03:0071-1

Customer
Engmeermg
Division

J. Carter Thompson
326 llimano St.
Kailua, H1 96734

LAY &

IV.A3M

up
apu \row-\es ADTusT

MOdel 2200MVP s2:covams w3

c%u; e
PLB UST 122«

Mamtenance
« Manual ..o

Q

Kailua, Hl 96734

(WANG)

REORDER NUMBER
729-0584

MEUS L33
Pom uwp Disa

J. Carter The 4103
m
326 limapg sﬁ;s,o"

Kailua, 1y 96734

2200 COMPUTER

Model: MVP

J. Carter Thom S0
326 Himano Spt:. B
Kailua, HI 96734

COMPANY PROPRIETARY STATEMENT

This document is the property of Wang Laboratories, Inc. All information contained
herein is considered Company Proprietary, and its use is restricted solely to assisting
you in servicing Wang products. Neither this document nor its contents may be
disdlosed, copied, revealed, or used in whole or in part for any other purpose without
the prior written permission of Wang Laboratories, Inc. This document must be re-
turned upon request of Wang Laboratories, Inc.

Customer Engineering
Product Maintenance Manual 729-0584-A

&" " - .

4103
PREFACE

This documentation package for the 2200MVP Computer consists of five
separate publications including a basic Product Maintenance Manual (PMM),
along with a Service Newsletter (SN) and three Product Service Notices (PSN's)
inserted at the end of the PMM. The five publications are as follows:

1. PMM 729-0584: This version of the 2200MVP Computer PMM contains a
new Illustrated Parts Breakdown (IPB) for the 2200MVP-A to replace
the original Bill of Materials (BOM) in Appendix E

2. SN 729-0586: 2200VP/MVP Fan Replacement With Large I1/0 Controllers

3. PSN 729-0813: Model 2236MXD (WL# 177-3236-1) MUX/Controller

4, PSN 729-0814: Model 22C32 (WL# 212-3012) Triple Controller

5. PSN 729-1020: 1Installation of Option "C'" Into 2200 MVP System

The scope of this documentation package reflects the type of maintenance
philosophy selected for this product (swap unit, printed circuit assembly,
chip level or any combination thereof). 1It's purpose is to provide the
Wang-trained Customer Engineer (CE) with instructions to operate, troubleshoot
and repair the 2200MVP Computer,

Second Edition (January 1984)

This edition of the 2200MVP PMM obsoletes document numbers 729-0584,
729-0586, 729-0813, 729-0814, and 729-1020. The material in this document may
only be used for the purpose stated in the Preface. Updates and/or changes to
this document will be published as PSN's or subsequent editions.

This document is the property of Wang Laboratories, Inc. All
information contained herein is considered company proprietary, and its use is
restricted solely for the purpose of assisting the Wang-trained CE in
servicing this Wang product. Reproduction of all or any part of this document
is prohibited without the prior consent of Wang Laboratories, Inc.

(:)Copyright WANG Labs., Inc. 1984

SECTION

6.1
6.2

6.3

ASSIGNMENT, ATTACHMENT, AND FOREGROUND/BACKGROUND PROCESSING ...5-9
5.6.1 ASSIGNMENT tuvevnennsnanenccsnansansenssasnsossansnsnsesd=9
5.6.2 ATTACHMENT .cvvevnnncnnacnnnse
"RELEASING"™ A TERMINAL ...ucvcvennsansrsescssacsosnnsnssssnnneaad=ll
"RELEASING™ A PARTITION ..seeceencnssccescancassrsssserssnosneasabd=13
"GLOBAL" PARTITIONSccuveecvarcaresrsscncscnssssassssssnssnsb=15
"UNIVERSAL GLOBAL" PARTITIONS ..vvvereescnasosvecsessstannanssoesd=15
USER PROGRAM EXECUTION ...civeveecnvnsnersasscrasnssssssnssananssb=1b
501101 GENERAL siveereessoovreessncsasrsascnncscsansasssnasasesed=16
5.11.2 SUBROUTINES .iveveescnescarasscansnrsonvssssssssnssaseasad=lb
5.11.3 THE TEXT POINTER, THE POINTER TABLE,

& INTERNAL STACKS seucveccasnssnsrnenssnsesnsanaa
ALLOCATION AND HANDLING OF PERIPHERALS .4.ivsvseceavne vrerssesssm=20
5.72.17 GENERAL s0uuivvennsnnsansonnransasennsasssnanssssnns +e0s5=20
5.12.2 BACKGROUND PRINTING sevevevsannncrannvones

llllo.l.tCOIQ---nlcnoooooc5‘10

sk e emae --co-cl5-23

& DIAGNOSTICS

GENERAL INTRODUCTION .ovusvusossncanssonsos
MICROCODE DIAGNOSTICS ..isveensocsasssnnsonsourssssssasnasasances
6.2.1 LOADING SYSTEM FILES sosevcenssvscnsosvssavosonsnsenss
6.2.1.1 BOOTSTRAP SPECIAL FUNCTION KEYS .vvveececens
MICROCODE DIAGNOSTICS DESCRIPTION
USER DIAGNOSTICS saaans resseans

i

LU S R R R R A I B R I

.
.
.
.
.
.
.
.
.
.
. . . @
A OO

t
WO~ AOTINN = = o

3
. LR N N N AN]
-

2

3

4 FIELD SERVICE DIAGNOSTICS .vvussncencavsocaannannosans
5 SPECIAL~FUNCTION KEY DEFINITIONS FOR BOOTSTRAP MENUS ...
E
1
2

6.2.
6.2.
6.2
6.2.
SYSTEM DIAGNOSTIC DISPLAYScuvevenuenen
6.3
6.3

. CPU DIAGNOSTIC L A I R A) LI IR IR S B I A BN Y R AN R R BT R B R R SCRE BN B I -
L] CONTROL MEMORY DIAGNOSTICS L N N A I A I A N R R I A S) 6"11!

«2.1 ADDRESSING ...vvveviverencorvvonsnanssssncssasssasnsab=11
2.2 MAT C&S .. vvvuvnnens Teesteiararaeertenarenaa ceesrans 6-11
+2.3 ROWPAT T 6-12
DATA MEMORY (USER MEMORY) DIAGNOSTICS
.1 ADDRESSING +evvcvvvncnncnn ttteeserrasrraranres srasas 6-13
«2 MAT C&S siivniinvnnneerosnsnnsorsocsosnvonnssssannsns 6-14
. «3 ROWPAT . ..iiuieieeienesvonearennsnnssnsnsnssscnrsnssesf=15

6.3.“ DIAGNOSTIC ERROR MESSAGE INFORMATION & IDENTIFICATION
OF FAULTY RAMS ..ciiivevennas tarsesensasannne crecssaalb=16

4.1 ERROR MESSAGE INFORMATION FOR CONTROL MEMORY

TESTS vevesrennnnnssossans

6.
6.
6.

LU UJLU

--o--o-o-..--o-u--ccon-.6-16

4.2 ERROR MESSAGE INFORMATION FOR DATA MEMORY TESTS6-18
4,3 MEMORY DIAGNOSTIC INTERPRETATION USING THE
MEMORY ERROR CHIP IDENTIFICATION (MECI) PROGRAM ..6-22
6.3.4.4 MEMORY DIAGNOSTIC INTERPRETATIONS BY DIAGRAM6-22
6.3.5.- REGISTER DIAGNOSTICS ..vvvevenesscensossasnssasassassnsab=26
GENERAL PURPOSE REGISTERSuivvveeencscesvsnsess b=26
GENERAL REGISTERS ERROR DISPLAYS sv.vevverenaness .ea6-27
AUXILIARY/STACK .iviuvnennnssesasonsasnannrasasssnsess0-28
AUXILIARY/STACK ERROR DISPLAYS .sussevennsonseraensssb=29
. STACK/AUXILIARY teserersanestanasssessesesssb=-30
.3. STACK/AUXILIARY ERROR DISPLAYS .iveeeervenanasssanest=31
BASIC~2 LANGUAGE DIAGNOSTIC DISPLAYS sivevvvveeccsssssssnsnconss 6-32
2236D AND 2236MXD DIAGNOSTIC PROCEDURES suivvesvscacanssnversoasB=34

3.
6.3.
6.3.

[.
s le e
3
ele s

.

OO h
WL W W W
O RORE. R WG I

U N

ix

SECTION 7 SYSTEM-LEVEL MAINTENANCE, ADJUSTMENTS, AND TROUBLESHOOTING

7.1 PREVENTIVE MAINTENANCE ..uvevesvcscocasescnoncsocasavsnsvsnsnssel=] ‘
T.1.1 CENTRAL PROCESSING UNIT ..uveescessceccacssnsscvascasasasi=]l .
T.1.2 2236D INTERACTIVE TERMINALS .iveveescscssvasrassnsassnesl=2
T.1.3 PREVENTIVE MAINTENANCE FOR SYSTEM PERIPHERALS ...c00esesT=3
7.2 SYSTEM LEVEL PREVENTIVE MAINTENANCE ..cevevecvsavcescsssocansnssl3
T.2.1 LUBRICATION vevvennsososnasasasnanssncsssasssassnssnsnans (™3
SYSTEM ECN'S eeveececacnvesonsanansanssancscssessssnsnsesl=3
TMENTS vevveerenanonnes D

T.2.2
7.3 ADJUS
1 RECOMMENDED TEST EQUIPMENT/TOOL LIST .ovveevsacenseacesel=t
2
3

2
Ju
7.3.
7.3 CPU VOLTAGE ADJUSTMENT PROCEDUREeeseeessnssnanvaesaT=5
7.3 2236D ADJUSTMENTS ..vveessesescscrcosoasssacasnnsnsnssaal=l
3.3.1 2236D VOLTAGE ADJUSTMENT PROCEDURE ..vseeveesossceesT=T
3. 3 2 VIDEO DISPLAY UNIT ADJUSTMENTS .veveceeosesesseonnassT=8
7.3.3.2.1 SAFETY WARNING .cvuiceenncarnnsunassnoncnasensl=8
7.3.3.2.2 MOTOROLA DISPLAY CHASSIS sevvscsssesnssecnsesl=9
7.3.3.2.3 WANG DISPLAY CHASSIS svnseessanssassscacsnsasimi2
TROUBLESHOOTING THE 2200MVP ...vsecessecsesnssssacssvaonssscsssel=15
T.4.1 THE CENTRAL PROCESSING UNIT .v.iceceevccvrsorsnsssacnasesl=15
7.4.2 THE SYSTEM PERIPHERALS teeevscsunvencsssssscosssccsaneael=ib
7.4.3 2200MVP TROUBLESHOOTING FLOWCHART ..ivescosessscsccanessT=16

7
7

.

7.4

SECTION 8 UPGRADES/CONVERSIONS
8.1 VP TO MVP CONVERSIONS vvvvvsreonsasvesssscascssssncsssancsnsonassssdm
CENTRAL PROCESSING UNIT .vvueeeessucscsoscsnonsssasecnsabn
2270 TO 2270A-D CONVERSION .e.unvsersesasanasosacssssseed=
2270A TO 2270A=D CONVERSION ..vssnnsansassasvevveronvased
2236 TO 2236D CONVERSION 4t.viveessssnconacasseonnsossassd=
2236MXC TO 2236MXD CONVERSION .soivevessnnsnnccsscsvsvaonel=
P~A CONVERSION 4eveeeenoessossonessssasanaanssssssssassesabm
8
8
8
8
8
8

T
8.
8.
8.
8.
8

XPANDED MEMORY suviscensessoasnacnossocnsssssansnassasnsssls
BOOTSTRAP PROMS .cvvevncevessnevacssasasstssnsransnnnsasasaO=
OPERATING SYSTEM suivuveacassnersssssssanascsccssssssssssnlm
DIAGNOSTICS sesncsnnsccanccssesssssesssssnssassssssnsnnseld=
HARDWARE CHANGE ..evsescercnssasssvssnnnvrnsassscsssnnnnesO=
CONVERSION KITS ciuvesssucovscssncacsnassnsassanssnosnanaeelm

NEWN = E\n TN o
m

i
WWWNNN o ===

APPENDIX A 2236D CHARACTER SET ...sc20.- caeans tesasarenrasrsaaaarenn . A-1
APPENDIX B 2200MVP ERROR CODEScovnvrsrrsevnncransvassssssssnnssns B-1
APPENDIX C CPU MOTHERBOARD (6798) MNEMONICSecevacvessasnscsssss C-1
APPENDIX D 2200MVP SIGNAL RUN LIST ...vcicusscaecscccacesnnsessasane . D-1
APPENDIX E BILL OF MATERIALSv.cce.s caresurrscasenraansans ceceane E-1
APPENDIX F ELECTRICAL SCHEMATICS AND ASSEMBLY DRAWINGS veo F-1
APPENDIX G 2200MVP-128/512ccivevnnoccas teessssrNaveeeessansas .o G-1

APPENDIX H 2275 MULTIPLEXER/MULTIPLEXER EXTENDER OPTION H-1

APPENDIX I CPU/MEMORY PCB UPGRADE OPTIONSevccoansssarsnesssane 1-1

SECTION 3
SYSTEM INSTALLATION

3.1 GENERAL

This section contains installation, checkout, and system
interconnection instructions for the Model 2200MVP computer system,
Because of the wide range of peripherals available to this system, it
would be impractical to present here a full installation procedure for
each. All available peripherals are fully documented in other Wang or /””
OEM publications. PFor complete information on any specifie
peripherals, refer to the 2200MVP SYSTEM-LEVEL DOCUMENTATION list,
contained in the preface of this manual.

3.2 UNPACKING AND INCOMING INSPECTION

Each peripheral model has its own ingpection procedure. Refer to
the maintenance publications named in the 2200MVP System-Level |
Documentation 1list for specific unpacking and inspection procedures.
In all cases, the critical assemblies must be inspected, first for

damage and then for proper adjustment. |

The following general guidelines for unpacking and inspection
apply to all 2200MVP system units:

A, Check to be certain that all equipment (peripherals, cables,

stands, etc.) has been delivered.

B. Unpack each unit, using extreme caution, especially with the
workstations. For shipping, larger peripherals are generally
bolted to wooden skids and enclosed in cardboard shipping boxes.
Carefully remove these packing containers, using pry bars and
open-end wrenches as needed.

Inspect each unit for shipping damage. Immediately report any
physical damage to the shipping carrier and the Home Office.

Move the units to their permanent locations. During transit,
protect the cabinets from scratches, keeping the protective
wrapping on the units until they are in their final positions,

Remove the covers from the CPU and other peripheral devices.
Remove any shipping clamps. Inspect the units for damaged or
loosened assemblies. Also check for loose hardware. Ensure that
the units are throughly clean. Be certain that each printed
circuit board, including the power supply board, is in its proper
location and fully seated.

Assemble the peripherals, as necessary. For workstations, this
step will include the installation of PC boards; for other
peripherals, this step will include the installation of

acceasories, such as paper racks for printers.
Inspect the storage media (diskettes, tapes, ete.) for damage.

Check the electrical wiring of the computer room to ensure that
the electrical requirements of the 2200MVP system will be met.
Pay particular attention to grounding. This topic is covered 1n
detall in Section 2.

Set the device switches and baud rate switches where applicable,
as desceribed in the following paragraphs. Also where applicable,
set the AC voltage (115/230) and line frequency {50Hz/60Hz}

switches.

Route peripheral cables to the CPU as described in section 3.5.

3-2

3.3 BAUD RATE SELECTION

Four 2236D Terminals can be attached to one 2236MXD controller,
and a maximum of two 2236MXD controllers may be used in a 2200MVP
system.

The baud rate setting of the each port of the 2236MXD controller
must match the baud rate setting of its corresponding terminal. For
systems used in local operation (without modem), the baud rate may be
set as high as 19.2K baud, regardless of cable length. For remote
operation, the baud rate of the terminal must be set to match the baud
rate of the modem. Asynchronous communications modems are available
for transmission speeds as high as 2400 baud.

3.3.1 2236D TERMINAL 5-BANK BAUD RATE SWITCH

Set the baud rate switch on the 7292-1 board of each 2236D
Terminal. When the terminal cover is on, access to the baud rate
switch is through the large plug-button on the rear of the cover. See
Flgures 3-1 and 3-2. Set the switches of the five-bank switch as
follows: .

Switeh: 1 2 3 Y 5 Baud Rate
ON OFF OFF OFF OFF 300
ON OFF OFF OFF ON 600
ON OFF OFF ON OFF 1200
OCN OFF OFF ON ON 2400
ON OFF ON OFF OFF 4800
ON OFF ON OFF ON 9600
OCN ON ON OFF ON 19.2K

In all cases switch 1 is ON to enable parity error detection.

Switch 1 must always be ON for proper operation.

FIGURE 3-1

ACCESS TO THE BAUD RATE SWITCH

19.2K baud

- =0

i

[ofw
ij
Eb
|'|__T|m

9600 baud

= Z0

i

[
[e
¢ =
[o]

4800 baud

= Z0

1

_

2

JEIL

—

o Jo

2400 baud

- 20

1

_

N]Ai[uE

FIGURE 3-2

1200 baud

600 baud

300 baud

= 20

[+

i 20

[::]d

N

[0 J«

[1=

[o)

=~ ZO

[::]d

E::]M

w

FS

[0 e

111

BAUD RATE SWITCH SETTINGS FOR THE 2236D TERMINAL

) CONNECTOR FOR
TERMINAL #1
)
L | 'I
7290-1 BOARD
N eraupl-
3“’--.¢---‘-.-
o
s gasacd L
e JLE o g1
19 J E
<] B P
1 ¥ Ermfl 6 #2
4P o/ ™ Jumper
4800 Wsibh
5w A%0D on
Dormm,ur
et oz 14.9K, = o
| 600
B 9%
e} 4800
S =~ "
222 MY.O HEL S = e
'R 73] . :
¥ 150 m N a
A= e F —
: i] 1200 #4
{-% : >+ Ho Swpi-od =Y
I-12 3 60 Suzs

FIGURE 3-3 2236MXD CONTROLLER - BAUD RATE SWITCH IDENTIFICATION

3.3.2 2236MXD CONTROLLER BAUD RATE SWITCHES

For baud rate selection, there are three 8-bank switches (a total
of 24 individual switches) located on the T290-1 controller board.
These switches comprise four groups of six switches each, with each
group corresponding to a R3-232-C connector on the top panel. The
switches in each group are labeled for specifiec baud rates: 300, 600,
1200, 2400, 4800, or 9600, See Figure 3-3.

Set the controller baud rate switches. Only one switch in any
group of six may be ON at any one time. Remember that the baud rate
setting for each connector must match the baud rate setting of the
corrésponding terminal.

NOTE:
The"#800 -swibelrsuttthg is used fOr both 1800
and 19.2K baud. The selected rate depends on the
position of jumper A13, located between IC's L18
and L19. See Figure 3-3.

3.4 DEVICE ADDRESSES

During system installation, a two-digit (HEX) device address must
be set on the controller card for each peripheral device. The
following paragraphs pertain to -dewkce selection., The first part of
this section presents background information about device selection
codes; the last part of the section is devoted to the actual

procedures for setting device addresses.
3.4.1 DEVICE SELECTION CODES

The controller for each peripheral attached to the CPU is
assigned a unique Device Selection Code, consisting of three
hexadecimal digits. The device selection code is in the form
XY1Y2, where X is the Device Type (or Device Class) and Y1Y2
is the Device Address (also called unit address or hardware address).

TABLE 3-1 SUMMARY OF DEVICE-TYPE CODES (DEVICE CLASSES)

15% Hex pIGIT (X

CATEGORY

3,B

Used with workstations (CRT and keyboard).
Outputs a line feed (HEX 0A) after each
carriage return. Also used with nine-track

tape drives.
Not used.

Used with printers and output writers that
internally generate a line feed following a
carriage return, Outputs a null character

(HEX 00) after each carriage return.
Used with disk drives and diskette drives.

Used with plotters and plotting writers.
Plotting writers normally use type 4 (to
plot) or type 2 (to print). System
generated Carriage Return (HEX 0OD),
Line-Feed (HEX OA), and Null (HEX 00)

characters are suppressed.

Not used.

Reserved for card readers; not used in MyP.
Reserved for certain output applications;
not used in MVP, Does not output any extra
character after a Carriage Return (HEX 0OD)

is output.

Used with certain plotter operations.

3-7

*oTqeIJTPOm Josn

»

q0U oJE BOEESJPpe OSOYUJ 4

9l L g8do pgf :J493TJM Inding Bupjjorg 4AeTeq dlLgee
gl Gl gdo Qf 1d99TJdM Jndyng AeTe(q Lgee
9l Gl sdo g|
:d9qTapM gndang BuT3joTd TRUOT309JTPId dllzz
9l Gl sdo g :J89TJM Inding [BUOT3OBJTPTH LLzz SJ93TJIM
gl Sl sdo G| /TOD g4l :d23TdM 3nding 11022 ndang
Gl ‘f1 £l J15330Td Wnaq usd STdFJL g-alzz
fl £l (ughXulE) 49330174 PoqIETd TE3ITTIQ degee 84273074
Wd7 009 2=~
9l Gl WdT1 00k isJd93uTJdg SUTT uteyy L-g£922
9l Gl Wd1 022 :d93UTdg SUTT XTJjey MlL9ze
9l Gl 8do QL1/T00 Off (J93UTJg SUTT XTJIIey L6e2
sdo 0L/T00 2EL 9-
sdo pgl/To® 2t £-
sdo QzL/T100 g€l 2=
9l Gl s8do (gL/700 gLl :8JB3UTJIJ SUTT XTJdjel L-MLE22
gl Gl sdo Q0g/T0® 2EL :JOJUTJd SUTT XTJIEH Mlzze SJ9QUTIJ
Gl ‘niL £l 14y otydeayp 2922
- 0 Jd9330Td/J93UTag Teoo] °
- L0 paeoqfsy -
- G0 yo -
TEUTWJS], 5AT30BJI93UT #q9tece §,142
SESSEYAQY XdH SSAYAQY NOIIdI¥OSHd # TAAOW

JATLVNYHLTY XdH Tv0sN

SdJ00 SSEYAQY-HIIAEQ J0 XHVHWAS ¢~¢ 16Vl

*90TASD ouo £q posn oJE SOSSSJPPE PIYSTT TTV &

sojfqedsy GoL° ag-
s994qedsn 05° az-
0.-0l oL s934qedon G2° S9ATU(Q
2930XsTQ oT1qTedmo) OhLE WAI-Fuem ai-volee
0L=01 oL (8234q 06 J0© ‘09 ‘Of) SPATJQ HSTQ H/d ogee
0L-01 oL (s°34qK 02 40 QL ‘G ‘G°g) SPATJQ HSIQ Y/J J20922
0L-01 oL (234G 02 40 0L ‘G ‘G°2) SIATJQ ASTA H/d odogee
dL ‘al a. (4d-Id€ 0091) 8del NOBJIL-SUTN V6022 £30TAR(Q
a8eva01g
L=t L0-10 JXOTdTITNK TBUTWIR] SATIOBJIDIUT #¥IXHgtZe
0L-01 oL | —GXH
SJ9TTOJJUO) JBXSTATITUN MBIQ L =¥XHotZe
dL=¥l Il JOTTOJ3U0) SUCTJEBOTUNINIOY)
SNOUOJYOULSY /ENOUOJIYOUAG Jgeee
-Vl ol JITTOJI3UO) SUOTFEO TUNWO)
BNOUCJIYOUAEy/EN0oUOIYOUAS dgeée
d1=vl ol JOTTOJ3U0)
SUOTJEOTUNIMO,) SNOUCIYIUASY padajing glzze |sJdeTTodquen
SASSAYAAY XAH ssIHAay NOILJIYOSAd # TAAOW
AAILVNHILTY XZH TVASN

(PeNUT3UOD)

SIAOD SSAVAAV-TOIAEA 40 RHVWHNS 2-& TVl

.

