22008
WANG _ REFERENCE

MANUAL

WITEM2200

2200S

Reference
Manual

© Wang Laboratories, Inc., 1975

w! NG LAEDPATDRIEé, INC.

836 NORTH STREET, TEWKSBURY, MASSACHUSETTS 01876 , TEL.(617) 851-4111,TWX 710 3436769. TELEX 94.7421

HOW TO USE THIS MANUAL

This manual has been written for the sole purpose of
providing quick and concise answers to questions concerning
the operation of the System 2200S. It is designed for users
who are already quite familiar with the System 2200S and
its BASIC language instruction set.

The manual is divided into ten sections covering all the
operational features of the System 2200S. The BASIC non-
programmable commands in Section VI and the BASIC state-
ments in Section VII| are arranged in alphabetical order for
ease of locating a desired command or statement.

INTRODUCTION

This manual provides the user with a quick and easy reference guide to gquestions concerning the
operation of the System 2200S. The layout is designed to assist the user in the location of key informa-

tion.

The manual is divided into ten sections, separated by tabs, for ease of section location. The title
page for each section has a listing of the contents of the section. Also, a complete Table of Contents
is located in the front of the book.

Section |

Section |l

Section 111

Section 1V

Section V

Section VI

Section VI

Section VIII

Section 1X

Section X

Introduces you to the Model 2220 Integrated CRT/Single Tape Cassette Driver/
Keyboard, the Model 2216 CRT Executive Display; the System 2200S Central
Processing Unit (CPU); the three keyboards, Model 2220 Integrated Alphanumeric
BASIC Keyboard, Model 2215 BASIC Keyword Keyboard and Model 2222 Alpha-
numeric Typewriter Keyboard. Unpacking, instaltation and turn-on procedures also
are illustrated.

The basic structure and components of the system are covered in this section, such
as: line numbers, spacing, colons, Immediate Mode vs. Programming Mode, and the
edit and debug features.

This section describes the elements of a numeric expression including Numeric
Variables, Arithmetic Symbols, Numeric Constants, Math Functions, Common
Variables, Random Numbers, User Functions and Rational Functions.

Alphanumeric capabilities are covered in this section, such as: Alpha Strings,
Variables, Literal Strings, Alpha Functions, Hexadecimal Literal Strings, Length and
String Functions.

1/O Device Selection procedures are illustrated in this section; such things as Device
Address for peripherals, Default Address, and Input/Output.

This section describes, in alphabetical order, the non-programmable commands nec-
essary to communicate with the system.

All the General BASIC statements needed to effectively utilize the system are covered
here, arranged in alphabetical order.

This section describes the use of tape cassettes, along with file operation techniques.

This section illustrates the various errors that can occur in both machine and pro-
gramming techngiues, and includes one of many ways in which an error can be
corrected.

This last section, titled Appendices is divided into four subsections: Appendix A,
Specifications; Appendix B, Peripherals; Appendix C, ASCIlI Codes and what the
various codes generate; and Appendix D, a list of the various error messages by title
and code.

SECTION |

SECTION I

SECTION 111

TABLE OF CONTENTS

GENERAL SYSTEM INTRODUCTION .

Unpacking And Inspection
Installation .
Turn-On Procedure .

2220 Integrated CRT/Tape Cassette Dnve/l(eyboard
2223 Alphanumeric/BASIC Keyboard

2216 CRT Display

Option 30 .
2216A Operating |nstruct|ons
Audio Alarm Option

2215 BASIC Keyboard . .
2222 Alphanumeric Input Keyboard
22008 Central Processing Unit (CPU)

BASIC LANGUAGE STRUCTURE

Introduction .

Line Number

BASIC Words .

BASIC Statement Lines

Spacing

Colon .

Immediate Mode

Program Mode .

RETURN (EXEC) Key .

lllegal Immediate Mode Statements
EDIT Mode . .
Debugging And Editing Features .
Character Erasing

Removing The Current Lme
Deleting A Line .

Replacing A Line

Renumbering A Program

Stepping Through A Program . .
Executing A Program At A Given Line
Programmable Trace

Pause .

NUMERIC EXPRESSIONS
Expressions

Numeric Variables
Common Data

Arithmetic Symbols
Relational Symbols .

User Functions

Numeric Constants .
Mathematical Functions
Random Numbers
Additional Numeric Functaons

O©COUYNODADWNNN =

SECTION IV

SECTION V

SECTION VI

SECTION ViI

TABLE OF CONTENTS (Cont.)

ALPHANUMERICS

Alphanumeric String Variables

Alphanumeric Literal Strings . . .
Examples Of Statements Using String Varlables .
STR(String) Function . .
LEN(Length) Function

HE X(Hexadecimal) Function .

Lowercase Literals .

1/0 DEVICE SELECTION .

Introduction
SELECT .

Device Addresses For System 22008 Perlpherals .

Default Device Address Selection

The INPUT And PRINT Parameters

The LIST Parameter

Specifying A PAUSE . . .

Specifying DEGREES, RADIANS Or GRADIANS

NON-PROGRAMMABLE COMMANDS .

Introduction .
BASIC Syntax Specnflcatmn Rules .
General Form Of Terms .

CLEAR . .

CONTINUE .

HALT/STEP

LIST . . .

RENUMBER

RESET

RUN . .

SPECIAL FUNCTION
STATEMENT NUMBER .

GENERAL BASIC STATEMENTS .

BASIC Statements

com . .

CONVERT

DATA

DEFFN

DEFFN'

DIM

END

FOR
GosuB
GgosuB’'

GOTO . .

HEXPRINT .

Vi

SECTION VIH

TABLE OF CONTENTS (Cont.)

IF END THEN
IF... THEN
IMAGE (%)
INPUT
KEYIN

LET

NEXT

NUM .

ON

PRINT
PRINTUSING
READ

REM . .
RESTORE
RETURN
RETURN CLEAR
STOP .
TRACE

VAL

TAPE CASSETTES .

Single Tape Cassettes

Mounting And Removing A Tape Cassette

Magnetic Tape Head Cleaning .
Protecting A Program-On Tape
Tape Format

Program Files

Recording Data On Tape
Reading Data From Tape
Logical Data Records

Data Files

Rewriting Data Records

Space Requirements On Cassette .

Device Address Specifications .
BACKSPACE

DATALOAD

DATARESAVE .
DATASAVE .

LOAD Command

LOAD Statement

REWIND .

SAVE Command

SKIP .

75
76
77
78
81
82
83

85
86
89
93

95

97
98

101
102

103
103
104
104
105
015
106
106
106
107
109
110
110
111
112
113
115
116
117
118
119
120

TABLE OF CONTENTS (Cont.)

SECTION IX ERROR CODES .

.o 121
Three Types Of Errors Can Occur 122
Error Codes . 124
SECTION X APPENDICES . 146
A — Specifications 0.0 00 L. o o147
B — Available Peripherals 149
C — ASCll CharacterCodeSet 150
D—ErrorMessages. 151
CUSTOMER COMMENTFORMlatpage

Vil

SECTION |

SECTION 1

SECTION Il

SECTION 1V

SECTION V

SECTION VI

SECTION VII

SECTION VillI

SECTION IX

SECTION X

GENERAL SYSTEM INTRODUCTION
BASIC LANGUAGE STRUCTURE
NUMERIC EXPRESSIONS
ALPHANUMERICS

/0 DEVICE SELECTION
NON-PROGRAMMABLE COMMANDS
GENERAL BASIC STATEMENTS
TAPE CASSETTES

ERROR CODES

APPENDICES

Section |

General System
Introduction

UNPACKING AND INSPECTION
INSTALLATION
TURN-ON PROCEDURE .

2220 INTEGRATED CRT/TAPE CASSETTE
DRIVE/KEYBOARD

2223 ALPHANUMERIC/BASIC KEYBOARD .
2216 CRT DISPLAY .o

2216A OPERATING INSTRUCTIONS

AUDIO ALARM OPTION .

2215 BASIC KEYBOARD .

2222 ALPHANUMERIC INPUT KEYBOARD .
2200S CENTRAL PROCESSING UNIT (CPU) .

W 0N O W

- -
W =

“Section | General System Introduction

UNPACKING AND INSPECTION

Carefully unpack your equipment and inspect all units for shipping damage. If damage is noticed, do
not proceed. Notify the shipping agency. Check equipment received against the purchase order. Decals
specifying mode! numbers can be found on all Wang equipment, usually on the back of each unit.

After unpacking and verifying the status of your equipment, the following procedures are used to
install and turn on your 2200S System.

The basic component of the System 22008 is the Central Processing Unit (CPU). All other additional
pieces of equipment are considered peripherals and are attached to the CPU. The CPU is divided into
two parts; the CPU which consists of the processor, memory and peripheral connectors and a power
supply unit which contains the power supply. The ‘Power On’ switch is located on the back panel
of the CPU.

INSTALLATION

To install your 2200S System, use the following procedure:

1. Plug all peripherals into CPU chassis. Each peripheral connector on the CPU is labeled for the

appropriate device. After each cord is plugged in, make sure the lock clips are snapped in.

2. Plug any peripheral power cords into wall outlets.

3. Plug the power cord of the CPU chassis into a wall outlet.

A maximum of 3 peripherals can be attached directly to the standard CPU in this manner.

cPu
CHASSIS POWER

elels|

PERIPHERAL a i

CONNECTOR

CASSETTE

TURN-ON PROCEDURE
Use the following procedure to turn ON your 2200S System:
1. Turn power switches ON on all peripherals.
2. Move the main power switch on Central Processor Unit to the ON position. This process Master
Initializes the system.
3. The CRT display appears as illustrated below.

READY

Your 22008 system is now ready to use.

If a system failure should occur, try to restore operation by touching the RESET button on the key-
board. If normal operation is not restored Master Initialize the system by turning the power OFF,
then ON (power ON/OFF switch on Central Processor). If the system is still non-functional, repeat
the installation procedure before calling your Wang Service Representative.

2

Section | General System Introduction

The Model 2220 Integrated CRT/Tape Cassette Drive/Keyboard

The Model 2220 console provides a Cathode Ray Tube (CRT) for displaying instantly current
programs and data, a Single Tape Cassette Drive for saving and loading current programs and text
into the 2200S, and an Upper/Lowercase Basic Keyboard for entering data and programs.

The Model 2220 Integrated CRT display is designed to enable the user to write, review, modify
and correct programs. The CRT is composed of a 9 inch diagonal screen and four controls used to set
the horizontal, vertical, brightness and contrast of the output as it appears on the CRT screen. The
screen itself has a maximum of 16 lines, each 64 characters in length. Lines are displayed
sequentially on the screen, each terminated by a return, execute character. If more than 16 lines
are given at any one time, each new line is added to the bottom of the CRT, moving the previously
entered line up; the line at the top of the CRT display is replaced by the line directly beneath it.

The Model 2220 Integrated Single Tape Cassette Drive provides a fast, convenient and low-cost
system of storing data and programs. Tape operations discussed in Section VIIl also apply to the
Model 2220 integrated Tape Cassette.

The Model 2220 Integrated Keyboard has two modes of operation, Keyword/A and A/a. The mode
is selected by the toggle switch in the upper left-hand corner of the keyboard. In Keyword/A mode,
unshifted alpha keys (A-Z) produce uppercase letters; shifted alpha keys produce BASIC words.
This mode is used primarily for program entry. A/a mode functions as a standard typewriter;
unshifted alpha keys produce lowercase letters, shifted alpha keys produce uppercase letters. A/a
mode is used for data entry when lowercase is required.

Section | General System Introduction

The keyboard is divided into five zones.

ZONE 5
ZONE 4 EDIT MODE KEYS
16 SPECIAL FUNCTION KEYS\ A
A

v
it Zone2 PROGRAM
BASIC WORD, ALPHA AND NUMERIC ENTRY, ARITHMETIC
SPECIAL CHARACTER KEYS OPERATOR KEYS AND RETURN ~ CONTROL KEYS
(EXEC) KEY
ZONE 1 The first zone contains the alphabetic and special character keys, most

BASIC words and the statement number generator key.

automatically sets the statement number of the
STMT t i bout to be entered e | to the highest
NUMBER n.ex ine about to be entere gua o ig
line number of the user program in the system + 10.

ZONE 2 The second zone consists of numeric entry, arithmetic operator keys and the
RETURN (EXEC) key.

RETURN causes the line just keyed in to be entered and pro-
(EXEC) cessed by the system

ZONE 3 The third zone contains the following program control keys.

RESET immediately stops program execution or listing, clears
CRT display and returns control to the keyboard.
(Halt/step should be used to stop a program if it is to
be restarted by CONTINUE).

causes program to halt at the completion of the
g_’:é‘: current program line or execute one line at a time,

each time the key is touched.

continues program execution after a “STOP’ verb
CON has been executed, or the “HALT/STEP” key has
TINVE

been touched.

Section | General System Introduction

CLEAR| reinitalizes the user program text and variable areas.

LOAD causes the current or specified program to be trans-
ferred from the tape cassette to memory.

RUN initializes execution of user’s program.

ZONE 4 The fourth zone consists of the 16 user defined Special Function Keys for
accessing up to 32 subroutines or test entry operations.

ZONE 5 The fifth zone contains the EDIT mode operations.

EDIT used to enter EDIT mode

RECALL used to recall a program line in memory to edited

- - -~ moves the cursor five spaces to the left.

- moves the cursor a single space to the left.

—_— - moves the cursor five spaces to the right.

— moves the cursor a single space to the right.

INSERT expands a line for an additional text and data entry
by inserting a space character prior to current cursor
position.

DELETE deletes the character at the current cursor position.

ERASE erases a line from the current cursor position to the

end of the line.

Model 2223 Alphanumeric/Basic Keyword Keyboard

The Model 2223 Alphanumeric Keyword Keyboard provides all the features of the Model 2220
Integrated alphanumeric/Basic Keyboard in a separate unit. For details refer to the description of
the Model 2220 Integrated keyboard (P. 3).

Section | General System Introduction

2216 CRT DISPLAY

The CRT is composed of an 8 X 10.5 inch screen, and two controls used to set the brightness
and contrast of the output as it appears on the screen. The screen itself has a maximum of 16 lines,
each 64 characters in length. The CRT display functions similar to a teletype type printer except that
16 lines can be displayed at a time. Lines are displayed sequentially on the screen, each terminated
by a carriage return and line feed character. |f more than sixteen lines are given at any one time, each
new line is added to the bottom of the CRT, moving the previously entered lines up; the line at the
top of the CRT display is replaced by the line directly beneath it.

The following CRT commands, available on the Model 2220 iIntegrated CRT, the Model 2216 CRT
and the Model 2216A CRT, are issued by outputting the specified code by a PRINT HEX (code);
statement.

HEX CODE COMMAND
01 cursor home
03 clear screen & cursor home
07 bell (CRT option)
08 cursor left (<)
09 cursor right (=)
0A cursor down ({)
oc cursor up (1)

For example, PRINT HEX(03); clears the CRT screen.
2216A OPERATING INSTRUCTIONS

Example:

Entering alphanumeric data in upper and lowercase characters.

Section | General System Introduction

Model 2216A CRT
Using the Model 2222 Alphanumeric Keyboard:

Keying in WANG LABORATORIES in upper and lowercase.

Operating Instructions:

(1) Switch (A/a) in down position.

(2) Key Shift

(3) Key W (uppercase)

(4) Keya

(5) Keyn lowercase

(6) Keyg

(7) Space How it appears on the CRT
(8) Key Shift

(9) Key L (uppercase) Wan9 Laboratories
(10) Key a 1
(11) Key b

(12) Key o NOTE:

(13) Key r Using the Model 2215 Keyword Keyboard all lowercase
(14) Key a letters must be entered by a PRINT hex code.

(15) Key t lowercase
(16) Key o
(17) Key r
(18) Key i
(19) Key e
(20) Key s

7

Certain characters are available only with the Model 2216A CRT Executive Display; and the
Model 2220 Integrated CRT, with OP-30, these characters, with their respective HEX codes, are: left
brace (7B), right brace (7D), equivalent sign (7E), broken vertical line (7C), solid rectangle (7F), and
prime symbol (60). Please refer to Appendix C, p. 150, for a complete list of 2200S characters and
hex codes.

Cleaning the CRT Screen

The CRT screen should be cleaned periodically with a mild soap and water using a soft cloth. Do not use
an alcohol pad which might cause damage to the black surface surrounding the screen.

WARNING
Do not attempt to remove the cover for any reason due to the
danger of high voltage. Call a Wang Service Representative if
any maintenance is required.

Section | General System Introduction

AUDIO ALARM OPTION

The Model 2216 CRT Executive Display and the Model 2220 Integrated CRT now can be pro-
grammed with an alarm signal. The Audio alarm is designated as Option 4 for the Model 2216 CRT
Executive Display and as Option 31 for the Model 2220 Integrated CRT/Tape Cassette Drive/Key-
board. This alarm can be activated only under program control using the code HEX(07) (ASCII Bell
Code). Receipt of this code by the CRT causes a 960 Hz beep for a fraction of a second. The display
is not affected. A sequence of codes can be transmitted to produce a longer signal or a series of beeps.

There are a variety of uses for this option in the System 2200S. Sone examples are:

1. The most general use of the Audio Alarm Signal is in data entry applications. An operator, when
entering data,often may be reading a data sheet instead of reviewing the CRT screen for error messages.
Therefore, if the data is validated under program control, the alarm code can be sent out to gain the
operator’s attention when errors occur. This is very applicable with the System 2200S where
numeric data can be INPUT into an alphanumeric variable, tested for numerics {with the
NUM function), converted to internal numeric form (CONVERT), and then validated for
proper range (see example program).

NOTE:
The audio alarm is not automatically activated for System
22008 generated errors (i.e., ERR 02, etc).

2. In a telecommunication system, the signal can be used to notify an operator of an incoming message
or completion of transmission by transmitting the signal code over the lines to the receiver, just prior
to or after the message is sent.

3. The alarm can be used to signal the end of a program or a segment of a program. By programming the
alarm to go off, an operator does not have to ““baby-sit’’ the equipment waiting for program completion,
but can perform other more meaningful jobs.

PROGRAM EXPLANATION
10 Any program statements
brd R ue for AS f he whi
INPUT oquests a value for rom the operator whicn
10 uT As should be numeric and fess than 500.
110 A = NUM (AS) The value inputted is scanned and all numeric

120 IF A <> LEN(AS) THEN 150
130 CONVERT A$ TO B
140 IF B < 600 THEN 200

150 PRINT HEX{07};
156 PRINT “INVALID, REENTER™

180 GO TO 100

cheracters (including signs, decimal point, etc.) are
counted. A is then set squal t this velue.

A is tested to see if it aquels LEN(AS) which is the
number of characters thet were entersd. If not
oqual, the velue entered is not numeric and transter
is made to statement 150 to sound an alarm and
displey an arror message. If equel, stetement 130
is executed which converts the characters entered
10 System 2200S internal number format and
stores this in varisble B. In statement 140 the
converted number is tested for o renge of 500.
I Bis 500 program flow goes to stetement 200

If B is € 500 program fiow goes to statament 200
whare the remainder of the Drogram is executed.
if not 500 progrem flow goes to statement 150.

A bell cods (HEXI(07)) is sent 10 the CRT to
ectivate the audio alarm and notify the operstor
that ® mistake has been mede. Then en error
Metsage is displayed on the screen.

Progrem flow returns to statement 100 where
another but carrect value is raquested.

Remeinder of program text which is exacuted if no
ecror detacted.

Section | General System Introduction

2215 BASIC KEYWORD KEYBOARD
The 2215 keyboard permits most BASIC language words to be entered by single keystrokes. For example,

pressing the L | key causes the entire word ““PRINT" to be entered.
PRINT
SHIFT Uppercase characters can be entered into the system by touching one of the two
SHIFT keys and then touching the key containing the desired symbol or function.

When a SHIFT key is depressed, a SHIFT light iluminates until another key is touched;
then it is extinguished. The SHIFT LOCK key (upper left corner) causes the SHIFT
to remain activated while any number of upper case keys are entered; the SHIFT can be
subsequently deactivated by touching either SHIFT key. Alternatively the SHIFT key
can be held down as on a typewriter, if several uppercase characters are to be entered.

The keyboard is divided into 5 zones.

ZONE 5
SIXTEEN USER DEFINED SPECIAL FUNCTION KEYS AND EDIT KEY
A

Y’
ZONE 1 ZONE 2 ZONE 3 ZONE 4
BASIC LANGUAGE KEYBOARD KEYS AND NUMERIC ENTRY KEYS ARITHMETIC EDIT AND
ALPHA AND SPECIAL CHARACTERS OPERATORS ERROR
MATH FUNCTIONS, CORRECTION
PUNCTUATION KEYS

SYMBOLS

ZONE 1 The first zone contains the alphabetic and special characters, most BASIC language words, and the
statement number generator key.

STMT ... automatically sets the statement number of the next line about to be
NO entered, equal to the highest line number of the user program in the
system +10,

ZONE 2 The second zone consists of the numeric entry keys and the EXECUTE-CR/LF key.

EXECUTE ... causes the line just keyed in to be entered and processed by the system.
(CR/LF)

ZONE 3 Zone three contains the arithmetic operators, mathematical functions and punctuation keys.

Section | General System Introduction

ZONE 4 Zone four consists of the following special keys, used for entry and system control:

RESET

HALT/
STEP

LINE
ERASE

-

(BACK)

>

(SPACE)

immediately stops program listing or execution, clears the CRT screen,
and returns control to the user, leaving program text and variables intact.

causes program to halt or execute one line at a time each time the key
is touched.

deletes the line currently being entered.

backspace — deletes the result of the last keystroke entered.

enters a space character.

ZONE 5 Zone five consists of 16 user defined Special Function Keys for access of up to 32 sub-
routines or text entry operations and the EDIT key for Edit operations (see page 17 of
this manual and the Option 3 Reference Manual for a detailed discussion of the EDIT mode).

10

Section | General System Introduction

MODEL 2222 ALPHA-NUMERIC TYPEWRITER KEYBOARD
The 2222 keyboard is designed for users who already are familiar with a standard selectric type-
writer, or for those users whose applications require large amounts of alpha input.

The 2222 keyboard is divided into four major zones which are, in some respects, similar to the zones of
the 2215; however, the differences lie in the way BASIC words are generated. With the 2222, most BASIC
language words must be keyed in one character at a time (similar to a typewriter). This is compared to the
keyword section of the 2215 where one keystroke can generate an entire word. Either way, however, takes
up the same amount of space in memory.

ALPHA CONTROL ZONE 4
SWITCH SPECIAL FUNCTION KEYS AND EDIT KEY

———
— ——— ——
ZONE 1 ZONE 2 ZONE 3
ALPHA CHARACTERS NUMERIC PROGRAM
ENTRY KEYS EXECUTION
AND ARITHMETIC AND CONTROL
OPERATORS KEYS

ZONE 1 Zone 1 of the 2222 keyboard is very similar to a regular selectric typewriter keyboard, which
includes all alpha characters, both upper and lowercase, numbers 0-9, and all of the typical special
characters.

ALPHA CONTROL SWITCH

An integral part of Zone 1 is the addition of an Alpha Control Switch. The reason for this
switch is to more easily write programs in BASIC. This switch acts somewhat similar to a shift
key; however, the switch only conditions alpha characters to always be upper case and in no way
interferes with the other keys on the keyboards.

DOWN POSITION
A/A
@ In the down position the keyboard acts as a standard typewriter keyboard.

Ala

"

Section | General System Introduction

UP POSITION
A/A

8

Ala

RETURN
(EXEC.)

BACK
SPACE

In the up position,the keyboard conditions the system to generate all upper-
case alpha characters regardless of the position of the shift key. This is just
for the 26 alpha keys and in no way does this condition change the input
capabilities of the other keys on the keyboard. For uppercase keys other
than alpha characters, the shift key must be used. This would be the normal
position setting when entering BASIC programs, since BASIC statement
words and variables require uppercase alphabetic characters.

causes the line just keyed in to be entered and processed by the system.

deletes the result of the last keystroke entered.

ZONE 2 Zone 2 contains all the numeric entry keys and arithmetic operators, along with a number of
math functions. Immediate mode calculations can be generated using the PRINT key followed by
alegal calculating expression. This set of 20 keys is generally considered a “‘scratch pad*’ calculator
for immediate mode calculations; however, these keys can be used to enter program line numbers,
numbers and functions.

ZONE 3 Zone 3 consists of the following special keys used for entry and system control.

RESET

HALT/
STEP

LINE
ERASE

CON-
TINUE

RUN

immediately stops program listing or execution, clears the CRT screen, and
returns control to the user, leaving program text and variables intact.

causes program to halt or execute one line at a time each time the key is
touched.

deletes the line currently being entered.

continues program execution after a “STOP” verb has been executed, or the
"“"HALT/STEP” key has been touched.

initiates execution of the user's program.

12

Section | General System Introduction

ZONE 4 Zone 4 consists of 16 user defined special function keys for access of up to 32 subroutines
or text entry operations and the EDIT key for Edit operations (see page 17 of this manual
and the Option 3 Reference Manual for a detailed discussion of the EDIT mode).

System 2200S Central Processor Unit

The standard System 2200S Central Processor Unit has a user memory (RAM) of 4096 (4K)
bytes (eight-bit words). This can be expanded in increments of 4K up to a maximum of 16K,
self-contained in the 22008 chassis.

An outstanding feature of the System 2200S is that the BASIC language compiler is hardwired in a
separate section of the calculator, allowing nearly* the entire memory to be accessed by the user.
Also the EDIT mode, which allows editing of lines of program text recalled from memory or data
being input and displayed on the CRT, is a standard feature of the System 2200S.

The CPU contains slots for up to 3 1/O peripheral devices. An additional 3 1/O slots (Option 20)
can be ordered with the System 2200S or added to a previously purchased System.

System 2200S Central Processor Unit

*Approximately 700 bytes are used for ““housekeeping’’ purposes.

13

Sectionll

BASIC
Language Structure

INTRODUCTION 15
LINENUMBER. 1b
BASICWORDS 15
BASICSTATEMENTLINES 15
SPACING 15
COLON+ « « « .« 15
IMMEDIATEMODE 16
PROGRAMMODE 16
RETURN(EXEC})KEY 16
ILLEGAL IMMEDIATE MODE STATEMENTS 16
EDITMODE 17
DEBUGGING AND EDITING FEATURES 18
CHARACTERERASING 18
REMOVING THECURRENTLINE 18
DELETINGALINE 19
REPLACINGALINE 19
RENUMBERINGAPROGRAM 19
STEPPING THROUGH APROGRAM 2
EXECUTING APROGRAMATAGIVENLINE 20
PROGRAMMABLETRACE 21
PAUSE o2

14

Section Il BASIC Language Structure

INTRODUCTION

A BASIC program must have a certain structure - simple though it is. The rules are few and easy to follow.
Certain components should be used in the structure of a program. These components include allowable
characters, kinds of symbols, and various functions that can be used in BASIC.

