(WANG) wasmaronis .

2200 MVP COMPUTER ARCHITECTURE

Author: Bruce M.,ﬁatterson

November 30, ;979

. .
T o

e ¢

System Architecture

o

Wang 2200 computer systems employ a direction executit’
high-level-language (H_..) architecture. With direct execution HL
systems the HLL 1is effectively the machine language of the computer.
Unlike more conventional architectures where the source code 1is
transformed into a distinct object code before processing, the direct
execution system processes the source code directly.

The direct execution system provides a number of advantages over more
traditional architectures, not the 1least of which 1is 1its conceptual
simplicity. The more conventional 1layers of software including
assemblers, linkage editors, compilers, and loaders are eliminated. The
inherent conversational nature of the system facilitates programming and
debugging. The debug run and execution run are identical. = Error
messages can easily include a 1listing of the actual source code.
Program execution can be halted, single stepped, and restarted. Since
there is no compilation phase, the system responds immediately to
program entries and modifications. Programmers can understand the
language semantics by observing the direct response of the system.

The 2200 provides the user with a single HLL, BASIC-2, which is used for
all programming. . Proficiency in system use is easily achieved since
there is only one language to learn. A fundamental design criteriom in

" the development of . BASIC-2 was to provide a self-sufficient language

' that would be as flexible as conventional general purpose computer
instruction sets. I/0 and data handling language extensions provide t.
user with flexibility not usually found in a high-level-language.

The 2200 is not a pure direct execution machine since the source code is
preprocessed into a form more memory conservative and more efficiently
interpreted. However, source and object differences are such that the
preprocessor transformation is nearly completely reversible. As a
.result, only the condensed code 1is stored in the machine. The

- ° 'preprocessing function =2liminates gross inefficiencies in wmemory,
*" ‘timing, and logic requirements.

2200 Hardwate

2200 computers comsist of a microprogrammed MSI processor coupled with a
number of special purpose LSI I/0 processors and controllers. The 0S8
and language interpreter reside in a large control storage memory which
is independent from user data memory; this wmicroprogram directs the

. execution of the CPU and coordinates communication with the 1I/0

- processors. The independent I/0 processors permit the overlap of the
CPU and I/0 processing. The CPU is relieved of the responsibility for
controlling peripherals that would otherwise require "frequent or
dedicated CPU attentiom.

./

~

! CONTROL ! ! ! ! DATA !
! STORAGE ! ! . CPU ! ! MEMORY !
! MEMORY ! ! ! ! !

! rot R ol !

! TPU ! ! DPU ' TC t !t 1/0 !
! 1o toy ! ICONTROLLER!
T 1 1 1 [1 1
S | ! ! l
Pt) | 1
s & & o - » [
! ! !)
! ! e !
T T v/t T z
! TERMINAL! ! ! DEVICE!
!

! ! ! !

Figure 1 2200 Systeﬁ Block Diagram

The 2200 CPU is a pseudd 16-bit processor using a 3-bus architecture for

interconnecting a bank of general purpose, status, and I/0 8-bit
registers and the ALU. A microinstruction can address these registers
as double, single, or half registers for performing 16, 8 or 4-bit
operations. in addition, a bank of 16-bit registers that can be
exchanged with the data memory address pointer provides quick access to
major system pointers. The extensive microinstruction set consisting of
24-bit words provides decimal and binary arithematic, logical
operations, and a wide variety of conditional branching instructioms.

In a single CPU cycle,” a 24-bit microinstruction can be fetched, l6-bits
of data memory can be fetched, and a 16-bit operation can be performed.
The wide memory path, 600 nsec. cycle time, and rich microinstruction
set provides a hnighly effective processor for implementing . direct
execution languages. : ‘

User programs and system controllers are kept in data memory, of which
256K can be installed. Since the CPU's address space is limited to 64K,
however, data memory is divided into 64K banks. 1In order to provide the
microprogram with access to control tables without switching memory
banks, the lower 8K of the address space always refers to bank 1. The
lower 8K of‘'banks 2, 3, and 4 is not used. ' .

MVP Operating System

The 2200 MVP nultiprogramming operating system allows several users to.
share a single computer effectively. To accomplish this, the operating
system divides the resources of the computer -- memory, peripherals, and
CPU time, =-- among the users. Once each user has been allocated a share

of the computer resources, the operating system acts as a monitor,
allowing each user to utilize the system in turn while preventing the
various users from interfering with each other's computations.

The MVP employs a fixed partition memory scheme. User memory is divided
into a number of sections or '"partitions'", each of which can store a
separate program. From the wuser's point of view, each partition
functions independently from the other partitions in the system. Each
user may LOAD and RUN BASIC software, compose a program, or perform
Immediate Mode operations. As in a single-user environment, the user
has complete control over his or her partition. No user on the system
‘may halt execution in, or change the program text of, a partition
controlled by another user. :

Each terminal may control several partitions executing independent
jobs. At any given time, however, only one of these partitions is in
control of the terminal and thus capable of interacting with the
operator. The partition in control of the terminal is said to be in the
"foreground." Other partitions assigned to the terminal may continue to
execute in the 'background" wuntil operator intervention becomes
necessary.

Although partitions in general function independently of omne another,
there are situations in which it is useful for two or more partitions to
cooperate. Cooperating partitions may share program text and/or data.
The sharing of commonly used programs and data by several partitioms
eliminates needless duplication and produces more efficient use of
available memory. The integrity and independence of a partition which
contains shared programs or data are maintained by recuiring the
partition to explicitly declare itself to be global (sharable) before it
can be accessed by other partitions. Correspondingly, a partition
wishing to access shared text or data in a global partition must
identify the desired global partition. ’

! CONTROL ! : '

' ! STORAGE !
’ 1

! LOADER

! T '

! ! DIAGNOSTICS !
1 1 ’ 1

|]
! SYSTEM !
! CONFIGURATOR!
1
!
!
TASK SCHEDULER

']
! PRIORITY !
! ANALYSIS !
1
1
: T] :
TPOLL FOR ! 1POLL FOR !
' 1/0 ! ! 1/0 !
ICOMPLETION! !ACTIVITY !
= !
1
!
TSET CONTROL!
' PARAMETERS !
!TO ACTIVE !
IPARTITION !

Gmt g Bm pmm S ges SmD fmd P G G Gl Vw Ot F=® Py =t pemp Seum o)

!

!
! ! ! !
! LANGUAGE ! ! 1/0 !

! PROCESSOR ! ! DRIVERS !
' !

S8 tmb e sms Pt sew e Gy Gmh o FmE qmp O=W gm Cww Gme PTD emp S fmp SO smp SmE mp = omp OO ms s

Figure 2 Block Diagram of 2200 MVP OS

To the programmer who regards the MVP system as a whole, it appears that
all partitions are executing simultaneously. Because all partitions
share a single CPU, however, only one partition can be executing at any

‘ given moment. The operating system creates the illusion of simultaneous
B ' execution of several programs by rapidly switching from one to the other
in turn.
5

Partitions in the 2200 MVP are serviced by the CPU in a "round-robin"
fashion, with priority given to 1/0 operations. Each partition in turn
is given a '"timeslice" >, milliseconds (ms) in duration. The CPU has a

30 ms timer which is set at the beginning of the timeslice; at the ’
completion of each BASIC statement (and at various points in the middle

of long statements and I/0 operations), the clock is checked to sece
whether the 30 ms timeslice has been exhausted. When a partition's
timeslice: has expired, the operating system saves the status of that
partition so that it may be restored later when that partition's turn
comes around again. The operating system then loads the status of the
next partition in line and begins its 30 ms timeslice. The process of
halting execution of a partition at the end of its timeslice is called a
"breakpoint".

Timeslices do not always last exactly 30 ms. ©Unlike many operating
systems, the MVP switches users (breakpoints) whenever it is convenient
rather than strictly by the clock. This technique reduces the amount of
'status information that must be saved, giving the MVP low operating
system overhead when compared with wmost other multiuser systems. More
importantly, Dbreakpoints may occur 1in the middle of BASIC 1I/0
statements. If, for instance, the current partition attempts a disk
access and the disk is hogged by another partition, this condition is
quickly detected and a breakpoint occurs. I1/0 breakpoints differ from
program breakpoints in that the partition is specifically marked as
"waiting for I/0". When the partition's turn comes around again, the
system takes only a few microseconds to decide whether processing may
proceed or whether the partition is still waiting for the I/0 device and
may be bypassed. Thus, if a printer goes "busy" while it performs some
mechanical function or if a partition that does not currently control
the terminal attempts to write to the CRT, the system byvpasses that
partition almost as effectively as if it were removed entirely from the
system until the I/0 device becomes available.

G

’ (—V\IAN G) LABORATORIES, INC.

MEMORANDUM
TO: 2600 Distribution
FROM: F, Vine, B, Patterson
DATE: August 27, 1975, Revised Septecber 12, 1975

§UBJECT: Revisions to 2600 Hardware Structure

This memo describes changes, as understood by 2600 microcoding groups, to the
2600 CPU specifications described in the docuwent "2600 Calculator Structure"
dated December 6, 1974, Revised February 14, 1975, Additional specifications
are also provided, Updated pages for the specifications document are included.
If any specifications are incorrect, please provide corrected specification
ACSOA.P. ’

1. Deletion of binary add (A) instructionm
The register instruction binary add (A) has been eliminated £rom the
micro~instruction repertoire. The binary add with carry (AC) dimstruction
suffices since carry can be set off at the beginning of the imnstruction.
Note, that the AI and ACI instructions have not been elirminated.

2. Addition of binary subtract with carry (SC) instruction

The register imstruction binary subtract with carry (SC) replaces the A
instruction.

3. VWrite control memory (SR, WCM) instruction

The SR, WCM dinstruction requires that the high 8-bits of the irstruction
being written (K register) be complemented; PH, PL remain as originally
specified (true, uncomplemented).

The data read by a SR, RCM instruction is true in K, PH, and PL.
4, Write to data memory on an extended register instruction
In an extended register operation with write to data memory specified, the

high order byte of the result is written (i.e., the result of the 2nd half
of the operation).

5.

6.

7.

8.

Instruction timings

The cycle time is 600 nanoseconds for all instructions except for the ’
following 3 that execute in 800 nanoseconds:

BLERX
BLRX
SR

and the following 2 instructionms that execute in 1,6 microseconds, ‘
sk, Rt gud e /eé(mivy rndi Loim rtHOT Lpfoeitoa i
SR, WM/ /Wfﬁé L7

Trap addresses (located in PROM/ROM bootstrap area)

8000 == PECM (parity error in control memory)
8001 — RESET

8002 — PEDM (parity error in data memory)
8003 — POWER ON ’

8004 — 800F (spares) l
load PC's immediate instruction extention

Write to data memory (W1, W2) are legal om LPI inétructions; however, the .
data written is always zero since there are no extra bits available to
specify what 4is to be written., In previous specifications write was
illegal on LPI instructioms.
Parity specifications

Page 14 describes instruction and data parity and parity errors.

(\VAN G) LABORATORIES, INC.

TO:

FROM:

N

DATE:

MEMORANDUZ

2600 FILE
Bruce Patterson

December 6, 1974, Revised February 14, 1975, Revised Sept. 12, 1975

SUBJECT: 2600 Calculator Structure

The following memo describes the 2600 structure as of December 1, 1974, 1/0
specification will be described in another docunment. The following 1list
summarizes the major changes to the specifications presented in the mero "2600
Calculator Structure' dated October 11, 1974:

1,

Due to timing considerations, instructions that reference data pemory will
use the contents of PH and PL at the beginning of the instruction as the
pemory address. Previously, the contents of PH and PL at the end of the
instructions were to be used. The LPI instruction is the only exception
to the rule; if an LPI instruction specifies a read or write, the ' new
contents of PH and PL will be used as the memory address.

The codes for the Mini Instructions and SHFT dinstruction have been
slightly changed for easier decoding.

The instructions that Read and Write control memory (RCM, WCM) have been
replaced by 2 new instructions (SR,.RCH and SR, WCM).

Note, that the SEFT instruction has been modified so that either the high or low
4-bits of both the A and B BUS registers can be specified, Also, A-BUS
specification of PC incrementing and decrementing 4is disabled during extended
operations.

(W ANG) LABORATORIES, INC.
 MEMORANDUY .

TO: 2600 File
FROM: Norman Lourie, Bob Kolk, Bruce Patterson
DATE: October 11, 1974, REVISED December 5, 1974 REVISED February 14, 1975,

S REVISED September 12, 1975
SUBJECT: 2600 Calculator Structure

This memo will specify in detail the register structure, instruction set and
pmemory referencing structure for a 24-bit micro-programmed processor which is
planned for the 2600. Although maintaining the A, B, C bus structure of the 800
micro-processor, it has a number of features wvhich will significantly improve
speed, code efficiency, and capacity.

A. Register Structure

Figure 1 illustrates the tentative register structure for the processor.

The processor will contain 15 8-bit registers which can be read and/or
written by micro-program instructions, an arithmetic logic unit and
registers for holding the current 24-bit micro-program imstruction and
16-bit address, and 32 16-bit auxiliary registers which back up the Data
Memory Program Counter. In addition, an 8-bit dummy register exists, the
durmy register cannot hold data; its value is always zero. Also, a 9% l

level subroutine stack is provided to allow efficient subroutine calling.

2836 NORTH STREET, TEWKSBURY, MASSACHUSETTS 01876 * TEL. (617) 8514111 * TWX 710-343-6769 * TELEX $4-7421

LIg-91 AUOWIN V.LVO _Mif o | Y ~__ ‘A

(°1d . hvu 118-8 N:A 4
Yitm s,04)D (s.,2d)D
v \
19 10 . ssmiaav
16 0ULS viva Py g L
INd1no LI4-9T

I cm—

¢ ALIUM/T ALIUM

bl 1Y +
..,..:,_-inl_cU\ % u 1
_ ..,..__,_-:;w ._ uw ,_

4 v S
L:4-0d A Td Id 15 1S
n'wv = . :
|,|/|||L\| = y A& \ N A

8-BIT WRITE TO RAM FROM C-BUS

A .
A
£z 1%
JA0ULS A 4
\4 \ LOdNI SUILSIOTY
) Xnv
zs A e “NAY ‘O
! = ‘aax ‘l11vH
v sna-d — ;
N
“TOUINOD DI9OT INIWIL AMOWAN
Sramyy | ‘uzgooza [T0uIN®
AULISTOH NOIJOMUISNI L19-v2

$

NOVLS SSHuaav
(4aINNOD - NUNITY
NOIILONYISNL) (4—P IN1.1N0YENS
! S JI 1 TIAHT 96

=
—F

TUNLDC YILSIVAY 009Z [JunOI:d

(] . ® o @

(1) SH - Status Register High

An 8-bit register used to sense or set various arithemtic, 1/0, and

keyboard status conditions. It has the following assignments:

| op | PE| BALT RB| KFN| CRB | Ca
7 6 5 4 3 2 1 0
A A A A A A A

L CARRY (BIT 0) (H/M)

0 = NO CARRY
1 = CARRY

CRB (BIT 1) (B/M) (ALIAS KED)
0 = ALLOW INPUT FROM KBD
OR SELECTED DEVICE
(1.E., CPU IS READY)
1 = INHIBIT ALL INPUT FROM
DEVICES (I.E., CPU BUSY)

KFN (BIT 2) (H/M)
SET TO 1 WHEN INPUT RECEIVED
FROM KBD IS SPECIAL FUNCTION
CODE. IT IS A 9TH DATA BIT
FOR INPUT.

RB (BIT 3) <(H) ‘
0 = DEVICE NOT ENABLED OR BUSY
1 = DEVICE ENABLED OR READY
~SPARE-~ (BIT &)

HALT (BIT S5) (H/M) .

SET TO 1 WHEN HALT/STEP PRESSED
ON KBD

PARITY (BIT 6) (H/M)
SET TO 1 WHEN A PARITY ERROR
OCCURS ON COKTROL OR DATA
MEMORY

DPRTY (BIT 7) (M) |
0 = TRAP IF PARITY ERROR
1 = DO NOT TRAP IF PARITY ERROR

NOTE: (M) = Set by microprogram only.

(H)
(4/H)

Set by hardware only (D, C. level).,
Set by microprogram or hardware,

‘ '

(3)

(4)

(5)

(6)

SL - Status Register Low

An 3-bit status register used by the nmicro~program to indicate phase
of processing, mode, and other conditions. This register is set
only by the micro-progran.

PH, PL - Data Memorv Propran Counters (PC's)

These 2 registers are used to hold the 16-bit current address of
data words which are read from and written into Data ifemory or
Control Memory.

Data memory reads and writes are specified in the register
instructions by use of the DD bits., For writes, 8-bit data is
written from the C-bus to the Data menory location specified by the
initial contents of the PC registers. For reads, l6-bits of data

‘are read into the CH and CL registers. The details of remory

addressing are described in a later section.

The PC's are also used for reading and writing the low 16-bits of a
24-bit instruction in control memory.

K = Keyboard Input and I/0 Registers

This 8-bit register is used to receive keyboard input and to receive
and send data to and fron other I/0 devices. The K register is also
used to read or write data to Control llemory.

FO - F7 = File Registers

These eight 8bit registers are general purpose registers which will
be used to perform arithmetic computations and related calculator
processing. The file registers can be both source and object
registers for any of the register transfer micro inmstructions.

ALU - Arithmetic Logic Unit (5-bit path)

This unit is used to perform the addition, subtraction, and Doolean
functions specified by the micro-program instructions.

