the field name. The number of elements may range from 1 to
255, inclusive. Arrays may not be defined as partial fields, nor may any
array name be used in defining a partial field.

Any character field defined by a WORK statement 1is automatically
initialized to blanks; any numeric field is automatically initialized to
zero. Partial character fields defined by a WORK statement must refer only to
previously defined WORK character fields (not RECORD character fields).

Examples:
WORK SEX = 1
WORK AGE = #
WORK SEX = 1: AGE = #: ACCT = #: LETTER = 1

Defining a partial field:

WORK NAME = 30

WORK INIT = NAME, 1, 1

WORK NAME = 30: INIT = NAME, 1, 1
WORK NAME = 30

WORK INIT = NAME, 1, 1: AGE = #: SEX = 1
WORK NAME = 30

WORK AGE = #

WORK SEX = 1

WORK INIT = NAME, 1, 1

WORK NAME = 30: AGE = #

WORK INIT = NAME, 1, 1: SEX = 1

In each of the five examples above, the partial field INIT would contain the
first letter of NAME.

Defining an array of ten 30-character fields:

WORK ARRAY(10) = 30

27

5.4.3 Data Selection and Sort Statements

CRECORD field name 2)
COND (RECORD field name 1) {relation)d{ "(literal)"
expression)

<RECORD field name 4)
: CRECORD field name 3) {relationd{ "{literal)"
{expression) ces

This optional statement selects only those records which meet certain
conditions for inclusion in the report. If more than one condition is
specified in one COND statement, records are selected only if all the
specified conditions are true (logical AND). 1If more than one COND statement
is included, records are selected if they meet the criteria of any one COND
statement (logical OR). The maximum number of COND statements allowed in one
RPL program is 39.

All of the field names specified as the first operand (field name 1,
field name 3, etc.) must be valid field names defined in a RECORD statement.
The relations that may be specified are:

SYMBOL MEANING

= first operand is identical (equal) to second operand

O first operand is not identical (equal) to second operand
(first operand is less than second operand
< first operand is less than or equal to second operand
> first operand is greater than second operand
>= first operand is greater than or equal to second operand

The second operand may be a valid RECORD field name, a 1literal enclosed in
quotation marks, or an expression. If the first operand is a character field
name, the second operand must define a character field; likewise, if the first
operand is a numeric field name, the second operand must define a numeric
field. Consequently, literals are only allowed if the first operand is a
character field name, while expressions are only allowed if the first operand
is a numeric field name. Character fields are left justified for comparisons,
vwhile numeric fields are right Jjustified.

28

Expressions may not contain parentheses; they may consist of any
combination of numbers and(or) numeric field names separated by the operators
+, -, %, and(or) /. Only the first number in the expression may be a negative
number; all other numbers must be nonnegative. Operator precedence in
expressions is the same as in BASIC. Expressions are evaluated from left to
right in two passes. Multiplication (*) and division (/) are computed in the
first pass, while addition (+) and subtraction (-) are computed in the second.

Examples:

Suppose these fields were defined:

RECORD NAME = 10: CITY = 16: STATE = 16
RECORD AGE = #: AUTOS = #: TWO = #

Suppose that the data file contains the names, cities, states, ages, and
number of automobiles belonging to all members of an automobile club. In
addition, suppose each record ends with a numeric field which always contains
the value "2". This statement selects for printing only those members who
live in Boston:

COND CITY = "Boston"
This statement selects all members who do not live in Massachusetts:

COND STATE () "Massachusetts"
Each of these statements select all members who own two or more cars:

COND AUTOS > = 2

COND AUTOS > = 1+U4/4%1

COND AUTOS)= TWO
This statement selects all members whose names begin with B to Z:

COND NAME) = "B"

These statements select all members who are under 25 OR own two or more cars:

COND AGE < 25
COND AUTOS)= 2

While this statement selects all members who are under 25 AND own 2 or more
cars:

COND AGE {25: AUTOS D= 2

29

To compound the COND statements further, we could ask for all members under 25
who own two or more cars OR all members who live in Boston:

COND AGE {25: AUTOS D= 2
COND CITY = "Boston"

SORT [(device address): [*] < £ile name) ["]]

This optional statement causes the records of the data file to be sorted
by the field(s) specified in the KEYS statement before printing the report.
No more than one SORT statement may be included in an RPL program.

The sorting procedure must have a cataloged disk file to use as a
scratch work file. The device address and file name are optional; if omitted,
the system work file (120 sectors) will be used. If either the device address
or the file name is omitted, both must be omitted.

As the RPL system will use either a program or a data file as a SORT
work file, great care should be taken when specifying a work file to avoid
overwriting a valuable file. The file name, if specified, must be the same as
a cataloged disk file on a disk accessible to the system when the RPL program
is run. Quotation marks are required only if there are embedded blanks in the
file name; otherwise, the quotation marks are optional. Refer to Appendix C
for a list of allowable device addresses.

In most cases, the required size of the SORT work file will not exceed
the size of the input data file. The number of sectors required for the work
file can be estimated as follows:

K = total number of bytes in the SORT key field(s) (not including con-
trol bytes)
R = total number of records
W = required work file space in sectors
INT = truncated to an integer value

W = 20 + R/INT(250/(K+5))

This figure should be accurate to within 104 of the actual work file size
required. If the allotted work file is inadequate, an error message will
appear on the CRT screen when the object program is run. For a more exact
calculation of the work file size, the SORT-3 program itself may be used. For

details, consult the Integrated Support System User Manual, Release 2, Chapter
33.

30

If the input data file is a KFAM-3 user file, records will automatically
be printed in ascending key sequence (using the KFAM-3 key file designated by
the INDEX statement) unless a SORT is specified. Note also that if the input
file is a KFAM-3 user file, the SORT3 module must be modified. For further
details, refer to Chapter 3.

Examples:
SORT
SORT B10: SCRATCH

SORT B10: "SORT FIL"

KEYS (RECORD field name 1) [,D] : (RECORD field name 2) ED]

This statement defines which fields are key fields. The key fields
function in two ways: firstly, they define which fields are to be sorted if a
SORT is included; secondly, they determine when and in what sequence the TOTAL
statements are executed. When used in conjunction with a SORT statement, the
KEYS statement defines the primary, secondary, tertiary, etc. SORT fields.
Fields are sorted in ascending order (A to Z, - to ©») unless "D" is
specified, in which case the preceding key field is sorted in descending order
(Z to A, ©» to -). When the KEYS statement is used in conjunction with a
group of TOTAL statements, whenever the value of a key field changes the
corresponding TOTAL statement is executed. The position of the operand in the
KEYS statement defines the control level of the TOTAL statement. For further
ingbrmation, consult the TOTAL syntax presentation and discussion in section
5.6.

The KEYS statement is always used in conjunction with a SORT statement
and/or a group of TOTAL statements. The KEYS statement is not required unless
there is a SORT statement or a TOTAL statement of level 1 or greater. The
KEYS statement may be continued by following it with another KEYS statement on
the next line; however, the number of key fields cannot exceed 9, and the
length of all the key fields together cannot exceed 64 bytes. The fields
defined as key fields must be valid fields defined in a RECORD statement.

Example:
Suppose these fields were defined:

16: STATE = 16
#

RECORD NAME
RECORD AGE

10: CITY
#: AUTOS

31

Suppose that the data file contains the names, cities, states, ages, and
number of automobiles belonging to all members of an automobile club. Suppose
further that it is necessary to print a report containing members' names and
number of automobiles. The report should be sorted primarily by state and
secondarily by name. The listing for each state is to begin on a separate
page, and at the end of each state listing we would like to print the total
number of automobiles owned by club members who are state residents. Finally,
a grand total of all automobiles belonging to club members is to be printed at
the end of the report. These RPL statements would accomplish this:

SORT
KEYS STATE: NAME

TOTAL 1: +1: 1: "TOTAL AUTOS FOR THIS STATE IS: ": 40: &AUTOS
TOTAL 1: +PAGE

TOTAL O: +PAGE: 1: "GRAND TOTAL OF AUTOS IS: ": 40: &AUTOS

32

5.5 COMMENT STATEMENT

* (comment)

The Comment statement is used only for internal documentation of
program. Since no object code is compiled for Comment statements, they
appear anywhere in the source code; they need not all be grouped together.

Examples:

®# This is a comment here.

ER¥E® So is this.

33838 3036 38 3036 3 30 38 30 36 38 3036 38 36 36 3 6 36 30 36 96 30 3¢ 30 3 6 90 38 3% 36 96 38 3 3¢ 38 3 30 30 38 36 30 3% 36 3% 3 30 3% 3 3% 330 30 ¢ 3% % % N

#% No object code will be compiled for these statements. #*#*
BHHIE 000020000 000 00 20 0000000 S0 0030 000000 000000 200000 00 0000 3000 000 0 000000 000000 01 3000 0 0000 000 0 0000 0

33

the
may

5.6 REPORT STATEMENTS

5.6.1 LINES Statement

LINES <{number)

This optional statement specifies the maximum number of lines to be
printed on a report page. Blank lines are included in this figure. If a
LINES statement is not included, the maximum number of 1lines defaults to 56
(numbered 1 to 56).

The number specified in the LINES statement must be a positive integer.
It must be greater than the number of lines required to print the page header
plus one detail line, if we consider one detail line to be one execution of
the DETAIL group. If the number of lines specified is less than this minimum
number, the HEADER plus one DETAIL line will be printed per report page. A
maximum number of 999 lines per page may be specified. Pagination never
occurs while executing a print group; consequently, the LINES number specifies
the last line on which a single execution of a print group may start. - Unless
otherwise specified in the TOTAL statement, TOTAL 1lines are printed on the
same page as the preceding data (which they total), whether or not the maximum
number of lines has been exceeded. The maximum number of 1lines should not
exceed the page length encoded on the paper tape in the printer, or erratic
paginations will result. The system automatically ejects a page after
finishing the entire report, unless the last Print statement executed ends
with a colon (:).

Examples:

If a minimum number of 8 lines per page was necessary (in order to print
the heading plus one detail 1line), any one of these statements would be
allowed:

LINES 8
LINES 25
LINES 999

5.6.2 Print Statements

The Print statements control all the calculating, formatting, and
printing necessary to generate the report. At least one Print statement must
be included in every RPL program; additional Print statements are optional. A
group of one type of Print statement as it appears in an RPL program (START,
HEADER, DETAIL, or TOTAL) is referred to as a "Print group".

34

Each of the Print statements has two syntactic formats: the print
format and the substatement format. The two formats may not be mixed in any
one statement. The print format syntax is presented in this section; a
discussion of the substatement format is left to section 5.7.

Although the individual statement syntax presentations may seem complex,
the basic function of the Print statements is simple: to do necessary
calculations and then format and print the report. Since the calculations are
all performed by using substatements, this section only concerns itself with
how the Print statements format and print the report. To do this, each
statement must contain three types of information: where to print, what to
print, and how to print.

How to print is the first question to resolve. Report 1lines may be
printed in either regular or expanded print, but the two cannot be mixed 1in
one report line. If the option to EXPAND is not specified in a Print
statement, the corresponding report line will be printed in regular sized
print. There is a standard format for printing; however, some Print
statements may specify the format in greater detail by including print images
very similar to those constructed for the PRINTUSING statement in BASIC.

The next two questions are where and what to print. Before executing a
Print statement, the RPL system normally executes a 1line feed and carriage
return on the printer, so that it is ready to begin printing a new line of the
report. Some Print statements may also optionally specify pagination or
additional line feeds. Next, the Print statement contains pairs of column
positions followed by elements to be printed. For each report 1line, the
column positions should be specified in ascending order, and should be
calculated to avoid overlap of print elements on the report.

Print elements may be valid RECORD or WORK field names or special
keywords. There are restrictions in the usage of print elements; these
restrictions have been incorporated into the individual statement syntax
presentations. The special keywords that may be used in conjunction with the
Print statements are:

DATE Report date entered when the object
code is run (mm/dd/yy).