The device-type digit is used by the Operating System to
determine which internal system I/0 routines will be used to control
the peripheral. This digit is needed because the various peripheral
devices on the system often require different control procedures for
performing an input/output operation. For example, a device-type
digit of 3 indicates to the Operating System that the peripheral is a

disk. Device type codes are summarized in Table 3-1.

The last two digits correspond to the actual unit's device
address, which must be set on each device controller card in the
2200MVP CPU. The device address is used to electronically select tﬁe
peripheral for operation. A unique device address must be assigned to

each peripheral attached to the system.

When the 2200MVP is first turned on (Master Initialized), a set
of defaulf dévicé addresses afe supplied to the Master Device Table by
the Operating System. These addresses will be valid in the system
until changed in the Master Device Table or in the user's Local Device
Table. Some addresses, like the local printer address of 204, are not
modifiable by the user. See Table 3-2.

A system with one device belonging to a particular device class
uses the first addreas for that class. Additional devices belonging
to the same class are assigned the alternative address, as listed in
Table 3-2.

3.4.2 SETTING THE DEVICE ADDRESS SWITCHES

Controller boards generally have device address switches like the
ones shown in Figure 3-4.

The three-digit device selection code (XY1Y2) is treated as

follows:

3-10

HEX VALUE: ’w
SW#: 80— 3'-|:1_—1:y
HEX VALUE:] 40—t 7 =1
= 5 B
PO g — g—| 4. =
P o 1.5
1 N 2| 2=
=T - 1~E§§§§3
ON OFF
ON OFF
FIGURE 3-4 TYPES OF CONTROLLER ADDRESS SWITCHES
TABLE 3-3 HIGH ORDER SWITCHES
HEX VALUE 80 %0 70 10
SWITCH # SW8 SW7 SW6 SW5
HEX DIGIT
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
A 1 0 1 0
B 1 0 1 1
c 1 1 0 0
D 1 1 0 1
E 1 1 1 0
F 1 1 1 1

1

= Switch 13 ON; 0 = Switeh 1Is OFF

3-11

X The most significant digit of the hex address. It 1s used by the
Operating System to identify the device type of the peripheral.
This digit is not used in device-~address switch settings.

Y1 The next most significant digit of the hex address. This digit,
broken down into four binary bits, determines the setting of
switches 8 through 5. See Table 3«3.

Y2 The least most significant digit of the hex address. This digit,

broken down into four binary bits, determines the settings of
switches 4 through 1. See Table 3-4.

TABLE 3-4 LOW ORDER SWITCHES

HEX VALUE 8 ' 4 2 1

SWITCH # SW4 SW3 sw2 SW1

HEX DIGIT
0 0 0 0 0
1 0 0 0 1
2 o 0 1 0
3 0 0 1 1
ﬁ 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
A 1 0 1 0
B 1 0 1 1
c 1 1 0 0
D 1 1 0 1 .
E 1 1 1 0
F 1 1 1 1

1 = Switch is ON; 0 - Switeh is OFF

3-12

o

The device address conventions used in the 2200MVP system are as
follows:

2236MXD TERMINAL CONTROLLERS

Each 2236MXD Terminal Controller can support a maximum of four
2236D Interactive Terminals. When the system has four or less 2236D
terminals, cne 2236MXD controller is used. When the system has five
to eight 2236D terminals, two 2236MXD controllers are used.

The 2236MXD controller address is set by means of a five-bank
switch. See Figure 3-5. For systems with a single 2236MXD
controller, set the controller address switches to 00: that 1s, all
five switches in the bank must be OFF,

In systems using two 2236MXD controllers, set the address
switches of the primary controller (the one with the system terminal
in-crnedtor #1) to 08 (all switches OFF). Set the address switches
of the other controller to 40 (switch #1 is ON; all others are OFF).

SRR

FIGURE 3-5 SETTING THE DEVICE ADDRESS OF THE 2236MXD CONTROLLER

Note that the physical device address set on the controller is
not the address specified in a program for access to the 2236D
terminal CRT, keyboard, and local printer. The programmable device
addresses for all terminals are: 005 for a CRT; 001 for a keyboard;
and 204 for a local printer.. The Operating System translates these
programmable addresses into the appropriate physical controller
addresses.

3-13

PRINTERS

The system printer normally has the program address 215; .
therefore, the unit address switches of the 7079 Printer

Controller must be set to HEX 15. In a configuration with two
system printers, the address switches of the second printer
controller would be set to HEX 16, As stated earlier, local
printers (printers connected to the back of a 2236P Terminal) do
not have any address switches but respond to an address of 204

under program control.
DISKS

If the diskette drive 1s the only disk unit on the system,
the first (or leftmost) drive slot normally has the address 310,
while the second drive slot has address B10. A third diskette
drive slot will be addressed by 350.

If there are two separate disk drives in the system, one
6541-2 Disk Controller is to be set at 310 and the other at 320. .
For drives containing fixed (F) and removable (R) disk o
cartridges, device type 3 designates the fixed platter and the
device type B designates the removable platter. 1In a
configuration with two drives, the programmable addresses would
thus be: 310 & B10 for the first drive; and 320 & B20 for the

second drive.

The procedures for addressing disks when more than one s
contalned in the system are fully discussed 1n the 2200VP/MVP

Disk Reference Manual.

PLOTTERS

Plotters are normally addressed by 413 or 414, For more »
specific addressing instructions, refer to the maintenance

manuals listed in the preface of this manual.

3-14

3.5 SYSTEM CABLE INSTALLATION

A comprehensive listing of system cables is presented in Section
1 of this manual. For complete information on the installation of
specific peripherals, refer to the 2200MVP System-Level Documentation
list.

If peripheral I/0 cables are routed through conduit, cellings,
walls, or floors, it will may be necessary to install connectors on
the ends of these cables. This procedure is given in the next

paragraph.

3.5.1 I/0 CABLE CONNECTOR INSTALLATION

To install the I/0 connectors, use a Champ Palm Grip Insertion
Tool (PN 726-9412). The tool consists of a palm inserter, a lanyard,

and an index slide. See Figure 3-6.

1. Position the connector in the index slide, attach the I/0
cable to the slide, and then slide it into the palm inserter
as indicated in Flgure 3.7,

The I/0 cable should be placed so as to allow 1/2 inch of
sheathing to extend beyond the stabilizer. Four inches of
unsheathed twisted pairs should be allowed for correct use
of this tool.

2. Orient the palm inserter with the connector, making certain
that a contact about to recelve a wire 1s on the same side

as the wire slot 1n the inserter.

3. Align the contact to be terminated with the index mark on
the palm inserter.

y, Place the palm inserter so that the pusher faces towards the
heel of your hand, and your fingers should grip the base
(allow the wire discharge chute to extend through your

fingers).

3-15

PUSHER

CABLE
LAMP

2296221}
RATCHET
RELEASE

LANYARD

PALM
INSERTER

WIRE DISCHARGE CHUTE

FIGURE 3-6 INSERTION TOOL

PUSHER WIRE STABILIZER
RATCHET \ -
RELEASE
y % ¢ A
1]

INDEX
SLIDE DISCHARGE LANYARD
(Typ) CHUTE (Ref)

FIGURE 3-7 CONNECTOR INSTALLATION

3~-16

. 2236 MXD 2236D

MUX TERMINAL
5 |BD RED TWISTED PAIR |,
BLACK
) 5 |ID WHITE TWISTED PAIR Ro|
BLACK {
+
. 7 |20V +0V 5
BLACK TWISTED PAIR
GREEN
5 |CES 1 DTR|,
6 |PSR DSR|
CTS
5
i SHIELD
DRAIN WIRE
L No A 1
CONNECTION
. WIRE ATTACHED
TO GROUND LUG

(CONNECTOR)

[l ®)
nO
O
=0
wO
e
~0
N6
w G
o]
O
o]

o 0o o 0 O 0 0o 0 O 0O ¢ 0O
14 15 16 17 18 19 20 21 22 23 24 25

FIGURE 3-9 WIRING OF THE 2236 (RS-232-C) CABLE CONNECTOR

3-17

10.

11.

12.

13.

Select a wire of the proper color or number (see the cable
assembly diagrams in the rear of this manual) and insert the
wire through the wire slot and discharge chute; do this
until all slack is out of the wire.

Make certain the contact and wire are centered on the index
mark, and then squeeze the palm inserter until the pusher is
bottomed.

Release your grip, allowing the pusher to retract.

NOTE:
If the palm inserter jams during this step, rotate
the ratchet release in a clockwise direction with a
hex wrench (supplied with the kit); this should effect

release.
Remove the scrap wire from the discharge chute.

Repeat steps 1 through 8 until all contacts have been

terminated on that side of the connector.

With the pusher released, remove the index slide and

connector from the palm inserter.

Perform steps 1 through 10 for contacts on the other side of

the connector.

After all contacts have been terminated, loosen the cable

clamp and remove the index slide.

Inspe@t each termination, making sure that each wire has
been FULLY inserted into BOTH wire slots of its contact (See
Figure 3-8) and that all wires have been cut to the proper
length (no exposed wire strands should be visible). Also,
make sure that the insulation is NOT cut in any area other
than the slot insertion area. Finally, make sure that the

contacts are not c¢rushed or deformed.

3-18

WIRE FULLY
SEATED IN
BOTH WIRE
SLOTS AND
WIRE PROPERLY
cuT

WIRE NOT

RIGHT SEATED IN
BOTH WIRE
SLOTS

WIRE NOT
CUT PROPERLY WRONG

CRUSHED
-—" CONTACT

FIGURE 3-8 INSPECTING THE TERMINATIONS

If a faulty termination is found, carefully remove the wire
and contact from its connector. Install another contact,
trim 1/8 inch off the end of the faulty wire, and reinstall
that wire, using steps 2 through 8.

Before the cover is installed on the 2236MYD connector, the
I/0 cable ground shield must be soldered to a ground lug,
and that lug must be attached to the connector by one of the
two screws.

Install a connector cover over the finished connector.
Connector installation is now completed.

NOTE:
The connectors for the 2236D Interactive Terminal
are soldered on, and the cable insertion tool is not
needed. The wiring diagram for the RS-232-C connector
is shown in Figure 3-9.

3-19

3.6 MVP-A CHASSIS REQUIREMENT

The followlng paragraphs present a simplifled method for

determining whether or not the proper CPU chassis has been selected;
that is, whether the system conflguration requires the MVP Standard
Chassis or the MYP-A Chassis. Ideally, this calculation should have
been performed at the time the system was sold to the customer. Yet,
because power supply damage will result if the total current demand of
the contrellers exceeds the rating of the chassis, it is important to
perform this handy check prior to power-on testing of the system.

In this procedure, each peripheral controller 13 assigned a
"oonfiguration weight™. All of the individual peripheral
configuration weights are then added together to arrive at a "system
configuration welght". The standard 2200MVP CPU will support a
maximum system configuration weight of 100. If the system

configuration welght exceeds 100, an MVP-A Chassis must be used.

The followlng listing specifies the conflguration welights of most
of the avallable 2200MVP perlpherals.

DESCRIPTION CONTROLLER RATING
CRT's
2236D Interactive Terminal 2236M¥D 18
2282 Graphic CRT 22¢02

Mass Storage Devices

22094 Buffered 9-Track —_—— 17
1600 BPI v
2260BC 3 Disk Drive 22C13 28
2260BC % Disk Drive 22C13 28
2260BC Disk Drive 22C13 28 *
2260BC-2 Disk Drive (dual) 22C13 28
3-20

DESCRIPTION

Mass Storage Devices (cont,)

2260C 3}
2260C 1
2260C
2260C-2
22T0A-D
2280-1,-2,-3

Qutput Devices

2201L

2221W

2231W (Al1l1)
2232B

2251

226 1W
2263-1,-2
2271 & 2271P
2272-2

2281 & 2281p

Interfaces
2227~-B

2228-B
2228-C

Disk Drive

Disk Drive

Disk Drive

Disk Drive (dual)
Diskette Drive
Disk Drives

OQutput Writer
Matrix Printer
Matrix Printer
Flatbed Plotter
Matrix Printer
High Speed Matrix
High Speed Matrix

Bidirectlonal Printer

Drum Plotter

Daisy Wheel Printer

Asyne TC
Bisyne TC
Blsyne TC

Multiplexer Controllers

22C11

2230MXA-1
2230MXB-1

MVP Dual Controller
(Printer, Diskettes)
Disk Multiplexer Controller
Disk Multlplexer Controller

3-21

CONTROLLER

22C12
22C12
22C12
22C12
22C03
22C14

22C02
22c02
22C02
22C01
22C02
22C02
22C02
22C02
22002
22C02

——

RATING

28
28
28
28

S O Yy DO Y Oy

16
18

This 1list should be used in the following manner. First, make a
list of all the peripherals that the system configuration contains,
along with their ratings. Secondly, determine if dual controllers are .

being used. When these controllers are used, substitute their ratings

in place of the ratings for the single peripheral controllers. Add

together the ratings of all devices in the system configuration. If

the sum is over 100, be certain that an MVP-A Chassis is being used. r
Good judgement must be used on any configurations bordering the

maximum, Some allowance should be left for future system upgrades.

Notes on the above listing:

a. Four Model 2236D Interactive Termlnals may use a single
2236MXD Controller, which has a rating of 18.

b. Loval printers, which are connected to 2236D Termirals, do
rot contribute to the total system configuration weight.

c. Note that the 2260BC disk drive might include a 2230MXA-1
{rating of 8).

d. Memory size of the 2200MVP CPU does not contribute any
configuration weight, even for systems that contain the

maximum memory size of 256 Kilobytes.

e. One other consideration is the use of 2228B or 2228C and
2236D controllers. A system should never be configured
which contalns more than three of the these controllers in a
standard MVP chassis, or five of these controllers in an
MVP-A chassis.

NOTE:

For system upgrades, the MVP chassls must be
exchanged for an MVP-A chassis, WL# 270-0451
(50Hz) or WL# 270-0U452 (60Hz). A conversion
kit (WLI #200-0322) is avallable contalning an
MVP-A chassis and a 210-7397 regulator (to re-
place the standard 210-6797). The MVP-A makes
20 amps avallable to the I/O0.

3-22

Sample Calculations

1. Average MVP System

Component

MVP-8 CPU
2236MXD Terminal Multiplexer

(for three 2236D Terminals)
2270A-1D Diskette Dual Controller
2261W Printer Dual Controller
2260BC Disk 22C13

Total Conflgured Weight
Total Number of I/0 slots

MVP-A Chassis is not required

2. Large MVP System

Component

MVP-64 CPU

2 2236MXD Terminal Controllers

(for eight 2236D Terminals)

2280 Disk Drive
2260BC Disk Drive
2230 MXA-1 Disk Multiplexer
2228B Bilsynchronous TC
22094 9 Track Tape Drive
2261W Matrix Printer

Total Configured Weight
Total Number of I/0 slots
Required

MVP-A Chassis 1s required

Configured Weight

Configured Weight

3-23

36

28

16

17

116

3.7 INSTALLATION/POWER-ON PROCEDURE

1. Be certain that the customer site has been prepared according to the

the guidelines given in Sectlon 2, and then place the system units
in their assigned physieal locations.

2. Set address switches on all I/0 controllers per Sectlon 3.4.2.
Initially, plug only the first 2236MXD controller (address set to
00) and one disk controller into the CPU. Make sure the controllers
are seated firmly. The system disk (or diskette) drive must be at
address 310 or 320. Other peripherals and thelr respective
controllers wlll be installed and tested in a later part of this

-4

procedure.

"NOTE:
Set the baud rate switches 1n the 2236D terminals
to match the baud rate switches in the 2236MAD con-
troller.

3. Connect the 2236D terminals and system disk to thelr respective I/0

controllers. Ensure that the perlpheral cable connectors are

securely faatened.

NOTE:
Be certain that the 2236D/2236MXD cable 1s installed
correctly. One end of the cable is labeled MUX and
the other end is labeled TER. Always insert the MUX
end into the 2236MXD Controller and the TER end into
the 2236D Terminal.

y, Make sure the AC power swltches of 211 system units are in the QFF L3

posltion, and then plug in all AC power cords.

NOTE: *
Check peripherals to see that all (115/230) AC
voltage switches and (50Hz/60Hz) line frequency

switches are set to match the wiring at the cus-

tomer site.

3-24

5.

T

10.

One at a time, turn on the AC power switch for each unit in this

minimal system configuration, using the correct power-up sequence:
first the CPU, then the disk, and then the terminals.

Check, and adjust if necessary, the voltages in the CPU and 2236D
terminals per voltage adjust procedure in section 7.3.2. Replace

the top covers when this has been completed.

At this point, the 2236D Terminal connected to port #1 of the
2236MXD should be displaying in the upper left corner:

MOUNT SYSTEM PLATTER
PRESS RESET

If this message 1s not displayed, turn the AC power switeh of the
CPU to OFF. After 4 or 5 seconds, turn the switeh back on. If the
message 1s still not displayed, refer to sections 3.9.1 and 7.4.1.

When the message:
MOUNT SYSTEM PLATTER
PRESS RESET

is displayed, place the System Platter Diskette (701-229%H) into the
system diskette drive and press the RESET kev on the keyboard.

The message "KEY SF'?" should now be displayed.

There are only three selections that can be made with the function
keys when the "EEY SF'?" message is displayed. BASIC-2 can be
loaded, the User Menu of diagnostics can be loaded or the Field
Service Menu of diagnosties can be loaded. The operator should now
select the User menu (SF'16 - SF'19 for disk address of 310, B10,
320, or B20, respectively). Refer to sections 3.9.2 and 7.4.1 in
case of trouble.

3-25

11.

The following should be displayed:

KEY SF'!

USER DIAGNOSTIC MENU
'00 CPU DIAGNOSTIC '02 DATA MEMORY DIAGNOSTIC
'0l CONTROL MEMORY DIAGNOSTIC

Press SF'00

LOADING CPU DIAGNQSTIC (DATE)

should be displayed for approxlmately 5 seconds;
then,

CPU DIAG PASS LLLL
IMMED REG XX

REG INSTR XX

X-REG INSTR XX

MASK BR XX

REG BR XX

IMMED R/W XX

REG R/W XX
AUX/STACK R/W XX

should be displayed. See section 6.3.1 for interpretations of the
CPU Diagnostic.

This test runs continuously until either an error occurs or RESET is

keyed.

When satisfied that a sufficient number of successful test passes

have ocecurred (5 to 10 minutes), key RESET. The User Menu is

reselected by pressing the appropriate SF Key after each diagnostic; °
any other diagnostic may then be selected.

3-26

12,

13.

Press SF'01

LOADING CONTROL MEMORY DIAG (DATE)

should be displayed for approximately 5 seconds; then,

##4% CONTROL MEMORY DIAGNOSTICH#%% MEMORY SIZE = OXXXK
NO ERR'S PRESS 'P' TO PRINT ERRORS at ('T' FOR /204)

PRESS 'CONTINUE' TO START-

should be displayed. Press "CONTINUE" and the last line of the
display should change to:

ADDRESSING TEST (PASS 0001)
Upon completion of this test, the prompt will be changed to:

MAT C&S TEST (PASS 0001)

Upon completion of this test, the last line of the display will
change to:

ROWPAT TEST (PASS 0001)

These SF'01 tests are repeated in sequence until either an error
occurs or RESET 1s keyed. When satisfied that a sufficient number
of successful test passes have occurred (5 to 10 passes), key

RESET. The User Menu should once again be reselected. See
paragraph 6.3.2 for interpretations of the Control Memory diagnostic.

Press SF'02 (Data Memory Diagnostic)

The display should be similar to the one for the Control Memory
diagnostic except that "CONTROL" will be replaced by "DATA"™ and the
memory slze will change.

3-27

14,

15.

SF'02 Data Memory Tests are also repeated in sequence until either
an errodr occurs, or RESET 1s keyed. When satisfied that a
sufficient number of successful test passes have occurred (5 to 10
passes), key RESET. See section 6.3.3 for interpretations of the
Data Memory Dlagnostic.

When all diagnosties listed in the User Menu have been completed,
key RESET and select the Field Service Menu.

To load the Field Service Diagnostic Menu, key SF'28, SF'29, SF'30
or SF'31 for disk addresses of Hex 310, Bl0, 320, or B20,

respectively.

After the appropriate SF' Key is pressed, the following will be
displayed:

KEY SF'?

FIELD SERVICE DIAGNOSTIC MENU

'00 CPU DIAGNOSTIC '05s MAT C & S 8

"0l ADDRESS 24 '06 ROWPAT 8

'02 MAT C & S 24 '07 REGISTERS

*03 ROWPAT 24 '08 AUXILIARY REGISTERS
'O} ADDRESS 8 '09 STACK REGISTER

Note that User Diagnostics comprise merely the individual Fileld
Service Diagnostic tests, not including the Field Service Register
tests. Therefore, Register tests must be accessed from the Fleld

Service Menu and run for any power-up and/or installation.

Tests initiated from the Field Service Menu are normally used for
troubleshooting purposes.

Key SF'07. Once the Reglster Diagnostic 1s loaded and begins to
execute, key HESET and then function key 15. The Register Dlag-
nosties are chalned together by this operation and will run se-
quentially just as the dlagnosties in the User Menu did, stopp.ng
only on an error or RESET.

3-28

z

16.

17.

18.

19.

20.

21.

22.

3.8

See section 6.3.4 for interpretations of the Register Diagnostics.

After running the Field Service Register dliagnosties, key RESET and
load BASIC-2. BASIC-2 1s loaded by keying the coresponding SF'!' key
('00 for 310, 'Ol for B10, '02 for 320, '03 for B20).

Once BASIC-2 1s loaded and "READY (BASIC-2)" is displayed, the
system platter should be removed from the disk drive.

Place the disk which contains the BASIC-2 Language Diagnostic
(701-2261) in the disk drive and key LOAD, RUN EXECUTE, at each
2236D Terminal.

When satisfied that a sufficient number of successful test passes
have occurred, key HALT/STEF.

After the microcode dlagnostics and the BASIC~2 Language Diag-
nostics have been executed without fallure, turn the CPU power OFF

and insert all remaining I/0 Controllers.

Install all the remaining peripherals in the system configuration.
Check and adjust the voltages of the other peripherals as described
in their specific malntenance manuals, making mechanical checks and

ad justments where applicable.

Power up the system. Again run the diagnostics in this section to
check for proper system operation. Execute the peripheral
diagnostics described in section 6.

BOOTSTRAP

A BOOTSTRAP, by definition, is a "technlque or device designed to

bring 1tself into a desired state by means of 1ts own action,"

In general, the Wang MVP BOOTSTRAP, is a set of microcoded routines

loaded in three 1024 x 8 bit Intel 2708 PROMs. The purpose of the
BOOTSTRAP is to handle four system functions and make avallable certain
subroutines which are used for I/0 operations.

3-29

IMPORTANT :
The BOOTSTRAP described is release 2.2 (R1 PROMS)
of the VP/MVP Bootstrap, implemented in all MVP

Systems on September 1, 1978.
The four system functions handled by BOOTSTRAP are:

1) Master Initialization (Power-On). «
2) Reset (Initiated by depressing the RESET key on the keyboard).
3) Control and Data Memory Parity Error Detection.
4) Loading the desired system software (i.e., diagnostics, or
BASIC-2) from disk and initiating their execution.

An explanation of each of the above functions follows.
3.8.1 MASTER INITIALIZATION
Master Initialization begins by turning the CPU power switch to the

ON position. A branch to Control Memory address 8003 (HEX), located in
the BOOTSTRAP PROMs, 1s executed and the BOOTSTRAP routine begins

controlling and performing its varlous tasks.

The tasks performed by the Master Initlalization routine in
BOOTSTRAP are:

a) To exercise the CPU to determine if any obvious malfunctions
exist.
b) To verify the BOOTSTRAP PROMs still maintain the desired data.

c) To write zeros to all locations in Data Memory in preparation

3

for subsequent Data Memory Reads.