LINE NUMBER

Every program line must begin with a line number. It may be 1 to 4 digits in length. Line numbers
identify the lines and specify the order in which the program lines are to be executed. These lines do not
have to be entered in sequential order; the BASIC system automatically arranges and processes the lines in
order according to the line number. Line numbers should be assigned with a suitable increment between
consecutive lines for the insertion of additional lines. Line numbers can be entered by pressing the
statement number key (2215, 2220 keyboard) which automatically generates a new line number, or
by manually keying in the digits in the line number. Line numbers must not be preceded by spaces.

BASIC WORDS

BASIC words (i.e., PRINT, NEXT, SAVE, TO) can either be entered as single keystroke entries by press-
ing the appropriate key or by typing in each character in the word. In either case,only 1 byte of memory is
required to store the word.

BASIC STATEMENT LINES
Each statement lines is comprised of a line number and at least one statement. A series of statements,
separated by colons, may be entered on the same line - with one line number.

Example:

40 X =2:Y=3:PRINTX,Y

There are two types of statements:
1. An executable statement specifies the action to be performed.
Example:
Q=8*Y
2. A nonexecutable statement provides information

Example:

DATA2,-7,5
One statement line cannot exceed 192 keystrokes.

SPACING

Spaces are customarily used between characters in a program line for readability; the system ignores
them. For example, 10 READ A, B, C, D is easier for the programmer to read than 1T0READA,B,C,D;
both, however, are equally clear to the BASIC system. The condensed format conserves user text area
space.

COLON

The colon (:) is displayed by the system to indicate that the programmer may proceed to enter program
lines. This symbol is also useful for identifying lines in the program listing - those preceded by a colon were
entered by the user; all others were system output.

15

Section 1l BASIC Language Structure

IMMEDIATE MODE
The Wang 2200S BASIC system provides for two modes of operation, PROGRAM and IMMEDIATE
The IMMEDIATE mode allows the System 2200S to be used as a powerful one-line calculator. The
BASIC statements are entered with no preceding line numbers, The absence of a line number causes
the system to check the line for grammatical correctness and, if no errors exist, to execute immedi-
ately the statements in the line. The line is not saved and requires only temporary storage space.

Multi-Statement Immediate Mode Lines
When using more than one BASIC statement on a line, a colon (:) must be placed between each statement.
The ability to place several statements on a single line makes the immediate mode a very powerful calculating
tool.
Example:

Key IN FOR 1=1 TO 10: PRINT I, LOG(l) :NEXT | RETURN(EXEC)

Ten values of | and LOG(l) would be printed immediately.

PROGRAM MODE

The PROGRAM mode requires each line to be preceded by a line number of from 1 to 4 digits. The
presence of the line number causes the system to check the line for grammatical correctness, store the line
and await further instructions from the user. In this way, an entire program can be entered line by line,
checked for syntax errors, and then saved, listed, or executed by the user.

CR/LF-EXECUTE KEY [RETURN EXECUTE
EXEC OR [CR/LF
Purpose 2222, 2220 2215

The CR/LF-EXECUTE key is used in both the immediate mode and the program mode. It must terminate
every line of input to the system. When entered, it causes the following:

1. IMMEDIATE MODE - If the statement line does not have a line number in front of it, the line is
checked for BASIC grammatical correctness and, if found to be correct, the line is immediately executed.
2. PROGRAM MODE - If the statement line has a line number in front of it, the line is checked for
BASIC grammatical correctness and entered into the 2200S memory.
3. COMMANDS - The command is checked for BASIC grammatical correctness and executed.
NOTE:

If a syntax error is found in either mode,the appropriate error
code is displayed along with an up arrow symbol pointing out
the error. The system then returns control to the user by dis-
playing a colon on the CRT display.

ILLEGAL IMMEDIATE MODE STATEMENTS

DATA INPUT RETURN
DEFFN KEYIN RETURN CLEAR
GOSUB PRINTUSING STOP
IF READ % (IMAGE statement)
RESTORE
IF-END THEN
ON

16

Section || BASIC Language Structure

EDIT MODE

The EDIT mode provides the capability to correct a partially entered line or a line already in
memory without having to retype the entire line.

The unique special function EDIT key, at the right hand side of the special function key pad,
allows a user to enter EDIT mode at any point during keyboard data or program entry operations
(Console Input or INPUT statement). The EDIT mode is indicated on the CRT display by an asterisk
displayed to the left of the current input line.

When in EDIT mode, the eight special function keys on the right side of the special function key
pad can be used to perform editing operations on a partially entered line or to RECALL and edit a
program line already stored in memory. When the corrected line finally is entered into the System
2200S (e.g., RETURN (EXEC) is touched), the system leaves the EDIT mode and the special function
keys can be used in a normal manner.

The editing functions available on the eight right most special function keys are indicated on the
special function strip below the keys. The operations are indicated below. (For completed details,
refer to the Option 3 character Edit ROM Reference Manual).

RECALL Recalls and displays for editing a specified BASIC
statement (statement number is entered prior to
depressing RECALL).

-€----— Moves the cursor five characters to the left.

- Moves the cursor one character to the left.

—_— Moves the cursor one character to the right.

———— Moves the cursor five characters to the right.

INSERT Insert a space prior to the current cursor position.

DELETE Removes character at the current cursor position.

ERASE Removes all characters at and beyond the current

cursor position.

17

Section Il BASIC Language Structure

DEBUGGING AND EDITING FEATURES
Debugging a program on any system can often be a difficult and time-consuming job. The special edit
and debug features of the Wang 2200S combined with the sixteen line visual CRT display help make

this task much easier.

Character Erasing
Single keystroke entries in the current text line can be removed by touching the backspace key

BACK BACK
SPACE| or [SPAGE
2222, 2215 2220

Example:
1120 X=SQR (2+COS(17

Key BACK
SPACE| 4 Times

 S—

1120 X=SQR(2
correct remainder of line
1120 X =SQR(2 - COS(17))

Removing the Current Line
The line currently being entered can be removed from the screen by touching the [LINE key.
ERASE

Example:
:300 PRINT “RESULT"”: A(4-

Key LINE
ERASE

18

Section Il BASIC Language Structure

Deleting a Line

A previously entered text line can be deleted by keying the line number of that line and the CR/LF-
EXECUTE key.

Example:

READY
:LIST
10A=14

20 PRINT A

Key 20 CR/LF-EXECUTE
Key LIST CR/LF-EXECUTE
:LIST
10A=14

Replacing a Line

An existing line can be replaced by entering the same line number followed by the new line and CR/LF-
EXECUTE.

Renumbering a Program

A program can be renumbered by using the RENUMBER command, so that spaces can be made between
closely numbered lines in order to insert additional lines of text.

Example:
READY
:100 IF 1=4 THEN 102
101 PRINT X, VY, |
:102 READ A, B$
:RENUMBER 101, 110 RENUMBER, starting at old
:LIST line 101, using 110 as a start-
100 IF 1=4 THEN 120 ing statement line number,
110 PRINT X, Y, | using an increment of 10

120 READ A, B$

19

Section Il BASIC Language Structure

Stepping Through a Program

Program execution can be halted at any time by touching the HALT/STEP key. Variables can be examined
or modified by immediate execution statements; and execution can be continued by keying CONTINUE
RETURN (EXEC). If, after a program has been halted, the user wishes to step through the program,
he continues touching the HALT/STEP key. Each time the key is touched, the next statement is exe-
cuted; the executed statement and any normal printed result of that statement is displayed. Program
stepping can be started at a particular statement line by entering a GOTO ‘line number’ statement, in
the immediate mode.

Example:

Enter the following program in memory:

10 FORI=1TO10

20 S=S+1

30 PRINTS

40 NEXTI
OPERATING INSTRUCTIONS: CRT DISPLAY
Key GOTO 10 READY

:GOTO 10

Key HALT/STEP :
10 FOR1=1TO10

Key HALT/STEP :
20 S=S+1

Key HALT/STEP :
30 PRINTS
1

Key HALT/STEP :
40 NEXTI

The system can also be placed in TRACE mode and stepped. This provides both a display of each executed
statement and the calculated results of each statement.

Executing a Program at any Given Line
Program execution can be started at any desired line by entering a RUN ‘line number’ command.

Example:

Key RUN 130 CR/LF-EXECUTE

NOTE:

The user should not begin execution in the middle of a
FORINEXT loop or subroutine.

20

Section Il BASIC Language Structure

Programmable Trace

The TRACE statement provides for the tracing of the execution of a BASIC program. TRACE
" mode is activated in a program when a TRACE statement is executed and deactivated when TRACE
OFF statement is executed. When in the TRACE mode, printouts are produced when:

1. Any program variable receives a new value during execution; e.g., in LET, READ, FOR statements.

2. A program transfer is made to another sequence of statements; e.g., in GOTO, GOSUB, IF NEXT
statements.

Example:

READY
10 X=1.2
:20 TRACE
130 X=2*X
:40 |IF X>2 THEN 100
:560 STOP
:100 TRACE OFF
910 Y=X
:120 STOP
:RUN
Trace X=24
Outputs TRANSFER TO 100

STOP

Pause

The output of a program can be slowed down for easier visual inspection by selecting a pause of from
zero to one-and-a-half seconds. A pause is generated whenever a CARRIAGE RETURN is output to the
CRT display or a printer. The pause is turned on and off by executing the appropriate SELECT P ‘digit’
statement; the digit specifies the number of 6th’s of a second to pause (i.e., P3 =3 X 1/6 = 1/2 sec. pause).
The pause feature is programmable, and can be turned on and off within a program.

Example:

READY

:100 TRACE :SELECT P6
110 FOR1=1TO 20

1120 A(l) =1*COS (32.5)

1130 NEXTI

:132 TRACE OFF :SELECT PO

21

Section Il

Numeric Expressions

EXPRESSIONS v v v v v v i iiie e .. =B
NUMERICVARIABLES. 2
COMMONDATA 24
ARITHMETICSYMBOLS 25
RELATIONALSYMBOLS 25
USERFUNCTIONS 2

NUMERIC CONSTANTS . . .
MATHEMATICAL FUNCTIONS
RANDOM NUMBERS . .
ADDITIONAL NUMERIC FUNCTIONS

8838

22

Section 11l Numeric Expressions

EXPRESSIONS

An expression may be a variable, a function or a constant or any valid combination of variables, functions,
and constants connected by arithmetic symbols. An expression may be preceded by plus or minus and may
be contained within parentheses. The following examples illustrate BASIC expressions:

x = [A
X = |5+Y+FNB(X] - LOG(Z)]
3 XZ5] , K)=9

FORI| = TO [4+Y] STEP [D{(3+K) -1
PRINT SIN(K) -4+J

Operations in an expression are executed in sequence from highest priority level to lowest, as follows:
1. Operations within parentheses

2. Exponentiation (1)

3. Multiplication or division (= or /)

4. Addition or subtraction (+or -)

Quantities within parentheses are evaluated before the parenthesized quantity is used in further compu-
tations. In the absence of parentheses, exponentiation is performed first, then multiplication and division,
and finally addition and subtraction. For example, in the expression 1 + A/B, A is divided by B and then 1
is added to the result. When there are no parentheses in the expression and the operations have the same
priority level, these operations are performed from left to right. For example, in the expression A*B/C; B
is multiplied by A and the product is divided by C.

NUMERIC VARIABLES

A variable name is a string of characters that represents a data value. A variable can be given a new value
in certain executable statements such as READ, LET, INPUT, NEXT, FOR. The value assigned to the vari-
able in a program statement does not change until a second program statement is encountered which
assigns a new value to the variable.

There are two types of numeric variables: scalar and array. A scalar numeric variable is designated by a
letter or a letter followed by a digit: there are 286 legal scalar variable names.

Example:

AA4

Array variables are used to define the elements of an array. These variables are used when a single sub-
script or a double subscript might ordinarily be used.

(a, ,a, ., ,...) orbyb;

A numeric array variable consists of a letter or a letter followed by a digit which is the array name, followed
by subscripts in parentheses:

A(3), C3(5), B(2,3), D(N, M-2), E1(5), F3(N,M)

23

Section |11 Numeric Expressions

For all array variables, the DIM statement is used with the array name and the numeric value subscripts
to provide space and specify the dimensions of a complete array of one or two dimensions. The DIM state-
ment must precede the first reference to the variables.

Example:
READY
:20 DIM Q(25) defines the 1-dimensional array Q with 25 elements
:30 READN

40 FORI=1tN

:60 READ Q{l)

:65 PRINT Q(1)

60 NEXTI

:70 DATAS

:80 DATAA4,5,19,37,43

For cases where an array variable is used as common data, it is specified in a COM (common) statement
instead of a DIM statement to provide storage space.

The following rules apply to the use and assignment of array variables:

1. The numeric value of the subscript for the first array element must be 1; zero is not allowed.
2. The dimension(s) of an array cannot exceed 255.

3. The total number of elements in an array must not exceed 4096.

An array variable and a scalar variable may have the same name; they are independent, unrelated variables.
Single subscripted and double subscripted arrays may not be defined with the same name.

COMMON DATA
The sharing of data common to several programs is possibie by using the COM statement. Variables with
data to be used in subsequent programs are defined to be common in a COM statement.

Example:
COM A(2,4),8,C

defines the array A (of dimension 2 by 4) and the scalars B and C to be common data. When a RUN command
is issued, all noncommon variables are removed from the system; common variables are not disturbed. In
addition, common data can be retained when a new program is loaded or overlayed, and thus are passed
onto the next program. Common variables are cleared from memory when a CLEAR or CLEAR V command
is executed.

24

Section 111 Numeric Expressions

ARITHMETIC SYMBOLS

The following arithmetic symbols are used in BASIC to write a formula. Operations are executed in
sequence from the highest level to the lowest level: (1) operations within parentheses, (2) raising a number
to a power, (3) multiplication and division, and (4) addition and subtraction.

SYMBOL SAMPLE FORMULA EXPLANATION
+ AtB Raise A to the power of B.
* A+B Multiply B by A.
/ A/B Divide A by B.
+ A+B Add B to A
- A-B Subtract B from A

RELATIONAL SYMBOLS
Relational symbols are used with the IF verb when values are to be compared before processing. For
example: 20 IF G < 10 THEN 63 means that if G is less than 10, processing continues at program line 63.
The following relational symbols may be used with BASIC:

SYMBOL SAMPLE RELATION EXPLANATION
= A=B A isequal to B
< A<B A is less than B
<= A<=B A is less than or equal to B
> A>B A is greater than B
>= A>=B A is greater than or equal to B
<> A<>B A is not equal to B

USER FUNCTIONS

A user function is a mathematical function of a single variable, which is used several times within a
program, Such a function is defined by a DEFFN statement. The format of the function is a letter or a
digit, a scalar variable in parentheses, an equals sign, and an expression. (i.e., Y(X) =2+ X t2+3+* X-7).
A function could be used in a program as follows: The function is defined: 30 DEFFN E (Z1) = EXP
{(-Z113+5). If the following statement is entered, 40 Q = A/B + FNE(10), the value of 10 is assigned to Z1;
the result, EXP {(-1013+5) will be used in place of the referenced FNE(10) in program line 40.

25

Section 11l Numeric Expressions

NUMERIC CONSTANTS

A numeric constant may be positive or negative and may consist of as many as 13 digits. Numbers with

greater than 13 digits result in an illegal number format error. The following are examples of numeric con-
stants in BASIC:

4, -10, 1432443, -.7865, 24.4563

If the exponential notation, E, is used, the value of the constant is equal to the number to the left of the
E multiplied by 10 to the power of the number to the right of the E. For example, 4.5E7 indicates that 4.5
to be multiplied by 107.

The magnitude of a numeric constant can be anywhere between 107 and 10%'%,

Invalid Use of Scientific Notation

8.7E5.8 Not valid because of the illegal decimal form of the exponent.

-103.2E99 Not valid because in reduced form, it is equivalent to ~1.032E 101, an exponent greater than
E100.

.87E-99 Not valid because it is equivalent to 8.7E-100, which is less than E-100.

26

Section 111 Numeric Expressions

MATHEMATICAL FUNCTIONS

Keyboard Function

Meaning

Example

*SIN(expression)

Find the sine of the expression

SIN(xn/3) = .8660254037841

*COS(expression)

Find the cosine of the expression

COS(.69312) = 8868799122686

*TAN(expression)

Find the tangent of the expression

TAN(10) = .6483608274585

*ARC SIN(expression)

Find the arcsine of the expression

ARC SIN (.003) = 3.00000450E-03

*ARC COS(expression)

Find the arccosine of the expression

ARC COS (.587) = .943448079441

**ARC TAN(expression)

Find the arctangent of the ex-
pression

ARC TAN (3.2) = 1.267911458422

m Appears as #Pl on CRT
display

Assign the value (3.141569266359)
(Displayed and printed as #P1)

4+#P1=12.56637061436

RND(expression)

Produce a random number between
Oand 1

RND (X) =.8392246586193

ABS(expression)

Find the absolute value of the
expression

ABS(7+3.4+2) = 25.8
ABS(-6.537)=6.537

INT(expression)

Take the greatest integer value of
the expression

INT (8)=8, INT(3.6)=3

SGN({ expression)

Assign the value 1 to any positive
number, O to zero, and -1 to any
negative number

INT(-5.22)=-6
SGN(8.15)=1
SGN(0)=0
SGN(-.124)=-1

LOG(expression)

Find the natural logarithm of the
expression

LOG(3052)= 8.023552392402

EXP(expression)

Find the value of e raised to the
value of the expression

EXP(.33+(5-6))=
7189237334321

SQR(expression)

Find the square root of the ex-
pression

SQR(18+6)=SQR{24)=
4.8989794856

*Unless instructed otherwise, the argument is interpreted in radians. Degrees, grads (360° = 400 grads),
or radians can be selected by entering the following statements:

SELECT
SELECT R
SELECT G

D CR/LF—-EXECUTE
CR/LF—EXECUTE
CR/LF—EXECUTE

—selects degrees for all following calculations.
—selects radians for all following calculations.
—selects grads for all following calculations.

**The arctangent notation ATN(is also a recognized function notation.

27

Section 111 Numeric Expressions

RANDOM NUMBERS

Each time the RND function is used, a random number is produced with a value between 0 and 1. If
the argument of the RND function is not zero, the next number in the ‘random number list’ is produced.
If the argument is zero, the first random number in the ‘list’ is produced. RND (0) is useful when debugging
programs involving random numbers since the same results can be produced each time the program is
executed.

The example below prints out the first 100 numbers in the ‘random number list’ each time the program
is executed. Deletion of Line 10 produces a different set of random numbers each time the program is
executed.

Example:

READY

110 X =RND (0)

:20 FOR1=1TO100
:30 PRINT RND (1)
:40 NEXT

Whenever the system is Master Initialized (Power On), the random number generator is initialized;
the next time RND is used, the first random number in the list will be produced.

ADDITIONAL NUMERIC FUNCTIONS The following additional functions can be used in expres-

sions:
NUM Test if a string of characters is a legal BASIC number.
VAL Binary value of a string character.
LEN Length of a string.

For detailed descriptions see Section |V for LEN, and Section VII for NUM and Val.

28

Section IV

Alphanumerics

ALPHANUMERIC STRING VARIABLES . .

ALPHANUMERIC LITERAL STRINGS .

EXAMPLES OF STATEMENTS USING STRING VARIABLES.

STR(STRING) FUNCTION
LEN(LENGTH) FUNCTION
HEX(HEXADECIMAL) FUNCTION . .
LOWERCASE LITERALS .

29

30
31
31
32
33
33
33

Section IV Alphanumerics

ALPHANUMERIC STRING VARIABLES

The Wang 2200S provides for an additional form of variable, the alphanumeric string variable. It is
distinguished from numeric variables by the manner in which it is named, a letter or a letter and a digit
followed by a $. String variables permit the user to process alphanumeric strings of characters {such as
names, addresses and report titles).

Both alphanumeric scalar variables and alphanumeric array variables may be used. The dimensions of
string arrays must be specified in a DiM or COM statement prior to their use in the program.

Formats for alphanumeric string variable names are given below; items enclosed in brackets are optional.

Alphanumeric scalar string variable

‘letter’ ['digit’] $ i.e., A$, B$, C1$
One-dimensional alphanumeric string array variable

“letter’ ['digit'] $(d,) i.e., A$ (3), B$ (3)
Two-dimensional alphanumeric string array variable

‘letter’ ['digit’] ($d, ,d,) i.e., A$ (2, 3), B$ {4, 8)

where dI and d2 are expressions whose values are = 1 and less than 256.

Each string variable or string array element is initially assigned a value of 1 blank character. Thereafter,
it can take the value and length of any alphanumeric character string up to its maximum length. The
maximum length of a string variable is assumed to be 16 characters; however, the user may change the
maximum length {up to 64) by using a DIM or COM statement. |f a string variable receives a string value
of less than its maximum length, it reflects that shorter length in all subsequent operations until it receives
another value. The end of the alphanumeric value is assumed to be the last nonblank character (except
when the value is all blanks, in which case the value is assumed to be one blank).

Example:

READY
110 A$="ABC
:20 PRINT A$

Execution of these statements would print “ABC’* with no trailing spaces.

Hence, trailing blanks are not considered part of alphanumeric values.

30

Section 1V Alphanumerics

ALPHANUMERIC LITERAL STRINGS
An alphanumeric literal string is a character string enclosed in double quotation marks. It is used in
conjunction with string variables to provide a string value within a BASIC statement.

Example:

READY

110 LET A$="ABCD"”

120 IF B$ <"#XYZ' THEN 100
:30 PRINT “NAME=" :A$

When inputting data, the literal string need not be enclosed in quotes. In this case, commas and carriage
returns act as string terminators and leading spaces are ignored; hence if commas or leading spaces are to be
included in the literal string, the string must be enclosed in quotes.

Literal strings may be any length that can be expressed on one program line. However, when they are
used to store values in string variables, they are truncated to the maximum length defined for the
string variable value.

Example:

LET A$="ABCDEFGHIJKLMNOPQRST"

In this statement, A$ only receives the first 18 characters of the literal string (i.e., ABCDEFGHIJKL
MNOPQR) If the maximum length of A$ is 18; otherwise it is set to 16 (see DIM; page 66).

EXAMPLES OF STATEMENTS USING STRING VARIABLES
Alphanumeric string variables can be used in the BASIC statements listed below. Literal strings can

generally be used in place of string variables, except where a value is assigned to the string variable.

LET LET A$=B$(2)
A$="ABCD"
IF IF A$=B$ THEN 100

IF A$<"DR" THEN 200
IF “ABCD'>B$ THEN 300

INPUT INPUT A$, B$(4)

READ READ C$, D$, E$(1,2)

DATALOAD DATALOAD #2,A$,B$

PRINT PRINT A$,B$, “ABCD"”

PRINTUSING PRINTUSING 50,A$,B$, “LAST”

DATASAVE DATASAVE A$, “GROUP1”

DATA DATA “ABCD”, "EFGH"
NOTE:

When comparing string variables with string literals or other
string variables (i.e., IF A$ < “ABCD"), trailing spaces are
ignored and only the values of the strings are compared.

31

Section IV Alphanumerics

STR (STRING)FUNCTION

Wang 2200S BASIC provides a function which permits the user to extract, examine, compare or
replace a specified portion of an alphanumeric string. The STR function operates on alphanumeric string
variables, and can be used in any BASIC statement where alphanumeric variables are permissible. It
has the following format; items enclosed in brackets are optional.

STR (s.tring variable, X, [,XZ])

where X, - gtarting character in sub-string (an expression).

X

Number of consecutive characters desired (an expression;
the specification of X, is optional).

Example:
STR(A$,3,4)

This statement means take the 3rd, 4th, 5th, and 6th characters of AS.

STR(A$,3)

This statement means, starting with the 3rd character, take the remainder of
the string AS.

In BASIC statements, STR functions can be used wherever string variables are used. They may be used
on either side of an equal sign or relation. The following examples illustrate use of the string function:

Assuming B$=""ABCDEFGH"
10 A$=STR(B$,2,4) --A$ is set to “BCDE".

20 STR(A$,4) = B$ ---Characters 4 through 11 of A$
are set to “ABCDEFGH".

30 STR(A$,3,3)=STR(B$,5,3) ~-The 3rd, 4th and 5th characters
of A$ are set to "EFG"’.

40 IF STR(B$,3,2)=""AB”"THEN 100 --Characters “CD" of B$ are
compared to the literal string “AB”.

50 READ STR(A$,9,9) ---Characters 9 through 17 of A$
receive the next data value read.

When the STR(function is used as a receiver in a LET statement and the value to be received is
shorter than the receiver, the receiver is padded with trailing spaces, for example.
:10 A$ = ""12345"
120 STR(AS, 2,3) = A"
;30 PRINT “A$ =" ;A$
:RUN
A$=1A 5
32

Section IV Alphanumerics

LEN (LENGTH) FUNCTION
Wang 2200S BASIC provides a function, LEN(, which permits the user to determine the number of

characters in a given string variable. The LEN function can be used whenever a math function is per-
mitted.

The format of the length function is:
LEN(string variable)
Example:

A$ = “ABCD”
LEN(AS$) has a value of 4

NOTE:

Trailing blanks are not considered to be part of the value of a
string variable.

Examples:

100 X = LEN(AS$) +2
110 IF LEN A$(3) > 8 THEN 150

HEX (HEXADECIMAL) FUNCTION

The HEX function is a form of literal string that enables a user to use any 8-bit codes in a BASIC program;
it may be used wherever literal strings enclosed in double quotes may be used. The HEX function has the
following format; items in brackets are optional.

HEX (hexdigit hexdigit [{ hexdigit hexdigit } ...])
where hexdigit = a digit 0- 9 or a letter A - F.
Example:
Executing the following statement clears the CRT display.
:PRINT HEX (03)

Executing the following statement sets the string variable, A$, equal to the 3 characters: 81,
34 .

16

82 _,and

16’
A$ = HEX (818234).

Any character can be represented by two hexadecimal digits. A complete list of HEX codes pertaining to
the CRT is given in Appendix C.

LOWERCASE LITERALS

A special form of literal string is available for specifying lowercase characters; the literal string is enclosed
in single quotes. For example, the following statement

:PRINT *J’; ‘OHN’; * D”; ‘OE’
outputs ‘John Doe’ on peripheral devices capable of printing lowercase letters.

The following characters are valid for use in lowercase literals.

Letters: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Digits: 0123456789

Special Characters: blank ! “ #$ % &() » +, -
/o <=2>7?

33

SectionV

1/0 Device Selection

INTRODUCTION
SYSTEM 2200S DEVICE SELECTION

Each peripheral 1/0 device associated with the System 2200S is assigned a unique device address. All
device addresses are composed of three-digit hexadecimal numbers. The first hex digit identifies the
device type. It is used by the system when controlling the 1/O operation. The last two hex digits
represent the actual device address, which is used to electronically select the device for operation.

an |/O operation. The various peripheral devices on the System 2200S often require different control

. The device type digit is used by the System 2200S to identify what type device is being selected for

procedures to perform an input/output operation. For example, a type digit of 1 signifies cassettes, a
type digit 2 indicates output prints. The last two digits correspond to the actual device address which is
preset in each device controller card in the System 2200S CPU. For example, if a System 2200S has
two cassette drives two unique addresses are available for cassettes.