PAGE Current report page number. This
variable is initially set to 1 on
the first page printed with a header
and automatically incremented by 1
each time system pagination occurs.

LINE Current line number of the current
page of the report. It is initially
set to one at the start of each page
and automatically incremented as

report lines are printed. Skipped
(blank) lines are included in this
figure.

35

these

EXPAND

KEY

Specifies that the report line is to
be printed in expanded print.
EXPAND is ignored unless the report
is generated on a matrix printer.
If specified, EXPAND should be the
first print element on the report
line. - Expanded print characters
occupy twice the horizontal space of
regular sized characters. The value
of EXPAND is always HEX(OE).

May only be used in TOTAL
statements. For further details,
consult the TOTAL statement
definition.

Unless otherwise noted in the individual statement syntax presentations,
variables should be restricted to these values:

RECORD field name
WORK field name

WORK array field name (subscript)

lines

print position

literal

image

36

Valid field name previously defined
in a RECORD statement.

Valid field name previously defined
in a WORK statement.

The array field name should be a
valid array field name previously
defined in a WORK statement. The
subscript should be a valid array
subscript and can be specified
either as a number or by using a
valid RECORD or WORK numeric field
name.

Positive integer from 1 to 20,
inclusive.

Positive integer from 1 to 132,
inclusive (regular print) or 1 to
66, inclusive (expanded print).
Positions for one report line should
be specified in ascending order.

Non-null character string.

Valid PRINTUSING image without the
percent sign (%).

It is a good idea to plan the report format carefully, adhering to the
above restrictions. Failure to do so will have unpredictable results, ranging
from compiler error messages to report format difficulties. In some cases,
although no compiler error message will be generated, print elements will be
dropped from lines and so not included when the report is printed. The report
should be structured so that print elements do not overlap and do not run off
the end of the printed line. If one whole print element does not fit into the
allocated space at the end of the report line, it will usually be printed in
its entirety on the next report line beginning in print position 1. Numeric
fields are automatically padded on the left with one blank (two regular sized
blanks if the line is expanded).

The RPL system automatically signals a carriage return/line feed at the
end of each Print statement unless the statement ends with a colon (:). In
this case, the system treats the next statement as a continuation of the
previous statement, and continues to print on the same line on the printer.
If nothing else is printed - that is, if the 1last Print statement executed
ends with a colon - the print elements in the last Print statement will be put
in the printer buffer but will not be printed by the RPL program. A print
position and its subsequent print element must appear together in the same
statement line; they may never be split between consecutive Print statements.
Note also that if a Print statement ends with a colon, the following Print
statement should not specify +PAGE, +{lines)», or EXPAND.

As the Print statements are the ones which actually structure and
generate the report, understanding the syntax of these statements is not
nearly as crucial as understanding their semantic content. When writing Print
statements, the RPL programmer must constantly bear in mind the effects of
running the corresponding object code. The primary thing to remember is that
for each execution of the DETAIL group, the system will simply read a record
from the input data file, format it, and print it on the report. For
convenience, a summary of the order in which the Print groups are executed is
presented in the flowchart in Appendix E. It may also be helpful to refer to
the sample program and output found in Appendix B.

37

+<lmes>[<print position>: <print element 1> ["<image>"]]
START <
print position>: <print element 1> ["(image>"]

[: <print position>: <print element 2>‘[: "<image>"]] []

Print Elements

print element 1 print element 2

<WORK field name> <WORK field name>

<WORK array field name> <WORK array field name>
(<subseript>) (<subseript>)

literal™> literal>"

DATE DATE

PAGE PAGE

EXPAND

The START group is executed only once, at the beginning of the report.
The print format (above) is used for printing a title page. The title page is
considered PAGE zero; it is the only report page printed without a HEADER.
The system automatically ejects a page on the printer after executing the
entire START group unless the 1last START statement executed ends with a
colon (:). If there is no START group (or the START group does not print
anything), the first page of the report is skipped. The next page begins with
a HEADER and is considered PAGE one.

Note that the LINES statement does not apply to the title page; no
pagination (other than automatic printer page ejects) takes place during the
execution of the START group.

For examples, refer to Appendix B.

38

+lines> [: <print position>:<print element 1> [_: "<image>"j_|
HEADER
<print position>:< print element 1> [“<image>"]

[:<print position>: < print element 2> ["<image>“]] []

Print Elements

print element 1 print element 2

<RECORD field name> <RECORD field name>

<WORK field name> <WORK field name>

<WORK array field name> <WORK array field name>
(<subsecript>) (<subsecript>)

"literal>" "Jiteral>"

DATE DATE

PAGE PAGE

LINE LINE

EXPAND

The HEADER group is executed immediately after each system page eject
except the final page eject at the end of the report. It does not matter
whether the page eject is caused by exceeding the maximum number of report
lines per page (LINES or default) or whether it is triggered by a "+PAGE" in a
Print statement. The HEADER group is always executed after the START group
and before the first DETAIL statement is processed.

Note that if a RECORD field is printed by a HEADER statement, the first

record of the report page will be used; i.e., the record printed by the next
DETAIL statement.

For examples, refer to Appendix B.

39

+PAGE

{ [:<pr1nt position>: <print element 1> [“<image>"1‘
DETAIL ({ {+<ines>

<print position>:< print element 1> [“<image>"]

: <print position>:<print element 2>[: "<image>"] [:]

Print Elements

print element 2

print element 1

<RECORD field name> <RECORD field name>

<WORK field name > <WORK field name>

<WORK array field name> <WORK array field name>
(<subseript>) (<subseript>)

"Tliteral>" Kliteral>"

DATE DATE

PAGE PAGE

LINE LINE

EXPAND

The DETAIL group is executed once for each record in the data file. If
a COND group is included, the DETAIL group is executed only for those records
which satisfy the selection criteria. _

For examples, refer to Appendix B.

4o

TOTAL {control level):

+PAGE
{ >} [: {print position): {print element 1> [: " image "]

+{lines

{print position): { print element 1) ["(image)"]

[: {print position): { print element 2)> ["(image}"]] []

Print Elements

print element 1 print element 2

<WORK field name> <WOBRK field name>

<WORK array field name> <WORK array field name>
(<subseript>) (Ksubseript>)

Jiteral>" "literal>"

DATE DATE

PAGE PAGE

LINE LINE

EXPAND KEY (control levels 1-9 only)

KEY (control levels 1-9 only) &numeric RECORD field name>

&<numeric RECORD field name>

The TOTAL <control level>group is executed once each time the value of
the control field at the specified control level changes. The control level
must be an integer from 0 to 9, inclusive. The control fields are the key
fields defined by the KEYS statement. They may be either character or numeric
fields. The first field in the KEYS statement corresponds to control level 1,
the second field corresponds to control level 2, etc. up to control 1level 9.
Control level 0 corresponds to the overall (grand) total; consequently, there
is no field in the KEYS statement which corresponds to it. Within the TOTAL
group, statements for each control 1level must be grouped together; it is
recommended that the TOTAL <control level> groups be arranged in descending
order, from control level 9 to control level 0. It is not necessary to have a
TOTAL group for every (or any) key field.

Whenever a TOTAL <control level> group is executed, all TOTAL groups
with numerically greater control levels are executed first. For example, if a
level 4 TOTAL group must be executed, levels 9, 8, 7, 6, and 5 would be
executed first, in that order. If two or more control fields change
simultaneously, the corresponding TOTAL <control 1level> groups are also
executed in descending order, from level 9 to level 0. When the data in the
data file has been exhausted, all the specified levels are automatically
executed.

41

The basic function of the TOTAL statement is to set control breaks and
perform automatic totaling of numeric fields. A numeric RECORD field name
preceded by an ampersand (&) is used to designate the total of the field at
the specified level. 1Including this print element in a TOTAL statement serves
to both totalize and print the total of the desired field. Numeric RECORD
fields may be totaled at any or all of the specified levels; the number of
automatic totals requested must not exceed 30, counting 1 for each total at
each level. The variable KEY always contains the value of the control field
at the same level as the TOTAL statement; since there is no control field for
level 0, KEY may not be included in any TOTAL 0 statements. Although the
TOTAL {control level) group is only executed when the value of a control field
changes, the value of KEY at the time the TOTAL {control 1level) group is
executed always equals the prior value of the control field, not the next
value. The RECORD fields at the time the TOTAL <{control level) group is
executed contain the values in the record that caused the control break.

For examples, ‘refer to Appendix B.

42

5.7 SUBSTATEMENTS

If we were to write an RPL program using only the information covered so
far in this chapter, we could generate a minimally satisfactory report from a
given data file. The file could be sorted, only those records which met
certain conditions extracted, any or all fields of the records printed in any
appropriate format, and numeric fields optionally totalized. However, we
would be very limited in other respects. There would be no way at all of
using WORK fields, no way of specifying arithmetic calculations, and no way of
executing statements in a nonlinear fashion. Accordingly, substatements which
closely resemble BASIC statements have been provided for use in conjunction
with the Print statements. The syntax for the substatement format of the
Print statements is given below.

START

HEADER <substatement> [: <substatement>] e
DETAIL

TOTAL <level> :

There are two main types of substatements: Calculation substatements and
Program Flow substatements. These are discussed in subsections 5.7.1 and
5.7.2, respectively.

5.7.1 Calculation Substatements

<name 2>
<name 1> = nliteral>"
<expression>

name 1 and name 2

START HEADER or DETAIL TOTAL <control level>:
<WORK field name> <RECORD field name> <WORK field name>
<WORK array field <WORK field name> <WORK array field
name> (<subscript>) <WORK array field name> (<subscript>)

DATE name> (<subscript>) DATE
PAGE DATE PAGE

PAGE LINE

LINE KEY (control levels

1-9 only)

&<numeric RECORD
field name>

43

The equation substatement assigns the value of the second operand to the
field specified as the first operand. This substatement is the RPL equivalent
of the LET statement in BASIC.

If the first operand is a character field name, the second operand must
define a character field; likewise, if the first operand is a numeric field
name, the second operand must define a numeric field. Consequently, 1literals
are only allowed if the first operand is a character field name, while
expressions are only allowed if the first operand is a numeric field name.
Expressions must conform to the same restrictions as COND statement
express%ons; they are evaluated in the same way (refer to subsection 5.4.3 for
details).

Note that the names allowed in the equation substatement depend upon
which Print statement is used, and also that some system variables (DATE,
PAGE, LINE, and KEY) may be used as operands. DATE is an 8 character
variable, while PAGE and LINE are numeric variables. If the value of LINE is
changed by an equation substatement, subsequent paginations will be affected.
The LINE variable is incremented after printing each line, so that if the LINE
number is changed it will not be incremented until after the next report 1line
is printed.

Examples:

In order to back date a report it might be desirable to set the DATE
field (assuming that for some reason we decided against back dating the report
at run time). Any one of these four statements would accomplish this:

START DATE = "1/1/77"

HEADER DATE

"1/

DETAIL DATE = "1/1/77"

TOTAL 0: DATE = "1/1/7T"

If the DATE is printed before setting it with the equation substatement, the
date entered when the object program is run will be printed.

4y

CONVERT <character field name> / <numeric field name>
character field name numeric field name
START statement START statement
<character WORK field name> <numeric WORK field name>
<character WORK array field name> <numeric WORK array field name>
(<subseript>) (<subscript>)
PAGE
HEADER or DETAIL statement HEADER or DETAIL statement
<character RECORD field name> <numeric RECORD field name>
<character WORK field name> <numeric WORK field name>
<character WORK array field name> <numeric WORK array field name>
(<subsecript>) (<subseript>)
PAGE
LINE
TOTAL <control level>: statement TOTAL <control level>: statement
<character WORK field name> <numeric WORK field name>
<character WORK array field name> <numeric WORK array field name>
(<subseript>) (<subscript>)
KEY (must be a character key PAGE
field - control levels 1-9 only) LINE
KEY (must be a numeric key field -
control levels 1-9 only)
&<numeric RECORD field name>

The CONVERT substatement converts the first operand from a character
field to a numeric field and stores the result in the field designated by the
second operand. This substatement is the RPL analog of the CONVERT statement
in BASIC. Note that the slash (/) replaces the word "TO" (in BASIC), and also
that expressions and images are not permitted in the RPL CONVERT.