If all Master Initialization tasks are completed satisfactorily, the
prompt "MOUNT SYSTEM PLATTER CR/LF PRESS RESET" will be displayed.

2

3-30

3.8.2 RESET

. Reset 1s initiated by depressing the RESET key located in the upper
right hand corner of the keyboard., This action causes the execution of a

branch to Control Memory address 8001 (HEX), located in BOOTSTRAP PROMs.

The tasks performed by Reset are:
(a) To pass control to the loaded system program currently loaded,

located in Control Memory (BOOTSTRAP, Microcode Diagnostics, or
BASIC-2).

(b) To allow the user to recover from any of the various system

error conditions which may be encountered.
(¢) To abort a BOOTSTRAP load.

Should task a) be called for, the user may expect those messages
and/or actions designed into the particular system program, that is, a

. display a menu of user-selectable software (key Special Function), or for
B Instance, a return to a starting point in the current software in Data
Memory.

Otherwise, whenever task b) is to be performed, the user is expected
to inform the BOOTSTRAP of what action to take (by keying a Special
Function, for ingtance).

If the expected response does not occur on RESET, consult section
3.9.2 and 7.4.1.

4 3.8.3 CONTROL AND DATA MEMORY PARITY ERRORS

In both Data and Control Memory a bit has been set aside, called the
2 parity bit, to aid in error detection.

3-31

i

In Control Memory, bit 24 1s set aside for parity; it i1s turned on
whenever the even number of the remaining bits turns on., This is called

ODD Parity. This bit must be properly set when writing the instruection

into Control Memory.

In Data Memory, a ninth bit is used in the same manner as described
above, However, the hardware determines and sets this bit, whenever a

write is executed into Data Memory.

Whenever the system detects bad parity in Contrcl Memory, during an
instruction fetch, a branch is made to location 8000, located in the
BOOTSTRAP PROMS. The BOOTSTRAP will then perform lts designated task.

Similarly, whenever the system detects bad parity in Data Memory,
during a read from Data Memory, a branch is made to location 8002,
located in the BOOTSTRAP PROMS. The BOOTSTRAP will then perform its
designated task.

Whenever a trap to loecation 8000 and 8002 is executed by the system,
the approprlate display is made.

3.8.4 LOAD SYSTEM FILES

Whenever the operator has made a reésponse to the BOOTSTRAP re-
questing a system file to be loaded, the followlng tasks are performed.

a) Check if the disk is ready.

b) Verify whether the file exists on the mounted platter.

e) Load the file into Control and/or Data Memory. X

d)} Verify Contrcl Memory checking Instruction parity and built
in CRC and LRC checksums. 4

e) Check Data Memory Parity.

) Pass control to the newly loaded system flle.

3-32

3.9 BOOTSTRAP ERROR MESSAGES AND RECOVERY

Three types of errors and flve possible error messages can be
repcrted by BOOTSTRAP. These error types--initalization, reset, and
system--are discussed below.

3.9.1 INITIALIZATION ERRORS

The BOOTSTRAP, during Master Initialization, fails to display the
complete

MOUNT SYSTEM PLATTER
PRESS RESET

message upon the CRT.

This error implies that some function of the MVP has failed. This
may be elither a CPU-related error or an I/0-related error.

In some cases, a device address may need to be corrected and the

system powered on again.

The Master Initialization sequence is deseribed on the following

pages.

3-33

® - o o
*gJnTFR4 UCTIONJISUT aJdedmo)
*2JNTTRA UOTIONJISUT J835TFoY AJETITXnY
*adnTred dTYD 0d
*eanTed dTy) Nomjg/AdETTITXNY g *2J998 Iy AJeTTIXNY 183] g
uS LNNOWu
*aJnTTed uoTjondisur aJdedmoy
*8JNTIRY SJEMpJRY JUSUWRJIOUT sng~Y
*aJNTJE4 UCT31ONJ3EUl J8jET1dey
*2JNTTEJ UCTIONJFSUT TIdT ‘snd~-v 24l
*adnited dTud od ‘L Uoc BUTQURWRJOUL Jd Ad9UD ‘L
wINOOHu
*aJdnTIe4 UOTIoNJ4EUl adedmo)
reanTred dTUn J298188y
*2JNTTEJ UCTIONJQBUT Jo38T182d *9 *SJaqETHSY OTTJ AORUD 9
uNNOHu
*ednTTe] AJOWSK BIB(PEAY/SITJIM G *837g £3Tded O ‘HD JBRTD °G
uwOHu
~r
*2JnTTRg }OBIS * SUOT3ONJGEUT nw
*oJnTTed UOTEONJISUT UJIN3SY aUTINoJIqng uJn3al sufinoJgng ™
*9JNTTEJ UOTIONJSUT YOURJg SUTAN0JIQNS *f PUE you®dg aUTFNOJQNE 188 4
uOHu
*aanTTRJ UCTIONJ3sUT adaedwo)
*j0BS WOJJ PaAdTJd3sd JT PTIOU qou Lem 6,)d
(oeqE U paJo3s
T + JI) @JnTTE4 UOTIONJISUT dSI *Agtaeqd ped
. *adnTed dedl aJeMpJeq EBY YOTYM J00g DI 23noaxy
*punTTRg OTHOT BupAoey) A3TJed *ded] A3Tded I¥d-fg 359l °t
ulu
NIZHOS HYATO
"gJnTTe UOFJONJISUT OID
“ped oJde S93UTT O/I1
*odnTTed JOSTHY O/1 *wHu ABTdETQ PUB
*Fuodm ST EE2JPPY D 2 useJdog JEeaT) ‘IND oTqeum ‘g2
*2JnTTeJ UOT3ONJ3SUI YOourJg
*aJnTTEg ded] 8JeMpJdey "I *£00g 09 ded] ug Jemog T
STUNTIVL ATEISS0d SNOILVHE4O A0 IONANDIS AV1dSIA 14D

uoT3oung jo umopyeoaig deig-Lg-deag

NOIIVZITVILINI YHLSVH

*2JNTTE UOTIONJIq6uUT aJedwo)
*eJNITEJ UOTIONJYSUT @S
*saniteq dTy) od

*enTTed JOIsTHoy AJejTIXNy
*8JnTIRd AOBIZ

"8JNTIB4d UOTIONJLSUT WOM/WOM *9T “AJowsy TOJJUC) PESY o) IM “91
wldSHY SSHHd
wHILLY'Id HIELSES INOOHA
*s,0I peg)
‘ednitTed ¥§ °ST *AJOoWRl BIBQ 3TE-§ 0497 *GT
ud WHLSXS INNOW.
‘eantred diyd WOMd “#T "WOHd &JTI8p *RT
u WILSAS INNOHu
‘adniie UOT3ONJISUI adedwo)
*Joddy OF80T JTUS CET *IJTUS 3189 CET
wWILSXS INNOHu
*aJnyteq uoilonJgqsur oaedmo)
‘edniied UOTIONJ38UT TH HO W
*oJdnTTel 07807 adpMpaeq ATdTIINN "2l *ATdI3INH AJeutqg 389 2T
wdISIS INNOHu
*8JNT{Ed UCT3ONJYEUT eJedmo)
*aJNTTE] UCT3ONJ)sUT
X0Sa 40 IDSd ‘0Sd “Xovd ‘Iova ‘ova
*8JdNTTEd 7Y Teuieq “IT Ty Tewgosq 389l 1T
ulSES INNOHa
*BJnTied UOTONJ4sur asedwos
‘9JnTied UOT3ONJISUT HOBIS
*aantied dTys od
TedniTey diy) HoeIS/AJRTTIIXNY *QT "AoBIE 89l 01
uSIS INOOHM
*2JnTIed UOT30nJI3SUT aJdedmo)
‘eJnTTed UOTIOMIZSUL YOS 40 2§ ‘IV ‘Xov ‘Ov
‘edaniyred :q¢.hnm=ﬂm *6 *NTY AJBUTH 183 ‘6
uiS INNOH4
STHNTIVd FTIISS0d NOILVHEd0 40 IONINDIS AVIdSIA 14D

{penutiuo)) uofldsung Jo umopyeaag deig-Lg-deis
NOTLVZITVILINT dILSVH

3-35

*(ASTP BUTY

BurzTTET4TUT UT SPT® STUL)

*13sHy €caJadop amnssJd OF

* £JOWPE TOJJUOD PUEB BIRP
Sursoufelp ‘sdoc] weqsds LT

SHUATIVA HTGISS0d

SNOILVEEd0 40 HONANDES

AV1dSId 14D

(penuypluo)) UOTIOUNJ JO UMOPNBRIg deyg-Ag-deas

NOTLVZITVILINI ¥ALSVH

3~36

3.9.2 RESET ERRORS

During the Reset function, when the operator has properly

responded to the "KEY SF'?" message by keying the desired special
function key:

The hexdigit display of the keyed special function did not appear
upon the CRT.

This implies that the special function Key was not depressed
sufficiently, or the 2236D or 2236MXD may be defective, or an SF' key
not defined was depressed.

NOTE:
During the RESET function, several of the SYSTEM
ERROR messages may appear. If one does, consult
the recovery procedure for that particular message,
given in section 3.9.3.

The system reset sequence ls described on the following pages.

3-37

‘podeTdsTp ST WoJdJ peoT 09 JogjeTd ayj pue peol ©3 STIJ SY3 JO SWEU Bl

pJeogisy

*pejqunom HETp Juoapy
*possaadsp
Loy uoljounyg TeTO9dg BuodMm

*Apeay 30N HST(

‘ug peJeomog 0N ASIA
aJanTTRyg S9UTT O/1I
*sanTTe] J838189Y O/I
*gsaJdppe XsTp J5doadug

*adnITed pPJeoqLASy
*eJanTred NJA JC gHD
*sJnTieq S9UTT /1
*punitey J4938T189Y Q/1
*10 £89.IppEe

*paday ST J§ SATloRUT

cJdoday deay 1989y

‘c

‘T

*pojeadad sT g dajg ‘punog
8q jouued 9TTJ JI °STHS
pOJTEOD JOJ ASTP YoJdeag

*NSTP POTJTOadE o1qRUz

*pajeadad aq 94snum gz dsis
pue sJeadde-ad oFessow ,J5
. 9Uq ‘pesssadssp ST L3

1dS poutjepun Aue JT :FION

*Aoy JS

poJIsop 2Ugq sAsy Jojedad(
*qandut Loy uoTjouNyg
1eToedg qdeooe pue (10 =
S88JppE) pPJROQLS) STqRUF

*ToJqUCD UT ST JVHISL00™
oTTUM peday useq sey 94a89y

fh

‘e

‘T

JoqqeTd sueu 2,45 ATNux

wédS Addu
U9sJaDg JBITY

SRUATIVA TT1HISS0d

SNOIIVHEJO 40 FININDES

XV1dSId Iy

uoTjoung Jo umopieedg deig-Ag-dagg
LISIY WHLSES

3-38

*2JANTTR] UOTIONJISUT 29TJM/PEDY
*ounyted AJomsl)

‘edniTed UOTIONJISUT WOU/WOM
*ouniTRy AJOWSl *Q

*BWRTqOoJdd ASTQ
‘eaniteq saulg O/1
*adnTTeRg JOISTION O/I °6

(0D0E = S89J4ppPY) *UOT]E]USIMOOP
9T7J weqsds asdoud qnsuos
*TOJJUOD JOAQ ESXEJ MOU UOTUM OTTJ
wo1e48 popeoT 03 pessed €T TOJI3UO)

*aanpaoodd Jedoad

Jd0J ‘£Jon008) Joddy 3TNSUO)
Jeadde TTTM oFesssm JOaJdd
n218LE 9yq ‘S3INEdJ JOJdJD UR JT
*faomel BlRQ 3TH-g AOBYUD

*aJanpeooud Jodoad a0l ‘Aasscvey
Jdodday 4Insuo) *Jeadde

ITTA STEESOW JOJJD WO]EAE

Y7 ‘sqTnsed Jodas uUe JI

*(0¥0 % 04T ‘A3TaRY)
*KI0UWR TOJquUO) AJTJap

¢ deis 03

dyye ‘punoj €T eqep AJomemW TOJJUOD
ou JI °*pPopeoTed 9q TITM JO309S
enofasdd syj pue pafeldsip aq

TIT® .4, BuipeoT Bulanp sanoo0
Jodde £qtaed e JI *aJanpavouad
Jododd J0J ‘£a2A009Y Joddy 3FTNEUOYH
*Jeadde TTTM oFessow JOJdJ? WRYELAE
ay3 ‘s31nsed JOJJID ASTP ® JI

*aq9ep o1FJ BUTUTR3UOD

A00Tq JUSMECD B UTBIUOD

pPInoys €911 Wa3s4g :HION

Laowsly oqut

ASTP WOdJ ©TTJ POJITSSp pPRO]

'9

‘G

W INHRN O u
Jo33eTd Sweu ,¢,4S XEN4

SEUNTIVA HIdISS0d

SNOILVHEdO 40 HONINDES

AVIdSIQ 1M

(penuT3uo))

uotjoung Jjo umopyesdg dejg-Ag-dois

LESHY WHLSAS

3-39

*2JnTTe] pJeoqiay
“oJnTTed NdAA 40O €YD
*oJduTTed S9UTT] Q/I
*9JNTTRd J89STHY (/1
(T0 = ssoJdppe) pJeoqda}y
*peda) ST Jg SATIORUI *(QT

*§ degg 03 0p °TI

*0T3souBeTp paJIsap syl Jo
Aoy Jgo oy3 sdey Jogeaadp
*gndut £9¥ uotjouny
Tetoedg qdeooe pue ([0 =
ssoJppe) pJeoqiay oTqeuy Q1

*I1¥D uodn BFuTISTI
nusp orgsouderg LAerdsig *6

J8g33e1d sueu 4¢,48 IdNa

wi 45 Al

SHINTIVA HIHISSOd

SNOILVYEJO 40 HONENDIS

AVIdSICQ 14D

(ponuT3uUOD)

uoTgoung Jo umopiyesadg deijg-Ag-deig

LISHY WHLEAS

3-40

3.9.3 SYSTEM ERRORS

The third grouping of error conditions is reported to the
operator via a SYSTEM ERROR message on the CRT.

First, should memory fail, the following message will appear:

8% SYSTEM ERROR MMMM XXXX %%
PRESS RESET

where MMMM - PECM

Parity Error Control Memory

PEDM = Parity Error Data Memory
VECM = Verify Error Control Memory
VEDM = Verify Error Data Memory

XXXX = Various error information pertinent to the type of

error.

Secondly, a disk error will result in the following message being
displayed:

#4#% SYSTEM ERROR DISK Q0XX #w#
PRESS RESET

where 00XX - is the Disk Error Code
The procedure used to recover from these SYSTEM ERRORS is

similar. Therefore, the general procedure will be outlined and each

error will be discussed.

3-41

The general procedure is:

a) Key RESET in response to the "PRESS RESET" message on line 2
of the CRT.
b) Choose one of the four following courses of action.

1. Key SF'15 to resume, using the currently loaded system A
program (usually BASIC-2).

2. Key SF'00-'05, '08-'013 to load BASIC-2 from disk 310, *
Bl0, 320, B20, 330, B30, 350, B50, 360, B6O, 370 or BTO.

3. Key SF'16='19 to load a diagnostic menu from disk 310,
B1Q, 320, or B20, respectively.

4, Key SF'28-'31 to load the Field Service Dlagnostic menu
from 310, B1Q, 320, or B20, respectively.

Use special caution when you choose #1 above: depending on what

type of error and where 1t occured, BASIC-2 may not functilon

properly in all cases.

The following discussion will outline each of the SYSTEM ERRORS

and what may be done, 1n particular, to recover from them.
3.9.3.1 CONTROL MEMORY ERRORS

In both Data Memory and Control Memory, one bit has been set

aside for parity error detection.

In Control Memory, the 24th bit (bit #23) of every micro- <
instruction is set aside for parity (it is turned ON whenever an even
number of the remaining 23 bits turns on). This 1s called ODD
Parity. This bit must be properly set when writing the instruction N

into Control Memory.

3-42

S

SYSTEM ERROR (PECM aaaa dddddd) w#e#

This error implies that bad parity was detected while the system
was trying to execute an instruction from Control or BOOTSTRAP Memory.

Whenever the system detects bad parity in Control Memory (PECM
message) durlng an instruction fetch, a branch is made to Control
Memory address 8000 (HEX), located in the BOOTSTRAP PRQOMa., The
BOOTSTRAP then performs 1ts designated error routine and displays PECM
aaaa, dddddd.

Bad parlty may be the result of:

a) dropping of bits by Control/BOOTSTRAP Memory
b) picking up of bits by Control/BOOTSTRAP Memory
¢) writing bad parity to Control Memory

d) defective parity checking logic

This error should be serious enough to warrant the executing of a
Control Memory diagnostic. However, it may be possible to resume
execution of the currently loaded system program. If the error
is reported again, a Control Memory diagnostic should be run to

locate the defective memory chip.

#%% SYSTEM ERROR VECM aaaa #*##

Case 1 (aaaa = 0000 thru TFFF)

This error implies that the load of Control Memory from the disk
was not successful., However, bad memory locations cannot be
entirely ruled out.

This error 1s reported prior to a system program being given

control and is the result of the program not being loaded
properly into Control Memory.

3-43

The operator should attempt to relcad that partlcular system

program. However, should successlve fallures be reported, a

Control Memory diagnostic should be run to determine if there are
any bad memory chips. If no chips are reported defective, a CPU

instruction may be failing, requiring a CPU diagnostic to be run.

Should the error be reported in low memory (i.e., address between
0000 and OFFF) it may be necessary to change memory boards in
order to load the dlagnostic into memory.

Case 2 (aaaa = 8000 thru 83FF)
This error implies that the BOOTSTRAP Memory is not as expected.

This error may be caused from dropping or plcking up bits by one
or more of the three PROMs that make up the BOOTSTRAP.

Try to power on again, and if the problem still peraists replace
the BOOTSTRAP PROMs and perform a MASTER INITTALIZATION, If the

error continues, the board may have failed or in some cases a .

miecroinstruction may have failed.

3.9.3.2 DATA MEMORY ERRORS.

In Data Memory, a ninth bit allocated for each 8-bit byte is used
in the same manner as described above. However, the CPU hardware
determines the required state and sets this bit whenever a write is

executed 1n Data Memory.

#%#% SYSTEM ERROR (PEDM ss.aaaan)®#s

This error implies that bad parity was detected during a read of
Data Memory.

s
*

344

i

Y]

Whenever the system detects bad parity in Data Memory (PEDM
message) during a read from Data Memory, a branch is made to
Control Memory address 8002 (HEX), located in the BOOTSTRAP
PROMs. The BOOTSTRAP then performs another error routine and
displays PEDM ss.aaaa.

Bad parity may be the result of:

a) dropping of bits in Data Memory
b) picking up of bits in Data Memory
¢} defective parity checking logic

This error should be serious enough to warrant the executing of a
Data Memory diagnostic. However, it may be possible to resume
execution of the currently loaded system program. If the error
is reported again, a Data Memory diagnostic should be run to

locate the defective memory chip.

%%% SYSTEM ERROR (VEDM ss.aaaa)¥%#

This error lmplies that the area of data memory used for system
constants (verb tables, match constants, messages), was not
loaded properly when BASIC-2 was loaded. However, bad memory

locations cannot be entirely ruled out.

This error 1s reported prior to a system program being given
control. The operator should attempt to reload BASIC-2,.

However, should successive failures be reported, Data Memory
Diagnostiecs should be run to determine if there are any defective

memory chips.

3-45

3.9.3.3 DISK ERRORS

DISK

DISK

¥#% SYSTEM ERROR DISK O0XX ###

There are several possible DISK errors that may occur while
BOOTSTRAP is trying to load a particular system program. The
only recovery procedure that should be taken is to attempt to

reload the particular system program.

The possible disk errors are:

0082

Error: File not in catalog

Cause: The file to be loaded does not reside on the platter
specified.

Recovery: Make sure that the proper platter 1s properly mounted,
that the proper disk drive was specified, and that the

proper special function key was pressed. Press RESET,

as prompted, and select the appropriate special

funection.

0088

This 1s a WRONG RECORD TYPE ERROR which occurs during a load when
the format of the record read does not conform to the bootstrap

format.

To recover from this error:

a) Make sure that the proper platter is properly mounted, the

the proper disk drive was specified, and the the program

speclal function key was pressed, Press RESET, as prompted,

and select the appropriate special function.

3-46

4

4

k4

DISK 0090

. Error:

Cause:
3
N DISK 0091
Error:
Cause:

Disk Hardware Error

The disk did not recognize or properly respond to the
system at the beginning of a read or write operation (the

read or write has not been performed).

Disk Hardware Error

A disk hardware error occurred; i.e., the disk is not in
file-ready position. This could occeur, for example, if
the disk is in LOAD mode or power is not turned on.

Recovery: Ensure that the disk is turned on and properly set up

DISK 0092

Error:

Causge:

by

for operation. Set the disk into LOAD mode and then
back into RUN mode, with the RUN/LOAD selection
switch,

Disk Hardware Error

The disk did not respond to the system at the beginning
of a read or write operation in the proper amount of time

(time-out). The read or write has not been performed.

Recovery: Run program again. If error persists, reinitialize

disk,

3-47

DISK

DISK

DISK

DISK

0093

Error:

Cause:

Disk Format Error

A disk format error was detected during a disk read or
write. The disk is not properly formatted., The error
can be either in the disk platter or the disk hardware. -

Recovery: Format the disk again.

ookl

Error:

Cause:

Format Key Engaged

The disk format key is engaged (the key should be engaged
only when formatting a disk).

Recovery: Turn off the format key.

0095

Error:

Cause:

Seek Error

A disk-seek error occurred; the specified sector could
not be found on the disk.

Recovery: Run program again. If the error persists, reinitialize

0096

Error:

Cause:

(reformat) the disk.

d

Cyclic Read Error

A cyclic redundancy check error occurred during a disk &
read operation; the sector being addressed has never been

written to or was lncorrectly written.

3-48

q!

DISK

DISK

Recovery: If the disk has been formatted, rewrite the bad sector
or reformat the disk.

0097

Error: Longitudinal Read Error

Cause: A longltudinal redundancy check error occurred when
reading a sector.

Recovery: Make sure the SYSTEM PLATTER is properly mounted in the
operator specified disk unit. Key RESET, as prompted,
and try to reload. If the error persists, try a backup

platter.

0098

This 1s a DISK ADDRESSING ERROR which is caused when the disk

sector being addressed is not on the disk,

To recover from this error

a) Make sure that the disk is ready and the SYSTEM PLATTER is
properly mounted in the operator specified disk unit. Key
RESET, as prompted, and try to reload.

b) If the problem persists, then BOOTSTRAP may be bad or the
disk may have a problem.

3-49

- NOTES:

3-50

Sy 0

‘

o

g

SECTION 4
SYSTEM GENERATION

4.1 GENERAL

When the 2200MVFP is powered on, an operator at terminal #1 has the
responsibility to "Master Initialize"™ the system and to load/execute the
partition/peripheral configuration suited to the current application(s).

The process of Master Initialization (loading the BASIC-2 Operating
System) creates a preliminary single-partition system that is controlled
exclusively from terminal #1. No devices connected to the system--other
than terminal #1 and the system disk--are avallable until total system
configuration takes place. Configuration is performed either by execution
of the BASIC-language system utility called @GENPART, or by the BASIC
statement $INIT (discussed in later text). As a part of Master
Initialization, the system microcode (BOOTSTRAP) automatically loads and
runs @GENPART, which i1s a file stored on the system disk. If @GENPART is
not on the system disk, a READY message 1s displayed at terminal #1.