Eight-bit data paths are input from the A and B bus and output to
the C-bus. For add 4nstructions, a carry bit is also transferred
between the ALU and status register bit SHy, if specified.

(7

(8)

(9)

AUX 0 = 1F = Auxiliary PC Save Registers

There are up to 32 16-bit registers which are used to temporarily
save and restore the contents to the Data memory progran counters
(PH, PL). Sixteen bit transfers of PC's - AUX and AUX = PC's and a
sixteen bit exchange are provided. These operations are extremely
useful vhen Data {s being moved, or when two sets of data are being
operated on at the same time, When the address is transferred (or
exchanged) to the Auxiliary registers, a 16-bit incrementing or
decrementing of + 1, + 2, or + 3 can be specified on the data
received by the auxiliary register by certain nini-instructions,

The AUX registers are selected by the five Ax bits of the
nini-instructions which specify the transfers and exchange.

CH, CL - Data Memory Read Buffers

These two 8-bit registers are used to receive the 1l6~bits of data
read from data memory. CH will always receive the 8-bits of data
from RAM that is exactly specified by the 16-bit address in PH, PL,
CL will receive the 8-bit word located at the address specified in
PH, PL but with the low order bit of the address complemented.
({.e., the address in PC's + 1).

ICl, IC2, IC3, IC4 = Instruction Program Counter

The four 4-bit registers contain the current micro-program
instruction address. Although these registers are not addressable
by register instructions, they are reset by Branch, Subroutine
Branch and Subroutine Return Instructions. A 96 level circular
subroutine address save stack is available to save and restore the
IC register. In addition, commands are available to transfer the PC
registers (Data Memory program counter) to and from the stack.

’

\

B.

femory Addressing Structure

The processor can be considered to nave twvo separzte menories:

(1)

(@)

Control Memory (24-bit RAM

' This IAY memory contains up to 64K of 24-bit words, It holds the

nicro-instructions. Instructions fetched anc executed under control
of the Instruction Program Counter, (I1C1, IC2, IC3, 1C4), which is
indexed for sequential dinstruction e>ecution and reset for branch,
subroutine branch and return micro instructions.

Control Memory is available in increments of 41X words, up to 64X

words., Since only 10 bits are referenced by some branch
instructions, instruction menmory can be thought of as paged memory .

" with 1024 24-bit words per page for these instructions and an
in-page jump is performed. Other instructioms allow full 16-bit

(64K) transfers.
Data Memory (8/16-Bit RAM)

Data Memory is the menory which is ‘read and written by the micro
instruction. Up to 64K of 8-bit RAM (Random Access !lenoory) can be
addressed.

The memory is addressed by the Data pemory program counters (pH,
PL). The program counter contains a 16-bit address which addresses
a location in RAM.

Reads and writes are done by having non-zero data in the DD bits of
register instructions. (00 = no read or write, 01 = read, 10 =
write 1, 11 = write 2). For a read, 1l6-bits are read from Data
memory. CH receives the 8-bits of data specified by the address in
the PC's. CL receives the 8bit word located at the address in the
PC's but with the low order bit of the address (PLy) cocplemented
(i.e., the address in PC's +1).

For a write 1, 8-hits are written from the C-Bus (final result of a
register instruction) to the address specifiied by the initial
contents of the PC's. For a write 2, 8-bits are written £ron the
C-Bus to the address in the PC's but with the 1low order bit of the
address complemented. (i.e., the address is PC's + 1).

De

2600 LLSTHLCTION SIT

=71-

232 2) 20019 34 37 16 35 32131211309 8 7 6 5 & 3 7 1
Q 1. NNCISTLR 1:5TRUCTIOVNS oscohi. Wl :Carr\' h -=LLS A=-ELS t heliw
. . or - or 0000 g';-:foic.-.c.n n»;CCCAAAA&‘a
_ . ¥R = Exelucive Or 0 0 016 1 =, ,0(Catad BIC C C CJla A & A}
i e - And i@ 0 031 D X104 CacCad LIC € C Cla A A &% 5
. sc = Dinary Subtract vith Cerry 0 0 0311 1 !0jCacCaD DIC €C C Cla A A AL 8 B
1A = Deedmal add with Catry 0 0 1loc »lofcacan njc € cclaaa alp o
' Jcded = Deels:al Subtract with Carry 0 0 110 2 xi0o|Cacad DJC €C C Cla A Ao & 3 B o
AC ~ ZIinary Add with Carry €0 1;1 6 X}0 . Cafal DIJC C C ClA A A AB B B
H ~ Binary lultiply 0 0 14y 3 mcolwTas pjc € € cfa A A alr B o2
SUFT - Shift 0 0 g vy Fa % 'O0}C I h DIC €C C €A A A AlB 3 3
[] 3
f, 11, I2:XDIATE REGISTIR IUSTRLCTIONS ¢ orcopi. I.".‘S‘.l‘:.:‘.?: bhon C=Dus IM2DIATE B-2US
] i) | (L0)
ORI = Or lomediste lo 1 010 0.1 111 1 !D DIC C C CJT 1T 1 18 2 »
. X0Rl «~ Ixclusive Or lmmediate ;0 1 0i0 1 1 I§1 I4D BJC C C C{I I 1 12 B B
. ARDl = And Immediate 1 011 0.1 i1 1 fD DiC € C Cl1t 1 1 12 »
* Al « Binary Add Icmediate !0 1 01 1 '1 1i1 1 'D Djc Cc C CciT 1T 1 11p B &
M -DACI = Decimal Add vith Carry Immeddiate 0 1 1]0 0 I Ij1 1 !D DiC C C C|t 1 1 12 3 B
VG ° " DSCI = Decical Subtract with Carry Irmed.0 1 10 1 :2 11 1 o Djc € C €t 1 1 1B B B
ACl = Binery Add with Carry Irmediate 0 1 111 O :J_,_L_I_L?D DJ|C C C C|T 1 1T 1|2 B B
N1 = Pinary Hultiply lonediate 0 1 1411 oOol-4ie=-'D DjC €C € C|T I I 12 3 »
] I1I. HINI LISTRUCTIONS i QPCODE . D D B=5US
Io oot oo 1|1 | |
TAP = Transfer Aux to PC's 0 0 01 0 1 1)1 ~-ND D0 = <« [AX|AX Ax AX AN|S B B
. IPA = TIransfer PC's to Ax 0 0j0 0 O 1f1 +|D D0 In InAx|AXx AXx Ax AX|D B B
’ XPA = Exchange PC's to Aux 0 010 0 1 1}1 +jb VO In InfAxiAx Ax Ax Ax|B B E
' %PS = Transfer PC's to Stack -0 0]01 O 1f1 +#1{D DO InInlejf~ = =« - ID B B
-t TSP = Transfer Stack to PC's 0 0L 1 0 1]1 =D Dje =« =« ale = « <] 3 3
\.’ SR, RCHY ~ Read Control licmory + SR 0 0j0 1 1 1|1 == «10 1 l]=|e = = =fe = =
: SR, W& = Vrite Control llemory + SR 0 00 1 1 11 == =0 1 Of=jje = « aleo = =
. H SR « Snbroutina Return 0 010 1 1 1j1 «|D D[0 0 = == =« « «|B B 3
- 1 CI0 = Contrel Inpuz/Output 0 1]0 1 12 1{1 =0 OfS{T T TIT T T T |= - =
: oofo 11 11
. 0 01 1 1 111
LPI = 1load PC's Icaetiate o Yfaft Tiafr 1ip P{T T T 71T 1 T 1
. ; _ -
1V, YuSK DRANCH INSTRUCTIONS orcont | TACH FILLD 1UASK
: ! (1o 10-Nitk)
BT « Branch i{ True . 11 0]}0 Hb!R RIDR R RIR R R RIM M M MIB B B
' BF « Branch 1f Faire . 11 0§11 lh:?. RJR R R RJR PR R RIM H K MIB B B
i BEQ = 3Brapch if = lask 1 1140 ﬂb;?. RIR R R R{R R R R ¥ M X|p 2 B
i EXT = Pranch 4f ¥ Mask 11 11itiv's RIR R P RIR R R RJu_¥» ¥ nis 3 »
L. g V. RIGISTER BAMNCH 1u5ITUCTICHS | arco rE | i eP A w i} FIZLE A-BLS B~-BUS
y i .) ! (10w 10-Nits)
[] . .
' BL® . = Brazoch if < Register looongRRR-RRRRRnAAAABBB
. LER e« DBrzach if <= Resister 1 0 011X % RIR R TN RIRTR R RIA A A AlB B B
BER « 3ranch if = zister 1 0 130 0 R R{R R R R{R R R RJ|a A A AjD B B
BUR = BFranch 1f f Reyister 1 0 1 !l 0 % RIL R S RIR R R RIA A A AIB B8 B
V1, BRACH INSTRUCTIONS crcons P _UTANCH FICLD (Low 10=-34ts) | ({ph 6-Lich) H
. S3 = Subroutine Dranch 1 01 !0 1 !R R{R R R RJR R R R|R R R RIR Rrl-
- 3 = Inconditi{nnal braach ‘10 1 ’l 1 ‘" RIR R R R§R R R RIR R R RIR R|=
kEY .
AMAIA: A-BUS Register Address AxAxidixAxs Adress of auxiliary repister
BDBB: D-BUS Register Address #* In In: Increment/decrenment specification
* CCCC: C-BUS Register Address V00 = Irc's
. LY: Read/VWrite Speeificacion 001 = re's+ 2
00 = no rcad/write ©.010 = PC's +2
01 = read " 011 =~ PC's+)
‘30 = write 1 100 = PC'e
1l = write 2 101 = rC's -1
. Hb, Ha: MNigh/low &lits of register 110 = rc's -2
. 0 = low &bits 111 = PC's =3
1 = high &=bits Cala: Sct earry (SHp) mpeciffcation
11...1t Dwediate operand 00 = do not set carry .
G o IBDPIT Nawk 10 = get carry to 0 .
‘ 11 = get carry te ‘
X: Frtondod operation if X =)
TR. .okt Branch aldreas
. . §2 Set 10 {1lip=-Clops If S = 1
TTIOTT: Strube spueeification
* . ° «t LiL frunred (0 or 1 legal)

2.

DD - Data llemory Nead and Write Selection Bits

DD = 00 Rull (No read or write)

DD = 01 Read; 16 bits read fron merory into CH, CL

where C(PC's) -~ CH
C(PC's with PL,) —+ CL
DD =10 Write l; 8~bit write to memory
C-BUS =+ C(PC's)
DD =11 Write 2; 8-bit switched write into memory
. C-BUS =+ C(PC's with PL)

A, B, and C-Bus Register Addressing
A-BUS B~-BUS C-LUS BINARY ADDRLSS

File registers (FO ~ F7) FO-F7 FO-F7 0000 - 0111

CL with PC's = PC's = 1 PL PL : 1000

CH with PC's = PC's = 1 PH PH 1001

CL CL illegal 1010

CH CH illegal 1011

CL with PC's = PC's + 1 SL SL 1100

CH with PC's = PC's + 1 si SH. 1101

Dummy with PC's = PC's + 1 K K 1110

Dumny with PC's = PC's = 1 Durmy Dumzy 1111

1. The B-BUS and C-BUS registers are identical except that CL and
CH are illegal on the C-BUS.

2, The A-BUS field can specify that the PC address bits be
incremented or decrermented by 1 at the completion of the
instruction.

3. When the D D bits specify a read or write and the A-BUS field
specifies a PCl = PCl+ 1, the read or write is executed
before the PC's are increnented or decrenmented.

4, For mini commands with write selected, the B-DUS register will
be written (before PC $ are incremented or decremented, if
applicable).

5. The "contents" of the dummy register is always zero.

3. X - LCxtended Operation Bit

:> llormally, a register i.struction perforns an 8-bit operation on the
specified A-BUS and B-BUS registers and puts the result in the C-BUS
register. A BLR (branch less than) or BLER (tranch less than or
equal) instruction compares two 8-bit registers and branches if the
relation is true. In these cases, the extended operation bit is not
set (i.e., X = 0).

If the extended operation bit is set (i.e., X = 1), a register
instruction performs a 16-bit operation on a pair of A-DUS registers
with a pair of B-BUS registers and puts the result in a pair of C-BUS
registers. A BLR (branch less than) or BLER (branch less than or

- equal) instruction compares a pair of A-BUS registers with a pair of
B-BUS registers and branches if the relation is true.

For extended operations, the register pair is treated as a single
16-bit register. The registers used are determined as follows. The
low half of the pair is the register vhose address is specified in
the instruction. The high half of the pair 1s the register whose
address is one more than the address specified.

EXTENDED OPERATION REGISTER PAIRS

A-BUS B-BUS C-BUS BINARY ADDRES"I

F1, FO F1, FO Fl, FO 0000 ‘
F2, F1 F2, F1 F2, F1 0001
F3, F2 F3, F2 F3, F2 0010
F4, F3 F4, F3 F4, F3 0011
FS, F4 F5, F4 P5, F4 0100
F6, F5 F6, F5 Fé6, F5 . 0101
F7, F6 F7, F6 F7, F6 - 0110
CL, F7 PL, F7 PL, F7 0111
CH, CL P, PL PH, PL 1000
CL, CH CL, PH illegal 1001
CH, CL ') CH, CL illegal 1010
CL, CH SL, CH illegal 1011
CH, CL SH, SL SH, SL 1100
Durmy, CH K, SH K, SH 1101
Dummy, Dummy Dummy, K Dummy, K 1110
FO, Dummy FO, Dummy FO, Dummy 1111

NOTE:

1. On extended operations A-BUS specification of PC incrementing or
decrementing is disabled.

2. On an extended operation, if write is specified the value written is
the high order result, .

o/

4,

Se

6.

7.

8.

CaCa — Set Carry Field

All register instructions except 1 and SHFT can set the carry bit
(SHo) to 0 or 1 at the beginning of the instruction execution. The

set carry options are:

CaCa = 00 == Do not set carry
CaCa = 10 -- Set carry to 0
CaCa = 11 =~ Set carry tol

(NOTE: 01 reserved for SHFT)
ﬁa, Hb — High/Low 4-Bit Selection

The Mask Branch, M, and MI instructions operate on either the high
or low 4 bits of the A and/or B registers, The Ha bit specifies the
high or low 4 bits of the A-Bus register; the Hb bit specifies the
high or low 4 bits of the B-~Bus register.

Ha = 0 Low 4-bits of A-Bus register
Ha = 1 High 4~bits of A-Bus register
Hb = 0 Low 4~bits of B-Bus register
Hb = 1 High 4-bits of B-Bus register

Il.¢el ~— Immediate Operand

For Immediate Register Instructions, the actual 8 bits contained in
the Imnediate Operand Field (IIII) are gated directly to the A-Bus,
For the LPI (load PC's 4immediate) instruction, the PC's are set
equal to the 16-bit immediate field,

RR...R = Branch Addresses

The R field 4s the ©branch address specified by the
ricro-instruction. The 10-bit address branches are treated as
in-page branching for theoretical pages of 1024 steps. (i.e., the
upper 6 bits of the branch address are the same as that of the
current instruction).

MDY = Branch Kask

For the mask branch instructions, these & bits in the instruction
have the following meaning:

Branch True, Branch False -- 120 specifies what bits in the
specified B-bus Tregister are to be
tested.

M = 1, test the corresponding bit; 1f
M = 0, do not test the corresponding
bit.

- lo.

Branch Equal, Branch Mot Equal -- !CC2{ is the 4-bit pattern to which
the high or 1low &4 bits of the
specified B-~Bus register is to be
compared.

AXAXAXAYAX = Auxiliary Register Field

This field specifies which of the 32 Auxiliary ‘registers is to be
used in the Auxiliary =-- PC Mini-Instruction. Three mnini-
instructions (TPA, TAP, and XPA) transfer 16 bits between the
progran counter (PH, PL) and the specified Aux register (0 - 1lF).

+ In In — Increment/Decrement Field

The + In In field specifies whether or not the 16-bit value in the
PC's i1is to be incremented or decremented (by 1, 2, or 3) as it 1is
being transferred to the Auxiliary register’ (TPA, XPA) or subroutine
return stack (TPS). .

+In In = 000 PC's + Aux or stack
+Inln = 001 PC's +1 -+ Aux or stack
+InIn = 010 PC's + 2 + Aux or stack
+InIn = O0l1 PC's + 3 = Aux or stack
4+ InIn = 100 PC's + Aux or stack
+ InIn = 101 PC's = 1 =+ Aux or stack
+InIn = 110 PC's = 2 * Aux or stack
+InlIn = 111 PC's = 3 * Aux or stack

3

E.

Timing Sequence

The

folloving tining sequence of events takes place for the 2600

nicro-instructions:

Register and Mini-Instruction Timing Sequence

1,

2.

3.

by

Se

6.

7e

8.

9.

10.

For LPI instructions, the PC registers are loaded with the specified
value,

If DD bits specify a Read or Write, the contents of the Data Memory
Program Counter (PH, PL) are transferred to the memory control logic

_ to select the address.

‘The d4nitial contents of the registers selected by the A-Bus (or

Irmediate Operand), and the B~Bus fields, and carry bit are gated to
the Buses and into the ALU,

If set carry is specified (CaCa field of Register Imstructions), the
carry (SHO) is set as specified.

The arithmetic or logical operation is performed in the ALU,

The results of the arithmetic or logical operation in the ALU is
stored {n the register specified by the C~-Bus field.

1f PC, stack, and Auxiliary Register tramsfers or exchanges are
specified by the instruction, they are done. (TPA, TAP, XPA, TPS,
TSP).