When a System 2200S BASIC command or statement which performs in input/output operation is
executed, the appropriate device can be selected in one of three ways.

1.

DEFAULT (Primary Console Device) - If not device address is specified or selected, the System
2200S automatically provides the device address which is most commonly used for that par-
ticular operation.

. SELECT - The System 2200S SELECT statement can be executed. It assigns device addresses

for specified 1/0 operations.
SPECIFICATIONS - The device address can be supplied with the BASIC |/O statement or
command, either absolutely or indirectly.

SELECT 35
DEVICE ADDRESSES FOR SYSTEM 2200S PERIPHERALS . 36
DEFAULT DEVICE ADDRESSSELECTION 37
THE INPUT AND PRINT PARAMETERS 39
THE LIST PARAMETER 39
SPECIFYINGAPAUSE 40
SPECIFYING DEGREES, RADIANS OR GRADIANS . . . 40

34

Section V 1/O Device Selection

SELECT

SELECT

General Form:

where _
select parameter

device address
length

‘file number’

SELECT

(Cl
co
TAPE

‘file number’
LIST

< PRINT

INPUT

select parameter [, select parameter. . .]

device address
device address [(length)]
device address

device address

device address [{length)]
device address [(length)]
device address

[digit]

A three hexadecimal digit code specifying the desired
device (see Device Address Table).

An integer < 256 specifying the desired

carriage width.

One of the following:
#1,#2, #3, #4, #5, #6

Purpose

The SELECT statement is used for three purposes:

1. To select device addresses for input/output statements or commands.

2. To specify a pause after every printed or displayed line of output
(used mainly with CRT display), and

3. To specify degree, radian, or gradian measure for the trigonometric functions.

35

Section V 1/0 Device Selection

A complete list of the System 22008 1/0 devices and addresses is shown in the table below.

DEVICE ADDRESSES FOR SYSTEM 2200S PERIPHERALS
(For further detail, see the individual peripheral manuals.)

/0 DEVICE CATEGORIES DEVICE ADDRESSES*
KEYBOARDS (2215, 2222, 2223) | 001, 002, 003, 004
CRT (2216) 005, 006, 007, 008
TAPE CASSETTE DRIVES (2217,
2218) 10A, 108, 10C
LINE PRINTERS (2221, 2231)
(2261) 215, 216
OUTPUT WRITER (2201) 211,212
MARK SENSE (MANUAL)
CARD READER (2214) 517
HOPPER FEED PUNCHED CARD
READERS (2234A) 028 INPUT
HOPPER FEED MARK SENSE 02C INPUT
PUNCHED CARD READER
(2244A)
019,01A,018 INPUT
TELETYPE (2207A) 01D, 01E,01F OUTPUT
TELECOMMUNICATIONS (2227) 219,21A, 218 INPUT
21D, 21E, 21F OUTPUT
PARALLEL 1/0 INTERFACE (2250) | 23A,23C,23E INPUT
23B, 23D, 23F OUTPUT
BCD INPUT INTERFACE (2252) 25A, 25B, 25C, 25D, 25E, 25F
DIGITIZER (2262) 65A INPUT

In some cases, more than one device address is listed for each device category. Unless otherwise
noted, each peripheral device is assigned a unique address; device addresses are assigned sequentially.
Therefore, if a System 2200S has only one device of a particular category, such as a cassette, it is
set up with the first device address listed (10A in the case of the cassette). If it has two cassettes,
they are set up with device addresses 10A and 10B. Each device address is printed on the interface
card which controls that device.

Section V 1/0 Device Selection

DEFAULT DEVICE ADDRESS SELECTION

Each System 2200S has three 1/O devices designated as the Primary Console Devices for the system.
The device addresses of these peripherals are built into the system such that whenever Master Ini-
tialization occurs (i.e., power is turned off and then on again), the system automatically is set to those
device addresses for 1/0 operations. The Primary Console Devices normally are:

1. Primary Console INPUT Device: Keyboard (address 001) (Model 2215, 2222 or 2220)
2. Primary Console OUTPUT Device: CRT (address 005) (Model 2216) or 2220
3. Primary Console TAPE Device: The Primary Cassette (address 10A) (Model 2217 or 2220)

I1f a System 2200S does not contain additional input/output devices, then device addresses need not
be specified or selected in the BASIC commands and statements which perform input/output. If
additional devices are present in the system, device address specification or selection is required. Device
selection is described in the remainder of this section.

When Master Initialization occurs, the Primary Console Device addresses are assigned to all input and
output operations. This is, all commands, statements, and other information keyed into the System
2200S are done from the Primary Console Input Device, while all system output is sent to the Primary
Console Output Device. All BASIC statements involving cassette operations automatically access the
Primary Console Tape Device unless the statements contain either of the two optional parameters,
#n, or/xxx, which supply the device address.

The console device addresses for input/output operations can be changed from the Primary Console
Device addresses by using SELECT statements containing the parameters Cl {(console input), CO
(console output), TAPE (console tape cassette drive). Before these parameters can be used, however,
the device addresses of the new console devices must be known (see Device Address Table).

To change the console device from the Primary Qutput Device address (CRT device address = 005) to

another output device, a statement having the following format can be used:

SELECT CO device address [(length)]

Example:
SELECT CO 215 (80)

This statement selects a line printer (device address = 215) as the new Console Output Device. The maximum
line length to be used on the printer is set at 80 columns.

NOTE:

If a carriage width is not specified for console output, PRINT
or LIST, the last carriage widths selected for these operations
are used. Master Initialization sets these carriage widths to 64
characters.

Section V 1/0 Device Selection

Example:
SELECT CO 005 (64)

This statement reselects the CRT as the Console Output Device. The line length is reset to 64 characters.

Example:
SELECT TAPE 10B

This statement selects the second cassette tape unit (device address = 108) as the Console Tape Cassette
unit. All statements involving cassette operations access the second cassette drive unless the statement
contain either of the two optional parameters, #n or /xxx which supply the device address.

The System 2200S provides two other methods for selecting tape cassette drives or other devices
for input and output operations. The individual BASIC statements that execute 1/0 operations (LOAD,
DATASAVE, SKIP, etc.) each contain two optional parameters designated #n and /xxx. The /xxx parameter
allows the actual device address of a cassette drive to be placed directly in the statement. The xxx represents
the three-character device address of the desired device. This method of selecting tape devices is independent
of the SELECT statement.

Example:
DATASAVE /108, OPEN “DATFILE”

This statement writes a data file header record on the cassette whose device address is 10B.

The #n parameter permits cassette or other device addresses to be assigned indirectly using the SELECT
statement. # n is called a file number and must be one of the following: #1, #2, #3. A particular
device address can be assigned to a file number by a SELECT statement in a program. Thereafter
in the program, BASIC Input/Output statements which contain that file number automatically use the
previously assigned device address.

Example:

10 SELECT #2 108, #3 10A

This statement assigns the cassette device address 10B to file #2, and the cassette device address 10A
to file #3. In subsequent program statements which perform input/output operations, the file then
can be used to supply the device address.

Example:

50 REWIND #2
60 DATALOAD #3, Al), B$()

The indirect assignment of device addresses in a program using file numbers offers several advantages.
Subroutines can be written to perform a sequence of |/O operations for several devices. All device address
assignments in a program can be changed by modifying a single statement. For instance, in the following
example addresses can be assigned by changing statement 10.

38

Section V. 1/0 Device Selection

Example:

10 SELECT #2 108, #3 10A
20 SKIP #2, 2F

100 REWIND #3
110 DATASAVE #2, OPEN “DATFILE"”

THE INPUT AND PRINT PARAMETERS

The INPUT and PRINT parameters are used to select device addresses for the INPUT, KEYIN, PRINT,
PRINTUSING, and HEXPRINT statements executed in a user’s program. The INPUT select parameter
specifies the device address to be used to enter in data for INPUT and KEYIN statements.

Example:

100 SELECT INPUT 002
110 INPUT “VALUE OF X, Y, X, Y

The message “VALUE OF X, Y?'" appears on the console output device, while the values of X and Y are
keyed in on the keyboard whose device address is 002.

The PRINT parameter specifies the output device on which all program output from PRINT, HEXPRINT,
and PRINTUSING statements are displayed.

Example:

100 SELECT PRINT 212 (100)

110 PRINT”X=";X,”NAME=":N$

120 PRINTUSING 121, V

121 %TOTAL VALUE RECEIVED:$#, ###. ##

The SELECT PRINT statement in line 100 directs all printed output to a Model 2201 Qutput Writer (device
address 212); the carriage width is specified as 100 characters.

Example:

SELECT PRINT 005(64)

This statement reselects the CRT as the device to which all PRINT and PRINTUSING output is directed.
The maximum line length is reset to 64 characters.

NOTE:

The output from PRINT statements entered in the immediate
mode always appears on the Console Output Device.

THE LIST PARAMETER
The LIST select parameter specifies which output device is to be used for all program listings.

Example:
SELECT LIST 215(70)

39

Section V 1/0 Device Selection

This statement specifies that a line printer {device address = 215} is to be used for program listings. The
maximum line length is specified as 70 columns.

NOTE:

All SELECT statement formats are legal in either program

mode or immediate mode. Device selections remain in force

until:

1. They are changed by the execution of another SELECT
statement, or

2. They are reset to the currently selected console devices by
the execution of a CLEAR command with no parameter, or

3. They are reset to the Primary Console Devices by a Master
Initialization.

A CLEAR command with no parameters and Master Initiali-
zation (power on) clears all file number assignments. All file
numbers then must be initialized by re-executing the SELECT
statements. Reference to un unassigned or cleared file number
causes an error output.

WARNING: Selecting an illegal device address for Cl or CO
causes the system to become locked out; it can be reset only
by Master Initializing,i.e., by turning the power off then on
again. All programs and variables will be lost.

SPECIFYING A PAUSE:

The ‘P’ select parameter causes the system to pause each time a carriage return character is output to a
CRT so the user can scan the output rather than programming the system to halt execution whenever the
CRT screen is full. The optional digit following the pause specifies the length of the pause in increments of
1/6 seconds. For example, the following statements generated the indicated pauses:

100 SELECT P1 pause 1/6 seconds
SELECT P6 pause 1 second
SELECT P (or PO) pause = null {i.e., no pause)

it

]

Again, a pause remains in effect until Master Initialization occurs or until a different pause is selected.
Selecting P or PO removes the current pause.

SPECIFYING DEGREES, RADIANS, OR GRADS:

Degree, radian, or gradian measure may be selected for the trig function arguments by using the ‘D’, ‘R’
or ‘G’ parameters, respectively. For example:

SELECTD

causes the system to use degree measure for the trigonmetric functions. The unit of measure can be changed
by executing another SELECT command or by Master Initialization, which automatically selects radians.

40

Section Vi

Non-Programmable
commands

INTRODUCTION 42
BASIC SYNTAX SPECIFICATIONRULES 42
GENERALFORMOFTERMS 43
CLEAR i i e e e e e 45
CONTINUE. v v v v e i e e et e e e e 46
HALT/STEP v i i e i i e e e e e 47

LIST o o oo e 49
RENUMBER, 50

RESET e e e e e e e e . 51
RUN e e e e e 52
SPECIAL FUNCTION. e e e e e e e - 53
STATEMENTNUMBER 55

a1

Section VI Non-Programmable Commands

INTRODUCTION

A BASIC command provides the user with a means for communicating with the system. A BASIC
command facilitates the running or modification of a program but is not part of the program itself.

For example, the RUN command initiates the execution of a program in 2200S memory; the SAVE
command instructs the system that all program text is to be recorded on a cassette tape.

BASIC commands are entered one line at a time. They differ from BASIC statements in that they are
not preceded by line numbers, and only one command can be entered on one line; multiple commands
separated by colons on one line are not allowed. BASIC program statements are saved in memory for
later execution; BASIC commands cause action and are not saved.

All the 2200S BASIC commands are described on the following pages.

BASIC SYNTAX SPECIFICATION RULES
The following editorial rules are used in this manual to define and illustrate the components of BASIC
program statements and system commands.
1. Uppercase letters (A through Z), digits (O through 9) and special characters (*, /, +, etc.) must always
be used for program entry exactly as they are shown in the general form.
2. Information in lowercase letters is to be supplied by the user; for example, in the statement GOSUB
‘line number’, the line number must be entered by the user.

3. Square brackets, [], indicate that the enclosed information is optional. For example,
RESTORE [expression]
means that the RESTORE statement verb can be optionally followed by an expression:

RESTORE
or RESTORE 2«X

are both legal forms.
4. Braces, { }, enclosing vertically stacked items indicate that one of the items is required. For example,

scalar variable
COM

array variable
means that the COM statement elements can be:

a scalar variable (i.e., C2)
OR
an array variable (i.e., D(4,8))

5. Ellipsis, . . . , indicate that the preceding item may occur once or many times in succession. For
example,

INPUT variable, variable, . . .

6. Except within double quotation marks, BASIC syntax ignores blanks.

7. When one or more items appear in sequence, these items or their replacements must appear in the
specified order.

42

Section VI Non-Programmable Commands

GENERAL FORM OF TERMS

The list below defines the language syntax elements used in the command and statement syntax

specifications.

alpha array designator ::
alpha array variable ::

alpha scalar variable ::

alpha variable ::

array designator ::

builtin ::

character string ::
device address ::
digit ::

exponent

expression ::

fraction ::
function ::
hexdigit ::
integer ::

letter ::

line number ::

literal string ::

number ::

letter[digit] $()
letter [digit] $(expression [, expression])
letter [digit 1$

alpha array variable
alpha scalar variable
STR function

{alpha array designator }
numeric array designator

one of the following function names: SIN, COS, TAN, ARCSIN,
ARCCOS, ARCTAN, ATN, EXP, LOG, SQR, ABS, INT, SGN,
RND, LEN.

any string of letters, digits, or symbols not including carriage return,
backspace, etc.

hexdigit hexdigit hexdigit
0,1,234,56,7,8,0r9
E[{+}] digit [digit]

[{+}1 term

. integer

{ FN {:fi;tiir } } (expression)

builtin

{ digit }

A,B,C,D E, orF

digit [digit ...]
AB,C,D,EF,G,H,IJIKLMNOPQRSTUVWXY,orZ
digit [digit] [digit] [digit]

"“character string not including quotes”
‘character string not including single quotes’
HEX ({ hexdigit hexdigit }- -)

integer
fraction

integer fraction | [exponent]

43

Section VI Non-Programmable Commands

numeric array designator :: letter [digit] ()

numeric array variable :: letter [digit] (expression [, expression])

numeric scalar variable :: letter [digit]

. . numeric scalar variable
numeric variable :: =

numeric array variable

STR(alpha variable , expression [, expression])

STR function ::

(expression) +
number *
function /
numeric variable | | 1

term :: term

- { numeric variable }

variable :: alpha variable

Section V1 Non-Programmable Commands CLEAR

CLEAR

General Form: CLEAR P [line number [, line number]]
v
N
Purpose

The CLEAR command reinitializes the user program text and variable areas. CLEAR with no parameters
removes all program text and variables from the system. The current console devices are selected for atl 1/O
operations (see SELECT). Also, pause and trace are turned off.

CLEAR V removes all variables {(both common and noncommon) from memory.

CLEAR N removes all noncommon variables from the system; but names, attributes, and values of com-
mon variables are not changed.

CLEAR P removes program text from the system; variables are not disturbed. CLEAR P with no line
numbers deletes all user program text from the system. CLEAR P with one line number deletes all user
program lines from the indicated line through the highest numbered program line. If two line numbers are
entered, all text from the first through the second line numbers, inclusive, is deleted.

Example:

CLEAR

CLEAR YV
CLEARN
CLEARP 10, 20
CLEARP 10
CLEARP

45

Section VI Non-Programmable Commands

CONTINUE

CONTINUE

General Form: CONTINUE

Purpose

This command continues program execution whenever the program has been stopped either by a STOP
verb or the touching of the HALT/STEP key. The program continues with the program statement immedi-
ately following the last executed program statement.

NOTE:

An error message is displayed and execution does not contin-
ue if the user enters a CONTINUE command after:
1. A text or table overflow error has occured.
2. A variable has been entered that has not previously been
defined.
3. ACLEAR Vor CLEAR N command has been executed.
4. Program text has been modified by a CLEAR, CLEAR P,
or RENUMBER command having been executed, or a
new program line having been entered.
5. The RESET key has been pressed.

Example:
CONTINUE

Section VI Non-Programmable Commands

HALT/STEP

HALT/STEP

General Form: HALT/STEP

Purpose

1. If a program is executing, the HALT/STEP key stops execution after the completion of the current
statement. Program execution, beginning with the next statement, can be continued by entering the
CONTINUE command.

2. If a program is being listed, the HALT/STEP key stops the listing after the current statement has been
listed.

3. The HALT/STEP key can be used to step through the execution of a program. |f program execution
has terminated due to the execution of a STOP verb or the touching of the HALT/STEP key,
touching the HALT/STEP key again causes the next program statement to be listed and executed;
execution then terminates. In multiple statement lines, those statements which have already been
executed are not listed; however, the colons separating these statements are always displayed. The
GOTO statement can be used in the immediate mode to begin stepping execution at a particular
line number (see GOTO). However, protected programs may not be stepped.

NOTE:

An error message is printed out and execution does NOT

continue if the user attempts to STEP program execution

after:

1. A text or table overflow error has occured.

2. A variable has been entered that has not previously been
defined.

3. A CLEAR V or CLEAR N command has been executed.

4. Program text has been modified by a CLEAR, CLEAR P,
or RENUMBER command having been executed, or a new
program line having been entered.

5. The RESET key has been pressed.

Suppose the following program is in memory:

Example:

:90 GOSUB 200
:100 PRINT “CALCULATE X, Y
:110 X=1.2: Y=5+Z+X: GOTO 30

and we wish to step through the program from line 100 on. TRACE is turned on so that variables receiving
new values are displayed.

47

Section VI Non-Programmable Commands HALT/STEP

HALT/ST EP (Continued)

Example:
Turn TRACE mode on :TRACE
Start stepping at line 100 :GOTO 100

Touch HALT/STEP key :

100 PRINT“CALCULATE X, Y*

CALCULATE X, Y

Touch HALT/STEP key H

110 X=1.2: Y=5*Z+X: GOTO 30
X=1.2

Touch HALT/STEP key :

110: Y=5*Z+X: GOTO 30

Y=21.6

HALT/STEP key :

110: : GOTO 30

TRANSFER TO 30

Section VI Non-Programmable Commands LIST

LIST

General Form: LIST [S] [line number [, line number]]

Purpose

The LIST command instructs the system to display the entire program text in line number sequence. If
one line number follows the command, then one program line is listed. If two fine numbers follow the
command, all text from the first through the second line numbers inclusive are listed.

The ‘S’ parameter is a special feature for the CRT terminal. it permits the listing of the program in steps
of 15 lines (the maximum capacity of the CRT screen). After 15 lines have been generated, the listing can
be continued. To continue listing (up to the limit specified in the LIST command), the CR/LF-EXECUTE
key is pressed.

Pressing HALT/STEP during the listing of a program stops the listing after the current statement line has
been finished.

Alternatively, the user may slow down listing on the CRT by selecting a pause of from 1/6 to 1 1/2
seconds by executing a SELECT P statement. A pause will occur after each line is listed.

When the 2200S is Master Initialized (Power off, Power on), the CRT is initially selected for
LIST operations. Other printing devices may be selected for listing by using a SELECT LIST com-
mand. (See SELECT.)

Examples:

:LIST
30 READ A,B,C,M

.990 END

or :LIST 30, 50
30 READA,B,C,M
40 LET G=A*D-B*C
50 IF G=0 THEN 60

or :LIST 30
30 READA,B,C,M

or :SELECT P3 —=—— Select a pause of 1/2 sec.
:LIST

or :LIST S

First 15 lines appear on the
CRT; depressing the CR/LF-
EXECUTE key lists the next
15 lines, and so on until the
entire program has been
listed.

49

Section VI Non-Programmable Commands RENUMBER

RENUMBER

General Form: RENUMBER [line number] [,line number] [,integer]
where 0 < integer < 100

Purpose

The RENUMBER command renumbers the user program. The first line number is the starting number
and specifies the first line to be renumbered in the program. All program lines with line numbers greater than
or equal to the starting line number are renumbered. if no starting line number is specified, the entire
program is renumbered. The second line number in a RENUMBER command is the new line number which
is assigned to the first line to be renumbered; note that the new line number must be greater than the
highest line number preceding that line in the program. For example, if we are to renumber the following
program starting with line 12, the new number assigned to line 12 must be > 10 since line 10 precedes line
12 in the program.

Examples:

READY

:10 INPUT X

:12 FORI=1T010
:14 PRINT X=|

:16 IF 1> 100 THEN 20
:18 NEXTI

:20 STOP

:RENUMBER 12, 20

:LIST

10 INPUT X

20 FORI=1TO10

30 PRINT X*I

40 IF 1> 100 THEN 60
50 NEXTI

60 STOP

The integer specified in the RENUMBER command is the increment between line numbers; if no integer
is specified, the increment is assumed to be 10. If no new starting line number is specified, the new starting
line number equals the increment.

NOTE:

All references to line numbers within the program; e.g., in
GOTO, GOSUB, or PRINTUSING statements are modified.

Examples:

RENUMBER
RENUMBER 100, 5
RENUMBER 100, 150, 5
RENUMBER 5
RENUMBER ,.,5

50

Section VI Non-Programmable Commands

RESET

RESET

General Form: RESET

Purpose

The RESET button immediately stops program listing or execution, clears the CRT screen, resets all
1/0 devices and returns control to the user. The program text is not lost; all program variables are maintained
with their current values. If the TRACE mode was on, it is turned off.

Normally, program execution is terminated by the HALT/STEP command after which a program can be
continued. RESET, on the other hand, terminates immediate execution statements or commands and restores
the system after a temporary malfunction. RESET can be used to terminate program execution, but the
program cannot be continued. The program can be rerun by touching the RUN key.

NOTE: |

RESET should only be used to terminate program execution
if HALT/STEP fails.

If the system has undergone a temporary malfunction which cannot be corrected by RESET, Master
Initialize the system by turning the power switch on the Power Supply Unit off, then on again. This,
however, erases programs and data previously in the system.

Example:
RESET

51

Section VI Non-Programmable Commands

RUN

RUN -

General Form: RUN [line number]

Purpose
The RUN command initiates the execution of the user’s program. The system verifies the currently

loaded program; variables are scanned and new (not previously entered) common variables and all non-
common variables are reset to zero. The pointer to the next data value (to be used in a READ statement)
is reset to the first data value in the program. The program statements are then executed in line number
sequence.

If a line number is specified, program execution begins at the specified line number without reinitializing
program variables to zero; the variables are maintained at the last calculated values. This enables the user to
continue a halted program. Program execution must not be started in the middle of a FOR/NEXT loop
or a subroutine.

NOTE:
Aftera program has been entered or loaded, execution should
be initiated by a RUN command to ensure that space is
reserved for program variables. Once a program has been
RUN, program execution may be restarted by pressing a
special function key.

Examples:

RUN
RUN 30

52

Section VI Non-Programmable Commands SPECIAL FUNCTION

SPECIAL FUNCTION

General Form: Special Function Key

Purpose
There are 16 special function keys available on the 2215 (2222, 2220) keyboard. Depressing them

in conjunction with the SHIFT key provides up to 32 entry points for the currently loaded BASIC
program. The entry points are defined by the BASIC statement DEFFN’ XX (where XX = 00 to 31).
Thus, depressing special function key 2 causes an entry and execution of a line or subroutine
beginning with a DEFFN’ 2 statement. With this special entry, text strings can be entered or multi-
argument subroutines can be executed.

If a special function key is defined for text entry, pressing the key causes the character string defined by
the special function entry to be displayed and become part of the current text line (see DEFFN’).

For example, if special function key 2 is defined by the following statement:

100 DEFFN' 2 “HEX("

pressing the special function key 2 after the following has been keyed in:
120 PRINT

results in

120 PRINT HEX(
—\cursor

If a special function key is defined for marked subroutine entry (see DEFFN’), the subroutine can
be executed either manually by depressing the indicated special function key, or by using a GOSUB’
statement (see GOSUB’) within a program. Arguments are passed to the subroutine either by keying
them in, separated by commas, immediately before the special function key is pressed, or by indicating
them as parameters in the GOSUB’ statement. The number of arguments passed must equal the number
of variables in the DEFFN' statement marking the subroutine. When a RETURN statement is finally

executed, control is passed back to the keyboard or to the program statement immediately following
the GOSUB'’ statement.

The special Function Keys also can be used to provide program entry points which cause execution
of a portion of a program which is not terminated by a RETURN statement. In this case, however, a
RETURN CLEAR statement must be provided in the program following the DEFFN’ entry statement
to clear the subroutine return information setup by the special function entry.
Example:
:12.3, 3.24, "JOHN'’ (Depress special function key 3.)
causes the following subroutine to be executed:
:100 DEFFN’ 3 (A, B, C$)
:110... where A issetto 12.3

:1120... B is set to 3.24
. C$ is set to “JOHN"

:200 RETURN

53

Section VI Non-Programmable Commands

SPECIAL FUNCTION

SPECIAL FUNCTION (continued)

Examples:
Provide a non-returning program entry point on Special Function Key 2:

:100 DEFFN'’ 2
:110 RETURN CLEAR

:200 STOP

Define the special function key O to execute the following:

Z=7X*+14Y? -7

READY

:10 DEFFN’ 0 (X, Y)
20Z=7+X12+14+Y12-7
:30 PRINT “X=";X

:40 PRINT “Y=";Y

:50 PRINT "“Z="";Z2

:60 RETURN

Execute the subroutine for
X=.092 and Y=-.32

Solution: (A) MANUAL ENTRY (B) PROGRAM ENTRY
Key .092, -.32 READY
Touch special function key 0. :100 GOSUB’ 0 (.092, -.32)
CRT Display: :110 STOP
:.092, -.32 :RUN 100
X= 9.20000000E-02 X = 9.20000000E-02
Y=-.32 =-32
Z=5.507152 Z =5.507152
STOP

54

Section VI Non-Programmable Commands

STATEMENT NUMBER

STATEMENT NUMBER

General Form: STATEMENT NUMBER KEY

Purpose

This key automatically sets the line number of the next line to be entered. The line number generated is
10 more than the highest existing line number.

The statement number can also be keyed in manually, using the numeric entry keys. Statement numbers
can be any integer from 1 to 4 digits.

Statements may be entered in any order; however, they are usually numbered in increments of five or ten
so additional statements can be easily inserted. The system keeps them in numerical order regardless of how
they are entered.