The character field to be converted must contain a numeric value.

Examgle:

Suppose a transaction file contained, among other things, an amount
(AMOUNT) and an 8 character transaction date (TRDATE) in each record. Suppose
further that the file contained no transactions except those for the current
month and the previous 11 months. To totalize the amounts for each month of
the previous year, we could do it like this:

45

RECORD AMOUNT = #:
WORK MTOTAL (12) = #:

TRDATE
SUB

8: MONTH = TRDATE, 1, 2
#

DETAIL CONVERT MONTH/SUB
DETAIL MTOTAL(SUB) = MTOTAL(SUB) + AMOUNT

Note that this would only calculate the total amount for each month in the
WORK array MTOTAL; to print the results would require another Print
statement. Another way of accomplishing the same thing would be to SORT the
data file by MONTH and then to do automatic totaling of the AMOUNT field with
the TOTAL statement. If this option was taken, the results of the
totalizations would automatically be printed.

UNPACK (<image>) <character field name> / <numeric field name>

character field name

START statement

<character WORK field name>
<character WORK array field name>
(<subseript>)

HEADER or DETAIL statement

<character RECORD field name>

<character WORK field name>

<character WORK array field name>
(<subseript>)

TOTAL <control level>: statement

numeric field name

START statement

<numeric WORK field name>
<numeric WORK array field name>
(<subscript>)

HEADER or DETAIL statement

<numeric RECORD field name>

<numeric WORK field name>

<mumeric WORK array field name>
(<subseript>)

TOTAL <control level>: statement

<character WORK field name>

<character WORK array field name>

"~ (<subseript>)

KEY (must be a character key
field - control levels 1-9
only)

'LINE

<numeric WORK field name>

<numeric WORK array field name>
(<subseript D)

PAGE

KEY (must be a numeric key field -
control levels 1-9 only)
&<numeric RECORD field name>

46

The UNPACK statement unpacks the first operand and stores the result in

the field designated by the second operand.
analog of the BASIC UNPACK.

Note that the slash (/)

This substatement
replaces the word

is the RPL
nwTon

(in BASIC), and also that arrays are not permitted in the RPL UNPACK.

The character field to be unpacked must have been packed with a BASIC

PACK statement.
BASIC UNPACK statement.

The image specified must be a valid
As with the BASIC PACK/UNPACK statements, all numbers

image as wused in the

are assumed to be positive unless the first character of the image is a plus
(+) or a minus (-) sign, in which case all numbers retain their original sign.

Example:

Suppose that a packed field (AMOUNT) in the input data file was to be

unpacked before doing calculations and printing.

Suppose we also knew that

AMOUNT was a monetary value which never exceeded a positive value of

$9,999.99.
WORK UNAMT = #

It could be unpacked as follows:

DETAIL UNPACK (####.##) AMOUNT/UNAMT

START

<numeric WORK field name>
<numeric WORK array field

name> (<subsecript>)
PAGE

ROUND <name>, <number>

name

HEADER ‘'or DETAIL

<numeric RECORD field name>

<numeric WORK field name>

<numeric WORK array field
name> (<subscript>)

PAGE

LINE

TOTAL <control level>:

<numeric WORK field
name>

<numeric WORK array
field name)>
(<subsecript>)

PAGE

LINE

KEY (must be a
numeric key field -
control levels 1-9
only)

&<numeric RECORD
field name>

u7

The ROUND substatement rounds a numeric field to a specified number of
decimal places and stores the result back in the same field. The number in
the ROUND statement specifies the number of places to retain to the right of
the decimal point: It must be an integer between 0 and 9, inclusive. There
is no BASIC corollary of the ROUND substatement (although there is one in
BASIC-2). A digit of 5 is always rounded up.

Example:
Suppose a numeric WORK field, INT, was used to compute the amount of

interest to be charged to each client. After computing the interest in the
DETAIL group, it could be rounded to the nearest cent:

DETAIL ROUND INT, 2

Thus, if the interest were equal to, say, 2.065, it would be rounded off to
2007.

5.7.2 Program Flow Substatements

The Program Flow substatements allow the RPL programmer to execute Print
statements in a nénlinear fashion. While the Program Flow substatements make
RPL a more powerful and flexible language, they should naturally be used
Judiciously to avoid "spaghetti bowl" programming. The RPL rule of thumb is
this: Any statement executed from a given Print group is treated as a part of
that Print group, and must therefore adhere to its coding rules with regard to
which variables may be referenced. Further details may be found in the
discussions of the GOTO and GOSUB substatements. When writing Program Flow
substatements it may be particularly useful to refer to the flowchart in
Appendix E.

BASIC code with line numbers of 8000 to 9999 may be executed from RPL.
If BASIC code is used as a subroutine, it should return with the BASIC RETURN
statement. When branching back from a BASIC program segment executed via an
RPL GOTO, 4000 must be added to the RPL line number to get the correct 1line
number in the RPL object program. For details on executing BASIC subroutines
from RPL, refer to Chapter 6.

The object code variable names assigned to fields in the RPL source
program are in the range A0-A9, A0$-A9$, BO-B9, BO$-B9$, ..., LO-L9, LO$-L9$.
After compiling an RPL program, the compiler will print a list of variables in
this range which have been assigned (Object Program Variable Listing). These
assigned variables may be referenced in BASIC code executed from RPL; in
addition, unassigned variables in this range may be used. Variables outside
this range should not be used.

48

<name 2>
GOTO <line number> |IF <name 1><relation> {"<literal>"
<expression>

name 1 and name 2

START HEADER or DETAIL TOTAL <control level>:
<WORK field name> <RECORD field name> <WORK field name>
<WORK array field name> <WORK field name> <WORK array field name >
(<subseript>) <WORK array field name> (<subseript>)
DATE (<Bubscript>0 DATE
PAGE DATE PAGE
PAGE LINE
LINE KEY (control levels 1-9
only)
&<numeric RECORD field
name>

The GOTO substatement is used to execute a branch or a conditional
branch to another line number. This substatement is the RPL equivalent of the
BASIC GOTO. The line number specified must be either another 1line number in
the same Print group or a number from 8000 to 9999 (to access BASIC code). If
a GOTO substatement specifies a line number in the same Print group and that
Print group has more than 255 statement lines, the compiler error message
"UNRESOLVED REFERENCE TO LINE <number>" may occur. If the 1line number is a

valid one, this error message should be ignored; the GOTO will be compiled
correctly.

If the first operand is a character field name, the second operand must
define a character field; likewise, if the first operand is a numeric field
name, the second operand must define a numeric field. Consequently, 1literals
are only allowed if the first operand is a character field name, while
expressions are only allowed if the first operand is a numeric field name.
The relations and expressions specified must conform to the same restrictions
as in the COND statement. Expressions are also evaluated in the same way as
in the COND statement (refer to subsection 5.4.3 for details).

49

Example:

Suppose a field (MONEY) contained a monetary amount always less than or
equal to $999,999.99. In addition, suppose we would like to print the amount
if it is positive; otherwise, we want to print the absolute value of the
amount followed by "CR". These statements would do the trick:

500 DETAIL GOTO 530 IF MONEY < 0
510 DETAIL 85: MONEY: "“###,###.##"
520 DETAIL EXIT

530 DETAIL MONEY = 0-MONEY

540 DETAIL 85: MONEY: "#i#,###.#CR"

GOSUB <line number>

The GOSUB substatement is used to execute subroutines. It functions
like the BASIC GOSUB. There are three types of subroutines which can be
executed by using the GOSUB statement: RPL subroutines in the same Print
group, RPL subroutines in another Print group, and BASIC subroutines (lines
8000-9999). All of these subroutines must end with a RETURN in order to
branch back to the RPL statement following the GOSUB.

The only difference between subroutines executed within the same Print
group and subroutines in other Print groups lies in which fields may be
referenced in the subroutine itself. For example, if there were a subroutine
in the HEADER group, it could be executed indiscriminately from anywhere else
in the HEADER group by a HEADER GOSUB statement. 1If, however, the same
subroutine were executed from the TOTAL 0 group, it would be legal only if the
subroutine made no reference to RECORD fields. Although technically all
variables may be referenced in all subroutines regardless of the calling Print
group, variables not legal in the calling Print group will contain
unpredictable values. The variables which may be referenced by each Print
group are:

50

START HEADER or DETAIL TOTAL <control level>:

<WORK field name> <RECORD field name> <WORK field name>
<WORK array field name> <WORK field name> <WORK array field name>
(<subseript>) <WORK array field name> (<subscript>)
DATE (<subscript>) DATE
PAGE DATE PAGE
PAGE LINE
LINE KEY (control levels 1-9
only)
&<numeric RECORD field
name>

These rules with regard to allowable field names in subroutines also apply to
BASIC subroutines.

A GOSUB substatement which calls a subroutine in another Print group
will generate a compiler error message, "UNRESOLVED REFERENCE TO LINE
<number>". The same error message may occur within one Print group with more

than 255 statement lines. In both cases, this error message should be
ignored; the subroutine call will be compiled correctly. Lastly, it should be
emphasized that all subroutines must be out of 1line of execution. A

strategically placed EXIT substatement is often the most logical way to keep
subroutines out of line of execution.

For examples, refer to Appendix B.

RETURN

The RETURN substatement is used to return from an RPL subroutine. It is
analogous to the BASIC RETURN.

For examples, refer to Appendix B.

EXIT

The EXIT substatement is used to terminate execution of the Print
group. Although execution is ended automatically at the 1last 1line of the
Print group, in situations involving branching (GOTO or GOSUB) the EXIT
substatement is useful to terminate execution of a procedure. The EXIT

Substatement may appear in any line of the Print group. It has no corollary
in BASIC. ‘

51

Examples:

Suppose a field (MONEY) contained a monetary amount always less than or
equal to $999,999.99. In addition, suppose we want to print the field only if
its value is nonzero. This could be accomplished in at least two ways:

500 DETAIL GOTO 520 IF MONEY = 0
510 DETAIL 85: MONEY: “j##,###.44"
520 DETAIL EXIT

500 DETAIL GOTO 510 IF MONEY <>0: EXIT
510 DETAIL 85: MONEY: "###,#4#. 44"

52

CHAPTER 6: RPL SYSTEM OPERATING INSTRUCTIONS

There are three main steps in establishing any commercial software
program: writing the program, debugging it, and putting it into production.
The initial writing of the program is the only step which does not involve any
physical interaction with the computer. After the program is at least
partially written, it must somehow be entered into the computer's memory,
debugged, and used. During both debugging and production the program usually
has to be run and modified several times: during debugging to correct bugs,
and during production to both correct bugs and update the program's original
function. Hence, although an RPL program is only created once, it is
subsequently modified an arbitrary number of times. The method for creating a
new RPL program is very similar to that employed for modifying an old one; in
both cases, the RPL editor is used.

Generally speaking, each time the RPL editor is used to create or alter
a particular RPL source program, the edited program is then recompiled and
rerun to monitor the effects of the source code changes. So for any given RPL
program, the programmer can expect to go through the three phases of editing,
compiling, and running an arbitrary number of times.

6.1 THE RPL EDITOR

As mentioned in Chapter 1, there are 4 or 5 separate disk files which,
taken together, comprise one whole RPL program. The names of these files are
all derived from a 4 character name assigned by the RPL programmer when the
program is first created. The source program is composed of the KFAM-3 files
<nameDF1 and <name>K1, while the object program contains the files <name>,
<name>R, and sometimes <name>C. These files are all created and cataloged
automatically by the RPL system.