If Auxiliary register £+ 1, + 2, or + 3 incrementing or decrementing
is specified, (e.g., TP+1, XPA-3 TPA+2) +1, £2, or + 3 is added
wvith 16-bit of data received by the Auxiliary PC register.

1f a Read or Write is specified, data is read into CH, CL or written
from C-Bus (result of ALU operation) to memory.

I1f PC incrementing or decrementing is specified by the A-field, PC's
are incremented or decremented by 1,

The Instructionm Program Counter (IC's) is incremented by 1.

TRV o ot 4

T

) Branch Instruction Timigg'5'1uence

1.

2,

3.

be

For Conditional Branches, the test is made to branch or not branch
based on the contents of the B-Bus Register.

If the test is valid, the branch is made by replacing the low order
10 or full 16-bits of the IC registers with the R dinstruction
operands.

If the test is not valid, the IC counters are incremented by 1 to
get the next instruction,

(Note — For Subroutine Branches and Subroutine Returns, the
address saved in the subroutine stack is the current
instruction address + 1, The stack is circular,

If PC incrementing or decrementing is specified by the A-field, PC's
are incremented or decremented by 1 after the branch test is
performed, The incrementing will occur whether the test is true or
falsge, ’

Fe. 2600 Trap Locations

16 control memory locations are reserved as traps (address 8000 through

800F).

When & trap condition occurs, normal processing is immediately

) terminated and an automatic branch is made to the appropriate trap
location. At the trap location is a branch instruction which transfers
control to the specified microcode routine so that appropriate action can
be taken. Presently, the following trap locations are defined:

8000 -= PECM (parity error in control memory)

8001 — RESET)
8002 ~= PEDM (parity error in data memory) -

8003 -~ POR (power on — MASTER INITIALIZE)

G.

Memory Parity

The 2600 uses odd parity on both control memory and data memory.

1.

2,

3.

Control Memory Parity

The high order bit of each instruction in control memory is the
parity bit; parity is odd. The parity bit of each instruction is
generated by software; the SR, WCM instruction writes the 24 bits in
the K, PH, and PL (parity and instruction). The WCM instruction does
not generate parity.

Instruction parity d4s -checked when fetching an instruction for
execution, If there is a parity error, the system will set parity
error status bit =] and trap to location 8000,. in control
memory. The address gl of the instruction with bad parity is pushed
into the subroutine return stack.,

If the instruction (data) read by a SR, RCM instruction has bad
parity, the parity error status- bit (SE.) is set to 1. No trap is
made and the address of the dinstruction with bad parity is not saved
in the stack.

Data Memory Parity

0dd parity is generated and written by the hardware at the tice of a
write to data memory.

On a read from data memory, parity is checked on the 16 bits read.
I1f there is a parity error, the parity error status bits (SH.) is set
to 1, If the parity trap control status bit (SH,) is set to 0, the
system will trap to location 8002;, din control memory. If SH, = 1,
the trap 4s d4inhibited, The address of the data with bad pathy is
not saved in the stack regardless of whether the system traps or not,
Also, the PC's may not be the address of the data with bad parity
(e.go, XPA, R).

Parity Status Bits

SH6 — parity error., Set to 1 whenever bad parity is detected
when fetching instructions or reading data,

SHy = parity trap control., (Data Memory)

0 - parity error trap for data memory enabled,
1 - parity error trap for data memory inhibited,

APPLIDIX A

DETAILED DESCRIPTION

OF THE

INSTRUCTION SET

-~

OR — OR

0 00,0 0|x|o|ca Ca|D D|C C.C C|A A A A|B B B B

If X= 0, the OR of the registers specified by the A and B fields is formed and
the result is stored in the register specified by the C field. If X = 1, the OR
of the register pair specified by the A field is OR'ed with the register pair
specified by the B field and the result is stored in the register pair specified
by the C field.

Register use in the A, B, and C fields:

FO0 - F7, CL-, CH-, CL, CH, CL+, CH+, +, -

A

B: FO-F7, PL, PH, CL, CH, SL, SH, K, dumy
(4 X=0) C: FO-F7, PL, PH, , SL, SH, K, dumny
({1£ X=1) Cc: FO - F7, PL, » SL, SH, K, dummy

Carry (SK) options: CaCa = 00, do not change carry
. CaCa = 10, set carry to 0 at beginning of instruction
CaCa = 11, set carry to 1 at begioning of instruction

Read/Write options:

00: no read or write
0l: read

10: Write 1

1l: Write 2

oo u
voov

For instructions that modify the PC registers, the read and write address will
be the initial contents of the PC registers. If CH or CL is specified in the A
or B fields, the previous contents of CH or CL will be used in the instruction.

The A field can specify that PC's be incremented or decremented at the end of
‘the dinstructiocn.

~If A and/or B and/or C are set to indicate the dumy register, the net result
will be:

A = Dummy B+ C Memory])
B = Durmy A~ C [Memory]
c = Dummy Aor B + [Memory]
A, B = Dummy 0+ C [Memory)
A, C = Dummy B -+ [Memory]
B, C = Dummy A -~ [Memory]
A, B, C = Dummy 0 - [Meory]

XOR — EXCLUSIVE OR

00001XOCa"Ca|DD'CCCCAAAABBBB
' y ') 4 | | 1] | [i | 1

If X = 0, the exclusive OR of the registers specified by the A and B fields is
formed. The results are stored in the register specified by the C field. If X
= 1, the register pair specified by the A field is exclusive OR'ed with the
register pair specified in the B field and the result is stored in the register
pair specified by the C field.

Register use in the A, B, and C fields:

FO - F7’ CIO-’ C}I-, CL’ CH’ CL+’ CH+’ +’ -

A

B : Fo - F7’ PL’ PH’ CIO’ CH’ SL’ SH’ K’ dumy
(1f X=0) C: FO0 - F7, FL, PH, , SL, SH, K, durmy
(f X=1) C: FO-F7, PL, , SL, SH, K, dummy

Carry (Sﬁo) options: CaCa = 00, do not change carty
CaCa = 10, set carry to 0 at beginning of imstruction
CaCa = 11, set carry to 1 at beginning of imstruction

Read/Write options:

DD = (00: no read or write
DD = (0l: read

DD = 10: Writel

DD - s Write 2

For instructions that modify the PC registers, the read and write address will
be the initial contents of the PC registers. If CH or CL is specified in the A
or B fields, the previous contents of CH or CL will be used in the instruction. .

'Tﬁe A field can specify that PC's be incremented or decremented at the end of

the instruction.

If A and/or B and/or C are set to indicate the durmy register, the net result
will be:

A = Dummy B - C [Memory)
B = Dummy A+ C [Memory])
C = Dummy A®B + [Memory)
A, B = Dummy 0o - C [Memory]
A, C = Dummy B -+ [Memory])
B, C = Dummy A > [Memory)
A, B, C = Dummy o -+ [Memory]

. AD — AND
v/A

0 0 01 0jX}{0|Ca Ca{D D|JC C C C|{A A A A|B B B B
R N R | 1 [.| [| [|

If X = 0, the AIXD of the registers specified by the A and B fields is formed,
The result is stored in the register specified by the C field. If X = 1, the
register pair specified in the A field is AlD'ed with the register pair
specified in the B field and the result is stored in the register pair specified
in the C field. '

Register use in the A, B, and C fields:

A : FO - F7’ CL-’ CH-’ CL. CH’ CL+' CH+’ +’ -
' B : Fo - F7’ PL' PH’ CL. CH’ SL’ SH’ K’ dumy
(if X = O) C: FO - F7’ PL’ PH’ » SI" SH’ K’ dmy

Carry (SH) options: CaCa = 00, do not change carry
CaCa = 10, set carry to 0 at beginning of imstruction
CaCa = 11, set carry to 1 at beginning of instruction

. Read/vwrite options:

) DD = (00: no read or write
DD = (0l: read
DD = 10: Write 1
DD =]l: VWrite 2

For instructions that modify the PC registers, the read and write address will
be the d4nitial contents of the PC registers. If CH or CL is specified in the A
or B fields, the previous contents of CH or CL will be used in the instruction.

The A field can specify that PC's be incremented or decremented at the end of
the instruction,

If A and/or B and/or C are set to dindicate the ducxy register, the net result

will be:
A = Dummy 0+ C [Memory]
B = Durmy 0+ C [Memory]
c = Dummy A.B ~ [Memory]
A, B = Dummy 0+~ C [Memory]
‘A, C = Dummy o - [Memory]
B, C = Dumany o - [Mexory)
A, B, C = Dummy o - [Memory]

o

SC — BINARY SUBTRACT WITH CARRY

[0,0,0,2,1{x|ofca,cc p,plc,c,c,cla,a.a AlB B B 3B

If X = 0, the 8-bit register specified by the B field is complemented and added,
with carry, to the 8-bit register specified by the A field. The final result is
stored in the register specified by the C field, and SHp will receive the
resultant carrye. If X =1, the register pair specified by the B field is
conplemented and added, with carry, to the register pair specified by the A
field. The result is stored in the register pair specified by the C field, and
SHy will receive the resultant carry.

~ Register use in the A, B, and C fields:

F0 - F7, CL-, CR~, CL, CH, CL+, CE+, +, =

A

B: FO-F7, PL, PH, CL, CH, SL, SH, 'K, dumy
(if x = 0) c H FO - F?, PL. PH, » ﬂl. SH, K’ dumy
(£ X=1) C: FO-F7, PL, , SL, SH, K, dummy

Carry (SH() options: CaCa = 00, do not change carry
CaCa = 10, set carry to 0 at beginning of instruction
CaCa = 11, set carry to 1l at beginning of imstruction

Read/write options:

DD = (00: no read or write
DD = (0l: read

DD = 10: Write l

DD =]1l: Write 2

For instructions that modify the PC registers, the read and write address will
be the initial contents of the PC registers, If CH or CL is specified in the A
or B fields, the previous contents of CH or CL will be used in the instruction.

The A field can specify that PC's be incremented or decremented at the end of
the instruction.

If SH is specified in the C-field, the results are indeterminate,

If A and/or B and/or C are set to indicate the dummy register, the net result
will be:

A = Dummy -B-1l+Carry =+ C Carry [Mexory]
B = Dummy A -1l+Carry —+ C Carry [Memory]
A, B = Durmy -1+ Carry + C Carry [Memory])
c = Dummy A - B -1 + Carry ~+ Carry [Memory]
A, C = Dumny - B=-14+ Carry -~ Carry [Memory]
B, C = Dummy A - 1 + Carry - Carry (Memory]
A, B, C = Dummy - 1 + Carxry -+ Carry [Memory]

DAC = DECIMAL ADD WITH CARRY

0]0111010 xocaiu D.D CIC]CaC A.AIA.A BJB|BA14§_J

If X = 0, the 8-bit registers specified by the A and B fields are the last

resultant carry (SHo) are added together in decimal. The final sum is stored in
the register specified by the C field and SHo will be set equal to the resultant
carry. The addends must be decimal (0 - 9) or the sum will be indeterminent.
If X =1, the register pair specified by the A field and the 1last resultant
carry are added in decimal to the register pair specified by the B field; the
result is stored in the register pair specified by the C field and SH, receives
the resultant carry.

Register use in the A, B, and C fields:

A H Fo - F7, CL-’ CH-’ CL’ CII’ CL+’ CH+’ +’ -
B H FO - F7’ H..’ PH’ CL’ CH’ ﬂ.. S{. K’ d\m'y
(£ X=0) C: FO - F7, PL, PH, , SL, SH, K, dummy
(if X=1) c: FO~- F7, PL, » SL, SH, K, dumxy

Carry (SH;) options: CaCa = 00, do not change carry
CaCa. = 10, set carry to O at beginning of ipnstruction
CaCa = 11, set carry to 1 at beginning of instruction

Read/write options:

DD = 00: no read or write
DD = (0l: read

DD =]10: Write l

DD = 1l: Write 2

For instructions that modify the PC registers, the read and write address will
.be the initial contents of the PC registers. If CH or CL is specified in the A
or B fields, the previous contents of CH or CL will be used in the instruction. °

The A field can specify that PC's be incremented or decremented at the end of
the instruction.

If A or B field registers contain non-decimal data, or if SH is specified in the
C-field, the results are indeterminste. g

If A and/or B and/or C are set to indicate the dummy register, the net result
will be:

A = Durmy B+ Carry ~ C Carry [MexoTy]
B = Dummy A+ Carry * C Carry [Memory]
A, B = Dummy Carry =+ C Carry [Memory]
o} = Dummy A+ B + Carry Carry [Memory]
A, C = Dummy B + Carry ~ Carry [(Memory]
B, C = Dummy A + Carry ~ Carry [Mezory)
A, B, C = Dumy Carry ~ Carry {Memory]

DSC — DECIMAL SUBTRACT WITH CARRY

0 0.2.0.1]xJolca.ca pD.DlCc.c,c.ClA, A A AlB,B.B B

1f X= 0, the 8-bit register specified by the B field plus the last resultant
carry (SHp) is subtracted from the 8-bit register specified in the A field in
decimal and the new carry is generated. (That is, the 9's complement of [the B
register] and the carry are added to the A register and the new carry is
generated). The result is stored in the C register.

Similarly, if X = 1, the register pair specified by the B field plus the last
resultant carry is subtracted from the register pair specified by the A field in
decimal and the new carry is generated. The result is stored in the register
pair specified by the C field.

Register use in the A, B, and C fields:

FO - F7, CL-, CHE-, CL, CH, CL+, CH+, +, =

A

B: FO-F7, PL, PH, CL, CH, SL, SH, K, dummy
(if X-O) c H FO-F7, PL’ PH' » SL’ SH, K’ d‘my
({£ X=1) C: FO - F7, PL, ', SL, SH, K, dumy

‘Carry (SHy) options: CaCa = 00, do not change carry

CaCa = 10, set carry to O at beginning of imstructiom
CaCa = 11, set carry to 1l at beginning of instruction

Read/Write options:

DD = (00: no read or write
DD = (0l: read

DD = 10: Write 1l

DD - : Write 2

For instructisns that modify the PC registers, the read and write address will

‘be the initial contents of the PC registers. If CH or CL is specified in the A

or B fields, the previous contents of CH or CL will be used in the instruction,

The A field can specify that PC's be incremented or decremented at the end of
the instruction.

The A and B field registers must contain decimal data (0 - 9) or the results are
indeterminate,

If SH is specified in the C field, the results are indeterminate,

A = Dummy -B=-Carry -+ C Carxy [Memory]
B = Dumny A-Carry -+ C Carry [Memory]
A, B = Dummy -Carry =+ C Carry [Memory)
c = Dummy A-B - Carry -~ Carry [Memory]
A, C = Dumny - B -Carry -+ Carry [Memory]
B, C = Dummy A - Carry -+ Carry [Memory)
A, B, C = Dunmy - Carry - - Carry [Memory]

IIIIlIIllllIlllIIIIIl---::;___;__;_____~f A6 -

@
N
ey

(v“l

AC — BINARY ADD WITH CARRY

0 0 1 1 o|x[o]ca Calp DlCc C C C|A A A A|B B.BB

.If X = 0, the 8-bit registers specified by the A and B fields and the last

resultant carry (SH0) are added together in binary. The final sum is stored in
the register specified by the C field, and SO will receive the resultant carry,
If X = 1, the register pair specified by the A field is and the last resultant
carry are added in binary to the register pair specified by the B field; the
resultant is stored in the register pair specified by the C field, and SHy will
receive the resultant carry.

Register use in the A, B, and C fields:

A H Fo - P7’ CL.. CH-. CL’ CH. CL+' CH+. +. -
B: FO~-F7, PL, PH, CL, CH, SL, SH, K, dummy
(if x = 0) C H ?0 - F7‘ PL. PH. » SL' SH' K’ dumy
‘(£ X=1) C: FO=-F7, PL, ‘ , SL, SE, K, dummy

Carry (SH;) options: CaCa = 00, do not change carry
CaCa = 10, set carry to O at beginning of instruction
CaCa = 11, set carry to 1 at beginning of instruction

Read/Write options:

00: no read or write
0l: read

10: Write l

11: Write 2

oouoyuo
oo uo

Por instruct.ons that modify the PC registers, the read and write address will

.be the initial contents of the PC registers. If CH or CL is specified in the A

or B fields, the previous contents of CH or CL will be used in the instruction.

The A field can specify that PC's be incremented or decremented at the end
of the instruction.

If SH is specified in the C-field, the results are indeterminate.

1f A and/or B and/or C are set to indicate the dummy register, the net result
will be:

A = Dummy O+B+Carry + C Carry [Memory)
B = Dummy A+ 0+ Carry =+ C Carry [Memory]
A, B = Dumy 0+0+Carry =+ C Carry (Hemory)
c = Dummy A+ B+ Carty =~ Carry (Mexmory)
A, C = Dummy 0 +B + Carry ~+ Carry (Mexory])
B, C = Dummy A+ 04+ Carry =~ Carry (Merory)
A, B, C = Durmy 0+ 0+ Carry =~ Carry [(Memory])

M -~- BIMARY MULTIPLY

0J 0, 1' 1 L1 X{0

Hb Ha

D D|C C C C|A A A A

B B B B
A I |

If X = 0, the low (or high) 4-bits

repeated but on the registers whose addresses

of the register specified in the A field is -
multiplied in binary by the low (or high) 4-bits of the register specified in
the B field; the product (8-bits) is stored in the register specified by the C
field, If X = 1, the above operation is performed; the above operation is then

specified in the A, B, and C fields.