Example:

READY
:110X,Y,2=0

{:20 INPUT “ENTER VALUES"”, A, B
:30Z2=A"B +Bt2

Depressing STMT NUMBER key :40_

Currently Entered Program

55

Section Vii

General
BASIC Statements

BASIC STATEMENTS 57
COM L. 58
CONVERT 59
DATA 61
DEFFN . 62
DEFFN’ . 63
DIM . 66
END 67
FOR . 70
GOsuB . 71
GOSuB’ . 72
GoTO . . 73
HEXPRINT . 74
IF END THEN 75
IF ... THEN 76
IMAGE (%) 77
INPUT 78
KEYIN 81
LET . 82
NEXT 83
NUM . 84
ON . 85
PRINT . . 86
PRINTUSING 89
READ L. 93
REM L 0L 94
RESTORE 95
RETURN e e e e e e e e e e e 96
RETURNCLEAR 97
STOP 98
TRACE a9
VAL L0100

Section VIl General BASIC Statements

BASIC STATEMENTS
A BASIC statement is a special verb or word followed by an expression, variable, or numbers. For example:

READ A, B A statement: verb followed by variables
DATA 1,4 A statement: verb followed by values
LET A=6"B A statement: verb followed by a variable (A),
an equals sign, and an expression (6*B).

BASIC statement lines in a program must always begin with a line number; statement lines in the immedi-

ate mode do not require line numbers.
There are two types of BASIC statements: executable and non-executable. An executable statement

specifies program action:

:10 READ A, B
20 A=6"B

A nor-executable statement provides information for program execution:

:10 DATA1,4

or for the programmer:

:20 REM THIS IS PROGRAM 1

A series of statements, separated by colons, may be entered on one line.

Example:

:20 FOR I =1TO 10 :PRINT | X(1)+Y :NEXT |

or:
:FORJ=1TO 3 :PRINTJ,Jt2, J13 :NEXT J
1 1 1

2 4 8

3 9 27

The remainder of this section defines the general BASIC statements available in the System 2200S
for programming and the formats in which they can be used.

57

Section VIl General BASIC Statements COM

COM

General Form: COM com element [, comelement ...]

where numeric scalar variable
numeric array variable

alpha scalar variable [integer]
alpha array variable [integer]
0 <integer < 64

com element =

Purpose

The COM statement allows a programmer to store information in memory in an area which can be saved
for use in a subsequent program. When a program is run, previously existing common variables and their
values are not disturbed. However, all non-common variables are cleared from memory. Common variables
are only removed from the system when a CLEAR or CLEARV command is executed or the system is master
initialized (i.e., turned on). The COM statement also provides array definition identical to the DIM state-
ment for array variables; the syntax for one COM statement can be a combination of array variables (A(10),
B(3,3)) and scalar variables (C2, D, X$). Integers must be used for array dimensions.

The common area variables must be defined before any other variable in the program is defined. Therefore,
COM statements should be assigned the lowest executable line numbers in the program.

The following general rules apply to the COM statement:

1. Common variables must be named with identical attributes in a previous program.

2. Common variables must be defined before any noncommon variables are defined, or referred to in the
program.

3. The number of array elements must not exceed 4096 in any one array.

The COM statement can be used to set the maximum length of alphanumeric variables (the maximum
length is assumed to be 16 if not specified). The integer (< 64) following the alpha scalar (or alpha array)
variable specifes the maximum length of that alpha variable (or those array elements).

If a particular set of common variables are to be used in several sequentially run programs, the COM
statements do not have to appear in any program other than the first. The variables will remain defined as
common variables with the originally defined dimensions, lengths and values in subsequent programs. The
COM statements may however, be included in subsequent programs (with identical dimensions and lengths)
and new common variables may be defined.

Examples:

COM A(10),8(3,3), C2

COM C, D(4,14), E3, F(6), F1(5)
COM M1$, M$(2,4), XY

COM A$10, B$(2,2) 32

8883

58

Section VIl General BASIC Statements CONVERT

CONVERT

General Form: 1. CONVERT alpha variable TO numeric variable
or
2. CONVERT expression TO alpha variable, {(image)

where: image = [£] [#...] [.] [#...] [t11t]
0 < number of #'s < 14

Purpose
Alpha-to-Numeric Conversion

The CONVERT statement used with format 1 converts the number represented by ASCII characters in
the alphanumeric variable to a numeric value and sets the numeric variable equal to that value. For example,
if A$ = "1234”, CONVERT A$ TO X sets X = 1234. An error results if the ASCI| characters in the
specified alphanumeric variable are not a legitimate BASIC representation of a number. Part of an
alphanumeric value can be converted to numeric by using the STR function. For example,

CONVERT STR(AS, 1, 8) TO X

Alpha-to-numeric conversion is particularly useful when numeric data is read from a peripheral device in a
record format that is not compatible with normal BASIC DATALOAD statements, or when a code
conversion is first necessary. It also can be useful when it is desirable to validate keyed-in numeric data
under program control. (Numeric data can be received in an alphanumeric variable, and tested with the
NUM function before converting it to numeric.)

Numeric-to-Alpha Conversion

The CONVERT statement used with format 2 converts the numeric value of the expression to an ASCI|
character string according to the image specified; the alphanumeric variable is set equal to that character
string. The image specifies precisely how the numeric value is to be converted. Each character in the image
specifies a character in the resultant character string. The image is composed of # characters to signify
digits and optionally +, —, ., 1 , characters to specify sign, decimal point, and exponent characters

The image can be classified into two general formats:

Format 1 - Fixed Point e.g., ##.##
Format 2 - Exponential e.g., #.##1t111

Numeric values are formatted according to the following rules:

1. If the image starts with a plus (+) sign, the sign of the value (+ or -) is edited into the character string.

2. If the image starts with a minus (=) sign, a blank for positive values and a minus (-) for negative values
is edited into the character string.

3. If no sign is specified in the image, no sign is included in the character string.

4. If the image has format 1, the value is edited into the character string as a fixed point number,
truncating or extending with zeroes any fraction, and inserting leading zeroes according to the image
specification. The decimal point is edited in at the proper position. An error results if the num-
eric value exceeds the image specification.

5. If the image has format 2, the value is edited into the character string as a floating point number. The

value is scaled as specified by the image (there are no leading zeroes). The exponent is always edited in
the form: E + XX.

59

Section VIl General BASIC Statements CONVERT

CONVERT (Continued)

Numeric to Alpha conversion is particularly useful when numeric data must be formatted in character
format in records (especially for alphanumeric sorting).

Examples:

10 CONVERT A$ TO X
20 CONVERT STR(AS, 1, NUM(AS)) TO X(1)

Examples:
(numeric to alpha)

10 CONVERT X TO AS, (###)
(result: A$ = ""012") where: X = 12.195
20 CONVERT X*2 TO AS, (+##.##)
(result: A$ = "+24.39")
30 CONVERT X TO STR(AS, 3, 8), (—#.#1111)
(result: STR(AS, 3,8) = 1.2E+01")
40 CONVERT X TO AS, (####. #####)
(result: A$ =""0012.195000"")

60

Section VII General BASIC Statements DATA

DATA

General Form: DATAn[n ...]
where n = number or a character string enclosed
in quotation marks.

Purpose

The DATA statement provides the values to be used by the variables in a READ statement. In effect,
the READ and DATA statements provide a means of storing tables of constants within a program. Each
time a READ statement is executed in a program the next sequential value(s) listed in the DATA statements
of the program are obtained and stored in the variable(s) listed in the READ statement. The values entered
with the DATA statement are in the order in which they are to be used: items in the DATA list are separated
by commas. If several DATA statements are entered, they are used in order of statement number. Numeric
variables in READ statements must reference numbers; alphanumeric variables must reference literal strings,
which must be enclosed in quotation marks.

The RESTORE statement provides a means of resetting the current DATA statement pointer (i.e.,

reusing the DATA statement values) (see RESTORE).

The DATA statement may not be used in the immediate mode.

Example:

:10 READW

:20 PRINTW, Wt2

:30 GOTO 10

:40 DATAS, 8.26, 14.8, -687, 22

:RUN

5 25

8.26 68.2276
14.8 219.04
-687 471969
22 484

10 READ W
tERR27 (insufficient data)

In the above example, the 5 values listed in the DATA statement are sequentially used by the READ
statement and printed. When a 6th value is requested, an error is displayed since all DATA statement values
have been used.

Examples:
40 DATAA4,3,5,6

50 DATA 6.56E + 45, -644.543
60 DATA “BOSTON, MASS”, “SMITH", 12.2

NOTE:

On the 22008, statements following DATA statements on
multiple statement lines are not executed.

61

Section VIl General BASIC Statements DEFFN

DEFFN

General Form: DEFFN a(v) = expression

where a = a letter or digit which identifies the function

I

v a numeric scalar variable

Purpose

The DEFFN statement defines a user’s unique functions. The DEFFN statement is used to define functions
which can be used in expressions from any other part of the program. The function provides one dummy
variable whose value is supplied when the function is referenced. The following program lines illustrate how
DEFFN is used.

10 X=3

:20 DEFFN A(2)=212-2Z
:30 PRINT X + FNA (2*X)
:40 END

:RUN

33

Processing of Line 30:

1. Evaluate the expression for the scalar variable (i.e., 2* X).
2. Find the DEFFN with the matching identifier {i.e., A).
3. Set the scalar variable equal to the evaluated expression value (i.e., Z=2*X =6, since X=3).
4. Evaluate the FN expression and return the calculated value (i.e., Z12 - Z).
The above example prints the value 33, 3 + (612 - 6).

The DEFFN statement may be entered any place in a program, and the expression may be any formula
which can be entered on one line. A function cannot refer to itself; it can refer to other functions. Up to
five levels of function nesting are permitted. Two functions cannot refer to each other (an endless loop).
A reference cannot be made to a DEFFN statement from an immediate mode statement. The scalar variable
used in a DEFFN statement is called a dummy variable. It may have a variable name identical to a real
variable used elsewhere in the program or in other DEFFN statements; current values of these variables are
not affected during FN evaluation.

Examples:

60 DEFFN A (C) = (3*A) - 8C + FNB (2-A)
70 DEFFNB (A) = (3*A) -9/C
80 DEFFN4(C) = FNB(C) * FNA(2)

62

Section VIl General BASIC Statements DEFFN’

DEFFN’

. ’character string”’
General Form: ‘ © 9
neral Form DEFFN’ integer I:(variable [variable . . ']]]

Where integer =JO0 to 31 for keyboard special function key entries
0 to 255 for internal program references

Purpose
The DEFFN’ statement has two purposes:
1. To define a character string to be supplied when a special function key is used for keyboard text entry.
2. To define keyboard special function key or program entry points for subroutines with argument passing
capability.
The DEFFN’ statement must be the first statement on a line (i.e., it must immediately follow the line
number). DEFFN’ may not be used in immediate mode.

KEYBOARD TEXT ENTRY DEFINITION: The integer in the DEFFN’ statement must be a number from
0 to 31, representing the number of a special function key. When the corresponding special function key is
depressed, the user’s ‘‘character string’’ is displayed and becomes part of the currently entered text
line. The character string is all characters included between the double quotation marks.

For example, statement 100 defines special function key number 12 as the character string "HEX(":

:100 DEFFN’ 12 "HEX(”

Depressing special function key number 12 after the following has been keyed in
1200 PRINT

results in the following line being displayed
1200 PRINT HEX(

Example:
500 DEFFN’ 1 “REWIND"”

MARKED SUBROUTINE ENTRY DEFINITION

The DEFFN’ statement, followed by an integer and an optional variable list enclosed in parentheses,
indicates the beginning of a marked subroutine. The subroutine may be entered from the program via a
GOSUB’ statement (see GOSUB’), or from the keyboard by depressing the appropriate special function
key. If subroutine entry is to be made via a GOSUB' statement, the integer in the DEFFN’ statement
can be any integer from 0 to 255; if the subroutine entry is to be made from a special function key, the
integer can be from 0 to 31. When a special function key is depressed or a GOSUB’ statement is
executed, the BASIC program is scanned for a DEFFN’ statement with an integer corresponding to the
number of the special function key or the integer in the GOSUB'’ statement. Execution of the program
then begins at the statement (i.e., if special function key 2 is depressed, execution begins at the DEFFN’
2 statement).

When a RETURN statement is encountered in the subroutine, control is passed to the program statement
immediately following the last executed GOSUB’ statement, or back to keyboard entry mode if entry was
made by touching a special function key. The DEFFN’ statement may optionally include a variable list. The

63

Section VIl General BASIC Statements DEFFN'

DEFFN' (Continued)

variables in the variable list receive the values of arguments being passed to the subroutine; if the number
of arguments to be passed is not equal to the number of variables in the list, an error results. In a GOSUB’

subroutine call made internally from the program, arguments are listed {enclosed in parentheses and separ-
ated by commas) in the GOSUB’ statement {see GOSUB’).

Example:
1100 GOSUB’ 2 (1.2,3+2 * X, “JOHN")

1150 STOP
1200 DEFFN'2 (A, B(3), C$)

200 RETURN

For special function key entry to a subroutine, arguments are passed by keying them in, separated by
commas, immediately before the special function key is depressed.

Example:

:1.2, 3.24, “JOHN" {now depress special function key 2)

The DEFFN’ statement need not specify a variable list. In some cases,it may be more convenient to
request data from a keyboard in a prompted fashion.

Example:

100 DEFFN’'4

110 INPUT “RATE”, R
120 C=100+ R-50
130 PRINT “COST="; C
140 RETURN

When a DEFFN' subroutine is executed via keyboard special function keys while the system is awaiting

data to be entered into an INPUT statement, the INPUT statement will be repeated in its entirety, upon
return from the subroutine.

Example:

100 INPUT “ENTER AMOUNT"”,A

200 DEFFN’ 1
210 INPUT “ENTER NEW RATE",R
220 RETURN

DISPLAY: ENTER AMOUNT?

(Depress Special Function Key 1)
ENTER NEW RATE? 7.5
ENTER AMOUNT?

64

Section VII General BASIC Statements DEFFN'

DEFFN' (Continued)

DEFFN’ subroutines may be nested (i.e., call other subroutines from within a subroutine).

NOTE:
The DEFFN’ statement may be used in conjunction with the
special function keys to provide a number of entry points to
run a program. Because, however, the system stores DEFFN’
return information in a table, this should not be done repeti-
tively unless:
1. The RESET key is depressed prior to the special function
key.
2. Program operation terminates with a RETURN state-
ment (back to keyboard mode).
Failure to do this eventually causes a table overflow error

(ERROR 02).

65

Section VIl General BASIC Statements
DIM

DIM

eneral Form: DIM dimelement [, dimelement ...]
where numeric array variable
dim element = {alpha array variable [integer] }
alpha scalar variable [integer]
0 < integer < 64

Purpose

The DIM statement reserves space for one or two dimensional array variables which are referenced in the
program. Space may be reserved for more than one array with a single DIM statement by separating the
entries for array names with commas as shown in line 40 of the example below.

DIM statements must appear before any use of the variables in the program, and the space to be
reserved must be explicitly indicated — expressions are not allowed.

The following rules apply to the use and assignment of array variables in a DIM statement.

1. The numeric value of the subscript of the first element must be 1; zero is not allowed.

2. The dimension(s) of an array cannot exceed 255; the dimensions must be integers.

3. The number of array elements must not exceed 4096 in any one array.

The DIM statement can also be used to set the maximum length of alphanumeric variables (the maximum
length is assumed to be 16 if not specified). The integer (< 64) following the alphanumeric variable or alpha
array variable specifies the maximum length of that alpha variable (or those alpha array elements).

Examples:
20 DIM 1{45) Reserves space for a 1-dimensional array of 45 elements.
30 DIMJ (8, 10) Reserves space for a 2-dimensional array of 8 rows and 10 columns.

40 DIM K(35), L(3), M(8,7) Reserves space for two 1-dimensional and one 2-dimensional array.
50 DIM A$32 Sets the maximum length of the variable-A$ = 32 characters.

60 DIMB$(4,4) 10 Reserves space for the 2-dimensional alpha array with the maximum
length of each array element = 10 characters.

Section VIl General BASIC Statements

END

END

General Form: END

Purpose

This is an optional program statement indicating the end of a BASIC program. It need not be the last
executable statement in a program. More than one END statement may be used in a program.

When the system executes an END statement, the following message is printed out.

END PROGRAM
FREE SPACE = xxxxx

and program execution terminates. ““xxxxx" is the approximate amount of memory (in bytes) not used by
this program.

In addition, when a program is being keyed into the system, an END statement may be entered without a
line number (immediate mode) to obtain the FREE SPACE available at any particular time in the system.

Example:
1100 X=24 - 2*4
1110 PRINT Y, X
:END
END PROGRAM
FREE SPACE = 2379

The amount of free space displayed when END is executed is determined in two different ways:

1. When program is keyed in or loaded from a tape or other peripheral device following a CLEAR
command, the free space displayed after entering an END statement in immediate mode reflects only
the space occupied by the program.

2. After the program has been executed once, the free space displayed after either an immediate mode
END or a program executed END reflects both the space taken up by the program and variables.

Example:
999 END

67

Section VIl General BASIC Statements

FOR

FOR

General Form: FOR v = expression TO expression [STEP expression]
where v = anumeric scalar variable

Purpose

The FOR statement, and the NEXT statement, are used to specify a loop. The FOR statement is used at
the beginning of the loop; the NEXT statement at the end. The program lines in the range of the FOR
statement are executed repeatedly, beginning with v = ‘1st expression’; thereafter, v is incremented by
the value specified in the STEP expression until the value of v passes the limit specified by the TO expression.
The STEP portion of the statement may be positive or negative or may be omitted. If omitted, a step size of
+1 is assumed. Loops may be nested with no limit.

If illegal values are assigned to the parameters in a loop (i.e., if the increment designated by STEP is in the
wrong direction or 0), the loop is executed once only and program execution continues. Examples of
invalid values are:

FORR=1TO 10 STEP -1 Wrong Direction of STEP Expression.
FORR=-1TO-10 STEP 1 Wrong Direction of STEP Expression.
FORR=1TO 10STEPO STEP Expression equals 0.

A loop is executed to completion only if the values assigned the parameters are valid. The following
restrictions apply to the use of FOR loops:

1. Branching into the range of a FOR loop from the loop is not permissible (GOTO, GOSUB, IF-THEN).

2. Branching out of range of a FOR loop is permissible; however, to conserve memory, it should not be
done repeatedly unless a subsequent normal termination of an outer loop occurs or unless the loop is
completely contained in a GOSUB routine. If repetitive branches are made out of FOR loops,
without terminating the loops, the FOR foop information is accumulated in an internal compiler
table. This eventually causes a table overflow condition (ERROR 02). See examples illustrating
legal branches out of a loop.

3. Branching out of a FOR loop with a RETURN statement is legal but the loop is considered to be
complete (i.e., branching back into the loop is illegal and an error message is issued when the
NEXT statement is encountered).

Example:

READY

:20 FOR Z3 = A(K) TO ~COS(J) STEP -8 + INT(P(2))
:30 R(Z3) = A(K) + A(Z3)

:40 FOR Z4 = R(Z3) TO A(K) : Q(Z4) = 2#Z4+*R(Z3)
:50 PRINT Q(Z4), "VALUE" ,FN6(Q(Z4))

:60 NEXT Z4: NEXT Z3

Section VIl General BASIC Statements FOR

FOR {Continued)

Example:

:1I00FOR 1=1TO X
:110IF A(1) > 100 THEN 130
1120 1=X :NEXT | : GOTO 200

Legal branch out of FOR loop which
:130 M=M+ A(” - B(l) properly terminates loop to avoid
1140 NEXT | accumulation of FOR loop information
..... in internal compiler stack.
:200 C = M#100/1 -
Example:
READY

120 FOR X =1 TO 50
:30 PRINT X, SQR(X)

:40 NEXT X
Example:
READY]
:60 GOTO 70
|:: :60 FOR 1=1TO 10 STEP 2 |— 1llegal branch into a FOR foop
170 LET (21) = FNA()-LOG(l)
190 NEXT | |
:100 FORJ=1TO 4]

110 FORK=1TO 6

1120 IF Z(K) > 10 THEN 160
:160 NEXT K
1160 NEXT J

:200 GOSUB 300 Proper branches
— out of a
""" FOR foop
FOR Loop :300 FOR X =.1 TO Z STEP .05
wahin 2 :340 IF A(l) < 3.25 THEN 400
GOSuUB
routine :390 NEXT X
:400 RETURN

69

Section VIl General BASIC Statements

GOSUB

GOSuUB

General Form: GOSUB line number

Purpose

The GOSUB statement is used to specify a transfer to the first program line of a subroutine. The program
line may be any BASIC statement, including a REM statement. The logical end of the subroutine is a RE-
TURN statement which directs execution of the system to the statement following the last executed GOSUB.
The RETURN statement must be the last executable statement on a line, but may be followed by non-
executable statements as shown below:

READY
:120 X = 20.GOSUB 200: PRINT X
1125

:200 REM SUBROUTINE BEGINS

:210 RETURN: REM SUBROUTINE ENDS

The GOSUB statement may be used to perform a subroutine within a subroutine (i.e., a nested
GOSUB). This statement may not, however, be used to branch a program within a FOR loop where a
NEXT statement encountered before a RETURN statement is encountered. Use of GOSUB is not
permitted in the immediate mode; a GOSUB statement may not be the last statement in a program.

Repetitive entries to subroutines without executing a RETURN should not be made. Failure to
RETURN causes RETURN information to be accumulated in a table which eventually causes a table
RETURN causes RETURN information to be accumulated in a table which eventually causes a table
overflow error, (ERROR 02).

Example:
READY
:10 GOSUB 30
:20 PRINT X: STOP
:30 REM THIS IS A SUBROUTINE The
:40 -- subroutine

:60 --

:90 RETURN: REM END OF SUBROUTINE

70

Section VIl General BASIC Statements

GOsuB

GOSUB (Continued)

NESTED SUBROUTINES

READY
:10 GOSUB 30
:20 READ Q: STOP

:40
:50
:70 GOSUB 150
+»:80 PRINT Q
90 -

1

:110

lllegal GOSUB Transfer into FOR Loop
READY

—:30 REM THIS IS A SUBROUTINE

L‘ :100 RETURN: REM END OF SUBROUTINE 30

:150 REM THIS IS A NESTED SUBROUTINE

—E_:ZOO RETURN: REM END OF NESTED SUBROUTINE--

|—subroutine

A nested-subroutine —————

:500 GOSUB 750

FOR

1760 NEXT |

:760 FOR | =20 TO 50

:75.0 LET A(f) = LOG(12+A) - Z(I)<——‘

:770 RETURN

> Next occurs before RETURN

Restriction:

If a GOSUB to any line number of the
form xx22, xx27, 22xx, or 27xx precedes a
STOP statement in a statement line and a state-
ment follows STOP on the same line, ERR 11
will result if the user attempts to continue pro-
gram execution after STOP

Also, if one of the above mentioned line
number references precedes an INPUT state-
ment, ERR 11 will result if the user presses a
Special Function Key during the input request.

For example,

:10 GOSUB 2700: INPUT A$

:20 END

:100 DEFFN'0: PRINT "SF’ 0":
:2700 PRINT “2700"’: RETURN
:RUN

2700

SF'0

1 ERR 11

RETURN

7

Section VI1 General BASIC Statements

GOSuUB'

GOSUB'

General Form: GOSUB’ integer [(subroutine argument [, subroutine argument ...]}}}
where 0 < integer < 256

character string in quotes
subroutine argument ={ alphanumeric variable
expression

Purpose

The GOSUB' statement specifies a transfer to a marked subroutine rather than to a particular program
line as with the GOSUB statement; a subroutine is marked by a DEFFN’ statement {(see DEFFN’). When a
GOSUB'’ statement is executed, program execution transfers to the DEFFN’ statement having an integer
identical to that of the GOSUB’ statement {i.e., GOSUB’ 6 would transfer execution to the DEFFN’ 6 state-
ment). Execution continues until a subroutine RETURN statement is executed. The rules applying to
GOSUB usage also apply to the GOSUB' statement. Unlike a normal GOSUB, however, a GOSUB' statement
can contain arguments whose values can be passed to variables in the marked subroutine.

The values of the expressions, literal strings, or alphanumeric variables are passed to the variables in the
DEFFN’ statement (see DEFFN’).

Use of GOSUB' is not permitted in immediate execution mode; GOSUB’ may not be the last statement
in a program.

Repetative entries to subroutines without executing a RETURN should not be made. Failure to return
causes return information to accumulate in a table which could eventually cause table overflow error,
(ERROR 02).

Example:

READY

:100 GOsuB’ 7

1150 END

:200 DEFFN’ 7 :SELECT PRINT 211 (80)
:210 RETURN

Example:

READY

:25 GOSUB’ 12 (“JOHN", 12.4, 3»X+Y)
:30 END

1100 DEFFN’ 12 (A$,8,C(2))

1110 PRINT A$,B,C(2)

:120 RETURN

72

Section VIl General BASIC Statements

GOTO

GOTO

General Form: GOTO line number

Purpose

This statement transfers execution to another area of the program. The GOTO statement directs the
system to the line number where execution is to continue.

The GOTO statement can also be used in the immediate mode to permit the user to begin stepping
through program execution from a particular line number. The GOTO statement sets the system at the
specified line; execution does not take place until the user touches the HALT/STEP key.

Example:

READY

110 J=25

120 K=15
:30GOTO 70
140 Z=J+K+L+M
:50 PRINT Z, 2/4
160 END

:70 L=80

:80 M=16

:90 GOTO 40
:RUN

136 34

END PROGRAM
FREE SPACE = 3841

73

Section V11 General BASIC Statements HEXPR|NT

HEXPRINT

SYSTEM 22008 ONLY
General Form: HEXPRINT alpha variable) , {alpha variable . i
alpha array designator H alpha array designator

where:
alpha array designator = alpha array name () eg., AS()

Purpose

This statement prints the value of the alpha variable or the values of the alpha array in hexadecimal
notation. The printing or display is done on the device currently selected for PRINT operations (see
SELECT). Trailing spaces, HEX(20), in the alpha values are printed. Arrays are printed one element after
another with no separation characters. The carriage return is printed after the value(s) of each alpha variable
{or array) in the argument list, unless the argument is followed by a semi-colon. If the printed value of the
argument exceeds one line on the CRT display or printer, it is continued on the next line or lines. Since
the carriage width for PRINT operations can be set to any desired width by the SELECT statement,
this could be used to format the output from arguments which are lengthy.