A system configuration created by elther the standard @GENPART utility
or by a customized version of @GENPART (using the $INIT statement) remains
in effect until the system i3 reinitialized. Note that @GENPART 1s always
assumed (by the BASIC-2 Operating System) to be the name of the system
generation/configuration utility, whether Wang-written or user-written.

When @GENPART is initiated, parameters from the previous configuration
(called 'current') are automatically loaded. If the Wang version of
@GENPART is used, a list of user-selectable options and previously-saved

conflgurations is displayed.

On completion of Master Initialization and System Generation/Con-
flguration, terminal #1 switches to console mode and functions like all

other terminals connected to the MVP Central Processor.

After configuring the system, at least one backup copy of the system
disk should be made. By taking this step, a user might prevent system "down
time" that could result from accldental damage to the original system disk.

The COPY or MOVE statements are used for duplication of the system disk. (A
detailed explanation of the COPY and MOVE statements is given in the
2200VP/MVP Disk Reference Manual, WL# T00-4081)

4,2 SYSTEM POWER-UP, MASTER INITIALIZATION, AND GENERATING THE SYSTEM

The following explanation should provide the reader with enough 5

ay

information to power-up the system, Master Initialize the system, and

configure the system. ' .

4.2.1 POWER-UP

To begin, switch AC power ON in the Central Processor, Workstation
#1, and the System Disk Drive. After power is applied to the system,

the prompt appears:

s

MOUNT SYSTEM PLATTER
PRESS RESET

The system disk contalins the BASIC-2 Operating System, as well as
a varlety of hardware dlagnostiecs, When the disk drive achieves the
ready state, steps may be taken to load the Operating System or
hardware diagnostics via Special Function Keys on terminal #1. (Use of
diagnosties is discussed in Chapter 6.)

Mount the system disk, then press the RESET key (located in the
upper-right corner of the keyboard). The following prompt is displayed:

KEY 3F'?

P
\.

fr i

"8

4,2.2 LOADING THE OPERATING SYSTEM

A Specilal Function Key must be depressed to specify the address of
the disk drive in which the system disk is loaded.

The followlng options are available:

Key
Key
Key
Key
Key
Key
Key
Key
Key
Key
Key
Key

CASE #1: System Disk 13 a Diskette:

SF
SF
SF
SF
SF
SF
SF
SF
SF
SF
SF
SF

00 to
'01 to
02 to
'03 to
0l to
105 to
'08 to
'09 to
10 to
11 to
112 to
'13 to

load
load
load
load
load
load
load
load
load
load
load
load

BASIC-2
BASIC-2
BASIC-2
BASIC-2
BASIC-2
BASIC~2
BASIC-2
BASIC-2
BASIC-2
BASIC-2
BASIC-2
BASIC-2

from
from
from
from
from
from
from
from
from
from
from

from

the
the
the
the
the
the
the
the
the
the
the
the

disk @
disk
disk
disk
disk
disk
Jisk
disk
disk
disk B
disk @
disk €

D oo ® © ® ® ® ®

address
address
address
address
address
address
address
address
address
address
address

address

310
B10
320
B20
330
B30
350
B50
360
B60O
370
B70

(Hex).
(Hex).
(Hex).
(Hex).
(Hex) .
(Hex).
(Hex).
(Hex).
(Hex).
(Hex).
(Hex).
(Hex).

Normally, the leftmost diskette drive slot in the primary or default

diskette unit 1s assigned Hex address 310 and the second drive slot is

assigned Hex address B10.

If there are two separate diskette units on

the system, the leftmost drive slot on the second diskgtte unit is

usually assigned Hex address 320; the second drive slot, Hex address B20.

*CASE #2: System Disk is a Fixed/Removeable Disk Drive:

Normally, -the fixed platter in the primary or default disk unit is

assigned Hex address 310 and the removable cartridge is assigned Hex

address B10.

If there are two separate disk units on the system, the

fixed platter in the second unit i1s usually assigned hex address 320;

the removable cartridge, Hex address B20,

In either CASE #1 or CASE #2, approximately 15 seconds are required
for the BASIC-2 Operating System to be loaded into Control Memory.
While this takes place, the following message wlll appear on the display
screen of terminal #1:

-~

LOADING: MVP BASIC~2 RELEASE X.X

When loading is complete, the system displays the "READY (BASIC=2)"
message, unless the @GENPART partition-generation program is resident on
the system disk. If such is the case, the @GENPART Partition Generator
is automatically loaded after the BASIC-2 Operating System 1s loaded.
(The @GENPART data file is normally on the system diskette.) - Terminal
#1 should then be ready for limited use, the other terminals are enabled
only after configuring the system as desired with @GENPART or $INIT.

If the wrong SF Key is depressed (i.e., if the system disk is mounted

at address 310, but the operator depresses SF Key 01), an error message
will be displayed:

-

®ERSYSTEM ERROR (DISK QOXX)%#
PRESS RESET

Recovery from such errors may be accomplished by simply pressing
RESET, followed by the correct Special Function key. If RESET fails,
turn the Central Proceéssor OFF then ON again. If thls latter step is
required, Master Initialization will be repeated per paragraph 4.2.

In some instances, the Special Function key code is displayed. This
may indicate that an incorrect disk address was specified, or that a
disk I/0 controller has failed. Check the I/0 controller address, or
replace the I/0 controller if that board is suspected to be defective.

[P

e

4,2.3 PARTITION GENERATION

Configuration parameters must now be passed to the Operating System.
As stated previously, the @GENPART program is automatically loaded and
executed when it is resident on the system disk (no operator

intervention required}. If such is the case, immediately following
Master Initialization (RESET, KEY SF'?) the @GENPART menu will be
displayed at terminal #1, instead of the READY message. (The "READY
(BASIC-2)" message will appear once @GENPART has finished execution.)}
If so desired, the user may elect to customize the BASIC language
@GENPART program, thus providing more suitable display prompts {(etec.)
for his specific needs.

Basically, using either method ofspartition generation (8GENPART or
$INIT), the operator has control over the following:

(Explanations follow in subsequent text)

x Number of partitions
Size of each partition
. # The terminal associated with each partition
s The "programmability" of each partition
s The "bootstrap" program for each partition
Addresses 6f the peripherals connected to the system
s Access to peripherals

The "system message"

Standard Partition Generatlon:

The standard Wang "6GENPART" program has two important provisions for

user convenience:

1) If partition-generation modules have been previously defined, a
1ist of those module names will be displayed on the @GENPART menu
screen, The user can select and load one of these modules using

the following procedure:

_ a) First, type in the name of a previously-saved configuration
module, then press RETURN. '

b) Depress Special Function key '15, causing the system to begin
execution with the presently-loaded partition configuration

module.

2) If the user wishes to define a new partition module, he can do so
by depressing any of the other Special Function keys; this action
initiates partition generation.

NOTE: s

It may be useful to depress the large FN (HELP) key in the
) *
upper-left part of the workstation key pad; desceriptive -

information will be automatically provided on the screen that
explalns the partition generation process. {(Depress the RETURN

key to see successive screenloads of instructions.)

When the BASIC-2 Operating System 1s fully loaded, the @GENPART menu

should appear:

s
LIST OF QPTIONS:

LIST OF STORED CONFIGURATIONS (# PARTITIONS)
1. current (x) SF'00 - CLEAR PARTITIONS .
2 iene SF'01 - CLEAR DEVICE TABLE

SF'02 - DIVIDE MEM., EVENLY

SF'04 - EDIT PARTITIONS
SF'05 = EDIT DEVICE TABLE
SF'06 - EDIT $MSG

SF'08 - LOAD CONFIGURATION
SF'09 - SAVE CONFIGURATION
SF'10 ~ DELETE CONFIGURATION

[

¥

SF'15 - EXECUTE
FN - HELP

CONFIGURATION "CURRENT" LOADED. NAME OF CONFIGURATION TO LOAD? . ‘
|

4-6

¥

DESCRIPTIONS OF @GENPART SPECIAL-FUNCTION OPTIONS

SF' 00 -~ Clear Partitions: Clears partition-configuration parameters

currently in memory, allows the user to specify the total number of
terminals and the total number of partitions in each bank, then
automatically advances to SF'0O4 (Edit Partitions). The Master Device
Table 1s not altered when this function is selected. Any number of
partitions between one (1) and sixteen (16) that will not exceed the
available memory capacity 1s allowable., (Note that since each
partition must be 1.25K (16 partitions, max.) and since there is a 3K
Operating System overhead space to account for, the minimum memory size
that will accommodate 16 partitions is (1.25K x 16 partitions) + 3K =
23K,

SF' 01 - Clear Device Table: Clears Master Device~Table parameters

currently stored in memory, resets default peripheral addresses to Hex
215 (printer), 310 (System Disk), and 320 (secondary disk), allocates
these devices to all users (specifies common access), then advances to
SF'05 (Edit Device Table). (Default device addresses can be edited, if

necessary, using SF' 05.)

SF' 02 - Divide Memory Evenly: Divides remaining User Memory equally

among the number of partitions specified with SF' Ob.

SF' 04 - EDIT Partitions: Displays and allows editing of partition

parameters such as size, terminal assignment, programmability, and name

of bootstrap program. SF'O4 does not allow addition or deletion of
defined partitions in an existing configuration.

Descriptions of EDIT functions follow:

1. Number of partitions: From one (1) to sixteen (16) partitions may

be created.

2. Size of partitions: Any size greater than--or equal to--1.25
kilobytes is allowable. This specification is made in 256-byte
(1/UK) increments. The maximum allowable size is 61K (64K minus

3K for housekeeping}.

The terminal associated with each partition: Any terminal number

from 0 to § is valid; terminals 1 to 8 are the actual user-
terminals connected to the system; terminal number 0 is a
non-existent "dummy" or "null" terminal. All partitions must have
a terminal assignment, even if the 0 (null; non-existent) terminal
1s specified, and even 1f there are partitions that will contain
"background jobs" that never print on the CRT or require keyboard
entry. In general, any singular partition may be placed in
assignment with any singular terminal; however, a singular
terminal may be specified to be in assignment with several
partitions, in order to create a multiple-partition "personal®
system. In general, the lowest-numbered partition(s) to be placed
in a state of assignment with a terminal should contain the
foreground (interactive) jobs for that terminal. Background jobs
should be placed in the higher-numbered partitions within that
assignment. Only the terminal that has been specified to be in a
state of assignment with a particular partition can list or modify
the program in that partition. Finally, note that while it is
possible for partitions to access global program text and modify
global variables, it is not possible for non-global partitions to

list or modify program text in a global or universal-global

partition.

Programmability of partitions: Any partition can be specified for

the "disabled programming" mode, whereby that partition is
inhibited from certain operations. Terminals attached to
"disabled programming"™ partition(s) are inhibited from entering or
modifying program text, or from performing certain other system
operations. Thus, the operator 1s prevented from inadvertent or

unauthorized use of protected or restricted programs and data.

‘ Bootstrap programs for partitions: Any program that resides on

the system disk can be loaded into a partition and run

automatically when a configuration is executed. When no bootstrap

'program is specified for a partition, the 'READY' display will

appear on the CRT once the configuration has been executed.

LI

SF!' 05 - EDIT Device Table: Displays and allows editing of device

addresses for all peripherals. All peripherals connected directly to
I/0 controllers must be specified in the Master Device Table (this, of
course, excludes terminals and local printers connected to them).
Console device addresses {l.e. Hex 005--CRT, 001--keyboard, 20U4--local
printers) are not specified in the Master Device Table, nor may they be
specified using SF'05; these are specified in each partition device
table. Partition Device-Table specifications and modifications are
discussed later in this section.

By default, all system peripheral device=s listed in the Master Device
Table are available to all partitions. However, devices can be given
exclusive assignmment with one partition until the next system
configuration 1s executed. This is accomplished by entering, in the
Master Device Table, the number of the partition that is to have
control of the device. For diék controllers that respond to more than
one address, only the primary address must be specified in the Master
Device Table (i.e. Hex 310 but not B10, 350, 390, etc.). For all other
multi-address controllers, all valld addresses must be listed.

SF' 06 - EDIT $MSG: Displays and allows editing of a user-defined

broadcast message that will be displayed on each terminal's CRT
whenever the READY message 1s displayed. The user-defined message is
displayed on line 0 of the CRT, immediately above the "READY" message.

SF' 08 - Load Configuration: Loads a named configuration from the
Configuration File, which is located on the system disk. To modify

and/or execute any prevliously-defined configuration other than

"ourrent”, this option must be used.

SF' 09 - Save Configuration: Save a system configuration in the

Configuration File under a user-specifled name {up to eight characters
in length). If the user specifies a configuration name already used,
8GENPART will verify that the user desires to replace the old
configuration on disk file with the configuration currently in memory.

SF' 10 - Delete Configuration: Deletes a configuration from the

Configuration File on the system disk.

SF' 15 - Execute Configuration: Allows the operator to review first,

and then to execute, a configuration. This configuration will be

automatically saved in the Configuration File under the name "current®

when the configuration 1s executed. Once a configuration has been .
executed, the system may be reconfigured again only after the Master \

Initialization procedure has been repeated.

FN - Help: Displays @GENPART operating instructions.

"

4.2.4 GENERATING A SAMPLE CONFIGURATION

The following example illustrates how, typically, GGENPART can be
used to configure a system. In this example, a 2200MVP withVMSK'bytes
of User Memory, three terminals, and telecommunications option are to
be configured. The configuraﬁion (named "SAMPLE"™) will have four
partitions. A 15K-byte telecommunications program will be designated
for automatle bootstrapping, as a background job sharing terminal #1.
Disabled programming will be specified for this partition so that it
cannot be modified inadvertently. Remaining memory will be divided
equally among the other three partitions. .

In general, the order of executing @GENPART options is: (1)
SF'08--to load a configuration, (2) SF100--to modify this configuration
by adding or deleting partitions, (3) SF'0Od--to create the new
partition parameters, (4) SF'05--to create the Master Device Table, (5)
SF'06-~to create the broadcast message, (6) SF'09--to save the
configuration with a name other than 'current', and (7) SF'15--to
execute the configuration. Therefore, in the example that follows,

these options are discussed in their probable order of use.

Load a Configuration (SF'08) (When @GENPART is first executed, this

display occurs without pressing SF'08) N
4
LIST OF STORED CONFIGURATION (#PARTITONS)
current (1)
CONFIGURATION 'current' LOADED. NAME OF CONFIGURATION TO LOAD? .

4-10

£
&

The last configuration executed (called 'current') is automatically

loaded. To load any other éonfiguration, enter its name, then press
RETURN. Since, in this example, a completely new configuration is to

be created, press SF'00--Clear Partition.

Clear Partitions (SF'00) The program responds with a display that

requests the total number of terminals that are to be configured into
the system and the number of partitions that will be created.
Available User Memory is automatically calculated and displayed. Note
that the 3K of Operating System overhead space in bank #1 is
automatically deducted from the available-memory quantity. Remaining

memory 1s updated and displayed as memory is allocated to the

partitions.
s
AVAILABLE USER MEMORY = 45K
REMAINING USER MEMORY = 45K

NO. OF TERMINALS?
NO. OF PARTITIONS?

In this example, there will be four partitions; enter 4 in response to
the "NUMBER OF PARTITIONS?" prompt, and then key RETURN. The program
automatically invokes option SF'04 (Edit Partition) to allow the
editing of partition parameters.

Edit Partitions (SF'04) This option displays default parameters for
all partitions and initlates a cycle of prompts for the altering of

these parameters. The cycle recurs until another option is selected.
The user is thus allowed to modify parameters for each partition. The
display is updated each time an item is entered.

s

PARTITION SIZE (K) TERMINAL PROGRAMMABLE PROGRAM
1 1 Y

2 Y
3 Y
3 Y

2
3
y

EDIT WHICH PARTITION (default = 1)?

4-11

In this example, the telecommunications program will be run in parti-
tion #2. Begln, therefore, by editing the parameters for partition
#2. Enter 2, then key RETURN. An asterisk (%) appears beslde the
number of the partition whose parameters are belng edited, and the
following series of prompts willl be displayed in succession at the
bottom of the screen:

PARTITION SIZE (default = 0)?%

Any value greater than 1.25K and less than the amount of remaining User
Memory is a walid response. WNote that the default value (zero
kilobytes) 1s not a legal value when a user specifies each partition
size individually; however, when all remaining memory is to be divided

evenly, a partition size of 0 (zero) 1s legal.

The telecommunications program that is to be run in this partition will
require 15K. To allocate 15K of User Memory to partitlon #2, enter 15,
then key RETURN. The following prompt should be displayed at the

bottom of the screen:

TERMINAL (default = 2)?

The telecommunication program will be a background Job controlled at
terminal #1. To establish assignment between this partition (partition
#2) and terminal #1, enter 1 and key RETURN. The following prompt then

Qceurs,

ENABLE PROGRAMMING (Y or N)?

By default, programming 1s allowed for all partitions; however, to
prevent lnadvertent modification of the telecommunicatlons program,
"disabled programming" will be specified for partition #2. To specify
disabled programming mode for thls partition, enter N, then key
RETURN. The name of a program to be automatically loaded into this

partition 1s now requested as follows:

NAME OF PROGRAM TO LOAD?

4-12

»

(]

Fryy

rat

The name of the telecommunication program that will be run in partition
#2 1s "TELE-COM", Enter "TELE-COM"™ and then key RETURN. When the
configuration 1s executed, the telecommunications program will be

automatically loaded from the system disk into partition #2, and will
then be run.

At this point, editing of the parameters for partition #2 is complete.
Partitions #1, #3, and #4 require further modification. Remaining
memory is to be divided evenly between those remaining partitions.
Press SF'02 (Divide Memory Evenly) and the remaining 30K should be
distributed evenly among partitions #1, #3, and #4. The system returns
to the initial "EDIT WHICH PARTITION?Y prompt. All that remains is to
establish assignment between terminal #2 and partition #3, and between
terminal #3 and partition #4. Enter these values into the table for
partitions #3 and 4. Upon completion of this operation, the table

should appear as follows:

(PARTITION SIZE (K) TERMINAL PROGRAMMABLE PROGRAM
1 10.00 1 Y
2 15.00 1 N
3 10.00 2 Y
4 10.00 3 Y

Once all partitions have been edited, SF'05 is used to leave the "Edit
Partition" cycle and then invoke the "Edit Master Device Table"

option. MNote that it is legal to exit the Edit Partition Cycle (SF'O4)
without answering all prompts; in this case, the specified default
values are used by 8GENPART and the Operating System.

Edit Device Table (SF'05) This option displays the default values

resident in the Master Device Table. Notice that by default, every
device specifiied is avallable to all users.

4~13

DEVICE PARTITION DEVICE PARTITION
1. /215 all 17.
2. /310 all 18.
3. /320 all 19.
16. 32.
EDIT WHICH ENTRY (default = 1}?

In this example configuration, a fourth device (telecommunications
controller) is used, in addition to the three default devices. The
device address of this controller is Hex 01C. To specify this device
in the Master Device Table, enter "U", then key RETURN. An asterisk
(#) will appear beside the number 4 in the table. Several prompts are
displayed in succession at the bottom of the screen; the table is
updated each time an item 1s edited. The user is requested to enter

the device address with the following prompt:

DEVICE ADDRESS (default = /000,/000 to delete entry)?

Enter /01C, then key RETURN. Another prompt now appears, and the user
1s requested to specify assignment for the peripheral device with one

or more partitions:

ALLOCATE DEVICE TO WHICH PARTITION (default = all)?

For this example, enter a "2", then key RETURN to allocate the
peripheral and its controller to partition #2. This display cycle will
continue, in order to allow the user to edit all entries in the Master
Device Table, When the parameters for all peripheral/partition
allocations have been specified, the user can select another S.F.
option to exit the "Edit Device Table™ mode.

4-14

»

Broadcast Message (SF'06) When SF'06 is depressed, the following

display cecurs at the bottom of the CRT display.

.‘ BROADCAST MESSAGE:

- NOTE:

The system is in EDIT mode during entry of the broadcast
message. While in EDIT mode, all S.F. Keys revert to
their system-defined EDIT functions. The S.F. Keys can-
not be used for their @GENPART~defined funections until
the entry of the broadecast message is complete and the

wk

system leaves the EDIT mode.

Any message in which the number of characters and spaces does not
exceed the number of dashes displayed on the CRT is valid. For this
example, enter * ® ® THE SYSTEM WILL GO DOWN AT NOON * * ¥, Now key
RETURN. When the broadcast message has been entered, all
partition-generation parameters for the example cohfiguration have been
. specified. This configuration can now be saved for later use (SF'09)
or executed (SF'15). Pressing SF'09 allows the operator to save this

configuration on disk under a unique name.

Save Configuration (SF'09) When SF'09 is depressed, the following
display occurs at the bottom of the CRT display.

CHECK CONFIGURATION TO SAVE. CONFIGURATION NAME? ———ccecmcmme——w

NOTE:
In order to save a configuration, the system diskette must be
write-enabled (i.e., unprotected; the write-protect notch must be
covered), If the system disk is a hard disk, note that the hard
disk is always write-enabled.

4-15

R RS

g TR E

AR

The configuration currently in memory will automatically be saved under
the name 'current' (if the system platter is write-enabled). However,
each time a new configuration is executed, the new parameters replace
the old parameters in the 'current' file. In order to save a
confliguration so that it can be retrieved for future use, it should be
saved under a unique name. The name to be used for this sample
configuration is, appropriately, "SAMPLE". Enter "SAMPLE", then key
RETURN. The configuration is saved under the name SAMPLE.

Execute Configuration (SF'15) Once all parameters of a configuration

have been defined, the system configuration can be executed. To
execute a configuration, press SF'15. The configuration table will
appear near the bottom of ﬁhe CRT, along with a prompt requesting the

operator to verify the configuration parameters to be executed.

CHECK CONFIGURATION OK TO EXECUTE (Y or N)?

If Y (RETURN) is entered, this configuration will be executed. If N
(RETURN) is entered, the system returns to the beginning of the "Edit
Partition" cycle (SF'0O4).

NOTE:
Once executed, a configuration can only be changed by first Master
Initializing the system, and then, by speclfying the new

parameters,

Delete a Configuration (SF'10)

Since this exercise generates only a sample configuration, the
configuration should be deleted, ln order to save more space for actual
configuration records. The following prompt will request which

configuration to delete.

DELETE WHICH CONFIGURATION?

Enter "SAMPFLE"™, then key RETURN; the configuration will be deleted from
the system disk.

4-16

4.3 GENERATING EVENLY-DIVIDED PARTITIONS: A SAMPLE PROGRAM

on terminal #1.

Load the MVP BASIC-2 Operating System by keylng the appropriate SF' key

appear on terminal #1's dlasplay:

Approximately thirty seconds later, the following should

(_

8% PARTITION GENERATION ###

OPTI

LIST OF STORED CONFIGURATION (#PARTITIONS)
SF'00 - CLEAR PARTITIONS
(2) SF'01 - CLEAR DEVICE TABLE

1. current

CONFIGURATION "current®

ONS:

SF'02 - DIVIDE MEM, EVENLY

SF'0Y4 - EDIT PARTITION
SF'05 - EDIT DEVICE TAELE

SF'06 - EDIT $MSG

SF'08 - LOAD

CONFIGURATION

SF'09 - SAVE CONFIGURATION
SF'10 - DELETE CONFIGURATION

SF'15 - EXEC
PN - HELP

LOADED. NAME OF CONFIGUR

UTE

ATION TO LOAD?

Key SF'00 to initialize all terminals and clear the partitions.

The following will then appear:

AVAILABLE USER MEMORY
REMAINING USER MEMORY
NO. OF TERMINALS?

NO. OF PARTITIONS?