Selection of high/low 4-bits of A, B registers:

HbHa =
HbHa =
HbBa =

.HbHa

00, low 4-bits of A and low 4-bits of B

01, high 4-bits of A and low 4-bits of B
10, low 4~bits of A and high 4~bits of B
11, high 4~bits of A and high 4-bits of B

Register use in the A, B, and C fields:

A

B
(1£X=0) C
({fX=1) C

Read/Write options:

voouuvou
oo

Fo - F7, CL-’
¥0 - ¥7, PL, PH, CL, CH, SL, SH, K, dummy
¥0 - F7, PL, PH,

s PO - F7, PL,

00:
0l:
10:
11:

» SL, SH, K, dummy

no read or write
read

Write 1

WUrite 2

are one greater than those

For instructions that modify the PC registers, the read and write address will

be the initial contents of the PC registers.

If CH or CL is specified in the A

or B fields, the previous contents of CH or CL will be used in the instruction.

The A field can specify that PC's be incremented or decremented at the end

of the instruction,

If A and/or B and/or C are set to indicate the dummy register,

will be:
A = Dummy
B = Dunmy
A, B = Dummy
c = Dummy
A, C = Dummy
B, C = Dummy
A, B, C = Dummy

>
[]

(Memory]
[Memory]
(Memory]
[Memory]
[Memory]
(Memory]l
[Memory]

OO0

OCO0OO0OWOOO

++ e+ 4+

the' net result

Yz oy

e

g Ha|x|o|o 1|p pjc c ccla a A alB B B B]

1f X = 0, the SHFT instruction sets the low &-bits of the register specified by
the C field equal to the high (or low) 4-bits of the register specified by the A
field, and sets the high 4-bits of the C register equal to the high (or 1low)
4-bits of the B register. If X = 1, the above operation is performed; the above

operation is

then rtepeated on the registers whose addresses are one more than

those specified in the A, B, and C fields.

Hb Ha =

Hb Ba =

Hb Ha =

Hb Ha =

Selection of high/low 4-bits of A, B registers:

00, high 4-bits of C = low 4-bits of B
low 4-bits of C = low 4-bits of A

01, high 4-bits of C = low &-bits of B

low 4-bits of C = high 4-bits of A

10, high 4-bits of C = high 4-bits of B
low 4-bits of C = low 4~bits of A

11, high 4-bits of C = high 4~bits of B
low 4-bits of C = high 4-bits of A

Register use in the A, B, and C fields:

A: FO-F7, CL-, CH-, CL, CH, CL+, CH+, +, =
B: FO- F7, PL, PH, CL, CH, SL, SH, K, dumzy
(ifX=0) C: PO~ F7, PL, PH, » SL, SH, K, durxy
(44 X=1) C: FO~-F7, PL, , SL, SH, K, dummy
Read/Write options:
DD = 00: no read or write
DD = 0l: read
DD =]10: Write 1l
DD = 1l: Write 2

For instructions that modify the PC registers, the read and write address will
be the initizl contents of the PC registers. If CH or CL is specified in the A
or B fields, the previous contents of CH or CL will be used in the instruction,

The A field can specify that PC's be incremented or decremented at the end
of the instruction.

If A and/or B and/or C are set to indicate the dummy register, the net result

will be:

wOOW

= Dummy BO - C [Memory])
= Dunrmy 0A - C (Memory])
= Dummy BA ~* {Memory]
= Dummy 0 - ¢C (Memory]
= Durmy BO -~ {Memory])
= Dummy oA -~ {Memory]
= Durmy o - (Memory]

C:)

ORI — OR IMMEDIATE

o,1,00,0|1,1,1,1!p,DpJc c.c,cfr1 1,1 1|B,B B B

The OR of the register specified by the B field and the 8-bits in the I field
are formed. The result is stored in the register specified by the C field.

Register use in B and C fields:

B
¢

FO - F7, PL, PH, CL, CH, SL, SH, K, ducmy
FO - F7, PL, PH, , SL, SH, K, dummy

Read/Write options:

DD = 00: no read or write
DD = (0l: read

DD = 10: Writel

DD = 11: Write 2

For instructions that modify the PC registers, the read and write address will
be the initiz]l contents of the PC registers. If CH or CL is specified i{n the B
field, the previous contents of the CH or CL will be used in the instruction.

If B and/or C are set to indicate the dummy register, the net result is:

B = Dummy I +C [Memory]
C = Dummy Borl - [Memory]
B, C = Dummy I - [Memory]

N\

XORI ~— EXCLUSIVE OR IMMEDIATE

0 1,0,0,1J1,1,1,1]p,pjc,c.c.cl1,1,1,1/B,8 B, 8]

The exclusive OR of the register specified by the B field and the 8-bits in the
I field are formed. The result is stored in the register specified by the C
field.

Register use in B and C fields:

B
C

FO - F7, PL, PH, CL, CH, SL, SH, K, dumxy
FO - F7, PL, PH, » SL, SH, K, duzmy

Read/Write'options:

DD = 00: no read or write
DD = O0l: read

DD = 10: Write 1

DD = : Write 2

For instructions that modify the PC registers, the read and write address will
be the initial contents of the PC registers. I1If CH or CL is specified in the B
field, the previous contents of the CH or CL will be used in the instruction,

If the B and/or C are set to indicate the dummy registér, the net result is:

B = Durmy 0 ~C [Memory)
c = Dummy BO®I o [Memory]
B, C = Dunoy 0 - [Memory]

) AYDI -- AND IMDMEDIATE

i
j0,1,0,1, 01, 1,1,1jD,D c,cc,cjr, 1,1 1|{B,B,B B

The AND of the register specified by the B field and the 8-bits in the I field
are formed. The result is stored in the register specified by the C field.

Register use in B and C fields:
B
c

FO - F7, PL, PH, CL, CH, SL, SH, K, durmmy
FO - F7, PL, PH, » SL, SH, K, dummy

Read /Write options:

Db = 00: no read or write
DD = 0Ql: read

DD = 10: Writel

DD = 1ll: Write 2

For instructions that modify the PC registers, the read and write address will
be the initial contents of the PC registers. If CH or CL is specified in the B
field, the previous contents of the CH or CL will be used in the instruction.

If B and C are set to indicate the dummy register, the net result is: .
B = Dummy 0 - ¢C [Memory]
c = Dummy B.I =~ (Memory]
B, C = Dummy 0 -+ [Memory]

Al == BINARY ADD IMMEDIATE

lo,1,0,1,1

I,1,1,1

!
p pjc c,ccj1,1,1 1|8 B 3 B

The 8-bit register specified by the B field and the &-bits in the I field are

added together in binary.

the C fieldo

Register use in

B
C

The final sum is stored in the register specified by

B and C fields:

FO - F7, PL, PH, CL, CH, SL, SH, K, ducmy
FO - F7, PL, PH, , SL, SH, K, dumay

Read/Write options:

DD = 00: no read or write
DD = O0l: read

DD = 10: Write l

DD = 1l: Write 2

For instructions that modify the PC registers, the read and write address will

be the initial contents of the PC registers.

If CH or CL is specified in the B

field, the previous contents of the CH or CL will be used in the instruction.

I1f B and/or C are set to indicate the dumwy register, the net result is:

™ Ow
|

= Dummy 0+1 * C [Memory]
Dummy B+1 > C [Memory]
Dummy 1~ [Memory])

DACI — DECIMAL ADD II-E-ZEDIATEAWI"'.I CARRY

0,1,1,0,0/1 I,I I|D D|C C Cc C|I I I I B,B B B

The 8-bit register specified by the B field and the 8-bits in the I field and
the last resultant carry (SHp) are added together in decimal. The final sum is
stored in the register specified by the C field. The resultant carry is stored]
in SHo.

Register use in B and C fields::

B: FO-F7, PL, PH, CL, CH, SL, SH, K, dummy
C: FO- F7, PL, PH, » SL, SH, K, dummy

Read/wWrite options:

DD = 00: no read or write
DD = 0l: read

DD = 10: Write l

DD = t Write 2

For instructions that modify the PC registers, the read and write address will
be the initial contents of the PC registers. If CH or CL is specified in the B
field, the previous contents of the CH or CL will be used in the instruction. .

If SH 1is specified in the C field, the results are indeterminate, The addends ‘
must be decimal (0 = 9) or the results are indeterminate.

If B and/or C are set to indicate the dummy register, the net result is:

B = Dummy I 4+ Carry = C Carry - [Memory]
o] = Dummy B+ 1+ Carry — Carry [Memory]
B, C = Dunmy . I 4 Carry - Carry [Memory]

Q-

DSCI == DECIMAL SUBTRACT IMMEDIATE WITH CARRY

o,1,2,0,2]1,1 1 1]p,plc,c cclT 1 11 B,B,B,B|

The 8-bit register specified by the B field plus the last resultant carry (SHy)
{s subtracted in decimal from the 8-bits in the I field and the new carry is
generated. (That is, the 9's complement of [the B register] and the carry are
added to the dimmediate field and the new carry is generated). The result is
stored in the register specified by the C field.

Register use in B and C fields:

B
c

FO - F7, PL, PH, CL, CH, SL, SH, K, durmy
FO - F7. PL. PH. M SL. SH’ K. dumy

Read/Write options:

DD = (00: no read or write
DD = O0l: read

DD = 10: Writel

DD = 1l: Write 2

For instructions that modify the PC registers, the read and write address will be
the d4nitial contents of the PC registers. If CH or CL is specified in the B
field, the previous contents of the CH or CL will be used in the instruction.

The I and B fields must contain decimal data (0 - 9) or the results are]

indeterminate.
1f SH is specified in the C field, the results are indeterninate,

If B or C specify the dummy register, the results will be:

B = Dumy I - Carry = C [Memory]
Cc = Duzxy I - B - Carry — [(Memory]
B, C = Dumy I - Carry — (Memory]

I

N

ACI ~- BINARY ADD IMVMEDIATE WITH CARRY

0,1,1,1,0fr 1,1,1{p,DjC €, C|I 1 I,1|B B B B

The 8~bit register specified by the B field and the 8-bits im the I field and
the last resultant carry (SH) are added together in binary. The final sun is
stored in the register specified by the C field. The resultant carry is stored
in SH

Register use in B and C fields:

B
c

FO - F7, PL, PH, CL, CH, SL, SH, K, dummy
FO - F7, PL, PH, , SL, SH, K, dummy

Read /Write options:

DD = 00: no read or write
DD = (0l: read

DD = 10: Vritel

DD = 1l1: Write 2

For instructions that modify the PC registers, the read and write address will
be the initial contents of the PC registers. If CH or CL is specified in the B
field, the previous contents of the CH or CL will be used in the inmstruction.

1f SH is specified in the C field, the results are indeterminate, |
If B and/or C are set to indicate the dumy register, the net result is:
= Dumy I + Carry — C [Memory]

= Dummy B + I + Carty — Memory]
s C = Dummy I ¢+ Carry —» [Memory]

wOw

O

MI —- BINARY MULTIPLY DMMEDIATE

0,1,1,1,1|0|- w -|p p|lc,c c c|l1 1 I 1|B B B D

The low (or high) 4-bits of the register specified by the B field is pultiplied
in binary by the 4=bit I field. The 8-bit result is stored in the register
specified by the C field.

If Hb = 0, the low 4-bits of the B registef are used,
If Hb = 1, the high 4-bits are used:

Register use in B and C fields:

B
(o

FO - F7, PL, PH, CL, CH, SL, SH, K, dummy
FO - F7, PL, PH, , SL, SH, K, dummy

Read /Write options:

DD = 00: no read or write
DD = 0l: read

DD = 10: Writel

DD = 11: Write 2

For instructions that modify the PC registers, the rééd and write address will
be the initial contents of the PC registers. If CH or CL is specified in the B
field, the previous contents of the CH or CL will be used in the instruction.

1f B or C specify the dummy register, the results will be:

B = Dummy 0 +C [Memory]
c = Durmy 1.8 -+ [Memory]
B, C = Dummy o -+ [Memory]

*

TAP — TRANSFER AUX TO PC's

0,0,0,1,0 1,1

-{D,DJ0 = = jAx Ax Ax Ax Ax

I B B B

The contents of the auxiliary register specified by the

to the PC registers,

Register use in the B field:

B : FO - F7, PL,

Read /Write options:

DD
DD
DD
- DD

00:
0l:
10:
11:

PH, CL, CH, SL, SH, K, dumy

no read or write
read

Write 1

Write 2

Ax field is transferred

For writes, the register specified in the B field will be writtemn; if B

specifies the dummy register, a zero will be written.

is the initial contents of the PC registers,

The read or write address

,|

TPA —— TRANSFER PC's TO AUX

0|0000011+DDOInInAxAxAxAxAxBBBB
S e B T T | N LI A | I U N |

| W | i

The 16-bit value in the PC's is optionally incremented or decremented by 1, 2,
or 3 and transferred to the auxiliary register specified by the Ax field. The
PC's are not modified.

+ InIn = 000 PC's + AUX
+ InIn = 001 PC's +1 + AWX
+In In = 010 PC's + 2 + AWX
¥InIn = Ol1 PC's + 3 + AWX
FInlIn = 100 PC's + AUX
¥InIn = 101 PC's - 1 * AUX
¥InIn = 110 PC's - 2 + AUX
+InIn = 111 PC's = 3 = AWX

Register use in the B field:
B: FO - ¥7, PL, PH, CL, CH, SL, SH, K, dury

Read/Write options:

DD = 00: no read or write
DD = 0l: read

DD = 10: VWritel

DD = 1l: Write 2

For writes, the register specified 4in the B field will be written; 1if B
specifies the dummy register, & zero will be written. The read or write address
is the initial contents of the PC registers.

is the inittal contents of the PC registers.

¥PA -- EXCHANGE PC's AND AUX

D, D|O In In|Ax Ax Ax Ax 4x|B B B3
[}] !] i

0,0,0,0 0 1,1]1

I+

The 16-bit value in the PC's is optionally incremented or decrenmented by 1, 2,
or 3 and exchanged with the 16~bit value in the auxiliary register specified by
the Ax field.

+ In In = 000 PC's + AWX
+InIn = 001 PC's + 1 + AUX
+ In In = 010 PC's + 2 + AUX
+In In = 011 PC's + 3 -+ AUX
+InIn = 100 PC's + AUX
+In In = 101 PC's =1 - AUX
+InlIn = 110 PC's = 2 -+ AUX
+ In In = 111 PC's = 3 + AUX

Register use in the B field:
B :+ FO - F7, PL, PH, CL, CH, SL, SH, K, dummy

Read/Write options:

DD = 00: no read or write .
DD = 01: read ; '
DD = 10: Writel
DD = 1ll: Write 2

For writes, the register specified in the B field will be written; 1if B
specifies the dummy register, a zero will be written., The read or write address

TPS —=- TRANSFER PC's TO STACK

o 00 01 0.1|1 +|pD D}{0 In In{=- = - - -|B 3 B B!
| T E S Hl B Tl R e TE

. The 16-bit value in the PC's is optionally incremented or decrenented by 1, 2,
or 3 and transferred to the subroutine stack. The PC's are not modified.

Specifying incrementing or decrementing:

+InIn = 000 PC's + stack
+InIn = 001 PC's + 1 + stack
+ In In = 010 PC's + 2 *= stack
+InIn = 011 PC's + 3 + stack
+ InIn = 100 PC's + sgtack
.+ InIn = 101 PC's = 1 * stack
4+ In In = 110 PC's = 2 + stack
+InIn = 111 PC's = 3 + stack

Register use in the B field:
B : FO - F7, PL, PH, CL, CH, SL, SH, K, dumy

Read/Write options:

DD = 00: no read or write
DD = 0l: read

DD = 10: Write l

DD = 1l: Write 2

For writes, the register specified in the B field will be written; 4f B
specifies the dummy register, a zero will be written,

TSP —~= TRANSFER STACK TO PC's"

1,-|p,p{=-,~-, -, = =, - -, -[B B B B

The last address in the subroutine stack is removed and transferred to the PC

registers.,

Register use in the B field:

B : FO - F7, PL,

Read/Write options:

DD
DD
DD
DD

00:
01:
10:
11:

PH, CL, CH, SL, SH, K, dummy

no read or write
read

Write 1

Write 2

For writes, the register specified in the B field will be written; if B
specifies the dummy register, a zero will be writtean. The read or write address
is the initial contents of the PC registers,

LPI — LOAD PC's DOMEDIATE

0,01 1|1 1]2]r 1|p.p|1 T I 1 1 1 1 1 11 1 1] '

The PC registers are set equal to the 16~bits specified in the I field, If D =
1, data will be read from Data Memory; the read address will be the new contents
of the PC's., 1If a write is specified, the data written will always be O0; the
write address will be the new contents of the PC's,

Read/Write options:

DD = 00: no read or write

DD = 0l: read

DD = 10: write l

DD = 11: write 2| the data written is always O.

‘I' SR = SUBROUTINE RETURN

o 0o 00,2 1. 1|1 -]p plo. o]- - - - -,-|3B B B B]

transferred to the ROM Instruction Program Counter. The program execution will
continue at that address,

|
The last address stored in the 96 1level subroutine stack 4is removed and ‘
Register use in the B field:

B: FO - F7, PL, PH, CL, CH, SL, SH, K, dumy

Read /Write options:

DD = 00: no read or write
DD = (l: read

DD = 10: Write l

DD = 1ll: Write 2

For writes, the register specified in the B field will be written; if B
‘ specifies the dumwy register, a zero will be written.