Example:

:10 A$="ABC"

:20 PRINT “HEX VALUE OF A$=";
:30 HEXPRINT A$

:RUN

HEX VALUE OF A$=41424320202020202020202020202020

Examples:

1100 HEXPRINT A$, B$(1), STR(CS, 3, 4)
1110 HEXPRINT AS; BS;
1120 HEXPRINT X$()

74

Section VI1 General BASIC Statements IF END THEN

IF END THEN

General Form: IF END THEN line number

Purpose

This statement is used to sense an end of file (i.e., trailer record) when reading data files. If an end of file
(trailer record) has been encountered during the last data file read operation (DATALOAD), a transfer is
made to the specified line number. The end-of-file condition is reset by the |IF END statement, any subse-
quent DATALOAD operation, or when program execution is initiated. When a trailer record is read,
during a DATALOAD statement, it causes the end-of-file indicator to be set and variables in the DATA-
LOAD argument list to remain unchanged.

Example:

READY

:100 DATALOAD A, B, C$
:110 IF END THEN 130
:120 GOTO 100

:130 PRINT A, B, C$

75

Section VIl General BASIC Statements IF...THEN

IF...THEN

General Form: <

IF operand operand THEN line number

>=
>
<>

literal string
where operand = { alphanumeric variable
expression

Purpose

The IF statement causes the system to skip the normal sequence of program lines and go to the line
number following THEN, provided certain conditions are met. This may be described as a conditional GOTO
statement, which compares two items.

I1f the value of the firstitem in the IF statement is in the specified relationship to the second item, program
execution goes to the line number following THEN. If the specified relationship is not met, the program
execution continues with the next statement.

If two alphanumeric values are being compared, the ““<“ relational operator is interpreted as ““‘earlier in
alphabetic order”’. Actually, the ASCII codes of the characters in the strings (see Appendix C) are
compared; 1 is less than A since the ASCli code for 1 is 31 and the ASCII code for A is 41. In any
comparison, trailing blanks are ignored, thus, ““YES" = “"YES “. An error results if numeric values are
compared to alphanumeric values.

The IF statement cannot be used in the immediate mode.

Examples:

40 IF A<B THEN 35

50 IF A$ = “YES"” THEN 100

60 {F A$S=HEX(8082) THEN 200

70 IF X(1) <> .001 THEN 350

80 IF STR(AS, 1, 3) < B$(1) THEN 500

76

Section VIl General BASIC Statements

Image (%)

Image (%)

General Form: %t[{ft}...]
where t = aliteral string (not containing # characters) or blank
+

f, format specification = [—] [#0]1...) L#..] [t111]
$

Purpose

This statement is used in conjunction with a PRINTUSING statement to provide an image line for
formatted output. The Image statement contains text to be printed, along with the format specifications used
to format print elements contained in the PRINTUSING statement.

The Image statement may have any printable characters of text inserted before and after print element
format specifications. All text characters in the image statement are printed as long as the final format
specification is used. Each format specification in an Image statement is identified by at least one #
character. The format specification may begin with the following characters ($, +, -, ., #). Commas (,) may
be embedded in the integer portion of the format specification (after the first # character but before the
decimal point (.) or up arrow symbols (1111)).

The Image statement must be the only statement on the statement line.

Example:

READY

:140% CODE NO. = #### COMPOSITION = ## ###
1670% ##45E UNITS AT $# #4t# .## PER UNIT
:800% +#.##1 111

77

INPUT

General Form: INPUT [‘“character string”,] variable [, variable ...]

Purpose
This statement allows the user to supply data during the execution of a program already stored in memory.
If the user wants to supply the values for A and B while running the program, he enters, for example,

:40 INPUT AB
or
:40 INPUT “VALUE OF AB",AB

before the first program line which requires either of these values (A, B). When the system encounters this
INPUT statement, it types the optional input required message, VALUE OF A, B, and a question mark (?)
and waits for the user to supply the two numbers. Program execution then continues. The input request
message is always printed on the console output device. The device used for inputting data is the console
input device unless another device has been specified by using the SELECT INPUT statement (see SELECT).

Each value must be entered in the order in which it is listed in the INPUT statement. If more than one

value is entered on a line, they may be separated by commas or entered on separate lines. Several lines may
be used to enter the required INPUT data.

If there is a system-detected error in the entered data, the value must be reentered, beginning with the
erroneous value. The values which precede the error are accepted.

A user may terminate an input sequence without supplying all the required input values by simply
entering a carriage return with no other information preceding it on the line. This causes the system to
immediately proceed to the next program statement. The INPUT list variables which have not received
values remain unchanged.

When inputting alphanumeric data, the literal string need not be enclosed in quotes. However, leading
blanks are ignored and commas act as string terminators. |f leading blanks or commas are to be included,
enclose the string in quotes.

Example 1:

:10 INPUT X
‘RUN
?12.2 CR/LF

Example 2:
:20 INPUT "X, Y, XY
:RUN
X,Y? 1.1, 23 CR/LF

Example 3:

:20 INPUT “MORE INFORMATION", A$
:30 IF A$=""NO” THEN 50

:40 INPUT “ADDRESS"”.B$

:RUN

MORE INFORMATION? YES CR/LF
ADDRESS? “BOSTON, MASS” CR/LF

78

Section VIl General BASIC Statements INPUT

INPUT (Continued)

Example 4:

:10 INPUT “ENTER X", X
:RUN
ENTER X? 1.2734 CR/LF
SPECIAL FUNCITON KEYS IN INPUT MODE
Special function keys may be used in conjunction with INPUT. If the special function key has been

defined for text entry (see DEFFN’) and the system is awaiting input, depressing the special function
key causes the character string associated with that key to be entered.

For example: :10 DEFFN’ 01 “COLOR T.V.”
:20 INPUT AS
:RUN
?

Now, pressing special function key ‘01
will cause “COLOR T.V.” to be entered.

?COLORT.V._
CRT Cursor

If the special function key is defined to call a marked subroutine (see DEFFN’) and the system is
awairint input, depressing the special function key causes the specified subroutine to be executed. When
the subroutine RETURN is encountered, a branch made back to the INPUT statement and the INPUT
statement is executed again. Repetitive subroutine entries via special function keys should not be made
unless the subroutine RETURN is always executed. Failure to return from these entries causes return
information to accumulate in a table and eventually cause a table overflow error (ERROR 02).

For example The program illustrated at the top of the next page enters
and stores a series of numbers. Upon depressing special
function key ‘02, they are totaled and printed.

Section VIl General BASIC Statements

INPUT

|NPUT (Continued)

:10 DIM A(30)

20N =1

:30 INPUT “AMOUNT", A(N)
:40 N = N+1 :GOTO 30

:50 DEFFN’ 02

60T=0

:70FOR1=1TON

:80 T = T+A(l)

190 NEXT |

:100 PRINT “TOTAL=" ;T
TTION=1
1120 RETURN
:RUN
AMOUNT? 7
AMOUNT? 5
AMOUNT? 11
AMOUNT?
TOTAL =23
AMOUNT?

(Depress special function key 2)

Section VIl General BASIC Statements

KEYIN

KEYIN

General Form: KEYIN alpha variable, line number, line number

Purpose

This statement checks if there is a character ready to come in from the input device buffer and, if one is
ready, it reads the character into the system. For example, in the case of a keyboard, when a key is
depressed, that character is stored in a buffer and the device is set to ready (i.e., a character is ready to
come in). The following actions take place depending upon input conditons.

1. NOT READY - execution continues at the next statement.

2. READY WITH CHARACTER - the character is stored as the first character of the specified alpha-
numeric variable and execution continues at the 1st line number.

3. READY WITH SPECIAL FUNCTION KEY - the code representing the special function key {hex 00 -
1F) is stored as the 1st character of the specified alphanumeric variable and execution continues at the
second line number.

The device used is that device currently selected for INPUT (Console Input device unless selected
otherwise, see SELECT).

The KEYIN statement provides a convenient way to scan several input devices or to receive and edit keyed
in information on a character by character basis. KEYIN may not be used in the immediate execution mode.

Example:
10 KEYIN A$, 100, 200
20 KEYIN A$(1), 100, 100

30 GOTO 20
40 KEYIN STR(A$,1,1), 100, 200

81

Section VIl General BASIC Statements LET

LET

baneral Form: [LET] variable [, variable ...] = expression

Purpose

The LET statement directs the system to evaluate the expression following the equal sign and to assign
the result to the variable or variables specified preceding the equal sign. If more than one variable appears
before the equal sign, they must be separated by commas.

The word LET is, however, optional. If it is omitted, its purpose is assumed.

An error results if a numeric value is assigned to an alphanumeric variable or if an alphanumeric value is
assigned to a numeric value.

Example]:
40 LET X(3), Z, Y=P+15/2+SIN(P-2.0)
Example 2:
50 LETJ=3
Example 3:
READY
10 X=A*E-Z*Y Here, LET is assumed.
120 A$ =B$

:30 C$, D$(2) = “ABCDE"”

82

Section VIl General BASIC Statements

NEXT

NEXT

General Form: NEXT numeric scalar variable

Purpose

The NEXT statement signals the end of a loop begun by a FOR statement. The variable in the FOR state-
ment and in its related NEXT statement must be the same.

During execution NEXT causes the index variable to be incremented. If the limit is not exceeded, transfer
is made to the statement following the referenced FOR statement. |f the limit is exceeded, the statement
following the NEXT statement is executed.

In immediate execution mode, the NEXT statement and its corresponding FOR statement must both be
in the same statement line.

Example:

30 FOR M=2 TO N-1 STEP 30: J(M)=1(M)t2
40 NEXTM

50 FOR X=8 TO 16 STEP 4

60 FORA=2TOG6STEP2

65 LET B(A,X) =B(X,A) — Nested Loops
70 NEXTA

80 NEXTX

83

Section VIl General BASIC Statements

FUNCTION

NUM

General Form: NUM (alpha variable)

Purpose

The NUM function determines the number of sequential ASCII characters in the specified alphanumeric
variable that represents a legal BASIC number. A numeric character is defined to be one of the following:
digits O through 9, and special characters E, ., +, —, space. Numeric characters are counted starting with the
first character of the specified variable or STR function. The count is ended either by the occurrence of a
non-numeric character, or when the sequence of numeric characters fails to conform to standard BASIC
number format. Leading and trailing spaces are included in the count. Thus, NUM can be used to verify
that an alphanumeric value is a legitimate BASIC representation of a numeric value, or to determine the
length of a numeric portion of an alphanumeric value. Note: the BASIC representation of a number cannot
have more than 13 mantissa digits. NUM can be used wherever numeric functions are normally used. NUM
is particularly useful in applications where it is desirable to numerically validate input data under program
control.

Examples:
10 AS$ = "+24.37#JK" NOTE: X =6 since there are six numeric
20 X =NUM(AS) characters before the first non-
numeric character, #.
10 A$="98.7+53.6" NOTE: X = 4 since the sequence of numeric
20 X =NUM(AS$) characters fails to conform to standard
BASIC number format when the '+’
character is encountered.
10 INPUT AS NOTE: The program illustrates how numeric
20 IF NUM(A$)=16 THEN 50 information can be entered as a
30 PRINT “NON-NUMERIC, ENTER AGAIN" character string, numerically validated,
40 GOTO 10 and then converted to an internal
50 CONVERT A$TO X number. In this example the variable
60 PRINT “X="; X AS$ receives a keyed in value (alpha-
:RUN numeric ASCII characters). If the value
? 123A5 represents a legal BASIC number,
NON-NUMERIC, ENTER AGAIN NUM(AS) equals 16, the number of
? 12345 characters in the string variable A$.
X=12345
RESTRICTION:

The NUM function cannot be used within a CONVERT statement.

Section VIl General BASIC Statements ON

ON

GOSUB

General Form: ON expressiol oTo

} line number [,line number] . ..

Purpose

The ON statement is a computed or conditional GOTO or GOSUB statement (see GOTO, GOSUB).
Transfer is made to the Ith line specified in the list of line numbers if the truncated integer value of the
expression is |. For example, if | = 2,

ON | GOTO 100, 200, 300
would cause a transfer to be made to line 200 in the program. If | is less than 1 or greater than the number
of line numbers in the statement, no transfer is made; that is, the next sequential statement is executed. The

ON statement may not be used in immediate mode.

Example:

10 ON | GOTO 10, 15, 100, 900
20 ON 3*J-1 GOSUB 100, 200, 300, 400

85

Section VIl General BASIC Statements

PRINT

PRINT

General Form: PRINT print element [t printelement ..] [t]
where t = acomma or a semicolon
print element = an expression, TAB (expression), an alphanumeric
variable, literal string, or null.

Purpose

The PRINT statement causes the values of the listed variables, expressions, or literal strings to be printed
on the output device currently selected for PRINT (see SELECT).

Printing may be done in zoned format which is signaled by a comma, or packed format, which is
signaled by a semicolon separating each print element.

ZONE-FORM: PRINT print element [, printelement...] [,]

The output line is divided into as many zones of 16 characters as possible; the four CRT terminal zones
are columns 0-15, 16-31, 32-47, and 48-63.

A comma signals that the next print element is to be printed starting in the next print zone, or if the
final print zone is filled then the first print zone of the next line. For example

READY

110 X=214.230 :Y=3564: Z=-.2379
:20 PRINT X, Y, 2

:RUN

214.23 3564 -.2379

rPACKED FORMAT: PRINT print element [; printelement...] [;] I

A semicolon signals that the next print element is to be printed immediately following the last print
element, unless the last print element is an expression, in which case a space is inserted between the value of
the expression and the next print element. For example, the statement

READY
110 X=2:Y=-34
:20 PRINT “X=";X;"Y="Y
:RUN
in the following output:

X= 2 Y=-34

Section VIl General BASIC Statements PRINT

PR'NT (Continued)

A PRINT statement can contain both comma and semicolon element separators. Each separator
explicitly determines the amount of space between elements.

A semicolon causes 1 or no spaces to be skipped depending upon whether the previous element was an
expression or text string. For example:

READY
:10X=2 :Y=3 :2=-4.2
120 PRINT “X=";X,"Y=",Y,"2="";2
:RUN
results in the following printout:
X= 2 Y= 3 Z2=-4.2

The end of a PRINT line signals a new line for output, unless the last symbol is a comma or semi-colon.
A comma signals that the next print element encountered in the program is to be printed in the next zone
of the current line. A semicolon signals that the next print element is to be printed in the next available
space, skipping 1 space if the last print element was an expression. For example, the statements

READY

:10 PRINT “X=";
:20 PRINT 3.2970,
:30 PRINT “Y=":64
:RUN

causes the following printout:
X= 3.297 Y= 64
A PRINT statement with no PRINT element advances the paper or the CRT cursor one line, or it causes
the completion of a partially filled line.

Values of expressions are printed in one of two formats depending upon the value:

FORMAT 1: SM.MMMMMMMME+XX 10" > VALUE > 10**3

FORMAT 2: SZ2Z2ZZ.FFFFFFF 10! <VALUE<10*!3
where M = mantissa digits Z = integer digits
X = exponent digits S = minus sign if value <0, or blank if value = 0.

F = fractional digits

In format 2, the decimal point is inserted at the proper position or omitted if the value is an integer.
Leading integer digit zeros and trailing fractional digit zeros are omitted.
The following are examples of the printing of variables in the two formats:

FORMAT 1: 2.34762145E-09
-1.64721000E+22
FORMAT 2: 23.47954890123
-.6374
0
-421

87

Section VIl General BASIC Statements PR'NT

PRINT (Continued)

TAB (expression): This function permits the user to specify tabulated formatting. For example, TAB
(17) would cause the typewriter or the CRT to move to column 17.

Positions are numbered 0 to 64 on the CRT, and O to 155 (Selectric). The value of the expression in the
TAB function is computed, and the integer part is taken. The typewriter is then moved to this position. If
it has already passed this position, the TAB is ignored. If the value of the expression is greater than maximum

values, the output device moves to the beginning of the next line. Values of TAB expressions greater than
255 are illegal. For example:

READY

:10 FOR I=1 TO 5

:20 PRINT TAB(I);1 causes the following output:
:30 NEXT 1

:RUN

in the 2200S system, a built-in carriage width of 64 characters is initially available. If more than
64 characters are printed without a carriage return, an automatic carriage return is generated. This
carriage width can be changed to a value (0<value < 256) by a SELECT statement, in conjunction
with selecting the device address for PRINT.

88

Section VIl General BASIC Statements

PRINTUSING

PRINTUSING

General Form: PRINTUSING line number [, printelement t...] [;]
where line number = Line number of the corresponding
IMAGE statement.

expression
print element = alphanumeric variable
literal string in double quotes

t = comma or semicolon.

Purpose

The PRINTUSING statement permits numeric and alphanumeric values to be printed in a formatted
fashion on the output device currently selected for PRINT (see SELECT).

PRINTUSING operates in conjunction with a referenced IMAGE statement. Print elements in the
PRINTUSING statement are edited into the print line as directed by the IMAGE statement. Each print
element is edited, in the order in the PRINTUSING statement, into a corresponding format in the IMAGE
statement. The IMAGE statement provides both alphanumeric text to be printed between the inserted
print elements, and the format specifications for the inserted print element, The format for each numerical
print element is composed of # characters to specify digits and optionally +, -, ., t, , and $ characters to
specify sign, decimal point, exponent and edit characters. If the number of print elements exceeds the
number of formats in the IMAGE statement, a carriage return/line-feed occurs, and the IMAGE statement is
reused from the beginning for the remaining print elements. The carriage return/line-feed may be suppressed
by replacing the comma, delimiting the print elements with a semicolon. A carriage return/line-feed normally
occurs at the end of the execution of a PRINTUSING statement. This carriage return/line-feed can also be
suppressed by placing a semicolon at the end of the PRINTUSING statement. PRINTUSING may not be
used in the immediate mode.

Example 1:

110 X=2.3 : Y=27.123

120 PRINTUSING 30, X, Y

:30 % ANGLE - ##.## LENGTH = +##.#
:RUN

(PRINTOUT) ANGLE = 2.30 LENGTH = +27.1

Example 2:

110 X=1: Y=2: 2=3

:20 PRINTUSING 30, X, Y, Z
:30 % #.#

:RUN

(PRINTOUT) 1.0
20
3.0

89

Section VIl General BASIC Statements PRINTUSING

PRINT US| NG (Continued)

Example 3:

:10 X=1: Y=2: Z=3

:20 PRINTUSING 30, X; Y; Z
:30 % #.#

:RUN

(PRINTOUT) 1.0 2.0 3.0
Each IMAGE statement format specification has the following general format:
+ [#[.1 .1 [.[#..]] [t111]

$

The IMAGE statement variable formats can be classified into three general formats:

FORMAT 1 — Integer e.q., ###
FORMAT 2 — Fixed Point e.q., ##.##
Number

FORMAT 3 — Exponential e.g., #.##1111
Print elements are formatted according to the following rules:
1. Numeric expression print elements:

a) If the format specification is not started with a plus (+), minus (=), or dollar sign ($) (i.e., the first
format character is a number sign (#) or decimal point (.} } and the expression is negative, a minus
(~) sign is edited into the print line and the length of the format increased by one.

b) If the format specification is started with a plus (+) sign, the sign of the expression (+ or -) is edited
into the print line immediately preceding the first significant digit.

c) If the format specification is started with a minus (-) sign, a blank for positive expressions and a minus
(-} sign for negative expressions is edited into the print line immediately preceding the first significant
digit.

d) tf the format specification is started with a dollar ($) sign, a dollar ($) sign is edited into the print
line immediately preceding the first significant digit.

e) Commas (,) in the integer portion of the format are edited into the print line as they occur, if a
significant digit has been edited prior to their occurrence; otherwise a blank is inserted.

f) If the length of the value to be printed is less than the length of the format specification (overfor-
matted) the value is right adjusted. If the length of the value to be printed is greater than the length of
the format specification (underformatted) the format specification is edited into the print line (i.e., #'s
are printed instead of a number).

Section VII General BASIC Statements PRINTUSING

PRINTUSING (continued)

a) The expression value is edited according to the format specified in the image statement.

FORMAT 1 — The integer part of the value is printed truncating any fractions. Leading blanks
are inserted.

FORMAT 2 — The value is printed as a fixed point number, truncating or extending any
fraction with zeros and inserting leading blanks according to the format specifi-
cation.

FORMAT 3 — The value of the expression is printed as a floating point number. The value is
scaled as specified by the format and printed as in formats 1 or 2. (There are,
however, no leading blanks.) The exponent is always printed in the 4 character
form: E£XX.

2. Alphanumeric string variables or literal string print elements:
The value of a string variable or a literal string in quotation marks is edited into the print line by
replacing each character in the format specification with characters in the text string. The text string
is left-justified. If the text string is shorter than the format specifications, blanks are inserted on the right.
The text string is truncated on the right if it is longer than the format specifications.

Example 1:

:100 PRINTUSING 200, 1242.3, 73694.23
1200 %TOTAL SALES = #### VALUE S### ###.4#
:RUN

(PRINTOUT) TOTAL SALES = 1242 VALUE $73,694.23

Example 2:

:100 PRINTUSING 200, 2.13E-5, 2.3E-9
:200 % COEFF = +###1111 ERROR = —##1111
:RUN

(PRINTOUT) COEFF = +.213E-04 ERROR = 23E-10

Example 3:

:100 PRINTUSING 200, 317.23
1200 % +# H##
:RUN

(PRINTOUT) +#.4## (Value too large for format)

Example 4:

:100 PRINTUSING 200
:200% PROFIT AND LOSS STATEMENT
:RUN

(PRINTOUT) PROFIT AND LOSS STATEMENT

9N

Section VIl General BASIC Statements PRINTUSING

PRINTUSING (continued)

Example 5:

:100 PRINTUSING 200, AS$, T
1200 % SALESMAN ######## TOTAL SALES S## ### #4#
:RUN

(PRINTOUT) SALESMAN J. SMITH TOTAL SALES $9,237.51

92

Section VIl General Basic Statements READ

READ

General Form: READ variable [,variable ...]

Purpose

A READ statement causes the next available elements in a DATA list (values listed in DATA statements
in the program) to be assigned sequentially to the variables in the READ list. This process continues until all
variables in the READ list have received values or until the elements in the DATA list have been used up.
The variable list can include both numeric and alphanumeric variable names. However, each variable must
reference the corresponding type of data or an error will result.

The READ statements and DATA statements must be used together. If a READ statement is referenced
beyond the limit of values in a DATA statement, the system looks for another DATA statement in state-
ment number sequence. If there are no more DATA statements in the program, an error message is written
and the program is terminated. DATA statements may not be used in the immediate mode.

The RESTORE statement can be used to reset the DATA list pointer, thus allowing values in a DATA
list to be re-used (see RESTORE).

NOTE:

DATA statements may be entered any place in the program as
long as they provide values in the correct order for the READ
statements.

Example:

:100 READ A, B, C
:200 DATA 4, 315, -3.98

:100 READ AS, N, B1$ (3)
:200 DATA “ABCDE", 27, “XYZ"

:100 FOR1=1TO 10

:110 READ A(l)

120 NEXT |

200 DATA 7.2,45,6.921,8,4
210 DATA 11.2, 9.1, 6.4, 8.62, 27

93

Section VIl General BASIC Statements
REM

REM

General Form: REM text string
where text string = any characters or blanks (except colons;
colons indicate the end of the statement)

Purpose
The REM statement is used at the discretion of the programmer to insert comments or explanatory
remarks in his program. When the system encounters a REM statement, it ignores the remainder of the line.

Examples:

20 REM SUBROUTINE
210 REM FACTOR
220 REM THE NUMBER MUST BE LESS THAN 1

Section VIl General BASIC Statements RESTORE

RESTORE

General Form: RESTORE [expression]
where 1< value of expression < 256

Purpose

The RESTORE statement allows the repetitive use of DATA statement values by READ statements.
When RESTORE is encountered, the system returns to the nth DATA value, where n is the truncated value
of the expression if one is included in the RESTORE statement; otherwise, it is assumed to be the first
DATA statement. Then, when a subsequent READ statement occurs, the data is read and used, beginning
with the nth DATA element.

Example:
100 RESTORE

This statement causes the next READ statement to begin with the first data element.
The statement 100 RESTORE 11

causes the next READ statement to begin with the 11th data element.

The statement 100 RESTORE Xt2+7

causes the expression X12+7 to be evaluated and truncated to an integer. The next READ statement
begins with the corresponding data element.

95

Section VIl General BASIC Statements

RETURN

RETURN

General Form: RETURN

Purpose
The RETURN statement is used in a subroutine to return processing of the program to the statement
following the last executed GOSUB or GOSUB' statement.
If entry was made to a marked subroutine via a special function key on the keyboard, the RETURN
statement terminates program execution and returns control back to the keyboard, or to an interrupted
INPUT statement.

Repetative entries to subroutines without executing a RETURN should not be done. Failure to return
from these entries causes return information to be accumulated in a tabie which could eventually cause the
table overflow error (ERROR 02).

Example:
10 GOSUB 30
20 PRINT X :STOP
30 REM THIS IS A SUBROUTINE
40 -
50 -

90 RETURN :REM END OF SUBROUTINE

10 GOSUB’ 03 (A,BS)

20 END

100 DEFFN’ 03 (X,N$)

110 PRINTUSING 111, X, N$

111 % COST = $# ### ###.## CODE = ####
120 RETURN

Section VIl General BASIC Statements RETURN CLE AR

RETURN CLEAR

General Form: RETURN CLEAR

Purpose:
To ciear subroutine return address information from the last executed subroutine call.

The RETURN CLEAR statement is a dummy RETURN statement. With the RETURN CLEAR
statement subroutine return address information from the last previously executed subroutine call is
removed from the internal stacks, but the branch to the statement following the last executed GOSUB,
GOSUB’ or keyboard (if a special function key was depressed) is not performed. Execution continues
at the next statement following RETURN CLEAR. :

The RETURN CLEAR statement is used to exit a program from a subroutine without returning.
This is particularly useful when using the special function keys to start program execution at a desired
point when either in Console Input mode or when the system is waiting for keyboard entries when an
INPUT statement is executed. When a keyboard special function key is used in this manner, a sub-
routine branch is made to the appropriate DEFFN’ statement to begin execution.

A subsequently executed RETURN statement either causes the system to return to the Console
Input mode or causes the INPUT statement to be repeated automatically. However, the user may wish
to start and continue a program without returning when a special function key is depressed, in which
case, the RETURN CLEAR statement would be used to exit from the DEFFN’ subroutine (e.g. multi-
entry points to a program).

Examples:

100 DEFFN’ 15: RETURN CLEAR
200 RETURN CLEAR

NOTES:

If a program repeatedly exits from a subroutine with-
out executinga RETURN or RETURN CLEAR statement,
error 02 results.

When a program is loaded into memory it must be
initially executed by a RUN command; thereafter, it can
be restarted at any point via special function keys.

97

Section VII General BASIC Statements

STOP

STOP

General Form: STOP [““character string”]

Purpose

The STOP statement terminates program execution. A program can have several STOP statements in it.

When a STOP statement is encountered, the system types STOP followed by the specified character
string if one is entered.

To continue program execution at the statement immediately following the STOP statement, a CON-
TINUE command must be entered.