Once a software configuration has been decided upon, the necessary
system adaptations made (refer to Chapter 3), and an RPL program written, it
is time to begin using the RPL editor. After mounting all the appropriate
disks and clearing memory, load module RPL and run it. The first prompt to
appear requests the date, which may contain up to 8 characters. This date
will be printed on the program listing generated during compilation. After
keying in the requested information, always key RETURN(EXEC) to proceed.

53

The system then asks whether or not Standard Disk Usage (SDU) is to be
applied. The system flags each RPL program as using or not using SDU at the
beginning of each editing session; therefore, it is a simple matter to modify
SDU usage later on. The next prompt asks the user to enter the (RPL) program
name. This name must be 4 characters 1long; if there are embedded special
characters, the name must be enclosed in single or double quotation marks. If
there are trailing blanks they are considered a valid part of the program
name. For example, if an RPL program were named BIT, the disk files created
would be BIT F1, BIT K1, BIT, BIT R, and (if applicable) BIT C.

Next, the system asks whether the RPL program already exists. Enter N
(No) to create a new program, or Y (Yes) to update an extant one. If SDU was
not specified, the source program's disk device address is requested (refer to
Appendix C for a 1list of allowable device addresses). The system does not
allow creation of two RPL programs with the same name on the same disk;
similarly, if a program is to be updated, it must already reside on the
specified disk. If a new program is being created, the system asks for an
estimate of the maximum number of source program lines. Since RPL does not
provide any file manipulation utilities, this estimate should be large enough
to allow for possible future expansions of the original program. If a new
program is being created and there is not enough room on the specified disk to
contain the two source program files, an appropriate error message appears on
the CRT screen; otherwise, the files are created and initialized. If SDU was
not specified, the next prompt requests the object program's disk device
address. The object program files are not created until the source program is
compiled; hence, if there is not enough disk space for the object code, an
appropriate error message will appear on the program listing generated by the
compiler.

Lastly, the message ENTER PROGRAM STATEMENTS appears. This message
signals that control has been passed over to the RPL editor. The RPL editor
can be used to create and edit RPL source programs in much the same way as the
BASIC editor is used to create and edit BASIC programs. The EDIT, RECALL,
INSERT, DELETE, ERASE, and cursor movement Special Function Keys and also the
LINE ERASE key may all be used in RPL in almost exactly the same way as they
are used when editing BASIC programs. In RPL, the EDIT SFK cannot be used
unless the cursor is positioned at the very beginning of the statement line;
however, the cursor may be moved with the cursor movement keys even when the
line is not being edited (e.g., it is being typed in for the first time). (As
RPL was not designed for an 80 character CRT screen, when editing 62 keystroke
lines on this wider screen depress EDIT, <—, DELETE, replace the deleted
character, and then edit as usual.) The RPL program may be listed in its
entirety by typing LIST (EXEC); LIST <number> (EXEC) lists a particular line,
and LIST <number 1>, <number 2> (EXEC) lists all program lines from line number
1 to line number 2, inclusive. The main difference between 1listing a BASIC
program and listing an RPL program is that in RPL, the command word LIST must
be keyed in letter by letter. To stop listing the program, depress any key
except the HALT/STEP key. The RPL command REORG (EXEC) functions 1like the
KFAM REORG: It compresses the source program files on disk, freeing more
space for additional source program text.

54

Keying END (EXEC) serves to inform the RPL editor that the editing
session is over, and the editor then passes control to the compiler. A
message to turn on the printer and key RETURN(EXEC) to resume appears; make
sure the printer is selected before doing so. The program is then compiled
and a compiler listing of the source program is generated. (This compiler
program listing fits on narrow (8 1/2" x 11") paper.) If you wish to make
further changes to the source code at a later time before compiling it, key
HALT/STEP (EXEC) CLEAR (EXEC) instead of END (EXEC). By doing this, the
changes made in the source program are recorded on disk, but as the program is
not compiled the object program is not updated and no listing is produced.

If error messages appear on the source program listing, generally the
source program should be corrected and recompiled before running the object
program. If the errors encountered during compilation are severe, the object
program will simply give rise to a System 2200 error message when run; usually
even if the object code does run, the report generated will not be
satisfactory. One exception to this rule is the compiler error message which
always appears whenever a subroutine is called from another Print group. In
this case, provided that the subroutine call is a legitimate one, the error
message should be ignored.

6.2 RUN TIME

Once the RPL program has been created and successfully compiled, it is
time to initiate the run phase of the program. Since running the program is
entirely separate from compiling it, the run phase described in this section
is also the phase which will be repeated at prescribed intervals to produce
reports.

Mount all the necessary disks in the appropriate devices (refer to
Chapter 3 for an explanation of the software configuration). If the RPL
program accesses any BASIC code, key CLEAR (EXEC), load the BASIC code, load
<hame>R, scratch <name>R, and save the entire program back as <name>R. Then
clear main memory, load <name> and run it. A prompt requests the date, which
may contain up to 8 characters. The date entered will be used as the report
date (referred to as DATE in the source program). After keying in the
information requested, always key RETURN(EXEC) to proceed. The next prompt
requests that the printer be turned on; be sure it 1is also selected and
supplied with paper sufficiently wide for the report.

The system then prompts for the input data file name and its
corresponding device address if this information was not included in the FILE
statement. If the data file is KFAM-3 file and the correponding key file
device address was not specified in the INDEX statement, the next prompt asks
for the key file device address. If a multivolume data file is to be
processed, prompts to mount the next volume appear at appropriate times.

55

There are a number of errors which can occur during the run phase, but
most of these can be easily diagnosed as long as the RPL programmer has a
¢lear idea of the sequence in which RPL statements are executed. Obviously,
the first questions which must be resolved in some way when an RPL program is
started up are: Where is the rest of the object code (<name>R and, if
applicable, <name>C)? If SORT has been specified or the data file is a KFAM-3
file, where is the RPL system disk? Where is the data file? After correctly
ascertaining this information, the RPL system processes all Data Selection and
Sort statements. Lastly, the Report statements are processed, beginning with
the START group (if there 1is one). During the actual report generation
(execution of <name>R), the object code essentially reads records from the
data file and prints them, one at a time. The complete semantics of the
Report statements is summarized in the flowchart in Appendix E.

56

PART 2: APPENDICES

APPENDIX A:
APPENDIX B:
APPENDIX C:
APPENDIX D:
APPENDIX E:
APPENDIX F:

RPL Program Syntax Summary

Sample RPL Program

Variable Naming and Device Address Conventions
Contents of the RPL System Disk
Report Statements Flowchart

Error Messages

57

APPENDIX A:

All fundamental RPL statements

RPL PROGRAM SYNTAX SUMMARY

except the Comment statement must be

grouped together when an RPL program is displayed in sequential 1line number

order.
defined.

It is recommended that variables not be referenced before they are
The recommended order for each statement group is given in the table

below; for further details, refer to subsection 5.2.2.

RPL
statement

SYSTEM

lowest line #

5

FILE

INDEX

RECORD

 BLOCK

Mandatory,

Conditional,

or

Optional

conditional

conditional

mandatory

conditional

mandatory

conditional

of statements

allowed per

program

zZero or one

zero or one

one

zZzero or one

at least one

Zero or one

59

Comments

It must be included if not SDU;
otherwise, it must not Dbe
included.

It must be included if not SDU;
otherwise, it must not be
included.

It must be included if the data
file is a KFAM-3 file.
Otherwise, it must not Dbe
included.

Enough RECORD statements must be
included to define the whole
data record layout. If the data
records are unblocked, there may
be up to 55 fields per record;
if they are blocked, up to 38.
The total number of RECORD plus
WORK fields may not exceed 100.
Fields must be defined in the
exact order that they appear in
the records.

It must be included if the data
file is blocked; otherwise, it
should not be included. Only
array-type blocking is allowed.

/

<l

highest line #

RPL
statement

WORK

COND

SORT

KEYS

LINES

START

HEADER

DETAIL

TOTAL

% (Comment)

Mandatory,

Conditional,

or
Optional

optional

optional

optional

conditional

optional

conditional

conditional

conditional

conditional

optional

of statements
allowed per
program

as necessary

up to 39

zZero or one

Zero or one

(plus optional
continuation
statements)

Zero or one

as necessary

as necessary

as necessary

as necessary

as necessary

60

Comments

It must be used if WORK fields
are needed for computational
purposes. The total number of
RECORD plus WORK fields may not
exceed 100.

It may be used to select records
for printing only if the
specified conditions are met.

It must be included if a SORT or
a TOTAL <levels 1 to 9> group is
included. Otherwise, there is no
need for it.

At least one Print statement
must be included.
At least one Print statement
must be included.
At least one Print statement
must be included.
At least one Print statement

must be included. TOTAL 1levels
must each be grouped together,

preferably in descending order
from level 9 to level 0.

Comment statements are not
compiled; they need not be

grouped together.

APPENDIX B: SAMPLE RPL PROGRAM

I LT

Do TE 2D/2277F 7 o= 1

SOURCE FPROGR A '

100
110
120
120
140
150
160
170
180
130
132
200
210
220
221
oo
224
226
2l
229
230
231
233
234
235
236
238
239
240
250
ea0
270
280
=20
300
2310
220
220
340
350
360
370
3RO
330
400
410
420
430
440
450
4580

% ok ok ok ok 3%k 3k sk %k ok ok sk sk ok ak ok sk ok ok sk ok sk sk sk ok sk ok ok 3k

THIS RPL PROGRAM GENERATES A REPORT ON THE ONE AND
ONLY PRODUCT OF THE INTERNATIONAL WIDGET CORPORATION
{IWC)Y, THE "DELUXE AUTOMATIC WIDGETIZER". A DATA BAGE
IS5 MAINTAINED ON THIS PRODUCT, GIVING A DEBCRIPTION
OF EACH OF IT: COMPONENT PARTZ. THIS PROGRAM WILL
PRODUCE A PARTS BREAKDOWN LISTING FROM THz DATA

BASE.

SINCE STANDARD DISK USAGE IS SPECIFIED EVERY TIME THIS
PROGRAM 15 EDITED, NEITHER A SYSTEM NOR A RUN
STATEMENT I5 INCLUDED.

THE FOLLOWING STATEMENTS DEFINE THE DATA BASE MASTER
FILE. IT IS AN UNBLOCKED KFAM-3 FILE WHICH WILL BE
RESIDENT ON THE "R" FLOPPY DISK (DEVICE ADDRESS B10O)
AT RUN TIME. WE WANT TO USE THE #1 KEY FILE TO ACCESS
RECORDS, ALTHOUGH S50 LONG A5 A VALID KEY FILE IB
SPECIFIED IT DOESN'T MATTER WHICH ONE IS5 USED, SINCE
THE RECORDS WILL BE SORTED BEFORE PRINTING ANYWAY.

EACH RECORD IS5 COMPOSED OF EXACTLY 81X FIELDS:

{UNBLOCKED)
PART COMPLETE PART NUMBER
DESCR DESCRIPTION OF THE PART
QTY QUANTITY OF ThE PART PER SUBASSEMBLY
COST IWC COST FOR THE PART
TYPE ONE-LETTER CODE FOR THE PART TYPE

REVDT LAST DATE PART SPECIFICATIONS WERE REVISED

FILE &2 "MASTFO": R10O

INDEX 1: BiO

RECORD PART = 12

RECORD ASM=PART, 1,3 SUBASM=PART,G5.2: COMP=PART,.8,5

RECORD DESCR = 20
RECORD QTY = #
RECORD COST = #
RECORD TYPE = 1
=B

RECORD REVDT
7+

*
*
*
*
*

*
*

WORK XCOBT
WORK TYPEW
WORK LREVDT

*
*

WE NEED SOME WORK FIELDS TO GENERATE THIS REPORT.
XCOST WILL BE USED TO COMPUTE THE EXTENDED COST

OF EACH PART, AND THE ARRAY (XCOSTT) WILL BE USED TO
TOTALIZE THIS VALUE ON THE 3 CONTROL LEVELS. TYPEW
WILL HOLD A WORD DESCRIBING A PART TYPE. LREVDT WILL
CONTAIN THE LASTEST REVISION DATE.