SR, RCM — READ CONTROL MEMORY A'"D SUBROUTINE RETURN

oloJojoililll'lJ-l-J- 011!1-1-1-4-1- -I-I-J-

The SR, RCM instruction is used to read control nmnemory. SR, RCM removes the
last entry (16-bits) from the subroutine return stack; this value is the address
of the instruction in control memory that is to be read.s The specified
instruction is read and stored in the registers K, PH and PL as follows:

K A23{T22|I21{TI20({I19{I18{Ll17 (116

l—Parity bit

PH Iis}TiyjIa3|I12)T23|T10I9 |Is

FL I7 |Is |Is |1y |I3 JI2 |1, IoJ

F inally, a normal SR is performed; that is, the next entry ian the subroutine
stack is removed, and transferred to the IC's (instruction counter). Program
execution will continue at that address.

A typical instruction sequence for reading control memory is:

LPI oox set PC's to address of instruction to be read

SB RCM
RCM TPS transfer address to stack
SR, RCM read control memory and return

(1’

o

SR, WCY == WRITE CONTROL MEMORY AXD SUBROUTINE RETURN

[0, 001 1 1[1 -[--{010(-+- - -[- = =~<]

The SR, WCM instruction is used to write into control memory. SR, WCH removes
the last entry (16~bits) from the subroutine return stack; this wvalue 1s the
address of the location in control memory that is to be written to. The data
ic K, PH, and PL is written into control memory at the specified location;
however, the data in K must be complemezted., Instructions to be written are
stored in K, PH, and PL as follows:

K l,_\[230 T22{T23| To0f{Tae|T18|T37|11e (data complemented)
: Parity bit

PH | Tas| Tau/ TaslTa2]221]Ta0jT9 |18 |

PL | I7)T6]Ts |1y j13 12 |13 |10]

Finaliy, a norzal SR is performed; that is, the next entry in the subroutine
stack 48 removed, and transferred to the IC's (instruction counter). Program
execution will continue at that address.

A typical instruction sequence for writing to coatrel memory is:

MVI x, K
MVI x, PH { K, PH, PL = dinstruction to be written (K complemented)
MV x, PL

TPA »0 save PH, PL in AUX
LPI xxx PC's = address to write to
SB WeM

weM TPS transfer address to stack
TAP .0 PH, PL = saved instruction
XORI OFF,K,K
SR, WCM write instruction and retumm

CIO ~ CONTROL INPUT/OUTPUT

00101111 -[00|s TTTTTTT = ~- -

- d

If S = 1, load the IOB flip~flops with the contents of the K register, If a
strobe is specified by the T fileld, 4t will be performed after the IOB ‘
flip-flops are set, The T field defines the type of strobe from the CPU to be
performed., The following strobes are currently defined:

1. ABS, Address Bus Strobe (TITITIT = 1000000)

Each 2200 device has a unique 8-bit device associated with it. Only one
device may be enabled (active) at a time. The device whose address is in
the IOB address flip flops 1is enabled when the ABS strobe is sent. All
other devices are disabled, The I0B flip flops may be set by the same
instruction that issues the ABS.

2. 0BS, Output Bus Strobe (TTTTITT = 0100000)

085S is 2 5 usec data output strobe that sends the data in the K register
out to the device vwhich 1is currently enabled. Generally, the
micro-program should check 4f the device is ready before the strobe 1is
executed,

3. CBS, Control Output Bus Strobe (TTTTTTT = 0010000)

Same as OBS except strobe is on & different pin, and most devices use it
for different purposes. '

EE——— | M6 -

A Y

BT — BRANCH IF TRUE

1 1 0 O|HWb]R R R R R R, R R R R|M H H M|B B B B

The lov (or high) 4-bits of the register specified by the B field are tested.
1f all of the bits specified by corresponding one bits in the M field arel, a
branch will be made to the in-page instruction memory address specified in the R
field.

Since only 10 bits are specified in the R field, the branch in effect is an
in-page branch with instruction memory being treated as paged memory with 1024
24-bit words per page. Therefcre, when the branch i1s made, the low-order 10
bits of the instruction program counter are replaced by the R field.
If the mask is zero, an unconditional branch is made.
1f the B field specifies the durmy register, the instruction will become & NOP,
(No Branch), unless the mask is also zero, in which case an unconditional branch
is made.
Register use in the B field:

B : FO - F7, PL, PH, CL, CH, SL, SH, K, dumy
Specifying high or low &4-bits of B register:

Hb = 0 low 4-bits of B

Hb = 1 high 4-bits of B

BF — BRANCH IF FALSE

1 1 0 1}JBbJ R R R R R R R R RRIM M ¥ MB B B B

The low (or high) 4-bits of the register specified by the B field are tested.
1f the register bits specified by corresponding one bits in the M field are all
0, a branch will be made to the in-page instruction address specified by the R
field . :

Since only 10 bits are specified in the R field, the branch in effect will be
executed 2s an in-page Jjump with dinstruction memory being treated as paged
memory with 1024 24-bit instructions per page. Therefore, when the branch is
nade, the low-order 10 bits of the instruction program counter are replaced by
the R field.

If the B field specifies the dummy register, an unconditional branch will be
nade,

Register use in the B field:
B:F0-F7, PL, PE, CL, CH, SL, SH, K, dummy
Specifying high or low 4~bits of B register:

Hb = 0 low 4-bits of B
Hb =1 high 4-bits of B

BEQ -- BRANCH IF LQUAL TO MASK

1 1 1 O{’w{R R R . R R R R R R{M 3 M M|{B B B B
[N i i

i L i 1 i} S il L] 5 l 1 L .l

The low (or high) 4-bits of the register specified by the B field are compared
to the 4-bits in the M field, If they are equal, a branch will be made to the
in-page instruction address specified by the R field.

Since only 10 bits are specified in the R field, the branch in effect is an
in-page branch with instruction memory being treated as paged memory with 1024
24-bit words per page. Therefore, when the branch is made, the low-order 10
bits of the instruction program counter are replaced by the R field.

I1f the B field specifies the dummy register, 0 is comﬁared to the 4 bits in the
M fieldo

Register use in the B field:
B : FO - F7, PL, PH, CL, CH, SL, SH, K, durmy
Specifying high or low 4-bits of B register:

Hb = 0 low 4~bits of B
Hb = 1 high 4-bits of B

BNE =~ BRANCH IF NOT EQUAL TO MASK

1 11 1{®{R R R R R R RPRRR¥ ¥ MM M{B B B B
L | I U N TN SO R S A) I B | I

The low (or high) 4-bits of the register specified in the B field are compared
to the 4=bits in the M field. If they are not equal, a branch will be made to

the in-page instruction address specified by the R field.

Since only 10 bits are specified in the R field, the branch in effect 1is an
in-page branch with instruction memory being treated as paged memory with 1024
24-bit words per page. Therefore, when the branch is made, the low 10 bits of
the instruction program counter are replaced by the R field.

If the B field specifies the dummy register, O is compared to the 4 bits in the
M field.

Register use in the B field:
B : FO - F7, PL, PH, CL, CH, SL, SH, K, dummy
Specifying high or low 4-bits of B register:

Hb = 0 low 4-bits of B .
Hb = 1 high 4-bits of B

§—~—_- A28 -.

BIT. — BRANCH IF EQUAL TO REGISTER

R R RRRRAAAA|B BB D

L A

I 1l |0 '1 lO O|R R R R
1 (]

i 1

The registers specified in A and B fields are corpared, 1f they are equal, a
branch will be made to the in-page instruction address specified by the R field.

Since only 10 bits are specified in the R field, the branch in effect dis an
in-page branch with instruction memory being treated as paged menory with 1024
24-bit words per page. Therefore, when the branch is made, the low-order 10
bits of the instruction program counter are replaced by the R field.

If A (or B) specify the dumiy register, 0 is used in the compare.

Register use in the A, B fields:

A
B

FO - F7, CL-, CH-, CL, CH, CL+, CH+, +, =
Fo - F7’ PL’ PH’ CL’ CH, SL’ SI{’ K’ dumy

The A field can specify that PC's be incremented or decremented at the
end -of the instruction.

BNR == BRANCH IF NOT EQUAL TO REGISTER

. 1011 0/RRRRBRRURUERRTPERAAAA A|B BB B
1 1) [

i}] 1 1 | 1 1 1 1 2 ¥l ! Jd

The registers specified in the A and B fields are compared. If they are not

. equal, a branch will be made to the in-page instruction address specified by the
R field. '

Since only 10 bits are specified in the R field, the branch in effect is an
in-page branch with instruction mnemory being treated as paged memory with 1024
24-pit words per page. Therefore, when the branch is made, the low-order 10
bits of the instruction program counter are replaced by the R field,

If A (or B) specify the durray register, 0 is used in the compare.
Register use in the A, B fields:

A
B

FO - F7, CL-, CH-, CL, CH, CL+, Cli+, +, =
FO - F7, PL, PH, CL, CH, SL, SH, K, dummy

The A field can specify that PC's be incremented or decremented at the ‘
end of the instruction.

BLR == BRANCH LESS THAN REGISTLR

12 0 0 0 Ix lR R R! R RRR TR
1 1 1 } . N 1 \)

n . }
R'A A A A|D B B n|
' _{ { | !] 1 i i }

|

If X = 0, the registers specified in the A and B fields arc compared. If X =1,
the register pairs specified in the A and B fields are conpared. If A is less
than B, a branch will be nade to the in-page instruction address specified by
the R field.

Since only 10 bits are specified in the R field, the branch in effect is an
in-page branch with instruction memory being treated as paged nemory with 1024
24-bit words per page. Therefore, when the branch is made, the low-order 10
bits of the instruction program counter are replaced by the R field.

If A (or B) specify the durmy register, O is used in ;ﬁe compare.

Register use in the A and B fields:

A
B

FO - F7, CL-, CH-, CL, CH, CL+, CH+, +, -
FO - F7, PL, PH, CL, CH, SL, SH, K, dummy

The A field can specify that PC's be incremented or decremented at the
end ‘of the instruction.

BLER —— BRANCH LESS THAN OR EQUAL REGISTER

1 00 1{X|]R RRRRRURRRRIA A A A|D B B B
' '

1 k| { ! IR N B | 1 4 i i NS

If X = 0, the registers specified in the A and B fields are compared. If X =1,
the register pairs specified in the A and B fields are compared. If A is less
than or equal to B, a branch will be made to the in-page instruction address
specified by the R field. '

Since only 10 bits are specified in the R field, the branch in effect is an
‘in-page branch with instruction memory being treated as paged memory with 1024
24~bit words per page. Therefore, when the branch is made, the low-order 10
bits of the instruction progran counter are replaced by the R field.

I1f A (or B) specify the durmmy register, O is used in the compare.
Register use in the A and B fields:

A
B

FO - F7, CL-, CB-, CL, CH, CL+, Ci+, +, -
FO - F7, PL, PH, CL, CH, SL, SH, K, dummy

The A field can specify that PC's be incremented or decremented at the
end of the instruction.

|
®

D - A30 -

U

SB -- SUBROUTINE BRANCH

1 011 1{R R R R RRRRR RRRRTIRRRIR|- =
N B B B [B WAL N NN I N N U SR WL AN N N !

An vnconditional branch is made to the instruction memory address specified by
the 16-bit address in the R field. In addition, the current contents of the
Instruction Program Counter +1 are stored in the 96 level subroutine address

stack., If the subroutine address stack already contains 96 addresses, the oldest
address will be lost, .

The rightmost 6 bits of the R'field are the high order 6 bits of the branch
address; the leftmost 10 bits are the low order 10 bits of the branch address.

B — BRANCH

1 0 1 0 1|lR R RRPRPRPERIERIPRIRIRT RIRIRIRIER|I- -
I N B | N R N TR R N N I | [T T R 1

An unconditional branch is made to the instruction memory address specified by
the 16-bit address in the R field. (i.e., the R field 4s transferred to the
Instruction Program Counter).

The rtightnost 6 bits of the R field are the high order 6 bits of the branch
address; the leftmost 10 bits are the low order 10 bits of the branch address.

AlQ

Al2
Al3
Ald
AlS
Al6
Al7

Al8
Al9
A20
A2l
A22
A23
A23
A24
A25
A26

- A27
- A27
A28
A28

A29
A29
A30
A30

A3l
A3l

‘e o e 8 e 3 0 o+ @

e © & e ¢ & ¢ ¢ 0

OR -
XOR =
AND ==

Index

OR
Exclusive OR
And

sC - Binary Subtract with Carry

DAC
DSC
AC
M
SHYT

ORI
XORI
ANDI
AL
DACI
DSCI
ACI
MI

TAP
TPA
XPA
TPS
TSP
LP1
SR

SR, RCM
SR, WCM
CcIo

BT
BF
BEQ
BNE

BER
BNR
BLR
BLER

SB
B

Decimal Add with Carry
Decimal Subtract with Carry
Binary Add with Carry
Binary Multiply

Shift

OR Immediate

Exclusive OR Irmediate

And Immediate ’

Binary Add Immediate .

Decimal Add with Carry Irmediate
Decimal Subtract with Carry Immediate
Binary Add with Carry Immediate
Binary Multiply Immediate

Transfer Ax's to PC's
Transfer PC's to Ax's
Exchange PC's and Ax's
Transfer PC's to Stack
Transfer Stack to PC's
Load PC's Immediate
Subroutine Return

- Read Control Memory

- Write Contrecl Memory
Control Input/Output

Branch {if True
Branch if False

Branch 1f Equal to Mask

Branch if Not Equal to Mask

Branch i1f Equal to Register

Branch 1if Not Equal to Register
Branch i{if Less than Register

Branch if Less than or Equal Register

Subroutine Branch
Unconditicoral Branch

‘ (WANG) LABORATORIES, INC.

Virtual Assembly Language Editor

Program description
September 10 1980
revised May 11 1981

The following describes the function, operation and use of the Virtual

Assembly Language Editor. This program was written by Max Blomme, 2200

Micro-code development (dept. 40).

ONE INDUSTRIAL AVENUE, LOWELL. MASSACHUSETTS 01851 - TEL (617)459-5000 - TWX 710-343-6769 - TELEX 94-7421

Purpose

To create and edit assembly language format data files for use as input to

various assemblers operating on the 2200.
Requirements

28K memory on a 2200VP or MVP (non-syntax checking) or

38K memory on a 2200VP or MVP (syntax checking)

Disk unit (a hard disk is preferred but a floppy may be used)
2226B (80x24), 2236D, 2236DE or 2236DW (last two preferred)

Printer is optional
Features and Limitations

The virtual editor must have access to 503.sectors of catalog area on
the disk for each user's work file. The edit file can be no longer than
999 1lines. Caution must be exercised on long files, for some assemblers
allow only up to 511 lines. For source of more than 999 (511) lines,
multiple files, with unique file names, must be used. The convention to be
used for file naming is that the first two characters are initials and the
-other six are neither all blank nor all numeric. When the file name is
displayed on the CRT or entered from the keyboard, a period is included to
separate the initials from the file name (this period is not actually
written on the disk, so a LIST DC T will not show it).

The character set within a line includes all ASCII codes between
Hex(10) and Hex(7A) that are available on a keyboard. Care should be taken
not to create data which the assembler cannot handle. Backspace, space,
and carriage return are used as special characters.

All or part of one or more edit files may be loaded into memory up to
the restriction of 999 1lines, individual lines may- be edited, and groups
of lines may be inserted or deleted f}om the file currently in the work
area. The file currently in the work area may be saved, either over an old
disk file, or in a newly defined disk file.

Finally, as aﬁ option, syntax checking for specific assembly
languages is supported (currently Z80, 8080, 8085, 8051, 2270, 2280, 14IN,
DSDD).

()

Line format

Lines are edited in field format as follows:

The last data statement in the BASIC program has, among other things, the

tab positions for the edit line. There are four fields and with the tab

stops set at 1,10,20,51,123 they have the following meanings:

Field Usual meaning Length
1 tag field 8
2 opcode 9
3 operand 30
y comment 71

The length of each field is constant and changeable only with a change of
tab stops.

An asterisk at the beginning of the line, defines the whole line to
be a comment whose maximum length is 123. Field orientated features,
except for tab and reverse tab, are inactive for a comment line.

If the first character of a line is not an asterisk, the fields are
as defined in the chart.

The 1line currently being edited isv preceded by a right pointing
triangle and the field being edited is underlined. The cursor is displayed
at the character entry point. There 1is always at 1least one blank

separating the fields.

Initiating the Editor

Since the editor uses a work file on a disk, some conventions must be
observed to prevent multiple users of the editor and the same work disk
from using the same work file. This is usually solved by using the user's
initials (two characters) and his (her) partition number.

When logging on, the users initials are asked for. Then all other
users on the same work disk with the same initials are displayed and may
be logged off. The users log-on tag is displayed and may be edited. From

the position in the log-on file the user is assigned a unique workfile.

(3)

When the prompt is CODE; leave the field blank if no syntax checking

is to be done (or if the syntax for the language being edited is not

supported). As of this date the following syntaxes are supported: Z80,
8080, 8051, 8085, 2270, 2280, 14IN, DSDD. If CODE was not answered with a
blank, a prompt LOGICAL EXPRESSION is shown. See the appropriate assembler

memo for explanation for this.

The name of file to be edited is asked for, what disk it should be

loaded from, and whether or not to load the file.

Functions other than Edit

SF'00

SF'01

SF'02

SF'03

EDIT key

SF'16

SF'17

MENU/EDIT Toggles between a menu listing the functions

and edit
DISK Most disk operations (SAVE, insert LOAD, and

CREATE file) are done with this function.

MOVE/COPY Moves (physically moves) or copies
(replicating) the specified line(s) to an other place in
the file and automatically inserts the proper amount of
space.