PARTITION GENERATION ###

4-17

CLEAR PARTITIONS
CLEAR DEVICE TABLE

DIVIDE MEM, EVENLY

EDIT PARTITION
EDIT DEVICE TABLE
EDIT $M3G

LOAD CONFIGURATION
SAVE CONFIGURATION
DELETE CONFIGURATION

EXECUTE
HELP

Answer the prompt "NO. OF TERMINALS?" prompt with the number of
terminals on the system, then answer the "NO, OF PARTITIONS?" prompt.

Enter the appropriate number, then key EXECUTE. ‘

%% PARTITION GENERATION ##&

AVATLABLE USER MEMORY = 61K

REMAINING USER MEMORY = 61K OPTIONS:
PARTITION SIZE (K) TERMINAL PROGRAMMABLE SF'00 - CLEAR PARTITIONS .
SF'01 - CLEAR DEVICE TABLE
PROGRAM
1 - 1 X SF'02 - DIVIDE MEM, EVENLY
2 - 2 Y }

SF'04 - EDIT PARTITION
SF'05 - EDIT DEVICE TABLE
SF'06 - EDIT $MsSG

SF'08 -~ LOAD CONFIGURATION
SF'09 ~ SAVE CONFIGURATION
SF'10 - DELETE CONFIGURATION

SF'15 - EXECUTE
FN - HELP

CHECK CONFIGURATION. OK TO EXECUTE (Y OR N)?

Key SF'02 - Divide memory evenly. Available memory should be

apportioned equally among the number of terminals entered in the above

step. The followlng should appear:

#%% PARTITION GENERATIQON #a#

AVAILABLE USER MEMORY = 61K
REMAINING USER MEMORY = 0 K
OPTIONS:
SF'00 - CLEAR PARTITIONS
PARTITION SIZE (K) TERMINAL SF'01 - CLEAR DEVICE TABLE
1 30.50 1
2 30.50 2 SF'02 - DIVIDE MEM, EVENLY

SF'04 - EDIT PARTITION
SF'05 - EDIT DEVICE TABLE
SF'06 - EDIT $MSG

SF'08 - LOAD CONFIGURATION
SF'09 - SAVE CONFIGURATION
SF'10 - DELETE CONFIGURATION '

SF'15 - EXECUTE
FN - HELP

EDIT WHICH PARTITIONS (default = 1)?

Finally key SF'15 (EXECUTE). A prompt will appear "CHECK
CONFIGURATION. OK TO EXECUTE (Y OR N)?". Enter "Y" and key EXECUTE if the
configuration is correct. All terminals should now display "READY
(BASIC-2)": each terminal can now be used as an independent processor, a
"personal™ system.

4.4 CUSTOMIZED PARTITION GENERATION

The user may, if he so desires, write his own partition-generation
utility. Further description of this approach is given below; also, refer
to the BASIC-2 Language Reference Manual (WL# T00-4080, 80.1, & 80.2) for a
detalled description of the $INIT statement.

Streamlining the @GENPART Program:

Once initlally defined and sﬁored on disk, conflguration parameters in
a specified system configuration can be passed to the Operating System
and executed automatically during Master Initialization, with no
operator Intervention. REM statements near the beglnning of the
@GENPART program will tell the user how to streamline the program to

operate in this manner.

Use of the $INIT Statement:

When the Wang utility @GENPART does not meet a user's needs, it is also
possible to create a customized configuration program using the BASIC-2
statement $INIT.

$INIT

General Forms:

Program Mode Statement: (Pass initial configuration parameters to the

Operating System)

$INIT (alpha-1, alpha-2, alpha-3, alpha-4, alpha-5 (, alpha-6)

Where: alpha = literal-string

alpha-variable

4-19

Immediate Mode Statement: (Reconfigure system)

$INIT "password"

Where: password = System reconfiguration password; this must be a
literal string.

Once configured, the system can be reconfigured only by executing the 4
"$INIT password" statement at terminal #1. Control is passed to the system

bootstrap; the message

-
>

MOUNT SYSTEM PLATTER
PRESS RESET

is displayed, and the system can be loaded and reconfigured as if it had just

been powered-up.

In order to protect against inadvertent reconfiguration, $INIT can be

executed at terminal #1 only. Additionally, reconfiguration 1s password-

protected. An error results if the proper password is not included in the

immediate-mode $INIT command and reconfiguration does not occur. The default

password is "SYSTEM"; thus, the operator on terminal #1 would enter:

:$INIT "SYSTEM"

in order to pass control to the system BOOTSTRAP. The password can be
changed by passing a new password to the 0S via the 'alpha-6' parameter in
the $INIT program statement (explanation follows). However, 1f the system is
powered off, or if an immediate mode $INIT is executed, the password reverts

back to "SYSTEM", The password can be from 1 to 8 characters in length.

The user need not be concerned with the complex form of $INIT, unless a "
customized partition-generator program is required. It is recommended that
the Wang-supplied utility, "@GENPART," or a modified version of it be used
for configuring the system, to ensure that the proper configuration b
parameters are passed to the Operating System. If $INIT parameters are not
properly set, the system may be erroneously configured, produce unpredictable

errors, and/or lock out all terminals. In order to restore operation

following any of these error conditions, it may be necessary to power the CPU
off and on (reinitialize the system).

420

Conflguration parameters are defined as follows:

alpha-1 = size of each partition.

Length of string = 17.
Size

binary value indicating number of 256-byte pages of memory
allocated for a partition.

—_
1]

Byte
Byte

slze of partition 1.

AN
1

size of partition 2.

.

Byte n slze of partition n.

Byte n+1 = HEX (00).

alpha-2 = terminal number for each partition,

Length of string = 16.

Terminal number = (in binary) of terminal assigned to a partition.

Byte 1 = terminal number for partition 1.
Byte 2 = terminal number for partition 2.
Byte n = termlinal number for partition n.

Remaining bytes must = HEX (00).
alpha-3 = partition meodes.

Length of string = 16.

Mode, bit 01 = 1 1f and only if programming is not allowed on this
partition.

Mode, bit 02 = 1 if and only if a program 1s to be bootstrapped
inte this partition.

Byte 1 = mode of partition 1.
Byte 2 = mode of partition 2.
Byte n = mode of partition n.

4-21

P

alpha-4 = bootstrap program name for each partition.

Length = 128 bytes.

Bootstrap program name = B-byte literal-string specifying the
program to be automatically loaded and run after partition
generation.

1st 8 bytes = bootstrap name for partition 1.
2nd 8 bytes

bootstrap name for partition 2.

-
4

Nth 8 bytes

bootatrap name for partition n.

alpha-5 = device tabls.

Length of string = 99.
A device 1s specified by 3 bytes.
1st byte, low 4-bits = device-type (disk must be 3 or B).
2nd byte = physical device-address.
3rd byte = number of the partition for which the device 1s to

be opened {0 if none). .
1st 3 bytes = device specification for device 1. -
2nd 3 bytes = device specification for device 2.

Nth 3 bytes = device specification for device n.
(N + 1) 3 bytes = 00000016
alpha-6 = reconfiguration password.

Length of string = 8

1st eight bytes are the password. N

Example of Valld Syntax:

T

$INIT "SYSTEM"
10 $INIT (S$,T$,M$,N$(),D$)
20 $INIT (S$,T$,M$,N$(),D$, P$)

4=22

®,

4.5 COPYING THE SYSTEM DISK

Using Floppy Disk:

1.

Be sure the Write-Protect Notch on the backup diskette is
covered (the diskette must be unprotected, write-enabled).
Insert the backup diskette into the leftmost slot of the
primary diskette unit (address 310). Ensure that the
Write-Protect Notch on the system disk is uncovered
(protected from write operations, write-disabled) and insert
the system diskette into the second drive slot.

The backup diskette must be formatted before any information
can be written on it. The FORMAT button is surrounded by a
protective ring to prevent accidental activation of the
formatting procedure; this is a safety feature. (The
formatting operation erases any data stored on the diskette.)
To format the diskette, use the tip of a pen or pencil to
depress the FORMAT button on the disk control panel, located
above Drive #1. The FORMAT button must be held in for

approximately 1/10%h of a second; the Format lamp above the
drive slot should light.

When formatting has been completed, a message will be
displayed to that effect. Enter COPY RF or MOVE RF and then
RETURN to create a backup copy of the system disk.

Using a Hard Disk Platter -- 2260C, 2260BC, 2280 ONLY:

1.

Insert the backup removable cartridge into the disk drive
{address Hex B10). Note that the system disk (to be copied)
is the fixed platter, resident in the same disk drive.

The backup cartridge must be formatted before any information
can be written on it. (The formatting operation erases any
data stored on the disk.) To format the backup removable
cartridge, clear the CPU gnd then load "@FORMAT" from the
system disk.

4-23

4.6

EXAMPLE: CLEAR (Return)
LOAD DCF "@FORMAT" (Assuming default address to be Hex 310)
RUN (Return)

3. When formatting has been completed, a message will be displayed to

that effect. Enter COPY FR or MOVE FR and then RETURN to create a
backup copy of the system disk.

Using a Hard Disk Platter -- 2260B ONLY:

1. Insert the backup removable cartridge into the disk drive (address
Hex B10). Note that the system disk (to be copied) 1s the fixed
platter, resident in the same disk drive.

2. To format the backup removable cartridge, place the platter-select
switch, located on the disk processor chassis front panel, in the
"UP" position (this selects the removable cartridge). Turn the
format KEY switch to the right (clockwise). Depress the yellow
format button located next to the KEY switch. The yellow lamp
located next to the yellow pushbutton switch should illuminate,
indicating that formatting is in-process. When the yellow lamp
extinguishes--and the red error lamp should not be on at this
time--formatting is complete and the key switch should be turned
off (to the left, counter-clockwise).

3. Enter COPY FR or MOVE FR and then RETURN to create a backup copy

of the system disk.

MODIFYING DEVICE TABLE ENTRIES

Master Device Table Modifications:

Refer to the EDIT DEVICE TABLE function (SF'05) in the @GENPART
discussion given earlier in this section.

424

1

Partition Devlice Table Modifications:

Device Table entries can be modified either expliclitly, with a SELECT
statement, or implicitly with a CLEAR command, the RESET key, or Master
Initialization of the system. In general, therefore, Partition Device
Table entries remain in effect until one of the following operations 1is

performed:

. A SELECT statement 1s executed explicitly redefining one or more
specified entries

. A CLEAR command with no parameters is executed

. The system is Master Initialized (see below);

Whenever necessary, the Partition Device Table can be displayed for

debugging purposes by using the BASIC statement LIST DT (List Device
Table}.

LIST DT displays, in hexadecimal notation, the device table belonging
to the partition/terminal originating the LIST DT statement. The
Partition Device Table is displayed at the requesting terminal. More
detailed information concerning partition device-table modifications
can be found in the 2200MVP Reference Manual: WL#700-4080

4,7 SPECIAL PROGRAMMING CONSIDERATIONS
4,7.1 Time-Dependent Software
1. The execution time of a given program varies from one machine to
another. Execution on the MVP depends upon the current load of
the CPU,
2, 2236D CRT refresh speed, 19.2 Kilobaud, 1s much slower than in

2226 CRTs. Thus, programs written to update the entire screen may

affect the operating spsed of the system.

4=25

LINPUT rather than KEYIN is recommended for data entry, since
response time with KEYIN will vary, and LINPUT reduires no CPU

processing between keystrokes.

Using FOR/NEXT loops for delaying, (e.g., maintaining a message on
the screen for a specified amount of time) uses excessive CPU
time. Delay time varles depending upon the current work load of
the CPU. Use of the SELECT P statement 1s recommended.

Instrumentation that is crlitiecally timed by the program may not
work properly.

4,7.2 Peripherals

1.

For line printers, plotters, 2228R and any other device that must
be allocated to a specified user for a period of time, new $OPEN
and $CLOSE statements are provided. Other than making certain
that these statements are added, the programmer need not change
the body of a program.

All Console Input, INPUT, and LINPUT statements utilize 2236MXD
controllers. Therefore, these statements may not be used with
the Model 2250 or telecommunications-control boards. Thls means,
further, that the echo characters may not be sent to the line
printer,

4.7.3 $GIO Restrictions

1.

CBS is not issued to the 2236MXD.

Input not allowed from 2236MXD (i.e., console keyboard).
Timeouts and delays are allowed for output; however, the timeout
or delay value is a minimum time. The value applies to the
execution time allocated to this program; if other programs are

executing, the actual delay time will be longer than speclified.

There 1s an implicit timeout (with error) of 1 millisecond for
input (non-MXD). A timeout of up to 10 ms can be specified.

4-26

L

4.7.4 I/0 Statement Restrictions

The following chart deflnes which devices the MVP Operating System
. permits the statement to communicate with. ERR #48 results when a BASIC
statement addresses an illegal device.

2236D
2236D 2236D TERMINAL DEVICES QTHER
STATEMENT TERMINAL TERMINAL LOCAL THAN 2236D
~ OR OPERATION: KEYBOARD CRT PRINTER TERMINALS

Console Qutput®
PRINT
PRINTUSING
HEXPRINT

LIST

PLOT

Console Input
INPUT

LINPUT

KEYIN

$IF ON/OFF

$GI0 X X
SELECT ON {interrupt)

Disk Statements

b obd bd 4P
P4obd B bd PE g
P obd B4 pd BE
T]

-

. *Console Nutput (keystroke echo, error, END, STOP messages, and LINPUT and
INPUT prompts) 1s always directed to the terminal CRT except for TRACE
output which can be selected to another device (such as a printer).

4,7.5 Default Disk Address
Unlike the 2200VP, whose default disk address is always /310 after
power on, the MVP's default disk address after power on ls set to the

address of the disk from which the system was loaded. That is

SF'00 sets default address to /310

'01 /B10
« 102 /320
'03 . /B20
After partition generation, the default disk address for each partition
. i1s set to the default disk address of partition #1 at the time of partition
generation.

4~-27

4,7.6 Continue

The MVP supports CONTINUE as an Immediate Mode statement rather than a
command. Thus, CONTINUE need not be the only statement on a line; however, .
no statements may follow CONTINUE on the Immediate Mode line. This feature
of CONTINUE is useful when program execution is to be continued with the

terminal released to another partition. For example,

:$RELEASE TERMINAL : CONTINUE

4.8 PROGRAMMING THE 2209A ON THE 2200MVP

The present $GIO sequences, documented in table -1 of the 2209A
manual, will lead to an input timeout error (I92) on the MVP. The MVP
cannot allow one partition to walt for an input strobe (8607) for a long
time, as this would be unfair to other users. The MVP hardware does not
permit the MVP to switch users once an 860X microcommand has begun, because
data may be lost in the process., The solution is to wait for the tape drive
controller to become ready (1020) before asking the board for input. Thus
the change to the $GIO sequence is to insert a 1020 microcommand after a CBS .
(34xx) that causes tape motion and before the single character input (8607) .

that follows the tape motion commands.

As mentioned in the 2209A manual, it 1s not necessary to keep the tape
controller board enabled throughout an entire tape operation. The example
of a look ahead read is given. In the example, the $IF ON statement is an

acceptable substitute for the walt for ready micro-command (1020).

10 #GIO READ/OTB (4400 1020 8607 4424 €220, A$) B$ ()
or

20 $GIO LOOK AHEAD READ /07B (U400, A$)

.
.

30 $IF ON /07B, 500

i

500 $GIO READ CONTROLLER BUFFER /07B (1020 8607 4424 C220, A$)

4-28

In the previous example, $IF ON and the 1020 microcommand in line 500

are redundant.

Another important MVP change is the increased importance of Master
Reset (459C). The reset key on the 2236D console WILL NOT reset the tape
drive controller. If a reset from the console happens to occur in the
middle of the execution of a tape drive $GIO sequence, the tape drive
controller will be left in an unpredictable state. In such cases, it is
important that tape drive contrcller be reset by sending a CBS of HEX (9C)
without waiting for ready (459C).

The Status $GIO sequence 1is currently documented as allowable at any
time (CBS of 88 without waiting for ready). Experience has shown that
reading controller status during tape operations sometimes interferes with
proper controller operation. The status sequence should be used to read
tape drive status when the tape is not in motion (U448B rather than U458B).
$IF ON or the $GIO micocommand 1010 should be used to test for "tape

operation complete™.

Op the VP and MVP, the $GIO sequence 1300 AQ00 is a faster
multi-character output than the A200 in the present tape drive manual.

To summarize, the new recommended VP/MVP $GI0 sequence for the 22094
tape drive are listed below:

Backspace file $GIO BSF /07B (4405 1020 8607, A$)
Backspace record $GIO BSR /07TB (4404 1020 8607, A$)
Forwardspace file $GIO FSF /07B (4402 1020 8607, A$)
Forwardspace record $GIO FSF /07TB (4408 1020 8607, A$)

Read $GIO READ /07B (4404 1020 8607 442A c220, A$) B$()
Rewind $GIO REWIND /07B (4446 1020 8607, A$)

Write EOF $GIO WEOF /07B (4403 1020 8607, A$)

Write Gap $GIO WGAP /07B (4407 1020 8607, A$)

Write $GI0O WRITE /07B (Ul429 1300 A00O 4401 1020 8607, A$) B$()
Look Ahead Read $GIO LAR /07B (4400, A$)

{Subset of Read)

Finish Read $GIO FR /07TB (1020 8607 u42a c220, A$) B$ ()
(Subset of Read)

Buffer Write $GIO BW /07B (4429 1300 A000 4401, A$) B$ ()
(Subset of Write)

Finish Write $GIO FW /07B (1020 8607, B$)

(Subset of Write)

Master Reset $GIO RESET /07B (459C, B$)

Status $GI0 STATUS /07B (448B, 1020 8706, B$)

a

L

4~30

SECTION 5
SYSTEM-LEVEL THEORY OF OPERATION

5.1 INTRODUCTION

< _ Overall operation of the 2200MVP is handled collectively by hardware,
firmware, and software; however, the key to understanding how each hajor
element of the system interacts with others comes by first understanding the
x method of memory control used in the Central Processor. This discussion

will therefore commence in that general area.
5.2 MEMORY RESOURCES IN THE 2200MVP

There are two random-access memory units in the 2200MVP--Control Memory
arid User Memory.

Microcode for the Operating System is contained in (loaded into)
Control Memory. The Operating System is a software package dedicated to
_ central processor time management, system memory management, and I/0
. operations management. Control Memory comprises twenty-thousand 2U4-bit

words, and that microcode is not accessible to users.

Physically separate from Control Memory is the RAM space allocated for
User Memory (also referred to as "Data Memory" in other sections of this
manual)--for storage of user programs, user data, and other information
needed for correct user program execution. User Memory is divided into
areas known as "banks", In the 2200MVP, a maximum of four banks are
possible. A system containing from 16 to 64 kilobytes of User Memory uses
only bank #1. In that first bank, memory may be added in 16K increments up
to the 64K maximum. Memory in banks 2 and 3 may be added only in 32K
increments. User memory in bank #U4 may be added only in the full
64-Kilobyte size.

5.3 MULTI-USER MEMORY MANAGEMENT
7 In a multiple-user system such as the 2200MVP, system resources must be
\. shared. The simplest technique of sharing user memory space 1s called

"partitioning”.

5-1

Normally, the word "partition™ means "a dividing wall". However, in
the computer industry, the word has come to mean the space enclosed by the
wall, rather than the wall itself. Henceforth, when discussing partitioned
memory management, the "partition" is a block of memory space with specified
address boundaries; it is not a boundary itself. The 2200MVP is configured
such that each user is allocafed one or more blocks (partitions) of User RAM
which belong exclusively to him,

5.4 PARTITIONING 2200MVP USER MEMORY
5.4,1 MASTER INITIALIZATION -- A PREREQUISITE FOR PARTITIONING

During Master Initialization, before user partitions are generated and
allocated for system users, a "system-use" block--comprising the first 3K in
Bank #1 of User {Data) Memory--1s established for Operating System
housekeeping. (For this preliminarj allocafion, the Operating System might
be loosely thought of as another "user" of User RAM space, requiring its own
partition.)

5.4.2 GENERATING THE PARTITIONS

The number of partitions to be created and the amount of User Memory to
be allocated to each partition are specified by the user in a process called
"partition generation". This process also involves specifying certain
attributes for each partition and supplying the addresses of peripheral

devices connected to the system.

Once the Operating System has been loaded into Control Memory (thus
completing Master Initialization), the special utility program "@GENPART" is
loaded and executed at terminal #1. This program leads the system operator
through the necessary steps for "partition generation". A series of display
prompts appear at terminal #1 which require the user operating that terminal
to supply information pertinent to each partition and each shared peripheral

device.

<3
£

* A fgystem configuration™ is.oreat®d by the GGENPART UYITAEYY Once
created, a system configuration can be saved on disk for later recall. For
this reason, a system configuration need be defined only once. A variety of
system configurations can be created for different processing requirements;

the operator can then select an appropriate conflguration, as needed.

5-2

£

A

When the user has provided all of the information requested by
@GENPART, or when the desired saved configuration is selected from the
@GENPART display, the BASIC-2 statement $INIT must be executed, In the case
of the Wang version of 8GENPART, execution of $INIT is accomplished by
keying SF 15. $INIT directs the Operating System to allocate resources as
prescribed in @GENPART, in order to create the desired system
configuration. Note that the $INIT statement alone (customized
configuration) may be used instead of the Wang @GENPART program. In either
case, it is the $INIT statement which ultimately causes configuration to be

carried out.

Once partition generation (partition allocation) has been implemented,
each partition can be handled much like the entire user memory space of a
single-user 2200 System: program text can be entered by a user, starting
near the low end of his allocated partition, and his text entry progresses
Wwith ascending User Memory addresses; variable data for that program can be
entered starting at the end (highest address) of his partition, and entry of
that data progresses with descending User Memory addresses. This
information will be illustrated in a partition-scheme diagram which appears

in subsequent text of this section.

The MVP Operating System and CPU hardware will support a maximum of 16
partitions and 8 system users. All 16 partitions may be allocated to a
single user, or multiple-parititon configurations may be created for each
user. The 16 partitions (maximum configuration) may reside entirely within
a single bank, or may be split up between all four banks (as could be the
case for a 256K MVP). One restrictibn, in regards to this latter statement,
is that each partition must be defined wholly within the confines of a bank;
that is, no user partition is allowed to extend from one bank to the next.

NOTE:
The first 8K of banks 2, 3, and 4 are non-addressable,
due to certain constraints of the MVP Operating System;
this means that prior to partition generation time,
there is only 56K (maximum loading) left for partitioning
in each of those banks. A 256-Kilobyte MVP therefore
provides an actual total of 229 Kilobytes for partitioning
of User Memory. (61K in bank #1, plus 56K each for banks 2,
3, & 1)

5-3

FIGURE 5-1 2200MVP USER MEMORY

st §K-NON ADDRESSABLE

P! PARTITION
f #9
13t BK-NON ADDRESSABLE[
PARTITION JARTITION
t 26 #10
13t 8K-NON ADDRESSABLH
J PARTITION BANK ©§
" SYSTEM-USE" BLOCK L#&) g4 {6uk]
UNIVERSAL-GLOBAL AREA ARTITION#
ARTITION
USER PARTITION #1 #5
USER PARTITION #2 SANE F3
64K: IN 32K
INCREMENTS
USER PARTITION #3
BANE #1
16-64K: IN
16K INCREMENTS

5.4.3 PARTITION SIZE & INTERNAL ALLOCATIONS

Partition sizes are specifled in 256~byte (1/LK) lncrements. ﬁﬁg
RN . e s The
guideline for maximum partition size is, as explained previously, that each

partition must be defined wholly within the confines of a bank; no user

partition 1s allowed to extend from one bank to the next.

The first 9U7 bytes of each partition is used by the Operating System
for the operational Housekeeping” requirements of that,partition {this is
not to be confused with the "system~-use" block in bank #1). Within each
pdrtition, there i= also a User Program Text area, a Work Buffer, a Free

Space area, a Value Stack, and a User Data Space (further explanation
follows). Reallze that neither the 947-byte housekeeping space, nor the
Work Buffer, nor the Value Stack in each partition is addressable by the
user; 1nstead, values are stored in and retrleved from those blocks by the

Operating System, according to the the conditions of execution existing in

that partition at any given moment.