#I XCOBTT(R) = #
12
2

WE ARE GOING TO 50RT ON THE THREE FIELDS ASSEMBLY,

bl

9

M3dAL TIYL3d 026
M3dAL IYL30 006
M3AJAL 119130 OBB

«Ou = 3dAL 41 OLE 0LOD fukW30w
we = TdAL JI OLE OL0D L. ATUNLOVANNTH
wde = TdAL JI O0L6 0109 :.(d3L¥OTHEYH.

- % OLS

"G3I4 HHOM LS00 QIANILXT % 098

IHL S3ILNGWOD 08T FA0D £0 NOILDES SIHL "ldvd LWHL ¥0d * 958

I5vE Yi¥d IHL NI THAL SNOSNOYYI 3WOS SI J¥IHL “LYU0d3H » SS8

IHL NO NMOMMNO . H3AT SI MIdAL 41 "QHOM JLT W00 + 0S8

¥ OINI JC0D FdAL 1HYd HILOVHYHI-T THL ONILYIENYHL # 098

) SAATOANI SIHL "3INITT IVLA3Q ¥ SINIMd NOILDO3S SIHL + OE8
' # 028

T+ H3IQ¥aH OI8

g —————— w 0FY sp-mmmm————e « £8 HIAYIH 008

! B ———— | e " :09 H kbt bl a OV HEGVBH OeL
B g o o i e 13 HIR g (1] =T HHGVHH 024

«3LYaG "ATYe SOTT ,1803 "UIXT = EB H3avaH OLL

ThlS0D X ALIINYMB. 209 fw JdAL LH¥de 0¥ 43a¥aH Os4

“u NOILJIM3S30. ST :w HIGWAN Ld¥d. T 2+ H3IAYIH OSL

WEY 49 IONWDX3 T H3IAVIH OvL
CATEWIASSY . STTT ST+ HIAVWIH OEL

Wi, 2399d 18S .9B@d. IES H3gvaH o2l
DWNMOOHYIHE Sid9¥d. SE H#3av3aH OTL

P LHIZILIO0IM DILYWOLNY IXNTEA. =T ONWHX3 T H3AV3IH OOL
0ES

"HIEWIN ATEWIASSY INJYUNO IHL ONV c8s

¥*
HISWAN I9%d IHL SIANTIONI ONIOYIH 3HL "1MO0d3H 3HL H0 » OLS
Iovd HOYI NO SNIGQYIH 3HL SININ¥d 300D 40 NOILOIS SIHL '+ 099
& 089
asipa0b 5,37 08 ‘ponposd auo aqew Ajuo aM,, T BT+ LHYIS 09D
YO €5 S.:2380. PSS o+ LMWIS OES
NMOOHYINE SLMYde 2S5 1T+ LHVIS 089
L4BZT13BpTM DTVIEWAINY 3XNTag, LY v+ LHYLS 09
WNOILYHDJHOO. 9E LHYLS S09
. LISCIM TWNOILYNHIINI. ST (ONWdXT T 02+ LHYLS 009
25 SINITT SES
% 069
"25 0L 399d H3d SINIT 0 YISWIN WIKIXYW « 985
IHL LIS 3M 399 IILIL 3HL ONIUNINMD 3H0438 °NYDDTS & 585
ONY *34%0 ILIL LMOL3H TIWON LONA0Hd TIWYN ANYDWOD % 0BS
¥*
¥

. _ JHL SETMTIONI LI "LHM0d43M 3HL 40 ONINNIODIG 3L LY (SFACY
H39%d FILIL 3HL AN0 SINIHE WYHODHd 3HL 40 NOILDES SIHL 099

% 089

G <x ALD ONOD O9S

dWOD THSYENS (WSY SATIM CES

Ld0s 029

OIS

"HEM NI & S0S

ATINTHEND LON 3MY ONY SISOdYNd WOIHOLSIH ¥0d4 ATINO 3714 + 005
IHL NI Iee ATHL SY TALIINYND OH3Z ¥ HLIM SLH9d ANV & OE¥
FLYNIWITTE OL ONIOD Y IM "JHOWHIHLMNA "OML ISHId % OBY

THL NO SHY3HE “IOHINOD HLIM FININOWOD aNY PATIEWISSYENS % OLY

fafir 2 cd O MO

= =i 2L S22 re DL = X

Y

180W IHL H0 JLIYd 3HL SMd LS00 ONY ALIINGND TWL0L +
SiI HLIM LDﬂQDHd SHIINT 3IHL IZI99WWNSE 2M UIRI0L %
ANYHD THL YO T13ATT TIOHANDD H0d 300D IHL SI SIHL &
3*
O0"0 = (2344802 =7 WioL
£+ T ™IOL
M A A A A W09 2+ T TWAOL
B CHEEHSSS, S (DY LISOOX 198 L HHSETE, ALDR TS «T T™wi0lL
pEm=ss=====, 198 ,=z====, 1IS « T 1041
*
TATIEWESSY LXEN 3HL Fd043d

#*
(+) SNOIS SMd 40 INIT HDLYHYdIS ¥ INIMd 3M “LX3N =
"ATIEWISSY SIHL D4 (L1S03X) LS00 J3IANILXT SHL +

INIMG OSTW ONY¥ (ALDR) ALIINYND 3IHL INIHd ANV JZITWI0L *
M IY3IH T T13A3T TIDHINODD HOd4 3000 IHL 81 SIHL %

%

000 = (E311S00X ¢ Wil

. 2+ 12 WiolL

ofb THEHHERE , T(EXLLISODX 198 fWHHE H.CALDR IT9 2 TWIOL
pTTETEmmmm [:58 :u “““““ " :I"B :E WVJ.G.L

¥*

“I3NIT SIHL x%

H0d4 TWLOL LS02 J30NILX3T 3HL OM3Z 0L Y3OWIW3H
"ATEWISSYENS SIHL M0d4 (L1S02X) 1503 J3AN3LX3 3HL #
ININd OSTW ONY (ALDR) ALILINYND 3HL INIdd ONY 3ZITWIO0L #
IM JYIH "2 TEATT TIOMINDOD H04 300D IHL SI SIHL %
¥

CCO8 gNsod 1IVLZd

#*

*1GATYT NI JIYA NOISIAZYH 1S3197T JHL HI3gW3W3IY
¥

(T)L1S02X TI¥Ll3d
(23 L1802X TI¥L3d
(E341800X 1I¥Li30

1S02X+ (T)YLL1SOD2X
1S00X+(2)11502X
1S02X+(E3LLS0OOX

#*
“IIL L1SHI4 IHL ¥04 3A02 SIHL 34N33X3 #

IM NIHM ONTIZ N3 LLSOOX H0 SINTWITI € TW 05 "0M37 #
0L SOT3Id SIHIWIN SHZITWILINI SAYMTY Tidd "INIWILYLIS

) IWWLOL ¥ HLIM ATWOILWWOLNY LI 3ZITWL0L LONNYD 3M %
QU314 QUHOO3Y DIHIWAN ¥ LON SI LS02 G30NILXT ZHL 3ONIS =
*IIATT TOHLNOD HOY3 NO LS0D J30N3LX3 3HL JZIWI0L +

10a3y 07T T1I9A3d

D THEEEEE TLS00X 198 S HETHEHEE, LS00 SEL qr943d
DatHETH,IALD TT2 IM3IJAL SOv SHOS3Q ST iHYd T I3
#*

“OMOD3Y INIHYND 3HL HO4 3INIT HIYL30 3HL INIHd =

%

1803X 119L30
M3dAl TIvL3d

251803 ONNDY 1 1iS02#ALD
W NMONHN
oMy = TdAL JI 046 0409 . TWIHILYH MY

MIdAL TIYLIA

OsET
OvET
OEET
OzET
CIET
SOET
CCET
ezt
o8et
oLet
0921
(Toa
Szt
oyer
oedt
ozet
orzt
oozt
oetl
o811t
CLTT
o3It
OSTt
S¥IT
oell
OETT
o2y
o171ty
001T
0eCt
08071
QLOT
0301
0501
QyCT
201
2E0T
YEOT
ZECT
TeE0T
CEOQT
0zZ0t
o101
00T

Qe

LB6

786

o8&

oLE

OS6

OF6

g 2O SIAMNDS

= [A 2L rE2sse 3LYO > X

e -

I Wi

DAaTE S9/-20/77 PG E

SOURCE FROGRA A

1360 ¥ RECENTLY REVIBED PART (SAVED IN LREVDT BY

1365 * THE
1370 *

1380 TOTAL
1390 TOTAL
1400 TOTAL
1410 TOTAL
1420 TOTAL

161 S0URCE

BASIC SUBROUTINE CALLED IN LINE 1110).

0: +#1: €0% V"---—me LR~ 7 C S .
0: 103: “LATEST REV. DATE:"
o} o I Da RS M "

Q: 451 "GRAND TOTALS:": 601 &QTY: "##,#H44":
0 B4: XCOSTT(1):"sH48dH#E. #H#"1 1107 LREVDT

STATEMENTS

NOTE:

A listing of the BASIC subroutine may be found after
this source program listing.

Ly

o

T DaTE 2D7.2277 7 oG E =1

ORJECT PROGRAM WaRIABLE LLISTING

AR X SSAEEL B TS
FIELD NAME - VARIABLE NAME TYPE
S TR{ADH,01,03) RECORD
COmMP STR(A0%,08,05) RECDORD
COST A2 RECORD .
DATE Ya% SPECIAL
DESCR Al RECORD
LINE iR SPECIAL
LREVDT ADP WORK

: PAGE 3 SPECIAL
PART AOQ% RECORD
QTyY A2 RECORD
REVDT ADE RECORD
SURAGM STR{AD%$,05,02) RECORD
TYPE A4 RECORD
TYPEW AZ® WORK
XCOST AE WORK
XCOBTT A7) WORK
HKEYS
LEVEL VARIABLE NAME
1 Xis
2 Xas
2 X3%
TOTALS
TOTAL NAME LEVEL VARIABLE NAME
&QTY &) Z2{03)
&QTY 1 Z<02)
&QTY =] Z{D1)

NG ERRORS

28000 REM THIS I5 A BASIC SUBROUTINE CALLED FROM THE

8010 EM RPL IWC PROGRAM. THIS SUBROUTINE TAKES THE
2020 REM CURRENT RECORD’S VALUE OF REVDT (IN AS$) AND
2030 REM COMPARES IT TO THE MOST RECENT OVERALL REVISION
2040 REM DATE, LREVDT (IN A&D$). THE DATE I8 IN THE FORM
8050 REM MM/DD/YY. WHEN WE EXECUTE THIS CODE FOR THE FIRS
2060 REM TIME, LREVDT WILL BE ALL BLANKE SINCE IT IS
2070 REM AUTOMATICALLY INITIALIZED BY RPL.

2020 REM

2090 REM FIRST, SBEE IF THE CURRENT YEAR I5 MORE RECENT.
2100 REM IF 50, STORE REVDT IN LREVDT AND RETURN.

8110 REM IF NOT, SIMPLY RETURN.

2120 REM

8130 IF STR(AS%, 7, 2) > STR(AD%, 7, 2) THEN 8330

2140 IF STR(AS%, 7, 2) < STR(A9$, 7, 2) THEN 2330

R15C REM

8160 REM NEXT, SEE IF THE CURRENT MONTH IS MORE RECENT.
) 170 REM

2180 IF STR{AS%, 1, 2) » STR{A%%, 1, 2) THEN 8320

2190 IF STR{AS$, 1, 2) < STR(A9%, 1, 2) THEN 2330

8200 REM

8210 REM NEXT, TEST THE CURRENT DAY. IF IT IS NOT MORE
28220 REM RECENT, RETURN WITHOUT REPLACING THE OLD VALUE
8230 REM OF LREVDT.