CAP. LOCK Allows the A/A, A/a switch to be in the
lower case and have the appropriate fields still be in
upper case. Four fields are represented, a 'U' means upper

case only and an 'L' means upper or lower case allowed.
LINE REQ. Allows quick access to a specific line.

LOGOFF Logs the user off the editor and feleases

the work file he (she) was using.

CHANGE NAME The name of the file currently in the work
area or the name of the file to be loaded may be changed
along with the disk address and the work area may be
cleared and loaded with the file named earlier.

()

SF'18 SEARCH) Searches for the specified input from the
current line and stops when the input is found. By keying
the RUN key the searched-for input 1is replaced by the
specified” replacement. By keying the return key the next

occurrence of the input is searched for.

SF'19 PRINTER LIST Lists the selected lines to the selected

printer.
G Editing the file
The following keys have special meaning while editing:.

TAB (FN) Non-destructively moves the cursor to the next
field

TAB (shifted) Reverse tab; non-destructively moves the cursor
back one field

RETURN Enteré the line currently being edited (the line
the cursor is on) into the work area and checks
the syntax (if this option is enabled)

RUN Does the same thing as RETURN but also inserts a
blank line under the line currently being edited
(this line is not really there until a RETURN is
done on it)

space bar Destructively moves the cursor to the next field,
except in a comment field

CONTINUE Changes the value of the next keystroke to an
alternate value (space to a non-tabbing space, up
arrow to a left arrow, slash to backslash) and as

' the second character in a blank comment line, the

next keystroke is flooded into the line

BACKSPACE Destructively moves the cursor one character

space to the left (jumps across field boundaries)

(5)

The following applies to all keyboards except 2236DW

- LINE ERASE

CLEAR

recall

insert (le)

INSERT (uc)
delete (lec)
DELETE (uc)
erase (sf'8)
ERASE (sf'24)

begin (1le)

BEGIN (uc)

end (lc)

END (uc)

up arrow (le)
UP ARROW (uc)
dn arrow (le)
DN ARROW (uc)
left 5

left 1

right 1

right 5

erases the whole line but does not delete it
Deletes the line currently beiﬁg edited and moves
the higher numbered lines up to fill the gap
recall the line currently being edited to what it
was prior to any keystroke unless the keystroke
moved the cursor off the line

puts the editor into insert mode or takes it out
of insert mode

allows insertion of a number of lines

deletes a single character

allows deletion of a number of lines

erases the line starting from the cursor

deletes the line currently being edited and moves
the lower numbered lines down to fill the gap
(similar to CLEAR)

puts the cursor at the beginning of the line
currently being edited

puts the cursor at the beginning of the file
cufrently in the work area

moves the cursor to the end of the line currently
being edited

moves the cursor to the end of the file currently
in the work area

moves the cursor up one line

moves the cursor up one page

moves the cursor down one line

moves the cursor down one page

‘moves the cursor left 5

moves the cursor left 1

moves the cursor right 1

. moves the cursor right 5

(6)

The following applies to the 2236DW keyboard

ERASE (uc)

erase(le)

er~ses the whole line but does not delete it

Deletes the line currently being edited and moves

" the higher numbered lines up to fill the gap

recall

insert (le)

INSERT (uc)
delete (lc)
DELETE (uc)
PREV SCRN(ue)

prev sern(le)
NEXT SCRN(uc)

next scrn(le)
WEST ARROW(uc)

west arrow(le)
EAST ARROW(uc)

east arrow(le)
up arrow

dn arrow

recall the line currently being edited to what it

was prior to any keystroke unless the keystroke

moved the cursor off the line

puts the editor into insert mode or takes it out

of insert mode

allows insertion of a number of lines

deletes a single character

allows deletion of a number of lines

puts the cursor at the beginning of

currently in the work area

moves the cursor up one page

moves the cursor to the end of the file

in the work area

moves the cursor down one page

puts the cursor at the' beginning of
currently being edited

moves the cursor left 1

moves the cursor to the end of the line
being edited

moves the cursor right 1

moves the cursor up one line

moves the cursor down one line

(7)

the file

currently

the 1line

currently

 (WANG) usonsconcs e
@

Virtual Assembly Language Editor

Program description
September 10 1980

The following describes the function, operation and use of the Virtual

As'sembly Language Editor. This program was written by Max Blomme, 2200
Micro-code development (dept. 40).

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01 851 + TEL. (617) 459-5000 TWX 710-343-6769 - TELEX 94-7421

Purpose o

To create and edit asseﬁbly language format data files for use as input to

various assemblers operating on the 2200.

Requirements

28K memofy on a 2200VP or MVP (non-syntax checking) or

38K memory on a 2200VP or MVP (syntax checking)

Disk unit (a hard disk is preferred but a floppy may be used)
2236D or 2236DE (preferred)

Printer is optional

Features and Limitations

The virtual editor must have access to 503 sectors of catalog area on
the disk for each user's work file. The edit file can be no longer than
999 lines. Caution must be exercised on long files, for some assemblers
allow only up to 511 lines. For source of more than 999 (511) 1lines,
multiple files, with unjque file names, must be used. The convention to be
used for file naming is that the first two characters are initials and the
other six are neither all blank nor all numeric. When the file name is
displayed on the CRT or entered from the keyboard, a period is included to
separate the initials from the file name (this period is not actually
written on the disk, so a LIST DC T will not show it).

The character set within a line includes all ASCII codes between
Hex(10) and Hex(TA) that are available on a keyboard. Care should be taken
not to create data which the assembler cannot handle. Backspace, space,
and carriage return are used as special characters.

All or partAof one or more edit files may be loaded into memory up to
the restriction of 999 lines, individual lines may be edited, and groups
of lines may be inserted or deleted from the file currently in the work
area. The file currently in the work area may be saved, either over an old
disk file, or in a newly defined disk file.

Finally, as an option, syntax checking for specific assembly
languages is supported (currently 280, 8080, 8085, 2280, DSDD).

-

Line format

Lines are edited in field format as follows:
The last data statement in the BASIC program has, among other things, the
tab positions for the edit line. There are four fields and with the tab
stops set at 1,10,20,51,123 they have the following meanings:

Field Usual meaning Length
1 tag field 8

2 opcode 9

3 - operand ‘30

4 comment 71

The length of each field is constant and changeable only with a change of
tab stops.

An'asterisk at the beginning of the line, defines the whole line to
be a comment whose maximum length is 123. Field orientated features,
except for tab and reverse tab, are inactive for a comment line.

If the first character of a line is not an ésterisk, the fields are
as defined in the chart. ,

The 1line currently' being edited is precedéd by a right pointing
triangle ahd the field being edited is underlined. The cursor is displayed
at the character entry point. There is always at 1least one blank
separating the fields.

Initiating the Editor

Since the editor uses a work file on a disk, some conventions must be
observed to prevent multiple users of the editor and the same work disk
from using the same work file. This is usually solved by using the user's
initials (two characters) and his (her) partition number.

When logging on, the users initials are asked for. Then all other
users on the same work disk with the same initials are displayed and may
be logged off. The users log-on tag is displayed and may be edited. From
the position in the logfoh file the user is assigned a unique workfile,

>

Wnhen the prompt is CODE; leave the field blank if no syntax checking
is to be done (or if the. syntax for the language being edited is not
supported). As of this date the following syntaxes are supported: Z80,
8080, 8085, 2280, DSDD. If CODE was not answered with a blank, a prompt
LOGICAL EXPRESSION is shown. See the appropriate assembler memo for
explanation for this. -

The name of file to be edited is asked for, what disk it should be
loaded from, and whether or not to load the file.

Functions other than Edit

SF'00 MENU/EDIT Toggles between a menu listing the functions
and edit
SF'01 DISK Most disk operations (SAVE, insert LOAD, and

CREATE file) are done with this function.

SF'02 . MOVE/COPY Moves (physically moves) or copies
(replicating) the specified line(s) to an other place in
the file and automatically inserts the proper amount of
space.

SF'03 CAP. LOCK Allows the A/A, A/a switch to be in the

' lower case and have the appfopriate fields still be in
upper case. Four fields are represented, a 'U' means upper

case only and an 'L' means upper or lower case allowed.

EDIT key LINE REQ, Allows quick access to a specific line.
SF'16 LOGOFF Logs the user off the editor and releases

the work file he (she) was using.

SF'17 CHANGE NAME The hame of the file currently in the work
area or the name of the file to be loaded may be changed
along with the disk address and the work area my be

cleared and loaded with the file named earlier.

SF'18

SF'19

SEARCH Searches for the specified input from the
current line and stops when the input is found. By keying
the RUN key the searched-for input is replaced by the
specified replacement. By keying the returﬂ key the next
occurrence of the input is searched for.

PRINTER LIST L;sts the selected 1lines to the selected

printer.

G

Editing the file

The following keys have special meaning while editing:

TAB (FN)
TAB (shifted)

RETURN

RUN

CLEAR
space bar

CONTINUE

BACKSPACE

LINE ERASE
recall

insert (1lc)

INSERT (uc)
delete (le)
DELETE (uec)
erase (sf'8)
ERASE (sf'24)

begin (1le)

Nou-destructively moves the cursor to the next
field

Reverse tab; non-destructively ﬁoves the cursor
back one field

Enters the line currently being edited (the line
the cursor is on) into the work area and checks
the syntax (if this option is enabled)

Does the same thing as RETURN but also inserts a
blank line under the line currently being edited
(this line is not really there until a RETURN is
done on it)

Deletes the line currently being edited and moves
the higher numbered lines up to fill the gap
Destructively moves the cursor to the next field,
except in a cémment,field

Changes the value of the next keystroke to an
alternate value (space to a non-tabbing space, up
arrow to a left arrow, slash to backslash) and as
the second character in a blank comment line, the
next keystroke is flooded into the line
Destructively moves the cursor one character
space to the left (jumps across field boundaries)
erases the whole line but does not delete it
recall the line currently being édited to what it
was prior to any keystroke unless the keystroke
moved the cursor off the line

puts the editor into insert mode or takes it out
of insert mode

allows insertion of a number of lines

deletes a single character

allows deletion of a number of lines

erases the line starting from the cursor

deletes the line currently being edited and moves
the lower numbered lines down to fill the gap
(similar to CLEAR)

puts the cursor at the beginning of the 1line
currently being edited

e £

BEGIN (ue) puts the cursor at the beginning of the file
currently in the work area

end (lec) moves the cursor to the end of the line currently
being edited

END (uc) moves the cursor to the end of the file currently
in the work area)

up arrow (le) moves the cursor up one line

UP ARROW (uc) moves the cursor up one page

dn arrow (lc) moves the cursor down one line

DN ARROW (uc) moves the cursor down one page

left 5 "moves the cursor left 5
left 1 - moves the cursor left 1
right 1 moves the cursor right 1

right 5 - moves the cursor right 5

(WANG) usonsronies me.

T0:
FROM:
DATE:
SUBJECT:

2200 Microprogramming Group.
Matthew Lourie.
June 3, 198l.

2600 ASSEMBLER SPECIFICATIONS.

I. INTRODUCTION.

The 2600ASM is an assembler designed to run on the 2200VP/MVP and will

convert 2600 :source code

bootstrap.
use only.

group.

II. HARDWARE REQUIREMENTS:

A.

B.
C.

64K partition.
132 column printer.
Some sort of Disk.

IIT. ASSOCIATED FILES:

A.
B.

"2600ASMS"
"2600ASM2"
"2600ASMB"
"2600ASMG"
"2600ASMD"
"SCROSS"

"READTP"

contains
contains
contains
contains
contains
contains

contains

IV. OVERVIEW OF PROGRAMS:

A.

the
the
the
the
the
the
the

into object code 1loadable by the 2600

start-up program.

assembler program.

block allocating program.

data file generating program.
data file produced by "2600ASMG".
master cross reference program.

9-track tape to printer program.

start-up the following device addresses

Start-up:

1. During
requested:
a.

Assembler output device.

This is the device to which the assembler sends
errors, etc. (see section on printing options).

Th{s is not a released program and is intended for internal
Questions should be directed to the 2200 microprogramming

will be

1istings,

ONE INDUSTRIAL AVENUE, LOWELL, MASSACHUSETTS 01851 - TEL. (617) 4539-5000 « TWX 710-343-6769 - TELEX 94-7421

b. Source edit file device.

This is the disk address on which the source files are
Tocated.

c. External symbol file device.

This is the disk address on which the symbol files are
Tocated.

d. Block work file device.

This is the disk address on which the block work file
will be kept (see the section on blocks).

Then the following file names will be requested:
a. Object file name.

This is the file in which the object code will be
stored. This file must be created before starting the
assembly.

b. Starting module name.

This is the name of the first module to be assembled.

A11 other modules of the assembly must be specified

within the source code wusing the ASSEMBLE pseudo
. (explained later).

After requesting the previous items, and after asking various
other questions (covered in other sections), the program
chains to the main assembler program.

assembler program.

In order to allow large assemblies, the source code is able to
be -split up into 1logical divisions called modules. To
assemble these modules the assembler must go through three or
four passes:

a. Pass "W1" scans all the modules, getting the size of each
block. It then passes this information to the block
allocator which assigns the blocks addresses. Pass "W1"
is skipped if the assembler is not in block mode.

b. Pass "W2" again scans the entire source, but this time
creates a symbol table for each module and saves the
table on the disk.

c. Pass "WF" scans a single module, building its symbol
table in memory, and then goes on to pass "MF". .

V.

d. Pass "MF" scans a single module, producing the object
code and printing the source file. Then control is

passed back to pass "WF" thus initiating assembly of the
next module.

2. In order to keep the user aware of the progress of an
. assembly, a constantly updated progess report is displayed on
the CRT (i. e. current file, IC's, etc.).

C. Block allocator.
1. This program is chained to after completion of pass "Wi1".
2. Overview of purpose:
a. Reads in block sizes.
b. Creates spans.
c. Allocates addresses to blocks.
e. Prints a memory map out.
f. Chains back to the assembler, thus starting pass "W2".
D. Tape to printer program.

If a printer was specified as the tape output device, the tape to
printer program is chained to after the assembler is done. This
program will find the proper tape file and print its contents on
the printer. The program can also be used as a stand alone for
printing previously recorded tape file(s). To use the program in
the stand alone mode do the following:

a. Run the program called "READTP".

b. Give the tape output address (default 77B) and the printer
output address.

c. Give the file index numbers and the number of copies to be
printed. The maximum number of file indices is ten.

d. Enter "0" in the file index field after all the desired file
index numbers are entered. Thereafter the "READTP" will print
out the files in the order in which their indices were entered.

BLOCKS.
A. Definition of a block.

A block is a segment of code that doesn't conditional reference
addresses outside the segement. This means that a block can be
moved around so long as the whole segment is contained on one page
of memory. If a conditional reference is made outside a block, it
will be flagged as an error.

B.

Defining a block.

There are essentially two types of blocks, a floating block and an
absolute block. A Floating block is allowed to be moved around by
the assembler. This freedom enables the assembler to pack the
code, allowing it to compactly fit into memory. This type of block
is defined by starting it with an "ORG *". A1l modules must be
valid blocks. An absolute block is a block which is defined to go
at a certain address. They are defined by starting the code with
an "ORG expression" where the expression is the block's address.
The expression must not contain symbols which are defined within
the current assembly. If the expression does, it will be flagged
as an error. Aside from their predetermined address, absolute
blocks are the same as floating blocks and may not conditionally
reference other blocks.

Setting the LIMITS.

In order to tell the assembler where you want the code to go, you
must use the LIMITS pseudo. The LIMITS pseudo is of the form:

LIMITS lower address, upper address

The addresses should be expressions which do not use symbols
defined during the current assembly. This psuedo effectively tells
the assembler where to put the floating blocks. The floating
blocks will be allocated addresses within the limits inclusively.
Floating blocks will not be allocated addresses which conflict with
absolute blocks. If a LIMITS pseudo is not specified or an invalid
LIMITS pseudo is found, the assembler will give an error after pass
"W1" and then abort. If the allocator cannot pack the code within
the given space, a standard memory map chart will be printed out,
displaying the blocks which have been allocated as well as the ones
which have not. Then an error message will be given and the
assembler will abort. If more than one LIMITS pseudo appears in
the source, the first one will be used, and the others will be
flagged as errors.

Allocation alogorithm.
The scrambling program has four modes:

1. Mode one tries to allocate the blocks in order. If it
succeeds and 1listing order is specified it exits, else it
switches to mode two.

2. Mode two does a fast scramble of all the blocks. Then it goes
to mode three.

3. Mode three is a compression mode. It swaps the blocks around
trying to fit them into smaller spaces. If after getting done
the blocks fit, it exits. Otherwise it goes to mode four.

4. Mode four is idincredibly slow. On a typical assembly of
BASBOL, it took a half hour a pass. It is very, very unlikely
that mode four will ever be needed on a large assembly.

4

E.

Assembler modes.

a.

When the block work file address is requested the user has two
reply options:

1) If the user answers with "000" the assembler will
function in the nonblock mode. This means that "ORG *"
will be treated will be treated as do nothings, and the
LIMITS psuedo is illegal.

2) If the user gives a valid address, the assembler will
function in the block mode. A block work file will be
opened with the name xxWK.TMP where xx are your
initials. Later on, the start-up program will ask if you
want the code in listing order. 1If you answer "Y", then
the allocating program will not attempt to further
compress the code so long as the code fits when it is in
1isting order.

Printing options.

The assembler offers three methods of output. These methods are as
follows: '

1.

Write the assembler output directly to the printer. This is

done by giving a valid printer address for the assembler
output device.