L

3

FIGURE 5-2
INTERNAL PARTITION ALLOCATIONS |

LOWEST PARTITION ADDRESS ("Beginning" of Partition)

. fixed boundary
$ PARTITION HOUSEKEEPING AREA
~ (947 Bytes, fixed)
fixed boundary
a 0 USER PROGRAM TEXT AREA
~ N {Expands Downward)
E floating boundary
P WORK BUFFER AREA = 192 Bytes, Min,
A (64 Bytes: For Immediate-Mode lines)
R (128 Bytes: General work space)
T .<<
I (Entire buffer floats downward as program expands)
% floating boundary
8] FREE SPACE)
N (Compressible To zero space)
floating boundary
VALUE STACK
Q (Floats upward as user data is added to the variable
‘ table. Also, starting with zero space, the VS expands
upward during operations)
floating boundary
USER VARIABLES (DATA) TABLE
(Expands upward)
S : fixed boundary
HIGHEST PARTITION ADDRESS ("End" of Partition)
The Value Stack is not of fixed size; it expands and contracts in size
during the course of program execution, and its size is zero prior to program
N execution. Typically, the Value Stack serves as a storage space for transient
operands during the evaluation of mathematical expressions; subroutine return
address information is also stored here, as required by the user's program.
The Work Buffer "floats" at the end of the Program Text area in memory.
It is used to temporarily store information transferred into memory from the
. keyboard's input buffer, as well as for temporary storage of data for certain

system functions such as LIST DC, MOVE and COPY. Immediate Mode lines and

system commands transferred to the Work Buffer are immediately executed and

then cleared; numbered program lines are moved from the Work Buffer area to

the Program Text area so that they willl be threaded into the user's progranm.

The Work Buffer can become as large as necessary (subject to available ®
space) to contain an entered line. 1In every case, however, the system
" reserves a fixed minimum of 192 bytes for the Work Buffer,

When the addition of a new program line or variable threatens to overlap
into the minimum buffer area, a memory overflow error 1s signaled, and the

program line or variable is not stored.

The actual amount of free space that exists in a partition at any given
moment may be c¢alculated by the two BASIC functlons SPACE and END. Before
computing this free space, the system automatically subtracts 192 bytes from
the avallable space (for the minimum Work Buffer area). Thus, if END and
SPACE return free space values of zero, there remains a minimum of 192 bytes

- 8till avallable for the Work Buffer.

It is important to recognize that a situation may arlse in which
initially, there 1a sufficient free space to enter a program, out not enough
free space to execute the program; this occurs when execution of a user's
program causes the the Value Stack to expand beyond its allowed free-space
limitations. The "SPACE" function can be used to determine just how much free
space actually is available. Free space must be checked at the point during
program execution where the Value Stack attains its maximum size. Typically,
this condition occurs when the program executes the innermost loop iIn series
of nested loops. SPACE can be executed in that innermost loop to determine
how much free space 1s available at that point. -

The SPACE function returns, to the workstation screen, the amount of
memory not currently occupled by program text or data, minus the amount %
occupied by the Value Stack. This value represents the actual amount of free

space in memory at any point during program execution.

The END function does not subtract the space taken up by the Value Stack. .

Lo

{w

fa

Cp

The Meaning of "Negative" Free Space:

Although the system ensures that a minimum of 192 bytes always remain
unoccupied by program text or variables in memory, it does permit the
Value Stack to utilize a portion of this minimum buffer area. Up to 128
bytes of the 192-byte minimum Work Buffer can be used by the Value
Stack. This fact implies that a program can bé run even when memory is
legally "full," since additions to the Value Stack during execution can
overlap into the reserved Work Buffer area. Note that in this case the
SPACE function would return a negative free space value. To understand
why this is so, consider the following:

Program
Text Area
Reserved } |} _ __ _ _ _ _ _ _ _ _ _ __]
Minimum SPACE = =100
Work Buffer Value Stack (100 bytes) END = O
{192 bytes)
Variable
Table
FIGURE 5-3

"Negative" Free Space

When memory is so fully packed that the Value Stack must occupy part
of the minimum buffer area, size of the Value Stack is subtracted from
zero by SPACE, yielding a negative free space figure. Thus, a free space
value of =100, returned by SPACE, indicates that memory is legally
Pfull"™; however, 100 bytes of the reserved minimum buffer have been used
by the Value Stack. Since a maximum of 128 bytes of the minimum buffer
area can be used by the Value Stack, SPACE cannot return a value less
than =128. When the Value Stack requires more than 128 bytes of the

buffer, a memory overflow error is signaled.

5-7

5.5 THE SERVICING OF PARTITIONS
5.5.1 TIME-SLICE PROCESSING

The MVP CPU services each partition (max.= 16) in a repetitive, ordered
sequence. Each partition is given a standard 30 ms. "time slice", during
which exclusive use of the CPU is granted., A limited number of program or
immediate-mode operations can be executed during this interval. For this
purpose, the CPU has a 30-millisecond timer which is set at the beginning of
each timeslice; this clock is checked periodically for expiration of the 30-ms
limit. For reasons which will be explained in subsequent text of this
section, note that time slices are not always allowed to last the full 30 ms.

When a partition's time slice ends, the Operating System saves (stores)
all current status conditions for that partition. The Operating System then
proceeds to load the status of the next partition into the CPU and begins a
new 30-ms time slice. The exact moment when execution is halted in a
partition is called the "breakpoint" of the time slice. The programmer cannot
predict in advance when a breakpoint will take place, but the occurrence of
breakpoints is of little or no concern to him, Further, since the ordered
time slice arrangement is repeated at high speed, all user programs appear to

operate simultaneously.

Whenever a partition is given a new time sllice, conditlions that existed
at the end of that partition's previous time slice will be restored, and

processing for that application resumes for the duration of the new time slice.
5.5.2 BREAKPOINTING

As previously mentioned, a time slice does not always last exactly 30
milliseconds. Unlike many operating systems, the MVP Operating System will
cause breakpoints whenever it is convenient or advantageous, rather than only
allowing breakpoints to occur upon expiration of the the CPU time-slice
clock. Specifically, under the direction of the Operating System, a
breakpoint may occur if a peripheral device being addressed is busy, or if a
peripheral device belng addressed 1is being "hogged*" by another partition;
either condition is called an "I/0 breakpoint".

"Hogging" of system peripherals will be explained in paragraph 5.11.

5-8

>
L]

e

[

R
Y

For instance, if the partition that has the current time slice attempts a
disk access, and if the disk is temporarily being "hogged" (used exclusively)

by another partition, the hogging condition is quickly detected and a
breakpoint occurs in the current partition's time slice.

The term "I/0 breakpoint" should not be confused with "program
breakpoint". Program breakpoints are conditional, scheduled halts in a user's
programj they are a means, for instance, of monitoring an I/0 port for pending
data entry requests. Program breakpoints are written into the user's program
by the user.

I/0 breakpoints differ from Program breakpoints in that the partition
interrupted by an I/0 breakpoint is specifically marked "waiting for I/O" by
the Operating System. When that partition is given another time slice, the
Operating System takes only microseconds to decide whether I/0 processing may
proceed or whether the partition is still waiting for the I/0 device and must
therefore be bypassed. The Operating System temporarily bypasses that
partition as effectively as if it had been entirely removed from the system
during the I/0 waiting period.

The CPU is much faster than any of its peripherals, and for this reason,
breakpointing during I/0 allows the MVP to perform work with other partitions
while the I/0 operation is still being carried out. For examnple, when a
program uses KEYIN to receive data from a keyboard, the CPU can give time
slices to other partitions between operator keystrokes. In a similar manner,
several partitions can be serviced by the CPU during a carriage return on a
22214 printer,

5.6 ASSIGNMENT, ATTACHMENT, and FOREGROUND/BACKGROUND PROCESSING
5.6.1 ASSIGNMENT

Although system resources must be shared in the 2200MVP, each user is
given the impression of having his own personal system--his own terminal, his
own memory, his own peripherals. As previously explained, the exact
configuration of each user's "personal system" is specified by an operator at
partition generation time. Partitions and terminals configured (by the
Operating System) into one such "personal" system are said to be in a state of
"assignment®; that is, they are assigned to each other as integral parts of an

independently-functioning personal computer system.

5-9

Assignment alone 1s only a prerequisite for the actual operation of each
"personal® system. In order to use any facility of the system, attachment is

required.

"Attachment" 1s a state that exists when the Operating System establishes
an active bidirectional communications link between a partition and a terminal
that already have previous assignment to one another. In effect, a partition,
during attachment, is moved into the "foreground™ by the Operating System;
subsequent interaction between operator and system are thus allowed. Unless
attachment occurs, a user has no access to the MVP central processor. Without
attachment, the user terminal is dumb, having no program mode, no immediate

mode.

At any given time, only one attachment is possible in each user's
"personal" system configuration. Attachment with the lowest-numbered assigned
partition occurs automatically on completion of @GENPART. ({Ref: $INIT
statement in the VP/MVP Language Reference Manual, WL#700-4080).

To illustrate the states of assignment and attachment, consider the

following:

Suppose that a program (arbitrarily called "program A") requires frequent
operator interactions; another program, "B", belonging to the same user,
requires only occasional interactions., The fiprst requirement is that of

assignment:

The two partitions (cne with program "A", the other with program
"B") and the user's terminal must have been previously asslgned to
each other by the Operating System, that they might function as an

integral unit, a "personal system".
So that program "A%, the priority real-time program, can function on an

interactive basis with the user terminal, the next requirement is that of

attachment:

5-10

r

>

L

-

¥

The Operating System moves the partition holding program "A" into
the foreground. By this action, the Operating System attaches the
user terminal and .the partition to one another. For the duration of
each subsequent time slice given to the foreground (attached)
partition, both program and user can communicate with one another,
and both have access to the CPU (program mode, immediate mode).
Also by time-slice processing, program "B" runs "simultaneously" in
the background, communicating with the CPU, communicating with
certain peripherals. However, since this partition is running in
the background, it is unable, for the moment, to interact with its
assigned terminal.

When a background partition (program) attempts to communicate with its
assigned terminal, and if that terminal 1s currently in a state of attachment
with another assigned partition, execution of the background program is
suspended (executlon "hangs") until the requested terminal is released
(detached) from the foreground partition and is then placed in a new state of
attachment with the requesting partition. The formerly-attached partition is

simultaneously moved into a background run-state by the Operating System.

Note that some background jobs may have no requirements for access to a
terminal other than periodic displays of current job status. To avoid having
such jobs "hang" while awaiting avallability of the terminal, the $IF ON
statement can be used to determine whether or not the terminal is currently
attached (available) to the requesting partition; that is,.ﬁ;F ON reveals
whether or not the requesting partition is presently in the foreground

run-state. SOE reveal that the terminal is in a state of

attachment with the requesting partition, the status information is displayed;
if not, the program branches to perform further processing before testing for
avallability of the terminal again.

"Release" of a terminal from a state of attachment is accomplished by
executing the BASIC statEMerik
immediate mode. When a terminal has been released (detached) from a

1 elther the program mode or the

foreground partition, the assignment that existed between the terminal and the
partition is still recognized and maintained by the Operating System.

5-11

Further, when a $RELEASE TERM is executed,yh

Simulfaneously, the

Operating SysStem

, S OT attachment between the terminal
and the lowest-numbered walting (suspended, assigned) background partition. .
Of course, each new partition selected for attachment 1s considered to be 1n
the foreground for the duration of that selection. Note that the term
"background" implies only assignment; "foreground" implies both assignment and
attachment.

All walting background partitions may have a need for access to the Y
terminal within their assignment; however, each of the assigned background
partitions (programs) 1s sequentlially given access to the terminal (i.e., is
brought into the foreground for attachment) only when:

1) The program operating in the foreground partition
executes a $RELEASE TERM statement; thls means that the

terminal 1s released, in the program mode, to the next-

highest-numbered walting partition. (Special case: If

the $RELEASE TERM statement is executed in the

highest-numbered asslgned partlition, the terminal is

given to the lowest-numbered walting partition in the .
assignment.)

OR When:

2) The user executes a $RELEASE TERM statement 1n the
immediate mode; the terminal 1s released to the next-
highest-numbered walting partition. (Due to the fact
that the processing order of partltions 1s repeated by
the CPU, if the $RELEASE TERM statement 1s executed when
the highest-numberedrpartition is in the foreground

(attached), the terminal is given to the lowest-numbered

walting background partition in the assignment.)

If there are no assigned partitions actually walting for a terminal
after 1t been released, 1t 1s possible for the operator at that termlnal to
request the Operating System to re-establish a state of attachment between .
i\\\,\ his terminal and cne of the partitions assigned in his "personal® system.

AN

5-12

[

[

{p

This is accomplished by keying elther RESET or HALT on the terminal. On
that signal, the Operating System moves the user's lowesat-numbered assigned
background partition to the foreground, HALTs or RESETs any program
operating in that partition, and then establishes a state of attachment
between the terminal and the partition.

NOTE:

In order to allow re-attachment, and in order
to prevent the halting or resetting of an active
background program, it is a good practice to
generate a small control or "dummy™ partition

as the lowest-numbered assigned partition.

Optionally, the user himself may direct the swapping of terminal/par-
tition attachments by executing é modified form of the $RELEASE TERM
statement ($RELEASE TERM TO) in either the program mode or the immediate
mode, A partition is named in the TO parameter, and that partition must, of
course, be a partition that already shares assignment with his terminal.
When a $RELEASE TERM TO statement 1s executed, the terminal 1s placed in
attachment with the specified partition, even if that partition has not
attempted to communicate with the terminal, and even if one or more other
asaigned partitions have attempted to communicate with the terminal.
$RELEASE TERM TO does not halt the execution of programs running in either
the current foreground partition or the target background partition

specified in the TO parameter.

5.8 "RELEASING" A PARTITION:

Release of a parititon from a state of attachment is accomplished by
executing the BASIC statement $RELEASE PART in either the program mode or
the immediate mode., A partition may also be considered "released" if, at
partition generation time, an operator specifies terminal #0 (a non-existent
terminal, scmetimes called the "null" terminal) for any terminal/partition
assignment in the system. Another term used in place of "released
partition™ is "available partition™. In any case, the flag which aignifies
that a partition 1s released (i.e., avallable) is the terminal #0

assignment. A released partition does not belong to any user's "personal

5-13

system"; it has no terminal associated with it; it has no terminal assign-
ment, Note that if a program is running in a released partition, execution
of that program will "hang" if any communications are attempted with a
terminal.

The $RELEASE PART statement allows a partition to become avallable to
any terminal connected to the system.

Consider the following:

%

1 If a terminal 1s in a state of attachment with some partition, and
if that partition does not meet requirements for some new
application (due to insufficlent partition size, for instance),
the operator may elect to use an "available" partition more suited
to his needs. The characteristies of available partitions may be
examined by executing a $PSTAT statement. When the avallable
partition 1s found having characteristics most sulted to the
operator's needs, the user may then execute a $RELEASE TERM TO
statement to the available partition; the newly-acquired partition
will then be given a new assignment with the requesting terminal,
and will be placed in a state of attachment with that terminal.

Thus, the new partition becomes a new addition to the user's

"personal®" system.

2) An operator at a non-assigned terminal may also request assignment
and attachment to a released {available) partition by keying RESET
or HALT.

$RELEASE PART causes a present states of attachment and assignment
between a terminal and a partition to be broken off. The terminal formerly

belonging to that assignment can optionally be re-directed to a new ¢
partition for assignment and attachment (if a new assignment is specifiled in
parameters of the $RELEASE PART statement). Thls carries the implication

-

that, in addition to making a partition avallable, $RELEASE PART also
performs a $RELEASE TERM TO for the terminal. If a new partition assignment
is not specified for the terminal in the parameters of $RELEASE PART, that
terminal will either be attached to a waiting partition already within the

assignment (if there 1s one walting), or the terminal will have no further

5~14

(>

r

assignment or attachment with any partition. In the latter case, the
terminal becomes non-assigned, having no immediate mode, no means of
executing programs, no access to system peripherals; it would no longer be
part of the active MVP system.

Note that $RELEASE PART does not clear a partition, nor does it

terminate a program running in that partition.

5.9 "GLOBAL"™ PARTITIONS:

Although partitions function independently, there are situations in
which it is highly expedient for two or more partitions to cooperate with
one another, to share common information, common programs. This sharing
eliminates needless duplication of applications software and data, thus

allowing more efficient use of available User Memory space.

Partitions can therefore be "global"; that 1s, each partition so
designated contains programs and/or data which become conditionally
shareable., A foregound or background program that is running in a partition
in one bank can access any global partition (i.e., global routine and/or
global data) residing in that same bank. Additionally, a user terminal that
is in a state of attachment with a partition in that same bank can access

those global routines and/or data while in the immediate mode.

5.10 "UNIVERSAL GLOBAL"™ PARTITIONS:

The first 5K of User Memory in bank #1 (immediately following the
System-Use Block) constitutes a special section of User Memory known as the
"universal-global™ area. (See Figure 5-1,) Partitions defined within this
area are correspondingly called "universal-global partitions". A
universal-global partition may be accessed by a program running in any
foreground or background partition. Also, similar to standard global
access, user terminals in a state of attachment are allowed access to
universal-global routines and/or data while in the immediate mode. To
summarize, a universal-global partition can be used to store programs and

data that can be shared by all system users,

5-15

Note that the entire 5K universal-global area need not be used
exclusively for universal-global partitions; the only restriction is that,
for a partition to be univeréally global, it must reside entirely within the
5K universal-global address block in bank #1. When not required for
universal-global purposes, that same 5K in bank #1 can be treated as all

other partitionable memory.
5.11 USER PROGRAM EXECUTION:

5.11.1 GENERAL

The term "job flow" refers to the path of execution followed by a job
from beginning to end. In the 2200MVP, job flow may be confined within a
single partition, or it may extend across several partitions via global
subroutine calls. The term "Jjob" is preferred to "program" here, because
the term "program"™ is too c¢losely aésociated with the contents of a single
partition. A job consists of one or more program routines; each line of
each routine in the job contains one or more program statements. In the
normal execution of an individual routine, each statement is executed from
left to right, from lowest line number to highest.

5.11.2 SUBROUTINES:

The Operating System tracks execution of a job by using a "text
pointer". The text pointer always points to the statement that is to be
executed next in a particular job flow; the text pointer provides a "thread"
leading from the statement currently being executed to the statement that is
about to be executed.

If job execution is confined within a single partition, the text
pointer contains all information required by the Operating System for the
execution of a user's program. However, to execute global subroutines, the
Operating System requires additional information that reveals which

partition contains the currently~executing program text.

When a global subroutine call is made, the global text is execubted as
if that text were appended to the calling text within the originating
partition. The Mjob" may therefore be thought of as the combination of all

nonglobal and global program text, considered as a integral unit.

5-16

3

-

The "originating partition" is the partition in which the job is
initiated; further, it is the partition that holds all status information
pertinent to the execution (flow) of that job, even if that Job extends

. across several partitions. Each job has only one "originating partition".

The "calling partition" is simply a partition making the current
global/universal-global subroutine or data call in a multi-partition job.

(&

When a user program issues a non-global, global, or universal-global

. subroutine call (or requires global/universal-global variables), the status
and return-address information for each successive subroutine level is
stored in the originating partition sequentially. If a time slice expires
while execution is taking place in an originating partition, or if the time
slice 1s terminated by the occurence of a breakpoint, or if the time slice
ends while execution is taking place in a called global/universal-global
routine, the conditions of execution that exist at the moment the time-slice

ends are also stored in the originating partition,

In order to track all of the various conditions that arise during
subroutine calls, each partition has two internal "stacks" and a "pointer
. table"; users are not allowed access to these housekeeping elements. The
CPU and the Operating System service each partition, and in the process,
each pointer and stack element is monitored, used, and updated. Note that
the text pointer for each job is maintained within the originating
partition's pointer table.

5.11.3 THE TEXT POINTER, POINTER TABLE, & INTERNAL STACKS:
Typically, when a subroutine call is issued (for instance, by a GOSUB'

statement), the number of the statement followlng the GOSUB' becomes the
current value of the "text pointer”. Simultaneously, the same number is

¢

saved on top of the Value Stack, one of the internal stacks previously
mentioned in this discussion.
NOTE:

(¢

The Value Stack functions as a "push-down, pop-up"
storage element. (The last, most recent entry in the
value stack will be the first to be recalled at any
given time by the Operating System.) The Value Stack

. can also be thought of as a "last-in, first-out" or
"LIFO" storage element.

5-17

The Operating System searches the program for a DEFFN' that corresponds
to the GOSUB' just issued. The statement number at which the DEFFN!' is
found becomes the a current value in the text pointer. The Operating System

instantaneously passes executlon to that point in the program.

The number in the value stack is unchanged; 1t is still the statement
number following the GOSUB'. When a RETURN statement is executed in the
subroutine, the Operating System retrleves the "old" text pointer entry from
the top of the value stack. That entry 1s placed in the text pointer (in the
pointer table), thus replacing the DEFFN' statement number, and then the
Operating System passes execution back to the statement which immediately
follows the GOSUB statement.

Pointer Table Format:

The following 1llustrates basic Pointer Table format:

Text_Pointer

Text Partition #
Data Partition #
Global Partition #
Current Partition #
Terminal #

Basically, each text pointer consists of a line number and a statement

number. For example, consider the following line of program text:
10 A = 100: PRINT A

In line #10, when the statement "A = 100" is executed, the text pointer
is automatically incremented to point to the next statement in that line,
"PRINT A". Thus, during executlon of the statement "A = 100," the text
pointer would have the value "10,2", indicating that the next statement to

be executed is the second statement in 1line 10.

5-18

{®

4

(.

Initially, all items in the Polnter table refer to the current
partition. For example, immediately following Master Initialization, a
system configuration could be established such that Partition #2 (in a state
of assignment with Terminal #4 for this arbitrary example) would have the
following values in 1ts polnter table.

Text Pointer 0
Text Partition #

Data Partition #

Global Partition #

Originating Partition #

Terminal #

0

N 1AC I 1V I | VN 12N I

The last two l1tems in the table-—Originating Partition# and
Terminal#--are constants set during Master Initialization. These values do
not change unless the system is reconfigured; other items in the table can
be modified frequently during Job execution, The meanings and uses of each
item in the polnter table follow:

. The Text Pointer - is updated by the Operating System, each time a

statement 1s executed, to point to the next sequential statement.
Further, it is modified by any branch statement (GOsUB, GOTO,
GOSUB', etec.), 1n order to point to the branched-to statement.

. The Text Partition # - 1s the number of the partition to which the
text pointer applies (i.e., it is the number of the partition

containing the currently-executing text). It 1s modified by a
GOSUB' statement whenever a branch 1s made to a DEFFN' in a global
partition. 1In this case, GOSUB' sets the Text Partition # equal to
the Global Partition #.

. The DATA Partition # - is the number of the partition containing
DATA statements referenced by READ. The DATA Partiton # can be
modified by a RESTORE statement, which always sets that number equal
to the current Text Partition #.

5-19

. The Global Partition # - is the number of the currently- selected
global partition. It is modified by a SELECT @ PART statement. It
1s the partition searched by GOSUB' for a corresponding DEFFN' when
the DEFFN' cannot be found in the Text Partiticn. It 1s also the
partition used for all global variable references.

. The Originating Partition # - is the number of the partition in
which execution of the Job originates and the Pointer Table is

stored. The Originating Partition # 1s a constant for each
partition. It is used for all local varlable references, for LOAD
operations, and for all system commands lssued from the user
terminal. The Origilnating Partition # i1s returned by the #PART

funection,.