2240 REM

250 IF STR(ALS, 4, 2) » STR{AD%, 4, &) THEN 8320
2260 GOTO 2330
2270 REM

2220 REM IF WE HAVE BRANCHED TO STATEMENT #8320, WE SHOULD
3230 REM REPLACE THE VALUE OF LREVDT AND THEN RETURN;
2300 REM OTHERWISE, SIMPLY RETURN.

8310 REM
2320 AD% = AL%
2330 RETURN

NOTE:

» This subroutine is supplied only as an example. It need
not have been written in BASIC; it could easily have been
done in RPL.

Tz DaTa BASE &S OF 9,227 7

RART

124-01/A0001
124-01/A0002
-124-01/B1278
124-02/G60001
124027030002
124-02/60003
124-03/1 0201
124-03/M3685
372-01/B0300
372-01/B0301
372-01/80302
372-02/Z2350
372-02/23351
372-03/W0001
372-03/W0002
372-05/A1234
B31-02/P0001
g31-02/F0100
851-03/20200
231-03/50201
821-04/MO001
891 -04/MO002
831 -04/MO003
8931-04/R0100
124-03/81368
372-03/22360
291-02/M1391
831-03/81111
231-04/53617
831-11/A1653

(SEQUENTIAL RECORD LISTING)

DEGCR

MOTOR HOUSING
FAN

SCREW

BRLISH

BRUSH SPRING
BRUSH MOUNT
COMMUTATOR
BEARING

WHEEL

WHEEL BEARING
WHEEL MOUNT
STEERING HOUSING
STEERING MONITOR
GYRO

GYRO GEARING
STEERING FAN

0108 PROCESSOR
PROCESSOR ADHESIVE
POWER SUPPLY
SUPPLY MOUNT
MEMORY

MASTER BUS LINE
MASTER BUS ENDUNIT
REGULATOR

SPACER

GYRO HOUSING
PROCESSOR MOUNT
CIRCUIT BREAKER
CUT-OFF SWITCH
CABINET

QTY

[Wy

i
el 1Rl ol S U Rl (o0 Bl o PNl o A IUI A PR s U s F R T N

COBT

38. 00000
7. 00000
. 02000
. 50000
0. 75000
1.50000

11.70000
3. 50000

11.,00000
2. 60000

4. 00000

75. 50000

486. 00000
365. 26000
&2. 50000

11.20000
HHH. HHhEH

26. 00000
©398. BO0O0

6. 32000
100. 00000
278. 00000
40. 00000
129. 80000

0. 20000
112.00000
33.90000
28. 45000
26. 50000
285. 00000

TYPE

INXIXITMTMETZOOZICTO0OOIOOMNMEOAQAQIIOTNION

REVDT

01/07/76
02/11/75
07/14/76
04/28/77
03/26/77
12711777
06/19/77
11/14/76
11/01/77
02/13/77
03/18/76
05/14/77
07/22/75
08/26/77
06/03/77
04/12/77
04/26/77
03/27/77
04/11/76
05/15/77
06/06/77
07/04/77
08/01/75
09/13/77
07/12/76
07/26/75
02/12/76
05/20/77
04/01/77
12/03/76

,ip00B 5,37 05 fianposd ado ayew Afuo ap,

Lisge2reQ 3req

NMOOMY3YE SLiuvd

43z7336pTM dTIEWOLnNY axnyag

NOI LYHOJDMOS L3DOIM TINOIT LWNEO3ALINT

DEL UXE

124-01/A0001
124-01/A0002
124-01/B1278

124-02/Q00001
124-02/30002
124-02/G0003

124-03/L0201
124-03/M368S
124-03/51368

372-01/80300
372-01/B0301
372-01/80302

372-02/22350
372-02/12351

372-03/W0001

.

ALITOMAST IC

DESCRIPTION

BRUSH’
BRUSH SPRING
BRUSH MOUNT

COMMUTATOR
BEARING
SPACER

WHEEL
WHEEL BEARING
WHEEL MOUNT

STEERING HOUSING
STEERING MONITOR

GYRO

WIDGETIZER

PART TYPE QUANTITY
FABRICATED 1
OEM 1
RAW MATERIAL (2
8
FABRICATED 2
OEM 2
MANLIFACTURED 2
[
MANUFACTURED 1
OEM 2
FABRICATED 4
7
21

+ + + F F o E

OEM &
OEM iz
MANUFACTURED &

24
FABRICATED 1
DEM 1

2
OEM 1

FPARTS BREAKDOWRN

X COST

38.00
7.00
0.02

€.50
0.75
1.50

11.70
3.50
0.20

11,00
3.60
24.00

75.50
486, 00

365.26

EXT. COST

38.00
7.00
0.12

45,12

13.00

$82.12

$561.50

365.26

FPage 1

ASSEMBLY
- =

REV. DATE

01/07/76
02/311/75
07/14/76

04/28/77
03/26/77
12711777

o6/19/77
11/14/76
07/12/76

11/01/77
02/13/77
03/18/7¢

05/34/77
07/22/75

o8/26/77 .

DELUIXE

PART NUMBER

372-03/W0002
372-03/22960

372-05/A1234

891-02/mM1351
891 -02/P0001
891-02/P0100

891-03/B1111
831 ~03/50200
891-03/50201

891-04/M0001
831-04/M0002
891 -04/M0003
831-04/R0100
891-04/53617

831-11/A1653

AUTOMATIC

DESCRIPTION

GYRO GEARING
GYRO HOUSING

STEERING FAN

PROCESSOR MOUNT
0108 PROCESSOR
PROCESSOR ADHESIVE

CIRCUIT BREAKER
POWER SUPPLY
SUPPLY MDUNT

MEMORY

MASTER BUS LINE
MASTER BUS ENDUNIT
REGULATOR 4
CUT-OFF SWITCH

CABINET

WIDGETIZER

PART . TYPE "~

MANUFACTURED
FABRICATED

+ & & R

MANUFACTURED
DEM
RAW MATERIAL

MANUFACTURED
OEM
MANUFACTURED

OEM
OEM
MANUFACTURED
MANUFACTURED
CEM

MANUFACTURED

PARTS BREAKDOWN

QUANTITY X COST = EXT. COST
2 &2.50 125.00

1 112.00 112.00

4 $602. 26

1 11.20 11.20

1 $11.20
s=e=gs SSSSESESEES
31 $1428. 16

33.90 33.30
1065.00 1065.00
26.00 208.00
$1306.90

28.45 28.45
€98.80 €38.80
€.32 25.28
$752.53

100.00 3200.00
278.00 278.00
40.00 80.00
123.80 129.80
26.50 53.00
$3740.80

285.00 285.00
$285.00

$6085.23

FPage =

ASSEMBLY
I3I7T=2

REV. DATE

06/03/77
07/26/75

04/12/77

o2s/12/76
04/26/77
03/27/77

05/20/77
04/11/76
05/13/77

06/06/77
07/04/77
0oB/01/75
09/13/77
04/01/77

12/03/76

LLrivser

:3LVA "ATY- LS3LVT

303o abed ,ﬂo‘.m;v..m_mc sajupd e o3
onp. obed ‘ajesedas B uo Jesdde (anoqe) sjelol puesb o

‘410N

1S°Sesis Lot

ISTVLIOL aNVHD

+ T+

APPENDIX C: VARIABLE NAMING AND DEVICE ADDRESS CONVENTIONS

Variable Naming Conventions

RPL Source Program Variables

Field names assigned with the RECORD and WORK statements must be from 1
to 6 characters in length and must be composed only of upper case letters
(A to Z). Duplicate field names are not allowed within one RPL program.
These reserved keywords may not be used as field names:

command keywords special keywords
SYSTEM LINES CONVERT DATE
RUN START ROUND) PAGE
FILE HEADER UNPACK LINE
INDEX DETAIL GOTO EXPAND
RECORD TOTAL GOSUB KEY
BLOCK RETURN
WORK EXIT
COND
SORT
KEYS

BASIC Subroutine Variables

The RPL object program contains variables in the range A0-A9, A0$-A9$,
B0-B9, B0$-B9$, ..., LO-L9, LO$-L9$ which correspond to source program field
names. A list of BASIC variables in this range which have been assigned by
the compiler 1is printed on the source program listing. These assigned
variables may be referenced in BASIC code executed from RPL; in addition,
unassigned variables in this range may be used. Variables outside this range
should not be used.

Device Address Conventions

The printer is always assumed to have a device address of 215. The RPL
system, system work file, RPL source programs, RPL object programs, and
associated data (and work) files must all be resident on some disk platter if
they are to be used. The disk device addresses allowed are:

310 320 330
B10 B20 B30
350

Note that the RPL system (even without its work file) may not reside 6n
minidiskette since it is too large for one minidiskette.

73

APPENDIX D:

CONTENTS OF THE RPL SYSTEM DISK

The RPL system disk contains the following files:

1B

83,

oy,

85,

To create or update source programs and compile:

RPL

RLS301AA
RLS301BA
RLS302AA
RLS302BA
RLS303AA
RLS304AA

RLS305AA
RLS305BA
RLS3064A
RLS306BA
RLS307AA
RLS307BA
RLS308AA
RLS309AA
RLS310AA
RLS3114AA

System start-up.

Create or update source program.

Reorganize source program file.

Set up for first secan.

First scan of source program; print source program listing.
Process RECORD, WORK, and KEYS statements; create name table.
Allocate space for object modules; create object program
start-up module.

Generate code for SORT (part 1).

Generate code for SORT (part 2).

Start to generate report module of object program.

Continue to generate report module.

Process START, HEADER, DETAIL, and TOTAL statements.

Check line number references.

Finish generating report module.

Print source program error listing.

Process COND statements.

Print Object Program Variable Listing.

Object program skeleton modules:

RLS3404AA
RLS350AA
RLS351AA
RLS360AA
RLS361AA
RLS362AA
RLS363AA

Work file:

HWORKFILE

Skeleton start-up module.

Start of report module.

End of report module.

Format 0 read subroutine.
Format 1 and 3 read subroutine.
Format 2 read subroutine.

Read subroutine for sorted data.

Work file for compiler; may be used for SORT-3 work file.

SORT-3 modules:

SORT3

SORT300B
SORT300C
SORT300D
SORT301A
SORT302A
SORT302B
SORT303A

Check parameters and calculate sort dimensions.
Generate code for SORT301A.

Generate code for SORT303A.

Generate code for SORT302B.

Pass 1 - Internal Sort.

Pass 2 - Merge (key sort only).

. Pasg 2 - Merge (full-record sort only) (never used by RPL).

Pass 3 ~ Output (key sort only).

KFAM=-3 modules:

KFAMO103

Subroutines - inquiry-only version.

"Needed during the run phase if SORT is specified (with the default work file)
or a KFAM-3 data file is used.

4

Y2

AYNOILJO ~~~= ===
aaxid —
:aN3931
r=—==77
! sivior | oN ¢
— ouvwoinv | 3114 40
| oLaav | an3
—_—
L 6599
piv—— ey
JIAITSIHL |
3";;23‘;""“5 T R 7 : PPl S
I 3wnoaxa | i uvap !
|
I | L—— !
0599 REVERL
F———————————— ¥ad,
! Lv343u|
:_ 13A31 SIHL -: :- 1su14 -ﬁu\a-lj |
S3A_~Mo713u3no unaadosd o i 1 !
«IV10L., -,]
I 3ino3xa | 'SIV10L INIYHd | 1
L_"_-__o'x'.as b = :
069
{ ------ J
sa13id
AN AELT: ER
J¥OLS 10HLNOD
T 0199
awiL
1Syl
10N
ov1d ;
(
(
|
i
S3A ! [“quooas 1
i 1 avay‘aw |
<¢--- { 1S¥IE H13713 |
| N340 :34na
on L 2208d ava
] (1) 25
R .‘|
4001
P{ 1niud/avay
18v1S
.T oLze
Fe—m——————— _——
1
r - — m— a—— _I — el e
| 3una3goud | | 34n@3J0ud |
r-—- .430vaH. | [.lHVLS, ————d 3zIvILIN
1 I awnoaxa | | 3aLnoaxa
! Lo — L J
H & Towzs 00ze
1] | e
: 1 —_——)
Y38NNN 39Vd
| | ~EOLONVIN. |
LNIWIHONI antLnoysns .
‘39Vd LX3N ¥3aV3H : OVV“%::;':" :
0L diis
0189

(4 <3WVN> 40 NOILND3X3)

LHYHOMOTd SLNIWILVLS 1HOdIYH 3 XIANIddV

.