Example:

100 STOP
100 STOP “MOUNT DATA CASSETTE”

98

Section Vil General BASIC Statements

TRACE

TRACE

General Form: TRACE [OFF]

Purpose

The TRACE statement provides for the tracing of the execution of a BASIC program. TRACE mode is
turned on in a program when a TRACE statement is executed and turned off when a TRACE OFF state-
ment is executed. TRACE also is turned off when a CLEAR command is entered, the system is RESET, or
the system is turned on. To trace an entire program, TRACE may be turned on by entering a TRACE
immediate mode statement prior to execution, and similarly turned off by entering an immediate mode
TRACE OFF after execution. When the TRACE mode is on, printouts are produced when:

1. Any program variable receives a new value during execution (LET, READ, FOR statements, etc.).

Printout format: variable = received value
2. A program transfer is made to another sequence of statements (GOTO, GOSUB, IF, NEXT).
Printout format: TRANSFER TO ‘line number’

Example 1:
30 LET X, Y, Z(5)=A+SIN(B)/C
produces the TRACE printout:
X =
Y=
Z()=29.631
Example 2:
:40 READ A, B, C(22), D

produces A=94
B = 64.27
C () =1.37492100E+11
D=99.4

Example 3:
1100 GOTO 200
produces TRANSFER TO 200

Example 4:
30 GOsSUB 10

produces TRANSFER TO 10

Section VIl General BASIC Statements

TRACE

TRACE (Continued)

produces

produces

produces

produces

produces

Example 5:

:10 FOR I=~
116 PRINT X(I);
:20 NEXT |

1=1

1=2

TRANSFER TO 15

1=3

TRANSFER TO 15

I=> (end-of-loop indicator)

Example 6:

:10 A$=HEX(414243)
A$=HEX(414243

Example 7:
:10 STR(AS$,1,4)= “ABCD"”

STR(
A$=ABCD

Example 8:
10 AND (A$, 00)

A$=HEX (00000000000000000000000000000000

Example 9:

100 FORI=1TO 4
:110 TRACE
1120 X = X+A(l)
:130 TRACE OFF
:140 NEXT |

RUN

X =242

X = 49.56
X =97.561
X =112.32

100

Section VIl General BASIC Statements VAL

FUNCTION

VAL

General Form: VAL zflpha var_iable
literal string

Purpose
This function converts the binary value of the first character of the specified alphanumeric value

to a floating point number. VAL can be used wherever numeric functions normally are used.

VAL is particularly useful for code conversion and table iookups, since the converted number can
be used either as a subscript to retrieve an equivalent code or data from an array, or with the
RESTORE statement to retrieve codes or information from DATA statements.

Examples:

10 X=VAL(AS)

20 PRINT VAL(“A")

30 IF VAL(STR(AS$, 3, 1)) <80 THEN 100
40 Z=VAL(A$)*10-Y

101

Section Vil
Tape Cassettes

SINGLE TAPE CASSETTES 103
MOUNTING AND REMOVING A TAPE CASSETTE 103
MAGNETIC TAPE HEAD CLEANING 104
PROTECTING APROGRAMONTAPE. 104
TAPEFORMAT 105
PROGRAMFILES 105
RECORDINGDATAONTAPE 106
READING DATAFROMTAPE 106
LOGICALDATARECORDS 106
DATAFILES v it e e 107
REWRITINGDATARECORDS 109
SPACE REQUIREMENTSON CASSETTE. 110
DEVICE ADDRESS SPECIFICATIONS 110
BACKSPACE « v v v i v i e e 11
DATALOAD e 112
DATARESAVE 113
DATASAVE 115
LOADCOMMAND 116
LOAD STATEMENT 117
REWIND o0 118
SAVECOMMAND 119
SKIP 120

102

Section VIII Tape Cassettes

Single Tape Cassettes
The 2217 Single Tape Cassette Recorder and the 2220 Integrated Single Tape Cassette Recorder

are contained within the housing of the Model 2216 CRT and the Model 2220 Integrated console,
respectively. They are located in the right hand corner of these housings and connect to the CPU with
a connector cord (at back of the CRT housing). A separate cord is provided with the 2217 which

goes to any wall outlet.

Operation
Light (Yellow)

") | o | oo

), Rewind

- - S

MOUNTING AND REMOVING A TAPE CASSETTE

The tape drive is opened by pressing the white push button to the right of the tape. A cassette is
loaded into the tape drive with the label facing you.

Once the cassette is in place, the door should be closed.
Before using a tape, it should be rewound. This can be done in two ways: 1) touching the REWIND
button on the CRT housing, or 2) keying REWIND CR/LF EXECUTE (or RETURN(EXEC)) from the

2220, 2215 or 2222 keyboard.

" CR/LF
For example, key |Toc| REWIND ST RS,

The second method enables you to rewind a tape under program control.
A tape is removed from the tape drive by opening the tape drive door. Should this door not open, it is
due to a double lock activated to prevent a tape from being removed which is not completely rewound.
Whenever the tape drive is in motion the yellow operating light next to the drive is on. Do not try to
remove a tape when this light is on.

103

Section VIII Tape Cassettes

MAGNETIC TAPE HEAD CLEANING

The magnetic tape cassette requires much the same care as required for cassettes used with home
cassette recorders. The cassettes should be kept as free as possible from dust and dirt, and the magnetic
heads should be periodically cleaned. The cleaning process is as follows:

The tape reading head is located in the top center of the magnetic tape unit (Figure 1). The head can be
lowered to the cleaning position as follows: select the tape unit by keying LOAD, CR/LF. The head will
be lowered into the position as shown in Figure 2 (disregard 1 ERR 49 on CRT).

Figure 1 Figure 2

Tear open the foil packet containing the cleaning pad and rub the magnetic tape head gently for a few
moments {Figure 3). After cleaning, dispose of the pad in the foil packet, exercising care that it does not
touch any painted, shellacked, or plastic surface.

The 2200S can be restored to service by depressing the rewind button. The rewind process restores
each head to its normal position (Figure 4).

Figure 3 Figure 4.

The cleaning operation should be performed every three weeks under normal conditions. In the event
that your tapes have become heavily contaiminated with dust or dirt, or if the 2200S is operating with the
room humidity below 20%, then more frequent cleaning is required because of possible electrostatic
attraction of dust and dirt to the tape mechanism.

Cleaning pads can be obtained from your Wang Serviceman.

PROTECTING A PROGRAM ON TAPE
With the System 2200S a new program simply writes over an old program; there is no need to erase the
tape. To insure that a good program stored on tape is not written over or lost accidently, the tape can be
protected.
To protect a program on tape, flip the orange plastic tab on the bottom right of the tape cassette 180°.
When the tab is flipped over, an opening in the tape cassette indicates that the tape is protected.

If you need to write over the data (unprotect the tape) at a later date, flip the orange tab back 180° to
cover the opening in the tape cassette.

104

Section VIII Tape Cassettes

TAPE FORMAT

The 2200S provides the capability to record both programs and data onto cassette tape. Both
programs and data are recorded on tape in 256 byte physical records. A 2200S user, however, need not
worry about formatting a tape since the 2200S does this automatically. For example, if you wish to
save a program currently in memory on cassette tape, key:

SAVE RETURN(EXEC)

The program is automatically recorded onto cassette tape; as many 256 byte physical records as are necessary
are written.
To read back the program, rewind the tape and key:

CLEAR RETURN (EXEC) (Clears 22008 memory.)
LOAD RETURN (EXEC) (Loads the program from cassette.)

To insure data exactness, each physical record is recorded twice on tape. Dual recording and read-back is
done automatically by the system, and requires no special user considerations.

PROGRAM FILES

When programs are recorded on cassette tape, it is not sufficient to merely record the program
lines. It is important for the 2200S system to tell where the beginning and ending records of a program
are. Therefore, every time a program is recorded, the 22008 system automatically records a header
record before the program, and a trailer record after the program. Each recorded program thus becomes
a program file. The figure below illustrates a program file.

HEADER 1st PROGRAM 2nd PROGRAM Nth PROGRAM TRAILER

RECORD RECORD RECORD RECORD RECORD

Header Record

This is a physical record (256 bytes) which contains a control byte identifying it as a header (or
beginning record) of a program. It also contains 8 bytes which can be used to store the name of the program,
if the program is named when saved. The remainder of the record is blank. Thus, on a tape containing
a number of programs, a particular program can be searched for by name. For example, a program
is saved and named as follows,

SAVE “EVAL1”

Program Record

Each program record is a 256 byte physical record containing a portion of the saved program. It also
contains a control byte identifying it as a physical record which contains part of a program (i.e., a program
record).

Trailer Record

The trailer record is similar to a program record except that the trailer record has a control byte
identifying it as the final physical record of the current program file (i.e., the trailer record).

There are a number of advantages associated with having program files.

105

Section VIII Tape Cassettes

Programs can be automatically searched and loaded by reference to the name of the program:
LOAD “EVAL1"
Program files can also be skipped and backspaced over by simple commands:

SKIP 2F (skip forward over 2 files)
BACKSPACE 3F (backspace over 3 files)

For example, if a user wants to add a 4th program to a cassette tape that already has three, he follows
this sequence:

1. Mount the tape in the drive.

2. Depress the manual rewind button, or enter “REWIND".

3. Key SKIP 3F (skip the 3 current program files).

4. Key SAVE "“"PROGA4" (save the program in memory on tape
and name it “PROG4").

5. Rewind and remove the tape.

RECORDING DATA ON TAPE

Data is recorded onto a cassette tape by means of a DATASAVE statement. For example, the following
statement in a program would record the values of the variables A, B, C$ and the 3rd element of 1-dimensional
array D:

100 DATASAVE A, B, C$, D(3)

In addition, the 2200S offers the ability to record and read entire arrays by simply listing the array
name followed by a left and right parenthesis, (). For example, values of all elements of the arrays A,
B, and C$ can be written by:

10 DIM A(40), B(10,10), C$(10)

100 DATASAVE A(), B(), C$()

READING DATA FROM TAPE
Data is read back from tape using a DATALOAD statement. For example:

100 DATALOAD A, B, C$, D(3)
200 DATALOAD A(), B(),C$()

With the DATALOAD statement, the tape is read and the read values are sequentially assigned to the
scalar and array variables listed in the program.

LOGICAL DATA RECORDS

Since all programs and data are recorded on cassette in 256 byte physical records, it is possible for the
values of the variable list of a DATASAVE statement to exceed 256 bytes. In this case, two or more
physical records are written. The one or more physical records written by the execution of one DATASAVE
statement is called a LOGICAL RECORD. When data is read back by a DATALOAD statement, the entire

106

Section VIII Tape Cassettes

logical record is read, reading physical records sequentially one at a time. If there are more values on a
logical record than are called for in avariable list of a DATALOAD statement, the unused values are bypassed,
and the tape is positioned at the beginning of the next logical record. For example, 50 logical records
consisting of the current values of the arrays A and B could be written with the following program sequence:

READY
:80 FOR I =1TO50
1100 DATASAVE A(), B()

:200 NEXTI

The logical records can be read back after rewinding the tape, with only the array A specified. In the
following example,
READY
:400 REWIND
410 FORI=1TOS50
:420 DATALOAD A()

:500 NEXT!

the values of array B on each logical record are bypassed when read.
If more data is required in a variable list of a DATALOAD statement than is found in a logical record,

another logical record is read to complete the list. For example, the arrays A and B can be written on
separate logical records:

100 DATASAVE A()
110 DATASAVE B()

and both logical records can be read back in one DATALOAD statement:

200 REWIND
210 DATALOAD A(), B()

It is generally better, however, to read back data with a variable list identica! in format to the DATASAVE
statement which wrote that data.

Logical data records can be skipped and backspaced over. For example,

100 SKIP 3 Skip forward over 3 logical records
110 BACKSPACE 2+N Backspace over 2+N logical records

DATA FILES

A series of logical data records on cassette can be made into a data file, similar to a program file, by
preceding the records with a header record and following the records with a trailer record. Unlike program
files however, the header and trailer record are not automatically generated by the 2200S system. They
must be generated by the user’s program using special forms of the DATASAVE statement.

DATASAVE OPEN “FILE1” (Write a data file header record on tape
and name the file "FILE1”; data files
must be named.)

DATASAVE END (Write a data file trailer record on tape.)

107

Section V11l Tape Cassettes

Therefore, a data file constructed by a series of DATASAVE statements would be as follows:

HEADER 1st DATA 2nd DATA 3rd DATA 1st DATA 2nd DATA
RECORD RECORD RECORD RECORD RECORD RECORD
N Ve e /
1st LOGICAL RECORD 2nd LOGICAL RECORD
1st DATA 2nd DATA TRAILER
RECORD RECORD RECORD

~
Nth LOGICAL RECORD

The header, data records, and trailer record are similar to those in a program file except that the control
information in the records identifies them as data file records.
Therefore, a typical sequence for creating a data file could be:

:100 DATASAVE OPEN "“STATFILE"” (Write header record.)

150 FOR1=1TON

:160 DATASAVE A, B, C$, D() (Write data records.)

1220 NEXT!I

:300 DATASAVE END (Write a trailer record)

Formatting a series of logical records into data files offers the same flexibility as program files. Data files
can be searched on a tape by name using a special form of the DATALOAD statement. For example:

:100 DATALOAD ““SAM”

This statement causes the system to search forward on the cassette tape until a data header record with the
name “SAM" is found, and leaves the tape positioned to read the first logical record. If the data file to be
searched could be either prior to or after the current tape position, a high speed rewind statement can be
executed prior to the search:

:100 REWIND
:110 DATALOAD “FILES”

Data files and program files can be recorded together on the same tape. The file SKIP and BACKSPACE
statements apply to either kind of file. For example:

1100 SKIP 3F (SKIP over the next 3 data or program files.)

:200 BACKSPACE 2F (BACKSPACE over the last two program or
data files.)

108

Section VIII Tape Cassettes

When logical data records are organized as files, record skipping and backspacing have additional features.
For example:
:300 SKIP END (SKIP to end of file.)
:400 BACKSPACE BEG (BACKSPACE to beginning of file.)

In addition, because header and trailer records are present, the system prevents skipping over the
beginning or end of file when skipping or backspacing logical records. (If more records are specified to be
skipped or backspaced than exist in the remainder of the file, the tape stops at the trailer or header record.)

A final, and very important feature of data files is the ability to test for the end of file. In many cases
when a data file is read, it is not always known how many records a file contains. When the trailer record is
encountered while reading data records, an end of file condition is set and it can be tested by an IF END
statement.

:200 DATALOAD A, B, C(10,2), D()

:210 IF END THEN 300
In the above example, a transfer is made to statement 300 when a trailer record is read. The tape is
repositioned back to the beginning of the trailer record. The end of file condition remains set until a
subsequent DATALOAD statement is executed.

REWRITING DATA RECORDS

The 2200S provides a special capability to rewrite individual logical data records within a file. The
22008 system records timing bits in front of all records to insure proper alignment of a record before it
is written. A special statement, DATARESAVE, is used to rewrite records. For example, a typical
program sequence for rewriting a record might be :

;100 DATALOAD “COSTFILE” (Search to beginning of file.)
:150 DATALOAD A, B, C(), D$() (Read next record.)

1160 IF A= X THEN 200 (Test if record to be rewritten.)
:200 B=C:C(1)=D (Modify record.)

:210 BACKSPACE 1 (Reposition before record.)

:220 DATARESAVE A, B,C(),D$() (Rewrite record.)

NOTE:

The tape must be positioned directly in front of the old
record to be rewritten. It is also important, when a record is
rewritten, that the argument list be identical in format to
that of the old record (i.e., the same number and type of
variables, in the same order). Although the main requirement
is that the rewritten logical record produces the same number
of physical records as the old one did, miscalculations and
tape formatting errors can be avoided if the argument lists
are identical in format. Under no circumstances should
records be rewritten using just the DATASAVE statement.
Tape errors will result.

109

Section V1| Tape Cassettes

SPACE REQUIREMENTS ON CASSETTE

Numeric and alphanumeric data are stored on a cassette in the following format. Each numeric value
occupies 9 bytes in the record. Literal string values occupy the length of the string plus 1 byte. Each alpha-
numeric variable value occupies either the default length (16 bytes) plus 1 additional byte, or the dimen-
sioned length of the variable plus 1 byte. In each physical record a total of 253 bytes is available for
storing data and the necessary control bytes for each variable or array. Parital values are not written
in a physical block; if a value of a scalar variable or array element to be recorded does not fit into
the current physical block, the value is recorded in the next physical block.

DEVICE ADDRESS SPECIFICATIONS
Up to this point, examples have been presented for recording and reading of cassette tapes without
a specification of a device address. Since 2200S systems can be purchased with a number of cassette
drives, the user may specify what drive he wishes. The following rules apply to device address selection.
1. If no address is specified with Input/Output statements (i.e., LOAD, SAVE, DATALOAD,
DATASAVE, SKIP, etc.), the system assumes a cassette tape is implied, and uses the default
type address. Therefore, a System 2200S with just one cassette does not require a cassette
device address to be specified.
2. The tape default address is set to 10A when the system is master initialized (power is turned ON). It
may, however, be changed by the SELECT statement. For example:
:SELECT TAPE 10B
would change the default tape address to 10B. It then remains set to 10B until the system is master
initialized (power turned OFF, then ON), or when the address is changed by another SELECT state-

ment.
3. There are two ways of specifying an 1/O device address within an I/O statement: (These apply to other
devices as well as cassettes.)
a. Absolute Device Specification
A three character device address, preceded by a slash (/) character, can be entered in the statement
after the statement verb and is followed by a comma(,).
Example:

:LOAD/10B, "LINPROG"
:100 DATASAVE/10C, A(), B()
:110 SKIP/10D, 2F
b. Indirect Device Address Specification (File Numbers)
Six storage locations are available in the 2200S system for the assignment of device addresses.
They are called file numbers and are referenced as follows: #‘l . #2, #3, #4, #5, #6.
File numbers are assigned addresses in a SELECT statement. For example, the following statement

:100 SELECT #1, 10B, #2 10C

assigns the device address 10B to #1 and 10C to #2. Thereafter the file number can be used in the

1/0 statements:
:LOAD #1

:DATASAVE #2, A, B, C$
:BACKSPACE #2, 1

The device address assigned to the specified file number is used in the 1/0 statements. File numbers
for cassette operations allow the user to reassign cassette drives for all the 1/0 operations in a pro-
gram by ¢hanging just the SELECT statement.

4. The legal cassette addresses are 10A, 10B, 10C, 10D, 10E and 10F. The cassette drive addresses
are marked next to the 2217 and 2220 cassette drive controller plugs on the CPU chassis

110

Section VIII Tape Cassettes BACKSPACE

BACKSPACE CASSETTE STATEMENT

General Form: #n, BEG
BACKSPACE n
/%xx, nF

Where #n = File number to which the device address has been assigned.
(#n = #1, #2, #3, #4, #5, or #6)
XXX = Device address of cassette

If neither of the above is specified, the default device
address (the device address currently assigned to TAPE
[see SELECT]) is used.

BEG = Backspace to beginning of file. (After header record.)

n = Backspace n logical records

nF = Backspace n files (Note, if n=1 backspace to beginning of
current file before header record.)

n = Expression (the integer portion of the value of the

expression is used and must always be = 1)

Purpose
The BACKSPACE statement allows the user to reposition the indicated cassette tape backwards to the
start of any program or data file, or backward a specified number of logical records within a data file.
The ‘BEG’ parameter positions the tape at the beginning of the current file immediately after the header
record. The ‘n’ parameter is for data files only; it allows the user to backspace the tape over n logical
records to the start of any desired logical record. The 'nF’ parameter backspaces the tape n files; the tape
is positioned before the header record.
Example:

100 BACKSPACE /10A, BEG

220 BACKSPACE #2, 4F

150 BACKSPACE (5-3«X)

11

Section VIII Tape Cassettes DATALOAD
DATALOAD

CASSETTE STATEMENT

General Form: [#n, :l {"name" }
DATALOAD /xxx , argument list
#n = File number to which device is currently assigned (n is an integer from 1-6)
xxx = Device address of device to load from.

If neither of the above is specified the default device
address (the device address currently assigned to TAPE
(see SELECT)) is used.

““name” = The "ame of the data file to be searched.
"name’’ is from 1 to 8 characters.

alphanumeric variable
argument list = numeric variable e
alpha or numeric array designator
array designator = array name () e.q., A(), B(), C2(), AS$() J

Purpose

The DATALOQOAD statement reads a logical record from the designated tape and assigns the data values
read to the variables and/or arrays in the argument list, sequentially. Arrays are filled row by row. If the
variable list is not complete, another logical record is read. Data in the logical record, not used by the DATA-
LOAD statement, is ignored. If the end of file (trailer record) is encountered while executing a DATA
LOAD statement, the tape remains positioned at the end of file trailer record and the values of remaining
variables in the argument list remain at their current values. An IF END THEN statement then causes a
valid transfer.

The “name’” parameter permits a data file to be searched out. Upon execution of a DATALOAD
““name’’ statement, the tape is positioned just after the header record of the specified file.

Example:

DATALOAD “PROGRAM1"

DATALOAD A, B, C(10)

DATALOAD #1, A, B(), C$

DATALOAD /10B, A, B, X1, STR(AS, 3, 5)

Section V11| Tape Cassettes \ DATARESAVE

DATA R E SAV E CASSETTE STATEMENT

General Form: #n, OPEN “‘name”
DATARESAVE { }
/XXX, argument list
where #n = File number to which the device is currently assigned.
(n is an integer from 1 to 6)
xxx = Device address of device to save on.

If neither of the above is specified, the default device
address (the device address currently assigned to
TAPE (see SELECT)) will be used.

OPEN = Rewrite a data file header record with the name
“name’’. Name is from 1 to 8 characters.
literal string
I _ Jalphanumeric variable
argument list = expression S

array designator

array designator = array name() e.g., A$(), B{), C2(), D$()

Purpose

The DATARESAVE statement allows the user to rewrite (i.e. update) any complete logical record
including the header record, of an existing data file. Rewriting the header record permits the user to rename
a file.
REWRITING A DATA RECORD

Rewriting (updating) a logical data record within a file generally involves 3 steps:

1. Locating the beginning of the file with a DATALOAD ""‘name’’ statement (see DATALOAD).

2. Locating the particular logical record to be updated using the DATALOAD, SKIP or BACKSPACE
statements.

3. Re-recording the logical record using the DATARESAVE statement.

When executing the DATARESAVE statement, the tape must be positioned just before the record to
be updated. The DATARESAVE statement must be used for updating; if an update is performed using a
DATASAVE statement, there is no assurance that the new record will be written in the proper place —
extraneous information may be left over from the old record. The user must be sure that the number of
physical records in the logical record created by the DATARESAVE statement is the same as the number of
physical records in the logical record being updated. This situation is assured if the ‘argument list’ in the
DATARESAVE statement is identical to the ‘argument list’ in the original DATASAVE statement.

CAUTION
—DATARESAVE-

System design using this command is not recommended.
Use of this command should be made sparingly since
varying environmental and electrical power conditions
affect inserting a new black of data in previously recorded
material.

113

Section VIII Tape Cassettes

DATARESAVE

DATARESAVE (continued)

Example:

DATARESAVE /10B, A, BS$, C

DATARESAVE #1, OPEN “DATAFILE"

DATARESAVE A$()

DATARESAVE STR(AS$, 5, 1), HEX (010203), “WANG LABS."”
DATARESAVE R*SIN(X)

114

Section VIII Tape Cassettes

DATASAVE

DATASAVE

General Form: #n, OPEN “‘name”
DATASAVE {END }

CASSETTE STATEMENT

/xxx, argument list
where #n = File number to which the device is currently assigned.
(n is an integer from 1 to 6)
xxx = Device Address of cassette on which data is written.

If neither of the above is used, the default device
address (the device address currently assigned to
TAPE [see SELECT]) will be used.

OPEN = Write a Data file header record with the name
“name’’. The name is from 1 to 8 characters.

END = Write a Data file trailer record

literal string
alphanumeric variable
expression

array designator

array designator = array name() e.g., A(), B(), C2()

argument list

Purpose

The DATASAVE statement causes the values of variables, expressions, and array elements to be written
sequentially onto the specified tape. Arrays are written row by row. Each DATASAVE statement produces
one logical record. Each numeric value occupies 9 characters in a record; each literal occupies the number
of characters in the value +1; each value of an alpha variable string occupies the maximum defined length of
the variable +1.

The OPEN and END parameters are used to write header and trailer records at the beginning and end of a
data file. However, data files can be created without the need for header and trailer records. If a single data
file is to be written on a cassette, it can be done simply by using one or more DATASAVE statements with
argument lists. The data in the file can be retrieved using DATALOAD statements with argument lists. If
more than one data file is to be written on a cassette, it is common practice to place a header record at the
start of each file and a trailer record at the end of each file. In this way the user can search out any file by
using the assigned ‘name’ in the header record (see DATALOAD) and can test for the end of a file using the
trailer record (see IF END THEN). The header and trailer records can also be used in backspacing over and
skipping records and files (see BACKSPACE, SKIP).

Example:

DATASAVE A, B, C, D(4,2)

DATASAVE #2, A, B, C()

DATASAVE /10A, A$, B, C, D()

DATASAVE OPEN “PROGRAM 1"

DATASAVE #5, END

DATASAVE STR(A$,3,5), HEX(0102), “WANG LABS."
DATASAVE Y"SIN(R)

115

Section VIII Tape Cassettes LOAD

LOAD

CASSETTE COMMAND

General Form:
LOAD

Where #n

XXX

“name”’

#n,
[“name”]
/XXX,

File number to which a device address is currently assigned.
(n = an integer from 1 to 6)

Device address of device to load from.

If neither of the above is specified, the default device
address (the device address currently assigned to TAPE,
see SELECT) is used.

Is the name assigned to the program on tape. “‘name’ is from
one to eight characters.

Purpose

When the LOAD command is entered, the specified program on the selected tape is appended to
the current program in memory. |f no program name is specified, the next program file on the selected
tape is loaded. This command permits an additional program to be loaded and appended to a program
currently in the 22008, or if entered after a CLEAR command, the entry of a new program.

LOAD can also be used as a program statement; this is described on the next page.

Example:

LOAD

LOAD “LINREGR”
LOAD#1, “PROGRAM1”
LOAD/10B

LOAD#4

116

Section VIII Tape Cassettes LOAD

LOAD CASSETTE STATEMENT
General Form: l:#n']

LOAD |:“name":| [line number 1] [, line number 2]

/XXX

where #n = file number to which the device is currently assigned.
(n is an integer from 1 to 6)
XXx = device address of cassette.

If neither of the above is specified, the default device
address (the device address currently assigned to TAPE
{see SELECT)) is used.