. The Terminal # - is the number of the terminal that is in a state of

assignment with the originating partition. Like the Originating
Partition #, it i1s set at configuration time and generally is not
modified, except by reconfiguring the system. (Terminal # can be
altered upon execution of a $RELEASE PART statement.) Terminal # is
used for all CRT, keyboard, and local printer I/0 operations
performed during Jjob execution; this ineludes CO, CI, PRINT, LIST,
INPUT, LINPUT, KEYIN, ete. For any partition, the Terminal # is
returned by the #TERM function.

5.12 ALLOCATION & HANDLING OF PERIPHERALS
5.12.1 GENERAL

The mental image of multiple partitions and terminals functioning as
completely independent "personal systems" may be clouded somewhat by the
problem of competition (between partitions) for shared peripheral devices
("system peripherals"). This situation is familiar to programmers
accustomed to working with single-user Wang 2200 systems that share one or
more disk drives via disk multiplexers. In such systems, it is sometimes

necessary for one CPU to request exclusive control of a disk (i.e., to "hog"

the disk) while a file update 1s conducted.

5-20

(#

(+

With the 2200MVP, it may be necessary for a partition to exclusively
control a printer. For example, if, during a réport printout, a printer
were not exclusively available to one partition, that partition's print
lines might become unintelligibly mixed with those of another partition's,
if both were allowed access to one system printer at the same time. To
solve this problem, the concept of disk hog mode has, in the MVP, been
extended to all shared I/0 devices ("system peripherals®),

To state the situation more specifiecally: prior to configuration of
the system through $INIT, and with the exception of user terminals and local
printers, peripherals comnected directly to 2200 I/0 controllers are
avallable to all partitions i.e., such peripherals are "sharable". This
implies, further, that printers connected to terminals would not be
considered "shareable". A conflict arises when more than one user partition

simultaneously attempts access to a shareable device.

In order to avold such situations, the MVP Operating System enables a
partition, under program control, to request exclusive use of a peripheral
with a $OPEN statement; the address of that peripheral must be specified in
that statement. Once "open", the device remains hogged by the requesting
partition until either a $CLOSE or an END statement is executed or if a
CLEAR, RESET, or LOAD RUN command is initiated. Thus, if a disk is "hogged"
by the $OPEN statement, only the user who executed that statement may read
or write disk files until the device is released by one of the above

prescribed methods.

With the exception of terminals and local printers connected to them,
all peripherals connected to the system must be specified in the Master
Device Table at partition generation time. Using the Master Device Table, a
device can be placed in exclusive assignment with a specific partition until
a new system configuration is generated.

Basically, peripheral assignments are established at partition
generation time by the entry of a number--the number of the partition which
is to have control of a particular device--in the "Master Device Table”.
Such entries are carried out indirectly by the Operating System during the
execution of @GENPART, If any partition attempts access to a peripheral
device that has not been allocated to it during @GENPART (i.e., use of that
peripheral device was not specified in the Master Device Table), an error is
signaled to the user.

5-21

Console device addresses (i.e., HEX 005 (CRT), 001 (Keyboard), 204
(terminal pfinters)) are not specified in the Master Device Table; these are
specified in partition device tables. Each partition, iIn fact, has its own
partition ("local") device table that should not be confused with the Master
Device Table; the partition device table specifies use of console devices in
a user's "personal™ system configuration. This means that for each new
attachment hetween a terminal and a partition, a new set of specifications
for use of local console I/0 devices will take effect; that is to say,
certain options pertinent to console I/0 devices in each "personal" system
may be specified in each partition's device table. This method involves use
of the SELECT statement with its various options (Ref: 2200VP/MVP Language
Manual; WL# 700-4080).

Basically, when the system is instructed to perform an I/0 operation
with an I/0 statement or command, it must be provided with the
device-address to be used for that operation. If the device-address 1s not
directly specified in the instruction itself (several classes of I/0
instructions do not permit the direct specification of device-addresses), it

is obtained from one of the device tables.
DEVICE SELECTION -- DETAIL EXPLANATION

The MVP has four I/0 devices designated as the Primary 1/0 Devices
for the system The device addresses of Primary peripherals are buillt
into the system so that whenever the system is Master Initialized,
these device addresses are automatically selected for I/0 operations.

The Primary I1/0 Devices riormally are:

INPUT Device: Keyboard @ hex address 001 {(Terminal #1)
OUTPUT Device: CRT @ hex address 005 (Terminal #1)

DISK Device: . The Disk @ hex address 310)

PLOTTER Device: The Primary Plotter (address 413)

Note that these are not the same as Console I/0 Devices, which are
pertinent only to each "personal®" system, each partition/terminal

assignment having its own "Console" devices.

5-22

("

Ca

{r

When an input/output operatlon is executed, the appropriate device is
selected in one of three ways.

1. DEFAULT (Primary Console Device) - If no device-address 1is specified
or selected, the system automically provides the device-address

which 1s most commonly used for that particular operation.

2. SELECT - The SELECT statement can be executed. It assigns
device-addresses for specified I/0 operations.

3. SPECIFICATIONS - The device-address can be supplied with the BASIC

I/0 statement or command.

If a system does not contaln additional input/output devices, then
device addresses need not be specified or selected in the BASIC
commands and statements which perform input/output operations. If more
peripherals are added to the aystem, however, device address

specification or selection is required.

When Master Initiallzation occurs, the Primary Console Input address
(001) 1is assigned to Console Input, INPUT, LINPUT, and KEYIN
operations. The Primary Console Output address (005) is assigned to
Conzole Output, PRINT, PRINTUSING, and LIST operations.

Similarly, disk operations reference the Primary Disk address (310),
PLOT statements reference the Primary Plotter address (413), and tape
statements reference the Primary Tape address (104).

5.12.2 BACKGROUND PRINTING

As an additional feature of the MVP system, 1f a printer ls connected
to the rear apron of an M"assigned" terminal (thus making the printer an
assigned "local printer"), it 1s possible for a background program to send
output to that printer while a foreground program simultaneously interacts
with the keyboard and display of the attached terminal. The only
requirement for background printing is that the terminal to which the local
printer is connected must be in a state of assignment wlth both the
foreground and the background partition. The simultaneous I/0 required for
this type of action is handled by the 2236MXD controller and the 2236D
firmware (PROMs).

5-23

NOTES:

5-24

i»

&

Ly

SECTION 6
DIAGNOSTICS

6.1 GENERAL INTRODUCTION

There are four classes of diagnostic tests available for the 2200MVP
System: 1) - "BOOTSTRAP"™ (the resident diagnostic program in the 2200 MVP
CPU hardware), 2) - the Microcode (hardware/firmware) Diagnostics, 3) - the
BASIC-2 Language Diagnostic, and 4) - the 2200 Peripheral Diagnosties.

The Microcode (hardware/firmware) Diagnostics for the 2200MVP CPU are
available on the 2200MVP Operating System diskette (WL# 701-2294, latest

version).

The BASIC-2 Language Diagnostdic for the 2200MVP is available on WL
diskette #701-2261. This diagnostic can be run on more than one 2236D
terminal; in fact, this diagnostic should be run concurrently on all system

terminals.

The 2200 Peripheral Diagnostics for the 2200MVP is available on WL
diskette #701-2180. Note that when running the 2200 Peripheral Diagnosties,
only one terminal can be used. When using any printer diagnostic for a
local printer, all SELECT PRINT 215 statements in the program must be
changed to SELECT PRINT 204.

6.2 MICROCODE DIAGNOSTICS

The 2200MVP diagnostics are microcoded routines that test the hardware
components of the system and attempt to pinpoint any malfunction.

Additionally, there i1s a resident diagnostic program in the 2200 MVP
CPU hardware called "BOOTSTRAP", and it too is a microcoded diagnostic

routine (Ref: Section 3, paragraphs 3.7., 3.8, & 3.9). BOOTSTRAP runs

automatically, whenever the central processor 1s powered up.
6.2.1 LOADING SYSTEM FILES
Whenever the operator responds to certain visual BOOTSTRAP requests, a

System File will be loaded from the system disk and the following additional
tasks are performed (by BOOTSTRAP):

a) Check for disk "ready".

b) Verify whether or not the requested file exists on the platter
mounted.

c) Load the file into Control and/or User Memory, depending on .
whether the tests to be run are microcode diagnostics, language

diagnostics, or peripheral diagnosties.
d) Verify correct Control Memory instruction parity, Control Memory

CRC, and Control Memory LRC. -
e) Check User-Memory Parity.
f) BOOTSTRAP passes control of the CPU to the System File currently

loaded in Control Memory.

NOTE
Beginning with BOOTSTRAP release 2.2, one enhancement concerning
the loading of system files has been made available; that is, the
name of the file to be loaded by BOOTSTRAP can be entered by the
operator. File names have a maximum length of U characters, the
first of which must be "@"., The appropriate disk-address SF' key
should be pressed after keying-in the file name.

There are four "System File" diagnostics: 'CPU', 'Control Memory!',
'‘Data Memory'! (the User Memory test), and 'Registers'; these are microcoded

routines designed to test the system hardware.
6.2.1,1 BOOTSTRAP SPECIAL FUNCTION KEYS

There are three groups of function keys defined for use from the "KEY
SF'?" message that occurs during BOOTSTRAP.

a) BASIC-2.
b) User Menu of Diagnostiecs.

¢) Field Service Menu of Diagnosties.

If BASIC-2 1s selected by the operator, access to either of the other -

gyo groups is not possible ‘Wwithout reinitializing the central progessor . {via

CPU power off/on “or $IHIT$¢‘.‘7qe.'\‘,E\5

(&

(#-

If either the User Menu or Field Service Menu is selected, access to

elther of the other two groups is possible by keying RESET and then by

selecting either another diagnostic menu or BASIC-2.

is necessary in this case.)

One of the
the appropriate

as follows:

a)
b)
c)
d)
e)
£)
g)
h)
1)
1)
k)
1

m)
n)
o)
p)
q)

r)

8)

t)

SF'00
SF'01
SF'02
SF'03
SF'04
SF'05
SF'08
SF!'09
SF'10
SF'11
SF'12
SF'l3
SF'16
SFr17
SF'18
SF'19
SF*'28

(No reinitialization

above programs may be loaded into Control Memory by keying

special function key in response to the "KEY SpFt'on message,

loads
loads
loads
loads
loads
loads
loads
loads
loads
loads
loads
loads
loads
loads
loads
loads

loads

address 310

SF'29

loads

address B10

SF'30

loads

address 320

SF'31

loads

address B20

BASIC-2 from
BASIC-2 from
BASIC-2 from
BASIC-2 from
BASIC-2 from
BASIC-2 from
BASIC-2 from
BASIC-2 from
BASIC-é from
BASIC-2 from
BASIC-2 from
BASIC-2 from

the User menu from

the
the
the
the
the
the
the
the
the
the
the
the

disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk

e
e
e
e
e
@
e
@
e

@
e

address
address
address
address
address
address
address
address
address
address
address

disk @ address
the User menu from the disk @ address 310 (HEX).

the User menu from the

the User menu from the

the Field Service Diagnostics

(HEX) .

the Field Service Diagnostics

(HEX).

the Field Service Diagnostics

(HEX).

the Fileld Service Diagnostics

(HEX).

the disk @

310
Blo
320
B20
330
B30
350
B50
360
B60
370
B70

(HEX) .
(HEX).
(HEX).
(HEX).
(HEX).
(HEX).
(HEX).
(HEX).
(HEX).
(HEX).
(HEX).
(HEX).

address Bl10 (HEX).

disk @ address 320 (HEX).
disk @ address B20 (HEX).

menu from the disk @

menu from the disk @

menu from the disk @

menu from the disk @

BOOTSTRAP ignores all undefined funection keys while waiting for a

response to the "KEY SF'?" message.

Should a function key be depressed that

specifies an unused hex address (no device at that address), BOOTSTRAP will
halt; BOOTSTRAP always waits for a ready condition from disk. 1In case the

wrong SF key is pressed, keying RESET restores the "KEY SF'?" message to the
display of terminal #1.

6-3

When either the User or Field Service diagnostics menu is selected, a

CPU system-diagnostics menu is displayed. (Ref: Paragraph 6.2.5)

USER DIAGNOSTICS:

When the User diagnostics menu is selected, the operator may select:

a) SF'00 to load and run the CPU diagnostiec.
b) SF'0l1 to load and run the Control Memory diagnostics.
c¢) SF'02 to load and run the Data Memory {(User Memory) dlagnosties.

In general, the User diagnostiecs comprise a chain of diagnostics; these

are executed without operator intervention. The selected sequence
repeats until RESET 1s keyed.

FIELD SERVICE DIAGNOSTICS

When the Field Service menu is selected, the operator can individually

select:

a)
b)
c)
d)

e)

£)

g)

h)
1)
h),

SF'00 to load
SF'01l to load
SF'02 to load
SF'03 to load
SF'04 to load
diagnostiec.

SF'05 to load
diagnostie.

SF'06 to load
dlagnostic.

SF'07 to load
SF'08 to load
SF'09 to lead

and
and
and
and

and

and

and

and

and

and

In general, Fleld Service
diagnostic until RESET is

Service menu and the User

run

run

run

run

run

run

run

ran

run

the
the
the
the
the

the

the

the

the
the

CPU diagnostic.

Control Memory Addressing diagnostic.
Control Memory MAT C&S diagnostic.
Control Memory ROWPAT diagnostic.
Data Memory (User Memory) Addressing

Data Memory (User Memory) MAT C&S

Data Memory (User Memory) ROWPAT

Register diagnostie.

Auxiliary Registers diagnostiec.
Stack Reglister diagnostic.

diagnostiecs will execute only the specified

keyed.

The diagnostics used by the Field

menu differ by the inclusion of Register

64

i

‘4

tests in the Field Service Menu. The only additional difference is

that the user-menu chain runs every diagnostic category. Refer to

paragraph 6.2.2 for a brief description of each cpu hardware test

category, paragraph 6.2.3 for brief descriptions of user diagnostics,
and paragraph 6.2.4 for brief descriptions of Field Service

diagnosties.

Note that in order to select another diagnostic test, one

of the three test menus must first be reselected. Therefore, after
each test, key RESET, key the appropriate SF' key for selection of a
menu, then select the desired test from the menu just selected.

Note that in the Field Service Diagnostics, special function key '15 is
defined uniquely to allow chailning of Register Diagnosties. After

selecting one of the Register diagnosties, keying RESET and then SF' 15

will cause all three register diagnostics to run sequentially.

6.2.2 MICROCODE DIAGNOSTICS DESCRIPTION

DIAGNOSTIC

CPU

CONTROL MEMORY

DATA (USER) MEMORY

REGISTERS

FUNCTION

Test instruction set, ilncluding Extended and

Read/Write instructions.

Test Control Memory from end-of-program to

end-of -memory for addressing, duplication of the 2200
Option 5 memory diagnostic, and a modified ROW PATTERN
test.

Test Data (User) Memory from start-of-memory to
end-of-memory for addressing, duplication of the 2200

Option 5 memory diagnostie, and a modified ROW PATTERN
test.

Test registers FO-F7, CH, CL, PH, PL, SL, K, AUX 0-32,

and STACK 0-96 (the SH register is not tested due to
the ability of the hardware to change bit status).

6-5

6.2.3 USER DIAGNOSTICS

DIAGNOSTIC CONFIGURATION REPETITIONS

CPU Loads and runs the CPU diagnos- 3 passes per second
tic only. Runs continuously.

CONTROL MEMORY Loads ADDRESSING, MATCE&S 3 minutes per pass
and ROWPAT. Runs ADDRESSING
for 5 loops, MATC&S for 5
loops, and ROWPAT for 1 loop, "
then repeats sequence.

DATA (USER) MEMORY Loads ADDRESSING, MATC&S Size-dependent
and ROWPAT. Runs ADDRESSING
for 5 loops, MATC&S for 5
loops, and ROWPAT for 1 loop;
the entire sequence then repeats.

6.2.4 FIELD SERVICE DIAGNOSTICS

APPROX. TIME
DIAGNOSTIC CONFIGURATION PER LOOP
CPU Loads and runs CPU diagnos- 3 seconds per pass
ti¢ only. Runs continuously.
CONTROL MEMORY Loads ADDRESS, MATC&S, ' ADDRESS '~
and ROWPAT. Runs only the 3 seconds per pass
selected diagnostic (contin- YMAT C&S'-
uously). .5 seconds per pass
for 16K
'ROWPAT' -
2.5 minutes per pass
DATA (USER) MEMORY Loads ADDRESS, MATC&S 'ADDRESS!' -
and ROWPAT. Runs only the .3 seconds per pass
selected diagnostic con- TMAT C&S' -
tinuously. 2 seconds per pass
'ROWPAT' -
Size-dependent i
REGISTERS Loads REGISTERS, AUXILIARY 'REGISTERS' -
REGISTERS and STACK. BRuns .07 seconds per paas
only the selected diagnostic YAUXILIARY' -
(continuous-run). .5 seconds per pass ’
1STACK' -

1 second per pass

+

6.2.5 SPECIAL FUNCTION KEY DEFINITIONS FOR BOOTSTRAP MENUS

SF FUNCTION/MENU SF FUNCTION/MENU
KEY: LOADED: KEY: LOADED:
06 BASIC-2 15
(310)
BASIC-2
0l (B10) 16 USER MENU (310)
BASIC-2
02 (320) 17 USER MENU (B10)
BASIC-2
03 (B20) 18 USER MENU (320)
ol BASIC-2 19 USER MENU (B20)
(330)
05 BASIC-2 20
(B30) 21
22
23
06 24
25
26
07 27
08 BASIC-2 28 F.S. MENU (310)
(350)
09 BASIC-2 29 F.S. MENU (B10)
(B50)
10 BASIC-2 30 F.S. MENU (320)
(360)
11 BASIC-2 31 F.S. MENU (B20)
(B60)
12 BASIC-2.
(370)
13 BASIC-2
(BT0)
14

6~7

PROGRAMS LOADABLE FROM DIAGNOSTIC MENUS

USER " FIELD SERVICE
SF DIAGNOSTICS DIAGNOSTICS
KEY MENU MENU
00 CPU CPU
CONTROL C.M.
01 MEMORY ADD. -
DATA C.M.
02 MEMORY MATC&S
C.M.
03 n/a ROWPAT
ou n/a D.M,
ADD.
05 n/a D.M,
MATC&S
06 n/a D.M.
ROWPAT
07 n/a REGISTER
AUX.
08 n/a REGISTERS
09 n/a STACK
10
n/a n/a
14
REGISTERS
Diag.
15 n/a {chained)
16
¥
n/a ‘ n/a
28
29
30
31

6-8

6.3 SYSTEM DIAGNOSTIC DISPLAYS

6.3.1 CPU DIAGNOSTIC

This dlagnostic 1s designed to test the instruetion set of the

MVP Central Processor. The test sequence 1s as follows:

a)
b)
e)
d)
e)
)
g)
h)

Test Immediate Register instructions.

‘Test Register instructions.

Test Extended Register instructions.

Test Branch instructions.

Test Immediate Register instructions with Read/Write.
Test Register instructions with Read/Write.

Test Minl Instruetions with Read/Write.

Return to step a).

If RESET is keyed during this program, the KEY SF'? message
should be displayed.

. Normal Display:

(

Z:

CPU DIAG PASS LLLL

IMMED REG XX

REG INSTR XX

X-REG INSTR XX

MASK BR XX where: LLLL
REG BR XX XX
IMMED R/W XX being tested (in HEX).
REG R/W XX

AUX/STACK R/W XX

Number of completed loops

Microinstruetion currently

N Should the system be unable to execute a particular instruetion,
“ the CRT cursor will stop at XX of the falling instruection. Should the

title fall to appear, any of the following could be at fault: ORI,
. AC, SB, SR, B, BT, BF, BNE, BLER, or BNR.

6-9

MVP CENTRAL PROCESSOR INSTRUCTION SET

Instruction Instr. Instr. Instruction Instr. Instr.
Code: Tested: Class: Code: Tested: Class:
00 ORI I 4B OR(R/W)
01 XORI Ty XOR(R/W)
02 ANDI 4D AND(R/W)
03 A IMMEDIATE UE SC(R/W)
04 DACI REGISTER KF DAC(R/W) *
05 DSCI 50 DSC(R/W) REGISTER
06 ACI 51 AC(R/W) R/W
07 MI 52 M22(R/W)
08 OR 53 SHIFT(R/W)
09 XOR 54 LPI(R/W)
0A AND 55 SR(R/W)
0B SC REGISTER 56 TAP, TPA,XPA(R/W)-00
0c DAC 57 -01
oD DSC 58 -02
OE AC 59 -03
OF M 54 -0l
10 SHIFT 5B =05
12 ORX 5C -06
13 XORX 5D -07
14 ANDX 5E -08
15 SCX EXTENDED 5F -09
16 DACX REGISTER 60 -0A
17 DSCX 61 -0B
18 ACX 62 -0C
19 MX 63 -0D
14 SHIFT X I 64 -0E
1B BF/BT MASK BRANCH I 65 =0F AUXILIARY
1C BNE/BEQ 66 =10 &
1D BNR/BER | 67 -11 STACK R/W
1E BLR REGISTER 68 -12
1F BLRX BRANCH 69 -13
20 BLER 64 -14
21 BLERX 6B -15
43 ORI(R/W) 6C -16
4y XORI(R/W) 6D -17
45 ANDI(R/W) 6E -18
46 AI(R/W)} IMMEDIATE § 6F -19 ¥
47 DACI(R/W) R/W 70 -1A
ug DSCI(R/W) 71 -1B
49 ACI(R/W) 72 =1C
kA MI(R/W) 73 -1D -
T4 -1E
75 Y -1F
76 STACK
(R/W)

6-10

-m-..

6.3.2 CONTROL MEMORY DIAGNOSTICS

6.3.2.1 ADDRESSING

This

diagnostic 1s designed to read from MVP Control Memory location 0800

(HEX) to the last location in Control Memory and vice versa, searching for a

memory location which may have been changed by writing into some other

location.

a)
b)

e)

When
displayed.

This is accomplished in the following manner:

Flood memory with Hex 54's (0101 10102).

Starting at location 0800 (Hex) and searching forward to the end of
Control Memory, read each location and check for the 5A pattern. If
a location verifies "0.K." when checked, write an A5 (1010 0101) at
that same location.

Starting at the end of Control Memory (this does not include
BOOTSTRAP addresses) and searching backward to Control Memory
location 0800 (Hex), read each location and check for the A5
pattern. If a location verifies "0.K." when checked, write a 54

(Hex) at that same location.

RESET 1s keyed during this program, the KEY SF'? message should be

6.3.2.2 MAT C&S

This

diagnostic is designed to test from the end of the diagnostic

program to the end of Control Memory, and is accomplished as follows:

a)

b)
e)

d)

e)

The length of a random pattern to be written into all Control Memory
locations is determined; this length is from 1 to 256 8-bit random
characters.

The random pattern 1s written into a section of Control Memory.

The last-written section of memory is read, and then the randem
pattern is written into the next section of memory.

Repeat step ¢} until all Control Memory locations are filled with
the random pattern.

Read the contents of the first memory section that was written into,
and then verify that that the contents of every location in that

section of memory 1s ildentical to the original random pattern.

6-11

f) Using the pattern in the first-written section of Control Memory
as the standard to which the contents of other locatlons in

Control Memory will be compared, read each remaining memory

section and verify that each location contains the same, original
random pattern.

g) Steps e) and f) are repeated five times (reread count)}; that
accomplished, the test restarts at step a).

When RESET is keyed during this program, it will cause the KEY SF'?
message to be displayed. +

6.3.2.3 ROWPAT

This diagnostic performs a bit-by-bit test of Control Memory, searching
for a bit location in a row or column common to the "Test Cell", which may
have been changed when this "Test Cell" was written into. In order to
understand the nature of this test, the following terms should be understood.

Test Cell - The bit location being tested in a memory chip (24 chips
simultaneously).