APPENDIX F: ERROR MESSAGES

Prior to Entering the RPL Editor

ERROR MESSAGE CAUSE POSSIBLE RECOVERY

ERR 72 Disk read error. Rerun the program. If the error
persists, recreate the RPL system
disk or the source program from

backup.
ERR 85 Disk write error. Rerun the program.
RE-ENTER Too many characters Correct the response and reenter =
were entered, or an it.

invalid response was
made to a "yes" (Y)
or 'mo" (N) question.

INVALID DEVICE The disk device address Enter a valid disk device address.
ADDRESS entered was not 310,
B10, 350, 320, B20,

330, or B30.
SOURCE PRCGRAM The named source Recheck the software configuration
NOT FOUND program to be updated and enter the correct information.

was not found on the
specified disk device.

KEY FILE NOT The KFAM-3 user file of The key file must be on the same
FOUND (STOP) the source program disk device as the user file of
(<name>F1) was found, the source program. This error
but not its associated only arises if the key file has
key file (<name>K1). been tampered with or if SDU has

been defined incorrectly. If SDU
is being used, be sure lines 115
and 120 of module RPL contain the
same disk device address. When the
error has been corrected, rerun
the editing session.

DUPLICATE NAME The new source program Assign the new program a unique

ON VOLUME user file cannot be cre- U4 letter name. Especially if
ated because a file of there are KFAM files on the disk,
the same name already check the disk catalog index for
exists on the speci- the duplicate name (<name>F1).

fied disk device.

76

ERROR MESSAGE

DUPLICATE KEY
FILE NAME ON
VOLUME (STOP)

ERR 29

NOT ENOUGH SPACE
ON DISK (STOP)

RPL Editor
ERROR ** {Jine>

ERROR ** LINE
TOO LONG

ERROR *# NO
SPACE - REORG

ERROR *# LINE
NOT FOUND

CAUSE

<name>F1 is not a
duplicate, but its
associated key file
(<name>K1) which is

to be created is a
duplicate of an exist-
ing file name on the
specified device.

The data entered was
not numeric; numeric
data was expected.

There is not enough
room on the disk plat-
ter to store the source
program, considering
the number of state-
ment lines requested.

An invalid line number
or command was entered.

An attempt was made to
enter more than 62
characters in a state-

ment line.

There is no space left
in the source program
file.

An attempt was made to
edit a line that does
not exist.

77

POSSIBLE RECOVERY

Either specify a different program
name or a different device
address. Check the disk catalog
index for the duplicate name.

Enter a number.

Mount a new disk with more avail-
able space or enter a smaller
number for the maximum number of
statement lines.

Depress the LINE ERASE key and
then reenter the line.

The line is set up for editing. On
an 80 character CRT screen, move
the cursor left one space, depress
the DELETE SFK, replace the de-
leted character, and then edit as
usual. Key RETURN (EXEC) when
corrected.

Enter REORG to reorganize the
source program file. If this
error occurs twice in a row, the
source program contains its
maximum number of statements.

If this is the case and you wish
to enter more statements, a new,
larger source program must be
created.

Depress the LINE ERASE key and

then enter a valid command or
statement line.

ERROR MESSAGE

ERROR ## LINE .
INVALID

NULL FILE

STOP NULL FILE

STOP PROGRAM
ERROR

System hangs

RPL Compiler

These messages appear on the source program listing.
during
error

error messages
Laboratories.

the object program.

NUMBER <number>
INVALID

INVALID CHARACTER
IN <field name>

SOURCE STATEMENT
MISSING

(Other System

CAUSE

The line number entered
was less than 1,
greater than 2000, or
not an integer.

There are no statements
in the source program
file.

END was entered, but
there are no statements
in the source program
file. No attempt is
made to compile the
program.

Hardware or software
error.

An attempt was made

to compile the program,
but the printer was
not turned on or not
manually selected.

consistently
2200

occur

The number printed is
not numeric, or is out-

side the range permitted.

A source program field
name contains a
character greater than
wZw, The character

itself may be unprintable.

The program line con-

POSSIBLE RECOVERY

Depress the LINE ERASE key and
then repeat with a valid line
number.

None necessary.

Edit the source program before
recompiling.

Rerun the program. If the
error persists, notify Wang
Laboratories.

Turn the printer on and press
the SELECT button.

compilation, notify

messages may

Use a valid number within the
range permitted.

Retype the name, adhering
to the naming conventions.

Delete the line or insert

tains a line number, but an appropriate instruction.

no source statement.

78

If any other RPL system
Wang
occur.) After
correcting errors in the source program, it must be recompiled before running

ERROR MESSAGE

SOURCE STATEMENT
<statement)>
INVALID

NO OPERANDS IN
SOURCE STATEMENT

QUOTES NOT CLOSED

LEVEL NUMBER
<number> INVALID

NO COLON
FOLLOWING LEVEL
NUMBER

(<command
keyword>)
NO SPACE LEFT
IN WORK FILE

DUPLICATE
<command keyword>
STATEMENT

<file name>
NOT KFAM FILE
NAME

CAUSE

The source statement
is invalid.

The source statement
does not contain
required operands.

Quotation marks are
not in pairs.

The TOTAL statement
must contain a one-
digit level number.

The level number in the
TOTAL statement must be
followed by a colon.

The work file space
(normally 120 sectors)
has been exhausted. To
compile exceptionally
large RPL programs,

the work file space may
have to be increased.
The command keyword at
which compilation was
terminated appears in
parentheses.

Only one of each of
these statements is al-
lowed: SYSTEM, RUN,
FILE, INDEX, BLOCK,
SORT, or LINES.

Format 2 is specified
in the FILE statement,
but the input file does

POSSIBLE RECOVERY

Correct the error in the
statement.

Insert an appropriate operand
or operands, or correct the
syntax of the statement.

Modify the statement to contain
an even number of quotation marks.

Insert a valid level number (0-9).

Place a colon (:) after the level
number or correct the syntax of
the statement.

Recalculate the work file size
(1 sector per U4 source statement
lines). Either shorten the RPL
program or enlarge the system
work file (WORKFILE).

Delete the extra statement.

Correct the KFAM-3 file name
or use the correct format in
the FILE statement.

not appear to be a KFAM=3
file. The first 6 char-
acters of the input data
file name are printed.
For KFAM files, position
5 must be "F" and posi-
tion 6 must be a digit
(0-9).

79

ERROR MESSAGE

NO PRINT GROUPS

<format number)
INVALID FILE
FORMAT

INDEX VALID ONLY
WITH KFAM FILE

<number> INVALID
RECORDS PER BLOCK

<number>> INVALID
NUMBER OF LINES
PER PAGE

<number>» INVALID
KEY FILE NUMBER

INVALID FILE NAME

INVALID DEVICE
ADDRESS

<command keyword>
STATEMENTS MUST
BE CONTIGUOUS

CAUSE

At least one START,
HEADER, DETAIL, or TOTAL
statement must be
included in the source
program.

The file format number
in the FILE statement
must be 0, 1, 2, or 3.

The INDEX statement
should not be included
unless Format 2 (KFAM-3)
is specified.

In the BLOCK statement,
the records per block
specified must be an
integer from 1 to 255.

In the LINES statement,
the lines per page
specified must be an
integer from 1 to 999.

In the INDEX statement,
the key file number
specified must be an
integer from 1 to 9.

Quotation marks are not
in pairs, a delimiter

is missing, or the file
name contains no char-
acters. The file name
must be enclosed in
quotation marks whenever
there are embedded
special characters.

A device address is not
310, B10, 350, 320, B20,
330, or B30.

More than one group of

a particular statement
type was encountered.

80

POSSIBLE RECOVERY

Include at least one START,
HEADER, DETAIL or TOTAL statement.

Correct the FILE statement,
using a valid file format
number.

Delete the INDEX statement or
reexamine the format.

Correct the BLOCK statement.

Correct the LINES statement.

Correct the INDEX statement.

Correct the FILE statement syntax

or file name.

Use a valid device address.

Reorder the program into proper
statement groups.

ERROR MESSAGE

LIMIT 200 ERROR
MESSAGES

<command keyword>
STATEMENT MISSING

NO RECORD
DEFINITION

MISSING FIELD
NAME

NAME <field name>
TOO LONG

INVALID
DELIMITER =
<delimiter>

INVALID FIELD
DEFINITION

DEFINING NAME
<field name>
INVALID

TOO MANY KEYS

DUPLICATE FIELD
NAME <field name>

TOO MANY NAMES
(<field name)>)

CAUSE

Compilation is termin-
ated if there are 200

(or more) error messages.

The indicated statement
is required, but was not
found.

There are no RECORD
statements in the source
program.

A field name was expect-
ed; none was found.

The field name exceeds
6 characters in length.
Only the first 6 char-
acters are printed.

The delimiter printed
is not the delimiter
expected.

A field definition is
invalid in a RECORD or
WORK statement.

A partial field has been
defined incorrectly.

The KEYS statement may
not contain a total of
more than 9 operands.

A field name defined in
a RECORD or WORK state-
ment is a duplicate of
a field name already de-
fined, or is a reserved
keyword.

A maximum of 100 field
names may be defined.
The rejected field name
is in parentheses.

81

POSSIBLE RECOVERY

Debug the source program.

Insert the missing statement
or reexamine the program
syntax.

Insert at least one RECORD
statement.

Insert the field name necessary
or correct the statement syntax.

Change the field name so it
conforms to the naming
conventions.

Correct the statement syntax.

Correct the indicated source
program line.

Correct the definition or
reference. Refer to subsection
5.”.2.

Correct the KEYS statement.

Rename the field in error.

Restructure the RECORD and WORK
statements such that the total

number of fields does not exceed
1000

ERROR MESSAGE CAUSE POSSIBLE RECOVERY

SORT WITH NO The KEYS statement must Eliminate the SORT or insert a

SORT KEYS be included whenever KEYS statement.
SORT is specified.
NAME <field name> The referenced field Define the field name in a RECORD
NOT DEFINED name has not been de- or WORK statement or delete the
fined in a RECORD or reference to it.
WORK statement.
INVALID SUBSCRIPT The subscript exceeds Correct the subscript to conform
the WORK array dimen- to the array dimensions. Sub- .

sions, or is not a valid scripts may not be used with
number. It may be sub- scalar variables.

seripting a scalar ’
variable.

NAME <field name> The field name is not Insert a field name appropriate

INVALID valid in the context. to the context in which it is

For example, COND state- used.

ments require RECORD

names, numeric expres-

sions require numeric

field names, &<name>s

may only appear in TOTAL

statements, RECORD names “
may not appear in TOTAL ’
or START statements, etc.

LIMIT 30 &NAMES A maximum of 30 auto- Rewrite the TOTAL statement using
matic totals is allowed. no more than the maximum number
Count 1 for each total of &<numeric RECORD field name>s.
at each level.

INVALID LINE The line number must be Correct the line number.
NUMBER an integer from 1 to
2000.
OBJECT PROGRAM The space allocated for Scratch and rename the existing
SPACE EXCEEDED an object module <name>R module. Create a new,
(probably the report larger file with a DATASAVE DC

module, <name>R) is not OPEN <name>R, then recompile the
large enough to hold the source program.
generated program.