““name’’ = |s the name of the program to be searched and loaded;
it is from 1 to 8 characters. Searching is always forward.
(1f a program is stored prior to current tape position,
the user should give a REWIND command first.)

line number 1 = The line number of the first line to be deleted from a
currently loaded program prior to loading the new
program. After loading, execution continues at the
line whose number is equal to line number 1. An
error will result if there is no line number = ‘line
number 1’ in the new program.

line number 2 = The line number of the last line to be deleted from the
program currently in memory, before loading the new
program.
Purpose
This is a BASIC program statement which in effect produces an automatic combination of the following:
STOP (stop current program execution)
CLEARP [line number 1 [, line number 21] (delete current program text)
CLEARN (remove noncommon variables only)
LOAD [""name’’] (load new program)
RUN [line number 1] (run new program)

If only ‘line number 1’ is specified, the remainder of the current program is deleted starting with
that line number. If LOAD is a program statement in the current program and no line numbers are
specified the entire current program is deleted and the newly loaded program is executed from the
lowest line number.

This permits segmented jobs to be run automatically without normal user intervention. Common
variables are passed between program segments. LOAD must be the last statement on a statement line. The
LOAD statement must not be within a FOR/NEXT Loop or subroutine; an error results when the NEXT or

RETURN statement is encountered.
In the immediate execution mode, LOAD is interpreted as a command (see LOAD command).

Example:
100 LOAD 100 LOAD /10A
100 LOAD #2 100 LOAD /10B, “PROG#7", 500
100 LOAD “SAM” 100 LOAD #2, ““SAM” 400, 1000

117

Section VII| Tape Cassettes REWIND

R EWIN D CASSETTE STATEMENT

General Form: #n
REWIND /xxx

where #n = logical file number to which a device address
has been assigned (n is integer from 1 to 6).

xxX = device address of cassette

If neither of the above is specified, the default
device address (the device address currently assigned
to TAPE (see SELECT)) is used.

Purpose
The REWIND statement causes the indicated cassette to be rewound.
Example:
REWIND

100 SELECT #2 10B
110 REWIND #2

30 REWIND

40 REWIND /10C

118

Section VIII Tape Cassettes SAVE

SAVE CASSETTE COMMAND

General Form: #n,
SAVE {P] “name”’ line number , line number
/xxx,

where #n = File number to which device address is assigned (#1 = #6).
xxx = Device address of desired output tape.

1f neither of the above is specified, the default device address
(the device address currently assigned to TAPE, see SELECT)
is used.

P = Sets the protection bit on the program file to be saved.

“name” = lIs the name assigned to the program on tape. ‘‘name”’ is from
one to eight characters.
1st ‘line number’ = Starting line number to be saved.
2nd ‘line number’ = Ending line number to be saved.

Purpose

The SAVE command causes BASIC programs (or portions of BASIC programs) to be written onto the
selected tape. The program may be named by using the “name’’ parameter so the user can address this
program file in subsequent LOAD commands.

If no line numbers are specified, the entire user program text is written onto the specified tape. SAVE
with one line number causes all user program lines from the indicated line through the highest numbered
program line to be written onto tape. |f two line numbers are entered, all text from the first through the
second line number, inclusive, is written.

The ‘P’ parameter permits the user to protect saved programs. That is, if a program that has been saved
by a SAVE P command is loaded, it may not be listed or saved again. Note, in order to list or save ANY
program after a protected program has been loaded, the user must enter a CLEAR command (with no
parameters) or MASTER INITIALIZE the system, {i.e., turn power off and then on).

SAVE is a command and may not be used within a BASIC program.

Examples:
SAVE
SAVE #
SAVE/10B
SAVE “PROG1”
SAVE/10B, 100, 200
SAVE #5, “SUBR1" 400, 500

NOTE:
Any attempt to modify a loaded protected program
results in an error message being displayed (ERR 44),

119

Section VIl Tape Cassettes SKIP

SKIP

General Form: #n, END
SKiP n
/xxx, nF

where #n = File number to which a cassette device address
has been assigned; n is an integer from 1 to 6.

CASSETTE STATEMENT

xxx = Device address of cassette

If neither of the above is specified, the default
device address (the device address currently
assigned to TAPE (see SELECT)) is used.

END = Skip to the end of current data file.
n = Skip n logical data records.
nF = Skip n files.
n = expression (the integer portion of the value of
the expression is used, must be = 1)

Purpose

The SKIP statement allows the user to skip over any number of program or data files, or any number of
data records. The END parameter is used with data files only. It causes the indicated cassette tape to skip
to the end of the current data file; the tape is positioned before the trailer record. The n parameter is
also used exclusively with data files. It causes the indicated cassette tape to skip n logical data records. |f
the trailer record is encountered, the tape backspaces so that it is positioned before the trailer record. The
nF parameter causes the tape to skip n complete program or data files; the tape is positioned at the
beginning of the next file.

Example:
350 SKIP END
270 SKIP #1, 2F
SKIP 10
SKIP/10B, (X+2)F

120

Section IX

Error Codes

THREE TYPES OF ERRORSCANOCCUR 122
ERRORCODES 124

121

Section IX Error Codes

The Wang System 2200S BASIC checks for and displays syntax errors as each line is entered. The
user may then correct the error before proceeding with his program. When any error is detected, the
line being scanned by the system is displayed and on the next line, an T symbol is placed at the point
of the error followed by the error message number.

The following example shows the format of the System 2200S error pointer:

:10 DIM A(P)
t ERR 13

The user may then refer to the listing of error messages to identify the error by code number. The list
contains a description of each and a suggested method for correcting the error.

NOTE:

An error message can only indicate one possible type of error.

Example:

PXINT X
t ERR 06 (expected equal sign)

The system has interpreted ‘P’ as a variable and thus expects an equal sign following ‘P‘; whereas, the user
may have meant:

:PRINT X

The system assumes the statement is correct until illegal syntax is discovered.

The error message, SYSTEM ERRORY!, is displayed if certain hardware failures occur. The user should
RESET or MASTER INITIALIZE (Power On, Power Off} the system and re-enter the sequence of events
that produced this error.

NOTE:

Certain combinations of illegal or meaningless operations may
also result in a SYSTEM ERROR message.

THREE TYPES OF ERRORS CAN OCCUR
A Syntax Error

Results when the required format of a System 2200S BASIC statement is violated. Pressing a
sequence of keys not recognized as an accepted combination results in this type of error. Syntax errors
in a statement are recognized and noted, as soon as the execute key is touched to enter a statement.
Examples of this type of error include mispelling verbs, illegal formats for numbers, operators, paren-
theses, and the improper use of punctuation.

Example:

:10 DEFFN . (X) = 3*Xt2 - 2*X13
TERR 21

122

Section 1X Error Codes

An Error of Execution

Results when an illegal arithmetic operation is performed, or the execution of an illegal statement or
programming procedure is attempted when a program is executed. This type of error differs from a Syntax
Error. The statement itself uses the proper syntax. However, the execution of the statement is impossible

to perform and leads to an error condition. Typical errors of this type include illegal branches, arithmetic
overflow or underflow, illegal “FOR" loops, etc.

Example:

(Branch to non-existant statement number)

:100 GOTO 110

1105 PRINT “VALUES =" ;A, B, C

1120 END

:RUN

100 GOTO 110

tERR 11
A Programming Error
The 2200S executes the statements entered properly, but the results obtained are not correct,

because the wrong information or logic is used in writing a program. Although there is no way for the
2200S to identify a programming error, debugging features such as TRACE, HALT/STEP, CON-
TINUE, can significantly speed up the process of debugging a program.

123

Section IX Error Codes

CODE 01

Error: Text Overflow

Cause: All available space for BASIC statements and system commands has been used.

Action: Shorten and/or chain program by using COM statements, and continue. The compiler
automatically removes the current and highest-numbered statement.

Example: :10FOR1 = 1TO 10
;20 LET X = SIN({)

:30 NEXT |

:8201IFZ = A-B THEN 900

1ERR 01

(the number of characters in the program exceeded the available space in memory for
program text when line 820 was entered)

User must shorten or segment program.

CODE 02

Error: Table Overflow

Cause: The program and space required to store program variables and values exceeds

- the storage capacity of the system; the program is repetitively branching out of
FOR/NEXT loops without completing them; or the program is calling subroutines
but not returning. Error 2 results when approximately 20 levels of loops and/or
subroutine nesting have occured. Noncommon variables are removed automat-
ically by the system when error 2 occurs.

Action: Correct any improper exit from FOR/NEXT loops or subroutines (the RETURN
CLEAR statement can be used to exit from a subroutine without returning);
shorten the program by eliminating unnecessary text and variables; or segment
the program.

Example: :10 DIM A(19), B(10, 10), C(10, 10)

:RUN

tERR 02

(the table space required for variables exceeded the table limit for variable storage as
line 10 was processed)

User must compress program and variable storage requirements.

CODE 03

Error: Math Error

Cause: 1. EXPONENT OVERFLOW. The resulting magnitude of the number calculated

was greater than or equal to 10'°®, (+,-,«,/,1, TAN ,EXP).
2. DIVISION BY ZERO.
3. NEGATIVE OR ZERO LOG FUNCTION ARGUMENT.
4. NEGATIVE SQR FUNCTION ARGUMENT.
5. INVALID EXPONENTIATION. An exponentiation, (X1Y) was attempted where
X was negative and Y was not an integral, producing an imaginary result, or X
and Y were both zero.
6. ILLEGAL SIN, COS, OR TAN ARGUMENT. The function argument exceeds
27 X 10'! radians.
Action: Correct the program or program data.
Example: PRINT (2E+64 / (2E - 41)

tERR 03 (exponent overflow)
124

Section IX Error Codes

CODE 04
Error: Missing Left Parenthesis
Cause: A left parenthesis (() was expected.
Action: Correct statement text.
Example: :10 DEF FNA V) = SIN(3+V-1)
tERR 04
:10 DEF FNA(V) + SIN(3+V-1) (Possible Correction)
CODE 05
Error: Missing Right Parenthesis
Cause: A right ()) parenthesis was expected.
Action: Correct statement text.
Example: :10Y = INT(1.2156
tERR 05
:10Y = INT(1.215) (Possible Correction)
CODE 06
Error: Missing Equals Sign
Cause: An equals sign (=) was expected.
Action: Correct statement text.
Example: :10 DEFFNC(V)-V +2
tERR 06
110 DEFFNC(V) = V+2 (Possible Correction)
CODE 07
Error: Missing Quotation Marks
Cause: Quotation marks were expected.
Action: Reenter the DATASAVE OPEN statement correctly.
Example: :DATASAVE OPEN TTTT”
tERR 07
:DATASAVE OPEN “TTTT" (Possible Correction)
CODE 08
Error: Undefined FN Function
Cause: An undefined FN function was referenced.
Action: Correct program to define or reference the function correctly.
Example: :10 X=FNC(2)

:20 PRINT ““X";X
:30 END
:RUN
10 X=FNC(2)
tERR 08
:05 DEFFNC(V)=COS(2+V) (Possible Correction)

125

Section | X Error Codes

CODE 09
Error: tilegal FN Usage
Cause: More than five levels of nesting were encountered when evaluating an FN function.
Action: Reduce the number of nested functions.
Example: :10 DEF FN1(X)=1+X :DEF FN2(X)=1+FN1(X)
:20 DEF FN3(X)=1+FN2(X) :DEF FN4(X)=1+FN3(X)
:30 DEF FN5(X)=1+FN4(X) :DEF FN6(X)=1+FN5(X)
:40 PRINT FN6(2)
:RUN
10 DEF FN1(X)=1+X :DEF FN2(X)=1+FN1(X)
1tERR 09
:40 PRINT 1+FN5(2) (Possible Correction)
CODE 10
Error: Incomplete Statement
Cause: The end of the statement was expected.
Action: Complete the statement text.
Example: :10 PRINT X"
tERR 10
:10 PRINT X"
OR
:10 PRINT X (Possible Correction)
CODE 11
Error: Missing Line Number or Continue lllegal
Cause: The line number is missing or a referenced line number is undefined; or the user is
attempting to continue program execution after one of the following conditions: A
text or table overflow error, a new variable has been entered, a CLEAR command has
been entered, the user program text has been modified, or the RESET key has been
pressed.
Action: Correct statement text.
Example: :10 GOSUB 200
1ERR 11
:10 GOSUB 100 (Possible Correction)
CODE 12
Error: Missing Statement Text
Cause: The required statement text is missing (THEN, STEP, etc.).
Action: Correct statement text.
Example: 10 IF 1+12+X,45

tERR 12
:10 IF 1=12+X THEN 45 (Possible Correction)

126

Section IX Error Codes

CODE 13
Error: Missing or lllegal Integer
Cause: A positive integer was expected or an integer was found which exceeded the allowed
limit.
Action: Correct statement text.
Example: :10 COM D(P)
1ERR 13
:10 COM D(8) (Possible Correction)
CODE 14
Error: Missing Relation Operator
Cause: A relational operator { <, =,> ,<=,>=,<>) was expected.
Action: Correct statement text.
Example: :10 IF A-B THEN 100
1ERR 14
:10 IF A=B THEN 100 (Possible Correction)
CODE 15
Error: Missing Expression
Cause: A variable, or number, or a function was expected.
Action: Correct statement text.
Example: 10 FOR 1=, TO 2
1ERR 15
:10FOR I1=1TO 2 (Possible Correction)
CODE 16
Error: Missing Scalar
Cause: A scalar variable was expected.
Action: Correct statement text.
Example: :10 FOR A(3)=1TO 2
tERR 16
:10 FORB=1TO 2 (Possible Correction)
CODE 17
Error: Missing Array
Cause: An array variable was expected.
Action: Correct statement text.
Example: :10DIM A2
tERR 17
:10DIM A(2) (Possible Correction)

127

Section IX Error Codes

CODE 18
Error: lllegal Value
Cause: The value exceeds the allowable limit. For example, a dimension is greater than 255 or

an array variable subscript exceeds the defined dimension.
Action: Correct the program.
Example: :10 DIM A(2,3)

120 A(1,4) =1

:RUN

20 A(1,4) =1

1ERR 18

:10 DIM A(2,4) (Possible Correction)
CODE 19
Error: Missing Number
Cause: A number was expected.
Action: Correct statement text.
Example: :10DATAL

tERR 19

:10 DATA + (Possible Correction)
CODE 20
Error: Illegal Number Format
Cause: A number format is illegal.
Action: Correct statement text.
Example: :10 A=12345678.234567 (More than 13 digits of mantissa)

tERR 20

:10 A=12345678.23456 (Possible Correction)
CODE 21
Error: Missing Letter or Digit
Cause: A letter or digit was expected.
Action: Correct statement text.
Example: :10 DEF FN.(X)=X15-1

tERR 21
:10 DEF FN1(X)=X15-1

(Possible Correction)

128

Section IX Error Codes

CODE 22
Error: Undefined Array Variable
Cause: An array variable is referenced in the program which was not defined properly in a
DIM or COM statement (i.e., an array variable was not defined in a DIM or COM
statement) or an array variable has been referenced both as a 1-dimensional and as
a 2-dimensional array.
Action: Correct statement text.
Example: 10 A(2,2) = 123
:RUN
10 A(2,2) =123
tERR 22
:1DIM A(4,4) {Possible Correction)
CODE 23
Error: No Program Statements
Cause: A RUN command was entered but there are no program statements.
Action: Enter program statements.
Example: :RUN
tERR 23
CODE 24
Error: lllegal iImmediate Mode Statement
Cause: An illegal verb or transfer in an immediate execution statement was encountered.
Action: Re-enter a corrected immediate execution statement.
Example: IFA=1THEN 100

tERR 24

129

Section I X Error Codes

CODE 25
Error: Illegal GOSUB/RETURN Usage
Cause: There is no companion GOSUB statement for a RETURN statement, or a branch was
made into the middle of a subroutine.
Action: Correct the program.
Example: :10 FOR I=1TO 20
120 X=1+SIN(1+4)
:25 GO TO 100
:30 NEXT I: END
1100 PRINT “X=";X
:110 RETURN
:RUN
X=-.7568025
110 RETURN
tERR 25
.25 GOSUB 100 (Possible Correction)
CODE 26
Error: lllegal FOR/NEXT Usage
Cause: There is no companion FOR statement for a NEXT statement, or a branch was made
into the middle of a FOR loop.
Action: Correct the program.
Example: :10 PRINT “I=";1
:20 NEXT |
:30 END
:RUN
1=0
20 NEXT |
tERR 26
:5 FORI=1TO 10 (Possible Correction)
CODE 27
Error: Insufficient Data
Cause: There is insufficient data for READ statement requirements.
Action: Correct program to supply additional data.
Example: :10 DATA 2
:20 READ X,Y
:30 END
:RUN
20 READ XY
tERR 27
:11 DATA 3 (Possible Correction)

130

Section I1X Error Codes

CODE 28
Error: Data Reference Beyond Limits
Cause: The data reference in a RESTORE statement is beyond the existing data limits.
Action: Correct the RESTORE statement.
Example: :10 DATA1,2,3
:20 READ X,Y.,Z
:30 RESTORE 5
:90 END
:RUN
30 RESTORE 5
tERR 28
:30 RESTORE 2 (Possible Correction)
CODE 29
Error: Illegal Data Format
Cause: The data format for an INPUT statement is illegal (format error).
Action: Reenter data in the correct format starting with erroneous number or terminate run
with the RESET key and run again.
Example: :10 INPUT X, Y
:90 END
:RUN
:INPUT
?1A,2E-30
tERR 29
212,2E-30 (Possible Correction)
CODE 30
Error: litlegal Common Assignment
Cause: A COM statement variable definition was preceded by a non-common variable
definition.
Action: Correct program, making all COM statements the first numbered lines.
Example: :10 A=1 :B=2

:20COM AB
:99 END
:RUN

20COM A.B

tERR 30
:10[CR/LF—EXECUTE] (Possible Correction)
:30 A=1:B=2

131

Section IX Error Codes

CODE 31
Error: lllegal Line Number
Cause: The ‘statement number’ key was pressed producing a line number greater than 9999;
or in renumbering a program with the RENUMBER command a line number was
generated which was greater than 9999.
Action: Correct the program.
Example: :9995 PRINT X,Y
:[line number key]
1ERR 31
CODE 33
Error: Missing HEX Digit
Cause: A digit or a letter from A - F was expected.
Action: Correct the program text.
Example: :10 SELECT PRINT 00OP
1ERR 33
:10 SELECT PRINT 005 (Possible Correction)
CODE 34
Error: Tape Read Error
Cause: The system was unable to read the next record on the tape; the tape is positioned
after the bad record.
CODE 35
Error: Missing Comma or Semicolon
Cause: A comma or semicolon was expected.
Action: Correct statement text.
Example: :10 DATASAVE #2 X,Y,Z2
1 ERR 35
:10 DATASAVE #2,X,Y,2 (Possible Correction)
CODE 36
Error: Illegal Image Statement
Cause: No format (e.g. #.##) in image statement.
Action: Correct the statement text.
Example: :10 PRINTUSING 20, 1.23
:20% AMOUNT =
:RUN
:10 PRINTUSING 20,1.23
tERR 36
:20% AMOUNT = ##### {Possibie Correction)

132

Section IX Error Codes

CODE 37
Error: Statement Not Image Statement
Cause: The statement referenced by the PRINTUSING statement is not an image statement.
Action: Correct the statement text.
Example: :10 PRINTUSING 20,X

:20 PRINT X

:RUN

:10 PRINTUSING 20,X

tERR37

120% AMOUNT = $# ###.## (Possible Correction)
CODE 38
Error: lllegal Floating Point Format
Cause: Fewer than 4 up arrows were specified in the floating point format in an image

statement.
Action: Correct the statement text.
Example: 110 % ## H##111

t ERR 38

110 % #EH##T 1
CODE 39
Error: Missing Literal String
Cause: A literal string was expected.
Action: Correct the text.
Example: :10 READ A$

:20 DATA 123

:RUN

20 DATA 123

tERR 39

20 DATA 123" (Possible Correction)
CODE 40
Error: Missing Alphanumeric Variable
Cause: An alphanumeric variable was expected.
Action: Correct the statement text.
Example: 110 A$, X = “JOHN"

tERR 40

:10 A$, X$ = “JOHN"
CODE 41
Error: Illegal STR(Arguments
Cause: The STR(function arguments exceed the maximum length of the string variable.
Example: :10 B$ = STR(AS, 10, 8)

tERR 41
:10 B$ = STR(AS, 10, 6) (Possible Correction)

133

Section 1X Error Codes

CODE 42
Error: File Name Too Long
Cause: The program name specified is too long (a maximum of 8 characters is allowed).
Action: Correct the program text.
Example: :SAVE “PROGRAM#1”
1ERR 42

:SAVE “PROGRAM1” (Possible Correction)
CODE 43
Error: Wrong Variable Type
Cause: During a DATALOAD operation a numeric (or alphanumeric) value was expected but

an alphanumeric (or numeric) value was read.
Action: Correct the program or make sure proper tape is mounted.
Example: :DATALOAD X, Y

tERR 43

:DATALOAD X$, Y$ (Possible Correction)
CODE 44
Error: Program Protected
Cause: A program loaded was protected and, hence, cannot be SAVED or LISTED.
Action: Execute a CLEAR command to remove protect mode, (but, program will be scratched).
CODE 45
Error: Statement Line Too Long
Cause: A statement line may not exceed 192 keystrokes.
Action: Shorten the statement line being entered.
CODE 46
Error: New Starting Statement Number Too Low
Cause: The new starting statement number in a RENUMBER command is not greater than

the next lowest statement number.
Action: Reenter the RENUMBER command correctly.
Example: 50 REM — PROGRAM 1

62 PRINT X, Y

73 GOSUB 500

:RENUMBER 62, 20, 5

tERR 46

:RENUMBER 62, 60, 5 (Possible Correction)
CODE 47
Error: Illegal Or Undefined Device Specification
Cause: The #n device specifications in a program statement is undefined.
Action: Define the specified device numbers.
Example: :SAVE #2

tERR 47
:SELECT #2 10A
:SAVE #2 (Possible Correction)

134

Section 1X Error Codes

CODE 48

Error: Undefined Keyboard Function

Cause: There is no mark (DEFFN’) in a user’s program corresponding to the keyboard function
key depressed.

Action: Correct the program.

Example: :[keyboard function key #2]
tERR 48

CODE 49

Error: End of Tape

Cause: The end of tape was encountered during a tape operation.

Action: Correct the program or make sure the tape is correctly positioned.

Example: 100 DATALOAD X, Y, Z

tERR 49

CODE 50

Error: Protected Tape

Cause: A tape operation is attempting to write on a tape cassette that has been protected
(by tab on bottom of cassette tape).

Action: Mount another cassette or ‘‘unprotect’’ the tape cassette by covering the punched
hole on the bottom of the cassette with the tab.

Example: SAVE /103

tERR 50

CODE 51

Error: lllegal Statement

Cause: The System 2200S does not have the capability to process this BASIC statement.

Action: Do not use this statement.

CODE 52

Error: Expected Data (Nonheader) Record

Cause: A DATALOAD operation was attempted but the device was not positioned at a
data record.

Action: Make sure the correct device is positioned correctly.

CODE 53

Error: Illegal Use of HEX Function

Cause: The HEX(function is being used in an illegal situation. The HEX function may not
be used in a PRINTUSING statement.

Action: Do not use HEX function in this situation.

Example: :10 PRINTUSING 200, HEX(F4F5)

t ERR 53
:10 A$ = HEX(F4F5)
:20 PRINTUSING 200,A$ (Possible Correction)

135

Section I1X Error Codes

CODE 54
Error: lllegal Plot Argument
Cause: An argument in the PLOT statement is illegal.
Action: Correct the PLOT statement.
Example: 100 PLOT<S5,, H>
t+ ERR 54
100 PLOT <5,,C> (Possible Correction)
CODE 55
Error: lllegal BT Argument
Cause: An argument in a DATALOAD BT or DATASAVE BT statement is illegal.
Action: Correct the statement in error.
Example: 100 DATALOAD BT (M=50) A$
tERR 55
100 DATALOAD BT (N=50) A$ (Possible Correction)
CODE 56
Error: Number Exceeds Image Format
Cause: The value of the number being packed or converted is greater than the number integer
digits provided for in the pack or convert image.
Action: Change the image specification.
Example: 100 PACK (##) A$ FROM 1234
1 ERR 56
100 PACK (##4##) A$ FROM 1234 (Possible Correction)
CODE 57
Error: Illegal Disk Sector Address
Cause: lllegal disk sector address specified, value is negative or greater than 32767. (The
System 22008 cannot store a sector address greater than 32767.)
Action: Correct the program statement in error.
Example: 100 DATASAVE DAF (42000 ,X) A,B,C.

t ERR 57
100 DATASAVE DAF (4200 ,X) A,B,C (Possible Correction)

136

Section IX Error Codes

CODE 58
Error: Expected Data Record
Cause: A program record or header record was read when a data record was expected.
Action: Correct the program.
Example: 100 DATALOAD DAF(0,X) AB,C
tERR 58
CODE 59
Error: Illlegal Alpha Variable For Sector Address
Cause: Alphanumeric receiver for the next available address in the disk DA instruction is not
at least 2 bytes long.
Action: Dimension the alpha variable to be at least two characters long.
Example: 10 DIM A$1
100 DATASAVE DAR() ,A$) X,Y,Z
tERR 59
10 DIM A$2 (Possible Correction)
CODE 60
Error: Array Too Small
Cause: The alphanumeric array does not contain enough space to store the block of infor-
mation being read from disk or tape or being packed into it. For cassette tape and
disk records, the array must contain at least 256 bytes {100 bytes for 100 byte cassette
blocks).
Action: Increase the size of the array.
Example: 10 DIM A$(15)
20 DATALOAD BT A$()
tERR 60
10 DIM A$(16) (Possible Correction)
CODE 61
Error: Disk Hardware Error
Cause: The disk did not recognize or properly respond back to the System 2200S during
read or write operation in the proper amount of time.
Action: Run program again. If error persists, re-initialize the disk; contact Wang service
personnel.
Example: 100 DATASAVE DCF X,Y,Z

tERR 61

137

Section I X Error Codes

CODE 62

Error: File Full

Cause: The disk sector being addressed is not located within the catalogued specified file.
When writing the file is full, for other operations, a SKIP or BACKSPACE has set the
sector address beyond the limits of the file.

Action: Correct the program.

Example: 100 DATASAVE DCT#2, A$(), B$(), C$()

tERR 62

CODE 63

Error: Missing Alpha Array Designator

Cause: An alpha array designator (e.g., A$()) was expected. (Block operations for cassette
and disk require an alpha array argument.)

Action: Correct the statement in error.

Example: 100 DATALOAD BT A$

tERR 63
100 DATALOAD BT A$() (Possible Correction)

CODE 64

Error: Sector Not On Disk

Cause: The disk sector being addressed is not on the disk. (Maximum legal sector address
depends upon the model of disk used.)

Action: Correct the program statement in error.

Example: 100 MOVEEND F = 10000

tERR 64
100 MOVEEND F = 9791 (Possible Correction)

CODE 65

Error: Disk Hardware Malfunction

Cause: A disk hardware error occurred (i.e., the disk is not in file ready position. This couid
occur, for example, if the disk is in LOAD mode or power is not turned on).