Write the assembler output to the tape only. This is done by
specifying a valid tape address for the assembler output
device and specifying "000" for the tape printing device.

Write the assembler output to the tape, and after assembly
completion have this tape file dumped to the printer. This is
done by giving a valid tape address for the assembler output
device and giving a valid printer address for the tape
printing device.

VI. ASSEMBLER PSEUDOS.

A.

MODULE

Defines a module title (should be first text line).

ORG
When

in nonblock mode sets the assembler's instruction pointer to

the specified address. In block mode it is used to start a block.

ORGD
Sets

the assemblers data pointer to the specified address.

EQU
Assigns a symbol a value.

TITLE

Issue a form feed if not at top of page and print the specified
comment.

SPACE

Skip the specified number of lines. A null operand implies skip
one line.

- EJECT

Issue a form feed if not at top of page.
PAGE

In nonblock mode it sets the assembler's instruction pointer to the

beginning of the next page (1024 instructions) if not at the
beginning of a page. In block mode this pseudo is ignored.

ASSEMBLE

Instructs that the specified module is part of the current assembly
and is to be assembled after all previously specified modules have
been assembled.

SYMBL

Instructs that the specified symbol file contains symbols which may
be referenced in the current module.

CONT

Instructs that the specified source file is part of the current
module and is to be assembled after all previously specified
continue files have been assembled.

LIST and NOLIST

NOLIST causes the assembler to continue assembling, but disables
1isting. LIST causes the assembler to resume listing. At the
start of a module, the assembler is automatically put into 1list
mode. NOLISTs and LISTs are stacked. This way if two. NOLISTs
appear in a row, two LISTs are required before printing will
resume. Cross references and title pages are always printed.

VII. SYMBOLS.

A.

Local and multiply defined symbols.

If a symbol appears in the tag field of a 1ine, that symbol is
entered in the internal symbol table as a "local" symbol. If the
symbol already appears in the symbol table the line which multiply
defines the symbol is flagged with an error. The symbol is still
entered into the symbol table, but as a "multiply defined" symbol.

External, previous, and undefined symbols.

If a symbol is referenced that is not defined within the current
module, the external symbol tables defined by the SYMBL pseudos are
scanned for the symbol. If the symbol is found in an external
symbol table, that symbol is entered into the internal symbol
table. It will be stored as an "external" symbol if it was defined
within one of the modules of the current assembly. It will
otherwise be store as a "previous" symbol. If the symbol is not
found at all, it will be stored as an "undefined" symbol.

Symbol cross reference.

After each module is assembled the assembler will print out a cross
reference of all symbols defined or referenced within the module.
For each symbol the cross reference will display the symbol's
value, the defining module's name (if not the current one), the
defining 1ine number, and the 1ine numbers of all references to the
symbol within the current module. If the symbol is an external
symbol, an "X" will preceed the 1line number. If the symbol is a
previous symbol, a "P" will preceed the 1line number. Otherwise a
blank will preceed it.

VIII. INSTRUCTIONS.

A.

Syntax.

In general an instruction consists of three fields, an opcode
field, a parameter field, and an operand field. The opcode field
contains the basic mnemonic (i.e. "OR", "ANDI", etc.). The
parameter field contains the read/write and/or carry modifiers
(i.e. ",R" etc.). And finally the operand field contains the
register specifications. (For a more detailed explanation of
instruction syntax see the BNF specification in the back).

Move Instructions.

The move instructions are implemented by using the "OR" and "ORI". -

Some examples are:

1. MV Fx,Fy ==> ORI O00,Fx,Fy
2. MVI n,Fx ==> ORI n,,Fx
3. MVX FwFx,FyFz ==> ORX DD,FwFx,FyFz

Omitted opcode field.

If the opcode field is omitted and the parameter field is not
omitted, the source line is assembled as an "ORI" instruction.

Subroutine branch and return instruction.

Although it is not at first obvious, a subroutine branch followed
by a subroutine return can always be replaced by simply a branch to
the subroutine. The best way to see this is to think of the
subroutine you want to call as the tail end of the current
subroutine. For those of you who still l1ike the idea of using a
subroutine branch followed by a subroutine return, don't. Instead
use the "SBR" mnemonic. It stands for "subroutine branch and
return" but translates into a simple branch instruction.

ASSEMBLY LANGUAGE SYNTAX

The following pages define the syntax of the 2200 Assembly Language in
Backus-Naur Form. The following meta symbols are used:

1.
2.
3.
4.

The "<" and ">" charactors enclose syntax classes.
The symbol "::=" means "is defined as".
The charactor "/" means "or".

"[" ... "]"X means that the entries within may be repeated from
u,n

zero to "x" times. If the "x" is omitted, assume a value of one.

... implies a sequence of elements.

Capital letters and symbols not in "<" ">" are actual letters in
the Tlanguage. Lower case letters represent English language
expositions such as "space". _

ASSEMBLER LINE FORMAT

<micro line>

<pseudo line>

<data line>

[<symbol1>] <delimiter> <delimiter> <comment>
<null>

<assembly line>

N

PSEUDO INSTRUCTION FORMAT

<pseudo line> <pseudo> <delimiter> <comment>

<pseudo> [<symbol>] <delimiter> ORG <delimiter> <address>
[<symbol>] <delimiter> PAGE

[<symbol>] <delimiter> ORGD <delimiter> <address>
<symbol> <delimiter> EQU <delimiter> <word>
<delimiter> LIMITS <address> , <address>
<delimiter> MODULE <delimiter> <comment>
<delimiter> TITLE <delimiter> <comment>
<delimiter> SPACE <delimiter> [<expression>]
<delimiter> EJECT

<delimiter> CONT <delimiter> <file name>

<delimiter> SYMBL <de1imiter> <file name>

NN NN NN NN N NN SSS S

<delimiter> ASSEMBLE <delimiter> <file name>

10

MICRO INSTRUCTION FORMAT

<micro 1line> ::= [<symbol>]

<register instruction>
<extended instruction>
<immediate instruction>
<register multiply or sﬁift>
<extended multiply or shift>
<nibble multiply>

<half byte multiply>
<register branch>

<extended branch>

<nibble branch>

<half byte branch>

<branch instruction>

<aux instruction>

<transfer instruction>

<delimiter>

<micro> <delimeter> <comment>

OR/XOR/AND/DAC/DSC/AC/SC
ORX/XORX/ANDX/DACX/DSCX/ACX/SCX
ORI/XORI/ANDI/AI/DACI/DSCI/ACI
MHH/MHL /MLH/MLL/SHFT
MHHX/MHLX/MLHX/MLLX/SHFTX

MIH/MIL

MIHH/MIHL /MILH/MILL
BLR/BLER/BER/BNR

BLRX/BLERX
BTH/BTL/BFH/BFL/BEQH/BEQL /BNEH/BNEL

BTHH/BTLH/BFHH/BFLH/BEQHH/BEQLH/BNERH/BNELH
BTHL/BTLL/BFHL/BFLL/BEQHL /BEQLL/BNEHL/BNELL

B/SB/SBR

TAP/TPA/TPA+1/TPA+2/TPA+3/TPA-1/TPA-2/TPA-3
XPA/XPA+1/XPA+2/XPA+3/XPA-1/XPA-2/XPA-3

TSP/TPS/TPS+1/TPS+2/TPS+3/TPS-1/TPS-2/TPS-3

<micro> ::= LPI [<rw>] <delimiter> <address>

/ CI0O <delimiter> <byte>

/ SR [<rw>] <delimter> <b-reg>

/ SR <rw control>

/ INSTR <delimiter> <hexdigit> <hexdigit> <hexdigit>
<hexdigit> <hexdigit> <hexdigit>

/ MV [<rw>] <delimiter> <b-reg> , <c-reg>

/ MVI [<rw>] <delimiter> <byte> , <c-reg>

/ MVX [<rw and/or carry>]

<delimiter> <b-ext> , <c-ext>

11

<register instruction> [<rw and/or carry>] <delimiter>
<a-reg> , <b-reg> , <c-reg>

<extended instruction> [<rw and/or carry>] <delimiter>
<a-ext> , <b-ext> , <c-ext>

<immediate instruction> [<rw>] <delimiter>
<byte> , <b-reg> , <c-reg>

<rw and/or carry> <delimter>
<byte> [, <b-reg> [, <c-reg>]]

<register multiply or shift> [<rw>] <delimiter>
<a-reg> , <b-reg> , <c-reg>

<extended multiply or shift> [<rw>] <delimiter>
<a-ext> , <b-ext> , <c-ext>

<nibble multiply> [<rw>] <delimiter>
<nibble> , <b-reg> , <c-reg>

<half byte multiply> [<rw>] <delimiter>
<byte> , <b-reg> , <c-reg>

<register branch> <delimiter>
<a-reg> , <b-reg> , <address>

<extended branch> <delimiter>
<a-ext> , <b-ext> , <address>

<nibble branch>
<nibble> , <b-reg> , <address>

<half byte branch>
<byte> , <b-reg> , <address>

<branch instruction> <delimiter> <address>

<aux instruction> [<rw>] <delimiter>
<b-reg> , <aux-reg>

<transfer instruction> [<rw>] <delimiter> <b-reg>

12

<a-reg>

<a-ext>

<b-reg>
<b-ext>
<c-reg>

<c-ext>

<aux-reg>

<rw>

<carry>

<rw and/or carry>

<rw control>

EXAMPLES :
SR,W1~

sW1
BEQHH

MY

/

FO

23,,F0

75,F2,LAB1

FO,F1

FO/F1/F2/F3/F4/F5/F6/F7/CL-/CH-/CL/CH/CL+/CH+/+/~

F1FO/F2F1/F3F2/FAF3/F5F4/F6F5/F7F6/CLF7
CHCL/CLCH/DCH/DD/FOD

<c-reg>/CH/CL

<c-ext>/CLPH/CHCL/SLCH

FO/F1/F2/F3/F4/F5/F6/F7/PL/PH/SL/SH/K/<null>

F1FO/F2F1/F3F2/F4F3/F5F4/F6F5/FTF6/PLF7
PHPL/SHSL/KSH/DK/F0D

<five bit value>

sR/ ,N1/W2

,0/,1

<rw>

[<carry>]

<carry> [<rw>]

»RCM/ ,WCM

write register FO to data memory and do a
subroutine return.

write a HEX(23) to data memory and copy this
same value to register FO.

branch to "LABl1" if the high nibble of register
F2 equals HEX(7).

copy register FO to register Fl.

13

8-BIT DATA FORMAT

<data line> [<symbol>] <delimiter> <data> <delimiter> <comment>

<data> ::= [<symbol>] DC <delimiter> <value> [<value>]"
<value> ::= <hexdigit> [<hexdigit>Ih*

/ " <character> [<charactor>]" "

/ (<expression>)

*note that "h" must be an odd integer.

EXAMPLES:

DC 81BCOA -- defines a 3-byte constant; each byte represented
by two hex digits.

DC "ABCD" -- defines a 4-byte constant whose value is the
ASCII representation of the string "ABCD".

DC (TAG+3) -- defines a 2-byte constant whose value is the
current value of 'TAG' + 3.

DC 04"STEP" -- defines a 5-byte value.

14

MISCELLANEQOUS

<nibble> ::= <expression>
<byte> ::= <expression>
<word> 1:= <expression>
<address> 1:= <expression>

<five bit value> ::= <expression>

<expression> 1= <term>

/ <expression> + <term>

/ <expression> - <term>
<term> ::= <digit> [<hexstring>]

/ *

/ <symbol>

/ C'<character>'

/ X'<hexstring>'
<symbo1> 1i= <Jetter> [<1etter>/<dig1’t>]7
<delimiter> ::= tab |
<comment> ::= [<character>]N
<héxstring> ::= <hexdigit> [<hexdigit>]n"
<hexdigit> 1i= <digit>

/ A/oo-/F
<letter> ti= A/.../Z
<digit> e:= 0/.../9
<null> 1=

15

ASSEMBLER ERROR CODES

ERRORS:

invalid A-bus specification.
invalid B-bus specification.
invalid C-bus specification.
multiple LIMITS statement.

too many operands.

illegal immediate value.

invalid CIO operand.

origin lower than address of last instruction plus one.
multiply-defined symbol.

invalid R/W field for SR.

name required.

illegal opcode field.

out of page or out of block branch.
invalid HEX codes.

name not allowed.

illegal read/write/carry specification.
invalid HEX on 'INSTR'.

improper or too many file names.
undefined symbol referenced.
illegal value.

invalid AUX register specification.

X< CH NV O UV OVOZZIICrXRXmMOOm >
| U A [T N T N | (N Y Y O C N T ¢ N S AN O T T N 1 O |}

WARNINGS:

1 = A bus Non-extended register

2 = B bus mnemonics used with

4 = C bus an extended instruction.

16

MNEMONIC

AC
ACX
AND
ANDX
BEQH
BEQHL
BEQLH
BER
BFHH
BFL
BFLL
BLERX
BLRX
BNEH
BNELH
BNELL
BTHH
BTHL
BTL
CIo
DACI
DSC
DSCX
LPI
MHHX
MHLX
MIHH
MIL
MILL
MLHX
MLLX
MVI
NOP
ORI
SB
SCX
SHFTX
TAP
TPA+1
TPA+3
TPA-2
TPS
TPS+2
TPS-1
TPS-3
XORI
XPA
XPA+2
XPA-1
XPA-3

MICRO INSTRUCTION CODES

SKELETON CODE

180000
1A0000
080000
0A0000
740000
740000
700000
500000
6C0000
680000
680000
4C0000
440000
7C0000
780000
780000
640000
640000
600000
178000
300000
140000
160000
190000
1EC000
1E8000
3C8000
3C0000
3C0000
1E4000
1E0000
20000F
200000
200000
540000
OE0000
124000
0B8000
018200
018600
01C400
058000
058400
05C200
05C600
240000
038000
038400
03C200
03C600

17

MNEMONIC

ACI
Al
ANDI
B
BEQHH
BEQL
BEQLL
BFH
BFHL
BFLH
BLER
BLR
BNEHH

- BNEHL

BNEL
BNR
BTH
BTLH
BTLL
DAC
DACX
DSCI
INSTR
MHH
MHL
MIH
MIHL
MILH
MLH
MLL
MV
MVX
OR
ORX
SC
SHFT
SR
TPA
TPA+2
TPA-1
TPA-3
TPS+1
TPS+3
TPS-2
XOR
XORX
XPA+1
XPA+3
XPA-2

SKELETON CODE

380000
2C0000
280000
5C0000
740000
700000
700000
6C0000
6C0000
680000
480000
400000
7€0000
7€0000
780000
580000
640000
600000
600000
100000
120000
340000
000000
1CC000
1€8000
3C8000
3C8000
3C0000
1C4000
1C0000
200000
0200E0
000000
020000
0C0000
104000
078000
018000
018400
01C200
01C600
058200
058600
05C400
040000
060000 -
038200
038600
03C400

AC[X]
ACI

Al
AND[X]
ANDI

BEQY L

BER

HH
HL
H
BF{L
LH
LL

BLER[X]
BLR[X]

HL
H
BNE y L
LH
LL

BNR

HH
HL

BTL
LH
LL

cI0
DAC[X]
DACI
DSCLX]
DSCI
LPI

HH

M {Eh} [X]
LL

INSTRUCTION SUMMARY

Binary add with carry.

Binary add with carry immediate.
Binary add immediate.

Logical and.

Logical and immediate.

Branch.

Branch equal immediate.

Branch equal.

Branch false.

Branch less than or equal.
Branch less than.

Branch not equal immediate.

Branch not equal.

Branch true.

Control 1/0.

Decimal add with carry.

Decimal add with carry immediate.
Decimal subtract with carry.

Decimal subtract with carry immediate.
Load PC's immediate.

Binary multiply.

18

HH
HL
H
MI §L
LH
LL.

MVLX]
MVI
NOP
ORL[X]
ORI

SB
SCLX]

HH

HL
SH{LH} [x]

LL

SR
TAP

o)
TPA | +2
TPS | +2

TSP
XOR[X]
XORI

[;1
XPA |¥2
¥3

Binary multiply immediate.

Move.

Move immediate.

No operation.

Logical or.

Logical or immediate.
Subroutine branch.

Binary subtract with carry.

Shift.

Subroutine return.
Transfer auxiliary to PC's.

Transfer PC's to auxiliary.

Transfer PC's to stack.

Transfer stack to PC's.
Logical exclusive or.

Logical exclusive or immediate.

Exchange PC's to auxiliary.

19

SPECIAL NOTATION

. OPCODE SUFFIXES:

H = high 4-bits of register.

L = low 4-bits of register.

HH = high 4-bits of A and B.

HL = high 4-bits of B, low 4-bits of A.
LH = Tow 4-bits of B, high 4-bits of A.
LL = Tow 4-bits of A and B.

X = extended operation.

PARAMETER FIELD MNEMONICS:

R = read.
Wl = write 1.
W2 = write 2.
RCM = read control memory.
WCM = write control memory.
0 = set carry to 0.
1 = set carry to 1.

20

N < \’VAN G) LABORATORIES.INC.

[N

2600 MICROCODE DEVELOPMENT SYSTIM
January 11, 1977
Revised October 21, 1979

SYSTEM DESCRIPTION
The 2600 MDS is a combination of hardware and software that provides the

user with convenient 2600 microcode debug capability. Registers, data,
and instructions within the 2600 czn be. examined and wmwodified.

. Execution can be started and stopped at specified instructions or single
‘stepped, and register dumps can be performed at specified instructions.