82

ERROR MESSAGE

INVALID SYNTAX

INVALID LINE
NUMBER REFERENCE

NO ROOM ON DISK
FOR OBJECT PRO-
GRAM <ob ject
module name>

LIMIT OF 39 COND
STATEMENTS
EXCEEDED

TOO MANY FIELDS
ON INPUT RECORD

UNRESOLVED
REFERENCE TO
LINE <number>

CAUSE

The print format may
have been mixed with
the substatement format
in one program line, or
the statement syntax

is incorrect in some
other respect.

A GOTO or GOSUB refer-
ences a line number
between 2000 and 8000.

The compiler is unable
to allocate enough space
for an object module on
the specified disk.

There may be a maximum
of 39 COND statement
lines.

An input record may
contain up to 55 fields
if the data file is
unblocked, or up to

38 fields if the data
file is blocked.

A GOTO or GOSUB state-
ment refers to a non-
existent line number,

or to a line number
outside the Print group
but not greater than
2000. If there are more
than 255 lines in the
Print group, it may only
mean that the capacity
of the compiler to check
line number references
is exceeded. If a GOSUB
refers to a subroutine
in another Print group,
the program has compiled
correctly but this error
message was nevertheless
generated.

83

POSSIBLE RECOVERY

Refer to the syntax rules con-
cerning punctuation and format.
Correct the statement line
accordingly.

Correct the GOTO or GOSUB refer-
ence (1 to 2000 or 8000 to 9999).

Store the object program on a
different disk or free up more
space on the currently used disk.
Remember that the source program
must be recompiled.

Restructure the program so that
the number of COND statements does
not exceed 39.

Restructure the data file and
rewrite the RECORD statements
involved.

Correct the GOTO or GOSUB refer-
ence if necessary.

ERROR MESSAGE CAUSE POSSIBLE RECOVERY

SORT KEY TOO LONG The total length of all Restructure the SORT keys in
fields specified as SORT the KEYS statement such that
keys may not exceed 64 they do not exceed 64 bytes.
bytes. Numeric fields
each count as 8 bytes.

Run Time

The messages below may appear on the CRT screen during the running of an
object program. If any RPL system error message other than these appears
consistently, be sure there has been no user modification of the object
program. If other SORT-3 error messages appear, hotify Wang Laboratories.
(Other System 2000 error messages may occur.)

ERR T2 Disk read error. Rerun the program. If the error
persists, the file may have to be
recreated from backup data. ‘

ERR 85 Disk write error. This Rerun the program. If the error
is also possible during persists, there may be physical
the SORT phase. damage to the disk containing the

SORT work file. Recreate the SORT
work file on another disk.

INVALID DEVICE The disk device address Enter a valid disk device address.
ADDRESS entered was not 310, B10,

350, 320, B20, 330, or

B30.
ERR 80 File not found. o Recheck the software configu-

ration.

STOP INPUT No END record was found Recheck the software configu-
INVALID on a Format 0 input file, ration.

or the input file is not
classified as a data
file in the disk catalog.
The system will not sort
this file as requested.

STOP WRONG The header record of a Rerun the program using the
INPUT FILE Format 1 (BAS-1) data correct input file, or modify
file does not contain the FILE statement to correct
the correct file name. either the file name or the format
number.

8l

ERROR MESSAGE

STOP ERROR
OPENING KFAM FILE

STOP KFAM
FINDFIRST ERROR

STOP INVALID
RECORD FORMAT

STOP NOT BLOCKED
AS SPECIFIED

STOP NO ROOM
TO SORT

STOP WORK SPACE
TOO SMALL

STOP INVALID
RECORD LAYOUT

CAUSE

An error was detected
in the KFAM OPEN
subroutine.

There are no records
in the input data file.
The system will not
sort this file as
requested.

The sample record being
examined (first record
of the input file) is
not in the proper format
for a data record. The
control bytes for the
data file are invalid
for use with RPL. The
system will not sort
this file as requested.

The sample block of
records being examined
does not have the same
number of records per
block as specified in
the BLOCK statement.
The system will not
sort this file as
requested.

The system will not
sort very large records
(or blocks of records)
if there is not enough
work space in main
(user) memory.

The
too

SORT work file is
small.
The record layout is not

the same as specified in
the RECORD statements.

This error message may
occur during sorting.

85

POSSIBLE RECOVERY

Create a larger work file.

Rerun the program. If the error
persists, check the key file
number specified in the INDEX
statement.

Recheck the software configu-
ration.

Be sure that the format specified
in the FILE statement is correct.
This error message could mean the
data file is damaged, in which
case it must be recreated from
backup. It could also signify
that the data file was written in
BA mode, and hence cannot be used
with RPL. Refer to Chapter M.

Correct the BLOCK statement and
be sure array-type blocking is
used.

Set the memory size larger and/or
use a System 2200 with more mem-
ory. Redefining the data file may
help. Refer to Chapter 3.

Refer
to subsection 5.4.3.

Correct the RPL RECORD statements,
recompile, and rerun. This error
arises frequently during sorting
due to fields at the end of the
data record being omitted in the
RECORD statements. If the object
program runs without the SORT
statement, this is definitely the
case.

ERROR MESSAGE

STOP NO RECORDS

ERR 01

ERR 43

ERR 20

ERR 22

System hangs

CAUSE

There are no records to
be sorted.

Memory capacity exceeded.

Input records or blocks
of records do not all
have an identical format.
The system will not sort
this file.

Character data is not in
the proper form for a
CONVERT or an UNPACK
substatement.

An array subscript is
out of bounds. See the
Object Program Variable
Listing to identify the
variables.

The printer is not turn-

ed on or not manually
selected.

86

POSSIBLE RECOVERY

Be sure the data file contains
valid data. If it does, the ap-
pearance of this error message may
signify that the COND statements
exclude all of the data file

records.

Correct the main memory size.

Refer to Chapter 3.

Correct the data file format.

Correct the input data or process

it as a character string.

Correct the source program (or, if
applicable, the BASIC subroutine).

Turn on the printer, make sure it
is supplied with paper suffi-
ciently wide for the report, and

press the SELECT button.

To help us to provide you with the best manuals possible, please make your comments and suggestions
concerning this publication on the form below. Then detach, fold, tape closed and mail to us. All
comments and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to
include your name and address. Your cooperation is appreciated.

]
)
)
1
{
]
]
]
]
]
]
1
]
:
! 700-3766C
I
|
]
i TITLEOF MANUAL REPORT PROGRAM LANGUAGE (RPL) USER MANUAL
]
]
]
I COMMENTS:
|
1
1
]
]
]
I
]
! Fold
]
]
[}
]
]
t
|
1
]
]
]
]
1
]
1
|
]
]
]
]
1
]
|
|
|
]
]
]
]
t
I
]
]
]
]
Fold

(Please tape, Postal regulations prohibit the use of staples.)

(WANG)

Fold

FIRST CLASS
PERMIT NO. 16
Lowell, Mass.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Cut along dotted line.

— POSTAGE WILL BE PAID BY —

J

WANG LABORATORIES, INC.
ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851

Attention: Technical Writing Degnmem

Fold

Printed in U.S.A.
13-1019

]
|
|
I
}
|
|
1
1
I
I
}
]
I
1
I
[}
!
1
|
1
|
1
1
[}
1
1
1
)
]
|
|
|
|
]
|

‘.

s

»
o
. -r
4

- North America:
,

Alabama District of Louisiana New Hampshire
Birmingham *Columbia Baton Rouge East Derry
Mobile Washington Metaire Manchester
New Jerse
Alaska Florida Maryland i ¥
Anchorayge Jacksonville Rockville
Miami Towson Mountainside
Arizona Orlando New Mexico
Phoemix Tampa Massachusetts Albuquerque
Tucson Boston
Georgia Burljngton New York
o Atlanta Littleton Albany
California - Lowell Buffalo
Fresnu : Hawaii Tewksbury Lake Success
Inglewoud = = Honolulu % Worcester New York City
Los Angeles Y Rochester
2augornen|o ::Ill_nms Michigan Syracuse
an Diego hicago Grand Rapids 5
San Franciswo Morton Ckamas g North Carolina
San Mateo Park Ridge Southfield Charlotte
Sunnyvale Rock Island Greensboro
Tusun Indiana Minnesota Raleigh
Ventur .
nluta Fidisnanol Eden Prairie tho
Colorado South Bend Missouri Cincinnati
Denver Creve Coeur Cokimixk .
Kansas Middleburg Heights
Connecticut \?\;‘i::i;d Park g::;:ska Toledo
New Haven Oklahoma
Stamford Kentucky Nevada Oklahoma City
Wetherstiela Louisville Reno Tulsa

Oregon
Beaverton
Eugene

Pennsylvania
Allentown
Camp Hill

Erie

Philadelphia
Pittsburgh
Wayne

Rhode Island
Cranston

South Carelina
Charleston
Columbia

Tennessee
Chattanooga
Knoxville
Memphis
Nashville

Texas
Austin
Dallas
Houston
San Antonio

Utah
Salt Lake City

\%

Virginia
Newport News
Richmond

Washington
Seattle
Spokane

Wisconsin
Brookfield
Madison
Milwaukee

Canada

Wang Laboratories
(Canada) Ltd.

Don Mills, Ontario

Calgary, Alberta

Edmonton, Alberta

Winnipeg, Manitoba

Ottawa, Ontario

Montreal, Quebec

Burnaby, B.C.

International Subsidiaries:

Australia
Wang Computer Pty. Lid.
Sydney. NSW
Melbourne, Vic.
Canberra, A:C.T.
Brisbane, Qid.
Adelaide, S.A.
Perth, W.A.

" Darwin, N.T.

Austria

Wang Gesellschaft M.B.H.
Vlenndr 33

Belgium

Wang Europe, S.A.
Brussels

Erpe-Mere

Brazil

Wang do Brasil
Computadores Lida.

Rio de Janeiro

Sao Paulo

China
Wang Industnial Co., Ltd.
Taper. Taiwan

France -

. Wang France S.A.R.L.
Bagnolet
AT

- Nantes =~ o
Toulouse

(WANG)

- e

Great Britain

Wang Electronics Ltd.
Northwood Hills, Middlesex
Northwood, Middlesex
Harrogate, Yorkshire
Glasgow, Scotland
Uxbridge, Middlesex

Hong Kong
Wang Pacific Ltd.
Hong Kong

NET 1
Wang Computer Ltd.
Tokyo

Netherlands
Wang Nederland B.V.
ljsselstein

New Zealand
Wang Computer Ltd.
Grey Lynn, Auckland

Panama

Wang de Panama
(CPEC) S.A.

Panama

Republic of Singapore
Wanch;mputer Pte.. Ltd.
Singapore

LABORATORIES,

Republic of South Africa
Wang Computers

{South Africa) (Pty.) Ltd.
Bordeaux, Transvaal
Durban
Capetown

Sweden

Wang Skandinaviska AB
Solna

Gothenburg

Arloev

Vasteras

Switzerland
Wang S.A./A.G.
Zurich

Bern

Pully

West Germany

Wang Laboratories GmbH
Berlin

Cologne

Duesseldorf

Fellbach

Frankfurt/M.

* Freiburg/Brsg.

Hamburg
Hannover
Kassel
Munich
Nuernberg
Stuttgart

INC.

International Représentatives:

Argentina
Bolivia
Canary Islands
Chile
Colombia
Costa Rica
Cyprus
Denmark
Dominican Republic
Ecuador
Finland
Ghana
Greece
Guatemala
Iceland
India
Indonesia
Iran
Ireland
Israel

Italy
NETETE]
NELED]
Jordan

Kenya
Korea
Lebanon
Liberia
Malaysia
Mexico
Morocco
Nicaragua
Nigeria
Norway
Pakistan
Peru
Philippines
Portugal
Saudi Arabia
Spain

Sri Lanka
Syria
Thailand
Tunisia
Turkey
United Arab Emirates
Venezuela
Yugoslavia

S

o

it

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851, TEL. (617) 851-4111, TWX 710 343-6769. TELEX 94.7421

Price: see

o .

Printed in U.S.A.

700-3766C
10-79-1M
current list