Conflict Cell - The bit location in a memory chip being tested for
conflict with the Test Cell.

Row ~ A row of addresses within the memory chip, one of which 1s the
test cell row address.

Column - A column of addresses within the memory chip, one of which is
the test cell column address.

Board Row = One of the three rows of 24 memory chips located on a
Control Memory pec board.

Test Pattern - The pattern expected to be found in all other cells

(conflict cells). Either 0 or 1 depending on which pass the program is

executing.

Memory Test Area - From address 1000 to the end of memory if the
program is in low memory, and from 0000 to 1000 if program is in high

memory.

6-12

[

The diagnostic is performed as follows:

a)
b)
c)
d)
e)
f)

g)

h)

i)

J)

k)

1)

When

Flood the current memory test area with zeroces.

Read the current test cell for the flood pattern.

Compliment the flood pattern and write into the test cell.

Read the test cell for the test pattern.

Read the conflict cell for the flood pattern.

Repeat steps d) and e) making the conflict cell the next location
within the column and then within the row.

Write the flood pattern at the test cell.

Repeat steps b) through g), making the test cell the next location
within the row until the test cell has stepped through each memory
location within that row.

Repeat steps b) through h) for each row within the memory test
area.

Flood the current memory with ones {(1's) and repeat steps a)
through j).

Move the test program from low memory to high memory and repeat
steps a) through j).

Move the test program from high to low memory.

RESET is keyed during this program, it will cause the KEY SF'?

message to be displayed.

NOTE:

ERROR-MESSAGE INFORMATION FOR
CONTROL MEMORY TESTS 1S DOCU-
MENTED IN PARAGRAPH 6.3.14.1

6.3.3 DATA MEMORY (USER MEMORY) DIAGNOSTICS

6.3.3.1 ADDRESSING

Generally speaking, this diagnostic is designed to read from start to

end of User Memory and vice-versa, searching for a memory location that may

have been
test 1s sp

changed when writing into a different location. This addressing

ecifically accomplished as follows:

6-13

a) Flood memory with 5A's (0101 1010).
b) Starting at the beginning of User Memory and searching forward to

the end, each location is read and checked for the 5A pattern. If
the location verifies "0.K." when checked, an A5 (1010 0101) is
written at that location.

e) Starting at the end and searching backward to the beginning of .
User Memory, each location is read and checked for the A5
pattern. If the location verifies "0.K."™ when checked, a 5A 1s
written at that location. ‘

When RESET is keyed during this program, the KEY SF' message should be
displayed.

6.3.3.2 MAT C&S

This diagnostic is designed to test from start to end of User Memory,
and is accomplished as follows:

1) Determine the length of a random pattern to be written to all of

User Memory. The length is from 1 to 256 8-bit random characters.

2) Write the random pattern into a section of User Memory.

3) Read the last-written section of User Memory and write into the

next section.

1) Repeat step 3 until all of User Memory 1s filled with the random

pattern.

5) Read the contents of the first section of User Memory that was

written and verify that it is correct by regenerating the pattern.
6) Using the pattern in the first-written section of memory as the
original, read the remaining sections of memory and verify their

accuracy against the first.

7) Repeat steps 5 and 6 five times (reread count) and and then repeat

the entire procedure, starting at step 1, above.

6-14

i

.

When RESET is keyed during this program, the KEY SF'? message should be
displayed.

6.3.3.3 ROWPAT

This diagnostic tests every User Memory bit location having a row or
column address common to the row or column address of the teat cell.
Typically, one such bit location may have been changed when writing into the
teat cell. To better understand the nature of this test, the following

terms must be understood.

Test Cell - The bit location being tested (16 chips simultaneously).

Conflict Cell = The bit location being tested for conflict with the
Test Cell.

Row - A row of addresses within the memory chip; one particular
location in the row is the test cell.

Column - A column of addresses within the memory chip; one particular
location in the column is the test cell.

Chip Row - One of the four rows of 18 memory chips located on each Data
{User) Memory board.

Tegt Pattern - The pattern expected to be found in the test cell.

Either one or zero depending on which pass the program is executing.

Flood Pattern -~ The pattern expected to be found in all other cells

(conflict cells). Either zero or one, depending on which pass the
program is executing.

The diagnosatic 1s performed as follows:

a) Flood all of User Memory with zeroes.

b) Read the current test cell for the flood pattern,

c) Compliment the flood pattern and write that into the test cell.
d) Read the test cell for the test pattern.

e) Read the conflict cell for the flood pattern.

6-15

f)
g)

h)

i)
3

When
displayed.

NOTE:

Repeat steps d) and e), making the conflict cell the next location
within the column, and then within the row.

Write the flood pattern at the test cell.,

Repeat steps b) through g), making the test cell the next location
within the row until the test cell has stepped through each memory
location within the row.

Repeat steps b) through h) for each row in User Memory.

Flood all User Memory locations with one's and repeat steps b)
through 1).

RESET is keyed during this program, the KEY SF'? message should be

ERROR-MESSAGE INFORMATION FOR
DATA (USER) MEMORY TESTS IS DOCU-
MENTED IN PARAGRAPH 6.3.4.2

6.3.4 DIAGNOSTIC ERROR MESSAGE INFORMATION & IDENTIFICATION OF FAULTY RAMS

6.30”‘.1

ERROR MESSAGE INFORMATION FOR CONTROL MEMORY TESTS

If a falling Control Memory location is between 0000-1FFF or
4000-U4FFF, replace the 6788 board in the MVP chassis Control
Memory position #1. Otherwise, replace the 6788 pc in Control
Memory position #2 (Ref. Figure ?)

If an error is detected, the error message will be displayed under
the same test name. The test will be restarted, and if another
error occurs, that message will be displayed under the first error
message. This procedure repeats until the screen is full. At
this point, "CONTINUE" may be keyed to continue the test.

Occasionally, MAT C&S will display two error messages on the same
line when it cannoct isclate the problem completely; the more
likely error is displayed first.

When the system detects a memory failure, one of the following
error messages 1s displayed:

6—16

[0

AECM -~ Addressing Error in Control Memory
BECM -- Bit Error in Control Memory

PECM -~ Parity Error in Control Memory
VECM -~ Verify Error in Control Memory

EXPLANATIONS:

1) AECM aaaa bbbb xxxxxx

Where: aaaa = The address of the instruction in error
bbbb

The conflicting address
xxxxxx = An XOR of the expected and actually-read

instruction

This error indicates that writing to Contreol Memory lecation
bbbb seems to modify location aaaa. The "i" bits in the xxxxxx
field of the display indicate which bit(s) have been modified.

The error could also occur if a chip at location aaaa had a

marginal failure.

2) BECM aaaa XXXXXX

Where aaaa = The address of the instruetion ln error

xxxxxx = An XOR of the instruction actually read from

memory with the instruction that was expected
to be there.

This error implies that a bit error was detected while reading
Control Memory. The "1" bits in the xxxxxx field of the
display indicate which bit(s) are incorrect.

6-17

3) PECM aaaa dddddd

Where aaaa = The address of the instruction with bad parity.
dddddd = The instruction located at aaaa. The
instruction is reread when displayed and

thus may not be the same as when the error

ocecurred.

This error implies that bad parity was detected during
execution of the diagnostic. Bad parity may be the result of:

a) Bits dropped

b) Bits picked up

¢) Bad parity written

d) Bad parity-control logic

4) VECM aaaa

Where: aaaa = An address in the sectlion of Control Memory that

dees not verify correctly.

6.3.4.2 ERROR MESSAGE INFORMATION FOR DATA MEMORY TESTS

* If the CPU has 6787 pc loading, and if the falling memory location
is between 0000-TFFF, replace the 6787 in Data (User) Memory v
position #1; if not, change the 6787 in position #2.

®# If the CPU has 7587 pc loading, and if the failing memory location -
1s between 0000 of bank #1 and FFFF of bank #2, replace the 7587
in Data (User) Memory position #1; if not, change the 7587 in Data
(User) Memory position #2.

6~18

(g

If an error is detected, the error message will be displayed under
the test name. The test will then be restarted, and if another
error occurs, that message will be displayed under the first error
message. This procedure repeats until the screen is full. At
this point, "CONTINUE" may be keyed to continue the test.

If an error occurs, the message will be displayed on the screen
unless "P" or "I" was keyed at the beginning of the diagnostic.
"P" will print the errors on the printer selected by /215, and "T"
wlll print the errors on device /204. Execution of the diagnostic
will contlnue after the error message 1s printed.

Occaslonally, MAT C&S will display two error messages on the same
line when it cannot isolate the problem completely; the more
likely error is displayed first.

When the system detects a memory failure, one of the following
error messages should be displayed:

a) AEDM -- Addressing error in Data Memory (User Memory)
b) BEDM -- Bit error

¢) PEDM -~ Parity error
d) REDM -- Read error
e¢) VEDM -~ Verify error

EXPLANATIONS:

a) AEDM ss.aaaa ss.bbbb xx

Where: 38

H

Memory bank containing the error (00 = bank #1; 40 =
bank #2; 80 = bank #3; CO = bank #4)
aaaa = Address of the data in error

bbbb = Conflicting address
xx = XOR of the expected and actually-read data.

This error indlcates that writing to location bbbb seems to
modify location aaaa. The "1" blts in the xx field of the

display Ilndicate which bits have been modified. The error
could also occur if a chip at location asaa had a marginal

failure.

6-19

b) BEDM ss.aaaa xxyy

Where: ss = Memory bank containing the error (00 = bank #1; 40 =
bank #2; 80 = bank #3; CO = bank #4)
aaaa = Address of the data in error

xxyy = XOR of the data actually read from User/Data memory
with the data that was expected to be there.
XX = Corresponds to the byte at location aaaa
¥y = Corresponds to the byte at location aaaa+1

This errcor implies that a memory error was detected while
reading User/Data Memory. The "1" bits in the xxyy field of
the display indicate which bit(s) are not correct. If all the

bits are zero, one of the two parity bits associated with the
palr of bytes read is incorrect,

¢) PEDM ss.,aaaa

Where: ss

Memory bank containing the error (00 = bank #1; 40 =
bank #2; 80 = bank #3; CO = bank #l)

aaaa = Data memory address (l.e., the current value of the
PC's) at the time of the error. This is probably,

but not necessarily, the address of the memory
location with bad parity.

This error implies that bad parity was detected during a read
of 8-bit User/Data Memory.

Bad parity may be the result of:
1) Bits dropped

2) Bits picked up
3) Bad parity-check logic

L4

This error should be serious enough to warrant the executing of
a User/Data Memory dlagnostlc, However, it may be possible to
attempt re-execution of the currently-loaded system program.

If the error 1s reported again, a User/Data Memory diagnostic

should be run to locate the bad memory chip.

6-20

[

NOTE:
In order to determine which bit is bad, a technician may
ground LU41 pin 3 on the 6789 board; this action disables
parity-error logic. If this is performed, a different
error message will be displayed.

d) REDM ss.aaaa xx

Where: 8s = Memory bank containing the error (00 = bank #1; 40 =
bank #2; B0 = bank #3; CO = bank #4)
aaaa = Address of the data in error
xx = XOR of the data in memory with the data that was

expected to be there.

This error implies that a memory error was detected while
reading User/Data Memory. The "1" bits on the xx field of the
display indicate which bits are not correct. If all the bits
are zero, a bit in the other byte of the pair of bytes is

incorrect.

e) VEDM ss.aaaa

Where: ss = Memory bank containing the error (00 = bank #1; 40 =
bank #2; B0 = bank #3; CO = bank #4)
aaaa = Addresas of the data in error

This error 1is reported to a system program being given control
after loading, or when memory is verified in response to RESET
or CLEAR being executed. The area of User/Data Memory used for
storing constants (BASIC verb tables, math constants, messages)

does not verify correctly.
The operator should attempt to reload the particular system

system program. If the error recurs, however, the User/Data

Memory Diagnostic should be run.

6-21

6.3.4.3 MEMORY DIAGNOSTIC INTERPRETATIONS USING THE MEMORY ERROR CHIP
IDENTIFIER (MECI) PROGRAM

MECI is not a diagnostiec, but it is a program that provides a means,
other than using RAM-board layout charts, for locating RAM failures. MECI
requests the exact configuration of Control and Data (User) Memory, then
waits for the operator to key in an error message that occurred during a *
memory diagnostic or during the loading of BASIC-2. That accomplished, the
program "points out" the failing RAM by displaying a graphic of the pe board
with an 'X' at the location of the bad RAM.

The part number for the MECI program diskette is WL# 701-2452. The
program is self-explanatory; however, the following stipulations apply.

1) Hardware Requirement: 2200VP/MVP with 16K memory and an 80 x 24
CRT.

2) YRETURN™ must be keyed after each field. KXeylng "RETURN" prior to
the end of a field causes the next field to be displayed.

3) The operator must specify the disk file from which data will be
compared against PECM data (if the error occurred while trying to

load from disk). If no file is desired, key in spaces and then
"RETURN"; the file name defaults to "BASIC-2 (@@)".

D] Press any non-SF key to clear display and enter a 'next! error;
or, press any SF key to enter a different memory configuration.
This is not valid when in the EDIT SYSTEM ERROR mode.

5) Note that User/Data Memory board #1 1s close to the CPU logie
boards, and board #2 i1s close to the CPU power supply. (Ref:
Figure ?)

6) When in the EDIT SYSTEM ERROR mode, simply key in the error
message that was displayed when the RAM fault was detected. Key
"RETURN"; MECI will point out, in the display of terminal #1, -
which RAM has failed.

6.3.4.4 MEMORY DIAGNOSTIC INTERPRETATIONS BY DIAGRAM

If MECI is not available, the following charts will point out which RAM
is failing. To use the charts:

6-22

2Lk bete

ADDRESS LINES Ap-AS FOR

*=SAME HARDWARE ASSIGNMENTS ON BOTH BOARDS

L28-133,L37-142,L43-L54
ADDRESS LINES Ap-AS FOR
L55-L60,L64-L69,L70-181 ,

L28-L33,137-142,1434L54

ADDRESS LINES AP-AS FOR
L1-L6,L10¢L15,L16-L27
ADDRESS LINES Ap-AS FOR
L55-160,L64-169,L70-L81"

\I»E!mmm LINES Ap-AS FOR

L1-46,L10-L15,L16-L27,
. ADDRESS LINES ApP-AS FOR ~

v e AT]

A

™

AL

I L R
{BHEHER o o HARHOR|) AEHEHAR | o ¥ HRARYAl).
J UL BRIRNRoT JHARREN T € MR o
YBHEAEY o BOARSS(E ARHEHEH \ o /ENABSH(L
JHANEH Fo GRHRENTT\ JHAHRAN s QRS
SHHUREE ... BHREEE) \ JHHEREE ... HHEEAH)

[8 508 B[4 Hod B [8 Bog 8]8 foA & |

TR T A

Avrrdel 8A

D TRV IT AP KuNEE DLBA
e 2kl

CFAMLAwrr E CT 84

BOARD #2

EXAMPLE DIAGNOSIS:

HEX ADDRESSES
IN CONTROL MEMORY

ERRORS DISPLAYED DURING CDNTROL MEMORY DIAGNOSTIC:

p3 ROWPAT 24

*FAILURE AT PC'S 2BAD (P99PDP/ERAPPD) XOR=PP4PRD

NOTE THAT IN EACH TEST,XOR YIELDS PP4@pp BETWEEN CONTROL MEMORY

SFE: TEST: RESULT DISPLAYED: MESSAGE PASS #
[l ADDRESS 24 "ERROR BETWEEN 2BBF AND 2BCS (@p3e99) 10pR8°

——
p2 MAT C&S 24 “ERROR-PC'S=2BAP (PDPDED/@DADPD) XOR=PP4RAP 202PP" XOR RESULT

1pse0”

BOARD 1

HEX ADDRESSES
IN CONTROL MEMORY

FAILING BIT IN ROW SECTION D

F A—ROW SECTIONS
(SEE BELOW)

FROM BOARD FIGURES ABOVE:

()= cHIP ENABLES FOR
ROWS 184 (4096x24 BITS EACH)

@~ cuIP EnsBLES FOR
ROWS 23 (4096x24BITS EACH)

G) cHIP ENABLES FOR
ROWS 586 (RAM NOT LOADED ON
8K BOARDS)

/| =

TOCATIONS 2BBF- AND 2BCP, LOCATED IN ROW #3 (BOARD #2).

FIGURE 6-1

6-23

@)= 1/0 surFer

()~ SELECT DECODER

®© 1/0 BuFFeR

@-= parn1y B17(3)

%29

ik TEBD:

FIGURE 6-2 DATA-MEMORY . &E35%¥) DIAGNOSTIC DIAGRAM

EVEN ADDRESSES ODD ADDRESSES

5 bt

(0,2,4,8,4,¢,8) (1,3,5,7,9,B,D,F)
Is A - - A WHEN LOADED | WHEN LOADED
BIT - IN DATA MEM. | IN DaTa MEM.
wElonTs ™1 2 4 8 10204080 P 1248102v80FP BoARD SLOTHf | BOARD SLoT#Z:
LiLiLyu Lol Lo l LfiLLyL LILILfiL 8000-FFFF 8000-FFFF
LOCATIONS:
AB B 9ll8|7 |6 |>r#{3 121 NSt | (BaNk #2) | (pank P2
LILL LiLe 2o | LiLgLiLdopepLyLp 0000-7FFF | 0000-7FFF
Aseceaen 22 5 Y] RY(K 28lorioelosialaziz o0 || LOCATIONS: | (hang g2y (BANK #4)
| e el | | S ud
P 3 LELJIL lL#8] LfLpLpL Lftie LOCATIONS: | 8000-FFFF 8000-FFFF
55(5' 52 5251 ‘fl'-l_6|’7’_5-/ b/ 9 ‘| (BANK "J’d (BANK #3)%
LILELFS LiLiL LiLfLie L]t 0000-TFFF oooo-ww—~
—FZ;SI?' 76ﬂ /i 70&9% 66]1636 58] || LOSATIONS: | (pank 1] aneny
00 [0 [i d Bange = ALK,
87 8 : 8 81 7
L L L
o8 | 92

PEDMCO 5000 69

BOARD ROWS LOADED WITH RAM ICs
NOMEN- RAM

q] :‘ l qq CLATURE A B c D E F G H SIZE:
6787 X X X X 16K
67871 X X X X X X X X 32K

i
Bﬂl(l(}ﬁ_.

WVEOVIQ DILSONOVIAY

® ano1a

AT

SNC da

18zl X X X X X X X X £-L85L
296 X X X X X X g-Lgsl
\la: 9 X X X X L-Lg5L
3718 H b a 3 a 2 1 v 3U0LVD
WYY ~NAWON
§0I WVH HLIM QIavoT SMOY auvod
I ——— - [Sy
foopos Iy [eeT) [#e] %: 567
MMV$¢.mW = JV\N\UvMV \ 1
(T# ¥NVE) (T# Anve) |, SiOATI 29|(¢ 29
A3IE-000¥ dddc-pppy | SNOILYDOT @ @Z Jﬁ‘@% q - - mh m Nm_ oL mwﬁn
[| | N, 7.4 [ey | ||.||Lt|;
=22 = ==
(T# dANVE (T# Anve) |, k|| TR Ch|(SH (A | Sh 1[04 rl_
I | S [| UV oCemo, e mE
{(T# uNvV") {T# wNve) |,
4443-000F ddas-opog | *SNOIL¥OOT O._N ,_m 1R ﬂ_‘m& @N m._w m - m_n m._nm.m i B__@n_?m__mm
. L .;:mn ‘
(T# dNvE) (14 wnva) |, Hizlelslclolzlote irtzileris [
J34d-0000D J445-000¥ SNOLLVO01 E ali] ..__ Al H“E.NG 4_ Al _l___ @
Z#lons quvod | L#1075 a¥yod d0B0ROCOT 8 H 2 [Py /e {9 d08 0L0COL R H m 4
‘WEW YI¥Q NI | “WEW VI¥Q NI
d4adyon NEHA aadyoT NEHM \ S L J

SUELWNN MNYd ¥
SNOIIYD0T $STYAIV XHH

¥
(4'qa’6 L s‘e’L)
SHSSAHQAY ado

o

h'd
(3‘o0'v'g‘n‘e‘o)
SHSSIYAAY NAAF

SIHODIEM
LIH

6-25

1)
2)

3),

4)

Find the appropriate configuration 1ln chart #1
Find the bank # and address in the bank that corresponds with the

bank and address that was dlisplayed in the error message. This .
step points out which ROW of RAM in the two boards contains the d

falling chip.
Chart #2 points out which half of the row contains the faulty RAM,
depending on whether the address of the error location is even or ’

odd.

Any bits that are on (1) in the XOR field are bad.

6.3.5 REGISTER DIAGNOSTICS

6.3.5.1 GENERAL PURPOSE REGISTERS

This dlagnostic is designed to test the F0O-F7, CH, CL, PH, PL, SL and K
registers in such a manner that it may be determined whether or not bits

have gone bad, or whether a conflict in addressing (of registers) exists.

It 1s accomplished in the following manner:

a)
b)

Flood all registers with all zeroes.

For each register:

1.
2.
3.
4,
5.
6.
7.

Set the test pattern to 00.

Set the test register to the test pattern wvalue.

Verify that the test register holds the test pattern value.
Verify that the other reglsters have not been changed.

Add 01 to the test pattern value.

Repeat steps 2 through 5 until test pattern equals 00.
Repeat steps 1 through 6 until all registers have been
tested. HNote that the SH reglster 1s not tested, due to the
ability of system hardware to change its bit status.

A check on register K 1s made prior to the occurrence of any test

displays.

Should REGISTER TEST fail to appear on the CRT, then register X
may be failing.

When RESET is keyed during this program, the KEY SF'? message should be Q

displayed.

6-26

When HALT/STEP is keyed during this program, the program will be

interrupted only after an error has been detected and displayed. To resume
. execution after the program has halted, key HALT/STEP again.

Normal Display:

* REGISTER TEST
LLLL

where: LLLL = number of completed loops

6.3.5.2 GENERAL REGISTERS ERROR DISPLAYS

a)

REGISTER TEST

FFFF
REGISTER TT AND CC ERROR (XX)

. # LLLL

where: FFFF = Number of completed loops at time of error
IT = Name of register under test
CC = Name of conflict register
XX = Contents of register CC

This error is caused when testing register TT, register CC was found

not to contain the expected.

b}
T 4
REGISTER TEST
FFFF
s REGISTER TT ERROR (XX)
LLLL
. This error is caused when the register under test faila to hold the

test pattern.

6-27

6.3.5.3 AUXILIARY/STACK

This diagnostic is designed to check the Auxiliary reglsters to

determine whether each Auxiliary register will:

a) Hold a particular pattern.
b) Have any effect on any other auxiliary register.
e) Have any effect on any stack level.

Two separate patterns are used by the routine:

a) Test pattern - One of 8 patterns (below) which 1s expected to be
in the Auxiliary register under test.

1. 0000 0001 0000 0001
2. 0000 0010 0000 0010
3. 0000 0100 0000 0100
y, 0000 1000 0000 1000
5. 0001 0000 0001 0000
6. 0010 0000 0010 0000
7. 0100 0000 0100 0000
8. 1000 0000 1000 0000

b) Conflicet pattern - Either all O's or all 1's, depending on what

pass the program is executing.

The tests are executed as follows:

a) All Auxiliary registers and the Stack are initialized with the
conflict pattern.

b) The current test Auxiliary register is written with the current
test pattern.

c) The test Auxlliary register 1s read as follows:

1. TPA - writes the test pattern.

2. PC's are complemented.

3. XPA - reads the test pattern.

4, PC's are checked against the expected pattern.

6—-28

displayed.

d)

e)

f)

g)

5. TAP - reads the complemented test pattern.
6. PC's are complemented again.
7. PC's are checked against the expected pattern.

Th