The 2600 MDS hardware consists of a debug system coupled to a modified
2600. The debug system is a standard 64K 2200VP or 2200MVP with a 56K
partition, a terminal with a 24x80 CRT, and two 2250's. The working
2600 is a standard 2600 with CRT, keyboard, disk, 2250 and at least 24K
of control memory. One of the control memory boards is replaced by the
MDU (microcode development wunit) board and a jumper on the 2600

. motherboard is added for disabling control memory. Typically, the

2200's are multiplexed to a floppy disk and to a 10 MB disk.

The debug 2200 may, optionally be equiped with an MDU clock, which is
used for execution timing. The MDU clock is a 2228B controller loaded
with a timer microprogram. The MDU clock is connected to the MDU board
in the 2600.

-

L L s a A BB & A A A SN A . t e iR S A L P a P e W, R e amad . VN AUNS MG NG mammgn R, E ey ey

DEBUG SYSTEM ‘ WORKING 2600

2600

]
! !
T CONIROL Y:=MORY

! (12r)

'¢ CONTROL MEMORY !

]
1
! ']
! 1
. . ‘ ’
1 —¢ (12K) WITH MDU !
¥DU CLOCK e+—— T ! -
“2250 (/034) et —— ! !
CRT ! : [CRT 1
. 1 !
= ! :
!)
, ,

. KBD ! KEBD
53 2250 (/OFE) i e 7230 (JOFE)
! DISK ! i -~ DISK
3 ~ DLSK p 1 Te DISK
: FLOPPY
- DISK ' *
10 mb
DISK
2

The 2600 has two states of operation.. It powers up in the first, or RU!
state. Executing instructions in PROM zutometiczlly puts the 2500 inzo
RUN state. In this statr the machine 1s executing standard microcoie,
2s a normel 2600. After ¢.1e MDU hes 'nal:ed" the CPU, the machinz is in
the DESUG state, &and is executing cus microcode, which is
comzmunicating with the debug 2200 via 2259 Tne dedbug nicrocode
resides at the high end of memory (5E00 - ‘

(e
<O
1

w4

The BASIC program, '2600¥DU", 1in the desbug 2200 displays dabug
information and allows operator interaction. ¥When the system returns to
RUN state, all registers are first restored to their previous values via
the debug microcode, then control 1is paessed back to the standard
microcode. Only microcode resident in this memory may be stepped and
debugged (PROM may not be stepped).

A Content Addressable Memory (CAM) containing eight 16-bit words resides
in the MDU. On power up, the outputs of this CAM are inhibited.
Writing to this memory is done via the 2250 from the debug 2200 using
the following sequence:

WR, CBS '00', OBS 'WX', OBS 'YZ' repeated 8 times
where:

WX = high 8-bits. of address
YZ low 8-bits of address

After the CAM has been loaded, the debug 2200 mzy enzble the CAM with a
CBS of 10. It may also be disabled again with a .CBS of 20. If the CAM
is enabled, and the system is in the RUN state, the MDU continually
monitors the accesses to the control memory. Whenever a match is found
between the IC's and one of the CAM locations, a "halt" 1is initiated.

A CBS of 30 (from the debug 2200 to the ¥DU) will zlso create a 'halt"
condition, if the machine is in RUN state. . .

Upon any "halt" condition, the MDU blocks the instruction from the RAM
CM, and substitutes a SB to the debug microcode (switch selectable) in
its place. This pléces 'the machine in DEBUG state, and the custom
microcode communicates with the BASIC program in the debug 2200. Once
the machine is in DEBUG state, subsequent '"halt" conditions compare from
CAM, CBS 30 from debug 2200 are ignored.

Two new instructions, no-ops to the CPU, are interpreted by the MDU as
special commands:

CIOC -- returns the machine to RUN state after 16 cycles of delay.
CIO0S ~-- generates a new HALT after 16 cycles of delay.

CIOC and CIOS are ignored by the system whenever CAM 1s disabled.

Iil. DEBUG MICROCODZ FURCTIOXN

The 2600 hes two states of operaticn. It will powsr up in RUN state.

in this stzte, the machine is exzccting stencard cicrocode, 2s 2 norze!l

2600. Aftrer the MDU has '"nal:zed" the (P, the wmechine is in the DE3US

stzte and is executing custem Cedug =icrococe, which 1s comzunicating

with the debug 2200 wvia 2250's. Tne debug =microcode periorms the

functions listed below:

- L H41T (eater DEBUG mode) -- interrupts the 22007 and sends viteal

registers and curreat IC's.

2. STEP -- instruct the DU to execute one 2600 microinmstruction.

~.
.th - . .

3. GO -- instruct the MDU to continue 2600 execution.

4, XR (examine registers) —- send registers and stack vazlues to debug
2200.

5. RR (restore registers) —- receive register values from debug 2200.

6. XD (examine data) — read 2600 cataz wmemory and send it to debug
2200.

7. CD (change data) -~ change 2600 data memory.

8. ID (initizlize data) =-- initislize 2600 data memory to a specified -
value. - .

9. XI (examine 1instruction) -- read an instruction from control

memory and send it to debug 2200.

10. Cl (change instruction) =-- change an imstruction in 2600 control
memory. '

-
[

11. II (initizlize inmstruction) =-- 1initialize control memory to
specified instruction.

I11.

- IV.

DEBUG INTERFACE CONNECTORS

the above functions

The cormunications channe., 6 necessaTty to izpl
t Z , one in the 2600)

consists of two standard 2250's (one in
with a cable wired as follows:

031 -- 0384%IBl -- IBS

03S «>1IBS
RBI «>CPB
COBl «7ENDI

The cable is symmetric, so the reverse channel looks the same.
A command sequence consists of:

CBs 01

0BS XX -- (command)

CBS 00

followed by one or more OBS/IBS 2s needed.

OPERATING INSTRUCTIONS
1. Load 2600 with the debug microcode (@DU).
2. Load debug 2200 with "2600MDU".
+CLEAR
¢SELECT DISK /xyy
:LOAD RUN '"'2600MDU"
3. Pressing STEP ('l5) on the debug 2200 keyboard will halt the 2600

placing it in debug state. "2600MDU" will display the registers
and await a debug command. '

()

V. DEBUG - COMMANDS

When the 2500 is in AUY

s 00 -displays "2600
IXECUTING...". The only o>zmend

] 2
the dabug 2200 is: Iw

ts the current values of the
sug 2200 displays the register
om the operator. The é&isplay

STzP (key 'l5) -- hal: 2600

The 2600 enters DEBUG stzte and transci
registers, etc, to the debug 2200. The de!
velues and waits for a debug comend fr
looks as follows:

-XR- ' 0.00 ¥s.
LLAST 0000 - OR FO,F0,F0 800000
REXT 0001 - OR F0,F0,F0 800000
' BREAKPTS
K SH SL CH CL PH PL F7 F6 F5 F4 F3 F2 Fl FO
00 02 00 00 00 00 00 00 OO 00 00 00 00 00 00 STACK
. 8269
AUX 00-07 0000 0000 0000 0000 0000 0000 0000 0000 6660
AUX 08-OF 0000 0000 0000 0000 0000 0000 0000 0000 554F
AUX 10-17 0000 0000 0000 0000 0000 0000 0000 0000 443E
AUX 18-1F 0000 0000 0000 0000 0000 0000 0000 0000 332D
0000 - 00000000 00000000 00000000 00000000 cestsrerisceacinns
Debug command? . '

The last instruction executed, next instruction to be executed, register
values, the top few levels of the hardware subroutine stack, and 16
bytes of data memory are displayed. Execution time is displayed if the
system is equiped with an MDU clock.

The following commapds are then allowed:

1. XR (key '0) -- Exzmine Registers
Displays the current contents of a2ll the 2600 registers, the last
and next instruction to be executed, and 16 bytes of data memory
starting at the current value of the high 12-bit of the PC's.

2. CR (key 'l) -- Change Registers
Changes the contents of the specified registers to the specified
values. Eight bit registers are specified by their mnemonic names
(i.e., K, SH, SL, PH, PL, CH, CL, FO, Fl, ...F7); aux registers
are specified by 1 or 2 hexdigits (0 - 1F). :

3. ZR (key '17) -- Zero Registers

All 8-bit and aux registers are set to zero, except for SH whi'z_
is set to 0215 (CRB = busy). .

4, - XD (key '2) -- Exznine (Change) Date

4 Sixteen bytes of de-a2 memory from the spscified sterting adiress
. ere displayed in b~ . hexadecimal and ASCII. Pressing CR causes
the next 16 bytes to be dispizwvac Datea cen be changed ©bY
entering EDIT mode, positioning the cursor, typing in the rtew

dzta, and pressing CR.

5. DD (key '3) -- Define Data
The user can define sections of deta memorv to be displayed
whenever XR is performed. The name, address and length of the
data area are entered after pressing DD.

S 6. :ID (key '19) —- Initialize Data

Sets each byte of mewmory from the specifiea, starting address
through the specified ending address to a. specified value.

7. LI (key '6) -- List Instructions
The instructions from the specified starting address are displayed
in mnemonic and hexadecimal form. Instructions are displayed in

sections; press CR for next section.

8. EI (key '22) -- Enter Instructions

Change the contents of instruction memory starting at the
specified address by the instructions specified in mnemonic
format. EI displays the old instruction after the address of the
next instruction to be entered. Entering a null line (CR only)
skips the current instruction (instructions is not modified). EI
is terminated by pressing another debug special function key. If
an entered line is syntacticzlly incorrect, it will not be entered
and must be retyped. '

See "2200VP Resident 2600 Assembler" for a detziled description of
instruction mnemonics. ‘

9. 11 (key '23) ---Initialize Instruction

Change the contents of control memory starting at the specified
address through the specified ending address to a specified
instruction.

10. VD (key '7) -- Verify to Disk h .

The contents of the specified disk file is’ compared against the
current contents of 2600 instruction znd/or data wnemory. Any
differences are displayed.

‘ : 11. LD (key '8) -~ Load from Disk

The contents of the specified disk file are transferred into 2600
instruction and/or data memory.

o

.

13.

14,

. 15'

16.

17.

18.

19.

20.

. TO (key '27) -- Trace Off

SD (key '24) -- Szve on Disk

The current contents of 2500 instructicen and/or date wmemory (orgy -
portion thereof) z.e stored in the specifiad disk file. .

TR (key 'll) -- Trace On

Insert a Trace-On breakpoint at the cspacified location. Before
the execuction of the instruction at the spacified location, trace
mode is on. The 2600 registers will be displaved (szme format as
BH) after each instruction is executed until sinulation terminates
or a TO breakpoint 1is encountered. TR may be turned on
immediately. '

Insert a Trace-0ff breakpoint at the specified location. Before

"the execuction of the instruction at the specified location, the
trace mode will be turned off. Trace may be turned off
immediately.

BH (key 'l12) -- Breakpoint Halt

Insert a Breakpoint Halt at the specified location. Execution
will terminate before the execuction of the instruction loczted at
the specified address. When the termimation occurs, & message
will be displayed indicating the Brezkpoint Hzlt followed by
display of the registers. o

BC (key '28) -- Breakpoint Continue

Same as Breakpoint Halt (BH) except after the display of the
registers, simulation continues at the next instruction.

BR (key '27) =- Breakpoint Remove .
Remove all or a specified breakpoint.
I1C (key '30) -- Set Instruction Counter

Set the IC's to a specified value. 2600 execution will continue
at this address when GO, STEP, or STEP+l is pressed.

GO (key '31) -- Continue Execution
Pressing '31 after 2600 execution has been halted causes execution
to continue at the next instruction (i.e., current value of IC's

displayed).

STEP (key 'l5) -- Step Execution

Pressing 'l15 after 2600 execution has been halted causes the nex."-"
instruction to be executed after which execution halts.

21.

22,

23.

24.

25.

26l

STEP+1 (key '14):-; Subroutine Step

4

STEP+]l functions the same as STEP except that if the instruction
to bz executed is a subroutine bdranch, SB, the entire subroutine
is exzcuted before execution is halted. '

PRINT (key '16) -- PRINT

Causes tne output from the next command to be printed (/215)
rather than displayed on the CRT.

zC (key '9) ~-- Zero Clock

Zeroes the MDU clock.

CT (key '10) -- Clock On

Insert a Clock On breakpoint at the specified location. Before

execution of the instruction at the specified location, the MDU
clock is turned on. The clock may be turned on immediately.

co (key '27) —- Clock Off
Same as CT except clock is turned Off instead of On.
cC (key '4) -- Calculate Checksums

Calculate checksums on control memory and data memory.

< \7'\7 }':._NG) LABORATORIES{ .mc.

e

MIMORANDUM

TO: File
FROM: Bruce Patterson
DATE: March 26, 1980

“SUBJECT: . 2200 Development Clock

Function: 2200 Development Clock is an event timer that can be triggered
under program control or by an externzl hardware. event.

Hardware: 2228B or 2228C with timer PROM (chlp file 6BPCLOCK), installedL
) Controller address is /0FD.

The timer PROM.is a simple counter program coupled with a command
"decoder which interfaces with the 2200 or an external event
probe. (Pin xx on cable connector).

Resolution: Approximately + 50 usec.

Calibration: The tick count can be converted to rezl time by multiplying
the count by the -calibration factor. Determine the
calibration factor by allowing the clock to execute for
several hours; then, calibration factor is the actual time
divided by the tick count. The calibration factor is a
function of the clock board, not the CPU in which the &lqck
is installed. : '

Commands: The timer program responds to the following commands.

. Zero clock -- $GIO (4400)

. Clock On -- $GIO (L401)

. Clock Off -- $GIO (4402)

. Read clock -- $GIO (4403 C620) T$ (4 byte binary count)
. Enable external probe —- $GIO (440d)

. Disable external probe -- $GIO (U4L03)

. _Reset Clock Board -- $GIO (U508)°

0% 11 ities:

* EVENTIME -

0S Activation:

MDU:

for
partitions. The 0S will ~turn ¢
partition(s) is exechting. tn

BPCLOCK == activate clock under Xkevtozrd . gontrol. Provides

$ample clnck access SUL\"‘OJ‘l“ES,
'_ -pe specified program event.

The" 2200MVF OS (Release 1.9 or later) cazn be set up to keep.
tragk of CPU execution time f ven ,..a***t;cn c» for 211
Yoek on while the specified
dditicnzl $INIT paremeter is
used to instruct the 0S to -acges

CSIMET (4%, T, C$, PS(), DE(), P$, HEX(2b))

ebr= 10-4f 2ll execution time is to be measured.
‘ab = .3x if execution ‘time of par‘tltlon (X+1) 48 to be
-measyred.

. ‘The utility BPCLOCK can be used to .obtain execution .tdme.

For example, if pertiticn 3 is to be timed, BPCLOCK .can be
lozded into ‘a dlffe"nt,_partitl.pn with a -yifferent
terminal. Zero clock count, ‘perfcrm-event..in partittons3s,

read tzlock. Often, it is usefv;}i to semple the executifen
. . time of a partition by zeroingithe clopk count and-*then

reading the clock -after some. ‘known - agtual time peried, iAn

. prder to deterniine the partltio'rs actnal 1oad on the TPU.

Time spent waiting for ‘170 devices* is -mot counted zzs
execution t:.me.

The* clock can be attached to the MDU board with:iua standard modem cable
(external clock probe) ‘Execution time between - breakpoints will.:be

measured.

	System Architecture
	2200 Hardware
	MVP Operating System
	Memorandum: Revisions to 2600 Hardware Structure
	Memorandum: 2600 Calculator Structure
	A: Register Structure
	B: Memory Addressing Structure
	D: 2600 Instruction Set
	E: Timing Sequence
	F: 2600 Trap Locations
	G: Memory Parity
	Appendix A: Detailed Description of the Instruction Set
	OR -- OR
	XOR -- EXCLUSIVE OR
	AND -- AND
	SC -- BINARY SUBTRACT with Carry
	DAC -- DECIMAL ADD with Carry
	DSC -- DECIMAL SUBTRACT with Carry
	AC -- BINARY ADD with Carry
	M -- BINARY MULTIPLY
	SHFT -- SHIFT
	ORI -- OR Immediate
	XORI -- EXCLUSIVE OR Immediate
	ANDI -- AND Immediate
	AI -- BINARY ADD Immediate
	DACI -- DECIMAL ADD Immediate with Carry
	DSCI -- DECIMAL SUBTRACT Immediate with Carry
	ACI -- BINARY ADD Immediate with Carry
	MI -- BINARY MULTIPLY Immediate
	TAP -- TRANSFER AUX to PC's
	TPA -- TRANSFER PC's to AUX
	XPA -- EXCHANGE PC's and AUX
	TPS -- TRANSFER PC's to STACK
	TSP -- TRANSFER STACK to PC's
	LPI -- LOAD PC's Immediate
	SR -- Subroutine Return
	SR, RCM -- Read Control Memory and Subroutine Return
	SR, WCM -- Write Control Memory and Subroutine Return
	CIO -- CONTROL INPUT/OUTPUT
	BT -- BRANCH IF TRUE
	BF -- BRANCH IF FALSE
	BEQ -- BRANCH IF EQUAL to Mask
	BNE -- BRANCH IF NOT EQUAL to Mask
	BER -- BRANCH IF EQUAL to Register
	BNR -- BRANCH IF NOT EQUAL to Register
	BLR -- BRANCH LESS THAN Register
	BLER -- BRANCH LESS THAN OR EQUAL Register
	SB -- Subroutine Branch
	B -- Branch

	Index
	Virtual Assembly Language Editor
	2600 Assembler Specifications
	2600 Microcode Development System
	2600 Development CLock