Action: Insure disk is turned on and properly setup for operation. Set the disk into LOAD mode
and then back into RUN mode, with the RUN/LOAD selection switch. The check light
should then go out. If error persists call your Wang Service personnel.

{Note, the disk should never be left in LOAD mode when running.)

Example: 100 DATALOAD DCF A$,B$

TERR 65

138

Section I X Error Codes

CODE 66
Error: Format Key Engaged
Cause: The disk format key is engaged. (The key is normally engag=d only when formatting
a disk pack.)
Action: Turn off the format key.
Example: 100 DATASAVE DCF X,Y,Z2
tERR 66
CODE 67
Error: Disk Format Error
Cause: A disk format error was detected on disk read or write. The disk is not properly
formatted such that sector addresses can be read.
Action: Format the disk again.
Example: 100 DATALOAD DCF X,Y,Z
tERR 67
CODE 68
Error: LRC Error
Cause: A disk longitudinal redundancy check error occurred when reading a sector. The data
may have been written incorrectly, or the System 2200S/Disk Controller could be
malfunctioning.
Action: Run program again. If error persists, re-write the bad sector. If error still persists, call
Wang Service personnel.
Example: 100 DATALOAD DCF AS$()
tERR 68
CODE 71
Error: Cannot Find Sector
Cause: A disk seek error occurred; the specified sector could not be found on the disk.
Action: Run program again. |f error persists, re-initialize (reformat) the disk pack. If error still
occurs call Wang Service personnel.
Example: 100 DATALOAD DCF AS$()

tERR 71

139

Section IX Error Codes

CODE 72
Error: Cyclic Read Error
Cause: A cyclic redundancy check disk read error occurred; the sector being addressed has
never been written to or subsequently the sector was incorrectly written on disk (i.e.,
the disk pack was never initially formatted).
Action: Format the disk if it was not done. If the disk was formatted, re-write the bad sector,
or reformat the disk. If error persists call Wang Service personnel.
Example: 100 MOVEEND F = 8000
tERR 72
CODE 73
Error: lilegal Altering Of A File
Cause: The user is attempting to rename or write over an existing scratched file, but is not
using the proper syntax. The scratched file name must be referenced.
Action: Use the proper form of the statement.
Example: SAVE DCF “SAM1”
tERR 73
SAVE SCF (““SAM1”’) “SAM1" (Possible Correction)
CODE 74
Error: Catalog End Error
Cause: The end of catalog area falls within the library index area or has been changed by
MOVEEND to fall within the area already used by the catalog; or there is no room left
in the catalog area to store more information.
Example: SCRATCH DISK F LS=100, END=50
tERR 74
SCRATCH DISK F LS=100, END=500 (Possible Correction)
CODE 75
Error: Command Only (Not Programmable)
Cause: A command is being used within a BASIC program: Commands are not programmable.
Action: Do not use commands as program statements.
Example: 10 LIST
tERR 75

140

Section IX Error Codes

CODE 76
Error: Missing < or > (Plot Enclosures)
Cause: The required PLOT enclosures are not in the PLOT statement.
Action: Correct the statement in error.
Example: 100 PLOT A, B, “*”
tERR 76
100 PLOT <A, B, "*'> {Possible Correction)
CODE 77
Error: Starting Sector Greater Than Ending Sector
Cause: The starting sector address specified is greater than the ending sector address specified.
Action: Correct the statement in error.
Example: 10 COPY FR(1000, 100)
tERR 77
10 COPY FR(100, 1000) (Possible Correction)
CODE 78
Error: File Not Scratched
Cause: A file is being renamed that has not been scratched.
Action: Scratch the file before renaming it.
Example: SAVE DCF (LINREG") “LINREG2”
tERR 78
SCRATCH F “LINREG” (Possible Correction)
SAVE DCF (“LINREG”) “LINREG2"
CODE 79
Error: File Already Catalogued
Cause: An attempt was made to catalogue a file with a name that already exists in the catalogue
index.
Action: Use a different name.
Example: SAVE DCF “MATLIB”

1ERR 79
SAVE DCF “MATLIB1” (Possible Correction)

141

Section IX Error Codes

CODE 80
Error: File Not In Catalog
Cause: The error may occur if one attempts to address a non-existing file name or to load a
data file as a program or open a program file as a data file.
Action: Make sure you’re using the correct file name; make sure the proper disk pack is
mounted.
Example: LOAD DCR "“PRES”
tERR 80
LOAD DCF “PRES” (Possible Correction)
CODE 81
Ervor: /XXX Device Specification lllegal
Cause: The /XXX device specification may not be used in this statement.
Action: Correct the statement in error.
Example: 100 DATASAVE DC /310, X
tERR 81
100 DATASAVE DC #1, X (Possible Correction)
CODE 82
Error: No End Of File
Cause: No end of file record was recorded on file and therefore could not be found in a SKIP
END operation.
Action: Correct the file.
Example: 100D SKIP END
tERR 82
CODE 83
Error: Disk Hardware Failure
Cause: A disk address cannot be properly transferred from the System 2200S to the disk
when processing MOVE or COPY.
Action: Run program again. If error persists, call Wang Field Service Personnel.
Example: COPY FR(100,500)

tERR 83

142

Seciton 1X Error Codes

CODE 84
Error: Not Enough System 2200S Memory Available For MOVE or COPY
Cause: A 1K buffer is required in memory for MOVE or COPY operation. (i.e., 1000 bytes
should be available and not occupied by program and variables).
Action: Clear out all or part of program or program variables before MOVE or COPY.
Example: COPY FR(0, 9000)
tERR 84
CODE 85
Error: Read After Write Error
Cause: The comparison of read after write to a disk sector failed. The information was not
written properly.
Action: Write the information again. If error persists, call Wang Field Service personnel.
Example: 100 DATASAVEDCF$ X, Y, 2
tERR 85
CODE 86
Error: File Not Open
Cause: The file was not opened.
Action: Open the file before reading from it.
Example: 100 DATALOAD DC A$
tERR 86
10 DATALOAD DC OPEN F “DATFIL"” (Possible Correction)
CODE 87
Error: Common Variable Required
Cause: The variable in the LOAD DA statement, used to receive the sector address of the next
available sector after the load, is not a common variable.
Action: Define the variable to be common.
Example: 10 LOAD DAR (100,L)
tERR 87
5 COML (Possible Correction)
CODE 88
Error: Library Index Full
Cause: There is no more room in the index for a new name.
Action: Scratch any unwanted files and compress the catalog using a MOVE statement or
mount a new disk platter.
Example: SAVE DCF “PRGM”

tERR 88

143

Section IX Error Codes

CODE 89
Error: Matrix Not Square
Cause: The dimensions of the operand in a MAT inversion or identity are not equal.
Action: Correct the array dimensions.
Example: :10 MAT A=IDN(3,4)
:RUN
10 MAT A=IDN(3,4)
tERR 89
:10 MAT A=IDN(3,3) (Possible Correction)
CODE 90
Error: Matrix Operands Not Compatible
Cause: The dimensions of the operands in a MAT statement are not compatible; the operation
cannot be performed.
Action: Correct the dimensions of the arrays.
Example: :10 MAT A=CON(2,6)
120 MAT B=IDN(2,2)
:30 MAT C=A+B
:RUN
30 MAT C=A+B
tERR 90
:10 MAT A=CON(2,2) (Possible Correction)
CODE 91
Error: lllegal Matrix Operand
Cause: The same array name appears on both sides of the equal sign in a MAT multiplication or
transposition statement.
Action: Correct the statement.
Example: :10 MAT A=A*B
1ERR 91
:10 MAT C=A*B (Possible Correction)

144

Section IX Error Codes

CODE 92
Error: lllegal Redimensioning Of Array
Cause: The space required to redimension the array is greater than the space initially reserved

for the array.
Action: Reserve more space for array in DIM or CON statement.
Example: 110 DIM(3,4)

:20 MAT A=CON(5,6)

:RUN

20 MAT A=CON(5,6)

TERR 92

:10 DIM A(5,6) (Possible Correction)
CODE 93
Error: Singular Matrix
Cause: The operand in a MAT inversion statement is singular and cannot be inverted.
Action: Correct the program.
Example: :10 MAT A=ZER(3,3)

:20 MAT B=INV(A)

:RUN

20 MAT B=INV(A)
tERR 93

CODE 94
Error: Missing Asterisk
Cause: An asterisk (*) was expected.
Action: Correct statement text.
Example: :10 MAT C=(3)B

tERR 94
:10 MAT C=(3)*B ({Possible Correction)

145

Section X

Appendices

A — SPECIFICATIONS
B — AVAILABLE PERIPHERALS.

C — ASCII CHARACTER CODE SET
D — ERROR MESSAGES . .

146

Section X Appendices

APPENDIX A

SPECIFICATIONS

CRT (Cathode Ray Tube) — Model 2216

Unit Size
Height . 14 in. (35.6 cm)
Depth . 16 in. (40.6 cm)
Width . 21% in. (54.6 cm)
Display Size
Height . 8in. (20.3cm)
Width . 10% in. (26.7 cm)
Capacity

16 lines, 64 characters/line
Character Size

Height . 0.20 in. (0.51 cm)
Width . 0.12 in. (0.30 cm)
Weight

36 Ib (16.3 kg)

Integrated CRT, Single Tape Cassette Drive,
Keyboard — Model 2220

Unit Size
Height
Depth
Width .
Weight
48 1b (21.7 kg)
Display Size
Diagonal .
Capacity
16 lines, 64 characters/line
Character Size
Height .125in. (0.32 cm)
Width ., . .125in. (0.32 cm)
System 2200S Power Requirements
115 VAC or 230 VAC + 10%
50 or 60 Hz £ % cycle
System 2200S Operating Environment
50°F to 90°F (10°C to 32°C)
20% to 90% relative humidity

CASSETTE—Model 2217, and Integrated
MODEL 2220
Stop/Start Time
0.09/0.05 sec
Capacity
522 bytes/ft (1712 bytes/m)
Recording Speed
7.5 IPS (19.05 cm/sec)
Search Speed
7.5 IPS (19.05 cm/sec)

13% in. {34.2 cm)
20% in. (52 cm)
19% in. (560.2 cm)

9in. (22.8 cm)

147

Transfer Rate
326 characters/sec (approx.)
Inter-record Gap
0.6 in. (1.52 cm)
(Capacity and transfer rate include gaps and redun-
dant recording.)

CPU (Central Processing Unit} — System 22008
Built-in Functions
Mathematical & Trigonometric Functions*

EXP e to the power of x
LOG " Natural Log

SQGR Square Root

T Pi

SIN Sine

COos Cosine

TAN Tangent

ARCSIN Inverse Sine
ARCCOS Inverse Cosine
ARCTAN inverse Tangent
RND Random Number Generator

Logical & Data Manipulation Functions

ABS Absolute Value of a Number

INT Integer Value of a Number
1, 0, or +1 if a number is negative, O,
or positive.

STR Selection of one or more characters in
an alphanumeric string.

HEX Hexadecimal Values

LEN Length of Alphanumeric Variable

CPU (Central Processing Unit) — System 22008
(Continued)

Variable Formats

Scalar Numeric Variable.

Numeric 1- and 2-dimension Array Variables.
Alphanumeric String Variable.

Alphanumeric 1- and 2-dimensional String Arrays.

Average Execution Times (Milliseconds)
Add/Subtract 0.8

Multiply/Divide 3.87/7.4

Square Root/e* 46.4/25.3
Log, x/X* 23.2/45.4
Integer/Absolute Value 0.24/0.02
Sign/Sine 0.25/38.3
Cosine/Tangent 38.9/78.5

Sectiom X Appendices APPEND'X A

SPECIFICATIONS (Cont.)
Arctangent 72.5 Weight
Read/Write Cycle 1.6u sec 40 1b (18.2 kg)
(Average execution times were determined using
random number arguments with 13 digits of pre- KEYBOARD
cision. Average execution times will be faster in
most calculations with arguments having fewer Model 2215

significant digits.) Height 3in.(7.62cm)
. Depth 10in. (25.4cm)
Memory Size ‘ v (44
4,096 bytes (expandable to 16K} We\?lf:h © e+ .- - 1T%hin (445 cm)
Peripheral Capacity 7glbs (3.2 kg)
3 (expandable to 6 max) :
Dynamic Range Model 2222
10°° 10 10*%° Height 3in.(7.62cm)
Subroutine Stacking Depth 10 in.. (25.4 cm)
50 Width 19%in. (49.5 cm)
*CPU Si Weight
1ze 7% 1b (3.4 k
Height 9%sin.(24.8 cm) b (3.4 ka)
Depth 21in.(63.3cm}
Width 14%in. (36.8 cm) *Trigonometric arguments in radians, degrees or gradians.

Wang Laboratories reserves the right to change specifications without prior notice.

148

Section X Appendices APPENDIX B

2201
2207A
2214

2215

2216
2216A
2217
2216/2217
2216A/2217
2218

2220

2221

2222

2223

2227

2231
2234A
2244A
2250
2252A
2261

2262

2290

2292
OPTION 20
OPTION 21
OPTION 30
OPTION 31

AVAILABLE PERIPHERALS

Output Writer

1/0 Interface Controlter (RS-232-C)

Mark Sense Card Reader

BASIC Keyword Keyboard

CRT Executive Display

Upper/Lowercase CRT Display

Single Tape Cassette Drive

Combined CRT Executive Display/Single Tape Cassette Drive
Combined Upper/Lowercase CRT Display/Single Tape Cassette Drive
Dual Tape Cassette Drive

Integrated CRT/Tape Cassette Drive/Keyboard
Line Printer (132 Column)

Alpha-Numeric Typewriter Keyboard
Upper/Lowercase Alphanumeric BASIC Keyboard
Standard Telecommunications Controller

Line Printer (80 column)

Hopper-Feed Punched Card Reader

Hopper Feed Mark Sense/Punched Card Reader
1/0 Interface Controller (8 Bit Parallel)

Input Interface Controller (BCD 10-Digit-Parallel)
High-Speed Printer

Digitizer

CPU/Peripheral Stand

Auxiliary Display

Additional 3 1/0 Slots

Matrix ROM

Upper/Lowercase 2220 CRT

Audio Alarm

149

Section X Appendices APPENDIX C

WANG SYSTEM 2200S ASCII CHARACTER CODE SET

The following chart shows the ASCII codes used by the System 2200S. Each peripheral may not use
all these codes. See the appropriate peripheral reference manual for the codes pertaining to a particular
devoce. Codes not legal for certain devices may default to other characters.

High Order Hexadecimal Digit of Code

0 1 2 3 a 5 6 7
0 | NULL SPACE| 0 @ |p 1] p
1 | HOME (CRT) X-ON ! AlQ a | g
2 “ 2 B | R b | r
3 | CLEARSCREEN | X-OFF # 3 c|s c |s
(CRT)
4 $ 4 D|T d |t
5 5 E|uU e | u
3 6 & 6 Flv t v
S 7| BELL 7 G| Ww g | w
g {apos)
S 8 | BACKSPACE (8 H | X h | x
E (CRT CURSOR +)
‘g 9 | HT(TAB)or CLEAR) 9 |y i |y
'§ {CRT CURSOR) | TAB
£ A ! LINE FEED SET . : J |z i |z
k: (CRT CURSOR 4) | TAB
S B | VT(VERTICAL + ; K1 k {
z TAB)
-
C | FORM FEED OR , <or[[L |\ T
REV. INDEX |
{(CRT CURSOR 1)
D | CR(CARRIAGE - = M|] m
RETURN) }
E | SO ¢ . >or] N | torMort | n | ~
(SHIFT UP)
F | Si ° / ? O | «<or_ o | a
{(SHIFT DOWN) (DEGREE)
NOTE:

The following codes are available only with the Model
2216A CRT Executive Display and OPTION 30: 60, 78,
7C, 7D, 7E, and 7F.

150

Section X Appendices

APPENDIX D

CODE 01
CODE 02
CODE 03
CODE 04
CODE 05
CODE 06
CODE 07
CODE 08
CODE 09
CODE 10
CODE 11

CODE 12
CODE 13
CODE 14
CODE 15
CODE 16
CODE 17
CODE 18
CODE 19
CODE 20
CODE 21
CODE 22
CODE 23
CODE 24
CODE 25
CODE 26
CODE 27
CODE 28
CODE 29
CODE 30
CODE 31
CODE 33
CODE 34
CODE 35
CODE 36
CODE 37
CODE 38
CODE 39
CODE 40
CODE 41
CODE 42
CODE 43
CODE 44
CODE 45
CODE 46

CODE 47

LISTING OF ERROR MESSAGES

TEXT OVERFLOW

TABLE OVERFLOW

MATH ERROR

MISSING LEFT PARENTHESIS

MISSING RIGHT PARENTHESIS

MISSING EQUALS SIGN

MISSING QUOTATION MARKS

UNDEFINED FN FUNCTION

ILLEGAL FN USAGE

INCOMPLETE STATEMENT

MISSING LINE NUMBER OR CONTINUE
ILLEGAL

MISSING STATEMENT TEXT

MISSING OR ILLEGAL INTEGER

MISSING RELATION OPERATOR

MISSING EXPRESSION

MISSING SCALAR

MISSING ARRAY

ILLEGAL VALUE

MISSING NUMBER

ILLEGAL NUMBER FORMAT

MISSING LETTER OR DIGIT

UNDEFINED ARRAY VARIABLE

NO PROGRAM STATEMENTS

ILLEGAL IMMEDIATE MODE STATEMENT

ILLEGAL GOSUB/RETURN USAGE

ILLEGAL FOR/NEXT USAGE

INSUFFICIENT DATA

DATA REFERENCE BEYOND LIMITS

ILLEGAL DATA FORMAT

ILLEGAL COMMON ASSIGNMENT

ILLEGAL LINE NUMBER

MISSING HEX DIGIT

TAPE READ ERROR

MISSING COMMA OR SEMICOLON

ILLEGAL IMAGE STATEMENT

STATEMENT NOT IMAGE STATEMENT

ILLEGAL FLOATING POINT FORMAT

MISSING LITERAL STRING

MISSING ALPHANUMERIC VARIABLE

ILLEGAL STR(ARGUMENTS

FILE NAME TOO LONG

WRONG VARIABLE TYPE

PROGRAM PROTECTED

STATEMENT LINE TOO LONG

NEW STARTING STATEMENT NUMBER
TOO LOW

ILLEGAL OR UNDEFINED DEVICE
SPECIFICATION

151

CODE 48
CODE 49
CODE 50
CODE 51
CODE 52
CODE 53
CODE 54
CODE 55
CODE 56
CODE 57
CODE 58
CODE 59

CODE 60
CODE 61
CODE 62
CODE 63
CODE 64
CODE 65
CODE 66
CODE 67
CODE 68
CODE 71
CODE 72
CODE 73
CODE 74
CODE 75
CODE 76
CODE 77
CODE 78
CODE 79
CODE 80
CODE 81
CODE 82
CODE 83
CODE 84

CODE 85
CODE 86
CODE 87
CODE 88
CODE 89
CODE 90
CODE 91
CODE 92
CODE 93
CODE 94

UNDEFINED KEYBOARD FUNCTION
END OF TAPE
PROTECTED TAPE
ILLEGAL STATEMENT
EXPECTED DATA (NONHEADER) RECORD
ILLEGAL USE OF HEX FUNCTION
ILLEGAL PLOT ARGUMENT
ILLEGAL BT ARGUMENT
NUMBER EXCEEDS IMAGE FORMAT
ILLEGAL SECTOR ADDRESS
EXPECTED DATA RECORD
ILLEGAL ALPHA VARIABLE FOR SECTOR
ADDRESS
ARRAY TOO SMALL
DISK HARDWARE ERROR
FILE FULL
MISSING ALPHA ARRAY DESIGNATOR
SECTOR NOT ON DISK
DISK HARDWARE MALFUNCTION
FORMAT KEY ENGAGED
DISK FORMAT ERROR
LRC ERROR
CANNOT FIND SECTOR
CYCLIC READ ERROR
ILLEGAL ALTERING OF A FILE
CATALOG END ERROR
COMMAND ONLY (NOT PROGRAMMABLE)
MISSING < OR > (PLOT ENCLOSURES)
STARTING SECTOR > ENDING SECTOR
FILE NOT SCRATCHED
FILE ALREADY CATALOGED
FILE NOT IN CATALOG
/XXX DEVICE SPECIFICATION ILLEGAL
NO END OF FILE
DISK HARDWARE FAILURE
NOT ENOUGH MEMORY FOR MOVE
OR COPY
READ AFTER WRITE ERROR
FILE NOT OPEN
COMMON VARIABLE REQUIRED
LIBRARY INDEX FULL
MATRIX NOT SQUARE
MATRIX OPERANDS NOT COMPATIBLE
ILLEGAL MATRIX OPERAND
ILLEGAL REDIMENSIONING OF ARRAY
SINGULAR MATRIX
MISSING ASTERISK

:To help us to provide you with the best manuals possible, please make your comments and suggestions
1 concerning this publication on the form below. Then detach, fold, tape closed and mail to us. All comments
$ and suggestions become the property of Wang Laboratories, Inc. For a reply, be sure to include your
| name and address. Your cooperation is appreciated.

1 700-3526A

TITLE OF MANUAL:

COMMENTS:

Fold

Fold

{Please tape. Postal regulations prohibit the use of staples.)

WANG)

Fold

FIRST CLASS
PERMIT NO. 16
Tewksbury, Mass.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention:

— POSTAGE WILL BE PAID BY —

WANG LABORATORIES, INC.
836 NORTH STREET
TEWKSBURY, MASSACHUSETTS 01876

Marketing Department

Fold

Printed in US.A.

Cut along dotted line,

ALPHABETICAL INDEX

BACKSPACE (Tape Cassette) 111 LIsTt 49
CLEAR [|1 LOAD COMMAND (Tape Cassette) 116
com b8 LOAD STATEMENT (Tape Cassettes) . . . 117
CONTINUE . 46 NEXT e - X §
CONVERT B NUM 8
CR/LF—EXECUTE Key T [ON 85
DATA . . . S - | PRINT 8
DATALOAD (Tape Cassette) 12 PRINTUSING 89
DATARESAVE (TapeCassette) 113 READ @3
DATASAVE (Tape Cassette) 115 REM o4
DEFFN 62 RENUMBER 80
DEFFN* 63 RESET ®
DIM ©6 RESTORE 95
END 87 RETURN . . e 96
FOR e©s8 RETURNCLEAR 97
GosuB 7 REWIND (Tape Cassettes) 118
GgosuB’ 72 RUN B2
GotTO 713 SAVE COMMAND (Tape Cassettes) 19
HALT/STEP P 7) SELECT 35
HEX (Hexadecimal) Functlon 33 SKIP (Tape Cassettes) e20
HEXPRINT 174 SPECIAL FUNCTION, b3
IFENDTHEN 175 STATEMENTNUMBER 55
. THEN . | <] sToP+« .+ . . . o8
IMAGE(%) 17 STR (String) Functlon e e e 32
INPUT 178 TRACE 99
KEYIN 81 VAL L 001
LEN (Length) Functuon 33
LET 92

The Wang PROGRAMMER is the official publication of Wang Laboratories Users Society, SWAP.
The PROGRAMMER has been issued monthly at Tewksbury, Massachusetts since July 1967 and is now
published quarterly and mailed to all SWAP members. Its prime objective is to provide useful information
to users of Wang equipment and computing systems throughout the world. Readers who have programs,
applications or articles which may be shared with other users are invited to submit them to the Editor.
Readers interested in joining the Society for Wang Applications and Programs should write to SWAP,
c/o Wang Laboratories, 836 North Street, Tewksbury, Massachusetts 01876.

NOTE:

NOTE:

NOTE:

©

WANG LABORATORIES
(CANADA) LTD.

49 Valleybrook Drive

Don Mills, Ontario M3B 256

TELEPHONE (416) 449-2175

Telex: 069-66546

WANG EUROPE, S.A.

Buurtweg 13

9412 Ottergem

Belgium

TELEPHONE 053/74514
Telex: 26077

WANG ELECTRONICS LTD.

1 Olympic Way, 4th Floor
Wembley Park,

Middlesex, England
TELEPHONE 01/903/6755
Telex: 923498

WANG FRANCE S.A.R.L.

47, Rue de la Chapelle

Paris 18, France

TELEPHONE 203.27.94 or 203.25.94
Telex: 68958

WANG LABORATORIES GMBH
Moselstrasse 4

6000 Frankfurt AM Main

West Germany

TELEPHONE (0611) 252061

Telex: 04-16246

WANG SKANDINAVISKA AB

Fredsgatan 17, Box 122
§-172 23 Sundbyberg 1, Sweden

WANG COMPUTER PTY. LT[N

25 Bridge Street
Pymble, NSW 2073

TELEPHONE 08-98-1245 Australia

Telex: 11498 TELEPHONE 449-6388

WANG NEDERLAND B.V. WANG DO BRAZIL
Damstraat 2 COMPUTADORES LTDA.
Utrecht, Netherlands

(030} 93-09-47 gu‘aaBFarao de Lucena No. 32
Telex: 47579 ota 090

WANG PACIFIC LTD.
902-3, Wong House

" 26-30 Des Voeux Road, West

Hong Kong
TELEPHONE 5435229
Telex: HX4879

WANG INDUSTRIAL CO., LTD.

110-118 Kuang-Fu N. Road
Taipei, Taiwan

Republic of China
TELEPHONE 784181-3
Telex: 21713

WANG GESELLSCHAFT M.B.H.

Formanekgasse 12-14
A-1190 Vienna, Austria
TELEPHONE 36.60.652
Telex: 74640

Rio de Janeiro, Brazil
TELEPHONE 246 7959

WANG INTERNATIONAL
TRADE, INC.

836 North Street

Tewksbury, Massachusetts 01876
TELEPHONE (617} 851-4111
TWX 710-343-6769

TELEX 94-7421

WANG COMPUTER SERVICES

836 North Street

Tewksbury, Massachusetts 01876
TELEPHONE (617} 851-4111
TWX 710-343-6769

TELEX 94-7421

24 Mill Street

Arlington, Massachusetts 02174
TELEPHONE (617) 648-8550

w! NG LABORATORIES, INC. }
8368 NORTH STREET, TEWKSBURY, MASSACHUSETTS 01876, TEL. (617) 851-411), TWX 710 343-6769, TELEX 94.7421

e T

Printed in U.S.A.
700-3526A

1-75-5M

Price $15.00

	Cover
	Introduction
	Table of Contents
	Section I: General System Introduction
	Section II: BASIC Language Structure
	Section III: Numeric Expressions
	Section IV: Alphanumerics
	Section V: I/O Device Selection
	Section VI: Non-Programmable Commands
	Section VII: General BASIC Statements
	Section VIII: Tape Cassettes
	Section IX: Error Codes
	Section X: Appendices
	Appendix A: Specifications
	Appendix B: Available Peripherals
	Appendix C: Wang System 2200S ASCII Character Code Set
	Appendix D: Listing of Error Messages

	Alphabetical Index

